60. (First problem in **Cluster 1**)

The given angle $\theta = 130^{\circ}$ is assumed to be measured counterclockwise from the +x axis. Angles (if positive) in our results follow the same convention (but if negative are clockwise from +x).

- (a) With A = 4.00, the x-component of \vec{A} is $A \cos \theta = -2.57$.
- (b) The *y*-component of \vec{A} is $A \sin \theta = 3.06$.
- (c) Adding \vec{A} and \vec{B} produces a vector we call R with components $R_x = -6.43$ and $R_y = -1.54$. Using Eq. 3-6 (or special functions on a calculator) we present this in magnitude-angle notation: $\vec{R} = (6.61 \ \angle -167^{\circ}).$
- (d) From the discussion in the previous part, it is clear that $\vec{R} = -6.43 \hat{i} 1.54 \hat{j}$.
- (e) The vector \vec{C} is the difference of \vec{A} and \vec{B} . In unit-vector notation, this becomes

$$\vec{C} = \vec{A} - \vec{B} = \left(-2.57\,\hat{\mathbf{i}} - 3.06\,\hat{\mathbf{j}}\right) - \left(-3.86\,\hat{\mathbf{i}} - 4.60\,\hat{\mathbf{j}}\right)$$

which yields $\vec{C} = 1.29\,\hat{i} + 7.66\,\hat{j}$.

- (f) Using Eq. 3-6 (or special functions on a calculator) we present this in magnitude-angle notation: $\vec{C} = (7.77 \angle 80.5^{\circ}).$
- (g) We note that \vec{C} is the "constant" in all six pictures. Remembering that the negative of a vector simply reverses it, then we see that in form or another, all six pictures express the relation $\vec{C} = \vec{A} \vec{B}$.