
Construction and
Verification of Software

2017 - 2018
MIEI - Integrated Master in Computer Science and Informatics

Consolidation block

Lecture 7 - Concurrent Abstract Data Types
João Costa Seco (joao.seco@fct.unl.pt)

based on previous editions by Luís Caires (lcaires@fct.unl.pt)

mailto:joao.seco@fct.unl.pt
mailto:lcaires@fct.unl.pt

Concurrent
Abstract Data Types

Construction and Verification of Software, FCTUNL, © (uso reservado)

Concurrency

 324

Construction and Verification of Software, FCTUNL, © (uso reservado)

Concurrency
• Several threads of control share the same state

• Interference:
– the local view of a thread may change without notice  

(another thread may act “under the hood”).

• “No-sharing concurrency” (a.k.a. “parallelism”)
– not treated in this course

• Interference is the essence of concurrency

• Key issue
– how to keep state consistency in the presence of sharing and

interference

• Reasoning about concurrency is challenging!

 325

Construction and Verification of Software, FCTUNL, © (uso reservado)

Verification of Concurrent ADTs
• Check the consistency of stateful objects, when subject to

(concurrent) operation requests.

• Any method call must preserve consistency of the ADT

• Consistency is precisely expressed by the representation
invariant (and abstraction mapping).

• Every method body mbody of an ADT operation must preserve
the RepInv

 { RepInv && requires-cond } mbody { RepInv && ensures-cond}

• This line of reasoning works well under the assumption of
sequentiality. What if methods overlap in time?

• Challenge: how to program and reason about ADTs with
interfering methods

 326

Construction and Verification of Software, FCTUNL, © (uso reservado)

Interference
• Consider a Stack ADT

– push(v), pop(), isEmpty()

– push() interferes with pop() ?

– pop() interferes with isEmpty() ?

– pop() interferes with pop() ?

• Consider a Dictionary ADT
– assoc(key,data), find(key)

– assoc() interferes with find() ?

– assoc() interferes with assoc() ?

– find() interferes with find() ?

 327

Construction and Verification of Software, FCTUNL, © (uso reservado)

Operation Level Behaviour
• + useful to reason at the level of ADT operations,

not about unstructured low level code and state
• Each ADT operation is performed in three steps

– The operation is called (by the client thread)
– The operation is executed (inside the ADT)
– The operation returns

• Example:
– push_call(2)

• ... execute (internally to the ADT)
– push_return
– pop_call()

• execute (internally to the ADT)
– pop_return(2)

 328

Construction and Verification of Software, FCTUNL, © (uso reservado)

Operation Level Behaviour
• We may consider several levels of concurrency

– Several threads are invoking ADT operations but only one may
actually be executing the operation
• strict serialisation, easier to implement and reason about
• less chances of “unsound” interference

– Several threads are invoking ADT operations but more than one
may be executing an operation
• more parallelism, more concurrency, harder to

implement and reason about
• more chances of “unsound” interference

• How does the concurrent object behaviour relate to
the intended sequential object specification ?

 329

Construction and Verification of Software, FCTUNL, © (uso reservado)

Two Basic Models
• Serializability

– The global trace is always consistent with some sequential
serialisation of previous operations (no overlaps of calls and
returns), compatible with the sequential specification.

• Linearizability
– The global trace is always consistent with a view in which

previous operations appear to occur instantaneously
between calls and returns, and the obtained serialisation is
compatible with the sequential specification.

• Linearizability is more flexible than serializability,
as it allows for more parallel behaviour.

 330

Construction and Verification of Software, FCTUNL, © (uso reservado)

Desired properties of op execution
• Let us reinterpret the “classical” ACID story:

• Atomicity
– No intermediate states are visible (clearly, they are not compatible with

the representation invariant)

• Consistency
– Operations lead from a sound state to a sound state (invariant and

soundness are preserved)

• Isolation
– This is another word for “no unsafe interference”

• Durability (this goes without saying)
– Effects are undoable (N.B: this is more useful to highlight in the context

of database transactions)

 331

Construction and Verification of Software, FCTUNL, © (uso reservado)

Correctness of Concurrent ADTs
• With naive concurrency, it is hard (or impossible) for

client code to be sure if a specific post-condition
holds.

• E.g: two clients modify the concrete state at the
same time, bringing the state inconsistent, breaking
the representation invariant, or even crashing the
code.

