- 23. We note that The rope is 22° from vertical and therefore 68° from horizontal.
 - (a) With T = 760 N, then its components are

$$\vec{T} = T\cos 68^{\circ}\hat{i} + T\sin 68^{\circ}\hat{j} = 285\hat{i} + 705\hat{j}$$

understood to be in newtons.

(b) No longer in contact with the cliff, the only other force on Tarzan is due to earth's gravity (his weight). Thus,

$$\vec{F}_{\rm net} = \vec{T} + \vec{W} = 285\,\hat{\rm i} + 705\,\hat{\rm j} - 820\,\hat{\rm j} = 285\,\hat{\rm i} - 115\,\hat{\rm j}$$

again understood to be in newtons.

(c) In a manner that is efficiently implemented on a vector capable calculator, we convert from rectangular (x, y) components to magnitude-angle notation:

$$\vec{F}_{net} = (285, -115) \longrightarrow (307 \ \angle -22^{\circ})$$

so that the net force has a magnitude of 307 N.

- (d) The angle (see part (c)) has been found to be 22° below horizontal (away from cliff)
- (e) Since $\vec{a} = \vec{F}_{net} / m$ where m = W/g = 84 kg, we obtain $\vec{a} = 3.67$ m/s²
- (f) Eq. 5-1 requires that $\vec{a} \parallel \vec{F}_{net}$ so that it is also directed at 22° below horizontal (away from cliff).