
Chapter 9 – Software Evolution

Chapter 9 Software Evolution 130/10/2014

Topics covered

 Evolution processes

 Legacy systems

 Software maintenance

Chapter 9 Software Evolution 230/10/2014

Software change

 Software change is inevitable

 New requirements emerge when the software is used;

 The business environment changes;

 Errors must be repaired;

 New computers and equipment are added to the system;

 The performance or reliability of the system may have to be

improved.

 A key problem for all organizations is implementing and

managing change to their existing software systems.

Chapter 9 Software Evolution 330/10/2014

Importance of evolution

 Organisations have huge investments in their software
systems - they are critical business assets.

 To maintain the value of these assets to the business,
they must be changed and updated.

 The majority of the software budget in large companies
is devoted to changing and evolving existing software
rather than developing new software.

Chapter 9 Software Evolution 430/10/2014

A spiral model of development and evolution

Chapter 9 Software Evolution 530/10/2014

Evolution and servicing

Chapter 9 Software Evolution 630/10/2014

Evolution and servicing

 Evolution

 The stage in a software system’s life cycle where it is in

operational use and is evolving as new requirements are

proposed and implemented in the system.

 Servicing

 At this stage, the software remains useful but the only changes

made are those required to keep it operational i.e. bug fixes and

changes to reflect changes in the software’s environment. No

new functionality is added.

 Phase-out

 The software may still be used but no further changes are made

to it.

Chapter 9 Software Evolution 730/10/2014

Evolution processes

Chapter 9 Software Evolution 830/10/2014

Evolution processes

 Software evolution processes depend on

 The type of software being maintained;

 The development processes used;

 The skills and experience of the people involved.

 Proposals for change are the driver for system evolution.

 Should be linked with components that are affected by the

change, thus allowing the cost and impact of the change to be

estimated.

 Change identification and evolution continues throughout

the system lifetime.

Chapter 9 Software Evolution 930/10/2014

Change identification and evolution processes

Chapter 9 Software Evolution 1030/10/2014

The software evolution process

Chapter 9 Software Evolution 1130/10/2014

Change implementation

Chapter 9 Software Evolution 1230/10/2014

Change implementation

 Iteration of the development process where the revisions

to the system are designed, implemented and tested.

 A critical difference is that the first stage of change

implementation may involve program understanding,

especially if the original system developers are not

responsible for the change implementation.

 During the program understanding phase, you have to

understand how the program is structured, how it

delivers functionality and how the proposed change

might affect the program.

Chapter 9 Software Evolution 1330/10/2014

Urgent change requests

 Urgent changes may have to be implemented without

going through all stages of the software engineering

process

 If a serious system fault has to be repaired to allow normal

operation to continue;

 If changes to the system’s environment (e.g. an OS upgrade)

have unexpected effects;

 If there are business changes that require a very rapid response

(e.g. the release of a competing product).

Chapter 9 Software Evolution 1430/10/2014

The emergency repair process

Chapter 9 Software Evolution 1530/10/2014

Agile methods and evolution

 Agile methods are based on incremental development so

the transition from development to evolution is a

seamless one.

 Evolution is simply a continuation of the development process

based on frequent system releases.

 Automated regression testing is particularly valuable

when changes are made to a system.

 Changes may be expressed as additional user stories.

Chapter 9 Software Evolution 1630/10/2014

Regression testing tools

 SahiPro: Inbuilt Logging and reporting

 Selenium: It is compatible with multiple programming languages and other

testing frameworks.

 Watir: It uses Ruby programming language. Used by many big companies

like SAP, Oracle, Facebook,

 TestComplete: Automatically schedules and runs the regression tests

without any manual intervention. Supports desktop, web and mobile apps.

 IBM Rational Functional Tester: supports data driven and GUI testing.

Supports apps like web-based, NET, Java, Ajax,

 TimeShiftX: Uses virtual times so no system clock changes are required.

