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Preface

Setting the Stage

The Guide to Reliable Distributed Systems: Building High-Assurance Applications
and Cloud-Hosted Services is a heavily edited new edition of a prior edition that
went under the name Reliable Distributed Computing; the new name reflects a new
focus on Cloud Computing. The term refers to the technological infrastructure sup-
porting today’s web systems, social networking, e-commerce and a vast array of
other applications. The emergence of the cloud has been a transformational de-
velopment, for a number of reasons: cost, flexibility, new ways of managing and
leveraging large data sets. There are other benefits that we will touch on later.

The cloud is such a focus of product development and so associated with
overnight business success stories today that one could easily write a text focused
on the cloud “as is” and achieve considerable success with the resulting text. After
all, the cloud has enabled companies like Netflix, with a few hundred employees,
to create a movie-on-demand capability that may someday scale to reach every po-
tential consumer in the world. Facebook, with a few thousand employees, emerged
overnight to create a completely new form of social network, having the importance
and many of the roles that in the past one associated with vast infrastructures like
email, or the telephone network. The core Google search infrastructure was created
by just a few dozen employees (by now, of course, Google has tens of thousands,
and does far more than just search). And the cloud is an accelerator for such events:
companies with a good idea can launch a new product one day, and see it attract
a million users a week later without breaking a sweat. This capability is disruptive
and profoundly impactful and is reshaping the technology sector at an accelerating
pace.

Of course there is a second side to the cloud, and one that worries many corporate
executives both at the winners and at other companies: the companies named above
were picked by the author in the hope that they would be success stories for as long
as the text is in active use. After all this text will quickly seem dated if it seems to
point to yesterday’s failures as if they were today’s successes. Yet we all know that
companies that sprang up overnight do have a disconcerting way of vanishing just
as quickly: the cloud has been a double-edged sword. A single misstep can spell
doom. A single new development can send the fickle consumer community rushing
to some new and even more exciting alternative. The cloud, then, is quite a stormy
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place! And this book, sadly, may well be doomed to seem dated from the very day
it goes to press.

But even if the technical landscape changes at a dizzying pace, the cloud already
is jam-packed with technologies that are fascinating to learn about and use, and
that will certainly live on in some form far into the future: BitTorrent, for exam-
ple (a swarm-style download system) plays key roles in the backbone of Twitter’s
data center, Memcached (a new kind of key-value store) has displaced standard file
system storage for a tremendous range of cloud computing goals. MapReduce and
its cousin Hadoop enable a new kind of massively parallel data reduction. Chubby
supports scalable locking and synchronization, and is a critical component at the
core of Google’s cloud services platform. ZooKeeper plays similar roles in Ya-
hoo!’s consistency-based services. Dynamo, Amazon’s massively replicated key-
value store, is the basis for its shopping cart service. BigTable, Google’s giant table-
structured storage system, manages sparse but enormous tabular data sets. JGroups
and Spread, two commercially popular replication technologies, allow cloud ser-
vices to maintain large numbers of copies of heavily accessed data. The list goes
on, including global file systems, replication tools, load balancing subsystems, you
name it. Indeed, the list is so long that even today, we will only touch on a few
representative examples; it would take many volumes to cover everything the cloud
can do, and to understand all the different ways it does those things. We will try and
work our way in from the outside, identifying deep problems along the way, and then
we will tackle those fundamental questions. Accordingly, Part I of the book gives
a technical overview of the whole picture, covering the basics but without delving
deeply on the more subtle technology questions that arise, such as data replication.
We will look at those harder questions in Parts II and III of the text; Part IV covers
some additional technologies that merit inclusion for reasons of completeness, but
for which considerations of length limit us to shallow reviews.

Above, we hinted at one of the deeper questions that sit at the core of Parts II
and III. If the cloud has a dark side, it is this: there are a great many applications
that need forms of high assurance, but the cloud, as currently architected, only of-
fers very limited support for scalable high assurance computing. Indeed, if we look
at high assurance computing in a broad way, and then look at how much of high
assurance computing maps easily to the cloud, the only possible conclusion is that
the cloud really does not support high assurance applications at all. Yes, the cloud
supports a set of transactional-security features that can be twisted this way and that
to cover a certain class of uses (as mentioned earlier, those concerned with credit
card purchases and with streaming copyright-protected content like movies and mu-
sic from the cloud to your playback device), but beyond those limited use cases,
high assurance technologies have been perceived as not scaling adequately for use
in the cloud, at least in the scalable first tier that interacts with external clients.

The story is actually pretty grim. First, we will encounter two theorems about
things we cannot do in cloud settings: one proves that fault-tolerant distributed com-
puting is impossible in standard networks, and the second that data consistency can-
not be achieved under the performance and availability requirements of the cloud.
Next, we will find that the existing cloud platforms are designed to violate consis-
tency as a short-cut towards higher performance and better scalability. Thus: “High
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assurance in the cloud? It cannot be done, it cannot scale to large systems, and even
if it could be done and it could be made to scale, it is not the way we do it.”

The assertion that high-assurance is not needed in most elements of most modern
cloud computing applications may sound astonishing, yet if one looks closely, it
turns out that the majority of web and cloud applications are cleverly designed to
either completely avoid the need for high-assurance capabilities, or find ways to
minimize the roles of any high assurance components, thereby squeezing the high-
assurance side of the cloud into smaller subsystems that do not see remotely as much
load as the main systems might encounter (if you like, visualize a huge cache-based
front end that receives most of the workload, and then a second smaller core system
that only sees update transactions which it applies to some sort of files or databases,
and then as updates commit, pushes new data out to the cache, or invalidates cached
records as needed).

For example, just to pick an example from the air, think about a massive govern-
ment program like the Veteran’s Administration Benefits program here in the United
States. This clearly needs strong assurance (all sorts of sensitive data moves back
and forth), money changes hands (the VA system is, in part, a big insurance system),
sensitive records are stored within the VA databases. Yet if you study such a system
carefully, as was done in a series of White House reviews during 2010 and 2011,
the match with today’s cloud is really very good. Secure web pages can carry that
sensitive data with reasonable protection. The relatively rare transactions against the
system have much the same character as credit card transactions. And if we compare
the cost of operating a system such as this using the cloud model, as opposed to hav-
ing the Veteran’s Administration run its own systems, we can predict annual savings
in the tens of millions hundreds! Yet not a single element of the picture seems to be
deeply at odds with today’s most successful cloud computing models.

Thus, our statements about high-assurance are not necessarily statements about
limitations that every single high assurance computing use would encounter. E-
commerce transactions on the web work perfectly well as long as the transactional
system is not down, and when we use a secured web page to purchase a book or
provide a credit card number, that action is about as secure as one can make it given
some of the properties of the PCs we use as endpoints (as we will see, many home
computers are infected with malware that does not do anything visibly horrible, yet
can still be actively snooping on the actions you as the user take, and could easily
capture all sorts of passwords and other security-related data, or even initiate trans-
actions on its own while you are fast asleep!) Notice that we have made a statement
that does not demand continuous fault-tolerance (we all realize that these systems
will sometimes be temporarily unavailable), and does not expose the transactional
system to huge load (we all browse extensively and make actual purchases rarely:
browsing is a high-load activity; purchasing, much less so). The industry has honed
this particular high-assurance data path to the point that most of us, for most pur-
poses, incur only limited risks in trusting these kinds of solutions. Moreover, one
cannot completely eliminate risk. When you hand your credit card to a waiter, you
also run some risks, and we accept those all the time.
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Some authors, knowing about the limitations of the cloud, would surely proclaim
the web to be “unsafe at any speed;” Indeed, I once wrote an article that had this title
(but with a question mark at the end, which does change the meaning). The bottom
line is that even with its limitations today, such a claim would be pure hyperbole.
But it would be quite accurate to point out that the vast majority of the web makes
do with very weak assurance properties. Moreover, although the web provides great
support for secure transactions, the model it uses works for secure transmission of a
credit card to a cloud provider and for secure delivery of the video you just licensed
back to your laptop or Internet-connected TV, not for other styles of high-assurance
computing. Given the dismal security properties of the laptops, the computing in-
dustry views Web security as a pretty good story. But could we extend this model to
tackle a broader range of security challenges?

We can then ask another question. Is it possible that scalable high-assurance
computing, outside what the cloud offers today, just is not needed? We emphasized
the term “scalable” for a reason: the cloud is needed for large-scale computing; the
methods of the past few decades were often successful in solving high-assurance
computing challenges, but also limited to problems that ran on more modest scales.
The cloud is the place to turn when an application might involve tens of thousands
of simultaneous users. With six users, the cloud could be convenient and cheap, but
is certainly not the only option. Thus unless we can identify plenty of important
examples of large-scale uses that will need high assurance, it might make sense to
conclude that the cloud can deal with high-assurance in much the same way that it
deals with credit card purchases: using smaller systems that are shielded from heavy
loads and keep up with the demand because they aren’t really forced to work very
hard.

There is no doubt that the weak-assurances of the cloud suffice for many pur-
poses; a great many applications can be twisted to fit them. The proof is right on
our iPads and Android telephones: they work remarkably well and do all sorts of
amazing tricks and they do this within the cloud model as currently deployed, and
they even manage to twist the basic form of web security into so many forms that
one could easily believe that the underlying mechanism is far more general than it
really is. Yet the situation would change if we tried to move more of today’s com-
puting infrastructure as a whole to a cloud model. Think about what high assurance
really means. Perhaps your first reaction is that the term mostly relates to a class
of very esoteric and specialized systems that provide services for tasks such as air
traffic control, banking, or perhaps management of electronic medical records and
medical telemetry in critical care units. The list goes on: one could add many kinds
of military applications (those might need strong security, quick response, or other
kinds of properties). There is a lot of talk about new ways of managing the electric
power grid to achieve greater efficiency and to share power in a more nimble way
over large regions, so that we can make more use of renewable electric generation
capacity. Many government services need to be highly assured. And perhaps even
non-politicians would prefer that it was a bit harder to hack their twitter, email and
Facebook accounts.
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So here we have quite a few examples of high assurance applications: systems
that genuinely need to do the right thing, and to do it at the right time, where we’re
defining “right” in different ways depending on the case. Yet the list did not include
very many of what you might call bread-and-butter computing cases, which might
lead you to conclude that high assurance is a niche area. After all, not many of us
work on air traffic control systems, and it is easy to make that case against migrating
things like air traffic control to cloud models (even privately operated cloud models).
Thus, it is not surprising that many developers assume that they do not really work
on systems of this kind.

We’re going to question that quick conclusion. One reason is that the average
enterprise has many high assurance subsystems playing surprisingly mundane roles;
they operate the factory floor equipment, run the corporate payroll, and basically
keep the lights on. These are high assurance roles simply because if they are not
performed correctly, the enterprise is harmed. Of course not many run on the cloud
today, but perhaps if cloud computing continues to gain in popularity and continues
to drop in cost (and if the reliability of the cloud were just a touch higher), operators
may start to make a case for migrating them to cloud settings.

This is just the area where scalability and high assurance seem to collide: if we
imagine using the cloud to control vast numbers of physical things that can break
or cause harm if controlled incorrectly, then we definitely encounter limitations that
today’s cloud cannot easily surmount. The cloud is wonderful for scalable delivery
of insecure data, and adequate for scalable delivery of certain kinds of sensitive
data, and for conducting relatively infrequent purchase-style transactions. All of
this works wonderfully well. But the model does not fit nearly so well if we want to
use it in high-assurance control applications.

This is a bit worrying, because the need for high assurance cloud-hosted con-
trol systems could easily become a large one if cloud computing starts to displace
other styles of computing to any substantial degree, a trend the author believes to
increasingly probable. The root cause here is the tendency of the computing indus-
try to standardize around majority platforms that then kill off competitors simply
for economic reasons: lacking adequate investment, they wither and die. As cloud
computing has flourished, it has also become the primary platform for most kinds of
application development, displacing many other options for reasons of cost, ease of
development, and simply because the majority platform tends to attract the majority
of developers.

Some of the most exciting future uses of computing presume that computers will
penetrate into the home and car and office to such a degree that we will be able
to start to do intelligent, environmentally aware, dynamic control of those kinds of
systems. Traffic lights and water heaters will begin to be cloud-controlled systems.
Fragile, elderly patients will manage to live at home for many years, rather than in
assisted living settings, because computing systems will play vital monitoring and
assistance roles. Cars will literally drive themselves on densely packed highways,
at far higher speeds and with tighter spacings than today’s human drivers can man-
age. Those kinds of visions of the future appear, at least superficially, to presume a
new kind of high assurance cloud computing that appears, at least superficially, to
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be at odds with what today’s cloud platforms are able to do. Indeed, they appear,
again superficially, to be at odds with those theorems we mentioned earlier. If fault-
tolerant computing is impossible, how can we possibly trust computing systems in
roles like these? If the cloud cannot offer high assurance properties, how can the
US government possibly bet so heavily on the cloud in sensitive government and
military applications?

Accordingly, we must pose a follow-on question. What are the consequences of
putting a critical application on a technology base not conceived to support high
assurance computing? The danger is that we could wander into a future in which
computing applications, playing critical roles, simply cannot be trusted to do so in
a correct, secure, consistent manner.

This leads to the second and perhaps more controversial agenda of the present
text: to educate the developer (be that a student or a professional in the field) about
the architectures of these important new cloud computing platforms and about their
limitations: not just what they can do, but also what they cannot do. Some of these
limitations are relatively easily worked around; others, much less so.

We will not accept that even the latter kind of limitations are show-stoppers. In-
stead, the book looks to a future well beyond what current cloud platforms can sup-
port. We will ask where cloud computing might go next, how it can get there, and
will seek to give the reader hands-on experience with the technologies that would
enable that future cloud. Some of these enablers exist in today’s commercial market
place, but others are lacking. Consequently, rather than teaching the reader about op-
tions that would be very hard to put into practice, we have taken the step of creating
a new kind of cloud computing software library (all open source), intended to make
the techniques we discuss here practical, so that readers can easily experiment with
the ideas the book will cover, using them to build applications that target real cloud
settings, and could be deployed and used even in large-scale, performance-intensive
situations. A consequence is that this text will view some technical options as being
practical (and might even include exercises urging the reader to try them out him or
herself using our library, or using one of those high-assurance technologies), and if
you were to follow that advice, with a few hundred lines of code and a bit of debug-
ging you would be able to run your highly assured solution on a real cloud platform,
such as Amazon’s EC2 or Microsoft Azure. Doing so could leave you with the im-
pression would be that the technique is perfectly practical. Yet if you were to ask
one of those vendors, or some other major cloud vendor, what they think about this
style of high-assured cloud computing, you might well be told that such services do
not belong in the cloud!

Is it appropriate to include ideas that the industry has yet to adopt into a textbook
intended for real developers who want to learn to build reliable cloud computing
solutions? Many authors would decide not to do so, and that decision point differ-
entiates this text from others in the same general area. We will not include concepts
that we have not implemented in our Isis2 software library (you will hear more and
more about Isis2 as we get to Parts II and III of the book, and are welcome to down-
load it, free of any charges, and to use it as you like) or that someone we trust has not
worked with in some hands-on sense—anything you read in this book is real enough
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that someone has built it, experimented with it, and gained enough credibility that
the author really believes the technique to be a viable one. Just the same our line in
the sand does not limit itself to things that have achieved commercial acceptance on
a large-scale. You can do things with a technology like Isis2 (and can do them right
on cloud platforms like Amazon’s EC2 or Microsoft’s Azure) that, according to the
operators of those platforms, are not currently available options.

What is one to make of this seeming disconnect? After all, how could we on the
one hand know how to do things, and on the other hand be told by the operators and
vendors in the cloud area that they do not know how to do those same things? The
answer revolves around economics. Cloud computing is an industry born from lit-
erally billions of dollars of investment to create a specific set of platforms and tools
and to support some specific (even peculiar) styles of programming. We need to rec-
ognize the amazing power of today’s cloud platforms, and to learn how the solutions
work and how to adapt them to solve new problems. Yet today’s platforms are also
limited: they offer the technologies that the vendors have gained familiarity with,
and that fit well with the majority of their users. Vendors need this kind of comfort
level and experience to offer a technology within a product; merely knowing how to
solve a problem does not necessarily mean that products will embody the solutions
the very next day. For the vendor, such choices reflect economic balancing acts: a
technology costs so much to develop, so much more to test and integrate into their
product offerings, so much more after that to support through its life style. Doing
so will bring in this much extra revenue, or represent such-and-such a marketing
story. Those kinds of analyses do not always favor deploying every single technical
option. And yet we should not view cloud computing as a done deal: this entire in-
dustry is still at in its early days, and it continues to evolve at a breathtaking pace.
The kinds of things we offer in our little library are examples of technologies that
the author expects to see in common in use in the cloud as we look a few years out
into the future.

This somewhat personal view of the future will not necessarily convince the
world’s main cloud providers to align their cloud platforms with the technologies
covered in this text on day one. But change is coming, and nothing we cover in this
text is impractical: everything we will look at closely is either already part of the
mainstream cloud infrastructure, or exists in some form of commercial product one
could purchase, or is available as free-ware, such as our own Isis2 solution. A world
of high-assurance cloud computing awaits us, and for those who want to be players,
the basic elements of that future are already fairly clear.
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1Introduction

1.1 Green Clouds on the Horizon

Any text concerned with cloud computing needs to start by confronting a puzzling
issue: There is quite a bit of debate about just what cloud computing actually means!
This debate isn’t an angry one; the problem isn’t so much that there is a very active
competition between the major vendors and cloud data center operators, but rather
that so many enterprises use the cloud in so many ways that any form of computing
accessible over a network, and almost any kind of activity that involves access to
massive data sets, falls into the cloud arena.

Thus for some, the cloud is all about web search, for others social networking,
while still others think of the cloud as the world’s most amazing outsourcing tech-
nology, permitting us to ship data and computation to some remote place where
computing and storage are dirt cheap. All of these visions are absolutely correct:
the cloud is all things to all users, and even more uses and meanings of the term are
emerging even as you read these lines.

Individual cloud-based platforms have their own features and reflect different pri-
orities and implementation decisions, but the federation of systems that comprises
the cloud as a whole offers a rich and varied spectrum of capabilities and technolo-
gies, and many are turning out to be incredibly popular.

Traditional computing systems made a distinction between client computers and
servers, but both tended to be owned by your company, situated in the same rooms
that you and other employees are working in, and managed by the overworked folks
in the administrative suite up the hall (a group that you probably rely on in more
ways that you would care to admit). We also own personal computers of various
kinds, connected to the Internet and giving us access to a wide array of web-based
services. Add up all of this and you are looking a staggering amount of computing
hardware, people to manage that hardware and the software that runs on it, power
to keep them running, and cooling. If your family is like mine, even the computing
systems in your own home add up to a considerable investment, and keeping them
all functioning properly, and configured to talk to one-another and to the Internet,
can be a real chore.

K.P. Birman, Guide to Reliable Distributed Systems, Texts in Computer Science,
DOI 10.1007/978-1-4471-2416-0_1, © Springer-Verlag London Limited 2012

1



2 1 Introduction

We will not get rid of computers anytime soon; they are surely the most impor-
tant and most universal tool in the modern world. Nor will we have fewer of them
around: the trend, indeed, seems to run very strongly in the other direction. But this
traditional way of computing can be incredibly wasteful, and cloud computing may
be the first really promising opportunity for slashing that waste without losing the
benefits of computing. Moreover, cloud systems offer some real hope of a world
with far fewer computer viruses, fewer zombie-like bot computers enslaved to re-
mote, malicious hackers, and the day may soon arrive when the kind of hands-on
system configuration that we have all learned to do, and to hate, will be a thing of
the past.

Consider power. When a computer in your office consumes 200 watts of power,
that power needs to be generated and transported from the power plant to the build-
ing in which you work. Quite a bit is lost in this process; certainly, a factor of 10,
and perhaps as much as 100 if your office is far from the generating station. So
to ensure that you will be able to consume 200 watts of power when you decide
to plug in your laptop, someone may need to generate 2000 or even 20,000 watts,
and most of power will simply be wasted, dissipating as heat into the environment.
Worse still, to the extent that generated power actually reaches your office and gets
used to run your computer, the odds are good that your computer will just be sitting
idle. Most computers are idle most of the time: the owners leave them running so
that the responses will be snappy when they actually need to do something, and be-
cause of a widely held belief that powering machines up and down can make them
failure prone. So we are generating huge amounts of power, at a huge cost to the
environment, yet most of it is simply wasted.

But this is not even the whole story. The 200 watts of power that the computer
consumes turns into heat, and unless one actually wants a very warm office, air
conditioners are required to bring things back to a comfortable temperature. There is
some irony here: in the past, a hot computer tended to fail, but today many computers
can safely be operated at relatively high temperatures—100°F (about 40°C) should
not be any problem at all, and some systems will operate correctly at 120°F (50°C),
although doing so may reduce a machine’s lifetime. But obviously, we are not about
to let our offices or even our machine rooms get that hot. And so we use even more
power, to cool our offices.

A natural question to ask is this: why not just turn these idle computers off, or
replace them with very energy-efficient screens that take minimal power to operate,
like the ones used in eReaders like the Kindle or the Nook? The obvious answer
is that power-efficient computers are pretty slow. But networks are fast, and so we
arrive at the cloud model: we do some simple work on the client’s computer, but the
heavy lifting is done remotely, in a massive shared data center.

Cloud computing is not just about where the computer runs. The style of com-
puting differs in other ways as well. One difference concerns the sense in which
cloud computing is powerful. Past computing systems gained speed by speeding
up the clock, or through massive parallelism and very high-speed multiprocessor
interconnections: desktop computers were headed towards becoming small super-
computers until as recently as 2000. But modern computing favors large numbers
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of less powerful individuals cores: a typical modern machine might have two or
four cores, each of which is individually weaker than a single-core but cutting edge
gaming computer system might have been just a few years ago. The cloud is about
marshalling vast numbers of “medium speed” machines (but with huge amounts of
memory and disk space) to subdivide big tasks into easy smaller pieces, dole out
the pieces, and collect up the responses. If you know anything about the famous
SETI@Home project (a search for signs of extraterrestrial life), you might want to
think of the cloud as a new form of SETI platform that searches not for aliens, but
rather for the very best buy on home appliances! As a result, in this text we will
be learning a lot about ways of dividing big tasks into small tasks. In fact this is
one of the problems with the cloud: for all the power of cloud data centers, they are
relatively poor choices for problems that demand vast amounts of raw computing
cycles and that do not subdivide nicely into separate tasks that can run whenever the
cloud has a chance to schedule them. This is not the only limitation of the cloud, but
it is a limitation that can be quite constraining for some uses.

When you run a full-featured computer system at home, or in the office, and in-
stall all sorts of applications on it, you often run into screens full of options that
you probably leave set to the default values. This can result in mistakes that leave
your machine open to compromise; indeed, as we will see, many home and office
computing systems are infected by viruses or covertly belong to “botnets”. Such
systems are wide open to hackers who might want to steal your identity, or to use
your computer to host various kinds of inappropriate material, or even to force it
to send out waves of emails about cheap medications, unbelievable investment op-
portunities, and dubious body-part enhancements. With a little bad luck, your home
computer may already have played a small part in taking some country off the net-
work entirely. This has happened a few times; for example, in 2008 and 2009 first
Estonia and then Ukraine found themselves in disputes with Russia. Within a few
days massive distributed denial of service (DDoS) attacks were launched from com-
puters worldwide, overwhelming both countries with such massive floods of non-
sense messages that their computing infrastructures collapsed. Yet very few of the
individuals whose machines were involved in sending those messages had any idea
that they did so, and in fact many of those same machines are still compromised in
the same ways!

What this adds up to is that we have been working with computers in a remark-
ably inefficient, failure-prone, and insecure manner. The approach is wasteful of
power, wasteful of computers, and even wasteful of money. While privately owned
computers may seem private and secure, the reality is exactly the opposite: with to-
day’s model insecurities are so pervasive that there is little hope of ever getting that
cat back into the bag. And anyone who believes that modern technology protects
privacy has not been following the tabloid press. Even without knowing when you
will read this paragraph, I can say with absolute confidence that this week’s news-
papers will be reporting in lurid detail on the bad behavior of some actor, actress or
politician. Even if the story does not say so, many of these events are first uncov-
ered by unscrupulous reporters or investigators who specialize in illegally breaking
into the computing systems and mobile phones of their targets; the information then
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gets sold to a newspaper or some other organization, and the story finally leaks out,
with no real chain of events leading back to the computer break-in. But the bot-
tom line is that anyone who attracts enough attention to lure the hackers is wide
open to even very unsophisticated intrusion tools. Our desktop and laptop comput-
ers, mobile phones, iPads: all of them are at risk from malefactors of many kinds.
Someday, we will all look back and wonder what in the world we were thinking,
when we entrusted so much personal and sensitive information to these insecure,
unreliable devices!

1.2 The Cloud to the Rescue!

Although they have many limitations, which we will be looking at closely in this
text, today’s cloud systems are far more environmentally friendly, far less prone to
configuration issues, and far more secure against these sorts of hijacking exploits,
than the machines they are displacing. Thus the more we move to the cloud, the bet-
ter for everyone: for us personally, for the environment, and even for small countries
(at least, those which might find themselves on the wrong side of a dispute with a
cyber warfare unit).

Cloud systems are implemented by massive data centers that can be surprisingly
inexpensive to operate (economies of scale), in which the machines are shared by
many kinds of application and kept busy (reducing waste), located close to power
generators (saving power transmission losses), and running at relatively high tem-
peratures (no air conditioning). Best of all, someone else manages all of those cloud
computers; if an application needs to be installed and launched, it gets done auto-
matically and often by automated scripts. These include powerful ways of protecting
themselves against viruses and other kinds of malware.

With all of this remote computing power, the machines we carry around can be
slimmer, less prone to virus infections, cooler, less power-hungry. . . and yet in many
ways even more powerful than the ones they are displacing. Cloud systems will not
reduce the numbers of computers we have around us, but they could make those
systems far easier to own and operate, and far less power-intensive, and they will be
able to do things for us that we would never be able to implement on a dedicated
personal computer.

It would be an understatement to say that cloud computing data centers have
been expanding rapidly. As recently as a few years ago, data centers rarely had more
than a few hundred computers. Today, a state-of-the-art data center might contain
hundreds of thousands of machines, spanning surfaces that can be as large as a
dozen football fields. yet for all this growth, the cloud computing area still seems to
be in its infancy. It may not be long before we see individual centers with millions
or servers. Moreover, each of those servers is like a miniature computer network on
a chip, with configurations having 16 or more cores already common, and talk of
substantially larger numbers down the road.

The machines themselves are packed into racks, and those racks are packed into
shipping containers: a typical cloud installation can literally buy and install ma-
chines a truckload at a time. Cloud computers run hot and busy, and they wear out
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faster than the ones in your office. So, perhaps just two or three years later, another
truck backs up, pulls the container out, and off it goes to be recycled. But if this
sounds wasteful, just think about all those idle, hot machines that the cloud is re-
placing. If we are going to use computers, we might as well put them where the
power is cheap and keep them working 24x7. And it actually makes sense to talk
about recycling a whole container of machines, which permits far better rates of
recovery of the materials than if the same machines were disposed of individually.

When you add it all up, cloud computing seems to be a genuinely greener, more
intelligent way to handle both small and large-scale computing tasks. A few friends
with a cool new idea for a web application might, in the past, have been blocked
from exploring it by the cost of the computers that would be needed. Now they
can put their application together on their laptops, using powerful cloud-computing
tools, and then launch the system by filling in a form. If the idea is a huge suc-
cess, the cloud operator (perhaps Facebook, Amazon, Google, Force.com, IBM)
just provides more machines on which to run it. If it fails, little money was lost. All
sorts of enterprises are doing this analysis and seeing that cloud computing changes
the equation. And many in the computing field believe that we are really just at
the beginning of the revolution. As Berkeley professor David Patterson, who heads
Berkeley’s new cloud computing laboratory, puts it: “The future is in the clouds.”
To which one might add: “. . . and those clouds are going to be green.”

This book is about building the applications that run on the cloud, or that run in
the web and talk to the cloud. We will see that with care, one can create scalable,
flexible (“elastic” is a popular term) applications that are reliable, secure, consistent
and self-managed. But getting there has not been easy for the developers of the early
cloud systems, and unless we take the time to learn from their experiences, we will
just make the same mistakes. Size brings huge economies of scale, but also creates
challenges: with each new expansion, we are discovering that some of the things we
thought we understood just do not work anymore!

The issue is that as you scale a system up costs can grow in a non-linear manner,
a situation somewhat analogous to the one we see when a single machine is used
to solve a problem like searching, or sorting, or computing the shortest path in a
graph. Algorithm designers, of course, have long been familiar with the complexity
hierarchy, and we teach entire courses about the analysis of complexity and the
associated theory. Cloud computing poses complexity issues too, but they very often
take a different form.

1.3 A Simple Cloud Computing Application

Let us think about a very simple cloud computing application: a video playback ap-
plication that might be deployed by a company like YouTube. Such an application
would need a way to upload new videos, and to search for videos, but we will focus
on the playback side of the problem. The obvious, simplest, way to scale such a sys-
tem is to just create huge numbers of copies of the video playback application; when
a user’s request comes in, it can then be routed to some copy of the player, which
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would then find the file containing the video and stream it over a TCP connection to
the client’s computer system or television set.

Readers who have taken courses on multithreading would probably guess that
a successful content delivery company would want to build its own, very power-
ful, parallel video servers, but this is not necessarily the case. Many cloud comput-
ing systems take a simpler path to obtain scalability. Rather than grapple with the
complexities of building a multithreaded playback application that can take full ad-
vantage of multicore parallelism and other features of the hardware, the developers
typically start by looking for the simplest possible way to build a scalable solution,
and that often does not involve building any new software at all.

For example, operating systems like Linux and Windows offer reasonably effi-
cient ways to run multiple copies of an application on a single machine, and if that
machine is a multicore server, the different applications will each run on different
cores. When one runs many applications on one machine there is always some risk
that they will interfere with one-another, hence an increasingly common approach is
to create a “virtual machine” that wraps an application and any helper files it needs
into what seems like a dedicated, private computer. Then the virtual machine can be
executed on any physical machine that hosts a virtual machine monitor (VMM), and
if the physical machine has enough capacity, the VMM can just run many copies of
the VM containing the application. The effect is to create a whole virtual network
operating within a single multicore server.

Thus, at least until all the cores are fully loaded, if we just run one copy of the
playback application per client, we will get a very efficient form of scalability. In
fact, this approach can outperform a multithreaded approach because the copies do
not share memory, so they do not need to do much locking; a multithreaded appli-
cation typically has a single shared memory pool, and ends up wasting a surprising
amount of time on locking.

What we are left with is a strikingly simple application development path. The
developer needs to create a program that accepts a single TCP connection (probably
one coming from a web browser that runs the HTTP or HTPPS protocol), reads in a
video request in encoded as a web page (there are libraries to handle that part), open
the appropriate file (for this the Linux remote file system is quite adequate: it does a
good job of supporting remote access to files that rarely change, and videos of course
are write-once, read-many objects) and stream the bytes down the TCP connection,
again using a web page representation (and again, that part is automatic if you use
the right libraries). These returned web pages would carry embedded objects with
an extension registered to some player application—perhaps, .mpg, shorthand for
MPEG (a major video compression standard). The client’s browser, seeing such an
object, would pass it to the mpeg player, and voilà! Movies on demand. Figures 1.1
and 1.2 illustrate these two approaches.

As it happens, we would not even need to create this particular program. Mature,
very efficient video playback applications already exist; Windows and most versions
of Unix (Linux) both have vast numbers of options for simple tasks of this sort, and
many are unfettered open source versions that the development team can download,
experiment with, and even modify if needed.
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Fig. 1.1 A multithreaded video player: Each thread handles a distinct user. Design is potentially
complex and any single failure could impact many users

Fig. 1.2 A simpler design in which a single-threaded video server is instantiated once per user,
perhaps by running each in a virtual machine. If a player crashes, only a single user is impacted

So how would the team deploy this solution, and ensure that it can scale out? The
first step involves registering the application with a cloud-computing load balancing
service, such as the Amazon EC2 management layer. That service asks a few simple
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questions (for example, it will want to know where to find the executable virtual
machine). Click a few times, enter your credit card information, and the service will
be up and running. The hardest work will turn out to be finding the video content
and making business deals so that the solution will actually earn money (hopefully,
by the bucket load). No wonder companies like YouTube sprang up overnight: cloud
computing makes the first steps in our challenge trivial!

Obviously, once the solution scales out, things will get more complex, but it
turns out that many cloud computing teams get very far before hitting any sort of
limitations. The usual story is that the first few factors of ten are easy, although later,
each factor of ten scale increase starts to demand major redesigns. By the time this
happens, a typical cloud computing enterprise may be highly profitable, and able
to afford the skilled developers needed to push the scalability envelope further and
further.

Moreover, our initial solution will probably be quite robust. First, the code
needed is incredibly simple—dramatically simpler than if we had set out to create
a home-brew scalable server with multithreading and its own fancy file representa-
tions. In effect, our solution is little more than a script, and indeed, many applica-
tions of this sort are literally built as scripts. The approach lets us take advantage of
operating system features that have existed for decades, and the solution will prob-
ably be far robust than a home-made one, since a bug that crashes one playback
server might not bring down the others on that same machine, especially if they
are running in distinct virtual machines. In contrast, a bug in a multithreaded server
would presumably crash that server, and if one server handles many clients, all of
them would lose their video feeds. Readers who once sweated to learn to program
in a highly threaded, and concurrent model will surely find it ironic to realize that
with this approach, we end up with a highly scalable and parallel solution without
writing a line of concurrent code.

One major insight, then is that while the cloud is all about reliability and scal-
ability through massive parallelism, these properties can come from very simple
mechanisms. In other settings you have learned about scalability through sophisti-
cated data structures, clever ways of organizing information, and precomputed (or
cached) answers. In the cloud, scalability is still the most important goal, but we
only sometimes need complex mechanisms to achieve this objective.

There is a darker side to the cloud. It may not be obvious, but the sort of very
simple solution we have discussed conceals some weaknesses that would be much
more evident if the data being pulled into the system were of a sensitive nature, or
if the system was playing a critical role in some kind of life or death setting. Of
course it is very hard to imagine a life-or-death video playback scenario, although I
suppose it certainly can be upsetting to if you planned to watch the decisive game of
the World Series on your network-based TV system, only to discover that the service
is not working. But we will see examples later in which a system is doing air traffic
control, or managing medical care for patients who need very close monitoring, or
running the electric power grid; in those settings, seemingly minor mistakes such as
pulling up a stale version of something that was recently updated without realizing
that the data are no longer valid might be enough to put two airplanes on a collision
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course, cause a patient’s insulin pump to administer the wrong dose, or trigger a
rolling blackout. The very simple ways of building a cloud computing system do
not provide guarantees that would address these sorts of needs.

But even without pointing to applications with extreme requirements, there might
still be some issues hidden in our video service as we have described it. For example,
suppose that our playback applications are spread within the data center in such a
way that they happen to share some network link—perhaps, a link to the outside
world, perhaps a link to the file server, or perhaps even a network link associated
with something else, like checking to make sure that the user is logged in under a
valid account, or that this user has permission to see that particular video. Well, this
shared link could become a bottleneck, with the whole data center grinding to a halt
because the overloaded link is unable to handle the traffic.

Carrying this kind of story further, here is a more subtle version of the same kind
of problem. Think about driving at rush-hour on a highway that has ample capacity
for the normal rush hour peak traffic as long as cars are evenly spaced and each
maintains a steady 50 mph. Now, some driver opens a window, and a fly gets into
his car. This startles him, and he touches the brakes, which startles the cars around
him, and they brake too. The cars behind those slow down even more, and a kind of
wave of slowdown spreads back along the highway. In no time at all, a little jam has
formed.

Notice that even though the highway had ample capacity to handle the peak traffic
as long as vehicles maintained average behavior, it may require much more than
average capacity to avoid the risk of jams forming, because if the cars are close
enough to one-another, any minor event can trigger this sort of ripple effect. In
effect, we have watched a bottleneck form, all by itself, and that bottleneck could
linger for a long time, propagating steadily backwards up the highway. This is one
way that rush-hour jams can form even when there are no accidents to explain them.

It turns out that the same problem can occur in a cloud computing system such as
our little video playback site. Even if the system has adequate capacity so long as all
the components are working at a steady, average load, sometimes conditions create a
load surge in one corner, while everything else runs out of work to do and becomes
idle (in between the traffic jams, your favorite highway could have stretches that
have no traffic at all—that are idle, in the same sense). The cloud computer system
stops working at the average pace: some parts are overworked, and others are not
doing anything at all. The total amount of work being completed plunges.

Spontaneous traffic jams are just one example in a long list. Cloud computing
systems can become overloaded in ways that create avalanches of messages, trig-
gering huge loss rates that can drive the applications into failure modes not seen in
other settings. Cloud systems can develop strange, migrating bottlenecks in which
nothing seems to be happening at all. They can even enter oscillatory states in which
loads rise to extreme levels, then fade away, then rise again. Seemingly minor prob-
lems can trigger cascades of secondary problems, until the entire data center is over-
whelmed by a massive storm of error messages and failures. Components that work
perfectly well in test settings can break inexplicably only when deployed in the real
data center. Worse, because we are talking about deployments that may involve tens
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of thousands of application instances, it can be very hard for the developer to make
sense of such problems if they arise. The creation of better cloud computing perfor-
mance tuning and management tools is very much a black art today.

Phenomena such as this sometimes cannot be triggered on a small scale, so to
build cloud-scale systems that really work well, we need to understand what can
cause such problems and (even more important), how to prevent them. Otherwise,
we will spend a fortune, and yet our sparkling new cloud computing facility just
will not deliver an acceptable quality of service! Indeed, if you talk to the major
developers at the world’s biggest cloud computing systems, to a person you will
hear the same thing: each new factor of ten brought major surprises, and very often,
forced a complete redesign of the most heavily used applications. Things that op-
timize performance for a system running on one node may hurt performance when
you run it on ten; the version that blazes at ten may be sluggish at one hundred.
Speed a single-node application up, and you may discover strange oscillations that
only arise when it runs on a thousand nodes, or ten thousand day you finally scale to
ten thousand you may learn that certain kinds of rare failures are not nearly as rare
as you thought. And the story just goes on and on.

