101. (a) With $v_0 = 6.3$ m/s and R = 0.40 m, Eq. 4-26 gives

$$\sin 2\theta_0 = \frac{gR}{v_0^2} = 0.0988$$

Because $\sin(\phi) = \sin(180^\circ - \phi)$, there are two roots of the above equation:

$$2\theta_0 = \sin^{-1}(0.0988) = 5.7^\circ$$
 and 174.3°

Therefore, the two possible launch angles that will hit the target (in the absence of air friction and related effects) are $\theta_0 = 2.8^{\circ}$ and $\theta_0 = 87.1^{\circ}$. But the juggler is trying to achieve a visual effect by having a relatively high trajectory for the balls, so $\theta_0 = 87.1^{\circ}$ is the result he should choose.

- (b) We do not show the graph here. It would be very much like the higher parabola shown in Fig. 4-51.
- (c) , (d) and (e) The problem requests that the student work with his graphs, here, but we for doublechecking purposes use Eq. 4-26 to calculate R 0.40 m for $\theta_0 87.1^\circ = -2^\circ, -1^\circ, 1^\circ$, and 2° . We obtain the respective values (in meters) 0.28, 0.14, -0.14, and -0.28.