
Chapter 15 – Software Reuse

Chapter 15 Software reuse 117/11/2014

Topics covered

 The reuse landscape

 Application frameworks

 Software product lines

Chapter 15 Software reuse 217/11/2014

Software reuse

 In most engineering disciplines, systems are designed

by composing existing components that have been used

in other systems.

 Software engineering has been more focused on original

development but it is now recognised that to achieve

better software, more quickly and at lower cost, we need

a design process that is based on systematic software

reuse.

 There has been a major switch to reuse-based

development over the past 10 years.

17/11/2014 Chapter 15 Software reuse 3

Reuse-based software engineering

 System reuse

 Complete systems, which may include several application
programs may be reused.

 Application reuse

 An application may be reused either by incorporating it without
change into other or by developing application families.

 Component reuse

 Components of an application from sub-systems to single objects
may be reused.

 Object and function reuse

 Small-scale software components that implement a single well-
defined object or function may be reused.

17/11/2014 Chapter 15 Software reuse 4

Benefits of software reuse

Benefit Explanation

Accelerated development Bringing a system to market as early as possible is

often more important than overall development costs.

Reusing software can speed up system production

because both development and validation time may be

reduced.

Effective use of specialists Instead of doing the same work over and over again,

application specialists can develop reusable software

that encapsulates their knowledge.

Increased dependability Reused software, which has been tried and tested in

working systems, should be more dependable than

new software. Its design and implementation faults

should have been found and fixed.

Chapter 15 Software reuse 517/11/2014

Benefits of software reuse

Benefit Explanation

Lower development costs Development costs are proportional to the size of the

software being developed. Reusing software means that

fewer lines of code have to be written.

Reduced process risk The cost of existing software is already known, whereas

the costs of development are always a matter of

judgment. This is an important factor for project

management because it reduces the margin of error in

project cost estimation. This is particularly true when

relatively large software components such as

subsystems are reused.

Standards compliance Some standards, such as user interface standards, can

be implemented as a set of reusable components. For

example, if menus in a user interface are implemented

using reusable components, all applications present the

same menu formats to users. The use of standard user

interfaces improves dependability because users make

fewer mistakes when presented with a familiar interface.Chapter 15 Software reuse 617/11/2014

Problems with reuse

Problem Explanation

Creating, maintaining,

and using a component

library

Populating a reusable component library and ensuring the

software developers can use this library can be expensive.

Development processes have to be adapted to ensure that

the library is used.

Finding, understanding,

and adapting reusable

components

Software components have to be discovered in a library,

understood and, sometimes, adapted to work in a new

environment. Engineers must be reasonably confident of

finding a component in the library before they include a

component search as part of their normal development

process.

Increased maintenance

costs

If the source code of a reused software system or

component is not available then maintenance costs may be

higher because the reused elements of the system may

become increasingly incompatible with system changes.

Chapter 15 Software reuse 717/11/2014

Problems with reuse

Problem Explanation

Lack of tool support Some software tools do not support development with

reuse. It may be difficult or impossible to integrate these

tools with a component library system. The software

process assumed by these tools may not take reuse into

account. This is particularly true for tools that support

embedded systems engineering, less so for object-

oriented development tools.

Not-invented-here

syndrome

Some software engineers prefer to rewrite components

because they believe they can improve on them. This is

partly to do with trust and partly to do with the fact that

writing original software is seen as more challenging than

reusing other people’s software.

Chapter 15 Software reuse 817/11/2014

The reuse landscape

Chapter 15 Software reuse 917/11/2014

The reuse landscape

 Although reuse is often simply thought of as the reuse of

system components, there are many different

approaches to reuse that may be used.

 Reuse is possible at a range of levels from simple

functions to complete application systems.

 The reuse landscape covers the range of possible reuse

techniques.

17/11/2014 Chapter 15 Software reuse 10

The reuse landscape

Chapter 15 Software reuse 1117/11/2014

Approaches that support software reuse

Approach Description

Application frameworks Collections of abstract and concrete classes are adapted and

extended to create application systems.

Application system

integration

Two or more application systems are integrated to provide

extended functionality

Architectural patterns Standard software architectures that support common types

of application system are used as the basis of applications.

Aspect-oriented software

development

Shared components are woven into an application at different

places when the program is compiled.