Enables time shift testing for SAP, SQL, Oracle, WAS, and .NET.

 WebKing: Uses a path creator browser to record and generate the

application’s most popular paths. Supports data sources like .csv, excel

30/10/2014 Chapter 9 Software Evolution 17

Handover problems

 Where the development team have used an agile

approach but the evolution team is unfamiliar with agile

methods and prefer a plan-based approach.

 The evolution team may expect detailed documentation to

support evolution and this is not produced in agile processes.

 Where a plan-based approach has been used for

development but the evolution team prefer to use agile

methods.

 The evolution team may have to start from scratch developing

automated tests and the code in the system may not have been

refactored and simplified as is expected in agile development.

Chapter 9 Software Evolution 1830/10/2014

Software maintenance

Chapter 9 Software Evolution 1930/10/2014

Software maintenance

 Modifying a program after it has been put into use.

 The term is mostly used for changing custom software.

Generic software products are said to evolve to create

new versions.

 Maintenance does not normally involve major changes to

the system’s architecture.

 Changes are implemented by modifying existing

components and adding new components to the system.

Chapter 9 Software Evolution 2030/10/2014

Types of maintenance

 Fault repairs

 Changing a system to fix bugs/vulnerabilities and correct

deficiencies in the way meets its requirements.

 Environmental adaptation

 Maintenance to adapt software to a different operating

environment

 Changing a system so that it operates in a different environment

(computer, OS, etc.) from its initial implementation.

 Functionality addition and modification

 Modifying the system to satisfy new requirements.

Chapter 9 Software Evolution 2130/10/2014

Maintenance effort distribution

Chapter 9 Software Evolution 2230/10/2014

Maintenance costs

 Usually greater than development costs (2* to

100* depending on the application).

 Affected by both technical and non-technical

factors.

 Increases as software is maintained.

Maintenance corrupts the software structure so

makes further maintenance more difficult.

 Ageing software can have high support costs

(e.g. old languages, compilers etc.).

Chapter 9 Software Evolution 2330/10/2014

Maintenance costs

 It is usually more expensive to add new features to a

system during maintenance than it is to add the same

features during development

 A new team has to understand the programs being maintained

 Separating maintenance and development means there is no

incentive for the development team to write maintainable

software

 Program maintenance work is unpopular

• Maintenance staff are often inexperienced and have limited domain

knowledge.

 As programs age, their structure degrades and they become

harder to change

Chapter 9 Software Evolution 2430/10/2014

Maintenance prediction

 Maintenance prediction is concerned with assessing

which parts of the system may cause problems and have

high maintenance costs

 Change acceptance depends on the maintainability of the

components affected by the change;

 Implementing changes degrades the system and reduces its

maintainability;

 Maintenance costs depend on the number of changes and costs

of change depend on maintainability.

Chapter 9 Software Evolution 2530/10/2014

Maintenance prediction

Chapter 9 Software Evolution 2630/10/2014

Change prediction

 Predicting the number of changes requires and

understanding of the relationships between a system

and its environment.

 Tightly coupled systems require changes whenever the

environment is changed.

 Factors influencing this relationship are

 Number and complexity of system interfaces;

 Number of inherently volatile system requirements;

 The business processes where the system is used.

Chapter 9 Software Evolution 2730/10/2014

Complexity metrics

 Predictions of maintainability can be made by assessing

the complexity of system components.

 Studies have shown that most maintenance effort is

spent on a relatively small number of system

components.

 Complexity depends on

 Complexity of control structures;

 Complexity of data structures;

 Object, method (procedure) and module size.

Chapter 9 Software Evolution 2830/10/2014

Process metrics

 Process metrics may be used to assess maintainability

 Number of requests for corrective maintenance;

 Average time required for impact analysis;

 Average time taken to implement a change request;

 Number of outstanding change requests.

 If any or all of these is increasing, this may indicate a

decline in maintainability.