• Solution using serialisation:
– serialize usages of concrete states, so that just a single thread

may be accessing the state at each given moment  
(mutual exclusion of concrete state)

– We may then safely reason about such mutually exclusive code
fragments as we have done for sequential code.

 332

Construction and Verification of Software, FCTUNL, © (uso reservado)

Correctness of Concurrent ADTs
• With naive concurrency, it is hard (or impossible) for

client code to be sure if a specific pre-condition
holds.

• E.g: client checks that a buffer is not empty, but
other thread empties it under the woods.

• Solution:
– Concurrency control replaces pre-condition checking (on the

client side) by explicit waiting for the precondition to hold
(inside the ADT).

– The pre-condition for some ADT op can only be enabled by
executing some other ADT op

– So waiting for a pre-condition must be managed by special
programming language or system support, in a coordinated
way with other ADT operations

 333

Construction and Verification of Software, FCTUNL, © (uso reservado)

Concurrent Programming
• Reasoning about concurrency is hard

• Making sure the code is right is much more difficult
than in sequential code

• Trying to simulate the program running in your head
and debug it does not work anymore :-)

– It does not work in the sequential case either, actually...,
although you may still believe.

• We will now study how to design and construct correct
concurrent code, based on monitors

• monitor = invariant preserving concurrent ADT

• Nicely supported by java.concurrent.util

 334

Construction and Verification of Software, FCTUNL, © (uso reservado)

Monitors

 335

Construction and Verification of Software, FCTUNL, © (uso reservado)

Monitors
• An ADT where operations may be called concurrently

• 2 key mechanisms provided for ensuring consistency:
synchronization (a.k.a. mutual exclusion)

– only a single thread may “own” the shared state at any time object,
and has permission to change it

– All that client code may expect from shared state is the invariant, and
nothing more than the invariant

– any context switches must preserve the invariant

concurrency control
– pre-condition checking must be usually replaced by explicit waiting

for the pre-condition to hold.

– conditions refine the invariant into finer partitions.

 336

Construction and Verification of Software, FCTUNL, © (uso reservado)

Implementation of monitors
• To implement monitors in Java, we will use locks

– You have already heard about locks (FSO, CP)

– A lot harder to reason about programs if we just think of using
locks in an unstructured way

• We may latter refine the borders of serialisability to
get more concurrency (approach linearisability)
– Still, useful to only use locks as delimiters of abstract operations

on the shared state, thought of as a ADT

– We will use the java.util.concurrent API (Doug Lea)

– We will learn how to design concurrent ADTs without thinking
“operationally”, but rather in terms of (partitioned) ownership,
invariants, and conditions.

 337

Construction and Verification of Software, FCTUNL, © (uso reservado)

Example (Bounded Counter)
class BCounter {
 int N;
 int MAX;
 BCounter(int max) { N = 0 ; MAX = max; }
 void inc() { N++; }
 void dec() { N--; }
 int get() { return N; }
}

 338

Construction and Verification of Software, FCTUNL, © (uso reservado)

Example (Bounded Counter)
/*@
 predicate BCounterInv(BCounter c; int v,int m) =
 c.N |-> v &*& c.MAX |-> m &*& v>=0 &*& v<=m;
@*/
class BCounter {
 int N;
 int MAX;
 BCounter(int max)
 //@ requires 0 <= max;
 //@ ensures BCounterInv(this,0,max);
 { N = 0 ; MAX = max; }

 void inc()
 //@ requires BCounterInv(this,?n,?m) &*& n < m;
 //@ ensures BCounterInv(this,n+1,m);
 { N++; }

 void dec()
 //@ requires BCounterInv(this,?n,?m) &*& n > 0;
 //@ ensures BCounterInv(this,n-1,m);
 { N--; }

 int get()
 //@ requires BCounterInv(this,?n,?m);
 //@ ensures BCounterInv(this,n,m) &*& 0<=result &*& result<=m;
 { return N; }
}

 339

Construction and Verification of Software, FCTUNL, © (uso reservado)

Example (Bounded Counter)
 public static void main(String[] args)
 //@ requires true;
 //@ ensures true;
 {
 int MAX = 100;
 BCounter c = new BCounter(MAX);
 //@ assert BCounterInv(c,0,MAX);
 if (c.get() < MAX) {
 c.inc(); // this is ok, precondition satisfied
 }
 }

