
Chapter 6 – Architectural Design

Chapter 6 Architectural Design 107/05/2018

Topics covered

 Architectural design decisions

 Architectural views

 Architectural patterns

 Application architectures

Chapter 6 Architectural Design 207/05/2018

Architectural design

 Architectural design is concerned with understanding

how a software system should be organized and

designing the overall structure of that system.

 Architectural design is the critical link between design

and requirements engineering, as it identifies the main

structural components in a system and the relationships

between them.

 The output of the architectural design process is an

architectural model that describes how the system is

organized as a set of communicating components.

Chapter 6 Architectural Design 307/05/2018

Agility and architecture

 It is generally accepted that an early stage of agile

processes is to design an overall systems architecture.

 Refactoring the system architecture is usually expensive

because it affects so many components in the system

Chapter 6 Architectural Design 407/05/2018

Architectural abstraction

 Architecture in the small is concerned with the

architecture of individual programs. At this level, we are

concerned with the way that an individual program is

decomposed into components.

 Architecture in the large is concerned with the

architecture of complex enterprise systems that include

other systems, programs, and program components.

These enterprise systems are distributed over different

computers, which may be owned and managed by

different companies.

Chapter 6 Architectural Design 507/05/2018

Advantages of explicit architecture

 Stakeholder communication

 Architecture may be used as a focus of discussion by system
stakeholders.

 System analysis

 Means that analysis of whether the system can meet its non-
functional requirements is possible.

 Large-scale reuse

 The architecture may be reusable across a range of systems

 Product-line architectures may be developed.

Chapter 6 Architectural Design 607/05/2018

Architectural representations

 Simple, informal block diagrams showing entities and

relationships are the most frequently used method for

documenting software architectures.

 But these have been criticised because they lack

semantics, do not show the types of relationships

between entities nor the visible properties of entities in

the architecture.

 Depends on the use of architectural models. The

requirements for model semantics depends on how the

models are used.

Chapter 6 Architectural Design 707/05/2018

The architecture of a packing robot control

system

Chapter 6 Architectural Design 807/05/2018

Eclipse architecture – informal model

Architectural Styles 9
27/04/2010 - 04/05/2010

Box and line diagrams

 Very abstract - they do not show the nature of

component relationships nor the externally visible

properties of the sub-systems.

 However, useful for communication with stakeholders

and for project planning.

Chapter 6 Architectural Design 1107/05/2018

…So we will use Components and Deployment

diagrams

07/05/2018 Chapter 6 Architectural Design 12

Use of architectural models

 As a way of facilitating discussion about the system

design

 A high-level architectural view of a system is useful for

communication with system stakeholders and project planning

because it is not cluttered with detail. Stakeholders can relate to

it and understand an abstract view of the system. They can then

discuss the system as a whole without being confused by detail.

 As a way of documenting an architecture that has been

designed

 The aim here is to produce a complete system model that shows

the different components in a system, their interfaces and their

connections.

Chapter 6 Architectural Design 1307/05/2018

Architectural design decisions

Chapter 6 Architectural Design 1407/05/2018

Architectural design decisions

 Architectural design is a creative process so the process

differs depending on the type of system being

developed.

 However, a number of common decisions span all

design processes and these decisions affect the non-

functional characteristics of the system.

Chapter 6 Architectural Design 1507/05/2018

Architectural design decisions

Chapter 6 Architectural Design 1607/05/2018

Architecture reuse

 Systems in the same domain often have similar

architectures that reflect domain concepts.

 Application product lines are built around a core

architecture with variants that satisfy particular customer

requirements.

 The architecture of a system may be designed around

one of more architectural patterns or ‘styles’.

 These capture the essence of an architecture and can be

instantiated in different ways.

Chapter 6 Architectural Design 1707/05/2018

Architecture and system characteristics

 Performance

 Localise critical operations and minimise communications. Use
large rather than fine-grain components.

 Security

 Use a layered architecture with critical assets in the inner layers.

 Safety

 Localise safety-critical features in a small number of sub-
systems.

 Availability

 Include redundant components and mechanisms for fault
tolerance.

 Maintainability

 Use fine-grain, replaceable components.
Chapter 6 Architectural Design 1807/05/2018

Architectural views

Chapter 6 Architectural Design 1907/05/2018

Architectural views

 What views or perspectives are useful when designing

and documenting a system’s architecture?

 What notations should be used for describing

architectural models?

 Each architectural model only shows one view or

perspective of the system.

 It might show how a system is decomposed into modules, how

the run-time processes interact or the different ways in which

system components are distributed across a network.

 For both design and documentation, you usually need to present

multiple views of the software architecture.

Chapter 6 Architectural Design 2007/05/2018

Architectural views

Chapter 6 Architectural Design 2107/05/2018

Views and UML diagrams

Chapter 6 Architectural design 22

Or Use Case View

4 + 1 view model of software architecture

 A logical view, which shows the key abstractions in the

system as objects or object classes.

 A process view, which shows how, at run-time, the

system is composed of interacting processes.

 A development view, which shows how the software is

decomposed for development.

 A physical (deployment) view, which shows the system

hardware and how software components are distributed

across the processors in the system.