Component-based

software engineering

Systems are developed by integrating components

(collections of objects) that conform to component-model

standards. Described in Chapter 16.

Chapter 15 Software reuse 1217/11/2014

Approaches that support software reuse

Approach Description

Configurable application

systems

Domain-specific systems are designed so that they can be

configured to the needs of specific system customers.

Design patterns Generic abstractions that occur across applications are

represented as design patterns showing abstract and

concrete objects and interactions. Described in Chapter 7.

ERP systems Large-scale systems that encapsulate generic business

functionality and rules are configured for an organization.

ERP is a category of business-management software—

typically a suite of integrated applications—that an

organization can use to collect, store, manage and interpret

data from many business activities,

Legacy system wrapping Legacy systems are ‘wrapped’ by defining a set of interfaces

and providing access to these legacy systems through these

interfaces.

Model-driven engineering Software is represented as domain models and

implementation independent models and code is generated

from these models.Chapter 15 Software reuse 1317/11/2014

Approaches that support software reuse

Approach Description

Program generators A generator system embeds knowledge of a type of

application and is used to generate systems in that domain

from a user-supplied system model.

Program libraries Class and function libraries that implement commonly used

abstractions are available for reuse.

Service-oriented systems Systems are developed by linking shared services, which

may be externally provided.

Software product lines An application type is generalized around a common

architecture so that it can be adapted for different customers.

Systems of systems Two or more distributed systems are integrated to create a

new system.

Chapter 15 Software reuse 1417/11/2014

Reuse planning factors

 The development schedule for the software.

 The expected software lifetime.

 The background, skills and experience of the

development team.

 The criticality of the software and its non-functional

requirements.

 The application domain.

 The execution platform for the software.

17/11/2014 Chapter 15 Software reuse 15

Software Product Lines

SPL: Definition

 A software product line is a set of software-intensive
systems that share a common, managed set of features

 satisfying the specific needs of a particular market segment or
mission and

 are developed from a common set of core assets in a prescribed
way.

 Software product line practice is the systematic use of
core assets to assemble, instantiate, or generate the
multiple products that constitute a software product line.

 Software product line practice involves strategic, large-
grained reuse.

Core assets

Core assets are those reusable artifacts and
resources that form the basis for the software
product line.

Core assets often include, but are not limited to,
the architecture, reusable software components,
domain models, requirements statements,
documentation, specifications, performance
models, schedules, budgets, test plans, test
cases, work plans, and process descriptions.

The architecture is key among the collection of
core assets.

Benefits

 large-scale productivity gains

decreased time to market

 increased product quality

decreased product risk

 increased market agility

 increased customer satisfaction

more efficient use of human resources

ability to effect mass customization

ability to maintain market presence

ability to sustain unprecedented growth

Domain

A domain is a specialized body of knowledge, an
area of expertise, or a collection of related
functionality.

For example, the telecommunications domain is
a set of telecommunications functionality, which,
in turn, consists of other domains such as
switching, protocols, telephony, and networks.

A telecommunications software product line is a
specific set of software systems that provide
some of that functionality.

How is production made

more economical?
 Each product is formed by

 taking applicable components from the base of common assets,

 tailoring them as necessary through preplanned variation
mechanisms such as parameterization or inheritance,

 adding any new components that may be necessary,

 assembling the collection according to the rules of a common,
product-line-wide architecture.

 Building a new product (system) becomes more a matter
of assembly or generation than one of creation;

 the predominant activity is integration rather than programming.

 For each software product line, there is a predefined
guide or plan that specifies the exact product-building
approach.

Other concepts

The product family is that set of products we call

the product line.

The software assets in the core asset base are

sometimes called a platform.

What we call core asset development is

sometimes referred to as domain engineering,

What we call product development is sometimes

referred to as application engineering.

SPL processes

SPL activities

Requirements engineering

for product lines
 Requirements elicitation for a product line must

capture anticipated variations explicitly over the
foreseeable lifetime of the product line.

 This means that the community of stakeholders is
probably larger than for single-system requirements
elicitation

 it may well include domain experts, market experts, and others.

 Requirements elicitation focuses on:

 the scope, explicitly capturing the anticipated variation by the
application of domain analysis techniques,

 the incorporation of existing domain analysis models,

 and the incorporation of use cases that capture the variations
that are expected to occur over the lifetime of the product line

RE for SPL

Requirements analysis for a product line

involves finding commonalities and identifying

variations.

