69. We are only concerned with horizontal forces in this problem (gravity plays no direct role). Thus, $\sum \vec{F} = m\vec{a}$ reduces to $\vec{F}_{avg} = m\vec{a}$, and we see that the magnitude of the force is ma, where m = 0.20 kg and

$$a = |\vec{a}| = \sqrt{a_x^2 + a_y^2}$$

and the direction of the force is the same as that of \vec{a} . We take *east* as the +x direction and *north* as +y. The acceleration is the *average* acceleration in the sense of Eq. 4-15.

(a) We find the (average) acceleration to be

$$\vec{a} = \frac{\vec{v} - \vec{v}_0}{\Delta t} = \frac{(-5.0\,\hat{i}) - (2.0\,\hat{i})}{0.50} = -14\,\hat{i} \text{ m/s}^2 .$$

Thus, the magnitude of the force is $(0.20 \text{ kg})(14 \text{ m/s}^2) = 2.8 \text{ N}$ and its direction is $-\hat{i}$ which means west in this context.

(b) A computation similar to the one in part (a) yields the (average) acceleration with two components, which can be expressed various ways:

$$\vec{a} = -4.0\,\hat{i} - 10.0\,\hat{j} \rightarrow (-4.0, -10.0) \rightarrow (10.8 \angle -112^{\circ})$$

Therefore, the magnitude of the force is $(0.20 \text{ kg})(10.8 \text{ m/s}^2) = 2.2 \text{ N}$ and its direction is 112° clockwise from east – which means it is 22° west of south, stated more conventionally.