- 1. Where the length unit is not specified (in this solution), the unit meter should be understood.
 - (a) The position vector, according to Eq. 4-1, is $\vec{r} = -5.0\,\hat{i} + 8.0\,\hat{j}$ (in meters).
 - (b) The magnitude is $|\vec{r}| = \sqrt{x^2 + y^2 + z^2} = 9.4$ m.
 - (c) Many calculators have polar \leftrightarrow rectangular conversion capabilities which make this computation more efficient than what is shown below. Noting that the vector lies in the xy plane, we are using Eq. 3-6:

$$\tan^{-1}\left(\frac{8.0}{-5.0}\right) = -58^{\circ} \text{ or } 122^{\circ}$$

where we choose the latter possibility (122° measured counterclockwise from the +x direction) since the signs of the components imply the vector is in the second quadrant.

- (d) In the interest of saving space, we omit the sketch. The vector is 32° counterclockwise from the +y direction, where the +y direction is assumed to be (as is standard) $+90^{\circ}$ counterclockwise from +x, and the +z direction would therefore be "out of the paper."
- (e) The displacement is $\Delta \vec{r} = \vec{r}' \vec{r}$ where \vec{r} is given in part (a) and $\vec{r}' = 3.0 \hat{i}$. Therefore, $\Delta \vec{r} = 8.0 \hat{i} 8.0 \hat{j}$ (in meters).
- (f) The magnitude of the displacement is $|\Delta \vec{r}| = \sqrt{8^2 + (-8)^2} = 11$ m.
- (g) The angle for the displacement, using Eq. 3-6, is found from

$$\tan^{-1}\left(\frac{8.0}{-8.0}\right) = -45^{\circ} \text{ or } 135^{\circ}$$

where we choose the former possibility (-45°) , which means 45° measured clockwise from +x, or 315° counterclockwise from +x) since the signs of the components imply the vector is in the fourth quadrant.