58. We neglect air resistance, which justifies setting $a = -g = -9.8 \text{ m/s}^2$ (taking down as the -y direction) for the duration of the motion. We are allowed to use Table 2-1 (with Δy replacing Δx) because this is constant acceleration motion. When something is thrown straight up and is caught at the level it was thrown from (with a trajectory similar to that shown in Fig. 2-25), the time of flight t is half of its time of ascent t_a , which is given by Eq. 2-18 with $\Delta y = H$ and v = 0 (indicating the maximum point).

$$H = vt_a + \frac{1}{2}gt_a^2 \implies t_a = \sqrt{\frac{2H}{g}}$$

Writing these in terms of the total time in the air $t = 2t_a$ we have

$$H = \frac{1}{8}gt^2 \implies t = 2\sqrt{\frac{2H}{g}} .$$

We consider two throws, one to height H_1 for total time t_1 and another to height H_2 for total time t_2 , and we set up a ratio:

$$\frac{H_2}{H_1} = \frac{\frac{1}{8}gt_2^2}{\frac{1}{8}gt_1^2} = \left(\frac{t_2}{t_1}\right)^2$$

from which we conclude that if $t_2 = 2t_1$ (as is required by the problem) then $H_2 = 2^2H_1 = 4H_1$.