- 12. We use $W_p = mg_p$, where W_p is the weight of an object of mass m on the surface of a certain planet p, and g_p is the acceleration of gravity on that planet.
 - (a) The weight of the space ranger on Earth is $W_e = mg_e$ which we compute to be $(75 \text{ kg}) \left(9.8 \text{ m/s}^2\right) = 7.4 \times 10^2 \text{ N}.$
 - (b) The weight of the space ranger on Mars is $W_m = mg_m$ which we compute to be $(75 \text{ kg})(3.8 \text{ m/s}^2) = 2.9 \times 10^2 \text{ N}$.
 - (c) The weight of the space ranger in interplanetary space is zero, where the effects of gravity are negligible.
 - (d) The mass of the space ranger remains the same (75 kg) at all the locations.