 340

Construction and Verification of Software, FCTUNL, © (uso reservado)

Example (Bounded Counter)
 public static void main(String[] args)
 //@ requires true;
 //@ ensures true;
 {
 int MAX = 100;
 BCounter c = new BCounter(MAX);
 //@ assert BCounterInv(c,0,MAX);
 giveaway(c); // potentially give other thread access to c
 if (c.get() < MAX) {
 //@ assert BCounterInv(c,?v,MAX) &*& v < MAX;
 c.inc();
 // not safe any more as other thread may have acted
 }
 }

 341

Construction and Verification of Software, FCTUNL, © (uso reservado)

1st: Serialise access to shared state
import java.util.concurrent.*;
import java.util.concurrent.locks.*;

class BCounter {
 int N;
 int MAX;
 ReentrantLock mon;

 BCounter(int max)
 {
 N = 0 ;
 MAX = max;
 mon = new ReentrantLock();
 }
…

 342

Construction and Verification of Software, FCTUNL, © (uso reservado)

Example (Bounded Counter)
import java.util.concurrent.*;
import java.util.concurrent.locks.*;

class BCounter {
 int N;
 int MAX;
 ReentrantLock mon;
…
 void inc()
 {
 mon.enter(); //request permission to the shared state
 N++;
 mon.leave(); //release ownership of the shared state
 }

 void dec()
 {
 mon.enter(); //request permission to the shared state
 N--;
 mon.leave(); //release ownership of the shared state
 }

 343

Construction and Verification of Software, FCTUNL, © (uso reservado)

Example (Bounded Counter)
import java.util.concurrent.*;
import java.util.concurrent.locks.*;

class BCounter {
 int N;
 int MAX;
 ReentrantLock mon;
…
 void inc()
 {
 mon.lock(); //request permission to the shared state
 N++;
 mon.unlock(); //release ownership of the shared state
 }

 void dec()
 {
 mon.lock(); //request permission to the shared state
 N--;
 mon.unlock(); //release ownership of the shared state
 }

 344

Construction and Verification of Software, FCTUNL, © (uso reservado)

Example (Bounded Counter)
import java.util.concurrent.*;
import java.util.concurrent.locks.*;

class BCounter {
 int N;
 int MAX;
 ReentrantLock mon;
…
 int get()
 {
 int r;
 mon.enter();
 r = N; // put a copy on the stack, private to the thread
 mon.leave();
 return r;
 }

 345

Construction and Verification of Software, FCTUNL, © (uso reservado)

{ emp } m.enter () { SharedStateInv }

{ SharedStateInv } m.leave () { emp }

SharedStateInv is the representation invariant.

In our example ...
//@ predicate BCounterInv(BCounter c) =

 c.N |-> ?v &*& c.MAX |-> ?m &*& v>=0 &*& v<=m;

so:
{ emp } m.enter () { BCounterInv(this) }

Hoare Rule for enter / leave

 346

Construction and Verification of Software, FCTUNL, © (uso reservado)

Issue: Red assertions not available!
class BCounter {
 int N;
 int MAX;
 ReentrantLock mon;

 void inc()
 //@ requires BCounterInv(this,?n,?m) &*& n < m;
 //@ ensures BCounterInv(this,n+1,m);
 {
 mon.enter(); //@ request permission to the shared state
 //@ assert BCounterInv(this,?n,?m)
 N++;
 //@ assert BCounterInv(this,n+1,m)
 mon.leave(); //@ release ownership of the shared state
 }

 347

Construction and Verification of Software, FCTUNL, © (uso reservado)

How can a client check n<m ?
• With naive concurrency, it is hard (or impossible)

for client code to be sure a pre-condition holds.

• E.g: client checks that a buffer is not empty, but
other thread empties it under the hood.

• Solution:
– Concurrency control replaces pre-condition checking (on

the client side) by explicit waiting for the precondition to
hold (inside the ADT).

– The pre-condition for some ADT op can only be enabled
by executing some other ADT op

– So waiting for a pre-condition must be managed by
special programming language or system support, in a
coordinated way with other ADT operations

 348

Construction and Verification of Software, FCTUNL, © (uso reservado)

“invisible” abstract state
• Many threads may be interfering, so the only thing one

may assume is the invariant, only after entering the shared
state a client may know extra details about the concrete
state.

