
Confiabilidade	de	Sistemas	Distribuídos	
Dependable	Distributed	Systems	

Lect.	1b	
Introduc8on	

	
2015/2016,	2nd	SEM	

	
MIEI	

Mestrado	Integrado	em	Engenharia	Informá8ca	

1	

DI-FCT-UNL,	Henrique	Domingos,	Nuno	Preguiça	



Outline	

•  Concepts,	Terminology	/	Dependable	Systems	
and	Dependability	Criteria	

•  Fault-Tolerance	vs.	Intrusion	Tolerance	
•  Failures/ARacks	Masking	and	Techniques	
•  Failure	Detec8on	vs.	Intrusion	Detec8on		

2	



Dependable	Systems	
•  Concepts,	Terminology	
•  Dependability	Criteria	

3	



What	is	“Dependability”	?	
•  Context:	
– A	component	provides	services	to	clients.		
– To	provide	services,	the	component	may	require	the	
services	from	other	components		
→	a	component	may	depend	on	some	other	
component.	
	
We	say	that	a	component	C	depends	on	C*	if	the	
correctness	of	C's	behavior	depends	on	the	
correctness	of	C*'s	behavior.	
	

What	are	“these”	components	about	?		
	

		 4	



Dependable	Distributed	Systems	
What	are	components	about	?		
In	Dependable	Distributed	Systems	components	
are	(generally):	
–  Processes	(Computa8ons	+	Data-Processing)	
–  Channels	

		

5	



Dependability	Proper8es	
Base	dependability	proper8es	
•  Availability		

• Readiness	for	usage		
•  Reliability		

• Con8nuity	of	service	delivery		
•  Safety		
– Very	low	probability	of	catastrophes		

•  Maintainability		

– How	easily	can	a	failed	system	be	repaired		
6	



Dependability	Proper8es	
Base	dependability	proper8es	
•  Availability		

• Readiness	for	usage		
•  Reliability		

• Con8nuity	of	service	delivery		
•  Safety		
– Very	low	probability	of	catastrophes		

•  Maintainability		

– How	easily	can	a	failed	system	be	repaired		
7	

Availability	and	
Fault-Tolerance	
and	Condi8ons	



Reliability	vs.	Availability	(1)	
•  Reliability	R(t):		
–  probability	that	a	component	has	been	up	and	
running	(correctly	and	con8nuously)	in	the	8me	
interval	[0,	t	]	

Conven8onal	Metrics:	
•  MTTF:	Mean	Time	To	Failure:		
– Average	8me	un8l	a	component	fails	

•  MTTR:	Average	8me	it	takes	to	repair	(recover)	a	
failed	component.	

•  MTBF:	Mean	Time	Between	Failures	
– MTTF	+	MTTR		

8	



Reliability	vs.	Availability	(2)	
•  Availability:		A(t):		
– Average	fracAon	of	Ame	that	a	component		has	been	
up	and	running	in	the	interval		[	0	,	t	]	

•  Long-Term	Avaiability	(or	Always	Available):	
–  (A(∞)		

Rela8ng:	
•  A	=	MTTF/MTBF			
				=>			A	=	MTTF	/	(MTTF	+	MTTR	)	

9	



Reliability	vs.	Availability	(3)	

•  Important	Observa8on:	
– Reliability	and	availability	make	sense:	
–  If	we	have	an	accurate	noAon	of	what	a	failure	
actually	is		

– Requires	a	“very	well-defined”	Failure	Model,	
related	to	the	System	Model	and	Design	

– =>	Reliability	vs.	Availability	Tradeoffs	BY	DESIGN	!	

