37. We denote t_r as the reaction time and t_b as the braking time. The motion during t_r is of the constant-velocity (call it v_0) type. Then the position of the car is given by

$$x = v_0 t_r + v_0 t_b + \frac{1}{2} a t_b^2$$

where v_0 is the initial velocity and a is the acceleration (which we expect to be negative-valued since we are taking the velocity in the positive direction and we know the car is decelerating). After the brakes are applied the velocity of the car is given by $v = v_0 + at_b$. Using this equation, with v = 0, we eliminate t_b from the first equation and obtain

$$x = v_0 t_r - \frac{v_0^2}{a} + \frac{1}{2} \frac{v_0^2}{a} = v_0 t_r - \frac{1}{2} \frac{v_0^2}{a}$$
.

We write this equation for each of the initial velocities:

$$x_1 = v_{01}t_r - \frac{1}{2}\frac{v_{01}^2}{a}$$

and

$$x_2 = v_{02}t_r - \frac{1}{2}\frac{v_{02}^2}{a}$$

Solving these equations simultaneously for t_r and a we get

$$t_r = \frac{v_{02}^2 x_1 - v_{01}^2 x_2}{v_{01} v_{02} (v_{02} - v_{01})}$$

and

$$a = -\frac{1}{2} \frac{v_{02}v_{01}^2 - v_{01}v_{02}^2}{v_{02}x_1 - v_{01}x_2}$$

Substituting $x_1 = 56.7 \text{ m}$, $v_{01} = 80.5 \text{ km/h} = 22.4 \text{ m/s}$, $x_2 = 24.4 \text{ m}$ and $v_{02} = 48.3 \text{ km/h} = 13.4 \text{ m/s}$, we find

$$t_r = \frac{13.4^2(56.7) - 22.4^2(24.4)}{(22.4)(13.4)(13.4 - 22.4)} = 0.74 \text{ s}$$

and

$$a = -\frac{1}{2} \frac{(13.4)22.4^2 - (22.4)13.4^2}{(13.4)(56.7) - (22.4)(24.4)} = -6.2 \text{ m/s}^2.$$

The magnitude of the deceleration is therefore 6.2 m/s². Although rounded off values are displayed in the above substitutions, what we have input into our calculators are the "exact" values (such as $v_{02} = \frac{161}{12}$ m/s).