- 39. The force diagrams in Fig. 5-18 are helpful to refer to. In adapting Fig. 5-18(b) to this problem, the normal force \vec{N} and the tension \vec{T} should be labeled F_{m,r_y} and F_{m,r_x} , respectively, and thought of as the y and x components of the force $\vec{F}_{m,r}$ exerted by the motorcycle on the rider. We adopt the coordinates used in Fig. 5-18 and note that they are not the usual horizontal and vertical axes.
 - (a) Since the net force equals ma, then the magnitude of the net force on the rider is $(60.0 \text{ kg})(3.0 \text{ m/s}^2) = 1.8 \times 10^2 \text{ N}.$
 - (b) We apply Newton's second law to the x axis:

$$F_{m,r_r} - mg\sin\theta = ma$$

where m = 60.0 kg, a = 3.0 m/s², and $\theta = 10^{\circ}$. Thus, $F_{m,r_x} = 282$ N. Applying it to the y axis (where there is no acceleration), we have

$$F_{\mathrm{m,r}_y} - mg\cos\theta = 0$$

which produces $F_{m,r_y} = 579$ N. Using the Pythagorean theorem, we find

$$\sqrt{F_{\mathrm{m,r}_x}^2 + F_{\mathrm{m,r}_y}^2} = 644 \text{ N}$$

Now, the magnitude of the force exerted on the rider by the motorcycle is the same magnitude of force exerted by the rider on the motorcycle, so the answer is 6.4×10^2 N.