10	



Terminology:	Let’s	start	by	Failures		

11	

Terminology

8.1 Introduction: Basic concepts

5

Term Description Example

Failure May occur when a 
component is not living up to 
its specifications

A crashed program

Error Part of a component that 
may lead to a failure

A programming bug

Fault The cause of an error A sloppy programmer



Terminology:	Let’s	start	by	Failures		

12	

Terminology

8.1 Introduction: Basic concepts6

Term Description Example

Fault 
prevention

Prevent the occurrence 
of a fault

Don't hire sloppy 
programmers

Fault 
tolerance

Build a component such 
that it can mask the 
occurrence of a fault

Build each component by 
two independent 
programmers

Fault removal Reduce the presence, 
number, or seriousness 
of a fault

Get rid of sloppy 
programmers

Fault 
forecasting

Estimate current 
presence, future 
incidence, and 
consequences of faults

Estimate how a recruiter is 
doing when it comes to 
hiring sloppy programmers



Failure	Models	
Generic	Characteriza8on	

13	

Failures	

Crash	
Failures	

General	
Omission	
Failures	

Timming	
Failures	

Response	
Failures	

Arbitrary	
Failures	

Typology	(as	ref.	in	Andrew	Tanenbaum,	Maarten	Van	Steen,		
Distributed	Systems	-	Principles	and	Paradigms,	Chap.	7	–	Fault	Tolerance	(2nd	Edi8on,		



Failure	Models	
>	Crash	Failures	

14	

Failures	

Crash	
Failures	

General	
Omission	
Failures	

Timming	
Failures	

Response	
Failures	

Arbitrary	
Failures	

Halt,	But	Correct	Behavior	un8l	hal8ng		



Failure	Models	
>	Omission	Failures	

15	

Failures	

Crash	
Failures	

General	
Omission	
Failures	

Timming	
Failures	

Response	
Failures	

Arbitrary	
Failures	

Failure	in	Sending	or	Receiving	Messages	
Recv	Omissions:	Correctly	Sent	Messages	are	not	Received	
Send	Omissions:	Messages	not	sent	correctly	(that	should	have)	



Failure	Models	
>	Timing	Failures	

16	

Failures	

Crash	
Failures	

General	
Omission	
Failures	

Timming	
Failures	

Response	
Failures	

Arbitrary	
Failures	

Correct	Output,	but	provided	by	outside	a	specific	8me	interval	
Performance	Perceived	Failures:	Component	Answer	too	Slow	



Failure	Models	
>	Response	Failures	

17	

Failures	

Crash	
Failures	

General	
Omission	
Failures	

Timming	
Failures	

Response	
Failures	

Arbitrary	
Failures	

Incorrect	output,	but	cannot	be	accounted	to	another	component	
>	Value	Failures:	wrong	output	values	
>	State-TransiAon	Failures:	devia8on	from	correct	flow	of	control	
(Note:	this	failure	may	ini8ally	not	even	be	observable)		



Failure	Models	
>	Arbitrary	Failures	

18	

Failures	

Crash	
Failures	

General	
Omission	
Failures	

Timming	
Failures	

Response	
Failures	

Arbitrary	
Failures	

Any	(or	any	combina8on	of)	failure	may	occur,	perhaps	even	
unno8ced	(silent	failures)	or	not	(no8ced	or	detectable	failures)	



Tanenbaum	&	Van	Steen,	Distributed	Systems:	Principles	and	
Paradigms,	2e,	(c)	2007	Pren8ce-Hall,	Inc.	All	rights	reserved.	

0-13-239227-5	

Failure	Models	

•  Figure	8-1.	Different	types	of	failures.	



Tanenbaum	&	Van	Steen,	Distributed	
Systems:	Principles	and	Paradigms,	2e,	(c)	
2007	Pren8ce-Hall,	Inc.	All	rights	reserved.	

0-13-239227-5	

Failure	Masking	by	Redundancy	

•  Figure	8-2.	Triple	modular	redundancy.	



Flat	Groups	versus	Hierarchical	Groups	

•  Figure	8-3.	(a)	Communica8on	in	a	flat	group.		
(b)	Communica8on	in	a	simple	hierarchical	
group.	

(a)	Communica8on	in	a	flat	group.		
(b)	Communica8on	in	a	simple	hierarchical	group.	



Dependability	Proper8es:	
Dependability	vs.	Security	

•  Availability		
•  Reliability		
•  Safety		
•  Maintainability		

22	

Availability	and	
Fault-Tolerance	
and	Condi8ons	

?	