• In fact, nothing specific about the abstract state may be
revealed to client code, and we need to be less informative
about the abstract state (e.g., no current val)

• Inside the object, the only unprotected objects are the
locks (or the single lock).

• Each lock can be used to ask permission to access a
disjoint part of the shared state.

• We must precisely define which part of the shared state is
separately owned by each lock.

 349

Construction and Verification of Software, FCTUNL, © (uso reservado)

Example (Bounded Counter)
/*@
 predicate_ctor BCounter_shared_state (BCounter c) () =
 c.N |-> ?v &*& v >= 0 &*& c.MAX |-> ?m &*& m > 0 &*& v <= m;
*@/

/*@ predicate BCounterInv(BCounter c) =
 c.mon |-> ?l &*&
 l != null &*& lck(l,1,BCounter_shared_state(c))
 @*/
class BCounter {
 int N;
 int MAX;
 ReentrantLock mon;
 BCounter(int max)
 //@ ensures BCounterInv(this);
 {
 N = 0 ;
 MAX = max;
 mon = new ReentrantLock();
 }
}

 350

Construction and Verification of Software, FCTUNL, © (uso reservado)

Example (Bounded Counter)
class BCounter {
 int N;
 int MAX;
 ReentrantLock mon;

 void inc()
 //@ requires BCounterInv(this);
 //@ ensures BCounterInv(this);
 {
 mon.enter(); // request permission to the shared state
 //@ open BCounter_shared_state(this)();
 N++;
 //@ close BCounter_shared_state(this)();
 mon.leave(); // release ownership of the shared state
 }
}

 351

Construction and Verification of Software, FCTUNL, © (uso reservado)

Example (Bounded Counter)
class BCounter {
 int N;
 int MAX;
 ReentrantLock mon;

 void dec()
 //@ requires BCounterInv(this);
 //@ ensures BCounterInv(this);
 {
 mon.enter();
 //@ open BCounter_shared_state(this)();
 N--;
 //@ close BCounter_shared_state(this)();
 mon.leave();
 }
}

 352

Construction and Verification of Software, FCTUNL, © (uso reservado)

What if N==0 ?
class BCounter {
 int N;
 int MAX;
 ReentrantLock mon;

 void dec()
 //@ requires BCounterInv(this); // no way to reveal a pre-cond!
 //@ ensures BCounterInv(this);
 {
 mon.enter();
 //@ open BCounter_shared_state(this)();
 N--;
 //@ close BCounter_shared_state(this)(); // must ensure N>=0!
 mon.leave();
 }
}

 353

Construction and Verification of Software, FCTUNL, © (uso reservado)

Partition shared state using conditions
class BCounter {
 int N;
 int MAX;
 ReentrantLock mon;
 Condition notzero;
 Condition notmax;

 void dec()
 //@ requires BCounterInv(this);
 //@ ensures BCounterInv(this);
 {
 mon.enter();
 //@ open BCounter_shared_state(this)();
 if (N==0) notzero.wait();
 N--;
 //@ close BCounter_shared_state(this)();
 mon.leave();
 }
}

 354

Construction and Verification of Software, FCTUNL, © (uso reservado)

Partition shared state using conditions
/*@

predicate_ctor BCounter_shared_state (BCounter c) () =
 c.N |-> ?v &*& v >= 0 &*& c.MAX |-> ?m &*& m > 0 &*& v <= m;

predicate_ctor BCounter_nonzero (BCounter c) () =
 c.N |-> ?v &*& c.MAX |-> ?m &*& v > 0 &*& m > 0 &*& v <= m;

predicate_ctor BCounter_nonmax (BCounter c) () =
 c.N |-> ?v &*& c.MAX |-> ?m &*& v < m &*& m > 0 &*& v >= 0;

predicate BCounterInv(BCounter c) =
 c.mon |-> ?l
 &*& l != null
 &*& lck(l,1, BCounter_shared_state(c))
 &*& c.notzero |-> ?cc
 &*& cc !=null
 &*& cond(cc, BCounter_shared_state(c), BCounter_nonzero(c))
 &*& c.notmax |-> ?cm
 &*& cm !=null
 &*& cond(cm, BCounter_shared_state(c), BCounter_nonmax(c));
@*/

 355

Construction and Verification of Software, FCTUNL, © (uso reservado)

