8. Since this involves constant-acceleration motion, we can apply the equations of Table 2-1, such as $x = v_0t + \frac{1}{2}at^2$ (where $x_0 = 0$). We choose to analyze the third and fifth points, obtaining

0.2 m =
$$v_0(1.0 s) + \frac{1}{2}a (1.0 s)^2$$

0.8 m = $v_0(2.0 s) + \frac{1}{2}a (2.0 s)^2$

Simultaneous solution of the equations leads to $v_0 = 0$ and $a = 0.40 \,\mathrm{m/s^2}$. We now have two ways to finish the problem. One is to compute force from F = ma and then obtain the work from Eq. 7-7. The other is to find ΔK as a way of computing W (in accordance with Eq. 7-10). In this latter approach, we find the velocity at $t = 2.0 \,\mathrm{s}$ from $v = v_0 + at$ (so $v = 0.80 \,\mathrm{m/s}$). Thus,

$$W = \Delta K = \frac{1}{2} (1.0 \text{ kg}) (0.80 \text{ m/s})^2 = 0.32 \text{ J}.$$