- 94. Our coordinate system has \hat{i} pointed east and \hat{j} pointed north. All distances are in kilometers, times in hours, and speeds in km/h. The first displacement is $\vec{r}_{AB} = 483\hat{i}$ and the second is $\vec{r}_{BC} = -966\hat{j}$.
 - (a) The net displacement is

$$\vec{r}_{AC} = \vec{r}_{AB} + \vec{r}_{BC} = 483\,\hat{i} - 966\,\hat{j} \longrightarrow (1080\,\angle -63.4^\circ)$$

where we have expressed the result in magnitude-angle notation in the last step. We observe that the angle can be alternatively expressed as 63.4° south of east, or 26.6° east of south.

- (b) Dividing the magnitude of \vec{r}_{AC} by the total time (2.25 h) gives the magnitude of \vec{v}_{avg} and its direction is the same as in part (a). Thus, $\vec{v}_{avg} = (480 \angle -63.4^{\circ})$ in magnitude-angle notation (with km/h understood).
- (c) Assuming the AB trip was a straight one, and similarly for the BC trip, then $|\vec{r}_{AB}|$ is the distance traveled during the AB trip, and $|\vec{r}_{BC}|$ is the distance traveled during the BC trip. Since the average speed is the total distance divided by the total time, it equals

$$\frac{483 + 966}{2.25} = 644 \text{ km/h} \ .$$