- 47. We take +y to be up for both the monkey and the package.
 - (a) The force the monkey pulls downward on the rope has magnitude F. According to Newton's third law, the rope pulls upward on the monkey with a force of the same magnitude, so Newton's second law for forces acting on the monkey leads to $F m_m g = m_m a_m$, where m_m is the mass of the monkey and a_m is its acceleration. Since the rope is massless F = T is the tension in the rope. The rope pulls upward on the package with a force of magnitude F, so Newton's second law for the package is $F + N m_p g = m_p a_p$, where m_p is the mass of the package, a_p is its acceleration, and N is the normal force exerted by the ground on it. Now, if F is the minimum force required to lift the package, then N = 0 and $a_p = 0$. According to the second law equation for the package, this means $F = m_p g$. Substituting $m_p g$ for F in the equation for the monkey, we solve for a_m :

$$a_m = \frac{F - m_m g}{m_m} = \frac{(m_p - m_m) g}{m_m} = \frac{(15 - 10)(9.8)}{10} = 4.9 \text{ m/s}^2$$
.

(b) As discussed, Newton's second law leads to $F - m_p g = m_p a_p$ for the package and $F - m_m g = m_m a_m$ for the monkey. If the acceleration of the package is downward, then the acceleration of the monkey is upward, so $a_m = -a_p$. Solving the first equation for F

$$F = m_p(g + a_p) = m_p(g - a_m)$$

and substituting this result into the second equation, we solve for a_m :

$$a_m = \frac{(m_p - m_m)g}{m_p + m_m} = \frac{(15 - 10)(9.8)}{15 + 10} = 2.0 \text{ m/s}^2.$$

- (c) The result is positive, indicating that the acceleration of the monkey is upward.
- (d) Solving the second law equation for the package, we obtain

$$F = m_p (g - a_m) = (15)(9.8 - 2.0) = 120 \text{ N}$$
.