
8
FAULT TOLERANCE

A characteristic feature of distributed systems that distinguishes them from
single-machine systems is the notion of partial failure. A partial failure may hap-
pen when one component in a distributed system fails. This failure may affect the
proper operation of other components, while at the same time leaving yet other
components totally unaffected. In contrast, a failure in nondistributed systems is
often total in the sense that it affects all components, and may easily bring down
the entire system.

An important goal in distributed systems design is to construct the system in
such a way that it can automatically recover from partial failures without seriously
affecting the overall performance. In particular, whenever a failure occurs, the
distributed system should continue to operate in an acceptable way while repairs
are being made, that is, it should tolerate faults and continue to operate to some
extent even in their presence.

In this chapter, we take a closer look at techniques for making distributed sys-
tems fault tolerant. After providing some general background on fault tolerance,
we will look at process resilience and reliable multicasting. Process resilience
incorporates techniques by which one or more processes can fail without seriously
disturbing the rest of the system. Related to this issue is reliable multicasting, by
which message transmission to a collection of processes is guaranteed to succeed.
Reliable multicasting is often necessary to keep processes synchronized.

Atomicity is a property that is important in many applications. For example,
in distributed transactions, it is necessary to guarantee that every operation in a

321

322 FAULT TOLERANCE CHAP. 8

transaction is carried out or none of them are. Fundamental to atomicity in distrib-
uted systems is the notion of distributed commit protocols, which are discussed in
a separate section in this chapter.

Finally, we will examine how to recover from a failure. In particular, we con-
sider when and how the state of a distributed system should be saved to allow re-
covery to that state later on.

8.1 INTRODUCTION TO FAULT TOLERANCE

Fault tolerance has been subject to much research in computer science. In this
section, we start with presenting the basic concepts related to processing failures,
followed by a discussion of failure models. The key technique for handling
failures is redundancy, which is also discussed. For more general information on
fault tolerance in distributed systems, see, for example Jalote (1994) or (Shooman,
2002).

8.1.1 Basic Concepts

To understand the role of fault tolerance in distributed systems we first need
to take a closer look at what it actually means for a distributed system to tolerate
faults. Being fault tolerant is strongly related to what are called dependable sys-
tems. Dependability is a term that covers a number of useful requirements for
distributed systems including the following (Kopetz and Verissimo, 1993):

1. Availability

2. Reliability

3. Safety

4. Maintainability

Avail ability is defined as the property that a system is ready to be used im-
mediately. In general, it refers to the probability that the system is operating
correctly. at any given moment and is available to perform its functions on behalf
of its users. In other words, a highly available system is one that will most likely
be working at a given instant in time.

Reliability refers to the property that a system can run continuously without
failure. In contrast to availability, reliability is defined in terms of a time interval
instead of an instant in time. A highly-reliable system is one that will most likely
continue to work without interruption during a relatively long period of time. This
is a subtle but important difference when compared to availability. If a system
goes down for one millisecond every hour, it has an availability of over 99.9999
percent, but is still highly unreliable. Similarly, a system that never crashes but is

SEC. 8.1 INTRODUCTION TO FAULT TOLERANCE 323

shut down for two weeks every August has high reliability but only 96 percent
availability. The two are not the same.

Safety refers to the situation that when a system temporarily fails to operate
correctly, nothing catastrophic happens. For example, many process control sys-
tems, such as those used for controlling nuclear power plants or sending people
into space, are required to provide a high degree of safety. If such control systems
temporarily fail for only a very brief moment, the effects could be disastrous.
Many examples from the past (and probably many more yet to come) show how
hard it is to build safe systems.

Finally, maintainability refers to how easy a failed system can be repaired. A -
highly maintainable system may also show a high degree of availability, espe-
cially if failures can be detected and repaired automatically. However, as we shall
see later in this chapter, automatically recovering from failures is easier said than
done.

Often, dependable systems are also required to provide a high degree of secu-
rity, especially when it comes to issues such as integrity. We will discuss security
in the next chapter.

A system is said to fail when it cannot meet its promises. In particular, if a
distributed system is designed to provide its users with a number of services, the
system has failed when one or more of those services cannot be (completely) pro-
vided. An error is a part of a system's state that may lead to a failure. For ex-
ample, when transmitting packets across a network, it is to be expected that some
packets have been damaged when they arrive at the receiver. Damaged in this
context means that the receiver may incorrectly sense a bit value (e.g., reading a 1
instead of a 0), or may even be unable to detect that something has arrived.

The cause of an error is called a fault. Clearly, finding out what caused an
error is important. For example, a wrong or bad transmission medium may easily
cause packets to be damaged. In this case, it is relatively easy to remove the fault.
However, transmission errors may also be caused by bad weather conditions such
as in wireless networks. Changing the weather to reduce or prevent errors is a bit
trickier.

Building dependable systems closely relates to controlling faults. A distinc-
tion can be made between preventing, removing, and forecasting faults (Avizienis
et aI., 2004). For our purposes, the most important issue is fault tolerance, mean-
ing that a system can provide its services even in the presence of faults. In other
words, the system can tolerate faults and continue to operate normally.

Faults are generally classified as transient, intermittent, or permanent. Tran-
sient faults occur once and then disappear. If the operation is repeated, the fault
goes away. A bird flying through the beam of a microwave transmitter may cause
lost bits on some network (not to mention a roasted bird). If the transmission times
out and is retried, it will probably work the second time.

An intermittent fault occurs, then vanishes of its own accord, then reappears,
and so on. A loose contact on a connector will often cause an intermittent fault.

324 FAULT TOLERANCE CHAP. 8

Intermittent faults cause a great deal of aggravation because they are difficult to
diagnose. Typically, when the fault doctor shows up, the system works fine.

A permanent fault is one that continues to exist until the faulty component is
replaced. Burnt-out chips, software bugs, and disk head crashes are examples of
permanent faults.

8.1.2 Failure Models

A system that fails is not adequately providing the services it was designed
for. If we consider a distributed system as a collection of servers that communi-
cate with one another and with their clients, not adequately providing services
means that servers, communication channels, or possibly both, are not doing what
they are supposed to do. However, a malfunctioning server itself may not always
be the fault we are looking for. If such a server depends on other servers to ade-
quately provide its services, the cause of an error may need to be searched for
somewhere else.

Such dependency relations appear in abundance in distributed systems. A fail-
ing disk may make life difficult for a file server that is designed to provide a
highly available file system. If such a file server is part of a distributed database,
the proper working of the entire database may be at stake, as only part of its data
may be accessible.

To get a better grasp on how serious a failure actually is, several classification
schemes have been developed. One such scheme is shown in Fig. 8-1, and is
based on schemes described in Cristian (1991) and Hadzilacos and Toueg (1993).

Figure 8-1. Different types of failures.

A crash failure occurs when a server prematurely halts, but was working
correctly until it stopped. An important aspect of crash failures is that once the
server has halted, nothing is heard from it anymore. A typical example of a crash
failure is an operating system that comes to a grinding halt, and for which there is
only one solution: reboot it. Many personal computer systems suffer from crash

SEC. 8.1 INTRODUCTION TO FAULT TOLERANCE 325

failures so often that people have come to expect them to be normal. Conse-
quently, moving the reset button from the back of a cabinet to the front was done
for good reason. Perhaps one day it can be moved to the back again, or even re-
moved altogether.

An omission failure occurs when a server fails to respond to a request.
Several things might go wrong. In the case of a receive omission failure, possibly
the server never got the request in the first place. Note that it may well be the case
that the connection between a client and a server has been correctly established,
but that there was no thread listening to incoming requests. Also, a receive omis-
sion failure will generally not affect the current state of the server, as the server is
unaware of any message sent to it.

Likewise, a send omission failure happens when the server has done its work,
but somehow fails in sending a response. Such a failure may happen, for example,
when a send buffer overflows while the server was not prepared for such a situa-
tion. Note that, in contrast to a receive omission failure, the server may now be in
a state reflecting that it has just completed a service for the client. As a conse-
quence, if the sending of its response fails, the server has to be prepared for the
client to reissue its previous request.

Other types of omission failures not related to communication may be caused
by software errors such as infinite loops or improper memory management by
which the server is said to "hang."

Another class of failures is related to timing. Timing failures occur when the
response lies outside a specified real-time interval. As we saw with isochronous
data streams in Chap. 4, providing data too soon may easily cause trouble for a
recipient if there is not enough buffer space to hold all the incoming data. More
common, however, is that a server responds too late, in which case a performance
failure is said to occur.

A serious type of failure is a response failure, by which the server's response
is simply incorrect. Two kinds of response failures may happen. In the case of a
value failure, a server simply provides the wrong reply to a request. For example,
a search engine that systematically returns Web pages not related to any of the
search terms used. has failed.

The other type of response failure is known as a state transition failure.
This kind of failure happens when the server reacts unexpectedly to an incoming
request. For example, if a server receives a message it cannot recognize, a state
transition failure happens if no measures have been taken to handle such mes-
sages. In particular, a faulty server may incorrectly take default actions it should
never have initiated.

The most serious are arbitrary failures, also known as Byzantine failures.
In effect, when arbitrary failures occur, clients should be prepared for the worst.
In particular, it may happen that a server is producing output it should never have
produced, but which cannot be detected as being incorrect Worse yet a faulty
server may even be maliciously working together with other servers to produce

326 FAULT TOLERANCE CHAP. 8

intentionally wrong answers. This situation illustrates why security is also consid-
ered an important requirement when talking about dependable systems. The term
"Byzantine" refers to the Byzantine Empire, a time (330-1453) and place (the
Balkans and modem Turkey) in which endless conspiracies, intrigue, and untruth-
fulness were alleged to be common in ruling circles. Byzantine faults were first
analyzed by Pease et al. (1980) and Lamport et al. (1982). We return to such fail-
ures below.

Arbitrary failures are closely related to crash failures. The definition of crash
failures as presented above is the most benign way for a server to halt. They are
also referred to as fail-stop failures. In effect, a fail-stop server will simply stop
producing output in such a way that its halting can be detected by other processes.
In the best case, the server may have been so friendly to announce it is about to
crash; otherwise it simply stops.

Of course, in real life, servers halt by exhibiting omission or crash failures,
and are not so friendly as to announce in advance that they are going to stop. It is
up to the other processes to decide that a server has prematurely halted. However,
in such fail-silent systems, the other process may incorrectly conclude that a
server has halted. Instead, the server may just be unexpectedly slow, that is, it is
exhibiting performance failures.

Finally, there are also occasions in which the server is producing random out-
put, but this output can be recognized by other processes as plain junk. The server
is then exhibiting arbitrary failures, but in a benign way. These faults are also
referred to as being fail-safe.

8.1.3 Failure Masking b)' Redundancy

If a system is to be fault tolerant, the best it can do is to try to hide the
occurrence of failures from other processes. The key technique for masking faults
is to use redundancy. Three kinds are possible: information redundancy, time
redundancy, and physical redundancy [see also Johnson (1995)]. With informa-
tion redundancy, extra bits are added to allow recovery from garbled bits. For ex-
ample, a Hamming code can be added to transmitted data to recover from noise on
the transmission line.

With time redundancy, an action is performed, and then. if need be, it is per-
formed again. Transactions (see Chap. 1) use this approach. If a transaction
aborts, it can be redone with no harm. Time redundancy is especially helpful
when the faults are transient or intermittent.

With physical redundancy, extra equipment or processes are added to make it
possible for the system as a whole to tolerate the loss or malfunctioning of some
components. Physical redundancy can thus be done either in hardware or in soft-
ware. For example, extra processes can be added to the system so that if a small
number of them crash, the system can still function correctly. In other words, by

SEC. 8.1 INTRODUCTION TO FAULT TOLERANCE 327

Figure 8-2. Triple modular redundancy.

In Fig. 8-2(b), each device is replicated three times. Following each stage in
the circuit is a triplicated voter. Each voter is a circuit that has three inputs and
one output. If two or three of the inputs are the same, the output is equal to that
input. If all three inputs are different, the output is undefined. This kind of design
is known as TMR (Triple Modular Redundancy).

Suppose that element Az fails. Each of the voters, Vb Vz, and V3 gets two
good (identical) inputs and one rogue input, and each of them outputs the correct
value to the second stage. In essence, the effect of Az failing is completely mask-
ed, so that the inputs to B I, Bz, and B3 are exactly the same as they would have
been had no fault occurred.

Now consider what happens if B3 and C1 are also faulty, in addition to Az·
These effects are also masked, so the three final outputs are still correct.

At first it may not be obvious why three voters are needed at each stage. After
all, one voter could also detect and pass though the majority view. However, a
voter is also a component and can also be faulty. Suppose, for example, that voter
V I malfunctions. The input to B I will then be wrong, but as long as everything
else works, Bz and B3 will produce the same output and V4, Vs, and V6 will all
produce the correct result into stage three. A fault in VI is effectively no different

replicating processes, a high degree of fault tolerance may be achieved. We return
to this type of software redundancy below.

Physical redundancy is a well-known technique for providing fault tolerance.
It is used in biology (mammals have two eyes, two ears, two lungs, etc.), aircraft
(747s have four engines but can fly on three), and sports (multiple referees in case
one misses an event). It has also been used for fault tolerance in electronic circuits
for years; it is illustrative to see how it has been applied there. Consider, for ex-
ample, the circuit of Fig. 8-2(a). Here signals pass through devices A, B, and C, in
sequence. If one of them is faulty, the final result will probably be incorrect.

