- 29. We designate the given velocity $\vec{v} = 7.6 \hat{i} + 6.1 \hat{j}$ (SI units understood) as \vec{v}_1 as opposed to the velocity when it reaches the max height \vec{v}_2 or the velocity when it returns to the ground \vec{v}_3 and take \vec{v}_0 as the launch velocity, as usual. The origin is at its launch point on the ground.
 - (a) Different approaches are available, but since it will be useful (for the rest of the problem) to first find the initial y velocity, that is how we will proceed. Using Eq. 2-16, we have

$$v_{1y}^2 = v_{0y}^2 - 2g\Delta y$$

6.1² = $v_{0y}^2 - 2(9.8)(9.1)$

which yields $v_{0y} = 14.7$ m/s. Knowing that v_{2y} must equal 0, we use Eq. 2-16 again but now with $\Delta y = h$ for the maximum height:

$$v_{2y}^2 = v_{0y}^2 - 2gh$$

$$0 = 14.7^2 - 2(9.8)h$$

which yields h = 11 m.

(b) Recalling the derivation of Eq. 4-26, but using v_{0y} for $v_0 \sin \theta_0$ and v_{0x} for $v_0 \cos \theta_0$, we have

$$0 = v_{0y}t - \frac{1}{2}gt^2$$
$$R = v_{0x}t$$

which leads to $R = \frac{2 v_{0x} v_{0y}}{g}$. Noting that $v_{0x} = v_{1x} = 7.6$ m/s, we plug in values and obtain R = 2(7.6)(14.7)/9.8 = 23 m.

(c) Since $v_{3x} = v_{1x} = 7.6$ m/s and $v_{3y} = -v_{0y} = -14.7$ m/s, we have

$$v_3 = \sqrt{v_{3x}^2 + v_{3y}^2} = \sqrt{(-14.7)^2 + 7.6^2} = 17 \text{ m/s}$$

(d) The angle (measured from horizontal) for \vec{v}_3 is one of these possibilities:

$$\tan^{-1}\left(\frac{-14.7}{7.6}\right) = -63^{\circ} \text{ or } 117^{\circ}$$

where we settle on the first choice (-63°) , which is equivalent to 297° since the signs of its components imply that it is in the fourth quadrant.