Chapter 9 Software Evolution 2930/10/2014

Software reengineering

 Restructuring or rewriting part or all of a

legacy system without changing its

functionality.

 Applicable where some but not all sub-systems

of a larger system require frequent

maintenance.

 Reengineering involves adding effort to make

them easier to maintain. The system may be re-

structured and re-documented.

Chapter 9 Software Evolution 3030/10/2014

Advantages of reengineering

 Reduced risk

 There is a high risk in new software development. There may be

development problems, staffing problems and specification

problems.

 Reduced cost

 The cost of re-engineering is often significantly less than the

costs of developing new software.

Chapter 9 Software Evolution 3130/10/2014

The reengineering process

Chapter 9 Software Evolution 3230/10/2014

Reengineering process activities

 Source code translation

 Convert code to a new language.

 Reverse engineering

 Analyse the program to understand it;

 Program structure improvement

 Restructure automatically for understandability;

 Program modularisation

 Reorganise the program structure;

 Data reengineering

 Clean-up and restructure system data.

Chapter 9 Software Evolution 3330/10/2014

Reengineering approaches

Chapter 9 Software Evolution 3430/10/2014

Reengineering cost factors

 The quality of the software to be reengineered.

 The tool support available for reengineering.

 The extent of the data conversion which is required.

 The availability of expert staff for reengineering.

 This can be a problem with old systems based on technology
that is no longer widely used.

Chapter 9 Software Evolution 3530/10/2014

Refactoring

 Refactoring is the process of making improvements to a

program to slow down degradation through change.

 You can think of refactoring as ‘preventative

maintenance’ that reduces the problems of future

change.

 Refactoring involves modifying a program to improve its

structure, reduce its complexity or make it easier to

understand.

 When you refactor a program, you should not add

functionality but rather concentrate on program

improvement.

Chapter 9 Software Evolution 3630/10/2014

Refactoring and reengineering

 Re-engineering takes place after a system has been

maintained for some time and maintenance costs are

increasing.

 You use automated tools to process and re-engineer a legacy

system to create a new system that is more maintainable.

 Refactoring is a continuous process of improvement

throughout the development and evolution process.

 It is intended to avoid the structure and code degradation that

increases the costs and difficulties of maintaining a system.

Chapter 9 Software Evolution 3730/10/2014

‘Bad smells’ in program code

 Duplicate code : The same or very similar code may be included at

different places in a program. This can be removed and

implemented as a single method or function that is called as

required.

 Long methods: If a method is too long, it should be redesigned as a

number of shorter methods.

 Large class: a class that has grown too large.

 Feature envy: a class that uses methods of another class

excessively.

 Inappropriate intimacy: a class that has dependencies on

implementation details of another class.

 Lazy class / freeloader: a class that does too little.

Chapter 9 Software Evolution 3830/10/2014

‘Bad smells’ in program code

 Data clumping: Data clumps occur when the same group of data

items (fields in classes, parameters in methods) re-occur in several

places in a program. These can often be replaced with an object that

encapsulates all of the data.

 Speculative generality: this occurs when developers include

generality in a program in case it is required in the future. This can

often simply be removed.

 Too many parameters: a long list of parameters is hard to read, and

makes calling and testing the function complicated. Long method:

a method, function, or procedure that has grown too large.

 Excessively short identifiers: the name of a variable should reflect its

function unless the function is obvious.

Chapter 9 Software Evolution 3930/10/2014

Legacy systems

Chapter 9 Software Evolution 4030/10/2014

Legacy systems

 Legacy systems are older systems that rely on

languages and technology that are no longer used for

new systems development.

 Legacy software may be dependent on older hardware,

such as mainframe computers and may have associated

legacy processes and procedures.

 Legacy systems are not just software systems but are

broader socio-technical systems that include hardware,

software, libraries and other supporting software and

business processes.