328 FAULT TOLERANCE CHAP. 8

than a fault in B I. In both cases B I produces incorrect output, but in both cases it
is voted down later and the final result is still correct.

Although not all fault-tolerant distributed systems use TMR, the technique is
very general, and should give a clear feeling for what a fault-tolerant system is, as
opposed to a system whose individual components are highly reliable but whose
organization cannot tolerate faults (i.e., operate correctly even in the presence of
faulty components). Of course, TMR can be applied recursively, for example, 'to
make a chip highly reliable by using TMR inside it, unknown to the designers
who use the chip, possibly in their own circuit containing multiple copies of the
chips along with voters.

8.2 PROCESS RESILIENCE

Now that the basic issues of fault tolerance have been discussed, let us con-
centrate on how fault tolerance can actually be achieved in distributed systems.
The first topic we discuss is protection against process failures, which is achieved
by replicating processes into groups. In the following pages, we consider the gen-
eral design issues of process groups, and discuss what a fault-tolerant group actu-
ally is. Also, we look at how to reach agreement within a process group when one
or more of its members cannot be trusted to give correct answers.

8.2.1 Design Issues

The key approach to tolerating a faulty process is to organize several identical
processes into a group. The key property that all groupshave is that when a mes-
sage is sent to the group itself, all members of the group receive it. In this way, if
one process in a group fails, hopefully some other process can take over for it
(Guerraoui and Schiper, 1997).

Process groups may be dynamic. New groups can be created and old groups
can be destroyed. A process can join a group or leave one during system opera-
tion. A process can be a member of several groups at the same time. Consequent-
ly, mechanisms are needed for managing groups and group membership.

Groups are roughly analogous to social organizations. Alice might be a
member of a book club, a tennis club, and an environmental organization. On a
particular day, she might receive mailings (messages) announcing a new birthday
cake cookbook from the book club, the annual Mother's Day tennis tournament
from the tennis club, and the start of a campaign to save the Southern groundhog
from the environmental organization. At any moment, she is free to leave any or
all of these groups, and possibly join other groups.

The purpose of introducing groups is to allow processes to deal with collec-
tions of processes as a single abstraction. Thus a process can send a message to a
group of servers without having to know who they are or how many there are or
where they are, which may change from one call to the next.

SEC. 8.2 PROCESS RESILIENCE 329

Flat Groups versus Hierarchical Groups

An important distinction between different groups has to do with their internal
structure. In some groups, all the processes are equal. No one is boss and all deci-
sions are made collectively. In other groups, some kind of hierarchy exists. For
example, one process is the coordinator and all the others are workers. In this
model, when a request for work is generated, either by an external client or by one
of the workers, it is sent to the coordinator. The coordinator then decides which
worker is best suited to carry it out, and forwards it there. More complex hierar-
chies are also possible, of course. These communication patterns are illustrated in
Fig. 8-3.

Figure 8-3. (a) Communication in a flat group. (b) Communication in a simple
hierarchical group.

Each of these organizations has its own advantages and disadvantages. The
flat group is symmetrical and has no single point of failure. If one of the processes
crashes, the group simply becomes smaller, but can otherwise continue. A disad-
vantage is that decision making is more complicated. For example, to decide any-
thing, a vote often has to be taken, incurring some delay and overhead.

The hierarchical group has the opposite properties. Loss of the coordinator
brings the entire group to a grinding halt, but as"long as it is running, it can make
decisions without bothering everyone else.

Group Membership

When group communication is present, some method is needed for creating
and deleting groups, as well as for allowing processes to join and leave groups.
One possible approach is to have a group server to which all these requests can
be sent. The group server can then maintain a complete data base of all the groups

330 FAULT TOLERANCE CHAP. 8

and their exact membership. This method is straightforward, efficient, and fairly
easy to implement. Unfortunately, it shares a major disadvantage with all central-
ized techniques: a single point of failure. If the group server crashes, group
management ceases to exist. Probably most or all groups will have to be recon-
structed from scratch, possibly terminating whatever work was going on.

The opposite approach is to manage group membership in a distributed way.
For example, if (reliable) multicasting is available, an outsider can send a mes-
sage to all group members announcing its wish to join the group.

Ideally, to leave a group, a member just sends a goodbye message to every-
one. In the context of fault tolerance, assuming fail-stop semantics is generally not
appropriate. The trouble is, there is no polite announcement that a process crashes
as there is when a process leaves voluntarily. The other members have to discover
this experimentally by noticing that the crashed member no longer responds to
anything. Once it is certain that the crashed member is really down (and not just
slow), it can be removed from the group.

Another knotty issue is that leaving and joining have to be synchronous with
data messages being sent. In other words, starting at the instant that a process has
joined a group, it must receive all messages sent to that group. Similarly, as soon
as a process has left a group, it must not receive any more messages from the
group, and the other members must not receive any more messages from it. One
way of making sure that a join or leave is integrated into the message stream at
the right place is to convert this operation into a sequence of messages sent to the
whole group.

One final issue relating to group membership is what to do if so many ma-
chines go down that the group can no longer function-at all. Some protocol is
needed to rebuild the group. Invariably, some process will have to take the initia-
tive to start the ball rolling, but what happens if two or three try at the same time?
The protocol must to be able to withstand this.

8.2.2 Failure Masking and Replication

Process groups are part of the solution for building fault-tolerant systems. In
particular, having a group of identical processes allows us to mask one or more
faulty processes in that group. In other words, we can replicate processes and
organize them into a group to replace a single (vulnerable) process with a (fault
tolerant) group. As discussed in the previous chapter, there are two ways to ap-
proach such replication: by means of primary-based protocols, or through
replicated-write protocols.

Primary-based replication in the case of fault tolerance generally appears in
the form of a primary-backup protocol. In this case, a group of processes is organ-
ized in a hierarchical fashion in which a primary coordinates all write operations.
In practice, the primary is fixed, although its role can be taken over by one of the

SEC. 8.2 PROCESS RESILIENCE 331

backups. if need be. In effect, when the primary crashes, the backups execute
some election algorithm to choose a new primary.

As we explained in the previous chapter, replicated-write protocols are used
in the form of active replication, as well as by means of quorum-based protocols.
These solutions correspond to organizing a collection of identical processes into a
flat group. The main advantage is that such groups have no single point of failure,
at the cost of distributed coordination.

An important issue with using process groups to tolerate faults is how much
replication is needed. To simplify our discussion, let us consider only replicated-
write systems. A system is said to be k fault tolerant if it can survive faults in k
components and still meet its specifications. If the components, say processes, fail
silently, then having k + 1 of them is enough to provide k fault tolerance. If k of
them simply stop, then the answer from the other one can be used.

On the other hand, if processes exhibit Byzantine failures, continuing to run
when sick and sending out erroneous or random replies, a minimum of 2k + 1
processors are needed to achieve k fault tolerance. In the worst case, the k failing
processes could accidentally (or even intentionally) generate the same reply.
However, the remaining k + 1 will also produce the same answer, so the client or
voter can just believe the majority.

Of course, in theory it is fine to say that a system is k fault tolerant and just let
the k + I identical replies outvote the k identical replies, but in practice it is hard
to imagine circumstances in which one can say with certainty that k processes can
fail but k + 1 processes cannot fail. Thus even in a fault-tolerant system some kind
of statistical analysis may be needed.

An implicit precondition for this model to be relevant is that all requests
arrive at all servers in the same order, also called the atomic multicast problem.
Actually, this condition can be relaxed slightly, since reads do not matter and
some writes may commute, but the general problem remains. Atomic multicasting
is discussed in detail in a later section.

8.2.3 Agreement in Faulty Systems

Organizing replicated processes into a group helps to increase fault tolerance.
As we mentioned, if a client can base its decisions through a voting mechanism,
we can even tolerate that k out of 2k + 1 processes are lying about their result.
The assumption we are making, however, is that processes do not team up to pro-
duce a wrong result.

In general, matters become more intricate if we demand that a process group
reaches an agreement, which is needed in many cases. Some examples are: elect-
ing a coordinator, deciding whether or not to commit a transaction, dividing up
tasks among workers. and synchronization, among numerous other possibilities.
When the communication and processes are all perfect, reaching such agreement
is often straightforward, but when they are not, problems arise.

332 FAULT TOLERANCE CHAP. 8

The general goal of distributed agreement algorithms is to have all the non-
faulty processes reach consensus on some issue, and to establish that consensus
within a finite number of steps. The problem is complicated by the fact that dif-
ferent assumptions about the underlying system require different solutions, assum-
ing solutions even exist. Turek and Shasha (1992) distinguish the following cases,

1. Synchronous versus asynchronous systems. A system is synchro-
nous if and only if the processes are known to operate in a lock-step
mode. Formally, this means that there should be some constant c ;?: 1,
such that if any processor has taken c + 1 steps, every other process
has taken at least 1 step. A system that is not synchronous is said to
be asynchronous.

2. Communication delay is bounded or not. Delay is bounded if and on-
ly if we know that every message is delivered with a globally and
predetermined maximum time.

3. Message delivery is ordered or not. In other words, we distinguish
the situation where messages from the same sender are deli vered in
the order that they were sent, from the situation in which we do not
have such guarantees.

4. Message transmission is done through unicasting or multicasting.

As it turns out, reaching agreement is only possible for the situations shown in
Fig. 8-4. In all other cases, it can be shown that no solution exists. Note that most
distributed systems in practice assume that processes behave asynchronously,
message transmission is unicast, and communication delays are unbounded. As a
consequence, we need to make use of ordered (reliable) message delivery, such as
provided as by TCP. Fig. 8-4 illustrates the nontrivial nature of distributed agree-
ment when processes may fail.

The problem was originally studied by Lamport et al. (1982) and is also
known as the Byzantine agreement problem, referring to the numerous wars in
which several armies needed to reach agreement on, for example, troop strengths
while being faced with traitorous generals, conniving lieutenants, and so on. Con-
sider the following solution, described in Lamport et al. (1982). In this case, we
assume that processes are synchronous, messages are unicast while preserving
ordering, and communication delay is bounded. We assume that there are N proc-
esses, where each process i will provide a value Vi to the others. The goal is let
each process construct a vector V of length N, such that if process i is nonfaulty,
V[iJ = Vi' Otherwise, V[i] is undefined. We assume that there are at most k faulty
processes.

In Fig. 8-5 we illustrate the working of the algorithm for the case of N = 4 and
k = 1. For these parameters, the algorithm operates in four steps. In step 1, every

SEC. 8.2 PROCESS RESILIENCE 333

Figure 8-4. Circumstances under which distributed agreement can be reached.

nonfaulty process i sends Vi to every other process using reliable unicasting.
Faulty processes may send anything. Moreover, because we are using multicast-
ing, they may send different values to different processes. Let Vi =i. In Fig. 8-5(a)
we see that process 1 reports 1, process 2 reports 2, process 3 lies to everyone,
giving x, y, and z, respectively, and process 4 reports a value of 4. In step 2, the
results of the announcements of step 1 are collected together in the form of the
vectors of Fig. 8-5(b).

Figure 8-5. The Byzantine agreement problem for three nonfaulty and one faul-
ty process. (a) Each process sends their value to the others. (b) The vectors that
each process assembles based on (a). (c) The vectors that each process receives
in step 3.

Step 3 consists of every process passing its vector from Fig. 8-5(b) to every
other process. In this way, every process gets three vectors, one from every other
process. Here, too, process 3 lies, inventing 12 new values, a through 1.The re-
sults of step 3 are shown in Fig. 8-5(c). Finally, in step 4, each process examines
the ith element of each of the newly received vectors. If any value has a majority,

334 FAULT TOLERANCE CHAP. 8

that value is put into the result vector. If no value has a majority, the correspond-
ing element of the result vector is marked UNKNOWN. From Fig. 8-5(c) we see
that 1, 2, and 4 all come to agreement on the values for VI, v 2, and v 4, which is
the correct result. What these processes conclude regarding v 3 cannot be decided,
but is also irrelevant. The goal of Byzantine agreement is that consensus is
reached on the value for the nonfaulty processes only.

Now let us revisit this problem for N = 3 and k = 1, that is, only two nonfaulty
process and one faulty one, as illustrated in Fig. 8-6. Here we see that in Fig. 8-
6(c) neither of the correctly behaving processes sees a majority for element 1, ele-
ment 2, or element 3, so all of them are marked UNKNOWN. The algorithm has
failed to produce agreement.

Figure 8-6. The same as Fig. 8-5, except now with two correct process and one
faulty process.

In their paper, Lamport et a1. (1982) proved that in a system with k faulty
processes, agreement can be achieved only if 2k + 1 correctly functioning proc-
esses are present, for a total of 3k + 1. Put in slightly different terms, agreement is
possible only if more than two-thirds of the processes are working properly.

Another way of looking at this problem, is as follows. Basically, what we
need to achieve is a majority vote among a group of nonfaulty processes regard-
less of whether there are also faulty ones among their midsts. If there are k faulty
processes, we need to ensure that their vote, along with that of any correct process
who have been mislead by the faulty ones, still corresponds to the majority vote of
the nonfaulty processes. With 2k + 1 nonfaulty processes, this can be achieved by
. requiring that agreement is reached only if more than two-thirds of the votes are
the same. In other words, if more than two-thirds of the processes agree on the
same decision, this decision corresponds to the same majority vote by the group of
nonfaulty processes.