Dependability	vs.		
Availability	and		

Reliability	Guarantees	
Dependability	vs.		

Security	Guarantees	



Dependability	vs.	Security	

•  Omission	/	Response	Failures	
– A	component	fails	to	take	an	ac8on	that	it	should	
have	taken	

•  Commission	Failures	
–  	A	component	takes	an	ac8on	that	it	should	not	
have	taken,	as	a	devia8on	to	the	expected	correct	
behaviour	

Not	only	accidentally	….	But	as	Deliberate	Failires	

23	



Dependability	vs.	Security	

•  Deliberate	Failures,	be	they	omission	or	
commission	failures,	stretch	out	to	the	field	of	
security		
– No	accidental	failures	but	induced	failures	by	
adveraries	

•  So	…	
– There	may	actually	be	a	“thin	line”	between	
Availability,	Reliability	and	Security	as	dimensions	
of	Dependability	

24	



Dependability	vs.	Security	

25	

Fault	
Tolerance	and	
Availability		

Intrusion	
Tolerance		

Availability	
and	Reliability	
Proper8es	

Security	
Proper8es	

•  “Faces”	in	the	same	coin	
•  Challenge/Trend:	Faces	in	the	same	solu8on	?	



Fault	Tolerance:	Hal8ng	Failures	

•  Scenario:	
•  C	no	longer	perceives	any	ac8vity	from	C*		
•  A	Hal8ng	Failure?		
– Dis8nguishing	between	a	crash	or	omission/
Aming	failure	may	be	impossible	

–  In	what	circumstances	?	

26	



Fault	Tolerance:	Hal8ng	Failures	

•  In	what	circumstances	?	
–  Asynchronous	system:	no	assump8ons	about	

process	execu8on	speeds	or	message	delivery	
8mes		
•  →	cannot	reliably	detect	crash	failures.		

–  Synchronous	system:	process	execu8on	speeds	
and	message	delivery	8mes	are	bounded		
•  →	we	can	reliably	detect	omission	and	8ming	failures.		

27	



Fault	Tolerance:	Hal8ng	Failures	

•  In	prac8ce	we	have	parAally	synchronous	
systems:		
– most	of	the	8me,	we	can	assume	the	system	to	be	
synchronous,		

– yet	there	is	no	bound	on	the	8me	that	a	system	is	
asynchronous		

•  →	can	normally	reliably	detect	crash	failures.	
	

28	



Fault	Tolerance:	Hal8ng	Failures	
Assump8ons	we	can	make:	
	
•  Fail-stop:	Crash	failures,	but	reliably	detectable		
•  Fail-noisy:	Crash	failures,	eventually	reliably	
detectable		

•  Fail-silent:	Omission	or	crash	failures:	clients	
cannot	tell	what	went	wrong.		

•  Fail-safe:	Arbitrary,	yet	benign	failures	(can't	do	
any	harm).		

•  Fail-arbitrary:	Arbitrary,	with	malicious	failures		

29	



Groups	and	Failure	Masking	

•  k-Fault-tolerant	group:		

– When	a	group	can	mask	any	k	concurrent	
member	failures	

–  	k	is	called	degree	of	fault	tolerance.		

30	



Dependable	Systems	
•  Faut	Tolerance,	Agreement	and	Consensus	
•  //	See	also	specific	materials	on	the	topic	
									Week	2	

31	



Agreement	in	Faulty	Systems	
•  Possible	cases:	
1. Synchronous	versus	asynchronous	systems.	
2. Communica8on	delay	is	bounded	or	not.	
3. Message	delivery	is	ordered	or	not.	
4. Message	transmission	is	done	through	
unicas8ng	or	mul8cas8ng.	



Agreement	in	Faulty	Systems	(2)	

•  Figure	8-4.	Circumstances	under	which	
distributed		
agreement	can	be	reached.	



Agreement	in	Faulty	Systems	(3)	

•  The	Byzan8ne	agreement	problem	for	three		
non-faulty	and	one	faulty	process.	(a)	Each	process		
sends	their	value	to	the	others.		