 Requirements analysis includes a commonality and

variability analysis (a technique used frequently in

domain analysis) on the elicited product line

requirements to identify the opportunities for large-

grained reuse within the product line.

 Two such techniques are Feature-Oriented Domain

Analysis (F!%#) and use cases

Domain analysis techniques

 These techniques can be used:

 to expand the scope of the requirements elicitation,

 to identify and plan for anticipated changes,

 to determine fundamental commonalities and variations in the products
of the product line,

 to support the creation of robust architectures.

 Feature modeling facilitates the identification and analysis of the
product line's commonality and variability and provides a natural
vehicle for requirements specification.

 Other techniques:

 Use case modeling

Feature modeling

 This technique can be used to complement object and use
case modeling and to organize the results of the commonality
and variability analysis in preparation for reuse.

 Features are user-visible aspects or characteristics of a
system that are organized into a tree of And/Or nodes to
identify the commonalities and variabilities within the system.

 Feature modeling is an integral part of the F!%# method and
the feature-oriented reuse method (FORM).

 The commonalities and variabilities within those features are
then exploited to create a set of reference models (that is,
software architectures and components) that can be used to
implement the products of that family.

Features and feature model

 A feature is a system property that is relevant to some

stakeholder and is used to capture commonalities or

discriminate among products in a product line.

 A feature model consists of one or more feature

diagrams, which organize features into hierarchies.

Feature-Oriented Domain

Analysis

A F!%# feature model comprises the following
elements:

 Feature diagram. The diagram depicts a hierarchical
decomposition of features with mandatory (must
have), alternative (selection from many) and optional
(may or may not have) relationships.

 Feature definitions. Description of all features

 Composition rules. These rules indicate which
feature combinations are valid and which are not.

 Rationale for features. The rationale for choosing or
not choosing a particular feature, indicating the trade-
offs.

Feature diagram of a car

Feature model for order

processing

UC Modeling with the PLUS approach [H.Gomaa]

 Use case modeling

 <<kernel>>, <<optional>>, <<alternative>>

 Feature modeling

 Static modeling

 <<kernel>>, <<optional>>, <<alternative>> in UML
class diagrams

PLUS: UC modeling

 Kernel UC

 UC that are required by all members of the PL

 Optional UC

 They are required by some, but not all the UC in the PL

 Alternative UC

 Different versions of the UC are required by different members of
the PL

 They are usually mutually exclusive

PLUS Example: Use Cases

<<kernel>>

Cook Food

<<optional>>

Cook with

Turntable

<<optional>>

Cook with

Adjustable

Power Level

<<optional>>

Cook Food with

Recipe

Adapted from [Gomaa05]

Chef Timer

PLUS : Static Modeling

Microwave Oven

<<kernel>>

Clock

<<kernel>>

Weight

Sensor

<<optional>>

Turntable

<<kernel>>

Display

<<variant>>

Multi-Line

Display

<<default>>

One-Line

Display

<<variant>>

Analog

Weight

Sensor

<<default>>

Boolean

Weight

Sensor

Adapted from [Gomaa05]

<<optional>>

Beeper

{Mutually exclusive}{Mutually exclusive}

FeaturePlugin

 Feature Modeling Plug-In for Eclipse

 The tool supports

 cardinality-based feature modeling

 specialization of feature diagrams

 configuration based on feature diagrams

 http://www.swen.uwaterloo.ca/~kczarnec/

root symbol

The group symbol indicates

group cardinality

1– k, where k is the group size.

Thus, our shop can support

any non-empty subset of the

three payment types.

group symbol indicates

group cardinality of 1– 1

A feature can have an

attribute, its type is

indicated in parenthesis

obligatory

optional Grouped features

Key points

 There are many different ways to reuse software. These range from

the reuse of classes and methods in libraries to the reuse of

complete application systems.

 The advantages of software reuse are lower costs, faster software

development and lower risks. System dependability is increased.

Specialists can be used more effectively by concentrating their

expertise on the design of reusable components.

 Software product lines are related applications that are developed

from one or more base applications. A generic system is adapted

and specialized to meet specific requirements for functionality, target

platform or operational configuration.

Chapter 15 Software reuse 4117/11/2014