 Related using use cases or scenarios (+1)

Chapter 6 Architectural Design 2307/05/2018

Representing architectural views

 Some people argue that the Unified Modeling Language (UML) is an

appropriate notation for describing and documenting system

architectures

 Architectural description languages (ADLs) have been developed

but are not widely used

Chapter 6 Architectural Design 2407/05/2018

System simple_cs = {

Component client = { Port send-request; };

Component server = { Port receive-request; };

Connector rpc = { Roels { caller, callee}};

Attachments {

client.send-request to rpc.caller;

server.receive-request to rpc.callee; }}

Architectural patterns

Chapter 6 Architectural Design 2507/05/2018

Architectural patterns

 Patterns are a means of representing, sharing and

reusing knowledge.

 An architectural pattern is a stylized description of good

design practice, which has been tried and tested in

different environments.

 Patterns should include information about when they are

and when the are not useful.

 Patterns may be represented using tabular and graphical

descriptions.

Chapter 6 Architectural Design 2607/05/2018

The Model-View-Controller (MVC) pattern

Name MVC (Model-View-Controller)

Description Separates presentation and interaction from the system data. The system is

structured into three logical components that interact with each other. The

Model component manages the system data and associated operations on

that data. The View component defines and manages how the data is

presented to the user. The Controller component manages user interaction

(e.g., key presses, mouse clicks, etc.) and passes these interactions to the

View and the Model. See Figure 6.3.

Example Next Figure shows the architecture of a web-based application system

organized using the MVC pattern.

When used Used when there are multiple ways to view and interact with data. Also used

when the future requirements for interaction and presentation of data are

unknown.

Advantages Allows the data to change independently of its representation and vice versa.

Supports presentation of the same data in different ways with changes made

in one representation shown in all of them.

Disadvantages Can involve additional code and code complexity when the data model and

interactions are simple.

Chapter 6 Architectural Design 2707/05/2018

The organization of the Model-View-Controller

Chapter 6 Architectural Design 2807/05/2018

Web application architecture using the MVC

pattern

Chapter 6 Architectural Design 2907/05/2018

Layered architecture

 Used to model the interfacing of sub-systems.

 Organises the system into a set of layers (or abstract

machines) each of which provide a set of services.

 Supports the incremental development of sub-systems in

different layers. When a layer interface changes, only the

adjacent layer is affected.

 However, often artificial to structure systems in this way.

Chapter 6 Architectural Design 3007/05/2018

The Layered architecture pattern

Name Layered architecture

Description Organizes the system into layers with related functionality

associated with each layer. A layer provides services to the layer

above it so the lowest-level layers represent core services that

are likely to be used throughout the system. See Figure 6.6.

Example A layered model of a system for sharing copyright documents

held in different libraries.

When used Used when building new facilities on top of existing systems;

when the development is spread across several teams with each

team responsibility for a layer of functionality; when there is a

requirement for multi-level security.

Advantages Allows replacement of entire layers so long as the interface is

maintained. Redundant facilities (e.g., authentication) can be

provided in each layer to increase the dependability of the

system.

Disadvantages In practice, providing a clean separation between layers is often

difficult and a high-level layer may have to interact directly with

lower-level layers rather than through the layer immediately

below it. Performance can be a problem because of multiple

levels of interpretation of a service request as it is processed at

each layer.

Chapter 6 Architectural Design 3107/05/2018

A generic layered architecture

Chapter 6 Architectural Design 3207/05/2018

The architecture of the iLearn system

Chapter 6 Architectural Design 3307/05/2018

Repository architecture

 Sub-systems must exchange data. This may be done in
two ways:

 Shared data is held in a central database or repository and may
be accessed by all sub-systems;

 Each sub-system maintains its own database and passes data
explicitly to other sub-systems.

 When large amounts of data are to be shared, the
repository model of sharing is most commonly used as
this is an efficient data sharing mechanism.

Chapter 6 Architectural Design 3407/05/2018

The Repository pattern

Name Repository

Description All data in a system is managed in a central repository that is

accessible to all system components. Components do not

interact directly, only through the repository.

Example Next Figure is an example of an IDE where the components

use a repository of system design information. Each software

tool generates information which is then available for use by

other tools.

When used You should use this pattern when you have a system in which

large volumes of information are generated that has to be

stored for a long time. You may also use it in data-driven

systems where the inclusion of data in the repository triggers

an action or tool.

Advantages Components can be independent—they do not need to know

of the existence of other components. Changes made by one

component can be propagated to all components. All data can

be managed consistently (e.g., backups done at the same

time) as it is all in one place.

Disadvantages The repository is a single point of failure so problems in the

repository affect the whole system. May be inefficiencies in

organizing all communication through the repository.

Distributing the repository across several computers may be

difficult.
Chapter 6 Architectural Design 3507/05/2018

A repository architecture for an IDE

Chapter 6 Architectural Design 3607/05/2018

Client-server architecture

 Distributed system model which shows how data and
processing is distributed across a range of components.

 Can be implemented on a single computer.

 Set of stand-alone servers which provide specific
services such as printing, data management, etc.