Chapter 9 Software Evolution 4130/10/2014

The elements of a legacy system

Chapter 9 Software Evolution 4230/10/2014

Legacy system components

 System hardware Legacy systems may have been

written for hardware that is no longer available.

 Support software The legacy system may rely on a

range of support software, which may be obsolete or

unsupported.

 Application software The application system that

provides the business services is usually made up of a

number of application programs.

 Application data These are data that are processed by

the application system. They may be inconsistent,

duplicated or held in different databases.

Chapter 9 Software Evolution 4330/10/2014

Legacy system components

 Business processes These are processes that are used

in the business to achieve some business objective.

 Business processes may be designed around a legacy

system and constrained by the functionality that it

provides.

 Business policies and rules These are definitions of how

the business should be carried out and constraints on

the business. Use of the legacy application system may

be embedded in these policies and rules.

Chapter 9 Software Evolution 4430/10/2014

Legacy system layers

Chapter 9 Software Evolution 4530/10/2014

Legacy system replacement

 Legacy system replacement is risky and expensive so

businesses continue to use these systems

 System replacement is risky for a number of reasons

 Lack of complete system specification

 Tight integration of system and business processes

 Undocumented business rules embedded in the legacy system

 New software development may be late and/or over budget

Chapter 9 Software Evolution 4630/10/2014

Legacy system change

 Legacy systems are expensive to change for a number

of reasons:

 No consistent programming style

 Use of obsolete programming languages with few people

available with these language skills

 Inadequate system documentation

 System structure degradation

 Program optimizations may make them hard to understand

 Data errors, duplication and inconsistency

Chapter 9 Software Evolution 4730/10/2014

Legacy system management

 Organisations that rely on legacy systems must choose

a strategy for evolving these systems

 Scrap the system completely and modify business processes so

that it is no longer required;

 Continue maintaining the system;

 Transform the system by re-engineering to improve its

maintainability;

 Replace the system with a new system.

 The strategy chosen should depend on the system

quality and its business value.

Chapter 9 Software Evolution 4830/10/2014

Figure 9.13 An example of a legacy system

assessment

Chapter 9 Software Evolution 4930/10/2014

Legacy system categories

 Low quality, low business value

 These systems should be scrapped.

 Low-quality, high-business value

 These make an important business contribution but are

expensive to maintain. Should be re-engineered or replaced if a

suitable system is available.

 High-quality, low-business value

 Replace with COTS, scrap completely or maintain.

 High-quality, high business value

 Continue in operation using normal system maintenance.

Chapter 9 Software Evolution 5030/10/2014

Business value assessment

 Assessment should take different viewpoints into

account

 System end-users;

 Business customers;

 Line managers;

 IT managers;

 Senior managers.

 Interview different stakeholders and collate results.

Chapter 9 Software Evolution 5130/10/2014

Issues in business value assessment

 The use of the system

 If systems are only used occasionally or by a small number of

people, they may have a low business value.

 The business processes that are supported

 A system may have a low business value if it forces the use of

inefficient business processes.

 System dependability

 If a system is not dependable and the problems directly affect

business customers, the system has a low business value.

 The system outputs

 If the business depends on system outputs, then the system has

a high business value.

Chapter 9 Software Evolution 5230/10/2014

System quality assessment

 Business process assessment

 How well does the business process support the current goals of

the business?

 Environment assessment

 How effective is the system’s environment and how expensive is

it to maintain?

 Application assessment

 What is the quality of the application software system?

Chapter 9 Software Evolution 5330/10/2014

Business process assessment

 Use a viewpoint-oriented approach and seek answers
from system stakeholders

 Is there a defined process model and is it followed?

 Do different parts of the organisation use different processes for
the same function?

 How has the process been adapted?

 What are the relationships with other business processes and
are these necessary?

 Is the process effectively supported by the legacy application
software?

 Example - a travel ordering system may have a low
business value because of the widespread use of web-
based ordering.