How, then, do developers manage to create scalable cloud solutions? Today the
usual picture is that a great deal of effort has gone into stabilizing certain elements
of the standard cloud platforms. For example, any cloud system worth its (low) fees
will offer a scalable file system that lets applications share data by sharing files.
Generally, the file system will come with a warning: updates may propagate slowly,
and locking may not even be supported. Yet if one designs an application to be toler-
ant of update delays, modern cloud file systems enable remarkable scalability. This
picture is an instance of a general pattern: well designed, scalable infrastructures on
which applications can scale provided that they put up with limitations, generally
of the kind just mentioned: stale data, slow update propagation and limited use of
locking (or no locking at all). Departing from this model is a tricky proposition,
and developing new infrastructure services is very difficult, but in this text, we will
consider both options. For applications that are not embarrassingly easy to match to
the standard model, there simply isn’t any other way to build secure, reliable cloud
applications today.

1.4 Stability and Scalability: Contending Goals in Cloud
Settings

The scalability goal that we end up with is easy to express but potentially much
harder to achieve, particularly because the application developer may not have any
idea what the topology of the data center will be, or how the application will be
mapped to the nodes in the data center, or how to answer of a dozen other obvious
questions one might pose. In effect, we need a way to build applications so that no
matter how the cloud platform deploys them or scales them out, they will continue to
run smoothly. Networks can exhibit strange delays: communication between nodes
might normally be measured in the milliseconds, and yet sometimes spike into the



1.4 Stability and Scalability: Contending Goals in Cloud Settings 11

seconds. We even need to know that if a few nodes out of the ten thousand virtual
ones we are running on are half broken, with malfunctioning disks, high network
packet loss rates, or any of a dozen other possible problems, that the other nine
thousand, nine-hundred ninety nodes or so will be completely unaffected. All of
this will be a big challenge as we tackle the technical options in the remainder of
this book.

Once our application is running, we will need smart ways to distribute client
requests over those machines. Often, this routing task has application-specific as-
pects: for example, it can be important to route requests from a given client to the
server it last talked to, since that server may have saved information that can be used
to improve response quality or times. Or we might want to route searches relating
to books to the servers over here, and searches for garden supplies to the servers
over there. This implies that the applications should have a way to talk to the data
center routers. Indeed, more and more cloud platforms are reaching out into the In-
ternet itself, leveraging features that allow Internet routers to host wide-area virtual
networks that might have data center specific routing policies used within, but that
then tunnel traffic over a more basic Internet routing infrastructure that employs a
standard Internet routing protocol such as BGP, IS-IS or OSPF for routing table
management.

Load can surge, or ebb, and this can happen in a flash; this implies that the in-
frastructure used to manage the cloud will need to be rapidly responsive, launching
new instances of applications (or perhaps tens of thousands of new instances), or
shutting down instances, without missing a beat. But it also implies that cloud ap-
plications must be designed to tolerate being launched suddenly on new nodes, or
yanked equally suddenly from old ones. Hardest of all, cloud applications do not
know what the cloud infrastructure will look like when they are launched, and yet
they need to avoid overloading any element of the data center infrastructure, includ-
ing communication links, other kinds of hardware, and the data center services that
glue it all together.

These considerations can interplay in surprising ways. Let us peer into one kind
of particularly troublesome data center malfunction that was first witnessed in big
financial computing systems in the early 1990s and lives on even now in modern
cloud computing data centers: the broadcast storm, a term that will cause even the
most seasoned cloud computing operator to turn pale and sweaty. We will see that
the community memory of this issue lives on: modern cloud computing platforms
do not allow users to access several highly valuable communication options because
vendors fear repeat episodes (as the saying goes, “Fool me once, shame on you.
Fool me twice, shame on me!”). The story thus will illustrate our broader point
in this introduction: there are many things that cloud systems do today, or reject
today1, several of which might re-emerge as options in the future, provided that
cloud vendors relax these policies, developers see a good reason to use them, and
systems that do use them take the necessary measures to prevent malfunctions.

1More accurately, they do not let the typical developer use these technologies; internally, most do
get used, carefully, by the platforms themselves.
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As you know, that there are three basic Internet protocols: TCP, IP and IP Multi-
cast (IPMC):
1. TCP is used to make connections between a single source and a single destina-

tion, over which a stream of data can be sent. The protocol automatically over-
comes packet loss, delivers data in order, and does automatic flow control to
match the sender rate with the receiver rate.

2. UDP provides point-to-point messages: individual messages are transmitted
without any prior connection and delivered if the destination node has an open
UDP socket bound to the appropriate IP address and port number. UDP does
not guarantee reliability: in cloud computing settings, the network would almost
never lose UDP packets, but they can easily be lost if the receiving node gets
overwhelmed by too high an incoming data rate, or if the application falls behind
and its sockets run out of space to hold the incoming traffic. UDP imposes size
limits on packets, but the developer can increase the value if the default is too
small.

3. IPMC generalizes UDP: rather than one-to-one behavior, it offers one-to-many.
From the user and O/S perspective, the underlying technology is really the same
as for UDP, but the receivers use a special form of IP address that can be shared
among multiple processes, which also share the same port number. The network
router is responsible for getting data from senders to the receivers, if any. Like
UDP, no reliability guarantees are provided, but the network itself will not nor-
mally drop IPMC packets.
Today, all cloud platforms support TCP. Cloud platforms run on hardware and

software systems that include support for UDP and IPMC, but most cloud platforms
restrict their use, for example by limiting non-TCP protocols to applications created
by their own infrastructure services teams.

What are the implications of this choice? TCP can be slow for some purposes,
and has poor real-time properties, hence one consequence is that applications cannot
make use of the fastest available way of sending a single message at a time from a
sender to some receiver. When everything is working properly, UDP is potentially
much faster than TCP, and whereas TCP will slow down when the receiver falls
behind, UDP has no backpressure at all, hence new messages continue to arrive (they
will overwrite older ones, causing loss, if the receiver does not catch up before the
O/S socket queues overflow). If one wants fresher data even at the cost of potentially
dropping older data, this makes UDP very appealing.

As noted above, studies have shown that within the cloud, almost all UDP packet
loss occurs in the receiving machine. The issue is fundamentally one of application-
level delays that cause overflows in the incoming UDP socket buffers. Of course,
only some of those delays are ones the developer can easily control. Even an appli-
cation designed to pull data instantly from their buffers might still find itself virtu-
alized and running on a heavily overloaded physical system, and hence subjected to
long scheduling delays. Thus one can see why UDP is a risky choice in the cloud.

A similar case can be made in favor of IPMC. If UDP is the fastest way to get a
packet from one sender to one receiver, IPMC is the fastest way to get a packet from
one sender to potentially huge numbers of receivers. Yet IPMC is banned. Why has
this happened?
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To understand the issue, we need to understand how IPMC really works. The
mechanism is really very simple: all the receivers register themselves as listeners on
some shared IPMC address (by binding IPMC addresses to sockets created for this
purpose). Those registration requests trigger what are called IGMP messages that
announce that the sender is interested in the IPMC address. The network routing
technology used in the data center listens for IGMP messages, and with them builds
one-to-many forwarding routes. When a router sees an IPMC packet on some in-
coming link, it just forwards a copy on each outgoing link that leads to at least one
receiver, namely the ones on which it saw an IGMP message recently announcing
that some receiver is interested in that address (the entire mechanism repeats every
few seconds, hence if the receiver goes away, the IGMP messages cease, and even-
tually the route will clear itself out of the system). Data centers also use network
switches with more limited functionality; if IPMC is enabled, these typically just
forward every IPMC message on every link except the one it came in on.

Now the question arises of how the router should do this one-to-many forwarding
task. One option is to keep a list of active IPMC addresses, look them up, and then
send the packet on each outgoing link that has one or more receivers. This, however,
can be slow. To speed things up, modern routers more often use a faster hash-based
mechanism called a Bloom Filter.

A filter of this kind supports two operations: Set and Test. The Set operation takes
a key (in our example, an IPMC address) and includes it into the filter, and Test
returns true if the value is in the filter; false if not. Thus the filter functions as a tool
for determining set inclusion. The clever twist is that unlike a true set, Bloom Filters
do not guarantee perfect accuracy: a test is permitted to sometimes give a false “yes,
I found it” response, when in fact the tested-for value was not in the set. The idea
is that this is supposed to be rare, and the benefit of the specific implementation is
that Bloom filters can do these tests very rapidly, with just two or three memory
references (accurate set lookup has cost O(log(N)) in the size of the set). To build
a Bloom filter for routing, one maintains a vector of b bits in association with each
link in the router (so: if the router has l attached network links, we will have l filters).
For each link, when an IGMP message arrives, indicating that some receiver exists
on that link, we will do an Add operation on the associated filter, as follows. Given
the IPMC address a, the router computes a series of hashes of a that map from a

to [0 . . . b − 1]. Thus, if we have k hash functions, the router computes k integers in
the range 0 . . . b.

Then the router sets these k bits in the bit vector. Later, to test to see whether
or not a is in the filter, it does the same hashing operation, and checks that all
the bits are set. The idea is that even if a collision occurs on some bits, the odds of
collisions on all of them are low, hence with a large enough value of b we will not get
many false positives. This enables routers that support IPMC packet forwarding to
make a split-second decision about which network links need copies of an incoming
multicast packet.

Over time applications join and leave, so the filter can become inaccurate. Ac-
cordingly, this scheme typically operates for a few tens of seconds at a time. The
idea is to run in a series of epochs: during epoch t , the router forwards packets us-
ing Bloom filters computed during epoch t − 1, but also constructs a Bloom filter
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for each link to use during epoch t + 1. The epoch length is programmed into the
receivers: each receiving machine reannounces its multicast interests (by sending
duplicate IGMP messages that effectively “reregister” the machine’s interest in the
IPMC address) often enough to ensure that in any epoch, at least one subscription
request will get to the router.

Bloom filters work well if b is large enough. A typical Bloom Filter might use
k = 3 (three hash functions) and set b to be a few times the maximum number of
receivers that can be found down any link. Under such conditions, the expected false
positive rate will be quite small (few messages will be forwarded on a link that does
not actually lead to any receivers at all). As a result, for the same reason that UDP
is relatively reliable at the network layer, one would expect IPMC to be reliable too.
Unless many senders try to talk to some single receiver simultaneously, or some
receiver experiences a long delay and can’t keep up with the rate of incoming mes-
sages on its UDP and IPMC sockets, a cloud computing network should have ample
capacity to forward the messages, and network interface cards should not drop pack-
ets either. When nothing goes awry, the protocol is as efficient as any protocol can
possibly be: the “cost” of getting messages from senders to receivers is minimal, in
the sense that any message traverses only the links that lead towards receivers, and
does so exactly once.

Of course, hardware router manufacturers cannot know how many distinct IPMC
addresses will be in use in a data center, and the IPMC address space is large: 224

possible addresses in the case of IPv4, and 232 for IPv6. Thus most router vendors
arbitrarily pick a value for b that would work for a few thousand or even tens of
thousands of IPMC addresses. The kind of memory used in this part of a router is
expensive, hence it is not feasible to use extremely large values.

Nonetheless, given the very fast and inexpensive nature of the technology, you
might expect IPMC to be appealing in cloud computing settings, where data of-
ten must be replicated to vast numbers of machines. For example, if our YouTube
system happens to have a really popular video showing, say, the winning goal in Su-
perbowl XLIV, tens of millions of football fans might want to play it (and replay it,
and replay it) simultaneously for hours. We will need a lot of copies of that particu-
lar file, and an IPMC-based protocol for file replication would seem like an obvious
choice; with TCP and UDP, which are both one-to-one protocols, that system would
pay a network-level cost linear in the number of playback systems that need a copy.
Of course this does require some careful application design work (to make sure the
application reads packets with high probability, for example by posting large num-
bers of asynchronous read requests so that packets arriving while the application is
sleeping can be delivered even if the application cannot be scheduled promptly), but
with such tricks, one could design applications that use IPMC very effectively even
in cloud settings.

Thus it may be surprising to learn that many data center operators have rules
against using IPMC, and often against UDP as well. Today, to build an application
that sends an update to a collection of n machines that have replicas of some file or
data item, the update would often need to be sent in n point-to-point messages, and
very often, over TCP connections, and some data centers go ever further and require



1.4 Stability and Scalability: Contending Goals in Cloud Settings 15

Fig. 1.3 During a broadcast storm, a router malfunction caused by excessive use of IPMC ad-
dresses causes the normal network destination filtering to fail. All the nodes in the entire data
center are overwhelmed by huge rates of undesired incoming messages. Loads and loss rates both
soar, causing a complete collapse of the center. This temporarily causes loads to drop, but as com-
ponents restart, the problem also reemerges

the use of the web’s HTTP protocol too: HTTP over TCP over the underlying IP
protocol. Obviously, this is very slow in comparison to sending just one message.
Indeed, these approaches are slow enough that they motivated the emergence of
some very fancy solutions, such as the parallel downloading scheme implemented
by BitTorrent, a technology we will look at closely in Chap. 4.

So, why have data center operators ruled out use of a network feature that could
give them such huge speedups? It turns out that they have been seriously burned by
IPMC in past systems: the protocol is definitely fast, but it has also been known to
trigger very serious data center instabilities, of the sort illustrated in Fig. 1.3. This
graph was produced by an experiment that emulates something that really happened.
As the developers at one major eTailer explain the story (we were told the story on
condition of anonymity), early in that company’s evolution an IPMC-based product
became extremely popular and was rolled out on very large numbers of machines.
The product malfunctioned and caused the whole data center to begin to thrash,
just as seen in the figure: first the network would go to 100% load, associated with
huge packet loss rates; then the whole system would come to a halt, with no machine
doing anything and the network idle, then back to the overload, etc. Not surprisingly,
that particular cloud computing player was very quick to outlaw IPMC use by that
product! Worse still, until recently the exact mechanism causing these problems was
a mystery.

But by understanding the issue, we can fix it. In brief, when large numbers of
applications make heavy use of distinct IPMC addresses, the Bloom Filters asso-
ciated with the routers can become overloaded. As mentioned above, the value of
b is a vendor-determined constant (Tock et al. 2005): a given router can handle at
most some maximum number of IPMC addresses. Thus if a data center uses many
IPMC addresses, its network router will learn about many receivers on each link,
and eventually, all the bits in its Bloom Filter will be set to ones due to a kind of
collision of addresses in this hashed bit-space. But think about the consequences of
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this particular form of collision: normally, IPMC is very selective2, delivering pack-
ets to precisely the right set of receivers and not even forwarding a packet down
a link unless it has (or recently had) at least one receiver. With this form of colli-
sion, the router will start to forward every IPMC message on every link! Worse, a
similar issue can arise in the network interface cards (NICs) used by machines in
the data center. If a lot of IPMC addresses are used, those can start to accept every
IPMC message that shows up on the adjacent link (the O/S is expected to discard
any unwanted messages in this case).

Put these two design flaws together, and we get a situation in which by scaling
up the use of IPMC, a data center can enter a state in which floods of messages,
at incredible data rates, will be delivered to every machine that uses IPMC for any
purpose at all! Even IPMC packets sent to groups that have no receivers would sud-
denly start to be forwarded down every network link in the data center. The resulting
avalanche of unwanted messages is called a broadcast storm, and poses a costly chal-
lenge for the machines that receive them: they need to be examined, one by one, so
that the legitimate traffic can be sorted out from the junk that was delivered purely
because of what is perhaps best characterized as a hardware failure. That takes time,
and as these overburdened machines fall behind, they start to experience loss. The
loss, in turn, disrupts everything, including applications that were not using IPMC.
So here we see the origin of the 100% network loads and the heavy packet losses.

Next, applications began to crash (due to timeouts) and restart themselves. That
takes time, so a period ensues during which the whole data center looks idle. And
then the cycle resumes with a new wave of overload.

By now you are probably thinking that maybe outlawing IPMC is a very good
idea! But it turns out that this kind of meltdown can be prevented. Notice that the
root cause was router overload: routers and NICs have limits on the numbers of
IPMC addresses they can handle. If these limits are respected, no issue arises; what
causes problems is that nothing enforces those limits, and we have described a case
in which the aggressive scaling of an application causes an overload.

To solve this problem, we need to modify the data center communication layer,
adding logic that lets it track the use of IPMC throughout the entire data center,
and then arranges for machines to cooperate to avoid overloading the routers. The
basic idea is simple: it suffices need to count the number of IPMC addresses in
use. Until the hardware limit is reached (a number we can obtain from the router-
manufacturer’s hardware manuals) nothing needs to be done. But as we approach
the limits, we switch to a mode in which IPMC addresses are doled out much more
carefully: groups with lots of members and lots of traffic can have such an address,
but for other IPMC groups, the operating system just emulates IPMC by sending
point-to-point UDP packets to the group members, silently and transparently. Ob-
viously, such an approach means that some groups that contain n receivers will

2In fact some systems have used this feature for debugging: applications send IPMC packets on
“debugger trace” addresses. If nobody is using the debugger, the network filters out the packets
and they “vanish” with no load beyond the network link where the sender was running; when the
debugger is enabled, the IPMC routing technology magically delivers these packets to it.
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require n unicast sends. We can also go further, looking for similar IPMC groups
and merging them to share a single IPMC address.

The solution we have described is not trivial, but on the other hand, nothing about
it is prohibitively difficult or expensive. For example, to track IPMC use and group
membership we incur a small background overhead, but later in this text we will
see that such things can be done efficiently using gossip protocols. Moreover, al-
though the best ways of deciding which applications get to use IPMC and which
need to use UDP involve solving an NP complete problem, it turns out that real
data centers produce unexpectedly “easy” cases: a simple greedy heuristic can solve
the problem very effectively. But proving this requires some heavy-duty mathemat-
ics. The whole solution comes together in a research paper by Ymir Vigfusson and
others (Vigfusson et al. 2010).

We see here cloud-computing distilled into a nutshell. First, some business plan
had a big success and this forced the company to scale up dramatically: a rich per-
son’s problem, if you wish, since they were making money hand over foot. But
then, as scale got really dramatic, the mere scaling of the system began to have
unexpected consequences: in this case, an old and well-understood feature of IP
networking broke in a way that turned out to be incredibly disruptive. Obviously,
our eTailer was in no position to debug the actual issue: every time that load oscilla-
tion occurred, huge amounts of money were being lost! So the immediate, obvious
step was to ban IPMC. Today, years later, we understand the problem and how to
solve it. But by now IPMC is considered to be an unsafe data center technology,
used only by system administrative tools, and only with great care. The cloud, in
effect, “does not support IPMC” (or UDP, for that matter). And yet, by looking at
the question carefully, we can pin down the root cause, then design a mechanism to
address it, and in this way solve the problem. The mystery we are left with is this:
now that we can solve the problem, is it too late to reverse the trend and convince
data center operators to allow safe use of IPMC again? After all, even if IPMC must
be used with care and managed correctly, it still is a very efficient way to move data
from one source to vast numbers (perhaps millions) of destinations, and far simpler
than the slower solutions we mentioned earlier (chains of relayers operating over
TCP, or BitTorrent).

This vignette really should be seen as one instance of a broader phenomenon.
First, IPMC is not the only technology capable of disabling an entire cloud com-
puting data center. Indeed, stories of entire data centers being crippled by a mis-
designed application or protocol are surprisingly common in the cloud computing
community. If you have ever wondered what stories data center operators tell when
they find themselves sitting around campfires late at night, they do not involve mon-
sters lurching around the Pacific Northwest forests; it is stories about poisonous data
center applications and broadcast storms that really make their blood run cold. But
of course, when a billion-dollar data center grinds to a halt, the lessons learned tend
to be taken to heart.

It all comes down to scalability. Cloud computing is about scalability first, per-
formance next, and everything else comes after these two primary considerations.
But as we have seen, scalability can revolve around some really obscure issues. We
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have elaborate theories of single-machine complexity, but lack tools for understand-
ing scalability of cloud computing solutions, and the theoretical work on scalability
of distributed protocols and algorithms seems very disconnected from the settings in
which the cloud runs them, and the cost-limiting factors in those settings. Certainly,
if we pin down a particular deployment scenario, one could work out the costs. But
cloud systems reconfigure themselves continuously, and the number of possible lay-
outs for a set of applications on such a huge number of machines may be immense.
Short of actually running an application in a given setting, there are very few ways
to predict its likely behavior or to identify any bottlenecks that may be present.

1.5 The Missing Theory of Cloud Scalability

Our example highlights another broad issue: while we know that scalability is of vi-
tal importance in cloud systems, surprisingly little is understood about how to guar-
antee this key property. Obviously, today’s cloud solutions are ones that scale well,
but it would be inaccurate to say that they scale well because they were designed
to scale, or even that data center operators understand precisely how to account for
their scalability properties in any crisp, mathematically sound way. A better way to
summarize the situation is to say that lacking a “theory of scalability”, cloud com-
puting operators have weeded out things that do not work at scale (such as IPMC in
the absence of a management layer of the kind we have outlined) in favor of mecha-
nisms that, in their experience, seem to scale well. They start with some basic goals,
which generally center on the need to support really massive numbers of clients in
a snappy and very decentralized way (in a nutshell, no matter where you issue a re-
quest, and no matter which data center it reaches, once it gets to a service instance,
that instance will be able to respond instantly based on its local state). And with this
as their basic rule of thumb, the cloud has achieved miracles.

We have already seen that those miracles do not extend to every possible feature
or property. For example, our IPMC example illustrates a sense in which clouds
sometimes sacrifice performance (by adopting a slower data replication approach),
in order to gain better stability at scale. And we have noted that in other ways, clouds
relax a number of trust and assurance properties, again to encourage stability and
snappy responsiveness at massive scale.

Yet while these statements are easily made, they are harder to formalize, and they
also run counter to the traditional notion of scalability as explored in theory text-
books and research papers. For more classical notions of scalability, one typically
asks how the rate of messages in a service will be impacted as one adds members
to the service, or even how the number of members should relate to the number of
failures a service needs to tolerate. Thus, one might see a theoretical paper show-
ing that whereas traditional “atomic broadcast” protocols send O(n2) messages to
replicate an update within a set of n members under worst-case failure assumptions,
“gossip” protocols send only O(n log(n)) messages. Another paper might show that
for certain kinds of system, it is possible to overcome f failures provided that the
system includes 3f + 1 or more members. Still another paper might show that with



1.5 The Missing Theory of Cloud Scalability 19

a slightly different definition of failures, this requirement drops; now perhaps we
only need n ≥ 2f + 1. And yet a cloud operator, having read those papers, might
well react by saying that this kind of analysis misses the point, because it does not
talk about the characteristics of a system that determine its responsiveness and sta-
bility; indeed, does not even offer a theoretical basis for defining the properties that
really matter in a crisp way amenable to analysis and proofs.

In some sense, one would have a dialog of apples and oranges: the theoretician
has defined scalability in one way (“to be scalable, a protocol must satisfy the apple
property”) and shown that some protocol achieves this property. The cloud operator,
who has a different (and very vaguely formalized) notion of scalability objects that
whatever that apple proof may show, it definitely is not a proof of scalability. For
the operator, scalability is an “orange” property. This will probably frustrate our
theoretician, who will want the operator to please define an orange. But the operator,
who is not a theoretician, might be justified in finding such a request a bit passive-
aggressive: why should it be the operator’s job to find a formalism for the cloud
scalability property acceptable to the theory community? So the operator would
very likely respond by inviting the theoretician to spend a year or two building and
operating cloud services. The theoretician, no hacker, would find this insulting. And
this is more or less where we find ourselves today!

Meanwhile, if one reads the theory carefully, a second concern arises. While this
is not universally the case, it turns out that quite a number of the classic, widely cited
theory papers employ simplifying assumptions that do not fit well with the realities
of cloud computing: one reads the paper and yet is unsure how the result maps to a
real cloud data center. We will see several examples of this kind. For example, one
very important and widely cited result proves the impossibility of building fault-
tolerant protocols in asynchronous settings, and can be extended to prove that it is
impossible to update replicated data in a fault-tolerant, consistent manner. While
terms like “impossibility” sound alarming, we will see that these papers actually
use definitions that contradict our intuitive guess as to what these terms mean; for
example, these two results both define “impossible” to mean “not always possible.”

That small definition has surprising implications. For example, suppose that you
and I agree that if the weather is fine, we will meet for lunch outside; if the weather
looks cold and damp, we will meet in the cafeteria. But your cubicle is in the base-
ment, and I have a window, so I will email you to let you know how things look.
Now, we know that email is unreliable: will this protocol work? Obviously not: I see
sunshine outside, so I email you: “What a lovely day! Let us eat outside.” But did
you receive my email? I will worry about that, so you email back “Great! See you
under that flowering cherry tree at noon!”. Well, did I get your confirmation? So I
email back “Sounds like a plan.” But did you receive my confirmation? If not, you
might not know that I received your earlier confirmation, hence you would worry
that I’m still worried that you did not get my original email. Absurd as it may seem,
we end up sending an endless sequence of acknowledgments. Worse, since we can
never safely conclude that we will both realize that we should eat outside, we will
end up in the cafeteria, despite both knowing full well that the weather has not been
nicer the whole year! We will be victims of a self-inflicted revenge of the nerds, and
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will probably enjoy a depressing lunch conversation about Gödel’s incompleteness
theorem, which basically says that there are true things that cannot be proved with
logic.

Now, this example illustrates a thing we can solve, and a thing we cannot, side
by side. In fact, is there some way to run a protocol of this kind that would let
us safely meet for lunch outside? Obviously, normal people would quickly reach
a point at which both of us can deduce that this is a safe thing to do. Indeed, any
normal couple would get to that point after my second email; only real logicians or
the truly deranged would ever send endless sequences of acknowledgments.

Yet with just three emails, can we actually prove that both of us will turn up for
lunch under that lovely tree? As it turns out there is no sound protocol that exchanges
messages and leaves us in the identical knowledge state about a decision such as this
one. If we insisted on waiting for a perfectly symmetric knowledge state (a notion
that can be formalized very elegantly), we will never achieve it: it is “impossible”
to achieve common knowledge on a new decision in a standard message-passing
system (Halpern and Moses 1990). With our three-message exchange, the scenario
to imagine is this: having sent my third email, I leave and head out to the cherry tree.
But it never reaches you. So you received my first email, but saw no response to your
acknowledgment confirming it. Gosh, perhaps I never saw the acknowledgment at
all! In that case I might not realize you ever saw my email about having lunch
outside, and am waiting down in the cafeteria. So off you go. . . to the cafeteria. Our
friendship will probably be tested once we finally sort this out!

What you can see here is that, as humans, we often reason in a way that is not re-
ally entirely sound, if reduced purely to logic. We could do much better if we added
probabilities to this sequence; in each of these steps there was a high-probability
event (the email gets through), and then a second low-probability one (the email
does not); working out the numbers would allow each of us to realize that meeting
outside is the better bet. Yet we would not derive the same probabilities for each of
the possible outcomes, because we do not have identical data: each of us is working
with different certainties and different uncertainties. In particular, each is uncertain
about the state of the other!

In a similar sense, we can show that it is impossible to build a fully asynchronous
fault-tolerant decision-making protocol, or a replicated data update protocol, but
what such a statement really means is less easily explained. Very much in the same
sense just outlined, impossible does not mean that we cannot ever solve the problem;
indeed, for these goals, we can almost always solve the problem: an asynchronous
fault-tolerant decision protocol can almost always reach a decision; a replicated up-
date protocol can almost always complete any requested update. Impossible simply
means that there will always be some sequence of events, perhaps vanishingly im-
probable, that could delay the decision or the update endlessly.

The distributed systems that operate today’s cloud tackle impossible problems all
the time, and usually, our solutions terminate successfully. To say that something is
impossible because it is not always possible seems like an absurdist play on words,
yet the theory community has often done just this. No wonder, then, that the theory
community has not been taken terribly seriously by the cloud community. But this
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cuts both ways, because in some ways, things the cloud community views as impos-
sible may well turn out to be completely feasible, but simply needing new ideas, or
perhaps a complex implementation. For the cloud practitioner, impossible too often
means “I do not know how to do that” or even “I prefer that you not do that.” To the
author of this textbook, neither way of defining impossibility is satisfying. In this
text, unless otherwise noted, a thing is only “impossible” if it genuinely cannot be
done, for scientific and engineering reasons that hold up under scrutiny and that do
not hinge on technicalities in the definitions, or on arbitrary conventions accepted
but not questioned by the practitioners who operate today’s cloud.

Accordingly, we need to approach many cloud computing questions with an open
mind, and cannot entirely trust the things we might read in certain kinds of research
paper, or in certain kinds of popular-press article on cloud computing. We will need
to understand precisely what a question is asking, and precisely what the terminol-
ogy means, before drawing any conclusions.

Returning to the FLP result (the impossibility of fault-tolerance in asynchronous
systems), we can apply this way of thinking. So, before judging the meaning of this
result, we should ask the obvious question: Are cloud computing systems “asyn-
chronous”? You are probably ready with a quick answer, but in fact the right re-
sponse is to ask precisely how that term is defined. And as it turns out the defini-
tion is quite technical and includes some oddities. In this particular theorem, asyn-
chronous systems are ones that have no clocks and make no use of time, and in
which networks never lose messages but can delay them arbitrarily long. There are
no timeouts, and a protocol that terminates correctly after running for 1000 years
is considered to be absolutely fine. Fault-tolerance has a very technical definition
as well, revolving around a form of decision making called the consensus problem,
and it too has a highly technical definition.

We could explain all of these but in fact, it turns out that cloud systems are not
asynchronous in the precise sense of the definition used in the FLP theorem. This,
then, raises the puzzling question of whether the impossibility results would still ap-
ply in a more realistic communication model. But what is this more realistic model?
We see that to answer such a question, we would need a very precise and detailed
model of cloud computing. In some sense, it’s turtles all the way down, as in Stephen
Hawking’s famous joke about Bertrand Russell. Further complicating the task, we
lack that model, today: the theory community has not been very engaged in explor-
ing cloud computing as a first-class topic.

For example, cloud computing systems are very prone to long scheduling and
communication delays and to bursts of packet loss, yet delay-tolerant protocols have
been viewed as an oddity and received little direct attention. Thus one of the most
prominent features of the cloud isn’t properly captured by today’s models. Similar
comments could be made about several other aspects of cloud computing as cur-
rently deployed.

How does this situation impact us in this text? Clearly, since we are concerned
with reliability, at a minimum we will be forced to ask what we mean by reliability;
to the extent that we seek fault-tolerance, we will need to define precisely what is
meant by a fault-tolerant protocol. We will do that in Part II. Having done so, we
will certainly want to visit the FLP result. We have already noted that impossible
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does not necessarily mean “impossible” in the sense you might use in a normal con-
versation with a friend. But even so, is fault-tolerance of the practical kind possible?
We will discover that the answer is usually affirmative: normally, we can solve such
problems. Sometimes, however, when the cloud is experiencing really serious dis-
ruptions, we might be unable to do so.

But the theory for our area is not very complete and lacks answers for many of
the most important questions. For example, it would be very hard to find theoretical
results that shed much light on the overload problem outlined in the prior section
and the form of oscillation we have described in connection with broadcast storms.
One could claim that these problems have been studied by researchers interested in
stochastic phenomena, queuing systems and self-synchronization, and indeed they
do resemble problems that have been examined carefully in those settings. Yet no-
body really knows how to apply that preexisting theory to these specific settings and
these specific kinds of question. The match is not nearly as close as one would hope.

We will not try to fill those gaps in this text, although when can derive a clearer
understanding of a problem by drawing on the theory, we will do so. To keep the
tone of the text even, the book as a whole will be light on theory, but because some
topics demand a more rigorous exposition, we will sometimes dive a bit deeper; an
example is seen in Appendix A, which offers a more rigorous treatment of an im-
portant idea about reconfiguring an active system that we will study in Part II. The
hope is to strike a balance: the book strives to maintain a fairly practical engineering
focus, rather typical of cloud computing as portrayed by those who do it. Since our
goal is reliability, we will obviously be forced to look at the theory, selectively, as a
tool to better understand the forms of consistency and fault-tolerance cloud comput-
ing can offer. But those who love the mathematical side of computing will probably
find that even when we do get rigorous, we do not go far enough. If it comes as
any consolation, this is really more of a research opportunity than a weakness of
the textbook: the author is not the right person to invent a comprehensive theory of
cloud computing, and hence can only present the results that have been published
and gained enough “traction” to be accepted as valid in a practical sense. There is
a fairly complete theory of distributed computing on smaller scales, and we will in-
clude many results from that work, but the scalability and responsiveness needs of
the cloud shift the terrain enough to reveal many new questions.

1.6 Brewer’s CAP Conjecture

Let us have a closer look at another famous negative result, this time concerning the
scalability of data replication methods that seek to guarantee consistency. The the-
orem in question asserts that in cloud computing settings, an application that repli-
cates data can have just two out of three from {Consistency, Availability and Parti-
tion Tolerance}. It was advanced by Berkeley Professor Eric Brewer, who dubbed it
the CAP Principle (Brewer 2000); a CAP Theorem was soon thereafter proved by
MIT researchers Seth Gilbert and Nancy Lynch (Gilbert and Lynch 2002).

As we will see now in a broad overview, and more carefully later, CAP is widely
accepted in the modern cloud, especially for services that will run in the most
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Fig. 1.4 Tiers in a cloud computing system

scalable layers of modern cloud computing data centers (see Fig. 1.4). These layers,
called the first and second tiers, consist of the applications that handle incoming
client requests, and services that directly support those applications such as scalable
caches and key-value stores. They definitely are not the whole story: the requests
that cannot be handled directly in the first tiers are routed to inner services that
hopefully see less extreme loads and less extreme scalability/elasticity demands,
and can therefore use methods that might be slightly more costly. But in the first
and second tiers, we are limited to very lightweight styles of computing. CAP is a
statement about what these kinds of application can, and cannot, do.

We’ve seen how important can be to look closely at definitions for the terms
used in stating and proving theoretical results. As Brewer defines the terms in CAP,
consistency means that any data item has a value reached by applying all the prior
updates in some agreed-upon order. Consistency also has a durability dimension:
a consistent service must never forget an update once it has been accepted and the
client has been sent a reply. Availability is really a mixture of performance and fault-
tolerance: our service should keep running and offer rapid responses even if a few
replicas have crashed or are unresponsive, and even if some of the data sources it
needs are inaccessible. No client is ever left waiting, even if we just cannot get the
needed data right now. By partition tolerance, Brewer means that a system should
be able to keep running even if the network itself fails, cutting off some nodes from
the others (here the failure left those other nodes running, but we just cannot talk to
them right now).

Here we should perhaps pause an note that in fact, partitioning is not an issue
within modern data centers, because they use very resilient data center networking
hardware. Obviously one could still have a network outage that cuts off some nodes,
such as a container of machines, but if this happens those machines would also be
disconnected from their external clients and would probably lose power. Thus the
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kinds of partitioning event that occur tend to isolate and “kill” a small number of
machines, leaving the remainder of the data center connected and healthy. Indeed,
modern cloud management systems have features that will detect the kinds of parti-
tioning events just listed (those that somehow isolate a few nodes) and will force the
impacted nodes to restart. If the node states may have been damaged in the crash,
the cloud may chose to reload a completely clean state before permitting them to
rejoin the system: it will literally wipe away any old state and reload fresh operating
systems and application instances running in a new and empty file system. Thus, the
cloud maps internal partitioning events to failure, and in some cases, to “permanent
failure” in the sense that a re-imaged node would not have any memory of its state
from prior to the outage.

On the other hand, partitioning can definitely occur if a cloud provider has ser-
vices that span WAN (wide area network) links. For example, companies like Ama-
zon and Google run many data centers, and one can easily have a situation in which
a data center in some location is running, yet has temporarily lost contact with the
others. Although the Internet is highly resilient as well, WAN disruptions occur fre-
quently and sometimes do not heal for several minutes. Configuration mistakes have
sometimes created WAN outages that lasted for hours. Thus, partitioning is a rare
but legitimate worry in services that span WAN links, but not a requirement within
cloud data centers, where one would only have local area networks (LAN links). In
these LAN settings, if a partition were to happen, we would not need to guarantee
that the service remains available on both sides of the broken link.

Brewer’s conjecture was that cloud systems will need to guarantee availability
and partition tolerance, and hence would need to accept a weakening of consis-
tency. As stated, this is clearly a WAN conjecture, because of the partition tolerance
aspect. But from the very start Brewer noted that sometimes even if a system is not
partitioned we might want to act as if it was. He pointed to situations in which some
inner service is either faulty (perhaps, restarting from a crash) or even just very
slow. In such cases, he suggested, we would like our first-tier cloud service to re-
main available, using cached data (he calls this it soft state) so as to respond rapidly
to requests that arrive during periods when some needed inner-tier services might be
unresponsive. Brewer argued that the value of quick responses is so high that even
a response based on stale data is often preferable to leaving the external client wait-
ing. In effect, he said, cloud systems should always return a rapid response, even if
the required data could be stale, incorrect, or are partially missing.

This principle of rapid response even at the cost of some small but tolerable in-
consistencies has been widely accepted. When a web page renders some content
with a small red “x” to designate missing or unavailable content, we are seeing CAP
in action. Hopefully, most readers will agree that this is far preferable to seeing the
entire web page timeout and not render at all. If we return to the definitions, we can
summarize CAP: it posits an inescapable tradeoff between consistency (and dura-
bility) on the one hand, and availability (or responsiveness) and partition-tolerance
(or fault-tolerance) on the other.

CAP comes in two forms. Brewer stated it more or less as a design principle: a
kind of rule of thumb (Brewer 2000). Gilbert and Lynch then proved a CAP theorem
(Gilbert and Lynch 2002). We will not delve into to the CAP theorem right now, ex-
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cept to say that in proving it, Gilbert and Lynch first restated it more formally. As
part of this restatement, they adopted a somewhat narrower set of definitions than
the ones we have given above, focusing on the question of maintaining availabil-
ity during true network partitioning. As a result, the CAP theorem they proved is
somewhat narrower than what Brewer actually intended.

The intuition behind Brewer’s rule-of-thumb argument is entirely pragmatic. Ba-
sically, he imagines some popular, heavily loaded service that needs to scale out
very aggressively. Think, for example, of that first tier of Amazon on the day the
new X-Box first is released, ten weeks before Christmas. Within seconds, hundreds
of thousands of dutiful parents and hopeful children visit the X-Box web page; some
just to check pricing, while thousands of others attempt to place orders simultane-
ously. Amazon does not want to miss a single sale. Under these conditions, Brewer
argues that if we want to track information with perfect accuracy (here, the inven-
tory of remaining X-Boxes), we will delay the responses by forcing a parent to wait
while the web-page builder (a tier-one service) asks the inventory service (an inner
service) to reserve an X-Box prior to finalizing each sale. Since far more people get
to the last step and then do not click the purchase button than do click it, many of
these temporary reservations will need to be cancelled. Yet this means that quite a
few real buyers may be told that all of the inventory is currently reserved. In overall
balance, we end up with a solution that will not make any mistakes, but could run
slowly and lose a great many sales.

