
MDE and System Modeling

Chapter 5 System Modeling 130/10/2014

Topics covered

 MDE

 Models & Metamodels

 Types of models

 Transformations

Chapter 5 System Modeling 230/10/2014

System modeling

 System modeling is the process of developing abstract

models of a system, with each model presenting a

different view or perspective of that system.

 System modeling has now come to mean representing a

system using some kind of graphical notation, which is

now almost always based on notations in the Unified

Modeling Language (UML).

 System modelling helps the analyst to understand the

functionality of the system and models are used to

communicate with customers.

Chapter 5 System Modeling 330/10/2014

Existing and planned system models

 Models of the existing system are used during requirements

engineering. They help clarify what the existing system does

and can be used as a basis for discussing its strengths and

weaknesses. These then lead to requirements for the new

system.

 Models of the new system are used during requirements

engineering to help explain the proposed requirements to

other system stakeholders. Engineers use these models to

discuss design proposals and to document the system for

implementation.

 In a model-driven engineering process, it is possible to

generate a complete or partial system implementation from

the system model.
Chapter 5 System Modeling 430/10/2014

Model-driven engineering

Chapter 5 System Modeling 530/10/2014

6

MODELS

Bran Selić, SDL Forum 2013 Keynote:

”Model-Based Software Engineering in Industry: Revolution, Evolution, or Smoke?””

http://www.archimod.com

http://www.isr.umd.edu/

~austin/paladinRM/future-work.gif

http://www.flickr.com/photos/

navarzo4/6450276881

simplified
representation

reasoning

abstraction

Why Engineers Build Models

• Engineering model: a
selective representation of some
system that captures accurately
and concisely all of its essential
properties of interest for a given
set of concerns

• We don’t see
everything at once; what we do
see is adjusted to human
needs and understanding

• Reducing complexity to
the human scale

7

Bran Selić, SDL Forum 2013 Keynote:

”Model-Based Software Engineering in Industry: Revolution, Evolution, or Smoke?”
http://commons.wikimedia.org

Purpose of Engineering Models

• Descriptive models:

To help us understand (i.e., reason about) complex
systems

To communicate understanding and design intent to
others

To predict the interesting characteristics of systems

• Prescriptive models:

To specify what systems must do

8Bran Selić, SDL Forum 2013 Keynote:

”Model-Based Software Engineering in Industry: Revolution, Evolution, or Smoke?”

Modeling vs. Programming Languages

• The primary purpose and focus of programming
languages is implementation:
The ultimate form of prescription
Implementation requires total precision and “full” detail
Prescription takes precedence over description

• To be useful for humans, a modeling language
must support description as a first-order concern:
I.e., communication, prediction, and understanding
These generally require omission of “irrelevant” detail

such as details of the underlying computing
technology used to implement the software

9Bran Selić, SDL Forum 2013 Keynote:

”Model-Based Software Engineering in Industry: Revolution, Evolution, or Smoke?”

Desired Characteristics of Models

• Abstraction: emphasize important aspects and
ignore the irrelevant ones

• Understandability: easy to understand by users
• Accuracy: correctly represent the modeled

system for intended purpose
• Prediction: use them to answer questions about

the modeled system to detect errors and
omissions and determine the most important
tradeoffs in complex designs before committing
resources for their realization

• Low cost: cheaper to build and study
10

Usefulness of Models

11

• Understanding the problem (or reality)
• Communication among stakeholders

Customers, users, developers…

• Controlling complexity
Abstraction
Through analysis (formal)
Investigate and compare alternative solutions
Minimizing risks

• Developing (software) systems
Guide implementation
Facilitate evolution

Model Driven Engineering

 With MDE models are no longer simple mediums for

describing systems or only facilitating inter-team

communication…

 MDE proposes the systematic use of models (specified

through metamodels) as first-class software artifacts and their

subsequent transformations throughout its life cycle.

 A software system is obtained through the definition of

different models at different abstraction layers.

 MDE increases the level of abstraction and automates the

development process

 This provides faster and more reliable results.

