- 27. We choose up as the +y direction, so $\vec{a}=-3.00$ m/s² \hat{j} (which, without the unit-vector, we denote as a since this is a 1-dimensional problem in which Table 2-1 applies). From Eq. 5-12, we obtain the firefighter's mass: m=W/g=72.7 kg.
 - (a) We denote the force exerted by the pole on the firefighter $\vec{F}_{\rm f\,p}=F\,\hat{\rm j}$ and apply Eq. 5-1 (using SI units).

$$\vec{F}_{\rm net} = m\vec{a}$$

 $F - F_g = ma$
 $F - 712 = (72.7)(-3.00)$

which yields F=494 N. The fact that the result is positive means $\vec{F}_{\rm f\,p}$ points up.

(b) Newton's third law indicates $\vec{F}_{\rm f\,p} = -\vec{F}_{\rm p\,f}$, which leads to the conclusion that $\vec{F}_{\rm p\,f} = 494$ N down.