Instead, Brewer argues, it would be better to initially run in an optimistic mode,
booking the sale without checking the remaining inventory stock. We skip the reser-
vation step: there were 10,000 units in inventory twenty seconds ago, so some are
probably still available now. This leads to a highly responsive solution that runs
some risk of overselling the product: every single one of Amazon’s front-tier ser-
vice replicas is eager to book sales, without checking that inventory remains. But the
end-user experience is better, on average, than in the more conservative approach.
Broadly, Brewer argues that the scenario exposes a question of priorities: scale and
performance on the one hand, and absolute accuracy on the other. Because Amazon
earns more money by being highly responsive, it makes sense to run some risk of
errors. Moreover, one can easily reduce the risk of mistakes: as we run low on X-
Box systems, we can just switch to a more cautious approach while selling the last
few hundred units. The only risk would then arise if the demand is so much higher
than we anticipated that we do not switch modes quickly enough and oversell our
stock. This, of course, can happen, but a big company like Amazon would certainly
find some other way to fill any orders beyond their target, so the risk is manageable.
And this is the deeper sense of the CAP theorem: sometimes, a system should run
acceptable risks if by doing so it can offer far better responsiveness and scalability.

To take CAP to a slightly deeper level, we will need to understand exactly what
consistency means here; after all, while we all know what this property means in an
intuitive sense, we have just seen how sensitive a theorem can be to the definitions
used. Accordingly, imagine a cloud computing service accessible over the network:
it sees a series of requests (queries and updates), and it responds with replies. Sup-
pose that these events occur one by one: the service, as a whole, only sees a single
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request at a time. The service never fails and is correct, so it will not forget a com-
pleted operation. Let us call this a sequential service.

Now suppose that someone builds a scaled-out cloud version of the same ser-
vice, with tens of thousands of components, but implemented in such a manner that
from the requests and replies alone, there is no way to distinguish the cloud solu-
tion from the original single, non-faulty, server. If you know much about database
transactions, you might recognize this as a kind of one-copy serializability property.
Let us say that a cloud system offers a strong consistency property if it achieves the
behavior we have just described. In effect, it achieves a high level of parallelism and
scalability, but always looks like a single entity (one that performs updates sequen-
tially) when accessed by external users.

This is basically what Brewer means by consistency in CAP: he makes refer-
ence to the database ACID model (we will discuss this in more detail in Chap. 14),
and other cloud researchers have echoed his reasoning. This is the sense in which
consistency in CAP is really a short-hand for two properties: an order-based consis-
tency property (namely, updates to data replicated in the system will be applied in
the same order at all replicas), and a durability property (namely, once the system
has committed to do an update, it will not be lost or rolled back). Later we will see
that this conflation of consistency with durability may be important, because dura-
bility is expensive, and yet turns out to be of limited value in the first tier of the
cloud, where services are not allowed to keep permanent state (if a tier-one service
instance fails, or is shut down by the cloud management system, any files it created
are discarded: these services can only store things in a durable way by passing them
to inner-tier services). However, the implications of this point will need to wait until
Part II of this text.

CAP applies to inner-tier services, too, but not in such a clear-cut way. In fact
many inner-tier services in today’s cloud scale well and are highly available while
offering consistency and durability guarantees. For example, Google’s GFS file sys-
tem guarantees that when an application reads a file the version will be current.
GFS thus offers consistency plus durability, provided that only one application tries
to write the file at a time. To provide synchronization for concurrent writers, GFS
comes with a locking service, called Chubby. Using Chubby together with GFS, ap-
plications can achieve all sorts of mixtures of consistency and durability. Chubby
even lets the application that requests a lock script out the actions that Chubby
should take if a failure occurs: should Chubby release the lock if the holder crashes?
Hold it until that process recovers? Run some sort of command that, in effect, noti-
fies the application that a problem occurred? There are also policy options that tell
Chubby how to handle its own failures, although the basic rule is that unless the ap-
plication specifically wants very lightweight locking, locks will be preserved across
Chubby crashes, including crashes that knock an entire Chubby service out entirely
for some period of time. This property, called strong durability, is one we will be
looking at closely in Part II of the text.

The story seen at Google has counterparts in any of the major cloud computing
platforms. Yahoo!’s ZooKeeper (a kind of consistency-preserving file system), is
extremely popular in cloud settings, and has similar functionality but wrapped into
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a single solution presented as a file system, but in which files can be used as locks
(an old Unix trick). Call this one consistency plus durability. Microsoft Azure has
consistency-preserving services, including a file system similar to GFS and a lock-
ing infrastructure similar to Chubby. Database products offer consistency (in the
cloud, the most popular model is snapshot isolation, a variation on database seri-
alizability that treats read transactions using a timestamp-based versioning scheme,
while handling writes using a locking approach). Anyone who would claim that
the major products in this area do not scale just has not tracked the database lit-
erature! Consistency even extends to the open-source version of the MapReduce
technology, Hadoop: these systems allow large problems to be split into smaller
parts, distributed for parallel execution, and then recombined is a tremendous suc-
cess. When a MapReduce execution ends, one can be quite sure that it reflects all the
subresults of the computation, each counted exactly once. We could go on and on,
listing database products for cloud use, management tools, fast key-value storage
technologies: cloud consistency is a very common guarantee. MapReduce falls into
a consistency-without-durability case: if it gives a result, the result is correct, but if
some kind of major failure occurs, it simply cleans up.

This text will not focus on database systems for the cloud; that topic is a huge
one that deserves a volume of its own. But we should certainly all understand that
database systems do offer strong consistency, as noted, and that they scale extremely
well. Many have their own multi-tier infrastructures: the important products all of-
fer first-tier application-building tools that are closely integrated with the inner tier
database services, and these solutions work extremely well. No modern cloud plat-
form could exist without them.

So we have quite a list of consistency-guaranteeing cloud services. Notice, how-
ever, that our list is mostly composed of datacenter infrastructure components, not
the kinds of service replicas that face the end-user; the one exception we cited here
is really an automated way of building first-tier front-ends to database products, not
a general methodology for building arbitrary services. Moreover, across the board,
these examples took years to develop, and all of them reflect at least tens of mil-
lions of dollars of corporate investment; the number rises to billions of dollars if we
include the major database products.

So the correct way to understand Brewer’s point definitely is not to assume that
he’s convinced that the cloud cannot offer scalability and consistency, at the same
time. The CAP theorem does not really say that, and neither did Eric Brewer. Rather,
he argued that we need low-effort, inexpensive options for building scalable, elastic
applications for the first tier. And then he argued that the easiest path to this end is
to accept the idea that by weakening consistency in those services it becomes much
easier to achieve amazing scalability and speed. Few of us have pockets as deep as
those of Google or Oracle. Thus, the average reader of this text is probably in the
community to which Brewer’s advice was aimed. In effect, we want CNN.com to be
amazingly fast. If this comes down to not waiting to fetch the most current version
of the score in an NBA basketball game, then perhaps we should just used a cached
score from a few seconds ago. The end user can always refresh the web page, and
sooner or later, the cached score will be updated. In contrast, to give you the perfect,
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most accurate answer, we would need to pull up the most current data available, and
that would introduce a non-local delay.

The nutshell takeaway, then, is that Brewer argues against locking and in favor of
using cached data and sending updates out asynchronously, because he believes that
using locking to read a value that definitely is not being updated at the moment the
read occurs, or waiting until updates have committed, will be too slow. The locking
point, as it happens, is precisely why database systems use snapshot isolation: they
want reads to run without delay even if writes have locked up the current state of the
database and will keep that current state busy for a while. Brewer sees this kind of
delay as being contrary to a more important goal, namely local responsiveness. And
so he argues that instead of casually building a first-tier cloud service that offers
consistency, one should spend a bit more time thinking about whether that service
can get away with a weaker guarantee. Hopefully, the reader of this text will agree
that Brewer’s point is a sound one.

Cloud operators and platform vendors have accepted this point. Development
tools like Azure make it easy to build very lightweight, scalable, soft-state services
for the first tier. They offer prebuilt technologies that can help the developer carry
out Brewer’s approach, and they lack the kinds of tool that might lead typical de-
velopers into the thicket of issues associated with trying to make stronger forms of
consistency scale well enough to work in the first tier (tools and issues we will be
discussing throughout the entire remainder of this text). To the extent that these ex-
isting platforms offer a systematic methodology for first-tier service development,
it seems to be one inspired by an approach that eBay research Dan Pritchett calls
BASE. BASE, as the name suggests, is the opposite of ACID; the acronym is short
for Basically Available services that run on Soft-State and offer Eventual Consis-
tency. Think about that CNN.com scenario. The idea behind BASE is to write cloud
applications that run using cached data, do not obtain locks, are highly pipelined,
and respond to the user as quickly as possible. Lacking locks, and with updates is-
sued asynchronously, all sorts of consistency issues can arise: CNN.com might show
the user a stale page for that NBA game in progress. The E, for eventual consistency,
reflects the idea that things do catch up: refresh the page a few times, and you will
finally see that Kobe just scored the 3-pointer and tied the game. But it may take a
few tries: eventually, you do see updates, but right this second, you might see stale
data. In BASE, the assumption is that when an inconsistent result is served up, in
many cases nobody will notice. Meanwhile, various background mechanisms labor
to catch up, and the cloud system is expected to eventually converge towards a con-
sistent state. So if refreshing that CNN.com page is starting to give you tendonitis,
just go get a cup of coffee. By the time you get back, your local cloud service replica
should have the story right.

1.7 The Challenge of Trusted Computing in Cloud Settings

Can trusted applications that demand high-assurance guarantees run in a cloud set-
ting, given all of this fuss about CAP and BASE and the general lack of a theory for
building scalable, high-assurance solutions? To assist ourselves in thinking about
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the role of consistency in cloud settings, let us explore a concrete scenario that at a
glance seems to need strong trust properties. Then we can ask ourselves whether the
problems that arise could safely be solved in a cloud setting with weak consistency
properties.

In recent years many countries have struggled with rising health-care costs, and
it seems natural to turn to improved automation as a productivity tool that might
cut these costs. Here in the United States, the 2009 Health Care Reform Act was
predicated on huge savings from productivity improvements; those savings are pro-
grammed into the budget projections that underlie the cost estimates for the initia-
tive. Thus, health care on the web is supposed to become a reality in the fairly near
future. Indeed in some countries this step has already been taken.

Very often, this concept of improved productivity centers on switching the in-
dustry from today’s mix of paper and computerized records to a future in which all
medical health records would have an electronic form. There is no doubt that this
step would be beneficial, if taken far enough to completely eliminate paper records,
and if there is a single national standard. But the medical world has many kinds
of health records. In what follows, let us imagine a realistic scenario in which the
records in question are more like database records and where computing systems
use them in an active way for patient management.

Accordingly, consider someone who has diabetes and depends on a continuous
insulin infusion pump to control his or her blood sugars. These are small devices,
about the size of a mobile telephone, which can be programmed to provide micro-
scopic doses of insulin throughout the day and night, coming much closer to the
way that a healthy human pancreas would behave. For individuals with severe type
I (inherited) diabetes, continuous insulin infusion devices are literally life savers,
and also tremendously improve quality of life. Not only is the patient freed from
endless injections, often many times daily, but the steady small doses are apparently
handled by the body more efficiently, so less insulin is required and the patient is far
less likely to develop complications such as blindness or cardiac disease. Patients
with type II diabetes often move to pumps as well, for exactly the same reason.

Today’s insulin pumps are not simple devices: users need to be able to do some
simple mathematics, are expected to have a degree of manual dexterity, and must be
able to follow instructions carefully. For example, it is important to measure blood
sugars regularly. But there has been progress on sensors that could do this and we
will assume that such a device exists and that the home-care patient is wearing one,
probably integrated right into the insulin pump itself. The basic task now becomes
the following: Since insulin is the body’s way of regulating blood sugars after con-
suming food, a diabetic patient needs to track their diet and activity level rather
carefully, estimate the caloric content and the ratio of carbohydrate calories to fat
calories in foods, and then estimate the rate at which they are burning calories (for
example, when jogging versus sleeping). Then this information is used to tell the
pump what it should do. Someday, perhaps it will be possible to do this the way a
healthy person’s body does it working purely from the measured blood sugar levels,
but such a step would be too far in the future. So the task falls to the pump wearer
who can factor in food consumption, level of activity, and other background factors
that can impact the body’s response to insulin.
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Fig. 1.5 As society ages, we face a growing need to use technology to assist frail patients who
will prefer to live at home, and yet may need close medical supervision

Unfortunately, more and more diabetic patients fall into a category that might
be broadly described as in need of help. For example, there are huge numbers of
elderly diabetic patients, living at home, but who lack the ability to deal with the
complexities of keeping their insulin pump configured correctly, or who may not be
able to physically manipulate the controls. These individuals end up needing some
form of help: from family members, or visiting nurses, or other individuals, and
they may need several such visits daily. The cost of that form of care is quite steep,
simply because these visits take time.

Let us assume that this is the (very large) category of patients your new startup
company has decided to focus upon as potential clients. For a fee, your company
plans to handle the semi-automated task of adjusting insulin dosages, over the Inter-
net, on the basis of the physicians targets and recommendations, using blood sugar
information captured through online devices as your input source, and implement-
ing a variety of mechanisms to protect against error (after all, a blood sugar reading
requires that the device be used correctly, etc.). Your company will have humans in
the loop, but the goal will be to automate what can be automated safely, reducing
this hands-on activity to a minimum.

Figures 1.5, 1.6, and 1.7 illustrate three scenarios that might arise in this context.
In Fig. 1.5 we see a home-care patient who is being monitored remotely; the system
is watching her blood sugars and other parameters (we will say more in a moment),
adjusting her insulin pump, and posting data to monitoring interfaces that humans
watch. In Fig. 1.6, a home visit is underway, and the visiting nurse has become
aware of some issues that require her to consult with a doctor, who ends up adjust-
ing medications. In Fig. 1.7 the doctor’s actions have also caused us to adjust the
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Fig. 1.6 For certain kinds of interactions with the remote patient, hard-state records are created
or modified. In these cases a cloud-hosted solution would need to guarantee very strong assurance
properties, including privacy, durability, consistency

parameters that control the cloud-hosted monitoring system. Not shown but implicit
in these scenarios are the updates to the patient’s healthcare records (the privacy of
which is guarded by law, for example the United States HiPPA regulations), and

Fig. 1.7 Other tasks might have weaker requirements. In this monitoring scenario, a cloud-hosted
monitoring infrastructure is being configured with new parameter settings. In many cloud settings,
we would use soft-state services running in the first tier for such purposes, benefiting from the
scalability and quick responsiveness of that tier, but also accepting the limitation that durable state
must be stored elsewhere. Yet even in these soft-state use cases, privacy and consistency may be of
great importance
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the associated long-term audit trails that might be maintained to track actions the
system took after the fact. But not everything is tracked in fine-grained detail; for
example, we probably would not keep records of every single parameter change in
a monitoring system. Finally, the figures do not show whatever failsafe mechanisms
might be in place to trigger alarms if something goes really wrong, but without any
doubt there would be several of these: alarms if the system itself loses contact with
the devices being monitored and controlled, alarms if the patient’s vital signs drift
out of the healthy zone, alarms if the software for adjusting the insulin pump senses
that the control policy may be producing incorrect data, etc.

So we have the basics of our scenario: the patient’s insulin pump needs periodic
dose updates, which will be based on our estimates of what the patient has been
eating and on her measured blood sugar levels. Normally, this is a routine matter that
can be done remotely, but there are some situations that might require other kinds
of medical intervention, like scheduling a home or office visit, or even sending the
patient to the emergency room. Your target is to create a cloud computing solution
that will assist in caring for this kind of patient, dramatically increase the number
of at-home patient’s that a given care provider can manage, while simultaneously
improving the average quality of care. You will develop the needed software and
the devices (the insulin pumps and blood sugar monitoring units) and will make its
money by operating the technical side of the system on behalf of the medical offices
that sign onto the new technology. Those local medical offices would access the
system through the network on normal machines, probably PCs or Macs (the two
most common platform choices in medical settings).

Notice that we are not trying to cut the human out of the loop. Instead, the big
win here would be that a much smaller team could handle a much larger patient
population, and by having better data at its fingertips, provide better care than this
kind of patient could achieve on his or her own. In fact, the scenario we have outlined
is one of the major reasons that elderly patients often have to move into managed
care facilities: they lose their ability to deal with the complexities of operating a
device like an insulin pump, and this puts them at grave risk. So if this problem can
be solved, a tremendous number of patients might be able to live out their lives at
home, who would otherwise be forced into a nursing facility at huge psychological
(and economic) price. It might even make sense to put frail patients with type II
diabetes (a much larger group) on insulin pumps: although the pump is a costly
technology, the benefits of being able to control it remotely could outweigh those
costs. Such a step would open an immense market for your company, with literally
tens of millions of potential patients in the United States alone.

But the new system will need to be trustworthy in several senses of the term. Any
medical system must respect the relevant health information system guidelines with
respect to security and privacy: the HiPPA requirements. These boil down to two
principles. First, only authorized individuals can access medical records (obviously,
there is a concept of emergency authorization that bypasses normal restrictions).
And second, no matter who accesses a record, an audit record is maintained and an
oversight policy ensures that if an inappropriate access occurs, someone can step in
very promptly to address the situation.
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With respect to reliability, the situation is really in flux, and will depend upon a
legal question that, to the author’s knowledge, has not yet been answered in the law:
is a medical computing system of the sort we have outlined “practicing medicine”
(in which case it would be subject to very stringent FDA oversight), or is it really
just a tool used strictly under human control (in which case the FDA would not
play a primary role)? Let us bet that the latter is the more likely interpretation. Just
the same, because our system does play central roles in medical decision making,
it clearly has to be reliable enough to justify the trust that patients and health-care
workers are going to place in it.

For example, the system needs to ensure that it gets the right information to the
right place at the right time: the health-care worker in the local endocrinology of-
fice needs accurate information to make insulin dose decisions, and also to detect
abnormal conditions that require a face to face visit, as can easily happen (for ex-
ample, if an insulin pump needs adjustment, which is not common but does occur,
or if the patient develops some sort of secondary condition that requires hands-on
treatment). The issue comes down to not basing decisions on stale data, and ensur-
ing that when some component needs to raise an alarm, that alarm will definitely go
off. Beyond this are secondary issues: considering the nature of our customer base,
this system really needs to be very reliable in the normal day to day sense of keeping
itself running without a lot of hands-on care. Our elderly patients probably will not
be happy if they constantly need to reboot their network modems or run through di-
agnostic screens on their insulin pumps! And our health-care team will probably be
so small, and with such a large number of patients, that any kind of serious outage
could overwhelm them.

To keep the story short: even this little scenario highlights the dilemma. On the
one hand are the compelling economic advantages of the cloud model, coupled with
cutting edge development tools that will certainly reduce the cost of creating, testing
and deploying your solution. And on the other hand, a laundry list of worries. But
we can make the story even shorter: right now, many projects would go with a cloud
solution.

In fact, when we solve problems using technology, we are always forced to grap-
ple with these kinds of questions. Clearly, computing cannot safely be used in med-
ical settings, or air traffic control, or other purposes without taking that step. Given
that we know things can fail, our job is to make systems that are as self-healing as
possible, and that fail in a safe way when they cannot overcome the damage caused
by a crash. Knowing that the world has a lot of hackers (and more than a few cy-
ber terrorists), we need to make these systems as secure against attack as we can.
A perfectly secure, reliable technology could still be misused to create an insecure,
unsafe medical system. Our task here runs the other way: we just need to create
a reasonably secure, reasonably safe solution on a somewhat insecure, somewhat
unreliable infrastructure.

Let us summarize some of the concerns that this solution raises, and just sketch
some ideas for how we might deal with each. Later, we will cover these same topics
in the body of the textbook, but in a more thoughtful, detailed way.
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• Security. Our system has many attributes one associates with typical web applica-
tions, and seems like a good match to the cloud computing model. Yet it will be
constructed using normal machines running normal operating systems and pro-
gramming languages. Can we harden it sufficiently so that virus or other attacks
will not run a significant risk of harming patients? After all, viruses and other
problems are common on today’s Internet.

• Data privacy. Google and Microsoft and Amazon may not be evil, but none of
them allow data subject to HiPPA regulations to be uploaded to their cloud sys-
tems. We will either need to operate a private cloud just for the medical com-
munity, but using the same cloud technologies that make Microsoft and Amazon
such inexpensive providers, or we will need to somehow encrypt all sensitive data
so that we can upload it to a third-party cloud platform without risking some sort
of disastrous compromise by intruders. Which ever way we go, we will need to
build an audit mechanism to track access to the data, and to sound the alarm if
someone seems to be nosing around. If we go with a third-party cloud, our au-
dit system will need to record access by the people operating the cloud, not just
accesses from within our medical application.

• Consistency. Here the issue is that modern cloud technologies, even when used to
build a private cloud, do not necessarily guarantee that data updates will be visible
in a timely manner. Thus if a blood sugar reading is taken and the cloud data store
is updated to reflect that new reading, cloud applications might see stale data for
a long time. There are ways to obtain stronger properties, however, and we will
focus on them. One option is to use a transactional database to store our patient
data; these do not scale to Internet scale, but could get us pretty far, particularly
if we find a way to partition the data into smaller databases so that the load on
any one database is limited. Another option will be to adopt a replication pack-
age that uses the virtual synchrony model, or one that implements state machine
replication. If we are concerned about attacks or other compromises we could
even opt for Byzantine Agreement. So we have some good options. But will they
be scalable enough for use in cloud settings?

• Fault tolerance. Cloud systems demand various forms of application fault-
tolerance: cloud platform design is such that management software can shut down
machines unexpectedly, for example, when a truck backs up and unplugs a con-
tainer of cloud servers. This kind of shutdown will often be indistinguishable
from a crash failure. The typical assumption is that while the server may crash,
the application running on the client’s computer will probably not go down, and
is expected to ride out these glitches. The problem is that doing so is not always
possible: as we will see, there are conditions under which the client platform may
be unsure what state the cloud service was left in, and hence may be unable to re-
sume uninterrupted operation without help either from the server itself (assuming
that it recovers and remembers its state), or even from a user with systems ad-
ministration privileges. Stronger forms of fault-tolerance are possible but require
extra measures by the cloud computing service itself, which may be incompati-
ble with scalability. Today, the bias is definitely on client-side failure handling,
and thus when one uses an Internet radio or watches a TV show on a streaming
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channel, there are problems now and then—the screen might freeze up, or seem
bursty, or you might even have to reboot your computer. These kinds of options
will not work in our health-care setting; as we have seen, our home-care patient
population just will not be able to deal with such things. But as we will see, fu-
ture systems will surely need other options, and those exist, provided that we base
them on sufficiently scalable versions of the underlying platform software.

• Fail-safe behavior. We have reduced several goals to a simpler objective, which
can be paraphrased as “try to keep the system healthy when some form of self-
defense or self-repair is possible.” But when other remedies can no longer handle
an issue, the critical need is for a fail-safe solution in which any component that
might cause harm by virtue of being unable to do the right thing (or to be sure it
is doing the right thing) instead sounds an alarm, takes itself offline, or otherwise
protects the real user—the patient—from ill effect. The certainty that if a com-
ponent shuts itself down, the system will still be safe can be a huge relief to the
application designer. For example, in air traffic control, or in a medical setting,
sometimes it is better for the system to announce that it cannot make progress and
shuts down, than for the system to try and try to overcome a failure while valuable
time elapses. The air traffic controller has other options, such as the direct radio
link from the ATC center to the plane, and the medical provider can, similarly,
pick up the phone or dispatch a medical aide to have a look at the patient’s insulin
pump.
Focusing on our medical scenario again, one can now review these properties

one by one. Although the discussion above merely touches on the issues, such a re-
view leads to the conclusion that a cloud solution definitely might be possible, and
even quite appropriate and safe. But one also finds that the application itself needs
to be conceived with the limitations of the cloud in mind, and that even so, the so-
lution might need to include some non-standard functionality. It will surely need
security tools different from those seen in most cloud settings today, will almost
certainly need to do something about data consistency, and the HiPPA audit require-
ment could be particularly hard to address (how ironic to realize that we might be
able to build a solution, only to discover that regulations formulated more than two
decades ago could then step in and prevent us from operating it!) But assuming that
these issues can all be addressed, it may be possible to create a solution that could
safely operate on cloud platforms.

1.8 Data Replication: The Foundational Cloud Technology

Up to now, we have discussed the reliability issue in rather broad terms, but to make
this more concrete, let’s try to be a bit more specific about data replication and the
properties one can assume in an application that needs to base some action on a
replicated object or record.

Replication, as we will see, is a nearly universal mechanism in distributed sys-
tems, and it is not hard to see why this should be the case. After all, if a distributed
system has no replicated state at all, its components would all be independent little
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(or big) subsystems, running by themselves. More often we want a distributed sys-
tem to act like a single entity that performs extremely well, but also to conceal its
inner structure from the user. In effect, the user should not become aware that the
system is really composed of millions of smaller parts operating with only a loose
form of coordination.

Many cloud-computing applications require access to some form of replicated
and consistent state: a patient’s medical records and current insulin dose and sched-
ule, the updates to a Twitter feed or a Facebook page, the remaining inventory of
X-Box game controllers. All of these are examples in which information changes,
and in which those changes need to reach the system components that handle web
requests: in effect, data must be replicated so that every component that needs to
access it, or update it, can do so.

Earlier, when discussing CAP, we suggested that one should sometimes build
cloud systems to run in two (or more) distinct modes. At that time, we argued that
if we have, say, 10,000 X-Box systems and want the Amazon web pages that sell
such things to respond rapidly, it might make sense to just book the sales without
tracking the detailed inventory: nobody cares if there are 9,751 units still in stock,
as opposed to 9,157. But we also suggested that one might switch modes and sell
more cautiously, by insisting on reserving an actual inventory item, as the remaining
stock dwindled. In this cautious mode some sort of replicated, consistent, inventory
counting service would play the key role: replicated because it needs to be fault-
tolerant, and consistent because it needs to give a correct answer. Thus a cloud
system might opt for weak consistency in some situations or in some respects, while
using stronger forms of consistency in other subsystems. Part of our challenge as
cloud designers will be to make these choices intelligently; a second part of the
job will be to build the fastest and most scalable replicated, consistency-preserving,
services possible.

Such decisions can sometimes require debate and the right answer could require
a bit of thought about priorities. For example, should Twitter be reliable and con-
sistent? A Tweet that does not reach some of the followers of a popular feed might
not harm anyone or result in a revenue loss, but it certainly could reduce confidence
in the Twitter service and cause confusion among the follows of that Twitter feed.
A physician who is preparing a patient’s revised care plan and encounters old, stale
data could make a serious mistake, or might realize that the data just cannot be cor-
rect, but either way his or her confidence in the medical system will be seriously
eroded. But one could imagine categories of twitter feeds, or situations in medical
monitoring, where the right thing to do is to omit data. For example, suppose that it
is taking a very long time to track down a missing Tweet, or to recover some EKG
data that were lost in the communication system. Even if one wants Tweets to nor-
mally get through, and one normally wants a continuous EKG feed, it could easily
make more sense to skip forward in these cases, just to keep up with the current
updates.

While such actions may sound like recipes for confusion, it often is possible to
“fix” the system to make these behaviors into features. For example, if the medical
records carry unique dates and times, many kinds of mistake can be avoided sim-
ply by checking those timestamps and suppressing old data. The physician may be
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annoyed if the system complains that a network outage that began at 9:11 am has
left the data center disconnected from the patient’s monitoring unit, but at least no
errors are likely to result, and when he sees a blood sugar measurement from last
night, he will realize that the data are old. This, then, is a way to potentially take
an inconsistent underlying mechanism (one that might sometimes report old, stale
data) and then to layer a fail-safe mechanism over it. Indeed, described in this way, it
may seem almost inconceivable that a medical system of this sort could be designed
in any other way!

Broadly, we are starting to see that cloud computing will require a new style
of design and thinking in which rather than resolving each system down to one
set of functionality that you will implement in one way, some solutions should be
implemented in somewhat circuitous ways that bias for rapid response over guaran-
tees (but then compensate if any errors result), while others might even be imple-
mented using multiple side-by-side functionalities, with the system switching be-
tween modes based on application-specific criteria such as the relative importance
of keeping up with current data, versus being absolutely consistent and complete in
the way data are reported. Clever designs will often give far better performance but
at the price of added cases that the developer needs to think through. If the short-
cuts that this requires then force us to find a way to present anomalous events to the
end-user as part of the normal behavior of the system, well, those extra steps might
simply be the key to achieving really ambitious scalability.

On the other hand, it is not a good idea to take things for granted when design-
ing software solutions in which a great deal is riding on the behavior of the system.
There have been too many examples of thoughtless or naive systems, sometimes
used in extremely sensitive settings, in which no effort was made to verify that the
solution has the needed properties. Some of these were later caught; others proved
to be dangerously flawed when they actually caused harm. Software technology has
always been littered with mistakes of these sorts, and the insight one gains is that
what seems obvious to one person can trigger a serious oversight or error for an-
other. Mistakes can reflect fuzzy thinking, but can also arise when a person is trans-
ferred off a project (or falls ill) before the job was finished, when people work long
hours without much sleep, or when a very large team is assembled without adequate
thought to how the parts will interface. Cloud systems invite these kinds of mis-
takes because many applications are constructed by gluing preexisting components
together and then scaled out by simply running huge numbers of application in-
stances on different nodes, with the size of the replica set varying elastically as new
copies are launched to handle more load, or shut down to free up unused resources.
The developer of such an application has very little insight into how it will really
behave under all the possible deployment scenarios. Faced with this reality, there
is no alternative to a systematic, careful design and validation process that leaves
no stone unturned; sometimes this process might be a little boring, but those dull
design reviews can greatly increase confidence that things will work as required.

The other key insight from these examples is that even when an application needs
replicated data and strong consistency guarantees, these do not necessarily represent
a huge barrier to successful cloud computing. We simply need to ask how we can
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provide those guarantees. We will only hit a real barrier to a cloud solution if we
encounter a scenario that combines a mixture of needs, such as rapid response to
updates, consistency, and very high availability, and if that mixture somehow runs
afoul of the existing platform support for data replication. And even then, there may
be ways to push beyond what cloud platforms do today, so as to achieve the desired
properties.

Replication underlies other functionality, too. Suppose a request needs to be car-
ried out even if something crashes. We might replicate the request and arrange for a
backup machine to step in and take over if the primary handler crashes while doing
the operation (of course if the backup crashes too, that can pose other kinds of is-
sue; we will explore them, but not now!) Indeed, pushing this even further, we might
replicate data about the health of the machines in our data center, which would per-
mit agreement on their status (operational, failed, overloaded, etc.). By having every
machine track the status of the other machines with which it interacts by looking at
this form of replicated database, we avoid the free-for-all that occurs if each ma-
chine makes such decisions on its own, for example using timeouts to sense failure
or to infer loads.

The reader might wonder why we are singling out replication rather than dis-
tributed synchronization. After all, for many kinds of concurrent system, locking
and other forms of synchronization or coordination are the core around which every-
thing else gets built. And few systems have more concurrency than cloud platforms,
with their thousands or hundreds of thousands of servers, each of which will often
be a multi-core processor, each running what will probably be a multi-threaded ap-
plication! Indeed, synchronization does turn out to be fundamental: at Google, for
example, a locking service called Chubby lives at the core of the entire consistency
hierarchy of the GooglePlex. Yet Chubby itself is build as a replication mechanism,
which runs on several nodes (for fault-tolerance) and tracks the lock state as locks
are requested, granted, and released: in effect, this translates locking into the lan-
guage of fault-tolerant replication.

Indeed, even cloud computing security reduces to a replication and data consis-
tency question. Viewed in very abstracted terms, a secure system is one that uses
some set of policy rules to decide, for each action, whether that action should be
permitted or blocked. These decisions occur all over the system, and at high rates.
Moreover, the security rules evolve as new users join the system, new objects are
created or destroyed, and as permissions change. Thus, deciding whether a particu-
lar entity should be permitted to take some action on some object reduces to a ques-
tion of (securely) replicating the information on which decisions are based. If we
replicate these inputs correctly, our security system will make appropriate, correct
decisions. If our underlying replication technology makes errors, those will mani-
fest not just as data inconsistencies, but also as potential security flaws. And while
it may sound like a tautology to assert that in general, security questions reduce to
secure data replication, one can see that in fact the latter problem is a much narrower
one.

In summary, one can make a pretty good case for replication as a universal tool:
the single most useful technology in our cloud computing toolbox. But replication
comes in many flavors, and not every form of replication is really universally pow-
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Fig. 1.8 An idealized client/server system with a backup server for increased availability. The
clients interact with the primary server; in an air traffic application, the server might provide infor-
mation on the status of air traffic sectors, and the clients may be air traffic controllers responsible
for routing decisions. The primary server keeps the backup up to date, so that if a failure occurs,
the clients can switch to the backup and resume operation with minimal disruption

erful. In particular, recall the discussion of CAP from earlier in this chapter. CAP,
as we saw, is a kind of cloud-computing design principle, very widely accepted in
modern cloud computing platforms, and what it does it to warn the developer that to
achieve very high levels of availability (quick response) even in scalable systems, it
may be necessary to weaken data consistency guarantees. Is CAP, then, the enemy
of secure and consistent data replication?

1.9 Split Brains and Other Forms of Mechanized Insanity

To appreciate the sense in which CAP may be at odds with our goals, it will help to
look at the system illustrated in Fig. 1.8. This shows an element of an air traffic con-
trol system on which the author has worked (it was initially rolled out in France and
continues to be used quite heavily in Europe). Here we see two machines cooperat-
ing to help a group of air traffic controllers make decisions about routing airplanes
through some region of airspace. There is a server in the system, with a backup, and
it warns the controller if a potential danger is sensed.

A controller who depends on a system such as this needs an absolute assurance
that if the service reports that a sector is available and a plane can be routed into
it, this information is correct and no other controller has been given the same in-
formation in regard to routing some other plane. An optimization criterion for such
a service would be that it minimizes the frequency with which it reports a sector
as being occupied when it is actually free. A fault-tolerance goal would be that the
service remains operational despite limited numbers of failures of component pro-
grams, and perhaps that it takes a component off-line if it somehow falls out of
synchronization with regard to the states of other components.

Goals of the type just enumerated would avoid scenarios such as the one illus-
trated in Fig. 1.9, where the system state has become dangerously inconsistent as a
result of a network failure that fools some clients into thinking the primary server
has failed, and similarly fools the primary and backup into mutually believing one
another to have crashed.
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Fig. 1.9 This figure represents a scenario that will arise in Sect. 6.8, when we consider the use
of a standard remote procedure call methodology to build a client/server architecture for a critical
setting. In the case illustrated, some of the client programs have become disconnected from the
primary server, perhaps because of a transient network failure (one that corrects itself after a brief
period during which message loss rates are very high). In the resulting system configuration, the
primary and backup servers each consider itself to be in charge of the system as a whole. There
are two clients still connected to the primary server (black), one to the backup server (white), and
one client is completely disconnected (gray). Such a configuration exposes the application user to
serious threats. In an air traffic control situation, it is easy to imagine that accidents could arise
if such a situation were encountered. The goal of this book is two-fold: to assist the reader in
understanding why such situations are a genuine threat in modern computing systems, and to study
the technical options for building better systems that can prevent such situations from occurring.
The techniques presented will sometimes have limitations, which we will attempt to quantify and to
understand any reliability implications. While many modern distributed systems have overlooked
reliability issues, our working hypothesis will be that this situation is changing rapidly and that
the developer of a distributed system has no choice but to confront these issues and begin to use
technologies that respond to them

Why might inconsistency arise? Obviously, if the developers were big believers
in the CAP principle, this kind of inconsistency might be a basic feature of the sys-
tem. One would not want to use CAP-based platforms for air traffic control without
somehow compensating for the lower level inconsistencies CAP deliberately em-
braces. But even if we set out to build our solution on the basic elements offered by
the network: message passing, perhaps unreliable, and machines that can crash, it
turns out that split-brain behavior such as this can arise quite easily, unless real care
is taken to prevent it!

The central issue turns out to reflect the difficulty of detecting a failure. If a
computer crashes, attempts to communicate with applications running on it will time
out. But this can also happen if the network experiences a transient disconnection,
or for any number of other reasons. Thus a failure might be “erroneously” reported:
our failure detector is itself somewhat unreliable. But this kind of very low-level
inconsistency can give rise to all sorts of higher level issues, because replication
schemes typically struggle to update operational replicas, but give up if a replica
seems to have crashed. Thus, if a replica is incorrectly reported as crashed, it will
not see some updates and yet (since it was not really down) will continue to respond
to inquiries. Moreover, in situations like the ones in the two figures, a backup might
take over when the primary is still running.
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We could evade these issues by just making the rule that (1) an application will
retry requests indefinitely until a response is received; and (2) any failed component
will be restarted, eventually. But it is easy to see that while this might give us a
form of reliability, it will not work in an air traffic control system where we need
to take actions within fractions of a second; restarting a crashed computer could
take hours and certainly will not take less than minutes. Thus when reliability also
entails high availability we are in trouble. This illustrates the converse of CAP: if
we do want strong consistency, we may lose availability under some conditions. An
air-traffic control system would solve this using a fail-safe mechanism: some design
or feature intended to ensure that if the system cannot make progress (if it hangs),
the controller will be warned in a visible, unmistakable way. Then he or she can use
a backup technology to keep the planes safe until normal function is restored.

In the remainder of this text we will see other ways of approaching this problem.
Surprisingly, we will discover that even in services that need to scale very ambi-
tiously and hence seem to be governed by CAP and perhaps forced to use a BASE
methodology, there may be ways to accept CAP and follow BASE that still achieve
stronger forms of consistency. For example, we will discover a way to implement
sequential consistency for soft-state that actually performs just as well as any even-
tual consistency system and in some situations, dramatically outperforms the usual
eventual consistency approaches! It may seem paradoxical to claim that CAP and
BASE could still lead to systems that have strong consistency, and that such sys-
tems might actually win the performance face-off, but this is precisely what we will
discover, at least for certain kinds of system. Other kinds of system might be per-
fect matches for the version of BASE that leads to solutions like Amazon’s Dynamo
shopping cart, an an example of a service we’ll study in Sect. 5.7.3. The key will
relate to that hidden “D” mentioned earlier in CAP: the role of durability in the way
that CAP defines consistency. But again, that story will need to wait.

