- 3. We use Eq. 2-2 and Eq. 2-3. During a time t_c when the velocity remains a positive constant, speed is equivalent to velocity, and distance is equivalent to displacement, with $\Delta x = v t_c$.
 - (a) During the first part of the motion, the displacement is $\Delta x_1 = 40$ km and the time interval is

$$t_1 = \frac{(40 \text{ km})}{(30 \text{ km/h})} = 1.33 \text{ h}.$$

During the second part the displacement is $\Delta x_2 = 40$ km and the time interval is

$$t_2 = \frac{(40 \,\mathrm{km})}{(60 \,\mathrm{km/h})} = 0.67 \,\mathrm{h}.$$

Both displacements are in the same direction, so the total displacement is $\Delta x = \Delta x_1 + \Delta x_2 = 40 \text{ km} + 40 \text{ km} = 80 \text{ km}$. The total time for the trip is $t = t_1 + t_2 = 2.00 \text{ h}$. Consequently, the average velocity is

$$v_{\rm avg} = \frac{(80\,{\rm km})}{(2.0\,{\rm h})} = 40\,{\rm km/h}$$

- (b) In this example, the numerical result for the average speed is the same as the average velocity $40 \,\mathrm{km/h}$.
- (c) In the interest of saving space, we briefly describe the graph (with kilometers and hours understood): two contiguous line segments, the first having a slope of 30 and connecting the origin to $(t_1, x_1) =$ (1.33, 40) and the second having a slope of 60 and connecting (t_1, x_1) to (t, x) = (2.00, 80). The average velocity, from the graphical point of view, is the slope of a line drawn from the origin to (t, x).