Partition shared state using conditions
class BCounter {
 int N;
 int MAX;
 ReentrantLock mon;
 Condition notzero;
 Condition notmax;

 void dec()
 //@ requires BCounterInv(this);
 //@ ensures BCounterInv(this);
 {
 mon.enter();
 //@ open BCounter_shared_state(this)();
 if (N==0) notzero.wait();
 N--;
 //@ close BCounter_shared_state(this)();
 mon.leave();
 }
}

 356

Construction and Verification of Software, FCTUNL, © (uso reservado)

Example (Bounded Counter)
class BCounter {
 int N;
 int MAX;
 ReentrantLock mon;
 Condition notzero;
 Condition notmax;

 BCounter(int max)
 //@ requires max > 0;
 //@ ensures BCounterInv(this);
 {
 MAX = max; mon = new ReentrantLock();
 //@ close BCounter_shared_state(this)();
 //@ close set_cond(BCounter_shared_state(this),BCounter_nonzero(this));
 notzero = mon.newCondition(); // notzero set to mean N > 0 !!
 //@ close set_cond(BCounter_shared_state(this),BCounter_nonmax(this));
 notmax = mon.newCondition(); // notmax set to mean N < MAX !!
 }
}

 357

Construction and Verification of Software, FCTUNL, © (uso reservado)

Partition shared state using conditions
class BCounter {
 int N;
 int MAX;
 ReentrantLock mon;
 Condition notzero; Condition notmax;
 void dec()
 //@ requires BCounterInv(this);
 //@ ensures BCounterInv(this);
 {
 mon.enter();
 //@ open BCounter_shared_state(this)();
 if (N==0) notzero.wait();
 //@ open BCounter_notzero(this)(); // refined state >=0
 N--;
 //@ close BCounter_shared_state(this)();
 mon.leave();
 }
}

 358

Construction and Verification of Software, FCTUNL, © (uso reservado)

Partition shared state using conditions
class BCounter {
 int N;
 int MAX;
 ReentrantLock mon;
 Condition notzero; Condition notmax;
 void inc()
 //@ requires BCounterInv(this);
 //@ ensures BCounterInv(this);
 {
 mon.enter();
 //@ open BCounter_shared_state(this)();
 if (N==MAX) notmax.wait();
 //@ open BCounter_notmax(this)(); // refined state <= max
 N++;
 //@ close BCounter_shared_state(this)();
 mon.leave();
 }
}

 359

Construction and Verification of Software, FCTUNL, © (uso reservado)

{ SharedStateInv } C.await() { SharedStateInv && cond(C) }

cond(C) is the refined state property denoted by condition C.

In our example:
• cond(notzero) = (N > 0)
• cond(notmax) = (N < MAX)

Hoare Rule for await

 360

Construction and Verification of Software, FCTUNL, © (uso reservado)

Ensure progress using signalling

 void inc()
 //@ requires BCounterInv(this);
 //@ ensures BCounterInv(this);
 {
 mon.enter();
 //@ open BCounter_shared_state(this)();
 if (N==MAX) notmax.wait();
 //@ assert BCounter_notmax(this)();
 N++;
 //@ close BCounter_notzero(this)();
 notzero.signal();
 //@ close BCounter_shared_state(this)();
 mon.leave();
 }

 361

Construction and Verification of Software, FCTUNL, © (uso reservado)

Ensure progress using signalling

 void dec()
 //@ requires BCounterInv(this);
 //@ ensures BCounterInv(this);
 {
 mon.enter();
 //@ open BCounter_shared_state(this)();
 if (N==0) notzero.wait();
 //@ assert BCounter_notzero(this)();
 N--;
 //@ close BCounter_notmax(this)();
 notmax.signal();
 //@ close BCounter_shared_state(this)();
 mon.leave();
 }

 362

Construction and Verification of Software, FCTUNL, © (uso reservado)

{ SharedStateInv && cond(C) } C.signal() { SharedStateInv }

cond(C) is the refined state property denoted by condition C.