And while it may be unlikely that the world will ever need to have hundreds of
thousands of ATC controllers sharing a cloud-hosted safety service, keep in mind
that there are other applications with very similar structures that will need to scale
ambitiously. For example, Google has invested heavily to create a new technology
of self-driving automobiles; each of those cars might be a bit like an air traffic con-
trol, getting routing advice from the cloud. Fleets of robots performing tasks like
farming could fit the bill. And in fact, as you push further on the example, you will
realize that all sorts of relatively mundane applications may share at least some of
the high-assurance needs seen in our ATC case, and that many of those would bene-
fit from a cloud-hosted deployment, if only we could do so with adequate assurance
properties.

The upshot of this way of thinking is that we will want to study ways that one
might create cloud-hosted solutions for large, complex applications like medical
care systems and air traffic control systems and even payroll and accounting sys-
tems: systems that need to work correctly, and need to work when needed, and yet
that we might want to run on a cloud platform in a scaled-out, inexpensive way. We
will discover ways of systematically breaking complex tasks into simpler subtasks
and of understanding which one can safely be done using weak forms of convergent
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consistency, which ones need hard-state services with sequential consistency, and
which ones fall in the middle ground: soft-state services for which scalable con-
sistency is needed nonetheless. And in each case, we will study the best of breed
options. Everything we look at closely will be hands-on and practical: either in ma-
jor products commercially integrated with today’s cloud platforms, or in less widely
known but still commercial products aimed at specialists, or (in the limit) in our own
Isis2 software, available for you to download and play with from the author’s web
site.

1.10 Conclusions

This introduction has touched on some of the major themes that underlie the present
version of this textbook. We did so with a dual agenda: on the one hand to survey the
content that will follow, but at the same time to make sure that the reader embarks
on the study of reliable cloud computing with an awareness of just how peculiar
cloud computing can be, and the extent to which reliability has really been rejected
as a cloud computing property. Our mission will not be a trivial one: while much is
known about reliability and other forms of assurance, there has not been remotely
enough work on scalability for those well-known techniques. Worse, cloud comput-
ing vendors and operators, if asked, assure us that one can easily be badly burned
by reliability and that to first approximation, the things that scale best are the things
that promise the least.

Yet we will also see that this is in many ways a symptom of a very young area:
one born almost overnight under intense commercial and competitive pressures, in
which the urgency of scaling up outweighed any other considerations. That intense
pace was a good thing in many ways: it freed the cloud computing developers from
the shackles of decades of distributed computing theory and practice, opening their
minds to other ways of solving problems, and they have achieved something aston-
ishing almost overnight.

But not every decision made in this race to the clouds should be accepted as if it
were engraved in stone, and not every reliability or security technique needs to be
rejected out of hand as non-scalable and irrelevant. We will try to strike a balance:
first learning the standard stories and the officially accepted rules of the road, but
then asking how one could take the next step or two. Those are steps that will soon
be necessary, because high assurance applications are coming to the cloud, like it
or not, and the cloud platforms that are in widest use today are just not capable of
dealing with high assurance computing, without a bit of help. But the good news is
that we will not need to depart all that far from the prevailing solutions to get where
we need to go. We can accept CAP, and BASE, and still end up with scalable forms
of consistency. We will just need to show a bit of sophistication about what works,
what does not, and about how we validate the scalability and stability of the key
ideas in realistic cloud computing environments.



Part I
Computing in the Cloud

The place to start any inquiry into cloud computing is with a more careful look at
a typical interaction between a client computing application and a cloud service. In
this first chapter of the text we will briefly survey the origins of the cloud computing
concept, and will look at how today’s client to cloud interactions differ from the
styles of client-server computing that were common even a few years ago. Then
we will drill down to understand some of the basics of cloud computing: the key
elements of the overall picture, some consisting of generally accepted standards that
are relatively mature (such as the options for representing a web page and rendering
it); others that are easily programmed and hence almost arbitrarily extensible.





2The Way of the Cloud

2.1 Introduction

2.1.1 The Technical and Social Origins of the Cloud

Cloud computing is a new term, but not really such a new idea. What we call cloud
computing today can be traced to the 1990s, when researchers at Xerox PARC pub-
lished papers on a new idea that they called ubiquitous computing: a world in which
computing devices would surround us, and in which we would rely upon them as
casually as electric lights or tapwater.

At the time, many sober-minded computing professionals viewed this idea as
being a bit over the top: in those days, distributed computing was still a relatively
new phenomenon, and the earlier networked but relatively loosely connected com-
puting systems were only just becoming common. It did not help that some of the
early researchers in the field came across as being a bit quirky. For example, one
fellow decided to capture all the events in his life digitally; he went about with cam-
eras strapped to his head, microphones, location tracking devices, etc. These were
the days when cameras and microphones and other networked devices were all big
bulky things, and the photos of this skinny researcher with all those components
strapped on did not exactly inspire imitation. Newspaper editorials debated the pros
and cons of building systems that by their very nature intrude into what normally
had been private interactions. And many of the core technologies did not even work
very well. Ubiquitous computing seemed very unrealistic and over-ambitious, and
very unlikely to become a reality anytime soon.

Yet however fanciful the Xerox vision may have seemed in its heyday, cloud
computing has to be seen as a realization of that vision and indeed, one that goes far
beyond what the Xerox research team anticipated. It turns out that your cell phone,
buried in your pocket or in your purse, does track your location rather accurately,
unless you disable that feature. And even if you disable GPS tracking, the phone
may still know your location to very high accuracy simply by virtue of the wireless
networks it can sense in the vicinity: there are growing numbers of high-resolution
maps that identify the locations of wireless basestations; a mobile device can often
situate itself to an accuracy of several meters by triangulating with respect to the
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availlable wireless systems (even ones that are secured and hence not really accessi-
ble). A telephone’s microphone is not supposed to be listening to you unless you are
making calls, but countless movies revolve around the idea that a spy organization
(or even an obsessive ex-boyfriend) might find a way to turn the phone on covertly,
and apparently this is not even all that hard to do. Few people videotape their lives
as they move around, but crowded public places in the UK often have video cameras
trained on the crowd, and there are more and more in the United States as well.

We are putting all kinds of information online; including data of kinds that the
early Xerox Parc researchers could never have imagined. For example, who could
have anticipated the success of social networking sites such as Facebook and Twit-
ter and YouTube? Using the cloud as an intermediary, people are sharing ideas and
experiences and photos and videos and just about everything else in a casual, rou-
tine way; maintaining close contact with friends and family nearly continuously;
and trusting our the cloud to recommend the best prices on product, to offer hints
about good local restaurants, and even to set up impromptu dates with people in
the vicinity who might be fun to meet. As we move about and interact, the devices
around us collect data and those data enter the cloud, often being stored and indexed
for later use. Not much is ever really erased, in part because this can be hard to do.
Consider email: suppose a friend sends you a private email, and you read it and then
delete it. How sure can you be that the data are gone? If an email-provider erases
your email, does this mean it cannot also offer a recovery feature to recover pre-
cious emails that might accidentally be erased, or would that violate the policy? The
question makes sense because many cloud-hosted email systems do have ways to re-
cover deleted emails. But if deleted emails are recoverable, in what sense were they
deleted? What if some index was computed and a deleted email somehow lingers
within the computed result: must we recompute every such index? Again, a sensi-
ble question, because indexing occurs all the time. And what if the email provider
has a backup technology in place: does erasing the email also erase the backups?
Probably not: backups are typically “write once” data.

Realistically, it makes sense to just assume that any data that find their way online
have a good chance of ending up indexed, filed away, and retained (perhaps in a
derived form) for use in enhancing your web search experience and to optimize
advertising placement. This is not limited to data we deliberately upload; it includes
data about credit card purchases, telephone calls, the car we drive and how fast we
drive it, speeding and parking tickets, common destinations and routes. It includes
angry letters you exchanged with your “ex” in the period before the breakup. The
cloud tracks home ownership and mortgage data, and property value trends. Any
kind of public records, insurance records, marriages, divorces, arrests: it all gets
collected, correlated, stored; entire companies have sprung up to play precisely this
role.

Cloud providers make their money by matching your queries to the right web
sites, placing advertising likely to appeal to you personally, and trying to “under-
stand” who you are and what motivates you, so as to shape your experience posi-
tively. These goals motivate them to capture more and more information. Obviously,
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some limits do apply (medical records, for example, are covered by HiPPA regula-
tions in the United States, and other countries, such as Israel, have very strong pri-
vacy rules around digital data). Yet up to the limits allowed by the law, you can be
quite sure that cloud computing companies are doing anything technically feasible
that might offer even the slightest edge in the battle for screen space on your mobile
device and user interest. In some cases, by accepting a user agreement, you agree to
waive your rights under these kinds of data collection laws. Yet many people click
to accept without reading such agreements (and only some people have the legal
experience to understand them, in any case).

Even in the early days, the Xerox ubiquitous computing crowd worried about
the ways that computing systems capable of capturing huge amounts of data might
transform society itself, notably by eroding privacy and, in the more dystopian vi-
sions, creating a kind of smothering Big Brother society. Today, for all the fret-
ting about privacy, most cloud users feel liberated, not oppressed by these techni-
cal trends. If someone were to assert that the cloud is becoming Big Brother, they
would be viewed as being especially paranoid. There isn’t even one cloud: the cloud
is a world within which multiple companies compete, with no clear single winner.
Moreover, those companies need to maintain customer trust. Google’s “Don’t be
Evil” corporate motto is just one of the ways that these companies constantly re-
mind their developers and employees of the central importance of being trusted by
the user. And they are right to put trust front and center: Every major cloud company
understands how easy it can be to fall from dizzying success to utter failure. Serious
invasions of privacy could wipe out a major player overnight.

Of course the cloud does cut both ways, but the darker side has not been all that
visible in Western society. There is no question that politicians and other public
figures are finding the cloud troublesome; it seems very likely that at least some of
the recent spate of “outings” of bad behavior originated with politically motivated
hackers who broke into email or Twitter accounts, turned up damning information,
and then found ways to arrange to leak that information to the public. Yet there has
not been much outrage at the idea this might be going on: the public seems to have a
real appetite for tawdry news and clearly enjoys watching the rich and famous taken
down a notch or two.

Perhaps a bit more of a concern is the degree to which the cloud has simulta-
neously been a liberating technology in repressive countries (for example, making
it easier to organize protests) but also a tool for those same governments to spy on
their citizens and to identify signs of dissent, thus enabling further waves of repres-
sion. This was very visible during the so-called Arab Spring, when protesters in Iran
and Egypt used Twitter and Facebook to orchestrate demonstrations, but then saw
their leaders rounded up by the military a few weeks or months later, to be forcefully
reminded about who was really in charge. For those working in cloud computing,
the societal penetration of their technologies represent a complex and paradoxical
phenomenon: leaders within the community are often proud to talk about the cloud
as a powerful vehicle for individual expression, and yet how could they not also feel
anxious when they see these same technologies helping the military or other repres-
sive forces identify the most troublesome of the protesters. It is not at all clear how
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this will play out, and how history will view cloud technologies and their roles in
repressive societies, over the long term.

This text will not have much more to say about those kinds of issue (readers wish-
ing to learn more might read Laurence Lessig’s work on the topic (Lessig 1999)),
but it is interesting to think about how the cloud has transformed our contemporary
notion of privacy. In 1890, Justices Warren and Brandeis famously defined privacy
as the “right to be left alone” and ultimately authored a Supreme Court decision that
firmly recognized the Constitutional basis of this right. How quickly the very no-
tion has been confused and eroded by technology, and by the collective behavior of
the world’s email, Twitter and Facebook users! How could one really be left alone
today, short of moving to a cabin in the woods and never touching technology at
all (and even then, would not the cloud preserve information about your life up to
that moment, and your ownership of that cabin (perhaps even a satellite photo), and
maybe even your purchases in the local store)? Professor Lessig is often quoted for
his observation that technology often gets far ahead of the law, but here we see a
situation in which technology has actually gotten far ahead of our societal norms,
literally reshaping the way we live.

But let us return to the early days of the cloud, this time with a more techni-
cal focus. When the Xerox Parc group first conceived of ubiquitous computing,
most systems were personal ones. These personal computing systems were highly
autonomous: they had their own operating systems, private copies of whatever ap-
plications you wanted to run and were prepared to pay for, and used the network
mostly to exchange email and data files.

The term networking was used as a catchall covering the computer network itself
together with those limited kinds of network application: email, early versions of
blogs, file transfer (it evolved into the Internet, but the Xerox work on ubiquitous
computing actually predated what we would call the Internet today). This book will
try to use networking as a term focused on connectivity that enables these kinds of
application, as distinct from the way we will use the term distributed computing,
which for us is concerned with collections of computers, connected to one-another
by networks, that collaborate to jointly carry out tasks. That is, for our purposes
here, a networked computing system is a machine with its own roles and objec-
tives, which obtains data from servers (with their own roles and objectives) via net-
work connection. Distributed computing, in contrast, is concerned with what teams
of collaborating computers can jointly accomplish. The distinction is analogous to
shopping as an individual (this would be the networked case), versus dividing up
the work and shopping in a collaborative way with friends (the distributed case). In
both cases we interact with stores (services), but in the former case the client is on
his or her own. In the latter one, the clients talk to one-another and share the job.

In the earliest days of cloud computing, networking was the bread and butter from
which most applications were created. Distributed computing was the nec-plus-ultra
of systems at the time. As Leslie Lamport1, a researcher at Digital Equipment Com-

1Lamport’s comment about distributed system may have been somewhat pessimistic, but as we
will see later in this book, he was in the midst of developing what we now think of as the theo-
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pany’s SRC laboratory put it, distributed systems were ones in which your personal
computer could become unusable because of a failure in some other computer that
you had never heard of, playing a role that you were unaware that you depended
upon: not really the most positive or flattering way to characterize the technology.
In contrast, if the network was down, you could not read your email, but could still
use your computer to write software (or play Tetris).

Although some Xerox Parc researchers expected that Lamport’s style of dis-
tributed system would turn out to be the key to ubiquitous computing, most Xerox
researchers were of the roll-up-one’s sleeves and solve the problem mold; when they
encountered a problem, they were more likely to dream up a clever engineering so-
lution than to head for Leslie’s office for a lesson on the nascent theory. As a result,
Xerox pioneered on the practical side of the field, and many of the ideas we will be
studying in this text had early forerunners that were developed at Xerox Parc, but
never commercialized. By the time the web really picked up steam, the Xerox group
had already broken up, although many of those same researchers became leaders in
developing today’s cloud platforms.

With the benefit of hindsight, one can now see that cloud computing is different
from all of these earlier forms of Internet-based computer systems. The cloud re-
flects a dramatic recent evolution relative to the technologies that predated it, and
this evolution has gone in two somewhat opposing directions. On the one hand,
the cloud is very elaborate in some ways: servers can send programs over the net-
work for execution within your browser, and there are all sorts of subtle ways for
a cloud platform to control the routing of requests and to federate with other cloud
provided services, including ones implemented by other companies. And the cloud
is massively larger than any prior distributed computing infrastructure: even a few
years ago, one rarely saw clustered computing systems with more than 128 or 256
machines; suddenly, we are casually talking about hundreds of thousands and antic-
ipating millions. The Xerox Parc people certainly did not expect this, even though
many of the technologies their team created can now be seen as having evolved into
key elements of the modern cloud.

Yet the cloud has simultaneously pulled back in some respects relative to dis-
tributed computing. As we saw in the introduction, it is not clear that the cloud
can safely support applications like air traffic control, or medical computing sys-
tems; if it can, it will not do so in the identical way that earlier distributed systems
did so. Cloud computing systems, indeed, often guarantee even less than the early
networked systems did, and far less than the distributed systems of the 1990s. The
evolution to the cloud, in effect, has been a mixture: expansion of things that work,
but also a retrenchment from things that did not scale well, even if this entailed a
loss of desirable properties.

For example, in the early days of the cloud one tended to view the network as a
separate technology from the data centers and clients it linked: the network moved

retical foundations that side of the field. Today, Lamport’s theories of distributed computing are
widely recognized as foundational steps towards solving problems of consistency, fault-tolerance
and coordination. Few people have had more impact on any part of computer science.
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the bits; the applications made sense of them. Cloud computing has revamped this
thinking in many ways: today, the network is controlled to a growing degree by the
cloud applications that depend on it, and those applications actively reprogram the
network so as to route traffic, filter unwanted messages, and to host content in ways
optimized for what the cloud applications need to do. Thus the network has become
a true partner of the cloud, and this has begun to force a rapid evolution of network
routing protocols and hardware.

In contrast, the weakening of guarantees and consistency properties that we dis-
cussed earlier would be an example of a retrenchment: in these areas, the cloud does
less than the massive transactional data centers it emerged from were doing ten years
ago. Those platforms had simply expanded as much as they could, and when cloud
developers realized that they needed to expand by factors of hundreds or thousands
of times more, they decided that if trying to provide strong guarantees was turning
out to be hard, they would simply have to weaken the guarantees and find ways to
live with the consequences.

2.1.2 Is the Cloud a Distributed Computing Technology?

Reduced to the simplest terms, a distributed computing system is a set of com-
puter programs, executing on one or more computers, and coordinating actions by
exchanging messages. A computer network is a collection of computers intercon-
nected by hardware that directly supports message passing and implements routing
protocols, so that the messages have a reasonable likelihood of reaching their desti-
nations.

Most distributed computing systems operate over computer networks, but one
can also build a distributed computing system in which information flows between
the components by means other than message passing. For example, as the relentless
advance of computer architectures shifted from raw speed to multi-core parallelism
in recent years, a realization emerged that even a single computer is more and more
like a small distributed (clustered) computer system of a few years ago. Future oper-
ating systems for multi-core processors may turn out to have more in common with
Lamport’s style of distributed systems than with the single-core operating systems
that of just a few years ago, because when those single-core systems are modified
to run on multi-core hardware, they turn out to waste huge amounts of time on syn-
chronization and shared memory management. A distributed system architecture
can potentially avoid both problems.

In the introduction we used the term client-server to refer to a situation in which
one computer requests services from another. The client computing system is just
your laptop, desktop, pad computer or even your mobile telephone: whatever device
is running the application that you, the user, interacts with. The server, of course, is
the application that runs at Amazon or Google or Microsoft or any of a dozen other
companies and handles your requests. In fact, as we will see, even a simple request
might require cooperation by many servers, and those might not even be running
at any single place or controlled by any single company. Moreover, for most kinds
of request you can initiate, there are vast numbers of server systems that can field
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Fig. 2.1 Overall architecture of a cloud computing application

Fig. 2.2 Elements found within a cloud computing data center (see also Fig. 1.4)

the request; an important part of cloud computing involves routing each request to a
good server that has a chance of responding rapidly and, one hopes, correctly.

Let us walk through a simple example to see how this client-server pattern plays
out, and to better understand whether we are looking at networked applications or
true distributed computing systems. Suppose that you use your mobile phone or
a web browser to query the Google Maps service. While the mobile phone “app”
may not look much like a web browser, in fact both of these cases do involve web
browsers; they simply have different configurations that determine whether or not
the web navigation buttons are displayed. So, in either case, we are looking at an
application defined by the combination of the browser on the client’s computer, and
the Google Maps server.

Figures 2.1 and 2.2 illustrate the software layers and protocol stacks that are used
on the client and data center sides of the application (Fig. 2.1), and the way that the
cloud data center breaks the application into a series of service tiers (Fig. 2.2). We’ll
look at both perspectives in much greater detail in the pages that follow.
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These interact through a fairly typical client-server protocol. The browser starts
by parsing the URL (http://maps.google.com/maps). It extracts the name of the
server, in this case, maps.google.com, and then asks the local Domain Naming Sys-
tem (DNS) to map the name to an IP address. Next, the browser makes a connection
to this address, using the TCP protocol: the Internet protocol that supports sending
streams of bytes reliably, meaning that no data are lost and that data are delivered in
exactly the same order as they were sent. TCP has other features too, such as flow
control, security, failure detection, but we do not need to worry about those right
now.

So, the browser makes a connection to the server. The server sends back a web
page back, which it renders. Of course web pages can be quite elaborate, and Google
Maps uses some very sophisticated features. Thus these map pages have subpages,
parts that can zoom and otherwise interact with the user, pushpins that open up to
reveal photos of various sites, etc. Some pages have blanks that the user can fill in:
in the case of maps, these let you type in your home address so that you can click to
ask for driving directions. What happens here is that the browser creates a little web
page that encodes the address you typed in, and then sends it to the server, which
sends back a new page: take a left as you leave your driveway, drive 0.3 miles to the
entrance of Route 81 North, etc.

Moreover, browsers are getting more and more elaborate; recent innovations al-
low a server to send a small program to the browser (using packages like Adobe
Flex, Silverlight, Java Fx and others). These programs can run animations or inter-
act with the user in very flexible fast ways, which would obviously not be feasible
if the server had to compute each new image. Thus the distinction between a web
page that the cloud generates, sends to the client, and that gets displayed passively
on the client; and a program that runs on the client consuming data from a server has
begun to vanish: to a growing degree, the cloud is able to put computation where
computing is the sensible thing to do, data where data are most conveniently stored,
and to move data to the computation or computation to the data in very flexible,
easily implemented ways. Developers focus on functionality and think in terms of
speed and responsiveness, and the technologies needed to map their best ideas into
working applications are readily available.

This trend towards increasing sophistication is evident in other ways, as well.
We are seeing that a client system may be a very elaborate platform, with data of
its own (perhaps preloaded, perhaps downloaded and cached, or perhaps captured
from cameras, microphones, or other devices), rendering web pages but also capa-
ble of running elaborate programs that might be embedded into (or linked to) web
pages, and accessing data not just from the main server platform but also from other
web sites, such as web sites maintained by content hosting companies or advertising
intermediaries. The client could also be mobile, which can have important implica-
tions too: a mobile system might experience varying connectivity, and could even
see its IP address change over time (for example, if you take your laptop from your
office to the coffee shop up the street, the IP address assigned to it would change
each time it rebinds to a different access point).

Let us think for a moment about how client mobility impacts our basic Google
Maps scenario. Suppose that you are using Google Maps, but doing so as you move
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about. Google Maps needs a way to recognize that the same machine is involved
in this series of requests. It cannot just use the IP address for that purpose, since
that changes. Accordingly, it does the obvious thing: the application leaves a small
file on your computer, called a cookie. The file can contain pretty much anything,
but generally is kept small to minimize transmission costs: when you connect to
the Google Maps service, the cookie (if any is available) is included with the initial
connection request. But now think about the role of the network: previously, we
described the job of the network in simple terms: it connects this IP address to that
IP address, trusting the DNS to map host names to addresses, and moves bytes back
and forth. Our mobility story is revealing extra complexities: the IP address of the
mobile device may be changing as you move about; the cookie uniquely identifies
you, but is buried in the application data stream. A seemingly simple networking
role suddenly starts to look unexpectedly complex!

To appreciate the implications of these issues, let us briefly drill down on pre-
cisely how cloud computing systems and network routing interplay. As we do this,
keep in mind that many cloud applications maintain some form of continuous con-
nection to the servers, so that as you move about, they can update the information
shown to the end-user. Thus, your mobile device is moving, and yet there is a form
of continuity to the connection. We will see that the combination of issues that arises
leads to a really complicated picture of network routing, and one that can come as a
real surprise to readers who learned how IP networks operate even as recently as a
five years ago.

Notice that from the perspective of the network, the IP address of the mobile de-
vice could change abruptly as the device moves around: first, it had an IP address
assigned by the user’s company, then suddenly it became an IP address assigned
by Gimme! Coffee. And now the IP address is one assigned by T-Mobile. The
application-specific cookie does establish continuity here, yet the network router
will not see those cookies; it only sees the IP addresses.

In fact, the end-host addressing issue is even more complex than we are making
it sound, because of the prevalence of what are called network address translation or
NAT technologies. Many devices, such as wireless routers, have a single outward-
facing IP address but support a small interior network, and when this occurs, they
often use their own IP addressing space for the interior machines. What this means
is that if I sit down in Gimme! Coffee in Ithaca, and then check my IP address,
there is a good chance it will be 192.68.1.x, where x is some small number like 2 or
3. Yet the Google system sees a very different IP address, perhaps 176.31.54.144:
that assigned to Gimme! Coffee by its ISP. The NAT box translates back and forth:
when a packet is sent from an interior machine to the outside, the box replaces the
IP address and port number in the packet with the IP address of the NAT box and a
dynamically selected port number that it associates with the original sender. Later,
when a reply packet is received, the NAT box maps in the other direction. NAT
functionality and is very common today, and runs so quickly that we are completely
unaware of it. Indeed, we would have run out of IPv4 addresses long ago if we did
not have NAT capabilities. With NAT, each router can be a gateway to a huge range
of IP addresses—perhaps, a whole cloud computing data center full of them.
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In newspaper articles about the Internet one reads that an IP address is like a
street name and house address, but here we can see that a single IP addresses might
be in use by a great many computers. For example, as just noted, the local Gimme!
Coffee here in Ithaca assigns IP addresses that look like 192.68.1.x. Well, it happens
that the computer on which this chapter was being written also thinks its IP address
is 192.68.1.2, even though I am nowhere near Gimme! Coffee right this minute. The
reason is that 192.168.1.2 is perhaps the world’s most heavily reused address: most
wireless routers are preset to assign addresses starting with 192.68.1.1, which the
router uses for itself. My router works this way, and it assigned my laptop computer
the next address in the sequence. All over the world there must be millions of wire-
less routers, each of which uses 192.68.1.1 for itself and each of which has assigned
192.68.1.2 to some local user’s laptop. The situation is similar to a world in which
every town has a Main Street, and every Main Street has a building at number 2.

With NAT-enabled routers on the path, the Internet route between two points is
really an implicit part of the address. If we trace a packet from your machine to
Google Maps, we will see that your machine first routed it to the wireless router at
Gimme!, which replaced the source address with its own address. Next it forwarded
that packet through the Gimme! cable modem, which may even have done a second
remapping very similar to the first one. Now your packet is inside the local Internet
Service Provider (ISP), which maintains routing tables telling it that to get from here
to Google.com, packets should be passed to the AT&T network, and so forth. Step
by step, the packet advances (just as you were taught to expect a few years ago),
but the source and destination addresses and port numbers potentially change each
time the packet passes through an active routing element. The route from Gimme!
in Ithaca to the nearest Google Maps data center probably involves 15 to 20 hops,
and as many as five or six of these could remap the addresses as part of their routing
functionality.

The sense in which the route is “part” of your computer’s address is that for
Google’s servers to respond to your request, packets need to be sent back using the
sender address in the IP header. This, of course, will have been modified by each
NAT box in the route. Thus, the Google response travels to the last NAT box that
your packet traversed on its way into Google, then from that box to the next one
closer to you, and so forth until we get back to the router at Gimme!, which replaces
the address with the internal IP address for your machine on the Gimme! wireless
network. If you were to move your machine to a setting with a different wireless
router, you might actually be assigned the same IP address (192.61.1.x) and yet
packets sent by Google to your previous address will not get to you anymore. RSS
feeds and Internet radio feeds and movie streams and podcasts will all fail, and need
to be restarted from the new location.

So we have traced the route from Gimme! to Google and back. But two more
questions arise: which Google data center was used? And which machine? The for-
mer question matters because Google.com is a single name by which all of Google’s
infrastructure is named, yet Google operates hundreds of data centers, worldwide.
Obviously, the company would typically map a particular user’s request to the near-
est data center, which it does by forcing the DNS to hand out different IP addresses
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to different users, depending on where they originate—something it learns by look-
ing at their IP addresses! Given the ubiquity of NAT boxes, one suddenly appre-
ciates just how complex that determination can be: a million distinct machines, all
over the globe, may claim that their IP address is 192.68.1.2, and that they need to
send a packet to Google.com—meaning, the nearest Google data center.

As it happens, this localization problem is solvable, but not in a trivial way. Any
textbook needs to limit its scope and this one will not cover networking technologies
in great detail. In a nutshell, researchers have found ways to correlate delay to path
length, and cloud computing data centers take advantage of this to create a kind of
network coordinate system a bit like a GPS coordinate; two widely cited examples
of systems offering this functionality are Vivaldi (Dabek et al. 2004) and Meridian
(Wong et al. 2005). The basic idea is to establish some set of landmarks. The client
system measures its round-trip times and perhaps some aspects of the route used
to estimate its distance from each landmark, then encodes these data into a tuple
that functions much like a 3-dimensional map coordinate in the real world. Given
two such tuples, one can estimate the network latency between the machines at
each location. And this functionality can also be embedded into the DNS name
resolution mechanism: based on observations of timing, a company like Google can
localize your DNS to at least some degree, and then use that localization to instruct
that particular DNS server to give out this particular IP address as the mapping of
Google.com. Thus Google is able to direct your machine to the closest data center,
with one or two other options offered as good backup possibilities (DNS mappings
typically resolve to a primary IP address but list some number of backup options as
well). Notice that we’ve arrived at a definition of “closest” that minimizes network
latency and maximizes bandwidth; the best choice of data center might not be the
one that is physically nearest to your location.

So you launch your mapping application. It needs to map Google Maps to an IP
address, and asks the DNS for help. The DNS does a quick request to Google, asking
for the IP address to which your requests should be directed. From then on, at least
until this DNS record expires, the DNS will give the same answer repeatedly. This,
then, gives Google a way to direct queries from Chinese users to its Hong Kong data
center, queries from India to a data center in Hydrabad, and queries from Ithaca to
a data center somewhere in New Hampshire, or Canada: Google likes to place data
centers in settings that are remote, where power is cheap, where the weather is as
cool as possible, and with good networking capabilities.

Google can play with the expiration values on these DNS records: to exert very
fine-grained control over the DNS mapping, it hands out DNS records that expire
instantly; in such cases, every single host-to-IP-address mapping for machines at
Google.com will need to be forwarded to Google. That can be slow, but gives
Google total control. If Google’s servers believe that it is safe to do so, on the other
hand, they can hand out DNS records with much longer expiration times. Perfor-
mance for DNS mapping will be much improved, but Google cannot retract those
mappings other than by waiting for them to expire.

What happens after a packet reaches Google in New Hampshire? Here, a further
complication arises: Google has its own specialized routers to handle incoming traf-
fic; they look at each packet and select a Google server to handle it on the basis of
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a wide range of criteria: the requested service, the current configuration of the data
center, load estimates, which server you last talked to, etc. A single data center can
also host many .com names: YouTube.com and Google.com could route to the same
data center. In some sense, we should understand the IP addresses and machines
as being a virtual overlay, superimposed on the physical network and physical data
center hardware, but accurately emulating a collection of networks and a collection
of distinct, dedicated computers. This facilitates creation of new cloud computing
applications. In one of the more common ways of creating a service, the developer
implements the service on a development system but then uploads a virtual machine
image, and the cloud deploys as few or as many copies as it likes, spraying incoming
requests over the replicas to spread load.

Google, then, as a company hosting large numbers of virtualized services (in-
cluding these kinds of virtualized web site), has a great deal of control over routing,
and it needs that control in order to ensure that you as the end-user will have an
acceptable experience and that it, as the provider, will make the best possible use
of its data center resources. Part of this is determined by IP addresses, but because
those are virtual, other factors also come into play: the actual route that was used
from a client into the DNS hierarchy, the route from the DNS server that translated
the address to Google, and even the cookies that identify the actual client. Ideally,
Google needs to use all of these elements to control routing so as to optimize such
aspects as performance, cost of the solution and security against disruption by mal-
functioning applications. Moreover, Google will make an effort to route the stream
of requests originating in your mobile device to some single server that will handle
them all, unless a failure or some other kind of management event happens to force
a reconfiguration. This way, if that server maintains state on your behalf, you get a
continuous evolving story from your mobile application. And yet because the net-
work does the routing, the only parts of this story that the IP network itself observes
are the source and destination IP addresses and port numbers in use on each leg of
the current path.

Here we encounter an example of a current cloud computing challenge. Today,
Google is not able to inspect the contents of incoming packets until they actually
reach one of its data centers. Thus, suppose your mobile application loses its con-
nection and tries to reconnect. Perhaps its IP address has changed, and very likely it
will find itself talking to a different DNS server than it was using moments earlier.
That server may not have any knowledge of which Google data center you were talk-
ing to. Thus, your reconnect might show up at a very different Google data center
than your previous packets were talking to.

When the reconnect arrives, the load-balancing component of the data center can
inspect the packet, find the cookie, and perhaps make an association to the prior
activity, in which case the end-user experience will be nearly seamless. But it may
also be too late to preserve application continuity, and that seems especially likely
if because of the changing IP address used by your mobile, the reconnection request
was routed to a different data center. In that case, you’ll experience a very annoying
loss of continuity. If your friend were to tell you about some other mapping system
that never breaks down this way, you might switch.
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Let us compare the way this works today with the ways it might be improved,
as an opportunity to peer into the way that cloud computing makes tradeoffs right
now. To be concrete, assume that the client was watching a movie and that it was
streaming from a server S in Google’s YouTube system, and that just as we reached
time 10:27 in the movie, the connection broke. What are the options for masking
this problem?

Notice that there can be many reasons for a connection failure: the client may
have lost connectivity to the Internet or been shut off, the server may have failed
or been “elastically” shut down or migrated (really, the same thing, since the cloud
migrates a server by killing one instance and starting a different one), the Internet
routing system may be having issues, etc. In our toy scenario, the client is still
up. So it issues a completely new connection request to YouTube, but now the URL
encodes the offset into the stream. Ideally, the player resumes seamlessly; now some
server S′ is probably handling the request, and playing back starting at time 10:28.

How long will this take? To mask the outage the new connection would need to
be up and running within a few seconds. But of course S′ may not have a cached
copy of the movie, in which case it would need to fetch a copy from the global file
system. S′ might also need to recheck the client’s credentials, something S would
have done during the initial connection. Thus the client probably will see at least
some delay during this process: very likely long enough to exceed the few seconds
of tolerance. Thus it is not uncommon to need to restart that sort of transfer manually
today.

One could do better. For example, if the cookie the client presents to S′ has some
sort of “recently validated” token in it, S′ could cut that step short. But this still
would not eliminate delays associated with the film not being locally available.

Suppose that S is still running, and we lost the connection entirely because of mo-
bility: one of those changing IP address scenarios. In this case, if the protocol used
between the cloud and the video player includes some kind of ticket representing the
original server, S, the player could reconnect to S under some sort of server name:
S.YouTube.com. Your local DNS would not know how to resolve this name, so it
would be passed to YouTube (that is, to Google.com as the host for YouTube.com),
where an attempt could be made to reconnect you to your original server, S. Thus
with a bit of DNS trickery, the client ends up talking to the original server, which has
a warm cache, and we get playback more or less instantly. Notice that “S” doesn’t
have to be a name bound to a specific physical server, either: in modern computing
settings, a computer can have more than one name, and those names can be moved
around. So “S.YouTube.com” is really more of a logical name for a virtual server,
not necessarily the physical name of a specific machine in a specific location.

In fact one can even get this behavior when a server migrates. Suppose that S
failed but that our cloud system assigned its roles to S′ prior to S shutting down, so
that S′ has a chance to prefetch the movie and copy the credentials. In such cases,
one can actually splice a new TCP connection to an old one seamlessly, so that the
connection never breaks at all. The same techniques can also support IP address
migration on the client side (we will discuss this in more detail in Chap. 4). These
schemes can be surprisingly lightweight (the former approach is transparent but a
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bit more expensive, the latter requires some help from the endpoint application (the
video player in the client, or the server), but imposes almost no additional cost at
all, and can reestablish connections in tens of milliseconds. Thus one could actually
imagine systems that completely mask disconnection and offer continuous stream-
ing availability so long as the outage was one of these recoverable cases.

We do not see such mechanisms in use today, for purely pragmatic reasons. First,
as noted, even if we did use these techniques, there would still be cases they can-
not handle: for example, if a client vanishes, how long should its server wait before
giving up on the connection? Thus the disruption scenario would need to be pretty
common relative to these unrecoverable ones in order for the schemes we have cited
to be beneficial: if they could overcome 99% of all crashes, they would make ob-
vious sense; if they only cover 6% of them, far less so. One can guess that the
benefit must not be all that high since today’s cloud platforms are quick to embrace
improvements that end-users would notice.

Thus, rather than use fancy failover schemes, today we see other sorts of recon-
nection hacks. For example, right now video playback is the dominant case where
such issues arise, and realistically, video playback works reasonably well without
needing these fancier reconnection solutions. Applications that need better behavior,
such as voice-over-IP telephone connections, avoid relaying data through the cloud:
Skype, for example, uses a cloud platform to make the initial phone connection, but
after that tries to use direct point-to-point connectivity between the callers. Internet
conferencing solutions are just not all that popular. But if use of such technologies
grows, the cloud could easily evolve to mask disruptions more effectively.

Our example illustrates a pattern we will see throughout this textbook. Today’s
cloud is a world of tradeoffs that optimize certain kinds of applications; tomorrow’s
cloud is likely to make these same tradeoffs in different ways, depending on the way
that demand in the marketplace evolves, and on the kinds of application that are
bringing in the lion’s share of the revenue. One reason for learning about techniques
like recoverable TCP connections is that even if they are not widely used today,
they could be the key to success in some important setting tomorrow. Moreover,
while it made sense in the past to talk about distributed systems as distinct from
networked ones, the cloud is so complex that these simple distinctions no longer
can be applied. Recalling Lamportis point, in the cloud we all “depend” on a great
many components. If any fails, our computers could become unusable.

Figure 2.3 shows the overall architecture of a typical cloud computing applica-
tion, highlighting the various routing and address translation layers we have dis-
cussed. Sophisticated applications control the DNS mapping from host name to IP
address, typically seeking to direct each user to the nearest data center, and then
as the request reaches that data center, redirecting it again to reach a lightly loaded
machine in the first tier.

