38. We apply Eq. 3-20 with Eq. 3-23. Where the length unit is not displayed, the unit meter is understood.

(a) We first note that $a = |\vec{a}| = \sqrt{3.2^2 + 1.6^2} = 3.58$ m and $b = |\vec{b}| = \sqrt{0.5^2 + 4.5^2} = 4.53$ m. Now,

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y = ab \cos \phi$$

(3.2)(0.5) + (1.6)(4.5) = (3.58)(4.53) cos ϕ

which leads to $\phi = 57^{\circ}$ (the inverse cosine is double-valued as is the inverse tangent, but we know this is the right solution since both vectors are in the same quadrant).

- (b) Since the angle (measured from +x) for \vec{a} is $\tan^{-1}(1.6/3.2) = 26.6^{\circ}$, we know the angle for \vec{c} is $26.6^{\circ} 90^{\circ} = -63.4^{\circ}$ (the other possibility, $26.6^{\circ} + 90^{\circ}$ would lead to a $c_x < 0$). Therefore, $c_x = c \cos -63.4^{\circ} = (5.0)(0.45) = 2.2$ m.
- (c) Also, $c_y = c \sin -63.4^\circ = (5.0)(-0.89) = -4.5$ m.
- (d) And we know the angle for \vec{d} to be $26.6^{\circ} + 90^{\circ} = 116.6^{\circ}$, which leads to $d_x = d \cos 116.6^{\circ} = (5.0)(-0.45) = -2.2$ m.
- (e) Finally, $d_y = d \sin 116.6^\circ = (5.0)(0.89) = 4.5$ m.