
10. We label the displacement vectors \vec{A} , \vec{B} and \vec{C} (and denote the result

of their vector sum as \vec{r}). We choose east as the \hat{i} direction (+x direction) and north as the \hat{j} direction (+y direction). All distances are understood to be in kilometers. We note that the angle between \vec{C} and the x axis is 60° . Thus,

$$\vec{A} = 50 \,\hat{i}$$
 $\vec{B} = 30 \,\hat{j}$
 $\vec{C} = 25 \cos(60^{\circ}) \,\hat{i} + 25 \sin(60^{\circ}) \,\hat{j}$
 $\vec{r} = \vec{A} + \vec{B} + \vec{C} = 62.50 \,\hat{i} + 51.65 \,\hat{j}$

which means

that its magnitude is

$$|\vec{r}| = \sqrt{62.50^2 + 51.65^2} \approx 81 \text{ km}.$$

and its angle (counterclockwise from +x axis) is $\tan^{-1}(51.65/62.50) \approx 40^{\circ}$, which is to say that it points 40° north of east. Although the resultant \vec{r} is shown in our sketch, it would be a direct line from the "tail" of \vec{A} to the "head" of \vec{C} .