13

Four-Level Metamodel Hierarchy

myAssociations
0..*

source
1

1
target

Class
DirectedAssociation

name: String
name: String

multiplicity: MultiplicityType

enrolledIn

MoDRE: Course

Mary: Student

Layered Metamodel Hierarchy

M1 Layer Real World

runtime instance of

instance of

represented by

describes a part of the

real world for a purpose

M2 Layer

METAMODEL

MODEL

M0 Layer

USER OBJECTS MoDRE

enrolled in

enrolledIn
0..*Student Course

14

15

Model & metamodel (from Kleppe et MDA explained)

16

Metamodel & Meta-metamodel (from Kleppe et MDA explained)

17

Fragment of UML Metamodel (Classes)

{ordered}

StructuralFeature

multiplicity : Multiplicity

changeability : ChangeableKind

targetScope : ScopeKind

ordering : OrderingKind

Attribute

initialValue : Expression

Class

isActive : Boolean

Feature

ownerScope : ScopeKind

visibility : VisibilityKind

Classifier

Operation

concurrency : CallConcurrencyKind

isRoot : Boolean

isLeaf : Boolean

isAbstract : Boolean

specification : String

BehavioralFeature

isQuery : Boolean

+feature

0...

+owner

0..1

0...

0..1

GeneralizableElement

isRoot : Boolean

isLeaf : Boolean

isAbstract : Boolean

Namespace

ModelElement

name : Name

18

Fragment of the UML Metamodel (Statecharts
StateMachine

CompositeState

isConcurrent : Boolean

StateVertex

+container

+subvertex

0..*

0..1

0..*

0..1

State

0..1

1

0..1

+top

1

Event
0..*

0..*

+deferrableEvent

0..*

0..*

Guard

expression : BooleanExpression

Transition
0..*

0..1

+internalTransition
0..*

0..1

0..*

0..1

+transitions

0..*

0..1

1

0..*

+source
1

+outgoing
0..*

1

0..*

+target
1

+incoming

0..*

0..1

0..*

+trigger

0..1

0..*

1 0..11 0..1

+guard

Model-driven engineering

 Model-driven engineering (MDE) is an approach to

software development where models rather than

programs are the principal outputs of the development

process.

 The programs that execute on a hardware/software

platform are then generated automatically from the

models.

 Proponents of MDE argue that this raises the level of

abstraction in software engineering so that engineers no

longer have to be concerned with programming

language details or the specifics of execution platforms.

Chapter 5 System Modeling 1930/10/2014

20

MDA Framework (from Kleppe et MDA explained)

21

MDA Framework (from Kleppe et MDA explained)

MDE + RE!

 RE also benefits from MDE

 MDE may be used to:

 ensure consistency between different kinds of requirements

analysis models (e.g., goal, scenario or domain models)

 to automatically build architectural models from requirements

 to increase separation of concerns and their composability

 to help evaluating models’ quality attributes.

Usage of model-driven engineering

 Model-driven engineering is still at an early stage of

development, and it is unclear whether or not it will have

a significant effect on software engineering practice.

 Pros

 Allows systems to be considered at higher levels of abstraction

 Generating code automatically means that it is cheaper to adapt

systems to new platforms.

 Cons

 Models for abstraction and not necessarily right for

implementation.

 Savings from generating code may be outweighed by the costs

of developing translators for new platforms.

Chapter 5 System Modeling 2230/10/2014

Model driven architecture

 Model-driven architecture (MDA) was the precursor of

more general model-driven engineering

 MDA is a model-focused approach to software design

and implementation that uses a subset of UML models to

describe a system.

 Models at different levels of abstraction are created.

From a high-level, platform independent model, it is

possible, in principle, to generate a working program

without manual intervention.

Chapter 5 System Modeling 2330/10/2014

Types of model

 A computation independent model (CIM)

 This models the important domain abstractions used in a

system. CIMs are sometimes called domain models.

 A platform independent model (PIM)

 These model the operation of the system without reference to its

implementation. The PIM is usually described using UML models

that show the static system structure and how it responds to

external and internal events.

 Platform specific models (PSM)

 These are transformations of the platform-independent model

with a separate PSM for each application platform. In principle,

there may be layers of PSM, with each layer adding some

platform-specific detail.

Chapter 5 System Modeling 2430/10/2014

MDA transformations

Chapter 5 System Modeling 2530/10/2014

Multiple platform-specific models

Chapter 5 System Modeling 2630/10/2014

27

Model Transformations: the case of ATL

 A language to describe families and other for persons

Metamodels

30/10/2014 Chapter 5 System Modeling 28

helper context Families!Member def: isFemale(): Boolean =

if not self.familyMother.oclIsUndefined() then

true

else

if not self.familyDaughter.oclIsUndefined() then

true

else

false

endif

endif

29

Regras de transformação

30

QVT

Model Compositions as Transformations

Using Graph Transformations

<<create>>

Simple Example (1)

a:A b:B

p

q

b

a:A b:B

p

q

b

c:C

x

|x:|X |y:|Y

q

c:C

x

<<create>>

aspect

scenario

example

application

1. Match unstereotyped

elements against base

2. Modify base according to

stereotyped elements

Simple Example (2)