Figure 2.4 shows some elements one might find inside a typical cloud computing
data center. Here we see the router and DNS at the top left, vectoring requests to
the highly scaled and elastic row of first-tier services. The elements of this layer can
be spun up or shut down very abruptly as demand varies A second row of staleful
services runs behind the first-tier applications providing somewhat greater function-
ality, but at higher cost and with less ability to scale up or down as quickly. These
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Fig. 2.3 Overall architecture of a cloud computing system focusing on the routing of a user’s
request to a data center. The user’s initial request to Amazon.com is vectored by the local Domain
Name Service (DNS) to a DNS service managed by Amazon, which selects a data center to which
the user’s traffic should be routed. In this illustration, the DNS that receives the mapping request
happens to be the one running at one of Amazon’s Pacific NorthWest data centers, but the user
will be redirected to an Amazon data center in New Hampshire, where a load-balancer will in turn
redirect it to a specific server. There may be one or more network address translation devices on
the path; these convert between an internal IP address and port number and an external IP address
and port number, with the effect of greatly enlarging the address space

in turn are supported by various databases and files. In the back-end of the system,
a variety of offline applications collaborate to maintain those databases and files,
manage the infrastructure, share data over large numbers of nodes, etc. The most
dramatic level of scaling occurs in the first tier, which absorbs as much of the work
as possible, seeking to offer locally responsive behavior even if this may entail run-
ning on stale data or not waiting for a slow component to respond, which are just
two of the many cases in which a cloud system might behave in an inconsistent and
perhaps insecure manner.

Notice that any particular data center will have its own set of services and that
many cloud systems would look quite different from the one shown in the figure.
Cloud systems share an overall style, but the details depend very much on the par-
ticular applications being supported and the platform developer’s design choices.
Indeed, most cloud systems evolved independently to solve specific problems: the
Amazon.com system to support its e-commerce web sites, the Facebook system to
support its social networking applications, Google’s to support search. Then as time
passed, they grew more and more general and began to host third-party content.



60 2 The Way of the Cloud

Fig. 2.4 Interior of a cloud computing system, showing some of the major functional tiers on
which the textbook will focus

Today, there are a few dozen major cloud computing platforms, each with its own
specialties, and while there is a great deal of functional overlap between the result-
ing systems, there are also big differences.

In this text we will not focus on any specific cloud platform but will try to ab-
stract major questions and look at the fundamental issues that are posed. On the
other hand, we will look closely at some of the most widely discussed cloud tech-
nologies, such as cloud computing file systems (GFS for Google, Zookeeper from
Yahoo!, as well as others), key-value stores (BigTable in the case of Google, Dy-
namo for Amazon), locking services (Chubby, which uses the Paxos protocols),
compute engines (MapReduce, also widely used through the Hadoop open-source
version), data distribution tools (BitTorrent), and others. Our hope is to strike a bal-
ance: to expose the reader to some of the “big name” technologies that are best
known and most widely deployed, while also pushing to deeper questions such as
just how one offers consistency in a data replication service, or a locking service.

2.1.3 What Does Reliability Mean in the Cloud?

We have been fairly informal about our terminology. let us pin things down. When
computer systems exchange messages over a network, we say that a protocol is run-
ning between the applications that participate. More formally, we will use the term
“protocol” in reference to an algorithm governing the exchange of messages, by
which a collection of processes coordinate their actions and communicate informa-
tion among themselves. Much as a program is a set of instructions, and a process



2.1 Introduction 61

denotes the execution of those instructions, a protocol is a set of instructions gov-
erning the communication in a distributed program, and a distributed computing
system is the result of executing some collection of such protocols to coordinate the
actions of a collection of processes in a network.

We keep using the term reliability but this needs a bit more precision too. After
all, reliability can have many meanings. Here are a few that matter here:
• Fault tolerance: The ability of a distributed computing system to recover from

component failures without performing incorrect actions. (Of course, the appli-
cation designer gets to define correct and incorrect behavior.)

• High availability: In the context of a fault-tolerant distributed computing sys-
tem, the ability of the system to restore correct operation, permitting it to resume
providing services during periods when some components have failed. A highly
available system may provide reduced service for short periods of time while
reconfiguring itself.

• Continuous availability: A highly available system with a very small recovery
time, capable of providing uninterrupted service to its users. The reliability prop-
erties of a continuously available system are unaffected or only minimally af-
fected by failures.

• Recoverability: Also in the context of a fault-tolerant distributed computing sys-
tem, the ability of failed components to restart themselves and rejoin the system,
after the cause of failure has been repaired.

• Consistency: The ability of the system to coordinate related actions by multi-
ple components, often in the presence of concurrency and failures. Consistency
underlies the ability of a distributed system to emulate a non-distributed sys-
tem. Later, though, we will see that there are many ways to implement this kind
of emulation—many ways to implement consistency guarantees. Thus when we
commented that consistency is an issue in the cloud, and talked about CAP, that
really relates to one particular consistency model (the one used in database set-
tings that support ACID guarantees). One can accept that this form of consistency
will not work in the cloud, and yet still build cloud-scale solutions that have strong
consistency properties.

• Scalability: The ability of a system to continue to operate correctly even as some
aspect is scaled to a larger size. For example, we might increase the size of the
network on which the system is running—doing so increases the frequency of
such events as network outages and could degrade a “non-scalable” system. We
might increase numbers of users, or numbers of servers, or load on the system.
Scalability thus has many dimensions; a scalable system would normally specify
the dimensions in which it achieves scalability and the degree of scaling it can
sustain.

• Security: The ability of the system to protect data, services, and resources against
misuse by unauthorized users.

• Privacy: The ability of the system to protect the identity and locations of its users,
or the contents of sensitive data, from unauthorized disclosure.

• Correct specification: The assurance that the system solves the intended problem.
• Correct implementation: The assurance that the system correctly implements its

specification.
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• Predictable performance: The guarantee that a distributed system achieves de-
sired levels of performance—for example, data throughput from source to desti-
nation, latencies measured for critical paths, requests processed per second, and
so forth.

• Timeliness: In systems subject to real-time constraints, the assurance that actions
are taken within the specified time bounds, or are performed with a desired degree
of temporal synchronization between the components.

Underlying many of these issues are questions of tolerating failures. Failure, too,
can have many meanings:
• Halting failures: In this model, a process or computer either works correctly, or

simply stops executing and crashes without taking incorrect actions, as a result
of failure. As the model is normally specified, there is no way to detect that the
process has halted except by timeout: It stops sending “keep alive” messages or
responding to “pinging” messages and hence other processes can deduce that it
has failed.

• Fail-stop failures: These are accurately detectable halting failures. In this model,
processes fail by halting. However, other processes that may be interacting with
the faulty process also have a completely accurate way to detect such failures—
for example, a fail-stop environment might be one in which timeouts can be used
to monitor the status of processes, and no timeout occurs unless the process being
monitored has actually crashed. Obviously, such a model may be unrealistically
optimistic, representing an idealized world in which the handling of failures is
reduced to a pure problem of how the system should react when a failure is sensed.
If we solve problems with this model, we then need to ask how to relate the
solutions to the real world.

• Send-omission failures: These are failures to send a message that, according to the
logic of the distributed computing systems, should have been sent. Send-omission
failures are commonly caused by a lack of buffering space in the operating sys-
tem or network interface, which can cause a message to be discarded after the
application program has sent it but before it leaves the sender’s machine. Perhaps
surprisingly, few operating systems report such events to the application.

• Receive-omission failures: These are similar to send-omission failures, but they
occur when a message is lost near the destination process, often because of a lack
of memory in which to buffer it or because evidence of data corruption has been
discovered.

• Network failures: These occur when the network loses messages sent between
certain pairs of processes.

• Network partitioning failures: These are a more severe form of network failure, in
which the network fragments into disconnected sub-networks, within which mes-
sages can be transmitted, but between which messages are lost. When a failure of
this sort is repaired, one talks about merging the network partitions. Network par-
titioning failures are a common problem in modern distributed systems; hence,
we will discuss them in detail in Part III of this book.

• Timing failures: These occur when a temporal property of the system is violated—
for example, when a clock on a computer exhibits a value that is unacceptably far



2.2 Components of a Reliable Distributed Computing System 63

from the values of other clocks, or when an action is taken too soon or too late,
or when a message is delayed by longer than the maximum tolerable delay for a
network connection.

• Byzantine failures: This is a term that captures a wide variety of other faulty
behaviors, including data corruption, programs that fail to follow the correct pro-
tocol, and even malicious or adversarial behaviors by programs that actively seek
to force a system to violate its reliability properties.
Readers might want to pause at this point and consider some cloud computing

application that they often use: perhaps, our map-based applications, or perhaps
some other application such as Shazam (a mobile application for recognizing music
from small samples), or Twitter. Look at these notions of reliability, and imagine
yourself in the role of a lead developer creating that application. Which forms of
reliability would matter most, if you want to ensure that clients can count upon
your solution as a reliable mobile tool that would play a big role in their mobile
lives? What obstacles to that form of reliability can you identify, and where would
be your best hope of addressing the resulting requirements? The client system?
The Internet itself? Or the cloud computing system? You’ll see that even with-
out knowing how cloud computing systems really work, you actually can reason
about a question like this. Moreover, you can probably convince yourself that the
answer necessarily involves many moving parts: for any sophisticated cloud func-
tionality, the client can (and probably must) provide some of the needed function-
ality, the network others, and the cloud system itself has its own role to play. The
cloud solution may be the conductor of the orchestra, but without ways to control
each of these components, it would not be possible to build reliable cloud applica-
tions.

2.2 Components of a Reliable Distributed Computing System

So, at the end of the day, where does reliability really come from? There isn’t any
single magic answer. Reliable distributed computing systems are assembled from
basic building blocks; in general, those building blocks can experience failures, and
depending on the nature of the problem and its severity, the system may be able to
overcome the issue, or it may shut down or malfunction. Thus, the Google Maps
service can tolerate the crash of a cloud server running the map application: if this
happens, the client requests will be reissued and routed to a different server. Of
course, some information might be lost, but the map application is designed so that
such events have minimal disruptive impact. But suppose that a recent accident has
closed a bridge on the route you are taking. Will your Google Maps unit know? This
is less certain: while mapping systems track such events, to get this information to
you the server you are talking to will need to see the update promptly; your mobile
device will need to talk to that server; the network will need to be stable enough to
let it download the relevant data. Over time, the cloud can certainly do all of these
things. If split-second decisions are involved, however, we run into a situation for
which the cloud as currently designed just is not ideal (obviously, some systems,
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like Twitter, are specialized in replicating some forms of information, but those are
specialized and not typical of the platforms in the widest use). The point here is that
even if a map application is perfectly reliable, you might perceive it as unreliable if
it fails to warn you of a closed bridge. Reliability must be judged by the end-user
experience, not in terms of any kind of narrower, more technical definition focused
purely on the reliability of individual subsystems.

Staleness of underlying data is just one of many issues of this kind. Cloud sys-
tems are also at risk of being confused by data that were incorrect in the first place,
or that became corrupted once they entered the system. Moreover, systems like the
ones we have described sometimes turn into targets for hackers or other kinds of
intruder, such as foreign intelligence organizations or corporate espionage teams.
Attacks can come from the outside or the inside: not every single employee at the
company necessarily buys into the “do not be evil” motto. One can only protect
against some of these kinds of issue, and even when we can, the mechanisms are
sometimes expensive or use techniques that do not scale very well. Some forms of
reliability, in effect, go beyond what a cloud platform is designed to do.

Your job, as the designer of a reliable cloud computing application, will be to
start by thinking hard about what reliability needs to mean for the end-user, taking
a holistic approach: you need to think about what the end-user is trying to accom-
plish, and to view your system as a black box, thinking about its properties without
rushing to make decisions about how it will be built. You’ll need to set reasonable
goals: a system might be able to protect itself against some forms of problems, but
perhaps not others; some properties may even be mutually exclusive. Moreover, you
need to strike a balance between the costs of the reliability properties you desire to
offer and other properties, such as the speed and scalability of your solution. Even
the complexity of the solution should be viewed as an issue: a complex reliability-
enhancing technique could actually decrease reliability by being hard to implement.
A simpler solution that offers less coverage may still be more reliable if it can be
completed on schedule and on budget, tested more carefully, and if the limitations
do not pose frequent and grave problems for its users.

Our job in this text will not be to address this software engineering task. Instead,
we will take up the challenge at the next step: given sensible reliability goals, we
will focus here on the technical options for achieving them. In effect, we will cre-
ate a menu of options, within which the savvy designer can later pick and chose.
Reliability will not turn out to be a one-size-fits-all story; for any given purpose,
it demands choices and often requires compromises. Indeed, sometimes reliabil-
ity comes as much from steps taken outside of a system as it does from the ones
we take within it. For example, when designing health-care systems and air traf-
fic control systems, one explicitly recognizes that even the most reliable system will
sometimes fail. Accordingly, we use a fail-safe mindset: we design the solution with
safeguards that will ensure the safety of the end-user no matter what may happen
within the system. Thus, if a cardiac monitoring system goes offline, one wants it to
somehow signal that the technology has failed; this is far preferable than trying to
engineer a system that can never fail.
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2.3 Summary: Reliability in the Cloud

Our simple example leads to several kinds of insight. First, we have seen that cloud
computing systems need to be understood in terms of three distinct components,
each of which has a distinct role (and each, of course, is itself structured as a set
of components). The first component is the client application: perhaps a browser, or
perhaps some sort of program that uses the same protocols employed by browsers,
issuing requests to cloud-hosted services and receiving replies from them. These
requests and replies take the form of web pages, but in a very simple format intended
for machine consumption, not humans. The second component is the network itself,
which moves the data, and is built as a complex assemblage of routers, together
with a small set of network-hosted technologies like DNS (to map host names to IP
addresses) and BGP (one of the protocols used by routers to maintain routing tables).
Indeed, while we often think of the Internet as a kind of fancy wire carrying data
from our laptops to the data centers that provide services like email, the better mental
image would be more akin to those very fancy Swiss watches stuffed with springs
and gears and all sorts of strange looking twisty things, all moving in a completely
implausible ballet. But this Swiss watch is vastly larger and has far more moving
parts! Finally, the third major component of a cloud computing system is the cloud
computing data center itself. That data center reaches out to control the routing
from your computer to its point of ingress, and then the ingress router examines
your packets and redirects them to some server. That server, talking to other servers,
builds a response for you: you’re a client of the server, but it is a client of other
servers and services.

Next, we have seen that the system per-se is really a part of a bigger story. The
end-user is concerned with that bigger story, not the minutia of how the system
works internally. Reliability is an end-user property; the end-user’s goals and per-
ception should shape the technical goals and decisions we make as we look more
closely at each of the three components of the solution.

When we ask about reliability, we have seen that we are being sloppy: many peo-
ple have an intuitive sense that reliability is about availability and quick response,
but we might have any of a number of other properties in mind; moreover, some
settings actually require some mixture of properties for safety (for example, a con-
troller for an insulin pump should either operate properly, or it should go offline and
a warning should sound), while others intend the term in a looser sense. Speaking
broadly, we have seen that reliability in the cloud as it exists today is of this lat-
ter kind: it can be hard to pin down a precise meaning for the term, and the kind
of reliability we are offered comes from many separate mechanisms, each working
to overcome certain kinds of issue. These can add up to a convincing illusion of
reliability, but can also break down in visible ways, without anything in the cloud
realizing that anything has “gone wrong.” After all, what does “wrong” mean for a
system that does not really define “right?”

To the extent that a reliability property in question is pinned down, there may
be many ways to obtain the desired behavior. Among these, we might change the
application to require a different property (this can be a good idea if the original
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property is unreasonably costly or even infeasible), we might manage to show that
a standard cloud service can achieve the desired property, or we might find a non-
standard way to implement what we seek, hosting the resulting system on a cloud
platform (and taking steps to confirm that the cloud will not do anything that might
prevent our implementation for working correctly).

Depending on the situation, not all of these options will be applicable. For exam-
ple, modifying an application is not always feasible; there are often serious require-
ments that we just cannot hack around. Building an entire home-brew infrastructure
is not a minor undertaking: you will have a big job, and your solution, however good
it may be at guaranteeing whatever you set out to promise, may seem to be lacking
all sorts of basic features that users have come to expect. Moreover, the experience
in the field makes it clear that any approach that deviates too far from the main-
stream will later seem hard to maintain, expensive and ultimately will fail. When
feasible, the best choice is to just find some way to run the needed solution on a
standard cloud infrastructure, but to take steps to confirm that it does what we really
need from it—to prove, in effect, that the solution will really solve the problem.

This approach does raise questions, however. First, building a cloud-hosted ap-
plication that pushes beyond the limits of the standard cloud is not a minor undertak-
ing. As we have observed, and will see in upcoming chapters, the cloud has bought
heavily into the end-to-end principle and the CAP conjecture, leaving reliability
and security and other similar properties to the client and the server, and leaving
the Internet to play one role: moving packets as rapidly as possible. But we will see
that sometimes, one can strengthen these kinds of behavior in ways that respect the
standards, and yet give us more than the standards can provide. Second, even if our
solution works on day zero, we need to worry that as the cloud evolves, something
that was implicitly assumed in the application might cease to hold.

A second question really relates to a stylistic choice for this textbook. Would
it make more sense to dive deep on specific questions, such as the network rout-
ing control problem we discussed above? Or should we focus on design patterns:
paradigms that one can study in a more abstracted way, and then later translate back
to practice when working on specific applications. On this the author of this text
feels conflicted: having built cloud computing services of his own, it is absolutely
clear that a book of cloud computing recipes could be hugely successful. Right now,
the best way to find out how to do many things is just to issue enough web search
queries to stumble on an example in which someone else did the thing you are trying
to do, and then copy the code. This is definitely not the best way to learn, and seems
certain to propagate mistakes from the random web pages you stumble upon into
your own software. Yet this is how one does it today.

Nonetheless, this will not be a book of recipes. Instead, we will opt for the second
approach, teasing out abstracted questions that we can focus upon in a clean way,
solve, and then either implement as needed, or perhaps package within the Isis2

library (Appendix B), if the technique is a bit tricky. In the chapters that follow, we
will often pose important questions that admit many kinds of answer. Sometimes
we will lay the options out one by one; in other cases we will just focus on the
best known answer, or the approach actually used in cloud computing standards and



2.4 Related Reading 67

platforms. As a reader of this text, you will need to think these questions out on your
own: is this the right way to pose my application goals? Can my goals be realized
in a low-cost way? Given multiple possible realizations, which is the best choice?
There will not be any simple formula to guide you to the answers, but an approach
that focuses on scalability and simplicity will rarely steer you wrong.

Einstein is said to have remarked that one should strive to make things as simple
as possible. . . but not simpler. Cloud computing systems are unavoidably complex,
because they have so many components, connected in such elaborate and dynami-
cally evolving ways. We could lose ourselves within this complexity and not learn
very much at all. Within the cloud, we work with a vast array of mechanisms and
normally, those mechanisms are working and doing a wonderful job; this is why
cloud computing has taken off. Yet our overarching theme in this text is reliability,
and the real challenges arise not when all works as hoped, but when something goes
wrong: how, then, will the application behave? Today’s cloud often opts for the sim-
plest solution that will not trigger a crash and a blue screen. But if we need to make
a cloud application more reliable than what you get in the standard way, we should
expect that in some cases, there will not be any easy way to avoid grappling with
fairly complex issues. Oversimplifying would simply be a recipe for unreliability.

2.4 Related Reading

The slide set used by Eric Brewer for his 2000 PODC keynote talk on cloud com-
puting scalability (Brewer 2000), and the slide sets and remarks of speakers at the
2008 ACM Workshop on Large Scale Distributed Systems (LADIS) are well worth
looking at. LADIS, in particular, featured a number of cloud computing experts (see
http://www.cs.cornell.edu/projects/ladis2008).

Stanford law professor Lawrence Lessig has written several fascinating books
on the growth of the Internet and the impact of technology on society (see Lessig
1999).

On the topic of fail-safe application design (see Leveson 1995).
General discussion of network architectures and the OSI hierarchy (see Architec-

ture Projects Management Limited 1989, 1991a, 1991b; Comer 1991; Comer and
Stevens 1993; Coulouris et al. 1994; Cristian and Delancy 1990; Tanenbaum 1988;
XTP Forum).

Pros and cons of layered architectures (see Abbott and Peterson 1993; Braun
and Diot 1995; Clark and Tennenhouse 1987, 1990; Karamcheti and Chien 1994;
Kay and Pasquale 1993; Ousterhout 1990; van Renesse et al. 1988, 1989).

Reliable stream communication (see Comer 1991; Comer and Stevens 1991,
1993; Coulouris et al. 1994; Jacobson 1988; Ritchie 1984; Tanenbaum 1988).

Failure models and classifications (see Chandra and Toueg 1991; Chandra et al.
1992, Cristian 1991b; Cristian and Delancy 1990; Fisher et al. 1985b; Gray and
Reuter 1993; Lamport 1978a, 1978b, 1984; Marzullo 1990; Sabel and Marzullo
1994; Skeen 1982a; Srikanth and Toueg 1987).
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3.1 The Life of a Cloud Computing Client

In this chapter, we drill down on some of the major issues that a cloud comput-
ing client system must handle. The client application itself will not be our focus;
it might be a web browser (perhaps running a sophisticated application coded in
a language like SilverLight or Caja), an “App” (these are really just a category
of web browser pages designed to run without the usual task bars and buttons),
or it could be some arbitrary program that uses Web Services protocols to is-
sue requests to services running in the cloud. Whatever the application, it faces
the challenge of connecting to an appropriate server (some machine within the
cloud running the desired service), preparing and sending requests in the format
favored by the cloud (an encoding called SOAP, which is actually a dialect of
XML—a form of very structured web page), handling disruptions such as server
failures or connectivity problems, running downloaded code safely (assuming that
the application is one that can run downloaded code; this is not always the case),
copying with mobility, and dealing with some of the annoyances created by the
modern web, such as ISPs that aggressively insert hyperlinks to their commer-
cial partners in situations where they believe that doing so will not break any-
thing.

Our goal here is to provide an overview, although some of the functional-
ity we will touch upon is quite complex. The decision to not go deep reflects
a question of balance: a comprehensive treatment of these topics could easily
consume an entire textbook. At the end of the chapter we suggest some addi-
tional readings that could be explored to learn more about the network layer
and the ways client systems use them, the details of the Web Services standards,
and some of the many products available for application development in this
space.

K.P. Birman, Guide to Reliable Distributed Systems, Texts in Computer Science,
DOI 10.1007/978-1-4471-2416-0_3, © Springer-Verlag London Limited 2012
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3.2 Web Services

3.2.1 How Web Browsers Talk to Web Sites

Cloud computing systems adhere to a collection of Web Services standards (some
readers may have encountered these under an alias: the US government and military
use the web services standards, but with a different acronym: they refer to these as
Global Information Grid or GIG standards). The web services area is a large and
active one and very much a moving target: it includes a huge collection of standards
that evolve regularly as existing ones are revised and new sub-standards are agreed
upon by the web services consortium, a group called W3. Here, we will discuss just
a few of its many components.

A Web service is most easily imagined as a program that runs in a data center,
accepting requests for web pages in the form of URLs (perhaps with additional pa-
rameters), and then generating and sending back web pages to the web browser that
initiated the session. The basics are very simple: the browser starts by making a
connection to the server, typically using TCP. TCP engages in the three-way hand-
shake for which it is so famous, and establishes a two-way stream over which data
can be sent reliably: in order and without loss. TCP also takes care of matching data
rates: it gradually ramps up the size of its sliding window using the so-called slow
start policy until it reaches a point at which some router, or the remote machine
(in this example, the server) signals overload by dropping a packet. The upshot of
this is that TCP bandwidth varies continuously, but ideally will track the maximum
possible rate of the connection (a small example is seen in Fig. 3.1). Protocols that
run on unusual versions of TCP, UDP or even through very non-standard pathways
like files, shared memory, email, etc., are also possible, although one sees them less
commonly.

The data transmitted on these connections will be text strings: commands that the
browser sends to the web site to specify the request, together with arguments and
other contextual data, such as the content of browser cookies maintained for that
site. The web site responds, also in text, with the web page corresponding to this
request.

Fig. 3.1 TCP bandwidth
traces out a sawtooth as the
protocol dynamically adjusts
data rates to seek the highest
possible rate, using a linear
increase/multiplicative
decrease rate scheme in
which packet loss triggers the
backoff (decrease) events
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The commands exchanged between a web site and a web browser use a lan-
guage called HTTP (the Hypertext Transfer Protocol) to request web pages, and
HTTP in turn is defined over a more general encoding standard called HTML,
which uses a notation called XML (short for Extensible Markup Language). The
way to understand this sort of layering is to think in terms of higher level layers
that are specialists, running on lower levels that are general purpose. Thus, in our
particular scenario, TCP can carry any kind of data stream; its job is to make sure
data are delivered in order without loss or duplication. Were one to look down,
toward the network, we would find that TCP is really a layer built over the Inter-
net’s IP protocols, and those in turn run over various hardware message-passing
layers.

Looking up toward the end-user, we first find that TCP is carrying XML objects.
XML is a very general encoding language that represents objects in text form and
can be used in many contexts; its role is to define a way to represent information
together with markups and tags. HTML uses XML to define a way of representing
pages that can be displayed in a browser; you have probably seen HTML versions
of web pages when fooling around with your web browser. But other technologies
use XML too, without using the HTML documentation standards. For example,
an early draft of this text was edited using Word, which employs a representation
called “.docx” for its files: XML, but not HTML. In effect, XML defines the nota-
tion and HTML uses that notation to represent the properties of pages: the fonts to
use, the width of the pages, etc. The language is recursive: it supports web pages
that contain other web pages. Moreover, since some of these pages can contain
executable objects, there is a sense in which “web scripting” is Turing complete:
anything that can be computed can, potentially, be computed using XML provided
that these features are enabled. As this text was being prepared, the implications
of cross-site web scripting were still largely unnoticed. Yet it would not be surpris-
ing if by the time the book reaches its readers, the most widely used applications
(such as social networking systems) were not already making heavy use of these
features.

Moving up the hierarchy we arrive at HTTP: an even higher-level language that
represents commands exchanged between a browser and a data center as HTML
pages. HTTP defines a few simple commands (get, put, poll, . . . ) whereby the web
browser can either request a web page, send information encoded as a web page to
the server, or ask about the current version number for a web page without fetching
it. The protocol is quite flexible, offering several ways that the browser or server
can specify additional arguments, for example to pass information in cookies that
the client system may have stored on behalf of this web site. The responses to these
HTTP requests are also represented as XML web pages, and are passed back from
the server to the client to be rendered.

Notice that because the server is a program, and the web page request is really
just a string that can include arguments encoded through the name of the web page
or as optional additional arguments on the URL after the web page name, it is not
actually necessary that web page exist before the request was made. Thus, while
some web pages are relatively unchanging (like the author’s home page), others can
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be highly dynamic, with the content generated on demand, for example by retrieving
information from a database and then formatting it to respect the HTTP formatting
rules. When you fetch a web page from CNN.com or Amazon.com, everything you
see was assembled, on the fly, by a CNN or Amazon web server, although images
and other large objects within the page will often be passed using URLs that point
to so-called content hosting servers from which they can be rapidly downloaded;
several companies provide content hosting services and specialize in ensuring that
the biggest downloads required to render a web page will be from a server very
close to your point of access and with outstanding latency and bandwidth to your
machine.

Web development has become a very well-supported technology area. For ex-
ample, because many companies maintain their most important information in
databases, today’s most popular database products can function as web servers,
allowing developer to provide rules for mapping requests to web pages. A good
example of a product that works this way is PHP, a specialized and very powerful
database solution designed specifically for use in building web sites. However, PHP
is just one of many options. In cloud settings this is a common phenomenon: so
important and popular are cloud systems today that there are many products for any
particular role (competing in terms of functionality, ease of use, performance and
scalability, etc.).

A web server can also use more general logic to respond to incoming requests
(that is, without necessarily interacting with a database). A widely popular technol-
ogy for this purposes is Microsoft’s .ASP framework. Using .ASP (short for Ap-
plication Service Page), arbitrary code written in any of the 40 or so programming
languages supported by Microsoft .NET can interpret the incoming request, slice it
into parts to be handled by concurrently running subservices, and then assemble the
results into any form that makes sense for the application.

We mentioned that many web pages contain embedded minipages that will
fetched and rendered, concurrently, even as the remainder of the main page is down-
loaded and rendered. This approach allows the user to leverage powerful third-party
solutions without needing to know much about them. For example, many web sites
earn revenue by placing advertising, yet few developers are expert in rendering third-
party content. It turns out that this entire task is standardized: one can simply embed
a frame (a mini-page) that will download and display content retrieved from other
platforms, and by pointing such a frame to an advertising site, revenue will flow
each time a user visits your site. The company that provides the advertising content
selects the right advertising to display and tracks the click-through rates to deter-
mine how much you will be paid. A similar approach is used when a page needs to
contain large, relatively static forms of content, such as high-resolution images or
videos. Rather than burden your web site with the need to serve up these kinds of
data, which might overload your network link, a web site can subscribe to services
that will copy the content once, then cache it and deliver it on demand, often from
a location near the end-user (Akamai, a well known player in this space, is said
to have hundreds of content-hosting sites, placed worldwide to ensure rapid data
delivery no matter where the end-user might be located). These kinds of features
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reduce Internet loads, speed web page display, and shield the developer from all
sorts of complexities. We could go deeper and deeper, giving examples, but to do
so would require much more space than this text can budget for any single technol-
ogy.

Notice the many ways concurrency (parallelism) enters the picture. In the cloud,
even simple tasks such as fetching data and rendering pages routinely run as con-
current activities, with the goal of ensuring the fastest possible response from the
perspective of the user. Parallel computation of the subframes of a web page rep-
resent just one example of a very common motif: a great deal of thought and engi-
neering has been expended on ensuring that user requests will get rapid responses,
with caching and embarrassing1 parallelism used very aggressively. For example,
we noted earlier that downloads of complex web pages (those structured as a hier-
archy of frames) are issued concurrently, and rendered as the content is received.
But this is also done when updates are triggered by a request to a cloud computing
system: rather than do the update first and then return a result only when it finishes,
cloud platforms often issue the response first (often by optimistically applying the
update to a local copy of the underlying data), and then leave the “real” update
running in the background after the response has already been sent.

A natural question to ask is how early responses can possibly guarantee cor-
rectness, since the approach lacks locking and hence could result in inconsistency,
e.g. if a crash were to cause the update to be forgotten, or if two conflicting up-
dates were to run concurrently. The short answer is that the cloud simply accepts
the risk of these kinds of inconsistency. The longer answer is that web applications
are expected to tolerate such issues, to automatically repair any inconsistencies they
encounter, and thus to embrace these risks as unavoidable complications of cloud
computing!

Caching is taken to extremes as well. For example, in addition to caching recently
accessed data and files (often, both on the client system and on the server system),
browsers typically leave the TCP connection open for a while. The value of caching
connections is that if a new request needs to be sent to the same server, no connection
delay will occur and the data rates may already have stabilized close to whatever the
peak rate possible for the connection might be. All of these forms of caching can be
sources of inconsistency: rather than limiting caching to coherent caches, meaning
those that are guaranteed to reflect a correct and current version of the underlying
data, many cloud systems work with potentially inconsistent cached data, namely
data that could be stale or otherwise incorrect. The concern even applies to cached
TCP connections, since by reusing an existing connection, we deprive the cloud
management infrastructure of the chance to use what it might consider to be the
ideal mapping. For example, the reused connection might direct a request to a server
in a way that is inconsistent with the internal mapping policies the cloud might be

1We say that parallelism is embarrassing if the method of subdividing the computation and per-
forming it is extremely simple. This is in contrast to methods of achieving parallelism that employ
complex algorithms and are correspondingly complex to reason about.
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trying to implement. Such errors are viewed as just an unavoidable cost that one
tolerates to achieve massive scalability and high speeds.

Notice the way that the cloud balances decisions in favor of using simple ideas,
such as HTML web page encodings, and then overloading them with fancier mech-
anisms that run on top of the same basic infrastructure. This is partly historical: if
one looks at the evolution of the area, we have seen the web generalize from simple
web page rendering in the early days, to rendering of program-generated content, to
client-side Javascript program execution. With each new development the web be-
came dramatically more programmable. Yet each new step also leveraged the scala-
bility features of the existing infrastructure that supported the prior technology, and
this was definitely not a historical accident: the key insight is that scalability has
been hard to achieve, and has come first for the simplest things. Rather than throw
away hard-won performance and scalability, by finding a way to layer a more com-
plex behavior over a simple existing mechanism, we can get the best of both cases:
fancy behavior, but great scalability and performance.

Developers in the cloud community often comment that the wisdom of this ap-
proach grew on them slowly. In academic settings, students are taught to think sys-
tem designs through from the ground up, making the best decision at each step. So,
as students enter the professional world of cloud computing they often assume that
rather than learning how some existing but overly simplistic technology works, the
best way to implement a fancy new feature is to start from scratch. Yet the team that
finds a way to layer the fancy feature on some existing fast, scalable mechanism
will probably win the race even if the resulting architecture is a bit ungainly. In the
cloud, there is real value in backward compatibility because the existing systems
were really hard to build even if the things they do are simple. In some sense, the
complexity is not really in the applications, per se, but rather in the scale at which
they need to run. So while academic purists might look at the resulting jerry-rigged,
incrementally created technology stack and groan, the engineers who really built the
web have learned that this is just the “way of the cloud.”

One sees this again in the case of web pages. Initially, web pages were static,
but not long into the web revolution two contending options for supporting dynamic
web pages emerged: one approach using web pages that have an expiration time and
then must be refreshed; the other based on a kind of stream of pushed notifications
encoded using a special representation called ATOM (this is how RSS feeds work).
Still more features allow a web page to instruct the client’s browser to connect to

some other web site and download content from there. In the early days, this was
seen as a security loophole, but it soon gained mainstream acceptance because it
simplified the insertion of advertising onto pages and made it possible for special-
ized companies to track click-through rates. Today, one might still argue that the
feature is a security loophole, but it is much too late to roll it back.

Fanciest of all are the new technologies that allow a web server to send a full
program (typically in Javascript or Flash) to your browser, which will then execute
it in a kind of virtual machine (despite the name, Javascript is not Java, and this
is not the JVM, but the idea is similar). These programs are closer and closer to
full-featured, general purpose applications. They even have sophisticated access to



3.2 Web Services 75

your file system: again, a feature that has obvious security implications, but that ul-
timately won out because it permits web pages to upload files, photos, videos and
other content that you might wish to post to the web. Thus, we have gone from
web pages with images on them to web frames that run substantial programs, down-
loaded over the web, with only the security features of Javascript or Flash protecting
us from a hijacking of our machines. Yet each of these steps has represented a huge
advance in the flexibility and power of the cloud experience, and those advances
have been irresistible to the companies that are ultimately paying the bill for all
of this technology, namely the ones advertising and doing e-Commerce using the
web.

The fundamental driver in each of these cases was customer demand for features:
slicker web page interfaces, more flexibility in terms of what the web can do, and
better performance. It would be a mistake to visualize hoards of evil technology
companies waving large checkbooks at the main cloud-computing platform vendors,
demanding that they rush to deploy immature technologies lacking critical assurance
and security properties. We have ended up with a technology base that suffers from
those deficiencies, but nobody ever intended that this be the case.

The real problem is that better web experiences have been rewarded by crowds of
users who flock to web sites that leverage the cutting edge options. Browsers slow to
support popular technologies have been abandoned by a fickle end user community
demanding richer feature sets. This has been counterbalanced, but only to a limited
degree, by a fear of bad press on issues of security, but it would be hard to find a case
in which a vendor has delayed a new feature for security reasons. More typical has
been a trend to introduce desired features as quickly as possible, and then to follow
on with upgrades that patch specific security holes or that sandbox those features,
to limit the risk of exploits.

Thus today we have a web that offers very solid protection for credit card trans-
actions over the Internet: we would not be able to make e-purchases otherwise. One
certainly reads of large losses of credit card information, but these typically involve
exploits targeting database systems storing credit card data, and often reflect some
form of insider help. All other forms of security are far weaker: anyone who keeps
sensitive data on a home or office computer is placing unwarranted trust in a porous
infrastructure that seems to get leakier by the day. The trends, indeed, favor cloud
storage as the safer option: a well managed cloud storage system should be far less
prone to computer virus infections or cross-site scripting attacks than our personal
machines. On the other hand, it defies common sense to upload one’s most sensi-
tive digital possessions to an infrastructure operated by third parties dominated by
commercial objectives that may be very remote from our own.

Thus, at the end of the day, the shape of the web is very much determined by
the end-user; if the web lacks properties we might wish it had, before complain-
ing too loudly we should pause to think of the many ways that our own actions
are responsible for the form the web has taken. And when we accept this context,
together with the obvious motivation of cloud developers to leverage their best scal-
ability and performance successes, it becomes very easy to understand how the web
might have followed what has to be seen as an unusually haphazard evolutionary
path.



76 3 Client Perspective

3.2.2 Web Services: Client/Server RPC over HTTP

While all of this activity was happening on the client side of the traditional
browser/server infrastructure, a second trend began to play out (again anticipated
in many ways by the ubiquitous computing visionaries at Xerox Parc). Not long
after web browsers were invented, it became clear that the web had the potential to
function as a universal standard. Whereas previous standardization attempts of this
kind had faltered, the low price of web services technologies made it possible to in-
expensively modify all sorts of things to support web protocol interfaces: television
sets, air conditioners, radios, microwave ovens, cameras, wireless routers. Thus the
same thinking that evolved web pages with images on them into animated interac-
tive gecko lizards applies equally to all of these other technologies: what some have
referred to as the Internet of Things.

Prior to the emergence of the modern web, we used remote procedure calls to
access services offered by a remote computer over the network. In an RPC system,
we say that the server defines a set of procedure call stubs, which look to the client
system much like a library to which it can link. Type checking and so forth work
normally, and a protocol such as TCP or UDP is used to connect the client to the
server when the client process starts up.

With Web Services, exactly the same ideas apply, except that one talks to a Web
Service using the same standards that a web browser uses to talk to a web site: HTTP,
typically running over TCP. To facilitate this style of application the web services
standards include a special web page format, called the Simple Object Access Pro-
tocol (SOAP), which uses the HTML representation but (just as in our other layered
examples) defines a very specific style of HTML page. To exploit this capability,
the client computer encodes requests as a SOAP page and ships the resulting pages
to the server. The server decodes the page, does a procedure call internally to per-
form the requested action, and then uses SOAP again to encode the result, shipping
it back. In effect, SOAP allows an active program to generate specially formatted
web pages that encode their requests, and allows servers to encode results to those
requests, again in special web pages. Indeed, one can use a web browser to display
these SOAP pages. They include the name of the request being issued, the argument
names and types that were supplied, the values being passed (again, encoded into an
text format), etc. Obviously, this is not a tremendously efficient representation, but
it works well enough for all but the most performance-intensive uses. For those pur-
poses, other, more optimized options exist (for example, one can switch to a binary
XML standard).