In our example:
• cond(notzero) = (N > 0)
• cond(notmax) = (N < MAX)

Hoare Rule for signal

 363

Construction and Verification of Software, FCTUNL, © (uso reservado)

Defending against unsound implementation

Excerpt from Java API documentation:

Implementation Considerations

When waiting upon a Condition, a "spurious wakeup" is permitted to
occur, in general, as a concession to the underlying platform semantics.
This has little practical impact on most application programs as a
Condition should always be waited upon in a loop, testing the state
predicate that is being waited for.
An implementation is free to remove the possibility of spurious wakeups
but it is recommended that applications programmers always assume that
they can occur and so always wait in a loop.

 364

Construction and Verification of Software, FCTUNL, © (uso reservado)

Defending against unsound implementation

 void inc()
 //@ requires BCounterInv(this);
 //@ ensures BCounterInv(this);
 {
 mon.enter();
 //@ open BCounter_shared_state(this)();
 while(N==MAX) notmax.wait();
 //@ assert BCounter_notmax(this)();
 N++;
 //@ close BCounter_notzero(this)();
 notzero.signal();
 //@ assert BCounter_shared_state(this)();
 mon.leave();
 }

 365

Construction and Verification of Software, FCTUNL, © (uso reservado)

Defending against unsound implementation

 void dec()
 //@ requires BCounterInv(this);
 //@ ensures BCounterInv(this);
 {
 mon.enter();
 //@ open BCounter_shared_state(this)();
 while (N==0) notzero.wait();
 //@ assert BCounter_notzero(this)();
 N--;
 //@ close BCounter_notmax(this)();
 notmax.signal();
 //@ assert BCounter_shared_state(this)();
 mon.leave();
 }

 366

Construction and Verification of Software, FCTUNL, © (uso reservado)

Concurrent ADT Construction Steps

 367

Construction and Verification of Software, FCTUNL, © (uso reservado)

• Associate a monitor to the ADT (mon)

• Determine the CADT Representation Invariant (RI),
which now talks about the shared state

The RI describes the memory footprint of the shared
state, subject to other various conditions.

• In the implementation of each operation of the CADT

To get access to the RI, you must mon.lock()

When done and only if the RI holds you mon.unlock()

• Replace the ADT op pre-conditions by conditions inside
the monitor (this part must be carefully though).

Concurrent ADT Construction Steps

 368

Construction and Verification of Software, FCTUNL, © (uso reservado)

• mon.enter(); // a.k.a. mon.lock()
 asks for exclusive access to the shared state
 { P } mon.enter() { P &*& SSInv }

• mon.leave(); // a.k.a. mon.unlock()
releases exclusive access to the shared state

 { P &*& SSInv } mon.leave(); { P }

• cond.wait();
releases exclusive access to the shared state
 { P &*& SSInv} cond.await(); { P &*& SSCond}

• cond.signal()
releases exclusive access to the shared state
 { P &*& SSCond} cond.signal(); { P &*& SSInv}

Summary (key monitor primitives)

 369

Construction and Verification of Software, FCTUNL, © (uso reservado)

• To replace ADT op pre-conditions by conditions inside the
monitor, we must consider the following aspects:

• When a thread enters a CADT op and gets ownership of the
RI, it may find that the state does not satisfy the pre-condition
(e.g., wants to dec but counter value is zero)

• The thread must then await for the condition to hold (e.g,
for the value to be > 0).

• Conversely, whenever a thread running inside the CADT
establishes any one of the monitor conditions (e.g., inc
establishes value >0), it has the duty to signal the condition
(so that the runtime system, may awake a waiting thread)

• Notice: signaling is there to help the system to progress, and
simplify the implementation of monitors.

Concurrent ADT Construction Steps

 370

Construction and Verification of Software, FCTUNL, © (uso reservado)

Java Monitors Interface
package java.util.concurrent.locks;

interface Lock:

void lock() // Acquires the lock.

void unlock() // Releases the lock.

Condition newCondition() // Returns a new Condition instance that is
bound to this Lock instance.

interface Condition:

void await() // Causes the current thread to wait until the
condition holds (is signaled to hold).

void signal() // Signals to the runtime system that the condition
holds.This may cause a waiting thread on this condition to wakeup.

These are just a few hints, read the java docs!