Chapter 9 Software Evolution 5430/10/2014

Factors used in environment assessment

Factor Questions

Supplier stability Is the supplier still in existence? Is the supplier financially stable and

likely to continue in existence? If the supplier is no longer in business,

does someone else maintain the systems?

Failure rate Does the hardware have a high rate of reported failures? Does the

support software crash and force system restarts?

Age How old is the hardware and software? The older the hardware and

support software, the more obsolete it will be. It may still function

correctly but there could be significant economic and business

benefits to moving to a more modern system.

Performance Is the performance of the system adequate? Do performance

problems have a significant effect on system users?

Chapter 9 Software Evolution 5530/10/2014

Factors used in environment assessment

Factor Questions

Support requirements What local support is required by the hardware and

software? If there are high costs associated with this

support, it may be worth considering system replacement.

Maintenance costs What are the costs of hardware maintenance and support

software licences? Older hardware may have higher

maintenance costs than modern systems. Support software

may have high annual licensing costs.

Interoperability Are there problems interfacing the system to other systems?

Can compilers, for example, be used with current versions

of the operating system? Is hardware emulation required?

Chapter 9 Software Evolution 5630/10/2014

Factors used in application assessment

Factor Questions

Understandability How difficult is it to understand the source code of the current

system? How complex are the control structures that are used?

Do variables have meaningful names that reflect their function?

Documentation What system documentation is available? Is the documentation

complete, consistent, and current?

Data Is there an explicit data model for the system? To what extent is

data duplicated across files? Is the data used by the system up to

date and consistent?

Performance Is the performance of the application adequate? Do performance

problems have a significant effect on system users?

Chapter 9 Software Evolution 5730/10/2014

Factors used in application assessment

Factor Questions

Programming language Are modern compilers available for the programming

language used to develop the system? Is the programming

language still used for new system development?

Configuration

management

Are all versions of all parts of the system managed by a

configuration management system? Is there an explicit

description of the versions of components that are used in

the current system?

Test data Does test data for the system exist? Is there a record of

regression tests carried out when new features have been

added to the system?

Personnel skills Are there people available who have the skills to maintain the

application? Are there people available who have experience

with the system?

Chapter 9 Software Evolution 5830/10/2014

System measurement

 You may collect quantitative data to make an

assessment of the quality of the application system

 The number of system change requests; The higher this

accumulated value, the lower the quality of the system.

 The number of different user interfaces used by the system; The

more interfaces, the more likely it is that there will be

inconsistencies and redundancies in these interfaces.

 The volume of data used by the system. As the volume of data

(number of files, size of database, etc.) processed by the system

increases, so too do the inconsistencies and errors in that data.

 Cleaning up old data is a very expensive and time-consuming

process

Chapter 9 Software Evolution 5930/10/2014

Key points

 Software development and evolution can be thought of

as an integrated, iterative process that can be

represented using a spiral model.

 For custom systems, the costs of software maintenance

usually exceed the software development costs.

 The process of software evolution is driven by requests

for changes and includes change impact analysis,

release planning and change implementation.

 Legacy systems are older software systems, developed

using obsolete software and hardware technologies, that

remain useful for a business.

Chapter 9 Software Evolution 6030/10/2014

Key points

 It is often cheaper and less risky to maintain a legacy

system than to develop a replacement system using

modern technology.

 The business value of a legacy system and the quality of

the application should be assessed to help decide if a

system should be replaced, transformed or maintained.

 There are 3 types of software maintenance, namely bug

fixing, modifying software to work in a new environment,

and implementing new or changed requirements.

Chapter 9 Software Evolution 6130/10/2014

Key points

 Software re-engineering is concerned with re-structuring

and re-documenting software to make it easier to

understand and change.

 Refactoring, making program changes that preserve

functionality, is a form of preventative maintenance.

Chapter 9 Software Evolution 6230/10/2014