Web Services requests function very much like remote procedure calls, but it is
important to remember that they are not identical to method invocations on objects:
arguments need to be passed “by value”, obviously, and type checking is not very
elaborate. But this is to be expected, since the client and server often run on differ-
ent machines and are often coded in different programming languages. There may
not be any real object involved, either: MyFavoritePhotoOfBiscuit.jpg could be a
real photo stored in the file system, but could also be generated on demand. (For
example, upon receipt of the request, a little robot could zip outside, snap a photo of
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Biscuit nicely posed on the porch, and then transmit it back to you.) The approach
turns out to be incredibly flexible.

This vision of a cloud that can reach out and do something, or touch something,
leads back to the notion of the Internet of things, although the topic is not one we
can afford to cover in in much detail. Once one opens the door to using web services
as a way to talk to devices, a tremendous variety of opportunities, and challenges,
are uncovered. Unfortunately, however, that world of opportunity also reflects some
fairly basic core assumptions different enough from the assumptions underlying our
treatment here to make it hard to cover both topics in a single coherent way. There
is some irony in this: our focus here is on relatively powerful client systems that
talk to cloud-hosted services over a network, and that is also the bigger story to-
day. Yet the Internet of (little) things, fusing computation with the real world in a
way mediated by the cloud could easily become the much bigger story in the long
run.

Let us explore this story very briefly, but then return to our main themes. When
the web is used between a client’s computer system and a cloud platform, one has
a certain set of expectations: a client’s computer has memory, storage, substantial
computing capabilities, unlimited power from the nearest power outlet, some limited
degree of mobility and autonomy, are continuously connected to the Internet, etc.
Even mobile devices like telephones actually are surprisingly close to this model;
obviously, power is more of an issue, but on the whole the model is very similar to
that for the desktop you use at the office.

These assumptions are called into question if the web services device we are
looking at is a teakettle or a microwave oven. Such devices have very limited roles
and even if we could transmit arbitrary Javascript programs to them, it is not at all
clear what an animated gecko designed to sell cheaper automobile insurance would
do once it got there. The location and roles of these devices are important: this
light switch controls the lights in the basement; that switch controls the ones in the
bathroom, and this other device controls the hot water heater. Indeed, so important
are these questions of physical location and physical role that one could argue that
we are wrong to use the term “Internet” of things, because “Internet” sounds too
network-centric; better, perhaps, would be “universe” of things: accessible on a net-
work, but occupying physical locations and functioning as sensors or actuators in
some narrow way. Moreover, however eager web vendors might be to display ad-
vertising on a teakettle, it is not obvious that consumers would embrace that sort
of thing: who would want to live in a home filled with online advertising devices?
Thus this universe of things is ultimately very different from the Internet that gave
rise to cloud computing, and the economic drivers that will push it forward may be
more end-user driven and a bit less advertising driven than what we have seen for
the client-server side of the cloud.

Similarly, the ways that a cloud computing system might manage and exploit
vast numbers of very lightweight, limited devices differ from the ways a cloud deals
with a heavy-weight, full-functionality client system. With a client-server situation,
one can reasonably expect the client to do much of the work. With a cloud con-
trolling your home, the responsibilities clearly tilt toward the cloud. And finally,
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the demands that these very different styles of applications might put on network
protocols or operating systems are also different from the patterns that dominate
in today’s client-server cloud. While the teakettle might not require very much
from the cloud, as one spins out stories of this future universe, all sorts of safety
and timing challenges arise not seen in traditional cloud settings (Lee and Seshia
2011).

Yet while these sorts of issues represent challenges that will need to be solved,
perhaps ultimately distancing the universe of things from the client-server cloud as
we know it today, that universe also offers some incredibly exciting opportunities.
As we reach the point of exploiting those opportunities, the resulting capabilities
could transform the world in very positive ways.

One especially appealing direction involves the automation of some of the more
human-intensive and expensive aspects of today’s healthcare infrastructure. Recall
the healthcare scenarios we touched upon in the introduction. As we saw, there are
more and more at-home patients who need some degree of remote monitoring and
help managing their medications and other devices, and hence who could bene-
fit from techniques to automate some of these roles. Consider our elderly diabetic
patient who needs to periodically measure his or her blood sugars and adjust the
dosages of insulin being administered by an insulin pump. Errors could cause a
nasty fall, hospitalization or even death. Yet if the technology is handled correctly,
that patient’s health prospects would be greatly enhanced. To what extent might we
view this as an instance of the universe of things, and how can that scenario help us
understand the properties such applications would require?

Clearly the universe of things, if capable of offering the right properties, repre-
sents a very powerful and exciting possibility for healthcare. By connecting small
devices to the cloud, it becomes possible to imagine a future in which a small team of
medical experts, amplified by a cloud-hosted monitoring infrastructure, could keep
an eye on a very large population of home-care patients. This would require some
home visits by skilled nursing aids, but the network and cloud could offload a great
deal of the burden. Basically, we would use devices in the home to monitor blood
sugars and track food consumption (that part might be tricky but it seems feasible to
solve it, either by just asking the patient how much they ate, or in a fancier scenario,
perhaps by using RFID chips on frozen meals to figure out what the patient picked
for lunch). One would then upload the data into the cloud, build a model of how this
particular patient metabolizes meals, and use that to compute the right corrective
dose of insulin. The physician’s office would oversee the big picture, looking for
signs of trouble: perhaps, some patient’s sugars are running higher than the model
predicts (a possible sign of infection), or running unexpectedly low (a sign that the
patient might have lost her appetite). Then the office could phone or schedule a
visit. A technology like this could also watch for signs that the patient is developing
balance problems, notice if she leaves a teakettle on the burner unattended, and so
forth.

Yet here we also see a constellation of challenges. Can medical devices of these
kinds support web services interfaces, given the stringent rules imposed on medical
technology by the various regulatory authorities that would be involved? Can we
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operate the cloud and the network in a sufficiently secure and reliable way to be
able to trust it as the intermediary in this setting? What about power: people wear
insulin pumps and continuous glucose monitors, and wireless networking consumes
power. Thus one must ask if there are aspects of the web services protocols that are
wasteful in their use of network bandwidth; if so, we would need to adapt those to
work more effectively with devices running on very limited batteries. Failures will
surely occur in any case, so we would need to make sure these systems only fail
in safe modes; for example, if an insulin pump is running but has lost its network
connection, we need to ensure that no harm will occur and that someone will look
into the cause of the failure (this is not as simple as turning off the insulin pump: that
could leave the patient with very high blood sugars and, in a short time, hospitaliza-
tion or worse). All of what we have described involve “electronic health records,”
but whereas much of the trade press on this subject assumes that such records are
just electronic versions of the records kept in doctor’s offices today, we can see here
that they might also include other kinds of data generated or obtained in any kind
of medical situation, and hence span a very broad range of forms of data and use
cases. In this larger view, an electronic health record is any form of data that might
be stored in a computing system and used in connection with healthcare decision
making or treatment. Can we build solutions that respect the HiPPA requirements
for protecting this kind of sensitive, private data?

Beyond these basics, one must worry about more extreme questions. How would
we ensure that computer viruses or hackers can’t somehow gain control over medi-
cal devices playing, literally, life-or-death roles? Will CSI episodes of the near future
feature endless “murder by Internet” scenarios? (The black-sheep nephew hacks his
rich uncle’s insulin pump, knocking him off with a text message sent from some
very public place a thousand miles away. . . . but the brilliant, fashion-conscious CSI
investigators notice a blinking error code on the insulin pump interface, figure out
that the device has been hacked, and finally uncover the trail of digital forensic evi-
dence that leads directly to the remote cell phone. . . .)

Yet if all of those problems can be solved (and this author believes that with
effort, every single issue we are raised could be resolved, except perhaps the pre-
dictability of that future CSI script), the resulting technology could slash medical
expense in carrying for a very expensive kind of patient, and greatly improve qual-
ity of care! The benefits here far outweigh the risks that we might not be able to
solve some element of the needed technical story. Indeed, students reading this text
who are wondering what to do with their careers after school might want to consider
founding start-up companies in this or one of the other universe-of-things sectors.
It is not hard to predict that they could become the next really big thing, and fairly
soon, too: the technical enablers “almost” exist (after decades during which they
were lacking), and the demand is almost unlimited. Take the last step or two, and
you could literally save lives and make a fortune doing it!

Similar stories can be imagined in many settings. A second opportunity, perhaps
even more important than the medical one, would be to use cloud computing tech-
nologies as an enabler to help in the creation of a much smarter electric power grid.
The idea here starts by recognizing the absurd inefficiencies we routinely tolerate
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in power distribution and utilization today: we are burning coal and running nuclear
power plants that contribute to pollution and global warming, and yet much of the
power vanishes entirely: nothing actually used it. Moreover, it has been incredibly
difficult to integrate green power sources into the grid because of its irregular and
unpredictable production properties: solar panels do not put out much power on
cloudy days, turbines do not turn if there is no wind, etc. One needs to find ways
to share power over large distances to smooth these irregularities enough to exploit
these kinds of power source.

Now imagine a new kind of smart power grid in which small devices, like our
mobile telephones, are used on a vast scale to monitor and control the use of power
in every way you could dream up. These could include running the hot water heater
and the dishwasher at times convenient to the power grid, turning out the lights in
rooms that have nobody in them, and maybe even diminishing the power supply
to entire regions that are currently generating their power using local solar or wind
technologies. The scale of the undertaking would be comparable to the scale of
today’s cloud enabled web, hence it makes sense to conclude that the smart electric
power grid will turn out to be a new kind of cloud computing platform.

Smarter power management, controlled through the cloud, could certainly con-
tribute in big ways to energy efficiency. Yet once again, we see that the required
model departs in important ways from what one sees for hard-wired desktop ma-
chines, or for mobile telephones. The smart grid will end up with its own safety
and reliability requirements, its own security challenges, and all sorts of real-time
responsiveness requirements. These are solvable problems, but they take us in direc-
tions sufficiently distinct from today’s cloud computing solutions that to treat them
in a fair and thorough way would require a different kind of textbook.

The list goes on. Think about how the universe of things could impact other
aspects of daily life. Could your car direct you around a local traffic jam to a parking
space right next to your office? Could we go even further and somehow use the
cloud to create cars that safely drive themselves home in ways that reduce the risk
of traffic jams or accidents, or that drive themselves to a parking lot when you reach
your destination, then drive back to pick you up when you are ready to leave? What
about a personal cloud hosted assistant, ever prepared to help you plan your life,
with instant answers to all of life’s persistent questions?

These kinds of question are not all that new: the embedded computing commu-
nity has debated similar problems for decades and speculated about how a cloud-
computing style of computing could respond, over time, to these and other concerns,
yielding a very different world in which technology would partner with human users
to improve life in many ways. The ubiquitous computing folks at Xerox also ran
into questions that, today (20 years later) remain unclear: are these technologies
ultimately anathema to personal privacy and security? Yet we run into the same bot-
tom line mentioned above: doing justice to this speculative technology base would
be difficult in a text that also tries to do a good job of covering reliability issues for
the existing client-server version of the cloud.

Hence our decision to steer away from the universe of things (however promising
a future it may represent). It seems very likely that the expansion of web services
into the universe of things will make all of the ideas tossed out above feasible in
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a surprisingly short period of time; market forces will then determine which ones
become real and which ones fade away. But our role in this textbook will be more
limited: we will limit our attention to the network and data center side of the story,
leaving the universe of things to await some other book.

3.3 WS_RELIABILITY and WS_SECURITY

3.3.1 WS_RELIABILITY

Our discussion of the universe of things led us to a collection of issues centered
on the reliability and security of client-server applications in which the things are
the clients and the servers live in the cloud. To what extent are today’s cloud stan-
dards adequate to address these kinds of needs? To answer this question, we need to
look closely at the web services guarantees for client-side applications that require
reliability and/or security, such as banking systems that permit transactions against
one’s bank account over a secured connection from a secured web page. As we will
now see, the good news is that the web services standards do include ones defining
reliability and security protocols. The bad news is that security and reliability are
very broad terms, and these standards have much narrower, more specific meanings
that might surprise some readers.

As one might expect, the role of WS_RELIABILITY is to standardize the han-
dling of failures that occur while a web service is handling a client request. Given
that the Internet itself is not a perfectly reliable platform, and that the cloud “uses”
failure as a platform management option (e.g. to elastically vary the number of first-
tier service instances in response to changing load, or to migrate services off nodes
that need to be physically serviced), failure arises surprisingly often in the cloud.

The basic issue addressed by WS_RELIABILITY, is that sometimes, a client
will issue a request to a server, but then receive a timeout before the request has
been completed. This is a common event when a server crashes or is migrated,
and as we have noted, those kinds of server problem are surprisingly common in
cloud settings. Indeed, it would not be an exaggeration to say that the cloud is an
environment in which failure must be viewed as part of the normal life cycle of any
application. Failures in which the client remains healthy but a request is interrupted
are thus something that one simply must deal with in the cloud.

The web services standard starts by requiring that each SOAP request contain
an identifier that, in association with some form of client identifier, will uniquely
identify the request. The client identifier is tricky: we can’t use the IP address of
your computer for this because of the NAT and mobility issues mentioned earlier;
instead, some form of client-id would typically be assigned by the server at an early
stage of registering the client and then stored in a cookie or retrieved during a login-
sequence. To this the client would then append a counter that increments for each
request it issues. The rule defined by WS_RELIABILITY, the Web Services reliabil-
ity standard, is that if the client and server both implement the reliability protocol,
the client can resubmit the same request as often as it wishes, and the server will
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only perform the request once (or not at all, if the request never reaches it). On
the other hand, if either of the two does not implement the standard, no exceptions
will be thrown: the client that wants to use WS_RELIABILITY is expected to make
sure that the services it talks to implement the standard. As it turns out, not many
do, but we will defer that question of technology uptake for a moment and return to
it later.

As you read this, you probably have a good idea of how a server could implement
WS_RELIABILITY: it would need to maintain a table indexed by request-id listing,
for each completed request, the reply that was sent. Then, if a request turns out to
be a duplicate of one that was received earlier, the identical reply can be transmitted
back to the client. But of course in cloud settings, this is much more complex than
meets the eye. First, there is an issue of garbage collection; some services are very
busy. Should they keep old request id’s and replies indefinitely? And if not, for how
long? Then one might worry about the size of these old replies: could not they be
very large in some cases? What if the reply had time-sensitive content that needs to
be refreshed for the old reply to remain valid?

WS_RELIABILITY is silent on such questions: apparently, a service should keep
this information indefinitely and deal with such issues on its own. On the other
hand, recall our discussion of cloud consistency. The nature of the cloud limits
the degree to which any cloud system can really guarantee anything, and a close
reading of the WS_RELIABILITY standard makes it clear that even when using
WS_RELIABILITY, the user should anticipate that sometimes, a service will vio-
late the standard (presumably, by performing some requests more than once without
noticing that they are duplicates, but doing so very rarely).

But there are additional, even more serious, issues. Recall that a cloud platform
might deploy clones of a service on thousands of machines. WS_RELIABILITY
does not cut any slack for such cases: if any one machine receives and performs
a reliable request, every other machine that sees the identical request had better
skip the execution step and return a copy of the result. But now if you think back
to Brewer’s CAP principle, you should be able to see that we are talking about
functionality at odds with the CAP approach. WS_RELIABILITY requires a form
of consistent behavior cutting across the full set of first-tier servers, while CAP
warns that such behaviors may scale poorly.

Very likely this conflict explains why so few cloud-scale services support
WS_RELIABILITY. Indeed, the author is only aware of one specific case in which
the standard does get used, namely in services that enqueue requests for later pro-
cessing. These services function like mailboxes: the client (in effect) emails the
request to the service, and it enters a mailbox that automatically senses and discards
duplicated requests. Now and then the service checks for new mail and, if it sees any
requests, processes them and mails back the reply. Sooner or later the client checks
for replies, and finding that one of its pending requests has been handled, downloads
the answer. And then, days later, the email system automatically cleans up the old
requests and old replies. Such services have many names, but are most commonly
called Message Oriented Middleware systems, Message Queuing Middleware, or
Enterprise Message Bus systems (in the latter case, there are actually two subcat-
egories: we are describing what one would call durable behavior, but there is also
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a non-durable mode that would not support WS_RELIABILITY). Any of a dozen
products fall into this overall category of solutions, and they are extremely common
in cloud computing settings. Indeed, it would not be any exaggeration at all to say
that these are the most important form of glue used to assemble cloud computing
reliability stories today, with transactional database reliability a close runner-up (we
will discuss that topic later).

3.3.2 WS_SECURITY

What about WS_SECURITY? Here we encounter a much more elaborate set of
specifications. The technology underlies the little lock-and-key icon seen on many
web pages (namely those with HTTPS prefixes in the URL), and implements what
are called secure-socket-layer (SSL) connections, which are just normal TCP con-
nections, but on which data are sent purely in encrypted form. A detailed discussion
would take too much space, but a brief summary should be adequate to leave the
reader with a good sense of the options.

The Basics of Distributed Systems Security
Before we look at the cloud security standard, it may be helpful to lay the foun-
dations by discussing the basic mechanisms for achieving security in distributed
systems. These revolve around secret keys, which are typically said to fall into two
categories: symmetric keys and asymmetric ones. A key, of course, is simply some
sort of large number. A symmetric key is one that would be held (only) by the end-
points of a communication session; a sender uses the symmetric key to encrypt any
sensitive data it transmits, and the same key is then used by the receiver to decrypt
the data. There are a number of symmetric encryption standards with high-quality
implementations; Isis2, for example, uses AES-256 (Advanced Encryption System
with 256-bit keys). The Digital Encryption Standard (DES) is also a popular op-
tion.

An asymmetric cryptographic system is one in which the sender and receiver
have different keys: the sender uses one key to encrypt, and the receiver must use
the other key to decrypt. One popular asymmetric key implementation is called RSA
(named for its three inventors: Rivest, Shamir and Adelman). This scheme has the
interesting property that the two keys can both be used in either role: the sender
can use key K to encrypt data and the receiver K − 1 to decrypt it, but it is also
possible to use K − 1 as the encryption key and K as the decryption key. Moreover,
knowledge of K − 1 does not reveal K.

These properties make it possible to use RSA keys in support of what we
call public key cryptography: one can publish K − 1 in a completely public way.
Anyone who looks up K − 1 (in a trusted manner) can use the key to encrypt
a message that only the holder of K can read, and the process holding K can
send messages that must have come from it, since no other process knows K, and
since K − 1 will correctly decrypt those messages. On the down side, asymmetric
public-key cryptography is rather slow in comparison to symmetric key cryptogra-
phy.
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Let us look at an idealized interaction between a client and a server and ask how
it can be secured using these tools. We will say that our client is C, and the server
S. The server, for example, might be the Bank of America web site, and the client,
C, might be your computer, accessing the site to pay your monthly credit card bill
using an electronic transfer from your checking account. C wants to be sure that it
is talking to S, and not some sort of fake site, so it starts by looking up the Bank of
America public key. This is done by contacting a credential-management service,
such as Verisign, which provides the certificate, encrypted using the Verisign secret
key. Of course, this means that C must find Verisigns public key, which involves the
exact same process. The recursion ends when C reaches a “root of trust”. If your
computer runs Microsoft Windows, that root would be Microsoft, which builds its
corporate public key into every Windows system it ships. This yields a chain of
trust: Microsoft vouches for Verisign, and Verisign provides Bank of America’s
public key to you.

With the Bank of America public key, C can safely send a message that only
Bank of America can decipher. For example, C could send an encrypted message
containing your login name and password and the transfer request. Of course this
would defeat our security goals: it would be vulnerable to replay attacks, where
an intruder just captures traffic between C and S, then resubmits the same packets
without even trying to decrypt the contents. A protocol this simple would be at risk
of repeatedly transferring money until finally, your checking account was emptied
into your visa account.

Accordingly, C and S would normally do something a bit more sophisticated. In
support of this it would be common to use the initial session to negotiate a secret
symmetric key with which the two can securely exchange web pages. Symmetric
security is very fast, and represents the core goal of the HTTPS standard. The nec-
essary protocol standard is called SSL: the secured socket layer.

Notice that in our example, C authenticates that S really represents Bank of
America in a way that depends on knowing first that Verisign is the correct cer-
tificate repository to consult, and secondly that the bank uses Bank of America as
its online name (as opposed, say, to BOA.com, or Banque d’Amerique, etc.). Had
C been tricked into using BadCreds.com as the certificate repository, it might have
used a bad certificate, and if it requested the certificate of some other site than Bank
of America, even if it used the right credentials authority, it might receive a certifi-
cate for something else entirely. So one issue we have here is that while C is able
to make a secure connection to S, we need to be sure that S is the correct site. The
problem occurs in the other direction too: while the bank knows that some computer
C is talking to it using a secured channel, it has no way to know that C corresponds
to such-and-such a person; it learns this from the login dialog.

The problem we see here is basic: even if C is a computer used only by Bill
Gates, we can’t be sure that Bill was physically in control of that computer at the
time of the interaction. Thus before allowing any kind of transaction against Bill’s
accounts, the Bank of America server will want additional proof that C is being
used by the right person. The converse problem arises as well: if Bill was tricked
into clicking a fake link for Bank of America, he will find himself talking security to
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a site that might be a very complete and convincing replica of the Bank of America
site, created specifically to trick him into revealing his personal credentials. Can we
push beyond these superficial guarantees to achieve deeper security?

Banks have taken some limited steps to work around such issues. For example,
Bank of America uses a two-step validication procedure. The first page you en-
counter asks for your login name but not your password. Given your login name, a
second page appears; it does request your password but also shows a personalized
graphic on it. Thus, perhaps when Bill set up the account, he picked the dragon from
a set of possible graphics. His password page will always show the dragon. But here
is the tricky step. The picture turns out to be managed in an unusual way: part of the
data for displaying it comes from the bank, but part is stored on the customer’s com-
puter, and the two are combined only at the last moment. Moreover, the dragon was
one of a huge number of possible images, and inspection of the portion of the image
on the client computer, or on the bank, reveals nothing about the choice: separately,
the images are just noise. Thus if Bill were tricked into talking to a faked Bank of
America web site, the login dialog would not look normal: the fake site would not
be able to replicate the dragon picture. It would somehow need to deviate from the
normal sequence, perhaps by asking for both his login and his password in a single
step. The hope is that Bill would notice the departure from the norm and realize he
is interacting with a fake site.

Now, in fact, we can go a bit further by baking secret keys right into the com-
puter’s hardware, in a device called a Trusted Computing Base (TCB) or a Hardware
Root of Trust (HRT) (two names for the same technology). With a TCB, one can
specifically identify a piece of hardware: this is a particular computer, manufac-
tured by Dell Computer, sold to Bill Gates on such-and-such a date, etc. The idea
is very similar to the one we used above, to obtain a security certificate, except that
here, one queries Dell and it responds with a certificate testifying to the identity of
the computer in which that particular TCB was installed, with the corresponding
public key. There is no way to steal the key because the TCB is designed to carry
out cryptographic operations without revealing it. Similarly, some computers have
special card readers and one can plug into them a card that essentially plays the
TCB role, holding keys that can be used, but not read or copied. Some systems go
even further, using digital identity cards, iris scanners, thumbprint checks, or other
verification methods.

Taken jointly, these mechanisms can support a wide variety of security protocols
and models, although they also have limitations, such as the ones just mentioned
(namely, the bank can never be sure it is really talking to Bill, and Bill’s confidence
that he is really talking to the bank turns out to revolve around a shared secret,
namely that dragon image—a lot of trust to place in a single step of the protocol).
But given these tools, we could easily create other security solutions. For exam-
ple, we could turn our point-to-point security scheme into one that would work for
groups, In what follows, we will see that the cloud uses roughly the same client-
server protocol just outlined. On the other hand, it stops there: we can design all
sorts of security technologies, but there is really only one option for cloud security,
aimed at solving one particular security problem. Worse, as an accident of the way
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the cloud evolved, it also supports a second security standard, and that second op-
tion is not secure at all! Caveat emptor: when using the cloud, one must understand
which security standard a given system is using, and precisely what form of security
is offered!

3.3.3 WS_SECURITY

With this as our goal, let us look at the WS_SECURITY standard. As in the case of
WS_RELIABILITY, the first question to ask is precisely what the standard actually
proposes to secure. It turns out that the focus is rather narrow. Most importantly,
WS_SECURITY provides a way for clients to connect to a server with reduced risk
that an intruder might hijack the connection or “spoof” (mimic) the server. That is,
the first role is to support secured connections. The second role is authentication: the
technology offers a way for the server to gain enhanced certainty that this computer
is acting on behalf of user so-and-so, and (as noted) for the user to gain some cer-
tainty that this is really Bank of America and not a hacker web site using the Bank
of America logo and layout.

The two forms of security supported by WS_SECURITY are called basic secu-
rity and HTTPS security. Basic security is really very weak: when a connection to
a web site is first established, this scheme sends the user’s login and password in
the first web request, in plain text. Thus, any intruder in a position to see the bytes
on the wire or in the air can potentially grab the account access information, then
connect to the same site later using the same credentials. Unfortunately, many web
sites use this scheme, and because many users employ the same login and password
for all sites, a single compromise can result in all sorts of intrusions.

The stronger security model operates in precisely the manner described earlier
for our Bank of America scenario, using HTTPS and running over SSL. We will
not repeat that discussion here, except to remind the reader that a web page can be
a complex object with many subpages (frames) that contain content from multiple
sources. HTTPS really makes sense only for a single page coming from a single
source, and this presents a problem, since so much of the web revolves around third-
party hosting services, ad-placement services, and request redirection. Moreover, as
we saw above, allowing C to connect to S did not really secure anything; Bank of
America ends up using a fairly elaborate secondary scheme on top of the basic SSL
security and only this combination can be trusted. A bank skipping that secondary
step would be at much greater risk of being spoofed, SSL or not!

There are also forms of security that are easy to describe but hard to achieve with
cloud systems. An example would be medical consultation: suppose that Doctor
Smith needs to ask Doctor Jones for advice on a difficult case, and only the two are
authorized to participate in the dialog. It is not hard to design a secure key exchange
protocol, like the one we discussed above, for this purpose; with shared secret keys,
everything Dr. Smith says can be encrypted so that only Dr. Jones can understand
the contents. But in the cloud, there are no standards for client-to-client security,
this while nothing blocks us from implementing such a solution, it is not likely that
we would find cloud computing tools to help in such an interaction.
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In fact the situation is really somewhat worse than this makes it sound, because
in cloud computing applications, one normally places data within the cloud. The
expectation is thus that Dr. Smith will upload the data, so that Dr. Jones can pull it
out. This suddenly exposes those data to many other potential viewers: other users,
other applications, etc. If the cloud is operated by a third party that cannot be trusted,
we would need to encrypt the data we upload, but this prevents us from using the
cloud to compute on those data (for example, if the medical record was some form
of image, such as a CT scan, we might want to use cloud computing tools to ro-
tate and enhance the image or to highlight possible abnormalities. Decrypting the
data to run such applications would expose it to the prying eyes of cloud operators
and, potentially, other users. While there has been some work on techniques for
computing directly on encrypted data, at present these methods have very limited
reach.

In summary, cloud computing certainly offers some useful security guarantees,
provided that the developers understand what these technologies actually seek to do,
and how they work. Yet one must not assume that security actually means security
in an end-user sense. This is obvious with the old “basic” web (in)security standard,
but as our Bank of America example showed, can even be an issue when using
HTTPS and SSL in a completely correct manner. The bottom line is that the cloud
offers a secure way to move data into and from a cloud platform, and a means of
obtaining security certificates for web sites. Beyond that we, as developers, need to
start thinking very hard about our goals, how we plan to achieve them, and how the
resulting solution might be attacked.

3.4 Safe Execution of Downloaded Code

WS_SECURITY focuses on the authentication of the client to the server, making
sure that hackers cannot spoof servers, and establishing connections that cannot be
wiretapped or tampered with. Yet this is just part of the client-side of the cloud secu-
rity question, and in many ways, the minor part. The core problem is this: a secure
client-server protocol presupposes that the client system and the server system are
themselves secure. Yet as we will see, there are serious reasons to doubt that modern
client systems can be secured. This being the case, the game may be up before it
even begins! The situation is slightly better on servers, although this could change
as time passes and hackers make inroads on attacking cloud operating systems and
software tools.

Focusing on the client system, we will see that there are two basic sources for
concern, both arising from deep within the model. First, the hardware itself might
be compromised, or the firmware loaded into it. Few of us give much thought to
the origins of the chips and other components in our computers, or to the device
drivers and firmware that operates things like disks, graphics displays and networks,
yet all of these represent very substantial technologies. They are as complex in their
respective ways as the operating systems we use, or the Internet. Moreover, they
have been “handled” by third parties all over the world: the disk in my desktop
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computer was fabricated in Malaysia, the machine itself in China, and several chips
come from India and Indonesia. The display technology originated in Japan. My
wireless network has components in it from Sri Lanka but was designed and mostly
built in India. The various integrated circuit boards were mostly assembled in China
and India. Thus only the design occurred in the United States, and even here, only
some aspects of design were really entirely controlled by United States firms. Those
companies, in fact, employ huge numbers of overseas workers.

Computing, in effect, has become highly globalized. This has driven costs down
and brought us a huge leap forward in terms of product quality, steady supplies
and even time to market, but on the down side means that organizations intent on
penetrating our computing infrastructure, including some major countries with gov-
ernments that compete with the Unitied States government, have a very wide range
of options available if they want to design “back doors” into our computing systems.
As we will see, one can imagine ways of building components such as these that op-
erate completely normally and yet have additional, stealthy, behaviors hidden within
them: almost as if there was a computer within the computer. These would be essen-
tially undetectable because the normal computer itself might be quite unaware of the
intrusion. For example, if a keyboard was silently recording every single keystroke
typed since it was first shipped, saving this into a flash memory, how would I know
this had happened? Short of reverse engineering the entire keyboard chipset, it might
be completely impossible to do so.

Even if we trusted the hardware, one has the problem of backdoors or security
deficiencies in the software. This includes things like device drivers for cameras and
smart phones and GPS units and iPads, the applications that bring them up to date
and let us customize them (including photo editors, etc.), web extensions for our
browsers, computer games, and so forth. Each time we patch a system we download
and install new code or new programs. Indeed, it has become so important to be able
to run applications locally on client systems that for many purposes, the cloud will
routinely and even automatically download software into the browser, which then
runs it. The idea of extending computing systems by adding new software systems
is really central to what makes computing systems useful.

This capabilities also presents all sorts of issues, and many just cannot be re-
solved in any simple way. As noted, cloud computing trends are making the issue
more and more fundamental to the whole cloud model. Javascript-based languages
like Caja and Silverlight, and proprietary ones like Adobe Flash, are becoming so
common as to be universal. It will not be long before the great majority of web pages
uses one or more of these technologies.

The problem, of course, is that any of this huge stack of technologies and compo-
nents can represent an attack vector for a sophisticated hacker. There are powerful
attack tools available, free, for download from the Internet, and if one of those is
used to probe a typical computer it will find all sorts of vulnerabilities, no matter
who manufactured the computer, which operating system it runs, and how you use it.
One can reduce the risks by better management of the installed technology base and
by using high-quality virus scanners, but even so, we only manage to protect against
the known risks. The more sophisticated kinds of intrusion often use vulnerabilities
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that the wider hacking community is just not aware of. Hence, most computers are
at risk, and probably all are at risk if the attacker is from a corporate or military
espionage team.

These attacks happen all the time, and have many kinds of goals. One important
goal is to simply hijack a computer by installing so-called “botnet” software on
it, which allows a remote control system to send it commands. Such a computer
can then be ordered to email waves of spam, launch distributed denial of service
attacks on targets selected by that remote operator, search the disk drive for sensitive
materials such as bank account logins, etc. Anger one of these people and your
computer just might download a huge pile of child pornography and then set itself
up as a web site for others to stumble upon. (Just imagine trying to explain such a
event to the local judge!) There are even tools that can reconstruct deleted files on a
disk and turn them back into files that an intruder could read.

Thus, hijacking a system isn’t all that hard. Moreover, a hijacked system can
seem perfectly healthy and normal. While some viruses are damaging, to a growing
degree they are designed to hide inside what seem to be normal device drivers or
programs or files, and to stay in the background. All of which adds up to trouble,
because it suggests that the machines we use at home for personal correspondence,
social networking and other non-work tasks are particularly vulnerable.

If this all seems like wildly paranoiac speculation, you might want to read
Richard Clarke’s book, Cyber War. Clarke, a former national security advisor who
knows his stuff, describes real intrusions into a vast range of systems, accomplishes
through just the kinds of attack we have been describing. He explains how easy it
would be to break into power generators, and how an experimental attack called El-
igible Receiver not only succeeded in this kind of break-in, but even demonstrated
(without taking the very last step) that the attackers could trigger a serious blackout
or damage generating equipment in ways that might be very hard to repair, among
other things. That exercise was carried out nearly 20 years ago; while research has
yielded solutions to some problems since then, the incredible evolution of the tech-
nology base over the ensuring period has created many new vulnerabilities. Indeed,
studies and experiments have revealed vulnerabilities in just about every kind of
enterprise that the “red teams” involved have been asked to attack. And it is not
just military systems that need to work. Banks and other institutions have suffered
serious break-ins. We read about theft of credit card data almost daily.

One might think that state-of-the-art system management and monitoring would
offer some defense. For example, military computer systems are locked down into
standard configurations and closely monitored, as are military networks. Theoret-
ically, even the smallest deviation from the norm triggers alarms. Nonetheless,
Clarke reports that in 2006, a foreign spy organization (probably Chinese) pene-
trated US military networks (some of the world’s most closely watched and pro-
tected systems) and managed to download terabytes of data over the very network
links that the monitoring systems scrutinize most closely. He then outlines how such
attacks could escalate into a kind of war, conducted through computers but with
impact on the physical world, because computers control so much of the physical
world.
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The New York Times also carried articles about some of these exploits, including
the attack on the American military networks. While the details are classified, even
without knowing precisely how it was done, these articles and Clarke’s book to
make it clear that these and other events involved the kinds of mechanisms outlined
above.

Clarke explains how the first steps of one major break-in occurred, and the exam-
ple instructive because it involved machines for which the users were not permitted
to install their own software, and that did not even have browsers connected to the
public Internet (although they were connected to military networks and were host-
ing military versions of standard office software: email, documented editing, spread-
sheets, etc.). Apparently, spies scattered new, very high-capacity USB storage keys
in public locations frequented by military staff: the parking area near the Pentagon,
restrooms in that building, etc. They bet (successfully) that someone would pick one
of these up, and plug it into a USB port. Now, there was nothing obviously wrong
with the USB itself: it was just what it looked like, namely an empty large-capacity
USB, and worked wonderfully for storing and retrieving data. The problem was that
it also had some extra features that most USBs lack: Any machine to which these
malicious USBs were connected to was instantly compromised by a virus cleverly
hidden on the device. That virus was designed to hide itself on the targetted machine,
and to begin monitoring disks, networks and keyboards.

So this got the virus a toehold into some very sensitive, highly classified comput-
ers. But how in the world did it manage to transmit terabytes of data over classified
networks? Here, Clarke is silent, hence we can only speculate. This author’s guess
would center on the ideas mentioned at the outset. Suppose that the network the
military was monitoring was not the “real” network, but rather some form of virtu-
alized view of the network. In that case, one would not see anything out of the norm,
but only because the virus has concealed the abnormal traffic from the monitoring
system.

Even more extreme is the following thought. Today’s optical network links and
interfaces can run at 10 Gbits/second, yet most PCs still use the 100 Mbit ethernet
standard. Could one perhaps build a stealth dual network that runs 100 Mbits side-
by-side with a hidden 10 Gbit network, so that the monitoring system knows about
and sees one network, but the virus has access to the other network. One would not
want to rule out that it could be done, particularly if there was a way to compromise
the network chip set itself. Indeed, once one begin to speculate along these lines,
all sorts of covert channel ideas come up. It would not be hard for a sufficiently
well-funded team to get away with just about anything it sets out to do, whether
that might be corporate espionage, theft of national intelligence secrets, or simply
intrusion into whatever we keep on our personal machines.

Thus even a tightly monitored military network can be at risk. But of course most
networks are not remotely so tightly monitored. Thus, in 2011 as this text was be-
ing revised, we learned from the McAfee security company that a foreign country,
which they suspect to be China, had engaged in what McAfee refers to as “Project
Shady RAT” (the acronym is a reference to a remote access tool) over a 5-year pe-
riod, breaking into a minimum of 72 global organizations ranging from government
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and UN facilities to major corporations. “Even we were surprised by the enormous
diversity of the victim organizations and were taken aback by the audacity of the
perpetrators” McAfee’s vice president of threat research, Dmitri Alperovitch, wrote
in a 14-page report released in August 2011. “What is happening to all this data . . .
is still largely an open question. However, if even a fraction of it is used to build
better competing products or beat a competitor at a key negotiation (due to having
stolen the other team’s playbook), the loss represents a massive economic threat”
Alperovitch later went on to comment that “This is the biggest transfer of wealth
in terms of intellectual property in history. The scale at which this is occurring is
really, really frightening.”

Thus anyone who doubts that the problem is real, or thinks of it as a paranoid
fantasy of the military intelligence community, is simply wrong. Our computers are
under massive, systematic attack, for all sorts of reasons, and by all sorts of actors.
This is happening today, and it is eroding the competitiveness of our companies,
exposing military vulnerabilities that could be exploited in future confrontations,
and even to harass individuals with political beliefs that the perpetrators dislike.

This author once attended an unclassified briefing by an expert in this area, who
works with a major law enforcement organization. He started his briefing by telling
a story (a parable, if you like) about a very rich village up on the hill, where all the
residents loved to keep golden bowls full of jewels on their dining room tables. A
rash of thefts occurred, and a security expert was summoned by the mayor: what
should be done? The first suggestion, namely that the residents just lock up the
golden bowls with the jewelry, was rejected out of hand: in this town, one’s most
precious valuables simply belong on the table in the living room! “In that case,”
suggested the expert, “you might consider closing the doors to your homes. Locks
on the doors and windows would help too.”

This probably came as a shock to the residents, who were in the habit of keeping
their doors and windows wide open. But they did not much like losing their treasure
to thieves, so they took the advice, and for a while it helped. The robbers focused
on the stubborn residents who ignored the expert advice, and those who took the
advice began to relax.

The story does not end very well, unfortunately. Each new security suggestion
only reveals the next set of issues. So once the residents finally closed and locked
all their first floor doors and windows, the thieves simply showed up with ladders
and climbed into the ones on the second floor. The locks were not iron-clad and
could be picked. In the limit one could break a window pane, reach in, and unlock a
door or window. For each security improvement, a dozen new issues were revealed.