<<create>>

a:A b:B

p

q

b

a:A b:B

p

q

b

c:C

x

|x:|X |y:|Y

|m

c:C

x

<<create>>

aspect

scenario

example

application

x

<<create>>

Simple Example (3)

a:A b:B

p

q

b

a:A b:B

p

q

b

c:C

x

|x:|X |y:|Y

|m

c:C

x

<<create>>

aspect

scenario

example

application

p

b

alt
<<create>>

Simple Example (4)

a:A b:B

p

q

b

|x:|X |y:|Y

|m

c:C

x

<<create>>

aspect

scenario

example

application

p

b

alt

a:A b:B

q

c:C

x

p

b

<<context>>

<<context>>

More complex example (1)

<<create>>

ppar

r

s

<<context>>

a:A b:B

p

q

ppar

r
s

a:A b:B

qb

b

aspect

scenario

example

application

More complex example (2)

a:A b:B

p

q

b

aspect

scenario

example

application

<<create>>

ppar

r

s

<<context>>

b <<context>>

any

x

a:A b:B

ppar

r

s

b

x

q

Scenario:

“Machine is broken” (A1)

Driver :|Machine Supervisor

<<create>>

|Action(|a)

timeout

alertSupervisor(|a)

displayErrorMessage

alt
<<create>>

any

Car parking example: “Exiting

with a paid ticket” (UF1-I1)
Driver

Lot Exit
Machine Data RecordBarrier

insertTicket(t)

checkTicket(t)

recordTransaction(t)
ejectTicket

open

takeTicket

drive

sensorValidatedExit

close

Composed Interaction

Barrier Driver
Lot Exit

Machine Data Record Supervisor

drive

insertTicket(t)

checkTicket(t)

ejectTicket

takeTicket

sensorValidatedExit

recordTransaction(t)

open

close

timeout
alertSupervisor(t)

displayErrorMessage

red = former

roles

alt

Graph Transformation

Class
name: String

Attribute
name: String

*0..1

class1
attr1 : class3

1
type

ownedAttr

|X

class2
attr2 : class4

|X
new : class3

(a) Type Graph

(b) UML Model

(c) Graph Rule

class1
attr1 : class3

new : class3

class2
attr2 : class4

new : class3

(d) Transformed

UML Model

Agile methods and MDA

 The developers of MDA claim that it is intended to

support an iterative approach to development and so can

be used within agile methods.

 The notion of extensive up-front modeling contradicts the

fundamental ideas in the agile manifesto, so few agile

developers feel comfortable with model-driven

engineering.

 If transformations can be completely automated and a

complete program generated from a PIM, then, in

principle, MDA could be used in an agile development

process as no separate coding would be required.

Chapter 5 System Modeling 4230/10/2014

Adoption of MDA

 A range of factors has limited the adoption of MDE/MDA

 Specialized tool support is required to convert models

from one level to another

 There is tool availability but organizations may require

tool adaptation and customisation to their environment

 For the long-lifetime systems developed using MDA,

companies are reluctant to develop their own tools or

rely on small companies that may go out of business

Chapter 5 System Modeling 4330/10/2014

MDE tools

 http://www.mdetools.com/

 FUJABA (UML to Java)

 AToM3 (graph transformations)

 Merlin (Eclipse plugin)

 JTM (bidirectional transformation language)

 Medini QVT

 GReAT (Graph rewriting and Transformation)

 Viatra (transformation language)

 MOLA (research)

 …30/10/2014 Chapter 5 System Modeling 44

http://www.mdetools.com/

Adoption of MDA

 Models are a good way of facilitating discussions about a

software design. However, the abstractions that are

useful for discussions may not be the right abstractions

for implementation.

 For most complex systems, implementation is not the

major problem – requirements engineering, security and

dependability, integration with legacy systems and

testing are all more significant.

Chapter 5 System Modeling 4530/10/2014

Adoption of MDA

 For software products and information systems, the

savings from the use of MDA are likely to be outweighed

by the costs of its introduction and tooling.

 The widespread adoption of agile methods over the

same period that MDA was evolving has diverted

attention away from model-driven approaches.

Chapter 5 System Modeling 4630/10/2014

Models and System Perspectives

Chapter 5 System Modeling 4730/10/2014

System perspectives

 An external perspective, where you model the context

or environment of the system.

 An interaction perspective, where you model the

interactions between a system and its environment, or

between the components of a system.

