- 44. There is no air resistance, which makes it quite accurate to set $a = -g = -9.8 \text{ m/s}^2$ (where downward is the -y direction) for the duration of the fall. We are allowed to use Table 2-1 (with Δy replacing Δx) because this is constant acceleration motion; in fact, when the acceleration changes (during the process of catching the ball) we will again assume constant acceleration conditions; in this case, we have $a_2 = +25g = 245 \text{ m/s}^2$.
 - (a) The time of fall is given by Eq. 2-15 with $v_0 = 0$ and y = 0. Thus,

$$t = \sqrt{\frac{2y_0}{g}} = \sqrt{\frac{2(145)}{9.8}} = 5.44 \text{ s}.$$

(b) The final velocity for its free-fall (which becomes the initial velocity during the catching process) is found from Eq. 2-16 (other equations can be used but they would use the result from part (a)).

$$v = -\sqrt{v_0^2 - 2g(y - y_0)} = -\sqrt{2gy_0} = -53.3 \text{ m/s}$$

where the negative root is chosen since this is a downward velocity.

(c) For the catching process, the answer to part (b) plays the role of an *initial* velocity ($v_0 = -53.3 \text{ m/s}$) and the final velocity must become zero. Using Eq. 2-16, we find

$$\Delta y_2 = \frac{v^2 - v_0^2}{2a_2} = \frac{-(-53.3)^2}{2(245)} = -5.80 \text{ m}$$

where the negative value of Δy_2 signifies that the distance traveled while arresting its motion is downward.