However paranoid it may sound, our computers genuinely live in a very unsafe
world. The vast majority of machines are at risk in many ways, and nobody knows
the percentage that have already been compromised. Your machine is at risk no
matter what company you bought it from, and no matter what browser and operating
system you use.

The usual advice certainly helps. If you employ cutting edge virus protection
software, you can reduce the threats substantially. Applying security patches really
helps. Downloading software only from known sources is helpful. Picking good
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passwords helps (short catchy phrases with punctuation and numbers in them work
far better than single words, I am told: “I met Mary on the Eiffel Tower on 1/3/92,
and it was love!” will not easily be guessed by attackers.

Yet whatever you do, be under no illusions: virus scanners only offer limited pro-
tection, because they cannot protect against exploits that have not yet been noticed
by the good guys, and yet are being used by the bad guys! And it might be wise to
pay for the virus scanning solution you install: at least one major “free” anti-virus
product is now known to have been a kind of virus itself, kicking off other viruses,
but at the same time, installing your machine on a botnet operated by the developer.
This illustrates the adage that in reality, nothing is ever really free!

While there has been some work on protecting client computing systems from
attacks, progress is mixed. On the positive side, there are ways to reduce the attack
options that these programs use to compromise your machine. Poorly configured
applications are a big issue; with cloud computing we can run fewer applications
on the client machine and, one hopes, do a better job of administering the ones that
remain. A new technique called stack randomization can be used by the operating
system; this makes programs less predictable, so that a virus designed to overrun a
particular buffer and to leverage that to cause a jump into arbitrary downloaded code
is more likely to trigger a crash than to take over the computer. Downloaded systems
can be run in virtual machines, so that they do not have direct access to your real
file system or your real devices; when the program finishes executing, we discard
the virtual machine and any compromises that occurred while it was running should
vanish too.

But one must be wary of false security. Earlier we talked about the very weak ba-
sic form of web security. Here is a second example, illustrating either that the early
cloud computing architects were very weak security students, or simply that com-
plex mechanisms can have unintended flaws. The Web Services standards impose a
rule that if an application is downloaded from some site, say Amazon.com, then it
can only establish connections to Amazon.com. This is intended to offer protection:
if a hacker somehow spikes Amazon.com with a virus application, people who have
the misfortune to download it do not see their bank account data emailed to Moscow
because the application can only connect back to the same Amazon.com server from
which it came.

Can you see the flaw in this reasoning? Think back to our discussion of IP ad-
dresses. When we say “only connect back to Amazon.com”, how much of a re-
striction is that? If you read the introduction and Chap. 2, you should see that
Amazon.com is a shorthand for any of a dozen massive data centers, and each of
those may have hundreds of thousands of servers. That application is being limited
all right: it can only connect back to a couple of million places. Moreover, if a web
page includes frames that define sub-pages, the download restriction rule does not
apply. Those subpages can and routinely do download content from servers man-
aged by other companies. Thus your Amazon web page might easily have point-
ers to content hosted on Akamai.com, or to advertising that will be supplied by
DoubleCick.com.
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Why should it matter that the “downloads only from the same site” rule is not
applied to embedded frames? After all, embedded frames were intended to sup-
port content hosting and advertisement placements, and in any case, the word frame
makes it sound as if each frame would show up as a distinct web page with a heavy
black border. The problem is that these frames are formatted under complete con-
trol of the web site that defined the parent page, hence anything you see on a web
page could be part of an embedded frame and hence subject to its own (different
security policy). A frame will only have a border around it if the web page indi-
cates that it should. Moreover, if Amazon’s web page defines a minipage supplied
by DoubleClick, then an intruder who manages to penetrate the DoubleClick cloud
computing system could hide frames of his own in the DoubleClick advertising
content; thus, even without breaking into Amazon, a hacker could potentially com-
promise an Amazon-supplied web page. Moreover, unless an embedded frame uses
HTTPS, it may be relatively easy for a hacker to trick the DNS into routing those
subpage requests to some other site than the originally intended one. Thus, a frame
that Amazon redirects to DoubleClick could, at least potentially, be redirected again
by a hacker to a web site he controls. The technique is called web-site hijacking,
and while it is not easy to accomplish on a large scale (e.g. one could not easily
gain control over all DoubleClick.com traffic), it can be relatively easy to confuse a
specific user’s system for a short period of time; hackers make casual use of these
techniques, and have sophisticated tools available to help them do so. All of this
adds up to a huge security exposure.

You might not notice any of this. A frame can be completely invisible, with no
borders at all, and there are ways to float a frame over some other part of the page, so
that what you see on a web page could actually have more than one frame associated
with it. The invisible frame can still intercept your keystrokes send copies back
home (wherever that might be), and there are ways to do this without blocking those
keystrokes from reaching the underlying page.

To conclude this somewhat depressing section, the bottom line is that client-
side security is deeply compromised today, at every level. The cloud computing
security model is good in some respects and weak in others; it introduces at least
one new glaring issue (namely that “basic” security model we mentioned), yet also
brings a reasonably solid option to the table, in the form of SSL security used to
support HTTPS. But it would be foolish to blame cloud computing for eroding se-
curity, because the broader security issue predates cloud computing and is so deep
and so far-reaching that cloud computing is merely the latest in an endless line of
events.

At the end of the day, the fact is that our client systems can be attacked at every
level from the chipset used to build them, up through drivers and the operating sys-
tem, applications, and most recently, cross-site web scripts. There are bright spots,
such as the stack randomization technique mentioned earlier, and good management
can really help reduce the attack exposure of an individual machine, at least relative
to run-of-the-mill attackers. But if you have genuinely valuable data, and fear gen-
uinely professional attacks, it may be wise to just not put that data on a computer in
the first place. The technology base we use today is just not capable of protecting
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information in a really serious way. Scott McNealy, then CEO of Sun Microsystems,
put it this way in an interview he gave to Wired Magazine some years ago: “There
is no privacy anymore. Get over it.” At the time, some journalists were shocked.
But Scott was simply being honest. Fifteen years later, Eric Schmidt, then CEO at
Google, basically repeated Scott’s point, commenting that if you use computers, just
do not do anything you would not want other people to know about. And this is the
world we live in, like it or not.

Where cloud computing does bring a new issue is in the ability of cloud comput-
ing operators to aggregate vast amounts of information and to cross-index it. Prior
to the cloud, if one wanted to learn all about Princess Diana’s private life, one had
to pay a private investigator to hack into her personal computer and telephone (as
we have learned, British newspapers did just that). This was illegal, and risky, and
in the process one might easily be discovered.

Today, so much data find its way into the cloud that even without hacking into
someone’s personal computing system, the very same information might also be
replicated into the massive data stores at Microsoft Live, Google, Yahoo!, Facebook,
Twitter, YouTube and other major networking sites, along with all the other kinds
of data mentioned in the introduction. Thus the main new thing that the cloud has
done is to enable corporations to do a kind of massive-scale data mining on our
personal information: the same kind of thing that happened to Princess Diana, but
now on hundreds of millions of individuals in parallel, albeit with more benign
goals tied mostly to placing advertising or supporting social networking services.
Moreover, while it was illegal to hack Princess Di’s phone and computer, we are
granting explicit permission to these cloud computing companies and essentially
trading them the right to troll through our data in exchange for very low pricing on
devices like mobile phones or social networking technology. Thus one must really
think hard about which is the bigger and more real security risk: the weak security
of our personal computing platforms, or the ability of the cloud providers to review
our lives in such detail for these purposes? Indeed, the question to ask seems to be
this: does anyone actually care about security today?

Laurence Lessig, mentioned earlier in this book, suggests that when all the tech-
nical options are inadequate, we need to turn to the law. This seems to be the right
answer to computing security on the client side of the cloud. We need to make it
absolutely clear that corporate espionage and misuse of private data without per-
mission is illegal and punishable with huge fines, prison terms, or other appropriate
sanctions. Cloud providers need to help us customize our desired security profiles
and to enforce those preferences. But then, knowing that intrusions will still occur,
we should also reward those who blow the whistle when large, serious intrusions
occur. And this would then be the best remedy to a situation that just cannot be
controlled in a technical way. Remember our security consultant? His advice would
now be quite simple: “Why not offer a reward for information about this gang, arrest
the thieves and then jail them?” And that might be the best response possible, given
the times in which we live and the technologies available today.
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3.5 Coping with Mobility

Not all client-side challenges are completely hopeless. One important class of such
issues involves mobility. Modern computing systems evolved from desktop and lap-
top systems that did not get moved around very much, or when they were moved,
tended to go from the office to an airport to a hotel. Thus we have only had a few
years of experience with machines that move almost continuously, as do our mo-
bile phones and GPS map devices. How does extreme mobility challenge the client
platform, and what might be done to ease these issues?

Recall that as you move a machine around (be it a cell phone, a laptop, or any
other device), it will get a new IP address from each router to which it binds.
Even if two routers give out what may look like the identical IP address, such as
192.64.168.3, the address really means different things, because by the time any
server sees requests that originate on your machine, network address translation will
have replaced that address (and your session’s port number too) with some other ad-
dress and port number corresponding to the outward facing side of some NAT box,
and this might even happen multiple times on the route from your machine to the
services it uses.

Thus, if we have an open TCP connection to a web service, we need to expect
that the IP address associated with your endpoint will change. TCP cannot tolerate
such events, so those connections will break. And because of the end-to-end and
CAP mindset of the cloud, your system is supposed to reconnect and deal with
the disruption on its own. Sometimes one can do that; for example, a video player
might manage to reconnect to the Fox Online web site and reset itself to the exact
spot at which your episode of Fringe Science was interrupted when you closed your
machine. More often, though, video streams, RSS feeds and all sorts of other web
services and content would be disrupted, forcing the user to reconnect manually.

In fact the situation is worse than we are making it sound, because even if the
IP address stays fixed, mobile machines need to cope with periods of during which
connectivity can be very poor (like tunnels on a highway), or disrupted by static (for
example, when a train triggers a shower of electric sparks), or signal fade (like when
your car drives down into a valley and the local cell phone tower vanishes behind
the hill).

How might we avoid such problems? Readers who have taken a good networking
class will be familiar with the concept of tunneling. What this means is that we take
network packets, perhaps generated by a cloud computing application, and treat
them as data, running them through some other network connection that has no idea
that the inner data consist of network data. This is how virtually private networks
work, and because VPN technology is widely deployed, the very same features offer
some hope for virtual connections that do not break quite so often.

One approach runs as follows. We can tunnel the cloud traffic through some sort
of private network operated by the ISP that gives you your mobile connectivity,
perhaps using UDP or additional TCP connections. Basically, Verizon or AT&T or
T-Mobile would write software that implements a kind of tunnel, with one end on
your machine (the cloud end), one end out in the web (the cloud service end), and
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a dynamic route in between, designed to very rapidly sense connectivity issues and
to compensate by resending packets aggressively, acquiring new IP addresses for
use by the tunnel layer, etc. Your mobile machine ends up having two IP addresses
at any given time: one stable IP address, which it thinks of as its IP address for
cloud computing purposes, and a series of temporary IP addresses used by the tun-
neling software to preserve the illusion of continuous connectivity. The key point is
that the cloud client and cloud server never see disruptions, and hence mobile ser-
vices can ride through the periods of slow performance without actual connection
resets.

This idea can be taken further and further. As you may know, many cloud com-
puting systems are already multi-homed: companies such as Amazon buy Internet
connections from multiple ISPs, hence any data center is accessible by at least two
different primary IP addresses. We talked about how Amazon controls the DNS
mapping from Amazon.com to an IP address, but in fact the mapping is to a list of
IP addresses. Any are equally good choices, and the client system is told to switch
from one to another at its preference; they lead to the same place.

Well, tunneling lets us do the same thing on the client side. The cloud server
thinks of your mobile platform as having a specific, unchanging IP address. How-
ever, as your machine moves about, it can potentially bind itself to more than one
network (picky readers will object that network interface cards only bind to one
wireless channel at a time, but there is a work-around called MultiNet now, allow-
ing one card to multiplex itself over two or more channels, each bound to a distinct
base station). In this manner, your machine might actually have three active IP ad-
dresses: the one seen by the cloud services it talks to, and then two different IP
endpoints used for tunneling, connected to distinct base stations. If one connection
goes bad, the other might ride the disruption out, giving the illusion of continuous
connectivity. Obviously, each packet will need to be sent once per connection, but
packet duplication is a well known phenomenon in the Internet, and protocols such
as TCP automatically filter out and discard the extra copies. Thus the cloud service
won’t miss a beat!

In fact, many ISPs already do a form of tunneling, for a different reason: ISPs
often have so many mobile devices in a given region that they are at risk of running
low on IPv4 addresses, even with NAT. Thus, they have become early adopters of
IPv6, which has no real limits on the IP address space. Yet the major cloud services
run on the normal, IPv4 Internet. The solution is just what you might expect: we can
tunnel IPv4 over IPv6 within the ISP, switching to pure IPv4 once we traverse the
ISPs NAT box and enter the public network.

What we have described is really just the tip of an approaching iceberg. ISPs
are discovering a wide variety of services that they can implement on behalf of the
cloud, and that the cloud providers would love to see. For example, it is currently
quite hard to cache content on behalf of mobile devices, particularly if the con-
tent is changing rapidly and has a short lifetime. Examples would include computer
games, conference calls, or data associated with sporting events: in all of these cases
one might have large numbers of receivers for the same data, yet our current model
seems to require that each make its own stream connection to a server and stream
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its own copy (perhaps over a tunnel, as just outlined). Thus many researchers are
working on schemes for caching transient information, and because mobile access
has become such a common model, doing so in ways that can tolerate endpoint mo-
bility. It is very likely that the network providers will need to play some roles in sup-
porting such a model: as a user moves from place to place, the right place to cache
rapidly changing data on that person’s behalf will also change, and only a solution
that coordinates the handling of movement with the handling of caching would suc-
ceed. There is every reason to anticipate that this sort of thing will succeed, and that
we will see steady progress in the capabilities and quality of the mobile experience
for many years to come.

3.6 The Multicore Client

A final source of rapid change on the client side results from the emergence of
multicore parallelism in the form of low-power chips that have multiple side-by-
side CPUs on a single platform. The issue here relates to Moore’s law, which holds
that the density and capacity of computing chips, memory chips rises exponentially
over time (the exponent is somewhere in the range between 1.5 and 1.8 depending
on the study; it was closer to 2.0 when Moore first made the prediction). Networks
are tracking this performance curve as well.

Around the year 2000, Moore’s law seemed to hit a wall: chips dissipate heat
roughly as the square of the clock speed, hence as chips got faster they also got
much hotter, reaching a point at which they literally began to melt down. Medical
journals reported cases of heavy computer users showing up at hospital emergency
rooms with burn marks on their thighs. Consumer watchdog groups warned that
some computing systems were at risk of catching fire if their cooling fans broke.
These developments shocked the computing hardware industry and resulted in a
massive industry-wide push toward lower power solutions. The winning idea involv-
ing putting multiple CPUs side by side on the same chip, but to run them somewhat
slower. These could be specialized CPUs, such as graphics processors or network
accelerators, or standard general-purpose CPUs; most future systems will probably
include a mix of both. It turns out that with one CPU running 4 times as fast on
a single chip, we use roughly the same amount of space on the chip as would the
circuitry for 4 CPUs. Yet the 4× faster chip generates 16× as much heat, and con-
sumes 16× more power. Thus we gain the desired speed, but without consuming so
much power or heat.

Multicore clients offer many potential benefits: we just need to find ways to use
those cores to better understand what the end user is doing. With enough computing
power we can potentially run programs that could listen to human speech, track
gestures, and capture more of the end-user’s intent and environment, hence offering
a better interactive experience. Because each of those tasks would involve different
programs, one could potentially do this without writing explicitly parallel code, and
hence without stumbling over concurrency-related issues or other problems. Up to
the present, the main impact of multicore clients on the cloud has been to drive
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vendors toward parallel download technologies and browsers that can run multiple
windows concurrently, but these are still very early days.

Many researchers are working actively on ideas in this space. For example, we
have talked about the issues associated with viruses and other kinds of damaging
download. One group of researchers are combining multicore parallelism with vir-
tualization to tackle such questions. The idea is to run a system in a speculative
manner: they create a virtual machine, launch the application within it, and allow
the application to download the web page and run it. If a fault occurs, they can
roll back the results by just terminating the virtual machine, then relaunch the ap-
plication in a safer, more limited mode, and replay the web page more cautiously.
This works because the signs of a virus attack are sometimes detectable through
side-effects visible in the speculated state, even though it may not be obvious what
caused the side effect. For example, many viruses trigger cause at least some system
services to crash and restart. Thus by noticing these things and rolling the specula-
tive execution state back, one might protect against a virus without even knowing
precisely what it was doing. A technique like this might be too slow on an older
single-core machine, but with a multicore platform one has CPU cycles to expend.
Moreover, notice that this sort of idea requires no special programming on the part
of the developer at all. It illustrates a point we made in the introduction: sometimes
the best way to use a technology is not to invent a completely new programming
style, but rather to look for ways to extend the existing technology base by taking
advantage of the new capability in other ways that require less development effort
and yet bring obvious benefits.

Thus the client platform of the future is likely to be mobile, web enabled and
multicore, yet probably will not be drastically different in any deep sense form the
client systems we use today. Instead, we are likely to see evolution of an incremental
form that starts here, and then builds to work around limitations in ways that require
minimal change to the existing code base, and yet enhance the user experience. One
can certainly imagine ways of using multicore platforms that would be far more
disruptive to the code base, but embracing them would require rebuilding a huge
amount of technology that works fairly well. Far better would be to just sneak these
new capabilities into existing systems, improving them without needing to rebuild
from scratch.

3.7 Conclusions

In summary, we have looked a bit more closely at the client side of the cloud and
discovered a rich and evolving world. The client system is inevitably a key partner
in the cloud: only it can interact directly with the end user, sense the end-user’s
environment, and take actions that ultimately lead to revenue for the cloud provider.
Yet all of this occurs in a client environment complicated by a diversity of very
complex challenges: mobility, a very porous security model in which the hardware
itself, the software that runs it, downloaded content and downloaded code are all
fundamental to the experience, and yet all might be undetectably tainted. The client
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desires a reliable experience, and yet we must work with a weak reliability model
that throws many kinds of reliability concerns into the hands of the client, even if
that client might be unable to deal with the resulting issues.

Meanwhile, many things are driving progress on the client side. Multicore par-
allelism and mobility are pushing for rapid evolution of the computing model. The
promise of a universe of things is nearly certain to focus a new wave of innovative
product development on client systems and, in so doing, to thrust these client plat-
forms into increasingly sensitive roles. Security and privacy hang in the balance: if
trends continue to play out in the same directions currently seen, basic societal guar-
antees will surely be eroded. Yet we are gaining powerful capabilities, and perhaps
could compensate for the technical deficiencies in these areas using legal mecha-
nisms: if we cannot secure private data adequately with the tools cloud platforms
offer us, we can at least jail those who steal private data and misuse it in ways that
harm the individual. Like so many things in the modern world, these sorts of com-
promises are often the best we can do, and are also often adequate to address all but
the most extreme concerns.

David Patterson, a cloud computing researcher summed it up by remarking that
the “The future is cloudy”, and it would be hard to better capture the message of this
chapter. Cloud computing will dominate and will reshape many things, sometimes
for the better, sometimes for the worse. Yet one should not be pessimistic about
where this will lead. On the contrary, as technologists, we need to recognize the
issues as opportunities to innovate, and to keep in mind that just when things seem
to have reached an impasse, a revolutionary new hardware concept can sometimes
break through into completely uncharted territory. The bottom line is this: if you
want to have a big impact today, just jump into the client side of cloud computing,
grab one of these big challenges, and see what you can do!

3.8 Further Readings

Readers interested in learning more about the ramifications of the cloud for personal
privacy and security are referred to Laurence Lessig’s books (see Lessig 1999), the
book by Diffie and Landau (see Diffie and Landau 2007), or Jeffrey Hunker’s recent
treatment (see Hunker 2011). Richard Clarke’s wonderful book is Clarke and Knake
(2010).

For more information on the Web Services model and standards, visit http://www.
w3.org.

For more information on the Internet of Things, see http://en.wikipedia.org/wiki/
Internet_of_Things.

A good treatment of client-side security issues can be found in http://ows.
microsoft.com/en-US/windows7/Laptop-security-basics.

Recent work on integrating client computing systems with distributed communi-
cation tools has yielded many interesting solutions and systems, although uptake of
these by industry has been limited. But we highly recommend that readers look at
the approach used in BAST (Guerraoui et al. 1998; Garbinato and Guerraoui 1997),
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which proposed an object oriented programming language, intended for use in large
computing deployments, and in which the ideas of group communication are encap-
sulated into a base object class, from which the developer creates new applications
by refinement (creating specialized subclasses). Also of interest in this connection is
Ostrowski’s work on the Live Distributed Objects platform (Ostrowski and Birman
2009; Birman et al. 2010), in which a drag-and-drop paradigm is used to compose
communication-enabled components into live applications that run on the client sys-
tem and update themselves dynamically as new events occur. Both BAST and Live
Distributed Objects are available for free download, are either would be an outstand-
ing basis for student projects in the areas touched upon in this text.
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4.1 Network Perspective

The previous chapter looked at cloud computing from a client’s perspective. Late in
the discussion we touched on one of the ways that cloud computing is forcing the
Internet itself to evolve. In this chapter, we will say more about that topic.

4.2 The Many Dimensions of Network Reliability

Although our overarching theme in concerned with the assurance properties of dis-
tributed systems, it is important to realize that not every component of a system
needs to guarantee every property. Sometimes, a lower layer should not even try to
do so. This insight can be seen as a generalization of one of the most deeply held
beliefs about the Internet: the so-called End-to-End Principle. First formulated in a
1981 conference paper by Saltzer, Reed, and Clark, the end-to-end argument (the
“proof” of the principle) shows that the best way to achieve network reliability is
not necessarily to make the lowest layers of the network reliable. Instead, one might
actually achieve higher reliability by just making the lower layers of the network
extremely fast and mostly reliable, then running a reliability protocol between the
endpoints of our connection.

The basic analysis runs as follows. Suppose that we have a network linking end-
point A to endpoint B, and we want to send data reliably from A to B. And now
suppose that the path takes several hops to get from A to B: X–Y–Z. Should we try
to make each hop reliable?

Obviously, we could do so: we could run the traffic over the X link on a TCP
connection from the router that sends on X to the router that receives on X. Simi-
larly, we could use TCP on Y and Z. But would this make the A–B route reliable?
Hopefully, you can see why it would not: after all, one of those routers could crash
and reboot with amnesia; if so, any packets that were in it at the time of the outage
would be dropped. Routing could also change while a session is active: perhaps,
while packets are moving from A to B we will suddenly switch from the X–Y–Z
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route to route W–Z, and packets might be dropped or arrive out of order as a result.
Moreover, routers explicitly drop packets to signal that they are becoming over-
loaded; this causes TCP to back off, as we saw in Fig. 3.1 (the famous TCP saw-
tooth bandwidth curve). Obviously, if we make the lowest layers reliable, we lose
that signaling option.

From this we reach a preliminary conclusion: no matter how reliable we make
the individual hops in the network, we will need to do some kind of packet loss-
recovery and ordering-recovery at the endpoints. Only the endpoints are in a posi-
tion to guarantee reliability for the connection. Moreover, the reliability role and the
flow-control roles of the endpoints are tightly related. We will pay that cost no mat-
ter what the network does. Thus, any property the network tries to offer, beyond its
basic role of moving packets rapidly, entails a cost that will have to be paid over and
above the basic costs of the basic end-to-end reliability, flow-control, and ordering
protocol. The end-to-end principle argues that in most settings, the network should
not try to do more than move packets because the incremental improvement in re-
liability will be negligible, and because the costs associated with that improvement
might reduce the performance of the network. This analysis could be applied to se-
curity too: security on a hop-by-hop basis in the network will not give us end-to-end
security. If we want the client-server session to be secure, we will need to negotiate
the security keys directly between the client and the server: the endpoints.

Thus the end-to-end principle teaches that in many situations the best way to
get a reliable end-to-end behavior is to optimize lower levels for high performance,
generally high reliability (but without absolute promises), and very low overheads.
The end-to-end approach does not preclude exceptions: one certainly might con-
sider tunneling through a reliability protocol when running over a noisy wireless
link (Balakrishnan et al. 1999), or encoding recovery information into the data flow
on a WAN link that sometimes overloads its receivers by delivering packets faster
than they can accept them due to bursty flow dynamics (Balakrishnan et al. 2008;
Freedman et al. 2010). These are cases in which high loss occurs on some individual
link or some individual component, and for that sort of localized, higher frequency
loss, local recovery makes good sense. But the key is the analysis: before blindly
assuming that every component of a reliable system needs to be reliable, we need to
ask what reliability buys us, layer by layer. In some cases we gain better high-level
reliability by not paying for an unnecessary reliability guarantee in a lower layer.

What does this tell us about the modern network in a world of reliable cloud
computing? The cloud certainly embraces an end-to-end philosophy, on the whole.
But just as we might make exceptions on wireless networks or WAN networks that
sometimes generate such high data rates that receivers cannot keep up, necessitating
an in-network response, what we will see in this chapter is that there are other situ-
ations that also require some form of network-level remedy or mechanism. The first
sections will focus on cloud-computing applications that depend upon steady data
flows, such as systems that stream video or other media content. For these cases,
we run into a design issue with the Internet: from its earliest days, the Internet was
viewed as a distinct technology relative to voice telephony and television, and had
no need to guarantee smooth delivery of the data streams used for VOIP or other



4.2 The Many Dimensions of Network Reliability 103

media-over-IP uses. We will see that improving the network to better support these
uses is entirely feasible, but requires that we migrate what may seem like data-
center reliability ideas right down into the router itself. Then we will look at other
opportunities, associated with mobility and caching short-lived dynamically created
data. Each of these will reveal a need, and a way that by innovating in the network,
the network can be a better partner for the future reliable cloud. The perspective
that emerges is one of a kind of co-evolution: the cloud is evolving in ways that
are changing the roles and pressures on the network, which as a result must also
evolve. But we should also keep the end-to-end insight in mind: even if our goal is
to achieve a reliable cloud computing function, doing so does not necessarily mean
that we should blindly push the desired end-to-end properties into the network itself.

4.2.1 Internet Routers: A Rapidly Evolving Technology Arena

Perhaps the best place to start our review of networking in the age of cloud com-
puting is with a close look at Internet routers, and particularly the category called
“core” Internet routers. Until fairly recently, routers tended to be available in three
basic sizes, at steadily increasing price, but all best viewed as black boxes that do
their magic in ways that the customer (in our case, the cloud computing developer)
had very limited ways to influence or control. These three categories include net-
work switches, enterprise routers (sometimes called “edge” routers), and core Inter-
net routers. We will say a few words about each category, then drill down on some
of the reasons that developments in the enterprise and core Internet areas that have
especially important implications for those of us interested in cloud computing. Un-
fortunately, enterprise routing is currently in flux to such an extreme degree that
as this text was being revised, one could not really discuss the category in any de-
gree of detail: anything true in 2011 could be invalidated by developments in 2012.
Accordingly, we will focus on the core.

In our three broad categories, network switches are the simplest and in many
ways, least functional kind of devices, although even switches are becoming much
more elaborate. However, at least for the time being, a switch should be understood
as a very simple device that would typically be used to link a set of optical network
segments with a few machines on each segment into a larger virtual ethernet LAN.
Switches route traffic between the segments, generally employing hardware MAC
addresses as the basis for their switching decisions, and have a limited capability
forward traffic “up” towards a core router if the destination that does not match
the MAC address range used in the virtual ethernet LAN. Switching policies are
normally very simple ones and are defined in manually constructed configuration
tables that do not change while the network is in use. Although there are IP switch-
ing devices, which function in very much the same manner just described but use
IP addresses as the basis for their actions, even these switches do not run routing
protocols.

Routers, in contrast, make forwarding decisions on the basis of IP addresses and
offer much more flexibility in terms of how the routing tables that control those deci-
sions are maintained. Typically, a router will load routing tables from configuration
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files, but then update those while active by running one or more routing protocols,
each concerned with some category of routing behavior: for example, an ISP might
use BGP (the Border Gateway Protocol) to interact with other ISPs, but OSPF (the
Open Shortest Path First protocol) for decisions about routing within its region. We
will say more about this category of devices in a moment.

Modern cloud computing data centers contain both kinds of networking devices.
A typical cloud computing data center is constructed in a modular manner, from
machines that slot into racks, with 32 or 64 machines per rack. Each rack will
have a 10 Gbit ethernet interconnecting the machines within it (along with power,
cooling and perhaps some form of rack management software), and these ethernet
segments connect to a switch. The role of the switch is thus to link some number
of racks into a larger LAN network, and then to shunt traffic that needs to leave
the group towards the core data center network. Many data centers are constructed
from container-trucks packed with computing systems (as opposed to storage sys-
tems), and in these one finds many densely packed racks. Thus a single container
could contain a few thousand machines in total (and each of those might have 12 or
more cores), together with the equipment to power them, cool them, detect faults,
etc. The in-container network would consist of multiple optical ethernet segments,
linked into a virtual ethernet by the container switch. Data centers are often de-
signed to resemble warehouses, with bays into which 18-wheel trucks can back up,
drop off or remove a container of machines, and where those containers will reside
while in use. The owner plugs the container into the dock, supplying power, cooling
and network access, and the container boots much in the way that a device boots
when connected to your PC at home: the data center manager becomes aware of the
machines, configures them, and starts running applications on them.

This way of building data centers results in a kind of tree in which the machines
at the leaves are themselves basically clusters (modern multi-core architectures are
very similar to small clusters). These machines are in turn clustered into racks of per-
haps 32 nodes, and the racks are interconnected into containers with perhaps 5,000
machines in one container. At all of these levels switches handle most network traf-
fic. The containers are interconnected to one another and to the data center manage-
ment infrastructure, in contrast, by a more traditional routed network, with routers
talking to the containers and to one-another in some sort of topology. These routers
determine routing by a mixture of policy (configured by the data center owner) and
protocols (running between the routers and used to adapt dynamically as links are
brought up or down).

In a modern data center some applications generate extremely high loads that
could crowd out other traffic. To handle such cases, a switch can be programmed to
isolate the heavy traffic flows and redirect them over network links that other traffic
cannot access. This feature is often used when the layout of applications results in
a predictable and long-term load from one side of a data center to another (for ex-
ample, a data center might have some set of containers each maintaining a mirrored
copy of part of its file system). By sending all that traffic (in our case, file system up-
dates) on a dedicated set of links, the data center owner achieves better performance,
and also spares the enterprise router from needing to deal with the associated load.
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Moreover, since the network would otherwise be roughly tree-like, shortcuts that
can divert these steady, high-volume data flows avoid overwhelming the network
links near the core, which otherwise see excessive loads. In effect, we end up with
a data center network that still looks like a tree, but now it has additional high-load
optical cables interconnecting some of its branches. Data center application man-
agement software will typically be programmed to know about this topology, and
will try to place applications in such a way that as much of the traffic generated as
possible follows short routes: between two neighboring blades in the same rack, for
example, or between two adjacent racks. Again, this avoids overloading the core of
the network, which could easily see far too much traffic if layout was indifferent to
data center network topology.

Management of such an elaborate infrastructure can become very difficult, par-
ticularly when one considers that cloud computing systems also have firewalls (both
software and hardware versions, employed to prevent third-party applications from
malfunctioning in disruptive ways), network address translators, load balancers and
other kinds of configurable device within them. In the recent past, each such device
used to be hand-configured; any reader who has ever set up their home network fire-
wall to accept incoming TCP connections1 will be aware of the manner in which
this is done (basically, by filling out a table on a web page implemented directly
by the firewall). In response, the enterprise networking community has begun to
develop standards for controlling switches and other enterprise network routing de-
vices remotely, and software to automate the needed actions. The standard, called
OpenFlow, is quite simple: it defines an interface between the switch and the remote
controlling logic but says almost nothing about how that logic might use this func-
tionality. A wide variety of products are now emerging in this space, each with its
own specialized ways of managing switches, firewalls, NAT boxes, etc. In the sim-
plest uses, the OpenFlow technology allows the data center operator to centralize the
management of the configuration tables for all of those devices. However, fancier

1Network address translators and firewalls often allow connections to be established in just one
direction: from the “inner” network towards the external one. Thus, from Gimme! Coffee in Ithaca,
my laptop can connect to a server at Amazon.com, but were Amazon.com to try and connect to
my laptop, that second option would not work. It should be easy to see why this happens: although
my machine has a unique IP address assigned by the DHCP protocol within the Gimme! wireless
network, from the outside, all of the machines currently in use at Gimme! seem to share a single IP
address, namely that assigned to Gimme! by the ISP from which the coffee shop gets its network
connectivity. For connections from my machine to Amazon, all of this poses no issue at all: my
machine picks a port number and tries to connect to Amazon, and the Gimme! wireless router
simply replaces my IP address with its own IP address, and my port number with one it selects to
be unique. When packets come back from Amazon, it does the reverse translation. But in contrast,
had Amazon tried to connect to me directly, the connection establishment packets would have the
IP address of Gimme!’s wireless router (or perhaps, firewall) in them, and the port number would
seem to identify a service running on the router, not on my machine within the wireless subnetwork.
Thus, short of assigning a static IP address and port range to my machine and somehow exposing
that address to the outside world, incoming connections cannot be supported because the wireless
router will not know what to do with them. There have been some proposals to work around this
limitation, but to date, none has been widely adopted by the Internet community.
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OpenFlow technologies are rapidly entering the marketplace. These maintain a kind
of dialog with the devices they control, installing one set of rules, running for a
while, but then receiving a form of interrupt or exception when something out of the
rule coverage space occurs, at which point the OpenFlow control system can step in
and modify the rule set. It is easy to see that over time, this will create a new kind
of enterprise routing capability. In mid 2011, the Open Networking Foundation was
created to advance the standard and reduce the barriers to commercialization issues.
The technology press reports very rapid adoption of technologies in this space, and
a huge commercial investment in these kinds of technology.

The second two categories of routers are the ones concerned with enterprise rout-
ing and core Internet routing, and both involve true routers that form routes under
software control through peer-to-peer protocols that run between the routers and im-
plement any of a variety of routing algorithms. Enterprise routers are sometimes also
referred to as “edge” routers; these terms had more meaning in the past than they
do today, and we will not worry much about the old distinctions that were implied.
Basically, core network routers run more complete sets of routing protocols; edge
routers more typically limit themselves to a smaller set of routing protocols. More-
over, while core network routers often have connectivity to large numbers of other
routers (“peers”), edge routers would generally have connectivity to core routers
running “above” them, and to switches or other enterprise routers running “below”
them. To reiterate, though, these distinctions mean much less today than they did
even five years ago.

As noted at the start of this chapter, enterprise routing is in turmoil today. Data
center operators are finding existing routing options inadequate for their demanding
needs, and this is forcing rapid evolution of data center enterprise routers; so much
so, in fact, that anything we could say about them would be invalidated in a very
short time. It seems likely that the architecture of these kinds of router will be ut-
terly transformed by this process. Core Internet routers, in contrast, are also evolving
under pressure from the cloud, but in a way that seems to reflect a more stable, more
incremental process. Thus while we are seeing these devices transform from very
big, very expensive black boxes into much more open architectures, those under-
lying architectures are not changing drastically from what has been the norm over
the past decade or so. In particular, it seems clear that for at least a decade or two
into the future, a core Internet router will consist of a collection of computers that
control clusters of router “blades”, interconnected by some form of internal rout-
ing fabric. The routing per se occurs in hardware: a network link enters the router,
and the router hardware reads packets off that link and then decides where to send
each packet next. The hardware is controlled by a routing table, which can be down-
loaded into it by routing software. And this routing software consists of what we
call router daemons: programs dedicated to running some particular routing proto-
col, which compute updates to the routing tables and then tell the hardware to revise
its behavior accordingly, by pushing those updates down into the fabric layer.

The routers used in the core of the Internet send and receive data on optical fibers,
which are typically engineered to an extremely high quality standard. Loss rates of
less than 1 bit in 1019 are not uncommon. With modern laser technology, under the
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physical constraints imposed by signal power and by the transmission properties
of optical cables, a single fiber cannot carry more than about 25 Gbits/second of
traffic, and 10 Gbits currently represents a practical limit over longer distances (this
reflects the Shannon coding theory for optical networking technology: there are only
so many dimensions in which an optical bit can be encoded, and only certain optical
wavelengths that can be used in this manner). As a result, when we talk about routers
that already run at speeds of 40 Gbits/second and will soon reach 100, then 400, and
then a Terabit/second, parallelism represents the main option for improved speed.
For example, today a 40 Gbit router might operate over 4 side-by-side strands of
optical fiber, each carrying 10 Gbits/second of traffic. We can reach 100 Gbits by
deploying 25 Gbit technology on the fiber links, but beyond that step, speedups will
come mostly from running multiple fibers side-by-side.

Similar issues arise within the router itself. Routers, like other computing de-
vices, seem to have reached a peak clocking speed and even with the help of hy-
brid optical/electrical hardware, the clocking speed limits their ability to switch
data. Faster clocks would result in excessive heat, leaving the switching circuits
at risk of meltdown. Thus, just as servers and even desktop machines are now shift-
ing towards multicore architectures, so too are routers. The routers at the core of
the Internet used to be elaborate but largely single-core machines; over the past
decade, the balance has shifted dramatically and now these machines are massively
parallel.

How will a typical core Internet router look during the coming decade or two, and
why is the architecture of such importance? The answers may surprise the reader: a
modern router looks more and more like a small data center, consisting of racks of
switching cards (each will typically have 16 to 32 optical ports, for cables running
to other routers at geographically remote locations). Associated with each switching
card one typically sees a coprocessor dedicated to running the device driver for the
card (this will have the job of installing the low-level routing tables on which the
switching fabric itself operates), and one or more additional co-processor cards that
will often run a standard operating system, such as Linux or QNX, and can support
standard applications.

A high-capacity core Internet router might have tens of units of this sort, each
with its switching card and co-processors, resulting in a single router that consists
of perhaps 50 or more machines, and the industry is talking about routers that might
include thousands of CPUs in the future. One can think of such a structure as a kind
of high-performance parallel computer dedicated to controlling massive numbers
of specialized devices (the individual line cards, and the hardware “fabric” of the
switch that allows the cards to talk to one-another at line rates). At the data rates we
are talking about, the actual work of switching data must occur within a few tens of
clock cycles, and will often have a performance “budget” limiting the logic to just
three or four memory references.

