- 22. If we wish to use Eq. 3-5 in an unmodified fashion, we should note that the angle between \vec{C} and the +x axis is $180^{\circ} + 20^{\circ} = 200^{\circ}$.
 - (a) The x component of \vec{B} is given by $C_x A_x = 15 \cos 200^\circ 12 \cos 40^\circ = -23.3$ m, and the y component of \vec{B} is given by $C_y A_y = 15 \sin 200^\circ 12 \sin 40^\circ = -12.8$ m. Consequently, its magnitude is $\sqrt{(-23.3)^2 + (-12.8)^2} = 26.6$ m.
 - (b) The two possibilities presented by a simple calculation for the angle between \vec{B} and the +x axis are $\tan^{-1}((-12.8)/(-23.3)) = 28.9^{\circ}$, and $180^{\circ} + 28.9^{\circ} = 209^{\circ}$. We choose the latter possibility as the correct one since it indicates that \vec{B} is in the third quadrant (indicated by the signs of its components). We note, too, that the answer can be equivalently stated as -151° .