
58. For convenience, we have labeled the 2.0 kg box m_1 and the 3.0 kg box m_2 – and their weights w' and w, respectively. The +x axis is "downhill" for m_1 and "uphill" for m_2 (so they both accelerate with the same sign).

We apply Newton's second law to each box's x axis:

$$m_1 g \sin 60^\circ - T = m_1 a$$

$$T - m_2 q \sin 30^\circ = m_2 a$$

Adding the two equations allows us to solve for the acceleration $a = 0.45 \text{ m/s}^2$. This value is plugged back into either of the two equations to yield the tension T = 16 N.