- 70. The "certain force" is denoted F is assumed to be the net force on the object when it gives m_1 an acceleration $a_1 = 12 \text{ m/s}^2$ and when it gives m_2 an acceleration $a_2 = 3.3 \text{ m/s}^2$. Thus, we substitute $m_1 = F/a_1$ and $m_2 = F/a_2$ in appropriate places during the following manipulations.
 - (a) Now we seek the acceleration a of an object of mass $m_2 m_1$ when F is the net force on it. Thus,

$$a = \frac{F}{m_2 - m_1} = \frac{F}{(F/a_2) - (F/a_1)} = \frac{a_1 a_2}{a_1 - a_2}$$

which yields $a = 4.6 \text{ m/s}^2$.

(b) Similarly for an object of mass $m_2 + m_1$:

$$a = \frac{F}{m_2 + m_1} = \frac{F}{(F/a_2) + (F/a_1)} = \frac{a_1 a_2}{a_1 + a_2}$$

which yields $a = 2.6 \text{ m/s}^2$.