- 18. Many of the operations are done efficiently on most modern graphical calculators using their built-in vector manipulation and rectangular \leftrightarrow polar "shortcuts." In this solution, we employ the "traditional" methods (such as Eq. 3-6).
 - (a) The magnitude of \vec{a} is $\sqrt{4^2 + (-3)^2} = 5.0$ m.
 - (b) The angle between \vec{a} and the +x axis is $\tan^{-1}(-3/4) = -37^{\circ}$. The vector is 37° clockwise from the axis defined by \hat{i} .
 - (c) The magnitude of \vec{b} is $\sqrt{6^2 + 8^2} = 10$ m.
 - (d) The angle between \vec{b} and the +x axis is $\tan^{-1}(8/6) = 53^{\circ}$.
 - (e) $\vec{a} + \vec{b} = (4+6)\hat{i} + ((-3)+8)\hat{j} = 10\hat{i} + 5\hat{j}$, with the unit meter understood. The magnitude of this vector is $\sqrt{10^2 + 5^2} = 11$ m; we rounding to two significant figures in our results.
 - (f) The angle between the vector described in part (e) and the +x axis is $\tan^{-1}(5/10) = 27^{\circ}$.
 - (g) $\vec{b} \vec{a} = (6-4)\hat{i} + (8-(-3))\hat{j} = 2\hat{i} + 11\hat{j}$, with the unit meter understood. The magnitude of this vector is $\sqrt{2^2 + 11^2} = 11$ m, which is, interestingly, the same result as in part (e) (exactly, not just to 2 significant figures) (this curious coincidence is made possible by the fact that $\vec{a} \perp \vec{b}$).
 - (h) The angle between the vector described in part (g) and the +x axis is $\tan^{-1}(11/2) = 80^{\circ}$.
 - (i) $\vec{a} \vec{b} = (4-6)\hat{i} + ((-3)-8)\hat{j} = -2\hat{i} 11\hat{j}$, with the unit meter understood. The magnitude of this vector is $\sqrt{(-2)^2 + (-11)^2} = 11$ m.
 - (j) The two possibilities presented by a simple calculation for the angle between the vector described in part (i) and the +x direction are $\tan^{-1}(11/2) = 80^{\circ}$, and $180^{\circ} + 80^{\circ} = 260^{\circ}$. The latter possibility is the correct answer (see part (k) for a further observation related to this result).
 - (k) Since $\vec{a} \vec{b} = (-1)(\vec{b} \vec{a})$, they point in opposite (antiparallel) directions; the angle between them is 180° .