However, reaching agreement can be even worse. Fischer et a1.(1985) proved
that in a distributed system in which messages cannot be guaranteed to be
delivered within a known, finite time, no agreement is possible if even one proc-
ess is faulty (albeit if that one process fails silently). The problem with such sys-
tems is that arbitrarily slow processes are indistinguishable from crashed ones
(i.e., you cannot tell the dead from the living). Many other theoretical results are

SEC. 8.2 PROCESS RESILIENCE 335

known about when agreement is possible and when it is not. Surveys of these re-
sults are given in Barborak et al. (1993) and Turek and Shasha (1992).

It should also be noted that the schemes described so far assume that nodes
are either Byzantine, or collaborative. The latter cannot always be simply
assumed when processes are from different administrative domains. In that case,
they will more likely exhibit rational behavior, for example, by reporting timeouts
when doing so is cheaper than executing an update operation. How to deal with
these cases is not trivial. A first step toward a solution is captured in the form of
BAR fault tolerance, which stands for Byzantine, Altruism, and Rationality. '
BAR fault tolerance is described in Aiyer et al. (2005).

8.2.4 Failure Detection

It may have become clear from our discussions so far that in order to properly
mask failures, we generally need to detect them as well. Failure detection is one
of the cornerstones of fault tolerance in distributed systems. What it all boils down
to is that for a group of processes, nonfaulty members should be able to decide
who is still a member, and who is not. In other words, we need to be able to detect
when a member has failed.

When it comes to detecting process failures, there are essentially only two
mechanisms. Either processes actively send "are you alive?" messages to each
other (for which they obviously expect an answer), or passively wait until mes-
sages come in from different processes. The latter approach makes sense only
when it can be guaranteed that there is enough communication between processes.
In practice, actively pinging processes is usually followed.

There has been a huge body of theoretical work on failure detectors. What it
all boils down to is that a timeout mechanism is used to check whether a process
has failed. In real settings, there are two major problems with this approach. First,
due to unreliable networks, simply stating that a process has failed because it does
not return an answer to a ping message may be wrong. In other words, it is quite
easy to generate false positives. If a false positive has the effect that a perfectly
healthy process is removed from a membership list, then clearly we are doing
something wrong.

Another serious problem is that timeouts are just plain crude. As noticed by
Birman (2005), there is hardly any work on building proper failure detection
subsystems that take more into account than only the lack of a reply to a single
message. This statement is even more evident when looking at industry-deployed
distributed systems.

There are various issues that need to be taken into account when designing a
failure detection subsystem [see also Zhuang et al. (2005)]. For example, failure
detection can take place through gossiping in which each node regularly
announces to its neighbors that it is still up and running. As we mentioned, an
alternative is to let nodes actively probe each other.

336 FAULT TOLERANCE CHAP. 8

Failure detection can also be done as a side-effect of regularly exchanging in-
formation with neighbors, as is the case with gossip-based information dissemina-
tion (which we discussed in Chap. 4). This approach is essentially also adopted in
Obduro (Vogels, 2003): processes periodically gossip their service availability.
This information is gradually disseminated through the network by gossiping.
Eventually, every process will know about every other process, but more impor-
tantly, will have enough information locally available to decide whether a process
has failed or not. A member for which the availability information is old, will
presumably have failed.

Another important issue is that a failure detection subsystem should ideally be
able to distinguish network failures from node failures. One way of dealing with
this problem is not to let a single node decide whether one of its neighbors has
crashed. Instead, when noticing a timeout on a ping message, a node requests oth-
er neighbors to see whether they can reach the presumed failing node. Of course,
positive information can also be shared: if a node is still alive, that information
can be forwarded to other interested parties (who may be detecting a link failure
to the suspected node).

This brings us to another key issue: when a member failure is detected, how
should other nonfaulty processes be informed? One simple, and somewhat radical
approach is the one followed in FUSE (Dunagan et al., 2004). In FUSE, proc-
esses can be joined in a group that spans a wide-area network. The group mem-
bers create a spanning tree that is used for monitoring member failures. Members
send ping messages to their neighbors. When a neighbor does not respond, the
pinging node immediately switches to a state in which it will also no longer re-
spond to pings from other nodes. By recursion, it is seen that a single node failure
is rapidly promoted to a group failure notification. FUSE does not suffer a lot
from link failures for the simple reason that it relies on point-to-point TCP con-
nections between group members.

8.3 RELIABLE CLIENT-SERVER COMMUNICATION

In many cases, fault tolerance in distributed systems concentrates on faulty
processes. However, we also need to consider communication failures. Most of
the failure models discussed previously apply equally well to communication
channels. In particular, a communication channel may exhibit crash, omission,
timing, and arbitrary failures. In practice, when building reliable communication
channels, the focus is on masking crash and omission failures. Arbitrary failures
may occur in the form of duplicate messages, resulting from the fact that in a
computer network messages may be buffered for a relatively long time, and are
reinjected into the network after the original sender has already issued a
retransmission [see, for example, Tanenbaum, 2003)].

SEC. 8.3 RELIABLE CLIENT-SERVER COMMUNICATION 337

8.3.1 Point-to-Point Communication

In many distributed systems, reliable point-to-point communication is esta-
blished by making use of a reliable transport protocol, such as TCP. TCP masks
omission failures, which occur in the form of lost messages, by using ack-
nowledgments and retransmissions. Such failures are completely hidden from a
TCP client.

However, crash failures of connections are not masked. A crash failure may
occur when (for whatever reason) a TCP connection is abruptly broken so that no
more messages can be transmitted through the channel. In most cases, the client is
informed that the channel has crashed by raising an exception. The only way to
mask such failures is to let the distributed system attempt to automatically set up a
new connection, by simply resending a connection request. The underlying
assumptioriis that the other side is still, or again, responsive to such requests.

8.3.2 RPC Semantics in the Presence of Failures

Let us now take a closer look at client-server communication when using
high-level communication facilities such as Remote Procedure Calls (RPCs). The
goal of RPC is to hide communication by making remote procedure calls look just
like local ones. With a few exceptions, so far we have come fairly close. Indeed,
as long as both client and server are functioning perfectly, RPC does its job well.
The problem comes about when errors occur. It is then that the differences be-
tween local and remote calls are not always easy to mask.

To structure our discussion, let us distinguish between five different classes of
failures that can occur in RPC systems, as follows:

1. The client is unable to locate the server.

2. The request message from the client to the server is lost.

3. The server crashes after receiving a request.

4. The reply message from the server to the client is lost.

5. The client crashes after sending a request.

Each of these categories poses different problems and requires different solutions.

Client Cannot Locate the Server

To start with, it can happen that the client cannot locate a suitable server. All
servers might be down, for example. Alternatively, suppose that the client is com-
piled using a particular version of the client stub, and the binary is not used for a
considerable period of time. In the meantime, the server evolves and a new ver-
sion of the interface is installed; new stubs are generated and put into use. When

338 FAULT TOLERANCE CHAP. 8

the client is eventuaIJy run, the binder will be unable to match it up with a server
and will report failure. While this mechanism is used to protect the client from ac-
cidentally trying to talk to a server that may not agree with it in terms of what pa-
rameters are required or what it is supposed to do, the problem remains of how
should this failure be dealt with.

One possible solution is to have the error raise an exception. In some lan-
guages, (e.g., Java), programmers can write special procedures that are invoked
upon specific errors, such as division by zero. In C, signal handlers can be used
for this purpose. In other words, we could define a new signal type SIGNO-
SERVER, and allow it to be handled in the same way as other signals.

This approach, too, has drawbacks. To start with, not every language has
exceptions or signals. Another point is that having to write an exception or signal
handler destroys the transparency we have been trying to achieve. Suppose that
you are a programmer and your boss tells you to write the sum procedure. You
smile and tell her it will be written, tested, and documented in five minutes. Then
she mentions that you also have to write an exception handler as well, just in case
the procedure is not there today. At this point it is pretty hard to maintain the illu-
sion that remote procedures are no different from local ones, since writing an
exception handler for "Cannot locate server" would be a rather unusual request in
a single-processor system. So much for transparency.

Lost Request Messages

The second item on the list is dealing with lost request messages. This is the
easiest one to deal with: just have the operating system or client stub start a timer
when sending the request. If the timer expires before a reply or acknowledgment
comes back, the message is sent again. If the message was truly lost, the server
will not be able to tell the difference between the retransmission and the original,
and everything will work fine. Unless, of course, so many request messages are
lost that the client gives up and falsely concludes that the server is down, in which
case we are back to "Cannot locate server." If the request was not lost, the only
thing we need to do is let the server be able to detect it is dealing with a
retransmission. Unfortunately, doing so is not so simple, as we explain when dis-
cussing lost replies.

Server Crashes

The next failure on the list is a server crash. The normal sequence of events at
a server is shown in Fig. 8-7(a). A request arrives, is carried out, and a reply is
sent. Now consider Fig. 8-7(b). A request arrives and is carried out, just as be-
fore, but the server crashes before it can send the reply. Finally, look at Fig. 8-
7(c). Again a request arrives, but this time the server crashes before it can even
be carried out. And, of course, no reply is sent back.

SEC. 8.3 RELIABLE CLIENT-SERVER COMMUNICATION 339

Figure 8-7. A server in client-server communication. (a) The normal case.
(b) Crash after execution. (c) Crash before execution.

The annoying part of Fig. 8-7 is that the correct treatment differs for (b) and
(c). In (b) the system has to report failure back to the client (e.g., raise, an excep-
tion), whereas in (c) it can just retransmit the request. The problem is that the cli-
ent's operating system cannot tell which is which. All it knows is that its timer has
expired.

Three schools of thought exist on what to do here (Spector, 1982). One philo-
sophy is to wait until the server reboots (or rebind to a new server) and try the op-
eration again. The idea is to keep trying until a reply has been received, then give
it to the client. This technique is called at least once semantics and guarantees
that the RPC has been carried out at least one time, but possibly more.

The second philosophy gives up immediately and reports back failure. This
way is called at-most-once semantics and guarantees that the RPC has been car-
ried out at most one time, but possibly none at all.

The third philosophy is to guarantee nothing. When a server crashes, the cli-
ent gets no help and no promises about what happened. The RPC may have been
carried out anywhere from zero to a large number of times. The main virtue of
this scheme is that it is easy to implement.

None of these are terribly attractive. What one would like is exactly once
semantics, but in general, there is no way to arrange this. Imagine that the remote
operation consists of printing some text, and that the server sends a completion
message to the client when the text is printed. Also assume that when a client
issues a request, it receives an acknowledgment that the request has been
delivered to the server. There are two strategies the server can follow. It can either
send a completion message just before it actually tells the printer to do its work,
or after the text has been printed.

Assume that the server crashes and subsequently recovers. It announces to all
clients that it has just crashed but is now up and running again. The problem is
that the client does not know whether its request to print some text will actually be
carried out.

There are four strategies the client can follow. First, the client can decide to
never reissue a request, at the risk that the text will not be printed. Second, it can
decide to always reissue a request, but this may lead to its text being printed
twice. Third, it can decide to reissue a request only if it did not yet receive an

The parentheses indicate an event that can no longer happen because the server
already crashed. Fig. 8-8 shows all possible combinations. As can be readily veri-
fied, there is no combination of client strategy and server strategy that will work
correctly under all possible event sequences. The bottom line is that the client can
never know whether the server crashed just before or after having the text printed.

Figure 8-8. Different combinations of client and server strategies in the pres-
ence of server crashes.

acknowledgment that its print request had been delivered to the server. In that
case, the client is counting on the fact that the server crashed before the print re-
quest could be delivered. The fourth and last strategy is to reissue a request only if
it has received an acknowledgment for the print request.

With two strategies for the server, and four for the client, there are a total of
eight combinations to consider. Unfortunately, no combination is satisfactory. To
explain, note that there are three events that can happen at the server: send the
completion message (M), print the text (P), and crash (C). These events can occur
in six different orderings:

1. M ~P ~C: A crash occurs after sending the completion message
and printing the text.

2. M ~C (~P): A crash happens after sending the completion mes-
sage, but before the text could be printed.

3. p ~M ~C: A crash occurs after sending the completion message
and printing the text.

4. P~C(~M): The text printed, after which a crash occurs before the
completion message could be sent.

5. C (~P ~M): A crash happens before the server could do anything.

6. C(~M ~P): A crash happens before the server could do anything.

340 FAULT TOLERANCE CHAP. 8

SEC. 8.3 RELIABLE CLIENT-SERVER COMMUNICATION 341

In short, the possibility of server crashes radically changes the nature of RPC
and clearly distinguishes single-processor systems from distributed systems. In the
former case, a server crash also implies a client crash, so recovery is neither pos-
sible nor necessary. In the latter it is both possible and necessary to take action.

Lost Reply Messages

Lost replies can also be difficult to deal with. The obvious solution is just to
rely on a timer again that has been set by the client's operating system. If no reply
is forthcoming within a reasonable period, just send the request once more. The
trouble with this solution is that the client is not really sure why there was no ans-
wer. Did the request or reply get lost, or is the server merely slow? It may make a
difference.

In particular, some operations can safely be repeated as often as necessary
with no damage being done. A request such as asking for the first 1024 bytes of a
file has no side effects and can be executed as often as necessary without any
harm being done. A request that has this property is said to be idempotent.