Agreement	in	Faulty	Systems	(4)	

•  The	Byzan8ne	agreement	problem	for	three		
nonfaulty	and	one	faulty	process.		
–  (b)	The	vectors	that		
each	process	assembles	based	on	(a).		

–  (c)	The	vectors	that	each	process	receives	in	step	3.	



Agreement	in	Faulty	Systems	(5)	

•  Figure	8-6.	The	same	as	Fig.	8-5,	except	now	
with	two	correct	process	and	one	faulty	
process.	



Groups	and	Failure	Masking	

How	large	must	a	k-fault-tolerant	group	be	?		
•  With	hal8ng	failures	(crash/omission/8ming	
failures):		
– we	need	k+1	members:	no	member	will	produce	
an	incorrect	result,	so	the	result	of	one	member	is	
good	enough.		

•  With	arbitrary	failures:		
– we	need	2k+1	members:	the	correct	result	can	be	
obtained	only	through	a	majority	vote.		

	
37	



Groups	and	Failure	Masking	

Important:		
•  All	members	are	iden8cal	
•  All	members	process	commands	in	the	same	order		
Result:		
•  Only	then	do	we	know	that	all	processes	are	
programmed	to	do	exactly	the	same	thing.		

ObservaAon		
•  The	processes	need	to	have	consensus	on	
which	command	to	execute	next		

	
38	



Flooding-based	consensus		
•  Assume:	
– Fail-crash	seman8cs	
– Reliable	failure	detec8on	
– Unreliable	communica8on		

•  Basic	idea:		
– Processes	mul8cast	their	proposed	opera8ons		
– All	apply	the	same	selec8on	procedure	→	all	
process	will	execute	the	same	if	no	failures	occur		

•  Suppose	a	process	crashes	before	comple8ng	
its	mul8cast		

	 39	



Flooding-based	consensus		

40	

Flooding-based consensus

8.2 Process resilience15



Relevance	for	Intrusion	Tolerance	
Protocols	and	Services	

•  Replica8on	(ex.,	SMR)	
•  Consistency	guarantees	
– Consistency	Models,	PAXOS,	PAXOS-Variants	

•  Consistency	vs.	Performance	
– Role	of	Eventual	Consistency	Models	

41	



PAXOS	
•  AssumpAons	(rather	weak	ones):		
– An	asynchronous	system		
– Communica8on	may	be	unreliable	(meaning	that	
messages	may	be	lost,	duplicated,	or	reordered)	

– Corrupted	messages	are	detectable	(and	can	thus	
be	discarded)		

– All	operaAons	are	determinisAc		
– Process	may	exhibit	halAng	failures,	
•  	but	not	arbitrary	failures,	nor	do	they	collude.		

42	



Essen8al	PAXOS	
•  A	collecAon	of	(replicated)	threads,	
collec8vely	fulfilling	the	following	roles:	
– Client:	a	thread	that	requests	to	have	an	
opera8on	performed		

– Learner:	a	thread	that	eventually	performs	an	
opera8on	

– Acceptor:	a	thread	that	operates	in	a	quorum	to	
vote	for	the		

– Proposer:	a	thread	that	takes	a	client's	request	
and	aRempts	to	have	the	requested	opera8on	
accepted	for	execu8on		

	
43	



Essen8al	PAXOS:	Base	Proper8es	
•  Safety	(nothing	bad	will	happen):		
– Only	proposed	opera8ons	will	be	learned		
– At	most	one	opera8on	will	be	learned	(and	
subsequently	executed	before	a	next	opera8on	is	
learned)		

•  Liveness	(something	good	will	eventually	
happen):	
–  If	sufficient	processes	remain	nonfaulty,	then	a	
proposed	opera8on	will		

– eventually	be	learned	(and	thus	executed)		
	 44	



The	PAXOS	Environment	…	

45	

Essential Paxos

8.2 Process resilience: Paxos19



Essen8al	PAXOS	

•  New	for	some	of	you	?	
•  Review	for	others	

– =>		REVIEW	next	

– More	on	WEEK	2		

46	


