- 20. The stopping force \vec{F} and the path of the car are horizontal. Thus, the weight of the car contributes only (via Eq. 5-12) to information about its mass (m = W/g = 1327 kg). Our +x axis is in the direction of the car's velocity, so that its acceleration ("deceleration") is negative-valued and the stopping force is in the -x direction: $\vec{F} = -F$.
 - (a) We use Eq. 2-16 and SI units (noting that v = 0 and $v_0 = 40(1000/3600) = 11.1 \text{ m/s}$).

$$v^2 = v_0^2 + 2a\Delta x \implies a = -\frac{v_0^2}{2\Delta x} = -\frac{11.1^2}{2(15)}$$

which yields a = -4.12 m/s². Assuming there are no significant horizontal forces other than the stopping force, Eq. 5-1 leads to

$$\vec{F} = m\vec{a} \implies -F = (1327 \text{ kg}) \left(-4.12 \text{ m/s}^2\right)$$

which results in $F = 5.5 \times 10^3$ N.

- (b) Eq. 2-11 readily yields $t = -v_0/a = 2.7$ s.
- (c) Keeping F the same means keeping a the same, in which case (since v = 0) Eq. 2-16 expresses a direct proportionality between Δx and v_0^2 . Therefore, doubling v_0 means quadrupling Δx . That is, the new over the old stopping distances is a factor of 4.0.
- (d) Eq. 2-11 illustrates a direct proportionality between t and v_0 so that doubling one means doubling the other. That is, the new time of stopping is a factor of 2.0 greater than the one found in part (c).