Now consider a request to a banking server asking to transfer a million dollars
from one account to another. If the request arrives and is carried out, but the reply
is lost, the client will not know this and will retransmit the message. The bank
server will interpret this request as a new one, and will carry it out too. Two mil-
lion dollars will be transferred. Heaven forbid that the reply is lost 10 times.
Transferring money is not idempotent.

One way of solving this problem is to try to structure all the requests in an
idempotent way. In practice, however, many requests (e.g., transferring money)
are inherently nonidempotent, so something else is needed. Another method is to
have the client assign each request a sequence number. By having the server keep
track of the most recently received sequence number from each client that is using
it, the server can tell the difference between an original request and a retransmis-
sion and can refuse to carry out any request a second time. However, the server
will still have to send a response to the client. Note that this approach does require
that the server maintains administration on each client. Furthermore, it is not clear
how long to maintain this administration. An additional safeguard is to have a bit
in the message header that is used to distinguish initial requests from retransmis-
sions (the idea being that it is always safe to perform an original request; retrans-
missions may require more care).

Client Crashes

The final item on the list of failures is the client crash. What happens if a cli-
ent sends a request to a server to do some work and crashes before the server
replies? At this point a computation is active and no parent is waiting for the re-
sult. Such an unwanted computation is called an orphan.

342 FAULT TOLERANCE CHAP. 8

Orphans can cause a variety of problems that can interfere with normal opera-
tion of the system. As a bare minimum, they waste CPU cycles. They can also
lock files or otherwise tie up valuable resources. Finally, if the client reboots and
does the RPC again, but the reply from the orphan comes back immediately after-
ward, confusion can result.

What can be done about orphans? Nelson (1981) proposed four solutions. In
solution 1, before a client stub sends an RPC message, it makes a log entry telling
what it is about to do. The log is kept on disk or some other medium that survives
crashes. After a reboot, the log is checked and the orphan is explicitly killed off.
This solution is called orphan extermination.

The disadvantage of this scheme is the horrendous expense of writing a disk
record for every RPC. Furthermore, it may not even work, since orphans them-
selves may do RPCs, thus creating grandorphans or further descendants that are
difficult or impossible to locate. Finally, the network may be partitioned, due to a
failed gateway, making it impossible to kill them, even if they can be located. All
in all, this is not a promising approach.

In solution 2. called reincarnation, all these problems can be solved without
the need to write disk records. The way it works is to divide time up into sequen-
tially numbered epochs. When a client reboots, it broadcasts a message to all ma-
chines declaring the start of a new epoch. When such a broadcast comes in, all re-
mote computations on behalf of that client are killed. Of course, if the network is
partitioned, some orphans may survive. Fortunately, however, when they report
back, their replies will contain an obsolete epoch number, making them easy to
detect.

Solution 3 is a variant on this idea, but somewhat less draconian. It is called
gentle reincarnation. When an epoch broadcast comes in, each machine checks
to see if it has any remote computations running locally, and if so, tries its best to
locate their owners. Only if the owners cannot be located anywhere is the compu-
tation killed.

Finally, we have solution 4, expiration, in which each RPC is given a stan-
dard amount of time, T, to do the job. If it cannot finish, it must explicitly ask for
another quantum, which is a nuisance. On the other hand, if after a crash the client
waits a time T before rebooting, all orphans are sure to be gone. The problem to
be solved here is choosing a reasonable value of Tin the face of RPCs with wildly
differing requirements.

In practice, all of these methods are crude and undesirable. Worse yet, killing
an orphan may have unforeseen consequences. For example, suppose that an
orphan has obtained locks on one or more files or data base records. If the orphan
is suddenly killed, these locks may remain forever. Also, an orphan may have
already made entries in various remote queues to start up other processes at some
future time, so even killing the orphan may not remove all traces of it. Conceiv-
ably, it may even started again, with unforeseen consequences. Orphan elimina-
tion is discussed in more detail by Panzieri and Shrivastava (1988).

SEC. 8.4 RELIABLE GROUP COMMUNICATION 343

8.4 RELIABLE GROUP COMMUNICATION

Considering how important process resilience by replication is, it is not
surprising that reliable multicast services are important as well. Such services
guarantee that messages are delivered to all members in a process group. Unfor-
tunately, reliable multicasting turns out to be surprisingly tricky. In this section,
we take a closer look at the issues involved in reliably delivering messages to a
process group.

8.4.1 Basic Reliable-Multicasting Schemes

Although most transport layers offer reliable point-to-point channels, they
rarely offer reliable communication to a collection of processes. The best they can
offer is to let each process set up a point-to-point connection to each other process
it wants to communicate with. Obviously, such an organization is not very effi-
cient as it may waste network bandwidth. Nevertheless, if the number of proc-
esses is small, achieving reliability through multiple reliable point-to-point chan-
nels is a simple and often straightforward solution.

To go beyond this simple case, we need to define precisely what reliable mul-
ticasting is. Intuitively, it means that a message that is sent to a process group
should be delivered to each member of that group. However, what happens if dur-
ing communication a process joins the group? Should that process also receive the
message? Likewise, we should also determine what happens if a (sending) process
crashes during communication.

To cover such situations, a distinction should be made between reliable com-
munication in the presence of faulty processes, and reliable communication when
processes are assumed to operate correctly. In the first case, multicasting is con-
sidered to be reliable when it can be guaranteed that all nonfaulty group members
receive the message. The tricky part is that agreement should be reached on what
the group actually looks like before a message can be delivered, in addition to var-
ious ordering constraints. We return to these matters when we discussw atomic
multicasts below.

The situation becomes simpler if we assume agreement exists on who is a
member of the group and who is not. In particular, if we assume that processes do
not fail, and processes do not join or leave the group while communication is
going on, reliable multicasting simply means that every message should be de-
livered to each current group member. In the simplest case, there is no require-
ment that all group members receive messages in the same order, but sometimes
this feature is needed.

This weaker form of reliable multicasting is relatively easy to implement,
again subject to the condition that the number of receivers is limited. Consider
the case that a single sender wants to multicast a message to multiple receivers.

344 FAULT TOLERANCE CHAP. 8

Assume that the underlying communication system offers only unreliable multi-
casting, meaning that a multicast message may be lost part way and delivered to
some, but not all, of the intended receivers.

Figure 8-9. A simple solution to reliable multicasting when all receivers are
known and are assumed not to fail. (a) Message transmission. (b) Reporting
feedback.

A simple solution is shown in Fig. 8-9. The sending process assigns a se-
quence number to each message it multicasts. We assume that messages are re-
ceived in the order they are sent. In this way, it is easy for a receiver to detect it is
missing a message. Each multicast message is stored locally in a history buffer at
the sender. Assuming the receivers are known to the sender, the sender simply
keeps the message in its history buffer until each receiver has returned an acknow-
ledgment. If a receiver detects it is missing a message, it may return a negative
acknowledgment, requesting the sender for a retransmission. Alternatively, the
sender may automatically retransmit the message when it has not received all ack-
nowledgments within a certain time.

There are various design trade-offs to be made. For example, to reduce the
number of messages returned to the sender, acknowledgments could possibly be
piggybacked with other messages. Also, retransmitting a message can be done
using point-to-point communication to each requesting process, or using a single
multicast message sent to all processes. A extensive and detailed survey of total-
order broadcasts can be found in Defago et al. (2004).

SEC. 8.4 RELIABLE GROUP COMMUNICATION 345

8.4.2 Scalability in Reliable Multicasting

The main problem with the reliable multicast scheme just described is that it
cannot support large numbers of receivers. If there are N receivers, the sender
must be prepared to accept at least N acknowledgments. With many receivers, the
sender may be swamped with such feedback messages, which is also referred to
as a feedback implosion. In addition, we may also need to take into account that
the receivers are spread across a wide-area network.

One solution to this problem is not to have receivers acknowledge the receipt
of a message. Instead, a receiver returns a feedback message only to inform the
sender it is missing a message. Returning only such negative acknowledgments
can be shown to generally scale better [see, for example, Towsley et al. (1997)]~
but no hard guarantees can be given that feedback implosions will never happen.

Another problem with returning only negative acknowledgments is that the
sender will, in theory, be forced to keep a message in its history buffer forever.
Because the sender can never know if a message has been correctly delivered to
all receivers, it should always be prepared for a receiver requesting the retrans-
mission of an old message. In practice, the sender will remove a message from its
history buffer after some time has elapsed to prevent the buffer from overflowing.
However, removing a message is done at the risk of a request for a retransmission
not being honored.

Several proposals for scalable reliable multicasting exist. A comparison be-
tween different schemes can be found in Levine and Garcia-Luna-Aceves (1998).
We now briefly discuss two very different approaches that are representative of
many existing solutions.

Nonhierarchical Feedback Control

The key issue to scalable solutions for reliable multicasting is to reduce the
number of feedback messages that are returned to the sender. A popular model
that has been applied to several wide-area applications is feedback suppression.
This scheme underlies the Scalable Reliable Multicasting (SRM) protocol
developed by Floyd et al. (1997) and works as follows.

First, in SRM, receivers never acknowledge the successful delivery of a mul-
ticast message, but instead, report only when they are missing a message. How
message loss is detected is left to the application. Only negative acknowledgments
are returned as feedback. Whenever a receiver notices that it missed a message, it
multicasts its feedback to the rest of the group.

Multicasting feedback allows another group member to suppress its own feed-
back. Suppose several receivers missed message m. Each of them will need to re-
turn a negative acknowledgment to the sender, S, so that m can be retransmitted.
However, if we assume that retransmissions are always multicast to the entire
group, it is sufficient that only a single request for retransmission reaches S.

346 FAULT TOLERANCE CHAP. 8

For this reason, a receiver R that did not receive message 111 schedules a feed-
back message with some random delay. That is, the request for retransmission is
not sent until some random time has elapsed. If, in the meantime, another request
for retransmission for m reaches R, R will suppress its own feedback, knowing
that m will be retransmitted shortly. In this way, ideally, only a single feedback
message will reach S, which in turn subsequently retransmits m. This scheme is
shown in Fig. 8-10.

Figure 8·10. Several receivers have scheduled a request for retransmission, but
the first retransmission request leads to the suppression of others.

Feedback suppression has shown to scale reasonably well, and has been used
as the underlying mechanism for a number of collaborative Internet applications,
such as a shared whiteboard. However, the approach also introduces a number of
serious problems. First, ensuring that only one request for retransmission is re-
turned to the sender requires a reasonably accurate scheduling of feedback mes-
sages at each receiver. Otherwise, many receivers will still return their feedback
at the same time. Setting timers accordingly in a group of processes that is
dispersed across a wide-area network is not that easy.

Another problem is that multicasting feedback also interrupts those processes
to which the message has been successfully delivered. In other words, other re-
ceivers are forced to receive and process messages that are useless to them. The
only solution to this problem is to let receivers that have not received message 111

join a separate multicast group for m, as explained in Kasera et al. (1997). Unfor-
tunately, this solution requires that groups can be managed in a highly efficient
manner, which is hard to accomplish in a wide-area system. A better approach is
therefore to let receivers that tend to miss the same messages team up and share
the same multicast channel for feedback messages and retransmissions. Details on
this approach are found in Liu et al. (1998).

To enhance the scalability of SRM, it is useful to let receivers assist in local
recovery. In particular, if a receiver to which message m has been successfully
delivered, receives a request for retransmission, it can decide to multicast m even
before the retransmission request reaches the original sender. Further details can
be found in Floyd et al. (1997) and Liu et aI. (1998).

SEC. 8.4 RELIABLE GROUP COMMUNICATION 347

Hierarchical Feedback Control

Feedback suppression as just described is basically a nonhierarchical solution.
However, achieving scalability for very large groups of receivers requires that
hierarchical approaches are adopted. In essence, a hierarchical solution to reliable
multicasting works as shown in Fig. 8-11.

Figure 8-11. The essence of hierarchical reliable multicasting. Each local coor-
dinator forwards the message to its children and later handles retransmission re-
quests.

To simplify matters, assume there is only a single sender that needs to multi-
cast messages to a very large group of receivers. The group of receivers is parti-
tioned into a number of subgroups, which are subsequently organized into a tree.
The subgroup containing the sender forms the root of the tree. Within each sub-
group, any reliable multicasting scheme that works for small groups can be used.

Each subgroup appoints a local coordinator, which is responsible for handling
retransmission requests of receivers contained in its subgroup. The local coordina-
tor will thus have its own history buffer. If the coordinator itself has missed a
message m, it asks the coordinator of the parent subgroup to retransmit m. In a
scheme based on acknowledgments, a local coordinator sends an acknowledgment
to its parent if it has received the message. If a coordinator has received ack-
nowledgments for message m from all members in its subgroup, as well as from
its children, it can remove m from its history buffer.

The main problem with hierarchical solutions is the construction of the tree.
In many cases, a tree needs to be constructed dynamically. One approach is to
make use of the multicast tree in the underlying network, if there is one. In princi-
ple, the approach is then to enhance each multicast router in the network layer in
such a way that it can act as a local coordinator in the way just described. Unfor-
tunately, as a practical matter, such adaptations to existing computer networks are

348 FAULT TOLERANCE CHAP. 8

not easy to do. For these reasons, application-level multicasting solutions as we
discussed in Chap. 4 have gained popularity.