 Set of clients which call on these services.

 Network which allows clients to access servers.

Chapter 6 Architectural Design 3707/05/2018

The Client–server pattern

Name Client-server

Description In a client–server architecture, the functionality of the system is

organized into services, with each service delivered from a

separate server. Clients are users of these services and access

servers to make use of them.

Example Next Figure is an example of a film and video/DVD library

organized as a client–server system.

When used Used when data in a shared database has to be accessed from a

range of locations. Because servers can be replicated, may also be

used when the load on a system is variable.

Advantages The principal advantage of this model is that servers can be

distributed across a network. General functionality (e.g., a printing

service) can be available to all clients and does not need to be

implemented by all services.

Disadvantages Each service is a single point of failure so susceptible to denial of

service attacks or server failure. Performance may be unpredictable

because it depends on the network as well as the system. May be

management problems if servers are owned by different

organizations.

Chapter 6 Architectural Design 3807/05/2018

A client–server architecture for a film library

Chapter 6 Architectural Design 3907/05/2018

Design patterns

Chapter 7 Design and Implementation 4330/10/2014

Design patterns

 A design pattern is a way of reusing abstract knowledge

about a problem and its solution.

 A pattern is a description of the problem and the essence

of its solution.

 It should be sufficiently abstract to be reused in different

settings.

 Pattern descriptions usually make use of object-oriented

characteristics such as inheritance and polymorphism.

Chapter 7 Design and Implementation 4430/10/2014

Patterns

 Patterns and Pattern Languages are ways to describe

best practices, good designs, and capture experience in

a way that it is possible for others to reuse this

experience.

Chapter 7 Design and Implementation 4530/10/2014

Pattern elements

 Name

 A meaningful pattern identifier.

 Problem description.

 Solution description.

 Not a concrete design but a template for a design solution that

can be instantiated in different ways.

 Consequences

 The results and trade-offs of applying the pattern.

Chapter 7 Design and Implementation 4630/10/2014

The Observer pattern

 Name

 Observer.

 Description

 Separates the display of object state from the object itself.

 Problem description

 Used when multiple displays of state are needed.

 Solution description

 See slide with UML description.

 Consequences

 Optimisations to enhance display performance are impractical.

Chapter 7 Design and Implementation 4730/10/2014

The Observer pattern (1)

Pattern

name

Observer

Description Separates the display of the state of an object from the object itself and

allows alternative displays to be provided. When the object state

changes, all displays are automatically notified and updated to reflect the

change.

Problem

description

In many situations, you have to provide multiple displays of state

information, such as a graphical display and a tabular display. Not all of

these may be known when the information is specified. All alternative

presentations should support interaction and, when the state is changed,

all displays must be updated.

This pattern may be used in all situations where more than one

display format for state information is required and where it is not

necessary for the object that maintains the state information to know

about the specific display formats used.

Chapter 7 Design and Implementation 4830/10/2014

The Observer pattern (2)

Pattern name Observer

Solution

description

This involves two abstract objects, Subject and Observer, and two concrete

objects, ConcreteSubject and ConcreteObject, which inherit the attributes of the

related abstract objects. The abstract objects include general operations that are

applicable in all situations. The state to be displayed is maintained in

ConcreteSubject, which inherits operations from Subject allowing it to add and

remove Observers (each observer corresponds to a display) and to issue a

notification when the state has changed.

The ConcreteObserver maintains a copy of the state of ConcreteSubject and

implements the Update() interface of Observer that allows these copies to be kept

in step. The ConcreteObserver automatically displays the state and reflects

changes whenever the state is updated.

Consequences The subject only knows the abstract Observer and does not know details of the

concrete class. Therefore there is minimal coupling between these objects.

Because of this lack of knowledge, optimizations that enhance display

performance are impractical. Changes to the subject may cause a set of linked

updates to observers to be generated, some of which may not be necessary.

Chapter 7 Design and Implementation 4930/10/2014

Multiple displays using the Observer pattern

Chapter 7 Design and Implementation 5030/10/2014

A UML model of the Observer pattern

Chapter 7 Design and Implementation 5130/10/2014

Façade pattern

 The facade pattern is typically used when

 a simple interface is required to access a complex system,

 a system is very complex or difficult to understand,

 an entry point is needed to each level of layered software, or

 the abstractions and implementations of a subsystem are tightly

coupled.

07/05/2018 Chapter 6 Architectural Design 52

Composite pattern

 What problems can the Composite design pattern solve?

 A part-whole hierarchy should be represented so that clients can

treat part and whole objects uniformly.

 A part-whole hierarchy should be represented as tree structure.

07/05/2018 Chapter 6 Architectural Design 53

Key points

 A software architecture is a description of how a software

system is organized.

 Architectural design decisions include decisions on the

type of application, the distribution of the system, the

architectural styles to be used.

 Architectures may be documented from several different

perspectives or views such as a conceptual view, a

logical view, a process view, and a development view.

 Architectural patterns are a means of reusing knowledge

about generic system architectures. They describe the

architecture, explain when it may be used and describe

its advantages and disadvantages.
Chapter 6 Architectural Design 5507/05/2018