 371

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/locks/Lock.html#lock()
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/locks/Lock.html#lock()
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/locks/Condition.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/locks/Lock.html#newCondition()
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/locks/Condition.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/locks/Condition.html#await()
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/locks/Condition.html#signal()

Construction and Verification of Software, FCTUNL, © (uso reservado)

Java Monitors Verifast Interface

package java.util.concurrent.locks;

/*@

predicate lck(ReentrantLock s; int p, predicate() inv);

predicate cond(Condition c; predicate() inv, predicate() p);

predicate enter_lck(int p, predicate() inv) = (p == 0 ? emp : inv()) ;

predicate set_cond(predicate() inv, predicate() p) = true;

@*/

 372

enter_lock: to associate Representation Invariant to monitor
set_cond: to associate logical assertion to Condition object

Construction and Verification of Software, FCTUNL, © (uso reservado)

Java Monitors Verifast Interface
public class ReentrantLock {

 public ReentrantLock();

 //@ requires enter_lck(1,?inv);

 //@ ensures lck(this, 1, inv);

 public void lock();

 //@ requires [?f]lck(?t, 1, ?inv);

 //@ ensures [f]lck(t, 0, inv) &*& inv();

 public void unlock();

 //@ requires [?f]lck(?t, 0, ?inv) &*& inv();

 //@ ensures [f]lck(t, 1, inv);

 public Condition newCondition();

 //@ requires lck(?t, 1, ?inv) &*& set_cond(inv, ?pred);

 //@ ensures lck(t, 1, inv) &*& result != null &*& cond(result,inv,pred);

}

 373

Construction and Verification of Software, FCTUNL, © (uso reservado)

Java Monitors Verifast Interface

package java.util.concurrent.locks;

public interface Condition {

 public void await();

 //@ requires cond(this,?inv,?acond) &*& inv();

 //@ ensures cond(this,inv, acond) &*& acond();

 public void signal();

 //@ requires cond(this,?inv,?acond) &*& acond();

 //@ ensures cond(this,inv,acond) &*& inv();

}

 374

Construction and Verification of Software, FCTUNL, © (uso reservado)

Counter ADT (Java + Verifast)
package CCounterMain;

import java.util.concurrent.*;

import java.util.concurrent.locks.*;

/*@

predicate_ctor CCounter_shared_state (CCounter c) () = c.N |-> ?v &*& v >= 0;

predicate_ctor CCounter_notzero_state (CCounter c) () = c.N |-> ?v &*& v > 0;

predicate CCounterInv(CCounter c;) =

 c.mon |-> ?l &*& l!=null &*& lck(l,1, CCounter_shared_state(c)) &*&

 c.notzero |-> ?cc &*& cc != null &*&

 cond(cc, CCounter_shared_state(c),CCounter_notzero_state(c));

@*/

 375

Construction and Verification of Software, FCTUNL, © (uso reservado)

Counter ADT (Java + Verifast)
public class CCounter {

int N;

ReentrantLock mon;

Condition notzero;

public CCounter()

//@ requires true;

//@ ensures CCounterInv(this);

{

//@ close CCounter_shared_state(this)();

//@ close enter_lck(1,CCounter_shared_state(this));

 mon = new ReentrantLock();

 //@ close set_cond(CCounter_shared_state(this),CCounter_notzero_state(this));

notzero = mon.newCondition();

//@ close CCounterInv(this);

}

...

 376

Construction and Verification of Software, FCTUNL, © (uso reservado)

Counter ADT (Java + Verifast)
public class CCounter {

 int N;

 ReentrantLock mon;

 Condition notzero;

public void inc()

//@ requires [?f]CCounterInv(this);

//@ ensures [f]CCounterInv(this);

 {

 //@ open CCounterInv(this);

 mon.lock();

 //@ open [f] CCounter_shared_state(this)();

 N++;

 //@ close CCounter_notzero_state(this)();

 notzero.signal();

 mon.unlock();

 //@ close [f]CCounterInv(this);

 }

 377

Construction and Verification of Software, FCTUNL, © (uso reservado)

Counter ADT (Java + Verifast)
public class CCounter {

...

public void dec()

//@ requires [?f]CCounterInv(this);

//@ ensures [f]CCounterInv(this);

{

 try {

//@ open [f]CCounterInv(this);

 mon.lock();

//@ open CCounter_shared_state(this)();

 if (N==0) {

//@ close CCounter_shared_state(this)();

 notzero.await(); }

//@ open CCounter_notzero_state(this)();

 N--;

 } catch (java.lang.InterruptedException e){}

//@ close CCounter_shared_state(this)();

 mon.unlock();

//@ close [f]CCounterInv(this);

 }

 378