In conclusion, building reliable multicast schemes that can scale to a large
number of receivers spread across a wide-area network, is a difficult problem. No
single best solution exists, and each solution introduces new problems.

8.4.3 Atomic Multicast

Let us now return to the situation in which we need to achieve reliable multi-
casting in the presence of process failures. In particular, what is often needed in a
distributed system is the guarantee that a message is delivered to either all proc-
esses or to none at all. In addition, it is generally also required that all messages
are delivered in the same order to all processes. This is also known as the atomic
multicast problem.

To see why atomicity is so important, consider a replicated database con-
structed as an application on top of a distributed system. The distributed system
offers reliable multicasting facilities. In particular, it allows the construction of
process groups to which messages can be reliably sent. The replicated database is
therefore constructed as a group of processes, one process for each replica. Up-
date operations are always multicast to all replicas and subsequently performed
locally. In other words, we assume that an active-replication protocol is used.

Suppose that now that a series of updates is to be performed, but that during
the execution of one of the updates, a replica crashes. Consequently, that update is
lost for that replica but on the other hand, it is correctly performed at the other
replicas.

When the replica that just crashed recovers, at best it can recover to the same
state it had before the crash; however, it may have missed several updates. At that
point, it is essential that it is brought up to date with the other replicas. Bringing
the replica into the same state as the others requires that we know exactly which
operations it missed, and in which order these operations are to be performed.

Now suppose that the underlying distributed system supported atomic multi-
casting. In that case, the update operation that was sent to all replicas just before
one of them crashed is either performed at all nonfaulty replicas, or by none at all.
In particular, with atomic multicasting, the operation can be performed by all
correctly operating replicas only if they have reached agreement on the group
membership. In other words, the update is performed if the remaining replicas
have agreed that the crashed replica no longer belongs to the group.

When the crashed replica recovers, it is now forced to join the group once
more. No update operations will be forwarded until it is registered as being a
member again. Joining the group requires that its state is brought up to date with
the rest of the group members. Consequently, atomic multicasting ensures that
nonfaulty processes maintain a consistent view of the database, and forces recon-
ciliation when a replica recovers and rejoins the group.

SEC. 8.4 RELIABLE GROUP COMMUNICA nON 349

Virtual Synchrony

Reliable multicast in the presence of process failures can be accurately de-
fined in terms of process groups and changes to group membership. As we did
earlier, we make a distinction between receiving and delivering a message. In par-
ticular, we again adopt a model in which the distributed system consists of a com-
munication layer, as shown in Fig. 8-12. Within this communication layer, mes-
sages are sent and received. A received message is locally buffered in the commu-
nication layer until it can be delivered to the application that is logically placed at
a higher layer.

Figure 8-12. The logical organization of a distributed system to distinguish between
message receipt and message delivery.

The whole idea of atomic multicasting is that a multicast message m is uniq-
uely associated with a list of processes to which it should be delivered. This
delivery list corresponds to a group view, namely, the view on the set of proc-
esses contained in the group, which the sender had at the time message m was
multicast. An important observation is that each process on that list has the same
view. In other words, they should all agree that m should be delivered to each one
of them and to no other process.

Now suppose that the message m is multicast at the time its sender has group
view G. Furthermore, assume that while the multicast is taking place, another
process joins or leaves the group. This change in group membership is naturally
announced to all processes in G. Stated somewhat differently, a view change
takes place by multicasting a message vc announcing the joining or leaving of a
process. We now have two multicast messages simultaneously in transit: m and
vc. What we need to guarantee is that m is either delivered to all processes in G
before each one of them is delivered message vc, or m is not delivered at all. Note
that this requirement is somewhat comparable to totally-ordered multicasting,
which we discussed in Chap. 6.

350 FAULT TOLERANCE CHAP. 8

A question that quickly comes to mind is that if m is not delivered to any
process, how can we speak of a reliable multicast protocol? In principle. there is
only one case in which delivery of m is allowed to fail: when the group member-
ship change is the result of the sender of m crashing. In that case, either all mem-
bers of G should hear the abort of the new member, or none. Alternatively, m may
be ignored by each member, which corresponds to the situation that the sender
crashed before m was sent.

This stronger form of reliable multicast guarantees that a message multicast to
group view G is delivered to each nonfaulty process in G. If the sender of the
message crashes during the multicast, the message may either be delivered to all
remaining processes, or ignored by each of them. A reliable multicast with this
property is said to be virtually synchronous (Birman and Joseph, 1987).

Consider the four processes shown in Fig. 8-13. At a certain point in time,
process PI joins the group, which then consists of Ph P2, P3, and P4• After some
messages have been multicast, P3 crashes. However, before crashing. it suc-
ceeded in multicasting a message to process P2 and P4, but not to PI. However,
virtual synchrony guarantees that the message is not delivered at all, effectively
establishing the situation that the message was never sent before P3 crashed.

Figure 8-13. The principle of virtual synchronous multicast.

After P3 has been removed from the group, communication proceeds between
the remaining group members. Later, when P3 recovers. it can join the group
again, after its state has been brought up to date.

The principle of virtual synchrony comes from the fact that all multicasts take
place between view changes. Put somewhat differently, a view change acts as a
barrier across which no multicast can pass. In a sense. it is comparable to the use
of a synchronization variable in distributed data stores as discussed in the previous
chapter. All multicasts that are in transit while a view change takes place are com-
pleted before the view change comes into effect. The implementation of virtual
synchrony is not trivial as we will discuss in detail below.

SEC. 8.4 RELIABLE GROUP COMMUNICATION 351

~Iessage Ordering

Virtual synchrony allows an application developer to think about multicasts as
taking place in epochs that are separated by group membership changes. How-
ever, nothing has yet been said concerning the ordering of multicasts. In general,
four different orderings are distinguished:

1. Unordered multicasts

2. FIFO-ordered multicasts

3. Causally-ordered multicasts

4. Totally-ordered multicasts

A reliable, unordered multicast is a virtually synchronous multicast in
which no guarantees are given concerning the order in which received messages
are delivered by different processes. To explain, assume that reliable multicasting
is supported by a library providing a send and a receive primitive. The receive op-
eration blocks the calling process until a message is delivered to it.

Figure 8-14. Three communicating processes in the same group. The ordering
of events per process is shown along the vertical axis.

Now suppose a sender PI multicasts two messages to a group while two other
processes in that group are waiting for messages to arrive, as shown in Fig. 8-14.
Assuming that processes do not crash or leave the group during these multicasts, it
is possible that the communication layer at P2 first receives message m 1 and then
m 2. Because there are no message-ordering constraints, the messages may be
delivered to P1 in the order that they are received. In contrast, the communication
layer at P3 may first receive message m2 followed by m I, and delivers these two
in this same order to P3•

In the case of reliable FIFO-ordered multicasts. the communication layer is
forced to deliver incoming messages from the same process in the same order as
they have been sent. Consider the ·communication within a group of four proc-
esses, as shown in Fig. 8-15. With FIFO ordering, the only thing that matters is
that message m 1 is always delivered before m-; and. likewise, that message m3 is
always delivered before ms, This rule has to be obeyed by all processes in the
group. In other words, when the communication layer at P3 receives m2 first, it
will wait with delivery to P3 until it has received and delivered mI'

352 FAULT TOLERANCE CHAP. 8

Figure 8-15. Four processes in the same group with two different senders, and a
possible delivery order of messages under FIFO-ordered multicasting.

However, there is no constraint regarding the delivery of messages sent by
different processes. In other words, if process P2 receives m 1 before 1113, it may
deliver the two messages in that order. Meanwhile, process P3 may have received
m 3 before receiving mI' FIFO ordering states that P3 may deliver m 3 before m h
although this delivery order is different from that of P2.

Finally, reliable causally-ordered multicast delivers messages so that poten-
tial causality between different messages is preserved. In other words. if a mes-
sage m 1 causally precedes another message m2, regardless of whether they were
multicast by the same sender, then the communication layer at each receiver will
always deliver m 2 after it has received and delivered m l' Note that causally-
ordered multicasts can be implemented using vector timestamps as discussed in
Chap. 6.

Besides these three orderings, there may be the additional constraint that mes-
sage delivery is to be totally ordered as well. Total-ordered delivery means that
regardless of whether message delivery is unordered, FIFO ordered, or causally
ordered, it is required additionally that when messages are delivered, they are de-
livered in the same order to all group members.

For example, with the combination of FIFO and totally-ordered multicast,
processes P2 and P3 in Fig. 8-15 may both first deliver message m-; and then mes-
sage mI.' However, if P2 delivers ml before m3, while P3 delivers m-; before
delivering m 1, they would violate the total-ordering constraint. Note that FIFO
ordering should still be respected. In other words, m 2 should be delivered after
m 1 and, accordingly, m 4 should be delivered after m 3. .

Virtually synchronous reliable multicasting offering totally-ordered delivery
of messages is called atomic multicasting. With the three different message ord-
ering constraints discussed above, this leads to six forms of reliable multicasting
as shown in Fig. 8-16 (Hadzilacos and Toueg, 1993).

Implementing Virtual Synchrony

Let us now consider a possible implementation of a virtually synchronous
reliable multicast. An example of such an implementation appears in Isis, a fault-
tolerant distributed system that has been in practical use in industry for several

SEC. 8.4 RELIABLE GROUP COMMUNICA nON 353

Figure 8-16. Six different versions of virtually synchronous reliable multicasting.

years. We will focus on some of the implementation issues of this technique as
described in Birman et al. (1991).

Reliable multicasting in Isis makes use of available reliable point-to-point
communication facilities of the underlying network, in particular, TCP. Multicast-
ing a message m to a group of processes is implemented by reliably sending m to
each group member. As a consequence, although each transmission is guaranteed
to succeed, there are no guarantees that all group members receive m. In particu-
lar, the sender may fail before having transmitted m to each member.

Besides reliable point-to-point communication, Isis also assumes that mes-
sages from the same source are received by a communication layer in the order
they were sent by that source. In practice, this requirement is solved by using TCP
connections for point-to-point communication.

The main problem that needs to be solved is to guarantee that all messages
sent to view G are delivered to all nonfaulty processes in G before the next group
membership change takes place. The first issue that needs to be taken care of is
making sure that each process in G has received all messages that were sent to G.
Note that because the sender of a message m to G may have failed before com-
pleting its multicast, there may indeed be processes in G that will never receive m.
Because the sender has crashed, these processes should get m from somewhere
else. How a process detects it is missing a message is explained next.

The solution to this problem is to let every process in G keep m until it knows
for sure that all members in G have received it. If m has been received by all
members in G, m is said to be stable. Only stable messages are allowed to be
delivered. To ensure stability, it is sufficient to select an arbitrary (operational)
process in G and request it to send m to all other processes.

To be more specific, assume the current view is Gj, but that it is necessary to
install the next view G;+l. Without loss of generality, we may assume that G; and
Gj+1 differ by at most one process. A process P notices the view change when it
receives a view-change message. Such a message may come from the process
wanting to join or leave the group, or from a process that had detected the failure
of a process in G; that is now to be removed, as shown in Fig. 8-17(a).

354 FAULT TOLERANCE CHAP. 8

When a process P receives the view-change message for Gi+1, it first for-
wards a copy of any unstable message from G, it still has to every process in Gi+1,
and subsequently marks it as being stable. Recall that Isis assumes point-to-point
communication is reliable, so that forwarded messages are never lost. Such for-
warding guarantees that all messages in G, that have been received by at least one
process are received by all nonfaulty processes in Gi. Note that it would also have
been sufficient to elect a single coordinator to forward unstable messages.

Figure 8-17. (a) Process 4 notices that process 7 has crashed and sends a view
change. (b) Process 6 sends out all its unstable messages, followed by a flush
message. (c) Process 6 installs the new view when it has received a flush mes-
sage from everyone else.

To indicate that P no longer has any unstable messages and that it is prepared
to install Gi+1 as soon as the other processes can do that as well, it multicasts a
flush message for Gi+b as shown in Fig. 8-17(b). After P has received a flush
message for Gi+1 from each other process, it can safely install the new view
'[shown in Fig. 8-17(c)].

When. a process Q receives a message m that was sent in Gi, and Q still be-
'lieves the current view is G;, it delivers. m taking any additional message-ordering
'constraints into account. If it had already received 171, 'it considers the message to
'be a duplicate and further discards it. .

Because process Q will eventually receive the view-change message for Gi+1,
lit will also first forward any of its unstable messages and subsequently wrap
Lpnngsup by sending a flush message.for Gi+l,., Note that due. to the message ord-
f¢ring underlying the communication layer, a flushmessage from a process is al-
\vays; received after the receipt of au unstable message from that same process. .
. 'the major flaw in the protocol described so Ifar is that it cannot deal with
'process failures while a new view change is being announced. In particular, it
'assumes that until the new view Gi+1 has been installed by each member in Gi+1,
'no-process in Gi+1 will fail (which would lead to a next view Gi+2)' This problem

SEC. 8.4 RELIABLE GROUP COMMUNICATION 355

is solved by announcing view changes for any view Gi+k even while previous
changes have not yet been installed by all processes. The details are left as an
exercise for the reader.

