- 98. We establish coordinates with \hat{i} pointing to the far side of the river (perpendicular to the current) and \hat{j} pointing in the direction of the current. We are told that the magnitude (presumed constant) of the velocity of the boat relative to the water is $|\vec{v}_{bw}| = u = 6.4$ km/h. Its angle, relative to the x axis is θ . With km and h as the understood units, the velocity of the water (relative to the ground) is $\vec{v}_{wg} = 3.2 \hat{j}$.
 - (a) To reach a point "directly opposite" means that the velocity of her boat relative to ground must be $\vec{bg} = v\hat{i}$ where v > 0 is unknown. Thus, all \hat{j} components must cancel in the vector sum

$$\vec{v}_{bw} + \vec{v}_{wg} = \vec{v}_{bg}$$

which means the $u \sin \theta = -3.2$, so $\theta = \sin^{-1}(-3.2/6.4) = -30^{\circ}$.

- (b) Using the result from part (a), we find $v = u \cos \theta = 5.5$ km/h. Thus, traveling a distance of $\ell = 6.4$ km requires a time of 6.4/5.5 = 1.15 h or 69 min.
- (c) If her motion is completely along the y axis (as the problem implies) then with $v_w = 3.2$ km/h (the water speed) we have

$$t_{\text{total}} = \frac{D}{u + v_w} + \frac{D}{u - v_w} = 1.33 \text{ h}$$

where D = 3.2 km. This is equivalent to 80 min.

(d) Since

$$\frac{D}{u+v_w} + \frac{D}{u-v_w} = \frac{D}{u-v_w} + \frac{D}{u+v_w}$$

the answer is the same as in the previous part.

(e) The case of general θ leads to

$$\vec{v}_{ba} = \vec{v}_{bw} + \vec{v}_{wa} = u\cos\theta\,\hat{\mathbf{i}} + (u\sin\theta + v_w)\,\hat{\mathbf{j}}$$

where the x component of \vec{v}_{bg} must equal ell/t. Thus,

$$t = \frac{\ell}{u\cos\theta}$$

which can be minimized using $dt/d\theta = 0$ (though, of course, an easier way is to appeal to either physical or mathematical intuition – concluding that the shortest-time path should have $\theta = 0$). Then t = 6.4/6.4 = 1.0 h, or 60 min.