- 48. The direction of motion (the direction of the barge's acceleration) is $+\hat{i}$, and $+\hat{j}$ is chosen so that the pull $\vec{F_h}$ from the horse is in the first quadrant. The components of the unknown force of the water are denoted simply F_x and F_y .
 - (a) Newton's second law applied to the barge, in the x and y directions, leads to

$$(7900 \text{ N}) \cos 18^\circ + F_x = ma$$

 $(7900 \text{ N}) \sin 18^\circ + F_y = 0$

respectively. Plugging in $a = 0.12 \text{ m/s}^2$ and m = 9500 kg, we obtain $F_x = 6.4 \times 10^3 \text{ N}$ and $F_y = -2.4 \times 10^3 \text{ N}$. The magnitude of the force of the water is therefore

$$F_{\text{water}} = \sqrt{F_x^2 + F_y^2} = 6.8 \times 10^3 \text{ N}$$
.

(b) Its angle measured from $+\hat{i}$ is either

$$\tan^{-1}\left(\frac{F_y}{F_x}\right) = -21^\circ \quad \text{or} \quad 159^\circ.$$

The signs of the components indicate the former is correct, so \vec{F}_{water} is at 21° measured clockwise from the line of motion.