8.5 DISTRIBUTED COMMIT

The atomic multicasting problem discussed in the previous section is an ex-
ample of a more general problem, known as distributed commit. The distributed
commit problem involves having an operation being performed by each member
of a process group, or none at all. In the case of reliable multicasting, the opera-
tion is the delivery of a message. With distributed transactions, the operation may
be the commit of a transaction at a single site that takes part in the transaction.
Other examples of distributed commit, and how it can be solved are discussed in
Tanisch (2000).

Distributed commit is often established by means of a coordinator. In a simple
scheme, this coordinator tells all other processes that are also involved, called par-
ticipants, whether or not to (locally) perform the operation in question. This
scheme is referred to as a one-phase commit protocol. It has the obvious draw-
back that if one of the participants cannot actually perform the operation, there is
no way to tell the coordinator. For example, in the case of distributed transactions,
a local commit may not be possible because this would violate concurrency con-
trol constraints.

In practice, more sophisticated schemes are needed, the most common one
being the two-phase commit protocol, which is discussed in detail below. The
main drawback of this protocol is that it cannot efficiently handle the failure of
the coordinator. To that end, a three-phase protocol has been developed, which we
also discuss.

8.5.1 Two-Phase Commit

The original two-phase commit protocol (2PC) is due to Gray (1978)
Without loss of generality, consider a distributed transaction involving the partici-
pation of a number of processes each running on a different machine. Assuming
that no failures occur, the protocol consists of the following two phases, each con-
sisting of two steps [see also Bernstein et al. (1987)]:

1. The coordinator sends a VOTE-.REQUEST message to all partici-
pants.

2. When a participant receives a VOTE-.REQUEST message, it returns
either a VOTE_COMMIT message to the coordinator telling the coor-
dinator that it is prepared to locally commit its part of the transaction,
or otherwise a VOTE-ABORT message.

356 FAULT TOLERANCE CHAP. 8·

Figure 8~18. (a) The finite state machine for the coordinator in ;2PC. (b) The
finite state machine for a participant.

Several problems arise when this basic 2PC protocol is used in a system
where failures occur. First, note that the coordinator as well as the participants
have states in which they block waiting for incoming messages. Consequently, the
protocol can easily fail when a process crashes for other processes may be inde-
finitely waiting for a message from that process. For this reason, timeout mechan-
ism are used. These mechanisms are explained in the following pages.

When taking a look at the finite state machines in Fig. 8-18, it can be seen that
there are a total of three states in which either a coordinator or participant is
blocked waiting for an incoming message. First, a participant may be waiting in
its INIT state for a VOTE-REQUEST message from the coordinator. If that mes-
sage is not received after some time, the participant will simply decide to locally
abort the transaction, and thus send a VOTE..ABORT message to the coordinator.

Likewise, the coordinator can be blocked in state "~4IT,waiting for the votes•..
of each participant. If not all votes have been collected after a certain period of

3. The coordinator collects all votes from the participants. If all partici-
pants have voted to commit the transaction, then so will the coordi-
nator. In that case, it sends a GLOBAL_COMMIT message to all par-
ticipants. However, if one participant had voted to abort the tran-
saction, the coordinator will also decide to abort the transaction and
multicasts a GLOBAL..ABORT message.

4. Each participant that voted for a commit waits for the final reaction
by the coordinator. If a participant receives a GLOBAL_COMMIT
message, it locally commits the transaction. Otherwise, when receiv-
ing a GLOBAL..ABORT message, the transaction is locally aborted
as well.

The first phase is the voting phase, and consists of steps 1 and 2. The second
phase is the decision phase, and consists of steps 3 and 4. These four steps are
shown as finite state diagrams in Fig. 8-18.

SEC. 8.5 DISTRIBUTED COMMIT 357

time, the coordinator should vote for an abort as well, and subsequently send
GLOBAL....ABORT to all participants.

Finally, a participant can be blocked in state READY, waiting for the global
vote as sent by the coordinator. If that message is not received within a given
time, the participant cannot simply decide to abort the transaction. Instead, it must
find out which message the coordinator actually sent. The simplest solution to this
problem is to let each participant block until the coordinator recovers again.

A better solution is to let a participant P contact another participant Q to see if
it can decide from Q's current state what it should do. For example, suppose that
Q had reached state COMMIT. This is possible only if the coordinator had sent a
GLOBAL_COMMIT message to Q just before crashing. Apparently; this message
had not yet been sent to P. Consequently, P may now also decide to locally com-
mit. Likewise, if Q is in state ABORT, P can safely abort as well.

Now suppose that Q is still in state INIT. This situation can occur when the
coordinator has sent a VOTE....REQUEST to all participants, but this message has
reached P (which subsequently responded with a VOTE_COMMIT message), but
has not reached Q. In other words, the coordinator had crashed while multicasting
VOTE....REQUEST. In this case, it is safe to abort the transaction: both P and Q
can make a transition to state ABORT.

The most difficult situation occurs when Q is also in state READY, waiting for
a response from the coordinator. In particular, if it turns out that all participants
are in state READY, no decision can be taken. The problem is that although all
participants are willing to commit, they still need the coordinator's vote to reach
the final decision. Consequently, the protocol blocks until the coordinator recov-
ers.

The various options are summarized in Fig. 8-19.

Figure 8-19. Actions taken by a participant P when residing in state READY
and having contacted another participant Q.

To ensure that a process can actually recover, it is necessary that it saves its
state to persistent storage. (How saving data can be done in a fault-tolerant way is
discussed later in this chapter.) For example, if a participant was in state INIT, it
can safely decide to locally abort the transaction when it recovers, and then
inform the coordinator. Likewise, when it had already taken a decision such as

358 FAULT TOLERANCE CHAP: 8

Figure 8-20. Outline of the steps taken by the coordinator in a two-phase com-
mit protocol.

If not all votes have been collected but no more votes are received within a
given time interval prescribed in advance, the coordinator assumes that one or
more participants have failed. Consequently, it should abort the transaction and
multicasts a GLOBAL-ABORT to the (remaining) participants.

when it crashed while being in either state COMMIT or ABORT, it is in order to
recover to that state again, and retransmit its decision to the coordinator.

Problems arise when a participant crashed while residing in state READY. In
that case. when recovering, it cannot decide on its own what it should do next,
that is, commit or abort the transaction. Consequently, it is forced to contact other
participants to find what it should do, analogous to the situation when it times out
while residing in state READY as described above. '

The coordinator has only two critical states it needs to keep track of. When it
starts the 2PC protocol, it should record that it is entering state WAIT so that it can
possibly retransmit the VOTEJ?EQUEST message to all participants after recov-
ering. Likewise, if it had come to a decision in the second phase, it is sufficient if
that decision has been recorded so that it can be retransmitted when recovering.

An outline of the actions that are executed by the coordinator is given in
Fig. 8-20. The coordinator starts by multicasting a VOTEJ?EQUEST to all parti-
cipants in order to collect their votes. It subsequently records that it is entering the
WAIT state, after which it waits for incoming votes from participants.

SEC. 8.5 DISTRIBUTED COMMIT 359

If no failures occur, the coordinator will eventually have collected all votes. If
all participants as well as the coordinator vote to commit, GLOBAL_COMMIT is
first logged and subsequently sent to all processes. Otherwise, the coordinator
multicasts a GLOBAL-ABORT (after recording it in the local log).

Fig. 8-21(a) showsthe steps taken by a participant. First, the process waits for
a vote request from the coordinator. Note that this waiting can be done by a sepa-
rate thread running in the process's address space. If no message comes in, the
transaction is simply aborted. Apparently, the coordinator had failed.

After receiving a vote request, the participant may decide to vote for commit-
ting the transaction for which it first records its decision in a local log, and then
informs the coordinator by sending a VOTE_COMMIT message. The participant
must then wait for the global decision. Assuming this decision (which again
should come from the coordinator) comes in on time, it is simply written to the
local log, after which it can be carried out.

However, if the participant times out while waiting for the coordinator's deci-
sion to come in, it executes a termination protocol by first multicasting a
DECISION-REQUEST message to the other processes, after which it subse-
quently blocks while waiting for a response. When a response comes in (possibly
from the coordinator, which is assumed to eventually recover), the participant
writes the decision to its local log and handles it accordingly.

Each participant should be prepared to accept requests for a global decision
from other participants. To that end, assume each participant starts a separate
thread, executing concurrently with the main thread of the participant as shown in
Fig.8-21(b). This thread blocks until it receives a decision request. It can only be
of help to anther process if its associated participant has already reached a final
decision. In other words, if GLOBAL_COMMIT or GLOBAL-ABORT had been
written to the local log, it is certain that the coordinator had at least sent its deci-
sion to this process. In addition, the thread may also decide to send a
GLOBAL-ABORT when its associated participant is still in state INIT, as dis-
cussed previously. In all other cases, the receiving thread cannot help, and the re-
questing participant will not be responded to.

What is seen is that it may be possible that a participant will need to block
until the coordinator recovers. This situation occurs when all participants have re-
ceived and processed the VOTE-REQUEST from the coordinator, while in the
meantime, the coordinator crashed. In that case, participants cannot cooperatively
decide on the final action to take. For this reason, 2PC is also referred to as a
blocking commit protocol.

There are several solutions to avoid blocking. One solution, described by
Babaoglu and Toueg (1993), is to use a multicast primitive by which a receiver
immediately multicasts a received message to all other processes. It can be shown
that this approach allows a participant to reach a final decision, even if the coordi-
nator has not yet recovered. Another solution is the three-phase commit protocol,
which is the last topic of this section and is discussed next.

360 FAULT TOLERANCE CHAP. 8

Figure 8-21. (a) The steps taken by a participant process in 2PC. (b) The steps
for handling incoming decision requests.

SEC. 8.5 DISTRIBUTED COMMIT 361

8.5.2 Three-Phase Commit

A problem with the two-phase commit protocol is that when the coordinator
has crashed, participants may not be able to reach a final decision. Consequently,
participants may need to remain blocked until the coordinator recovers. Skeen
(1981) developed a variant of 2PC, called the three-phase commit protocol
(3PC), that avoids blocking processes in the presence of fail-stop crashes. Al-
though 3PC is widely referred to in the literature, it is not applied often in practice
as the conditions under which 2PC blocks rarely occur. We discuss the protocol,
as it provides further insight into solving fault-tolerance problems in distributed
systems.

Like 2PC, 3PC is also formulated in terms of a coordinator and a number of
participants. Their respective finite state machines are shown in Fig. 8-22. The
essence of the protocol is that the states of the coordinator and each participant
satisfy the following two conditions:

1. There is no single state from which it is possible to make a transition
directly to either a COMMIT or an ABORT state.

2. There is no state in which it is not possible to make a final decision,
and from which a transition to a COMMIT state can be made.

It can be shown that these two conditions are necessary and sufficient for a com-
mit protocol to be nonblocking (Skeen and Stonebraker, 1983).

Figure 8-22. (a) The finite state machine for the coordinator in 3PC. (b) The
finite state machine for a participant.

The coordinator in 3PC starts with sending a VOTE....REQUEST message to all
participants, after which it waits for incoming responses. If any participant votes
to abort the transaction, the final decision will be to abort as well, so the coordina-
tor sends GLOBAL-ABORT. However, when the transaction can be committed, a

362 FAULT TOLERANCE CHAP. 8

PREPARE_COMMIT message is sent. Only after each participant has acknowl-
edged it is now prepared to commit, will the coordinator send the final
GLOBAL_COMMIT message by which the transaction is actually committed.

Again, there are only a few situations in which a process is blocked while
waiting for incoming messages. First, if a participant is waiting for a vote request
from the coordinator while residing in state INIT, it will eventually make a transi-
tion to state ABORT, thereby assuming that the coordinator has crashed. This
situation is identical to that in 2PC. Analogously, the coordinator may be in state
WAIT, waiting for the votes from participants. On a timeout, the coordinator will
conclude that a participant crashed, and will thus abort the transaction by multi-
casting a GLOBAL-ABORT message.

Now suppose the coordinator is blocked in state PRECOMMIT. On a timeout,
it will conclude that one of the participants had crashed, but that participant is
known to have voted for committing the transaction. Consequently, the coordina-
tor can safely instruct the operational participants to commit by multicasting a
GLOBAL_COMMIT message. In addition, it relies on a recovery protocol for the
crashed participant to eventually commit its part of the transaction when it comes
up again.

A participant P may block in the READY state or in the PRECOMMIT state.
On a timeout, P can conclude only that the coordinator has failed, so that it now
needs to find out what to do next. As in 2PC, if P contacts any other participant
that is in state COMMIT (or ABORD, P should move to that state as well. In addi-
tion, if all participants are in state PRECOMMIT, the transaction can be safely
committed.

Again analogous to 2PC, if another participant Q is still in the INIT state, the
transaction can safely be aborted. It is important to note that Q can be in state
INIT only if no other participant is in state PRECOMMIT. A participant can reach
PRECOMMIT only if the coordinator had reached state PRECOMMIT before
crashing, and has thus received a vote to commit from each participant. In other
words, no participant can reside in state INIT while another participant is in state
PRECOMMIT.

If each: of the participants that P can contact is in state READ Y (and they
together form a majority), the transaction should be aborted. The point to note is
that another participant may have crashed and will later recover. However, neither
P, nor any other of the operational participants knows what the state of the
crashed participant will be when it recovers. If the process recovers to state INIT,
then deciding to abort the transaction is the only correct decision. At worst, the
process may recover to state PRECOMMIT, but in that case, it cannot do any
harm to still abort the transaction.

