- 62. Making separate free-body diagrams for the helicopter and the truck, one finds there are two forces on the truck (\vec{T} upward, caused by the tension, which we'll think of as that of a single cable, and $m\vec{g}$ downward, where m=4500 kg) and three forces on the helicopter (\vec{T} downward, \vec{F}_{lift} upward, and $M\vec{g}$ downward, where M=15000 kg). With +y upward, then a=+1.4 m/s² for both the helicopter and the truck.
 - (a) Newton's law applied to the helicopter and truck separately gives

$$F_{\text{lift}} - T - Mg = Ma$$

$$T - mg = ma$$

which we add together to obtain

$$F_{\text{lift}} - (M+m)g = (M+m)a.$$

From this equation, we find $F_{\text{lift}} = 2.2 \times 10^5 \text{ N}.$

(b) From the truck equation T-mg=ma we obtain $T=5.0\times 10^4$ N.