 A structural perspective, where you model the

organization of a system or the structure of the data that

is processed by the system.

 A behavioral perspective, where you model the

dynamic behavior of the system and how it responds to

events.

Chapter 5 System Modeling 4830/10/2014

Use of graphical models: completeness and

correctness levels

 As a means of facilitating discussion about an existing or

proposed system

 Incomplete and incorrect models are OK as their role is to

support discussion.

 As a way of documenting an existing system

 Models should be an accurate representation of the system but

need not be complete.

 As a detailed system description that can be used to

generate a system implementation

 Models have to be both correct and complete.

Chapter 5 System Modeling 4930/10/2014

Context models

Chapter 5 System Modeling 5030/10/2014

Context models

 Context models are used to illustrate the operational

context of a system - they show what lies outside the

system boundaries.

 Social and organisational concerns may affect the

decision on where to position system boundaries.

 Architectural models show the system and its

relationship with other systems.

Chapter 5 System Modeling 5130/10/2014

System boundaries

 System boundaries are established to define what is

inside and what is outside the system.

 They show other systems that are used or depend on the system

being developed.

 The position of the system boundary has a profound

effect on the system requirements.

 Defining a system boundary is a political judgment

 There may be pressures to develop system boundaries that

increase / decrease the influence or workload of different parts of

an organization.

Chapter 5 System Modeling 5230/10/2014

The context of the Mentcare system

Chapter 5 System Modeling 5330/10/2014

Process perspective

 Context models simply show the other systems in the

environment, not how the system being developed is

used in that environment.

 Process models reveal how the system being developed

is used in broader business processes.

 UML activity diagrams may be used to define business

process models.

Chapter 5 System Modeling 5430/10/2014

Process model of involuntary detention

Chapter 5 System Modeling 5530/10/2014

Interaction models

Chapter 5 System Modeling 5630/10/2014

Interaction models

 Modeling user interaction is important as it helps to

identify user requirements.

 Modeling system-to-system interaction highlights the

communication problems that may arise.

 Modeling component interaction helps us understand if a

proposed system structure is likely to deliver the required

system performance and dependability.

 Use case diagrams and sequence diagrams may be

used for interaction modeling.

Chapter 5 System Modeling 5730/10/2014

Use case modeling

 Use cases were developed originally to support

requirements elicitation and now incorporated into the

UML.

 Each use case represents a discrete task that involves

external interaction with a system.

 Actors in a use case may be people or other systems.

 Represented diagramatically to provide an overview of

the use case and in a more detailed textual form.

Chapter 5 System Modeling 5830/10/2014

Structural models

Chapter 5 System Modeling 6030/10/2014

Structural models

 Structural models of software display the organization of

a system in terms of the components that make up that

system and their relationships.

 Structural models may be static models, which show the

structure of the system design, or dynamic models,

which show the organization of the system when it is

executing.

 You create structural models of a system when you are

discussing and designing the system architecture.

Chapter 5 System Modeling 6130/10/2014

Classes and associations in the MHC-PMS

Chapter 5 System Modeling 6230/10/2014

Behavioral models

Chapter 5 System Modeling 6330/10/2014

Behavioral models

 Behavioral models are models of the dynamic behavior

of a system as it is executing. They show what happens

or what is supposed to happen when a system responds

to a stimulus from its environment.

 You can think of these stimuli as being of two types:

 Data Some data arrives that has to be processed by the system.

 Events Some event happens that triggers system processing.

Events may have associated data, although this is not always

the case.

Chapter 5 System Modeling 6430/10/2014

Data-driven modeling

 Many business systems are data-processing systems

that are primarily driven by data. They are controlled by

the data input to the system, with relatively little external

event processing.

 Data-driven models show the sequence of actions

involved in processing input data and generating an

associated output.

 They are particularly useful during the analysis of

requirements as they can be used to show end-to-end

processing in a system.

Chapter 5 System Modeling 6530/10/2014

An activity model of the insulin pump’s

operation

Chapter 5 System Modeling 6630/10/2014

Event-driven modeling

 Real-time systems are often event-driven, with minimal

data processing. For example, a landline phone

switching system responds to events such as ‘receiver

off hook’ by generating a dial tone.

 Event-driven modeling shows how a system responds to

external and internal events.

 It is based on the assumption that a system has a finite

number of states and that events (stimuli) may cause a

transition from one state to another.

Chapter 5 System Modeling 6730/10/2014

State diagram of a microwave oven

Chapter 5 System Modeling 6830/10/2014

Microwave oven operation

Chapter 5 System Modeling 6930/10/2014