This situation is the major difference with 2PC, where a crashed participant
could recover to a COMMIT state while all the others were still in state READ Y.
In that case, the remaining operational processes could not reach a final decision
and would have to wait until the crashed process recovered. With 3PC, if any

SEC. 8.5 DISTRIBUTED COMMIT 363

operational process is in its READ Y state, no crashed process will recover to a
state other than INIT, ABORT, or PRECOMMIT. For this reason, surviving proc-
esses can always come to a final decision.

Finally, if the processes that P can reach are in state PRECOMMIT (and they
forma majority), then it is safe to commit the transaction. Again, it can be shown
that in this case, all other processes will either be in state READY or at least, will
recover to state READY, PRECOMMIT, or COMMIT when they had crashed.

Further details on 3PC can be found in Bernstein et al. (1987) and Chow and
Johnson (1997).

8.6 RECOVERY

So far, we have mainly concentrated on algorithms that allow us to tolerate
faults. However, once a failure has occurred, it is essential that the process where
the failure happened can recover to a correct state. In what follows, we first con-
centrate on what it actually means to recover to a correct state, and subsequently
when and how the state of a distributed system can be recorded and recovered to,
by means of checkpointing and message logging.

8.6.1 Introduction

Fundamental to fault tolerance is the recovery from an error. Recall that an
error is that part of a system that may lead to a failure. The whole idea of error
recovery is to replace an erroneous state with an error-free state. There are essen-
tially two forms of error recovery.

In backward recovery, the main issue is to bring the system from its present
erroneous state back into a previously correct state. To do so, it will be necessary
to record the system's state from time to time, and to restore such a recorded state
when things go wrong. Each time (part of) the system's present state is recorded,
a checkpoint is said to be made.

Another form of error recovery is forward recovery. In this case, when the
system has entered an erroneous state, instead of moving back to a previous,
checkpointed state, an attempt is made to bring the system in a correct new state
from which it can continue to execute. The main problem with forward error re-
covery mechanisms is that it has to be known in advance which errors may occur.
Only in that case is it possible to correct those errors and move to a new state.

The distinction between backward and forward error recovery is easily
explained when considering the implementation of reliable communication. The
common approach to recover from a lost packet is to let the sender retransmit that
packet. In effect, packet retransmission establishes that we attempt to go back to a
previous, correct state, namely the one in which the packet that was lost is being

364 FAULT TOLERANCE CHAP. 8

sent. Reliable communication through packet retransmission is therefore an ex-
ample of applying backward error recovery techniques.

An alternative approach is to use a method known as erasure correction. In
this approach. a missing packet is constructed from other, successfully delivered
packets. For example, in an (n,k) block erasure code, a set of k source packets is
encoded into a set of n encoded packets, such that any set of k encoded packets is
enough to reconstruct the original k source packets. Typical values are k =16' or
k=32, and k<11~2k [see, for example, Rizzo (1997)]. If not enough packets have
yet been delivered, the sender will have to continue transmitting packets until a
previously lost packet can be constructed. Erasure correction is a typical example
of a forward error recovery approach.

By and large, backward error recovery techniques are widely applied as a
general mechanism for recovering from failures in distributed systems. The major
benefit of backward error recovery is that it is a generally applicable method
independent of any specific system or process. In other words, it can be integrated
into (the middleware layer) of a distributed system as a general-purpose service.

However, backward error recovery also introduces some problems (Singhal
and Shivaratri, 1994). First, restoring a system or process to a previous state is
generally a relatively costly operation in terms of performance. As will be dis-
cussed in succeeding sections, much work generally needs to be done to recover
from, for example, a process crash or site failure. A potential way out of this prob-
lem, is to devise very cheap mechanisms by which components are simply re-
booted. We will return to this approach below.

Second, because backward error recovery mechanisms are independent of the
distributed application for which they are actually used, no guarantees can be
given that once recovery has taken place, the same or similar failure will not hap-
pen again. If such guarantees are needed, handling errors often requires that the
application gets into the loop of recovery. In other words, full-fledged failure tran-
sparency can generally not be provided by backward error recovery mechanisms.

Finally, although backward error recovery requires checkpointing, some states
can simply never be rolled back to. For example, once a (possibly malicious) per-
son has taken the $1.000 that suddenly came rolling out of the incorrectly func-
tioning automated teller machine, there is only a small chance that money will be
stuffed back in the machine. Likewise, recovering to a previous state in most
UNIX systems after having enthusiastically typed

rrn -fr *
but from the wrong working directory, may turn a few people pale. Some things
are simply irreversible.

Checkpointing allows the recovery to a previous correct state. However, tak-
ing a checkpoint is often a costly operation and may have a severe performance
penalty. As a consequence, many fault-tolerant distributed systems combine
checkpointing with message logging. In this case, after a checkpoint has been

SEC. 8.6 RECOVERY 365

taken, a process logs its messages before sending them off (called sender-based
logging). An alternative solution is to let the receiving process first log an incom-
ing message before delivering it to the application it is executing. This scheme is
also referred to as receiver-based logging. When a receiving process crashes, it
is necessary to restore the most recently checkpointed state, and from there on
replay the messages that have been sent. Consequently, combining checkpoints
with message logging makes it possible to restore a state that lies beyond the most
recent checkpoint without the cost of checkpointing.

Another important distinction between checkpointing and schemes that addi-
tionally use logs follows. In a system where only checkpointing is used, processes
will be restored to a checkpointed state. From there on, their behavior may be dif-
ferent than it was before the failure occurred. For example, because communica-
tion times are not deterministic, messages may now be delivered in a different or-
der, in tum leading to different reactions by the receivers. However, if message
logging takes place, an actual replay of the events that happened since the last
checkpoint takes place. Such a replay makes it easier to interact with the outside
world,

For example, consider the case that a failure occurred because a user provided
erroneous input. If only checkpointing is used, the system would have to take a
checkpoint before accepting the user's input in order to recover to exactly the
same state. With message logging, an older checkpoint can be used, after which a
replay of events can take place up to the point that the user should provide input.
In practice, the combination of having fewer checkpoints and message logging is
more efficient than having to take many checkpoints.

Stable Storage

To be able to recover to a previous state, it is necessary that information need-
ed to enable recovery is safely stored. Safely in this context means that recovery
information survives process crashes and site failures, but possibly also various
storage media failures. Stable storage plays an important role when it comes to
recovery in distributed systems. We discuss it briefly here.

Storage comes in three categories. First there is ordinary RAM memory,
which is wiped out when the power fails or a machine crashes. Next there is disk
storage, which survives CPU failures but which can be lost in disk head crashes.

Finally, there is also stable storage, which is designed to survive anything ex-
cept major calamities such as floods and earthquakes. Stable storage can be im-
plemented with a pair of ordinary disks, as shown in Fig. 8-23(a). Each block on
drive 2 is an exact copy of the corresponding block on drive 1. When a block is
updated, first the block on drive 1 is updated and verified. then the same block on
drive 2 is done.

Suppose that the system crashes after drive 1 is updated but before the update
on drive 2, as shown in Fig. 8-23(b). Upon recovery, the disk can be compared

366 FAULT TOLERANCE CHAP. 8

Figure 8-23. (a) Stable storage. (b) Crash after drive I is updated. (c) Bad
spot.

block for block. Whenever two corresponding blocks differ, it can be assumed
that drive 1 is the correct one (because drive 1 is always updated before drive 2),
so the new block is copied from drive 1 to drive 2. When the recovery process is
complete, both drives will again be identical.

Another potential problem is the spontaneous decay of a block. Dust particles
or general wear and tear can give a previously valid block a sudden checksum
error, without cause or warning, as shown in Fig. 8-23(c). When such an error is
detected, the bad block can be regenerated from the corresponding block on the
other drive.

As a consequence of its implementation, stable storage is well suited to appli-
cations that require a high degree of fault tolerance, such as atomic transactions.
When data are written to stable storage and then read back to check that they have
been written correctly, the chance of them subsequently being lost is extremely
small.

In the next two sections we go into further details concerning checkpoints and
message logging. Elnozahy et al. (2002) provide a survey of checkpointing and
logging in distributed systems. Various algorithmic details can be found in Chow
and Johnson (1997).

8.6.2 Checkpointing

In a fault-tolerant distributed system, backward error recovery requires that
the system regularly saves its state onto stable storage. In particular, we need to
record a consistent global state, also called a distributed snapshot. In a distrib-
uted snapshot, if a process P has recorded the receipt of a message, then there

SEC. 8.6 RECOVERY 367

should also be a process Q that has recorded the sending of that message. After
all, it must have come from somewhere.

Figure 8-24. A recovery line.

In backward error recovery schemes, each process saves its state from time to
time to a locally-available stable storage. To recover after a process or system
failure requires that we construct a consistent global state from these local states.
In particular, it is best to recover to the most recent distributed snapshot, also
referred to as a recovery line. In other words, a recovery line corresponds to the
most recent consistent collection of checkpoints, as shown in Fig. 8-24.

Independent Checkpointing

Unfortunately, the distributed nature of checkpointing (in which each process
simply records its local state from time to time in an uncoordinated fashion) may
make it difficult to find a recovery line. To discover a recovery line requires that
each process is rolled back to its most recently saved state. If these local states
jointly do not form a distributed snapshot, further rolling back is necessary.
Below, we will describe a way to find a recovery line. This process of a cascaded
rollback may lead to what is called the domino effect and is shown in Fig. 8-25.

Figure 8-25. The domino effect.

When process P2 crashes, we need to restore its state to the most recently
saved checkpoint. As a consequence, process PI will also need to be rolled back.

368
FAULT TOLERANCE CHAP. 8

Unfortunately, the two most recently saved local states do not form a consistent
global state: the state saved by P2 indicates the receipt of a message m, but no
other process can be identified as its sender. Consequently, P2 needs to be rolled
back to an earlier state.

However, the next state to which P2 is rolled back also cannot be used as part
of a distributed snapshot. In this case, PI will have recorded the receipt of mes-
sage m I, but there is no recorded event of this message being sent. It is therefore
necessary to also roll PI back to a previous state. In this example, it turns out that
the recovery line is actually the initial state of the system. . .

As processes take local checkpoints independent of each other, this method is
also referred to as independent checkpointing. An alternative solution is to glo-
bally coordinate checkpointing, as we discuss below, but coordination requires
global synchronization, which may introduce performance problems. Another dis-
advantage of independent checkpointing is that each local storage needs to be
cleaned up periodically, for example, by running a special distributed garbage col-
lector. However, the main disadvantage lies in computing the recovery line.

Implementing independent checkpointing requires that dependencies are
recorded in such a way that processes can jointly roll back to a consistent global
state. To that end, let CPi(m) denote the m-th checkpoint taken by process Pi'
Also, let INTi(m) denote the interval between checkpoints CPi(m-l) and CPi(m).

When process Pi sends a message in interval INTi(m), it piggybacks the pair
(i,m) to the receiving process. When process Pj receives a message in interval
IN1j(n), along with the pair of indices (i,m), it then records the dependency
INTi(m)-7IN1j(n). Whenever Ij takes checkpoint CPln), it additionally writes
this dependency to its local stable storage, along with the rest of the recovery in-
formation that is part of CPln).

Now suppose that at a certain moment, process' PI is required to roll back to
checkpoint CPi(m-l). To ensure global consistency, we need to ensure that all
processes that have received messages from Pi and were sent in interval INTi (m),
are rolled back to a checkpointed state preceding the receipt of such messages. In
particular, .process Pj in our example, will need to be rolled back at least to check-
point CPj(n-l). If CPj(n-l) does not lead to a globally consistent state, further
rolling back may be necessary.

Calculating the recovery line requires an analysis of the interval dependencies
recorded by each process when a checkpoint was taken. Without going into any
further details, it turns out that such calculations are fairly complex and do not
justify the need for independent checkpointing in comparison to coordinated
checkpointing. In addition, as it turns out, it is often not the coordination between
processes that is the dominating performance factor, but the overhead as the result
of having to save the state to local stable storage. Therefore, coordinated check-
pointing, which is much simpler than independent checkpointing, is often more
popular, and will presumably stay so even when systems grow to much larger
sizes (Elnozahy and Planck, 2004).

SEC. 8.6 RECOVERY 369

Coordinated Checkpointing

As its name suggests, in coordinated checkpointing all processes synchron-
ize to jointly write their state to local stable storage. The main advantage of coor-
dinated checkpointing is that the saved state is automatically globally consistent,
so that cascaded rollbacks leading to the domino effect are avoided. The distrib-
uted snapshot algorithm discussed in Chap. 6 can be used to coordinate check-
pointing. This algorithm is an example of nonblocking checkpoint coordination.

A simpler solution is to use a two-phase blocking protocol. A coordinator first
multicasts a CHECKPOINT .-REQUEST message to all processes. When a process
receives such a message, it takes a local checkpoint, queues any subsequent mes-
sage handed to it by the application it is executing, and acknowledges to the coor-
dinator that it is has taken a checkpoint. When the coordinator has received an
acknowledgment from all processes, it multicasts a CHECKPOINT ...DONE mes-
sage to allow the (blocked) processes to continue.

It is easy to see that this approach will also lead to a globally consistent state,
because no incoming message will ever be registered as part of a checkpoint. The
reason for this is that any message that follows a request for taking a checkpoint is
not considered to be part of the local checkpoint. At the same time, outgoing mes-
sages (as handed to the checkpointing process by the application it is running), are
queued locally until the CHECKPOINT ...DONE message is received.

An improvement to this algorithm is to multicast a checkpoint request only to
those processes that depend on the recovery of the coordinator, and ignore the
other processes. A process is dependent on the coordinator if it has received a
message that is directly or indirectly causally related to a message that the coordi-
nator had sent since the last checkpoint. This leads to the notion of an incremen-
tal snapshot.

To take an incremental snapshot, the coordinator multicasts a checkpoint re-
quest only to those processes it had sent a message to since it last took a check-
point. When a process P receives such a request, it forwards the request to all
those processes to which P itself had sent a message since the last checkpoint, and
so on. A process forwards the request only once. When all processes have been
identified, a second multicast is used to actually trigger checkpointing and to let
the processes continue where they had left off.

8.6.3 Message Logging

Considering that checkpointing is an expensive operation, especially concern-
ing the operations involved in writing state to stable storage, techniques have been
sought to reduce the number of checkpoints, but still enable recovery. An impor-
tant technique in distributed systems is logging messages.

The basic idea underlying message logging is that if the transmission of mes-
sages can be replayed, we can still reach a globally consistent state but without

370 FAULT TOLERANCE CHAP. 8

having to restore that state from stable storage. Instead, a checkpointed state is
taken as a starting point, and all messages that have been sent since are simply
retransmitted and handled accordingly.

This approach works fine under the assumption of what is called a piecewise
deterministic model. In such a model, the execution of each process is assumed
to take place as a series of intervals in which events take place. These events are
the same as those discussed in the context of Lamport's happened-before relation-
ship in Chap. 6. For example, an event may be the execution of an instruction, the
sending of a message, and so on. Each interval in the piecewise deterministic
model is assumed to start with a nondeterministic event, such as the receipt of a
message. However, from that moment on, the execution of the process is com-
pletely deterministic. An interval ends with the last event before a nondeterminis-
tic event occurs.

In effect, an interval can be replayed with a known result, that is, in a com-
pletely deterministic way, provided it is replayed starting with the same nondeter-
ministic event as before. Consequently, if we record all nondeterministic events in
such a model, it becomes possible to completely replay the entire execution of a
process in a deterministic way.

Considering that message logs are necessary to recover from a process crash
so that a globally consistent state is restored, it becomes important to know pre-
cisely when messages are to be logged. Following the approach described by
Alvisi and Marzullo (1998), it turns out that many existing message-logging
schemes can be easily characterized, if we concentrate on how they deal with
orphan processes.

An orphan process is a process that survives the crash of another process, but
whose state is inconsistent with the crashed process after its recovery. As an ex-
ample, consider the situation shown in Fig. 8-26. Process Q receives messages
m 1 and m 2 from process P and R, respectively, and subsequently sends a message
m 3 to R. However, in contrast to all other messages, message m 2 is not logged. If
process Q crashes and later recovers again, only the logged messages required for
the recovery of Q are replayed, in our example, mI' Because m 2 was not logged,
its transmission will not be replayed, meaning that the transmission of m 3 also
may not take place. Fig. 8-26.

However, the situation after the recovery of Q is inconsistent with that before
its recovery. In particular, R holds a message (m 3) that was sent before the crash,
but whose receipt and delivery do not take place when replaying what had hap-
pened before the crash. Such inconsistencies should obviously be avoided.

Characterizing Message-Logging Schemes

To characterize different message-logging schemes, we follow the approach
described in Alvisi and Marzullo (1998). Each message m is considered to have a
header that contains all information necessary to retransmit m, and to properly

SEC. 8.6 RECOVERY 371

Figure 8-26. Incorrect replay of messages after recovery, leading to an orphan
process.

handle it. For example, each header will identify the sender and the receiver, but
also a sequence number to recognize it as a duplicate. In addition, a delivery num-
ber may be added to decide when exactly it should be handed over to the receiv-
. ing application.

A message is said to be stable if it can no longer be lost, for example, because
it has been written to stable storage. Stable messages can thus be used for
recovery by replaying their transmission.

Each message m leads to a set DEP (m) of processes that depend on the
delivery of m. In particular, DEP (m) consists of those processes to which m has
been delivered. In addition, if another message m' is causally dependent on the
delivery of m, and m' has been delivered to a process Q, then Q will also be con-
tained in DEP (m). Note that m' is causally dependent on the delivery of m, if it
were sent by the same process that previously delivered m, or which had delivered
another message that was causally dependent on the delivery of m.

The set COPY(m) consists of those processes that have a copy of m, but not
(yet) in their local stable storage. When a process Q delivers message m, it also
becomes a member of COPY(m). Note that COPY(m) consists of those processes
that could hand over a copy of m that can be used to replay the transmission of m.
If all these processes crash, replaying the transmission of m is clearly not feasible.

Using these notations, it is now easy to define precisely what an orphan proc-
ess is. Suppose that in a distributed system some processes have just crashed. Let
Q be one of the surviving processes. Process Q is an orphan process if there is a
message m, such that Q is contained in DEP (m), while at the same time every
process in COPY(m) has crashed.' In other words, an orphan process appears
when it is dependent on m, but there is no way to replay m's transmission.

To avoid orphan processes, we thus need to ensure that if each process in
COPY(m) crashed, then no surviving process is left in DEP(m). In other words,
all processes in DEP (m) should have crashed as well. This condition can be
enforced if we can guarantee that whenever a process becomes a member of
DEP(m), it also becomes a member of COPY(m). In other words, whenever a
process becomes dependent on the delivery of m, it will always keep a copy of m.

372 FAULT TOLERANCE CHAP. 8

There are essentially two approaches that can now be followed. The first ap-
proach is represented by what are called pessimistic logging protocols. These
protocols take care that for each nonstable message m, there is at most one proc-
ess dependent on m. In other words, pessimistic logging protocols ensure that each
nonstable message m is delivered to at most one process. Note that as soon as m is
delivered to, say process P, P becomes a member of COpy (m).

The worst that can happen is that process P crashes without m ever having
been logged. With pessimistic logging, P is not allowed to send any messages af-
ter the delivery of m without first having ensured that m has been written to stable
storage. Consequently, no other processes will ever become dependent on the de-
livery of m to P, without having the possibility of replaying the transmission of m.
In this way, orphan processes are always avoided.

In contrast, in an optimistic logging protocol. the actual work is done after a
crash occurs. In particular, assume that for some message m, each process in
COpy (m) has crashed. In an optimistic approach, any orphan process in DEP (m)
is rolled back to a state in which it no longer belongs to DEP(m). Clearly,
optimistic logging protocols need to keep track of dependencies, which compli-
cates their implementation.

As pointed out in Elnozahy et al. (2002), pessimistic logging is so much sim-
pler than optimistic approaches, that it is the preferred way of message logging in
practical distributed systems design.

8.6.4 Recovery-Oriented Computing

A related way of handling recovery is essentially to start over again. The
underlying principle toward this way of masking failures is that it may be much
cheaper to optimize for recovery, then it is aiming for systems that are free from
failures for a long time. This approach is also referred to as recovery-oriented
computing (Candea et aI., 2004a).

There are different flavors of recovery-oriented computing. One flavor is to
simply reboot (part of a system) and has been explored to restart Internet servers
(Candea et al., 2004b, 2006). In order to be able reboot only a part of the system,
it is crucial the fault is properly localized. At that point, rebooting simply means
deleting all instances of the identified components. along with the threads operat-
ing on them, and (often) to just restart the associated requests. Note that fault
localization itself may be a nontrivial exercise (Steinder and Sethi. 2004).

To enable rebooting as a practical recovery technique requires that com-
ponents are largely decoupled in the sense that there are few or no dependencies
between different components. If there are strong dependencies, then fault locali-
zation and analysis may still require that a complete server needs to be restarted at
which point applying traditional recovery techniques as the ones we just discussed
may be more efficient.

SEC. 8.6 RECOVERY 373

Another flavor of recovery-oriented computing is to apply checkpointing and
recovery techniques, but to continue execution in a changed environment. The
basic idea here is that many failures can be simply avoided if programs are given
some more buffer space, memory is zeroed before allocated, changing the order-
ing of message delivery (as long as this does not affect semantics), and so on (Qin
et aI., 2005). The key idea is to tackle software failures (whereas many of the
techniques discussed so far are aimed at, or are based on hardware failures).
Because software execution is highly deterministic, changing an execution
environment may save the day, but, of course, without repairing anything.

8.7 SUMMARY

Fault tolerance is an important subject in distributed systems design. Fault
tolerance is defined as the characteristic by which a system can mask the
occurrence and recovery from failures. In other words, a system is fault tolerant if
it can continue to operate in the presence of failures.

Several types of failures exist. A crash failure occurs when a process simply
halts. An omission failure occurs when a process does not respond to incoming re-
quests. When a process responds too soon or too late to a request, it is said to
exhibit a timing failure. Responding to an incoming request, but in the wrong
way, is an example of a response failure. The most difficult failures to handle are
those by which a process exhibits any kind of failure, called arbitrary or Byzan-
tine failures.

Redundancy is the key technique needed to achieve fault tolerance. When
applied to processes, the notion of process groups becomes important. A process
group consists of a number of processes that closely cooperate to provide a ser-
vice. In fault-tolerant process groups, one or more processes can fail without
affecting the availability of the service the group implements. Often, it is neces-
sary that communication within the group be highly reliable, and adheres to
stringent ordering and atomicity properties in order to achieve fault tolerance.

Reliable group communication, also called reliable multicasting, comes in dif-
ferent forms. As long as groups are relatively small, it turns out that implementing
reliability is feasible. However, as soon as very large groups need to be supported,
scalability of reliable multicasting becomes problematic. The key issue in achiev-
ing scalability is to reduce the number of feedback messages by which receivers
report the (un)successful receipt of a multicasted message.

Matters become worse when atomicity is to be provided. In atomic multicast
protocols, it is essential that each group member have the same view concerning
to which members a multicasted message has been delivered. Atomic multicasting
can be precisely formulated in terms of a virtual synchronous execution model. In
essence, this model introduces boundaries between which group membership does

374 FAULT TOLERANCE CHAP. 8

not change and which messages are reliably transmitted. A message can never
cross a boundary.

Group membership changes are an example where each process needs to
agree on the same list of members. Such agreement can be reached by means of a
commit protocol, of which the two-phase commit protocol is the most widely
applied. In a two-phase commit protocol, a coordinator first checks whether all
processes agree to perform the same operation (i.e., whether they all agree to
commit), and in a second round, multicasts the outcome of that poll. A three-
phase commit protocol is used to handle the crash of the coordinator without hav-
ing to block all processes to reach agreement until the coordinator recovers.

Recovery in fault-tolerant systems is invariably achieved by checkpointing the
state of the system on a regular basis. Checkpointing is completely distributed.
Unfortunately, taking a checkpoint is an expensive operation. To improve perfor-
mance, many distributed systems combine checkpointing with message logging.
By logging the communication between processes, it becomes possible to replay
the execution of the system after a crash has occurred.

PROBLEMS

1. Dependable systems are often required to provide a high degree of security. Why?

2. What makes the fail-stop model in the case of crash failures so difficult to implement?

3. Consider a Web browser that returns an outdated cached page instead of a more recent
one that had been updated at the server. Is this a failure, and if so, what kind of
failure?

4. Can the model of triple modular redundancy described in the text handle Byzantine
failures?

5. How many failed elements (devices plus voters) can Fig. 8-2 handle? Give an ex-
ample of the worst case that can be masked.

6. Does TMR generalize to five elements per group instead of three? If so, what proper-
ties does it have?

7. For each of the following applications. do you think at-least-once semantics or at-
most-once semantics is best? Discuss.

(a) Reading and writing files from a file server.
(b) Compiling a program.
(c) Remote banking.

8. With asynchronous RPCs, a client is blocked until its request has been accepted by the
server. To what extent do failures affect the semantics of asynchronous RPCs?

9. Giye an example in which group communication requires no message ordering at all.

CHAP. 8 PROBLEMS 375

10. In reliable multicasting, is it always necessary that the communication layer keeps a
copy of a message for retransmission purposes?

11. To what extent is scalability of atomic multicasting important?

12. In the text, we suggest that atomic multicasting can save the day when it comes to per-
forming updates on an agreed set of processes. To what extent can we guarantee that
each update is actually performed?

13. Virtual synchrony is analogous to weak consistency in distributed data stores, with
group view changes acting as synchronization points. In this context, what would be
the analog of strong consistency?

14. What are the permissible delivery orderings for the combination of FIFO and total-
ordered multicasting in Fig. 8-15?

15. Adapt the protocol for installing a next view Gi+1 in the case of virtual synchrony so
that it can tolerate process failures.

16. In the two-phase commit protocol, why can blocking never be completely eliminated,
even when the participants elect a new coordinator?

17. In our explanation of three-phase commit, it appears that committing a transaction is
based on majority voting. Is this true?

18. In a piecewise deterministic execution model, is it sufficient to log only messages, or
do we need to log other events as well?

19. Explain how the write-ahead log in distributed transactions can be used to recover
from failures.

20. Does a stateless server need to take checkpoints?

21. Receiver-based message logging is generally considered better than sender-based log-
ging. Why?