This has all sorts of implications. An implication for routing, per-se, is that mod-
ern routing algorithms do not have time to search tables or perform other kinds of
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classification that might require memory references: there is time for a single lookup
but not much more. The solution to this problem is to use very large hashed tables:
a router receives a packet, pulls the destination address2 into a high-speed hard-
ware register, and uses the value as an index into the routing table, from which it
immediately learns the outgoing queue to which the packet can be copied and the
corresponding port (link). Unless there is some level of congestion on the link, the
hardware barely needs to touch the packets as they flow through the device: it just
forwards the packet, decrementing the TTL count as it does so, and then appends
a new checksum if needed (this is because when we decrement the TTL we also
invalidate the previous checksum; fortunately, the computation can be performed
incrementally from the previous value).

The hardware-dominated process we have outlined here is very much in contrast
to traditional store-and-forward routing, where the entire packet would typically
have been read into some form of router memory, then enqueued for output on the
appropriate network link. A modern core Internet router will have some limited
store-and-forward queuing ability, but even when packets do get queued up, soft-
ware will not necessarily be involved. IP multicast operates in a similar manner.
The IPMC address is pulled off the incoming packet, and now a parallel processing
task occurs: for each outgoing link, in parallel, a Bloom Filter test is performed to
see if the packet should be forwarded on that link. Recall that a Bloom Filter will
typically operate with k = 3, and hence 3 memory references may be required, but
this is a perfect opportunity for parallelism.

With this background out of the way, we can ask what the main reliability issues
associated with modern Internet routing turn out to be. Such a question quickly
leads to a great deal of complexity, because core routers run a great many different
routing protocols. Some routers run more than one at a time: one might see a single
router on which daemons for BGP (the Internet Border Gateway Protocol), IS-IS
(Intermediate System To Intermediate System), OSPF (Open Shortest Path First)
are all in use, side-by-side, with their routing decisions then merged to create a
single routing table. Moreover, cloud computing companies are increasingly eager
to create virtual corporate networks that span sections of the core Internet, each with
its own internal routing policies. But if we try to discuss reliability against this full
picture, we will just confuse ourselves. Accordingly, let us pretend that we only
care about BGP: almost every router runs this protocol, and the issues turn out to be
similar for other routing protocols, so what we can say about BGP will generalize
easily to other protocols. In what way does BGP contribute to network reliability?
How do current implementations of BGP interfere with our goals, and what can be
done to improve those aspects?

2This could be an IPv4 address or an IPv6 address; one hears a great deal of discussion about
the two as if they were dramatically different standards, but in fact as currently defined, the only
major difference is that IPv6 addresses are twice as long as IPv4 addresses. In particular, routing
algorithms and routers are essentially unchanged by the move towards IPv6.
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4.2.2 The Border Gateway Protocol Under Pressure

Until recently, a protocol such as BGP would have been coded to run on a single
machine (perhaps a multicore machine on which a multithreaded programming lan-
guage would be an especially good choice), using TCP connections to BGP peers
running in neighboring routers or neighboring ISPs, and updating the BGP rout-
ing table according to the rules laid out in the document that standardizes the BGP
protocol. But times have changed, and today’s BGP is a rather different beast.

First, the BGP protocol itself has been evolving, under pressure triggered partly
by the sheer size of the Internet, partly to defend against routine mishap such as op-
erator errors in remote locations that might disrupt BGP routing, and partly by the
worry that hackers (or cyber warriors under control of some foreign government)
might attack the BGP protocol. The size issue is this: as the Internet has grown, the
size of BGP routing tables has also grown, particularly because so many companies
operate multi-homed networks, with two primary IP addresses obtained from two
distinct ISPs, as a protection against failures that take one of the ISPs entirely off the
Internet (studies have shown that at any time, the global Internet has 60 to 100 re-
gions in which some form of brownout is occurring, preventing applications in those
regions from establishing connections to some other major region, even though all
the end-hosts are healthy). As customers push back because of disruptions triggered
by mobility, the pressure to consider some form of tunneling or multihoming solu-
tion for the mobile endpoint will grow, too.

Secondly, just because the number of ISPs involved is growing so sharply, more
and more opportunities exist for someone to make a minor mistake that would result
in the spread of erroneous BGP routing advertisements. For example, suppose that
the folks at InformationWantsToBeFree.com, a small ISP based in Freedonia happen
to have a corrupted entry in their BGP routing tables, claiming that the best possible
route to the US military network leads into their network, and then out on a link that
happens to be shut down. This is called a black-hole mistake: if this BGP route is
accepted, traffic to the military network will vanish into nowhere.

BGP configuration mistakes such as this happen all the time. What prevents
them from spreading, and destabilizing the Internet in some basic, long-lasting way?
Nothing, really, except that ISPs have learned to defend themselves against implau-
sible BGP updates. Incoming BGP routing updates are passed through a kind of
sanity check, and an updated route will not be accepted unless it passes the test.
This also offers some degree of protection against a sudden decision by the govern-
ment of, say, North Caledonia to disable the entire Internet by transmitting nonsense
BGP routing tables, thereby precipitating a world-wide collapse of Western govern-
ments and clearing the tables for the installation of the Beloved Father of North
Caledonia as the new and permanent world visionary. To some extent, existing san-
ity checks would probably catch such BGP routing packets in their tracks; should
one slip past the checks, the operators of the impacted ISPs would quickly notice
that traffic is suddenly pouring towards Freedonia New York, or New Caledonia,
and would realize that an errant BGP routing table entry was responsible, at which
point they could update their filtering policy and defend against the problem.
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Another problem is caused by upgrades. A core network router needs to be run-
ning 24x7, yet each time we patch or otherwise modify the BGP daemon software,
we will need to switch from the currently active version to the new one. Similarly,
migrating the BGP daemon from whatever node it happens to be running on to a
new node will force it to shut down and restart, and we may need to do this for any
of a number of reasons. Today, vendors tend to patch and pray: they set up the new
BGP, then issue a command that abruptly shuts down the old copy and enables the
new version. It would be nice to have a way to run multiple BGP instances side by
side, just to test out the new version before putting it in the driver’s seat, but this is
not yet an option.

Here we encounter a major network reliability challenge. Think about what hap-
pens if a BGP daemon shuts down, and then instantly restarts. There turn out to
be two behavior, neither of which is all that good. In the basic BGP mode, if BGP
shuts down on a router, that router’s peers will begin to route traffic around it, on
the assumption that the router itself may be down. So, we were using route X–Y–Z,
but suddenly Y seems to be down, hence we need to come up with some other op-
tion, perhaps X–U–V–W–Z. These routing changes are disruptive: they need time to
stabilize (during which traffic may route in cycles or even vanish into black holes),
and secondary routes are sometimes inferior in other ways: they may be longer,
more loss-prone, etc. Now, the new BGP starts to connect to its peers and they send
routing data to help it resynchronize. After what can be several minutes in a core-
Internet setting, the new BGP is finally back into sync and we are back to using route
X–Y–Z. Yet in the meanwhile, any users with traffic flowing through the impacted
area could see huge disruptions.

The second mode of BGP operation is similar, except that BGP signals to its
peers that it wants to use “graceful restart”, a special BGP option. Recall that our
router does the real heavy lifting in hardware, not software. The idea behind graceful
restart is to leave that hardware routing table in place and hence basically to leave
the router on auto-pilot while the new BGP synchronizes with its peers. The peers
keep using the same routes they were using previously, and the hope is that the
sorts of disruptions we have mentioned will not occur. Yet here a different problem
arises: in the core Internet, BGP updates may occur at rates of tens or even hundreds
per second. Thus within a short time, our router may have drifted out of sync with
respect to its peers because until the new BGP daemon is running and in sync with
them, the router will not be responding properly to those updates. Once again we
end up with the potential for routing loops and black holes, and again, the end-user
sees a reliability issue.

A widely cited 2004 study of router availability yielded the data shown in
Fig. 4.1, and stands as a kind of blueprint for what needed to be done back then
to achieve better routing behavior. The table reveals several main sources of router
downtown, and as we will see, one can attack pretty much all of them. The most
important problems as of 2004 involved network link failures. Over the ensuing pe-
riod, ISPs have begun to deploy redundant network links: rather than depending on
a single connection from Freedonia to Ithaca, the ISPs in the region use two or more
links and balance the load. If a storm takes out one link, the other is still available.
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Fig. 4.1 Availability
breakdown of a typical
network router, from a 2004
study by the University of
Michigan

Similarly, the 2004 picture showed a huge contribution from hardware failure, but
of course in 2004, most routers were still single, monolithic devices. Today routers
contain redundant hardware: in a cluster, one rarely sees large numbers of blades
crash simultaneously; more often, an individual machine goes down or needs to be
replaced. Thus, the main forms of hardware failure can be tolerated provided that
the component that failed was not playing some sort of unique, irreplaceable role.
Continuing to work from the figure, we can see that as of 2004, we really needed
much better router management software; this has evolved enormously.

In fact, whereas the 2004 reliability picture was pretty dire (routers back then
were achieving what could be called 3-nines availability, meaning that over long
periods of time, the router was up 99.9% of the time: not such an impressive number;
telephone networks aim for 5-nines), the situation today is dramatically different.
Right now the big remaining issue is to improve the software availability of the
routing protocols themselves, or more accurately, the daemons running them, such
as the BGP daemon that implements the BGP protocol. Such a daemon is a large,
complex software system (readers might want to read about the open-source Quagga
routing daemon to learn more). If a BGP daemon crashes or has to be migrated, the
resulting several-minute periods of BGP confusion (the delay depends on whether
or not the router enables graceful restart) represent the largest obstacle to modern
router reliability!

Could we do better? Recent research has focused on this question, with very
encouraging results. For example, Princeton’s networking group (led by Jennifer
Rexford and Mike Freedman) has explored virtualization as a tool for rapidly mi-
grating BGP (Wang et al. 2008). In this approach, a BGP image can be moved from
node to node without ever disconnecting it from its peers, even briefly. Part of the
trick is to recall that an IP address is not necessarily tied to a specific machine in
a modern network. Thus one can literally freeze BGP, move it, and move its IP ad-
dress too. BGP resumes execution on the new node in the identical state to the one
it was in before the migration!

On the other hand, migrating BGP will not help if we needed to restart BGP for
some other reason, such as a node or software crash, or to do a BGP upgrade. For
this we need a way to get the new BGP rapidly into the same state as the old BGP,
and then to somehow hide the event from the remote peers: if the TCP connections
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Fig. 4.2 The fault-tolerant Border Gateway Protocol daemon (BGPD) architecture. The architec-
ture runs on a router constructed as a cluster of host computers that control racks of network line
cards, with the actual routing done mostly in the hardware. The shim (a) replicates BGPD’s run-
time state into the fault-tolerant storage service (FTSS), which is implemented as a distributed hash
table (DHT; shown as an oval). The figure portrays the BGPD state as if it resided at a single node,
but in fact the solution spreads it over multiple nodes for fault tolerance and also to speed things
up by enabling parallel PUT and GET operations. After a failure, (b) BGPD can restart on some
healthy node, (c) recover its precise state, and (d) resume seamlessly. The TCPR layer (e) splices
connections from the new BGPD to the still-open end points its remote peers hold, masking the
BGPD failure/recovery event

they use are in any way disrupted, they will insist on running the basic or graceful
BGP restart protocol, with all the disruptions this can cause. Yet this problem can
be solved, too (Agapi et al. 2011), as illustrated in Fig. 4.2.

The basic idea starts by storing the BGP routing table directly in the memory
of all those nodes that make up the cluster, in a redundant (3-replicated) manner
designed to survive almost any likely failure pattern. In this manner, when BGP dies
on node A and is relaunched on node B, reloading its state takes as little as hundreds
of milliseconds even for very large routing tables. We will be looking at these kinds
of collaborative in-memory storage schemes later; they fall into the general category
of “distributed hash tables” and are implemented as key-value stores supported by
daemon programs running on each of the participating nodes. Checkpointed restart
can be completely seamless: by ensuring that the BGP state is checkpointed as each
incoming update is received, and before any outgoing update is sent, we can ensure
that the recovering version of BGP will behave in a way that is byte-by-byte identical



4.2 The Many Dimensions of Network Reliability 113

to that of the failed copy it replaces. The performance of the approach centers on
the extremely low latencies and high bandwidths of the network that runs within
the cluster, which makes it only slightly slower to access data in some other node’s
memory than it is to access it from a node’s own memory (and orders of magnitude
faster than disk accesses would be). The particular DHT used in the work on BGP is
called the Fault-Tolerant Storage System, FTSS, and was developed by Agapi and
Kielmann, at the Vrije Universiteit in Amsterdam.

Thus we can potentially get our new BGP instance running and into the right
state in milliseconds, by storing an in-memory checkpoint and playing it back very
rapidly when the new instance is launched. But, to avoid needing to run the graceful
restart protocol, we also need to prevent the BGP peers from wasting time trying
to resynchronize with this restarted BGP. Having gone to the trouble of making the
fail-over seamless, it would be pointless for the remote peers to still think that BGP
experienced a failure. Here we run into a second issue: BGP is defined to treat a TCP
connection reset as a sign that the remote BGP peer failed. Thus, our solution runs
afoul of the need to reconnect BGP on node B to all the peers that BGP had sessions
to when it ran on node A! One could change the BGP standard, but (inspired by our
insight into how cloud computing evolved), might there not be a way to solve this
without forcing anyone to modify their existing BGP implementations?

The technical challenge that arises in implementing this scheme is that it re-
quires a special kind of TCP session that somehow hangs in a frozen state when
the end-point originally using the protocol fails. Then, when the new instance of
BGP takes over from the failed one, we need a way to splice a new TCP endpoint
to the old, active, TCP session, without any disruption at all being visible to Veri-
zon. Figure 4.2 illustrates the desired sequence of events. As it turns out, this is a
solvable problem; we will look at it in Part II, and will see several ways of solving
it. One uses replication to replicate the entire TCP stack in the AT&T data center;
this method, due to Zagorodnov et al. (2009) treats the TCP endpoint as a kind of
object, used by but distinct from the application process that receives data on that
endpoint. A second method was developed more recently by Surton (Agapi et al.
2011) and is dramatically simpler: rather than replicate the TCP stack itself, Surton
leverages the knowledge held by the old BGP application and by the new instance
that took over from it and works a little like a firewall or network address translator,
editing some fields in the IP packet header to graft the restarted BGP to the old TCP
session in a manner invisible to the Verizon side of the connection. The overhead
for this scheme, which Surton calls TCP-R, is remarkably low: it requires just 350
microseconds for BGP to reestablish all the connections that were in use prior to the
fail-over event, in a manner completely invisible to the remote peers. This is such
a short delay that it falls well within the norms for BGP peer-to-peer communica-
tion under regular operating conditions. In effect, the peers just do not notice that
anything happened.

By combining a version of BGP modified to use collaborative in-memory check-
pointing with this TCP-R solution, we can completely hide the BGP failure and
restart from neighboring routers. Referring back to Fig. 4.1, this eliminates the
last major source of availability issues identified in that old 2004 study of router
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availability! Not a single of the major categories identified in the study remains
unaddressed. Indeed, taken jointly, the industry has made such dramatic progress
since 2004 that one really would have to redo the study to understand the avail-
ability routers built this new way could achieve: we seem to be out of the 3-nines
or less availability levels and into some totally new regime. Such studies await fur-
ther research, but a back-of-the-envelope analysis suggests that the Internet could be
heading for the 5-nines reliability level associated with the older telephone network.
Indeed, it may even be possible to push beyond 5-nines.

From this we arrive at several kinds of insight. One is that tomorrow’s Internet
could achieve availability levels of a kind we normally associated with wired tele-
phone networks, with very low frequency of disruptions. Today we are not quite
there yet (the approach just outlined, for example, has been demonstrated in re-
search labs, but no products offer these capabilities yet). Even so, they presage a
tremendous change in the way the Internet behaves. For more than 40 years, we
have lived with an Internet that was built to move email and files and seems poorly
matched to such uses as VOIP telephony or media streaming. In the near future, we
will start to see a new kind of high availability Internet, motivated by customer pull
from both the end-user (who wants a more seamless networking experience) and
from cloud-providers (for whom market share revolves around that same question
of customer experience). Moreover, higher availability would accelerate the shift of
television and radio and voice telephony to the Internet: a trend that is already under-
way, but up to now has been limited by inadequate availability levels, manifesting
as connections that freeze up or break for no obvious reason.

A second insight is that the cloud style of incremental technology evolution can
apply in the network too. By setting the goal of masking BGP failures, and insisting
that we do not want to change BGP itself in deep ways, we have found a path that lets
us achieve higher BGP availability but treats the BGP daemon itself, and the TCP
stack, as black boxes. None of the technologies mentioned above require that TCP
be modified, and while they do require some changes to the way BGP behaves, it
turns out that rather than modifying BGP one can simply build a kind of “wrapper”
that runs a legacy BGP instance but handles such tasks as talking to TCP-R and
storing data in the DHT on its behalf. Moreover, we arrived at a solution one could
deploy incrementally (meaning one router at a time), with benefits to users who send
traffic over the region using our technique, and yet without any kind of disruption
to organizations that prefer not to use and that would rather not see changes to the
BGP protocol specification. Finally, although we have used BGP as our target here,
everything we discussed would be equally applicable to a daemon running IS-IS or
OSPF, or even some other routing scheme invented by Amazon.com or Google.

A final insight is that the cloud and the Internet are ultimately partners, each
playing its role in the overall cloud enterprise. Moreover, the same technologies
are needed within the cloud data center, and within the router. We solved our BGP
fault-tolerance problem by using what sounds like a cloud computing reliability
technique, yet we used it right in a core Internet router. In doing so, we ended up
with a new network option that might be useful for things other than high availability
routing. Given unbreakable TCP connections, why not also use them when a web
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client talks to a service, especially in settings like our medical scenarios, or in the
control of the electric power grid, or in other settings where continuous connectivity
might be important? The basic methodology would seem to apply in any situation
where the two end-points maintain notions of their respective states, and where loss
of a connection can trigger an extended and disruptive resynchronization.

4.2.3 Consistency in Network Routing

One interesting topic that has gained increasing attention in the research community
concerns the question of consistency as applied to routing. We will say that a set of
routers are in mutually consistent states if all are using local routing tables that
combine seamlessly into a single global routing policy. The routing protocols we
have mentioned all settle into consistent states if a network experiences disruption
but then settles down.

During periods when a routing update is being propagated, however, routing can
briefly become inconsistent. As we saw, this poses risks: perhaps node X thinks the
best route to node Z is via node Y, but node Y thinks the best route is via W, and
W is still routing via X. Thus packets intended for Z end up on a cycle: X–Y–W–X
and loop until their time-to-live (TTL) values decrement to zero. Black holes can
also form: traffic from X to Z might be forwarded into Y, and yet Y might have no
outgoing paths leading to Z except the one back to X; if this occurs, Y drops all the
traffic to Z.

Inconsistency is a serious problem in the Internet; it causes all sorts of outages:
services may become unreachable, traffic may come to a sudden halt, data could
arrive out of order, or duplicated, etc. The end-user will be seriously impacted if
such issues occur on routes that some important application depends upon.

There have been a few proposals to develop new forms of consistent routing
protocols. For example, at the University of Washington, Arvind and Anderson have
explored a scheme they call consensus routing, in which new routes are installed
through a kind of two-phase dialog with the routers that need to adapt their paths
(BGP paths, in this particular case). The scheme is such that when a router does
switch to a new routing table, the other routers that will also need to switch do so in
what looks like a single atomic action. Of course, this needs to be done in a fault-
tolerant manner, and it needs to be very fast. We will be looking at ways of solving
such problems in Part II of this text. Indeed, the Isis2 system that we will use for
some exercises in this text could be used as a consensus routing tool, and doing so
raises fascinating research questions.

Routing consistency issues are of even greater importance within data centers
and other large enterprises, where the OpenFlow standards have made it possible
to treat the full set of routing equipment within a data center as if they were all
components of a single massive, distributed, routing technology. Two kinds of issue
arise. First, for scalability, one needs solutions that have costs local to the equip-
ment involved in an actual routing change. Thus if Amazon’s data center has 10,000
switches but some event should only cause routing updates in 35 of them, one wants
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any performance impacts to be local to those 35 devices, not the full data center.
Second, we still want to be able to make global statements about consistency; ide-
ally, we would like to be able to assert that any given packet traverses a series of
routers and switches that are in mutually consistent states. Lacking that, we might
accept a slightly weaker property, such as a statement that any given route sees a se-
ries of switch and router states that are in temporally monotonic states: they reflect
the same “route-table time”, or increase in this time metric, but never travel from a
switch that is using routing table t to one using routing table t − 1.

Stating such a problem can make it sound easy to solve, but in fact this is very
far from the case. The question we have just posed is a good example of a topic
that could earn PhD theses for future graduate students in the area. Achieving a
solution that scales well, performs well, and that has minimal impact on data center
performance when routes change will be a hard engineering challenge. That solution
must also be fault-tolerant and secure against intrusion or attack: a tall order!

Yet there is every reason to believe that these questions are solvable, and that
solving them will enable big advances in the capabilities of the cloud platforms that
they support. After all, today’s cloud platforms, just like the Internet WAN, are at
constant risk of severe data center wide disruptions each time routing changes in a
big away. When that happens, every single application hosted on the center could
be impacted, perhaps in severe ways. Thus the first company to offer a really good
solution stands to revolutionize the field and, in the process, to make a real killing
in the data center network management market, which is expanding at a white-hot
pace. It would be hard to imagine a better PhD research topic!

4.2.4 Extensible Routers

If a router has ample processing capacity, and supports the software needed to build
reliable services that can survive faults in ways invisible to their users, it makes
sense to think about ways of extending the ability to control routing decisions so
that the customers themselves might be able to determine routes that will apply to
their own traffic. The customers we have in mind here are big cloud providers, and
they would pay for the use of these customization services. But on the other hand,
companies like Google and Microsoft and IBM and Facebook each have “opinions”
about the very best place to route each packet that enters their data centers. If they
can impose control over the Internet routers themselves, they may be in a position
to offer higher reliability, new kinds of service and to reduce the costs of doing so.
And they may also be able to reduce the load on the Internet as a whole, by making
smarter routing choices than the network itself would have made.

Today, this kind of extensibility is difficult and requires contracts between the
cloud provider and the ISPs carrying the traffic in question. Those ISPs would
convert the cloud provider’s routing desires into policy that would then shape the
routing tables they produce, for example by sending traffic generated by some
Amazon.com data center over a particular route to some other Amazon.com data
center. There are obvious advantages for the ISP in making such deals: the traffic
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will be predictable, hence they can assign a specific optical link with a known ca-
pacity, and can otherwise provision their networks intelligently to handle the load.
On the other hand, Amazon.com would need to engage the ISP in dialog over every
routing change they need that could impact the ISP.

Better, but still out of reach at the time this text was being revised, would be
an ability for the router to host what might be viewed as a virtualized corporate
router managed directly by Amazon itself, but operating purely within a virtual
LAN that carries Amazon’s traffic. In effect, the ISP would classify Amazon.com
traffic—think of this traffic as being tagged with some color, like yellow. Google
traffic might be tagged blue, etc. Now, the yellow traffic would be routed within
yellow links using routing table entries from a yellow routing table managed by
Amazon itself. In effect Amazon would gain a great deal of policy control, but only
for decisions in which Amazon lives at one or both endpoints of the communication
session. Then Amazon could run whatever routing policy it likes for these internal
decisions. Readers familiar with a concept called a virtualized LAN or VLAN will
recognize that what we are describing would generalize the way that VLANs work
today, taking what is currently an enterprise networking concept used purely within
a data center and extending it to also run between data centers. On the other hand,
doing so would raise many technical questions.

The intense pressure to move in these directions makes it relatively likely that
something along these lines will become common during the next decade or so. The
resulting network might look very different from today’s Internet, as discussed more
fully in “The League of Supernets” (Birman 2003). In a fully deployed solution, we
would basically have a set of networks that share the same hardware and can share
links or even route traffic through one-another (consistent with whatever policies
the owners and operators impose), but with each network potentially routing in a
completely different manner. The most obvious use is the one we have described,
in which a company like Amazon or Google takes control of how traffic from its
clients, or between its data centers, will be routed.

Taken to the extreme, however, one could imagine deployments in which the net-
work links and routing bandwidth would not necessarily be shared between such
uses at all. Suppose that some ISP that already operates a very big router were
willing to buy a bit more hardware. The ISP could then lease part of its router to
a company with deep pockets, like Netflix or Amazon, perhaps along with some
guaranteed link bandwidth or even a set of dedicated but currently unused fibers.
The lease arrangement would promise that the company leasing the fibers and router
hardware has the right to control routing over those links or through those line cards.
This type of incremental expansion of an existing router is cheaper than buying one
outright, so Netflix would save money by renting rather than owning. Netflix ends
up in a position not merely to design its own routing protocols, but even to design
network policies that might be very different than those seen in today’s normal In-
ternet. Obviously, the packet format would need to be IPv6: these routers bake the
IPv4 and IPv6 packet formats into hardware. But the routing policies used could
be customized to an almost arbitrary degree. Thus Netflix, which transmits video
streams, could come up with video routing policies and even network queuing and
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prioritization policies optimized for their kind of traffic. Yet these links would be
side by side with the standard IP network operated by the ISP, hence Netflix would
also have the ability to use IPv4 or IPv6 as a normal transport protocol on the same
links. The ISP ends up playing a role a bit like a cloud computing provider does
today: it owns technology that is not used as effectively as it could be right now.
With such a virtualized leasing option in place, the ISP suddenly is in a position to
make money by renting its space capacity to cloud providers, who spend less to rent
than they would to build from scratch.

The value would not be limited to a company like Netflix. A secure medical com-
puting system could implement its own wire-level protocols and routing on behalf of
the new medical communication services it offers: perhaps, those would be secure,
robust against even extreme disruption, and offer timing guarantees, for example.
Once again, the ISPs willing to run this new router add-on could charge for doing
so, but the medical records cloud company might be willing to pay those fees rather
than put patients at risk by trying to give similar behaviors over the shared, public
Internet. A military network might reserve hardware components and links of intel-
ligence traffic. Thus, we end up with what seem to be side by side Internets, yet in
each case, can leverage the powerful cost incentives for renting rather than owning.

The League of Supernets paper cited above imagines how such a process might
look after it entered wide use. We end up with a set of side-by-side networks that
can talk to one-another, share resources, and cooperate in other ways, and yet can
also do things that are very non-Internet-like on their dedicated infrastructures. The
paper envisages a series of super networks: perhaps, a security network, a fault-
tolerance network, a video-data delivery network. Each of these networks would
need to be designed and operated and perhaps even “invented”. On the other hand,
the new networks could still reuse functionality associated with the existing Inter-
net, to the extent that the existing solution has adequate properties. For example,
that Netflix video streaming network could use the standard Internet to configure
itself, employing streaming protocols only within the video network layer. Thus the
Netflix solution would end up grafting something new to something old, and whole
thing would run on something borrowed. The ISP would find itself in the cloud-like
role of owning infrastructure (router hardware and optical fiber) and renting those
resources, on demand, to big cloud customers, Today’s ISPs do not participate fully
in the cloud revenue stream, but such a vision suggests that perhaps tomorrow’s ISPs
will find themselves in a much more interesting place, commercially.

4.2.5 Overlay Networks

We have discussed the idea of application-specific routing, but all our examples
related to standard routing protocols such as BGP, IS-IS and OSPF. This might leave
the reader with a misimpression, because many of the most interesting application-
layer routing options are not at all similar to the routing protocols used to manage
the Internet itself. In this section, we will look at several examples of novel routing
structures that researchers have worked with during the past decade or so, and that
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might fit this model. As we will see, while one could imagine putting these schemes
on routers, they were designed for use directly by the end-host systems that use
them; in some sense, they tunnel over the Internet but are implemented in user-space
by the end-points themselves.

We will start with the simplest and best known example: MIT’s Resilient Overlay
Network (RON) system, which basically routes around Internet slow spots, adapting
much faster than the Internet itself, which (by design) is slow to change its routing
tables. Next, we will look at what are called Distributed Hash Tables (DHTs), which
are distributed data structures offering quick ways to find things even in massive
networks. These actually play a big role within today’s cloud computing systems
too, but they emerged from work on peer-to-peer file sharing and we will focus
on that application when we discuss them here. Finally, we will discuss Berkeley’s
Internet Indirection Infrastructure, a novel way to use DHT structures in support of
completely new Internet functionality.

In this subsection we will also look at some applications that run on top of these
kinds of overlay infrastructure. The examples on which we will focus are just two
among many: BitTorrent, the well-known protocol (and system) for rapid downloads
of files and other large objects, and Sienna, a content-based routing infrastructure
for sharing information in wide-area environments. Later we will revisit some of
these technologies in cloud settings, where they play distinct roles. For example,
BitTorrent is used for downloads of big files such as software patches in the Internet
WAN, but has an important role for internal file copying at YouTube, which runs
it within its own data centers. DHTs were invented in connection with peer-to-peer
file sharing, but today, Amazon’s shopping cart service, called Dynamo, uses a DHT
technology invented by Amazon. These in-house network solutions sometimes can
take advantage of special information, like network topology data, not available in
the WAN. Yet they still have a great deal in common with the WAN versions, and
we can gain a lot of insight by starting in the WAN and then looking at the cloud
uses of these solutions later.

4.2.6 RON: The Resilient Overlay Network

MIT’s Resilient Overlay Network (RON) system is a great place to start our tour
of application-layer networking tricks because the concept is easy to understand,
works remarkably well, and offers several important insights that we will apply in
other contexts, too.

The RON effort started when researchers at MIT noticed that Internet routing
sometimes picked very poor network routes relative to what the end-user (for us,
a cloud provider talking to a client) might have wanted. Suppose that a client C is
talking to a cloud platform S, and for simplicity, assume that S would seem to be
the ideal cloud center to support C: nearby, with cached data for C’s requests etc. Is
C guaranteed to have a good network route to S?

The RON project studied this question and discovered that surprisingly often,
the Internet route from a node (perhaps the server at S) to the client was very slow,
lossy, or showed higher than predicted latencies. Many factors can explain such
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observations: congestion within the Internet, routing focused on the cost to the ISP
for sending traffic (ISPs often enter into agreements with one-another, hence S’s
traffic might be routing through an ISP that finds it cheaper to send data via some
second ISP even though the resulting route is not ideal from the perspective of the
S-to-C data), etc.

Most students in networking classes are taught that the whole point of Internet
routing is to adapt as conditions evolve, but in fact really quick adaptive routing is
a thing of the past. Today, routing is managed carefully and routing decisions often
have business ramifications for ISPs. Special pricing agreements, path capacity and
many other considerations have given us a modern Internet that will certainly adapt
to route around failures (although perhaps not all that quickly; two or three minutes
would be a typical delay), but in which most routing is relatively static most of
the time. Thus, the problems noted by RON are really a symptom of competing
economic interests. While the data center servers and customers would like to see
the fastest possible routes for data from S to C, the Internet routes actually used also
need to give very strong weight to the interests of the ISPs carrying the traffic.

RON takes routing into the application’s own hands. The work starts with the
realization that many services run at multiple locations. For example, our cloud
provider could easily have multiple data centers, call them S, T, U, V. . . The basic
idea of RON is to take a set of endpoints (we would add the client systems to the
set, so: C, S, T, U, V), compute the pairwise performance statistics using a simple
probing technique that runs every minute or two, and then calculate the best route
from S to C within this matrix of speeds and latencies. Sometimes the ideal choice
may be to just use the S-to-C route offered by the Internet. But RON is also open
to routing from S-to-U-to-C if that gives better performance. We call the resulting
scheme an overlay network because in effect, it overlays a network managed by the
cloud provider on the Internet. Sometimes the term “application layer” is also in-
cluded just to stress that the Internet layer itself was unaware that RON implemented
this higher level overlay.

It turns out that even a single indirect hop can have a dramatic impact. This
highlights the issues we discussed in the previous section, illustrating precisely why
today’s cloud providers (which, after all, lose revenue if the network path is unrea-
sonable slow or lacks adequate capacity) might want to control network routing.

RON is not a panacea, and some have argued that it risks a phenomenon that
Adam Smith, an early American economist, would have called a crisis of the com-
mons. The term arose from a classic economics dilemma. Suppose that we live in a
small village and share a commons: a grassy central space that our houses surround,
and where the community enjoys picnics and sporting events. Our village is famous
for its wool—all of us raise sheep—and has been a prosperous and happy place. But
one day, John Higgens, local wool entrepreneur has a sudden insight. Rather than
having his sheep graze in the fields on the edge of the village, he can save himself
a great deal of walking back and forth by letting them graze on the commons. So
John moves his flock and gains a few hours of leisure.

The rest of us, exhausted by the trek to and from our fields, become jealous. So
we move our sheep too. But the commons did not have enough grass for so many
animals, and in a short while has been completely denuded. Sheep poop litters the
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whole area and nobody would dream of setting out a picnic. What was good for the
individual has turned out to be bad for the community. So this is the essential nature
of a crisis of the commons.

How would Adam Smith’s argument map to the way that RON does routing?
The commons is the Internet, and the place to start is by recognizing that there are
good economic reasons that Internet routing, without RON in use, takes the form it
currently has. In some ways the economics of the Internet shape the preferred routes:
the routes the network uses are necessarily pretty close to being best money can buy
(averaging over a long timescale, obviously: no company can react instantly when
conditions evolve). In the long term, any ISP offering inferior routes and spending
more of its revenue to run the network would lose out to its competitors.

So in this self-optimized situation, we suddenly start to deploy RON. The first
company to do so might easily get a big win, assuming that the company itself is
not one of the really big players. But if we all start to use RON (or if Facebook,
Google, Amazon and other big players do), a kind of arms race has emerged. Now
the optimization decisions the ISPs are making are backfiring because the traffic they
had planned to send over such-and-such a high-capacity link, perhaps at a bargain
rate, vanishes and tries to crowd itself onto some other lower capacity, expensive
path that the ISP was not eager to use. Each time the ISP changes its routing, RON
adapts and counters that decision with some other decision optimized for the RON
users, but perhaps harmful to the whole network ecosystem.

Not surprisingly, it turns out that while RON is ignored for small-scale use (you
can download the free software from MIT, compile it against your code, and start us-
ing it just like that). But for large users the situation is different. ISPs have rules pro-
hibiting the use of RON-like overlay techniques unless their customers first request
and are given permission to do so. In the eyes of an ISP, RON might be acceptable if
it does not trigger the sort of struggle for optimization we outlined above, but ISPs
have no tolerance at all for big customers who try and cheat to gain an advantage
over other paying customers!

Although Adam Smith did not realize it at the time, his crisis of the commons
idea eventually led to a Nobel Prize in economics, but much later. A Princeton math-
ematician, John Nash, became fascinated with the instability we see in these cases,
where there are competing societal and individual interests. He showed how one can
formalize these problems (doing so involves writing down utility functions that com-
pute the value of a scenario to a participant; here one would need a utility function
for the client, for the servers, and for the ISPs). We then express the global utility of
the system as a combination of the individual utilities for the participants. This lets
us ask what policy strikes the best balance among the competing options: in effect,
which policies earn the most utility for each kind of player?

Nash showed that not all situations are stable. The ones that do have stable so-
lutions are said to permit Nash Equilibria: a policy having the property that any
change of strategy causes all the participants to lose utility—to be less satisfied.
When operating using the Nash Equilibrium policy, there is no incentive to try and
game the system. By using RON without dialog with an ISP, we run a substantial
risk of the sorts of instabilities that Nash predicted: a duel of wits between the ISP,
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with its routing objectives and constraints, and the application, bringing a distinct
set of objectives and constraints. But with dialog, it may sometimes be possible to
find a mutually beneficial compromise: a Nash Equilibrium solution.

As we read about other tricks one can play within the Internet, it turns out to
be useful and important to keep these perspectives on RON in mind. RON was not
the first system to create network overlays, but it uses them in an elegant, easily
appreciated way. We will want to keep this idea in mind, because it can be useful in
other settings too. Next, RON highlights the sense in which the application might
want to gain control over things that are traditionally thought of as black boxes one
uses, but cannot control. And finally, we need to think beyond the initial stage: a
technology cannot benefit its users in ways that could harm the community. The
Internet is a shared resource, and applications need to be mutually respectful, and
also respectful of the fact that someone is paying for each element of the system.
If we build systems that behave selfishly to the detriment of others, or that hurt
the economic interests of the network providers, we will just find those solutions
blacklisted.

4.2.7 Distributed Hash Tables: Chord, Pastry, Beehive and Kelips

What else can overlay networks be used to do? Our next topic arose in the late
1990’s when a wave of illegal movie and music sharing systems suddenly gained
popularity. Most readers will be familiar with some of them (Napster was probably
the best known, others include Gnutella, and Freenet). Several of these live on even
now, although inexpensive legal solutions like the Apple iTunes store for music, and
the Netflix and Amazon video streaming sites, are gaining ground steadily.

Systems like Napster, at least at first, offered a tool to assist in what was called
peer-to-peer file sharing. The idea was simple: Sally happens to own a copy of the
latest Lady Gaga album, and she uploads the songs to her computer. She allows Nap-
ster to catalogue this new music. Now Tom, a person Sally does not know and who
does not even live in the area, searches for Lady Gaga’s hit “Born this Way.” Napster
offers Tom a list of sources that includes Sally’s machine (no personal information
is offered). Tom clicks one of the links and his browser connects to Sally’s system.
Assuming the request is not blocked, Tom’s music player will fetch the music from
Sally’s machine and play it for him. At this point Tom will also have a copy he can
share, etc. Of course the request might be blocked by a firewall and the connection
could be slow, but Tom is always free to click one of the other links. Usually, within
a few tries, he will find one that works.

This type of music sharing is illegal, and we are not going to venture into the
pros and cons of the underlying notion of digital property and control. The author
happens to believe in the protection of intellectual property, but his experience trying
to convince students first, that this is the correct position, and second, that they
should actually live that way has not been all that good. But hopefully, we can all
agree that the technical challenges are interesting.
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A system like Napster has several components. One involves a server; it helped
Tom’s system find Sally’s system. Such a server could track the actual music avail-
able at each user’s machine, or it could just help the computers form a connected
overlay within which search could be done in a more distributed, symmetric way.
Thus we see an issue of overlay formation, and a second question of search. The
third component is one that can download content when we find what we are look-
ing for.

In fact Napster had other components too. Naturally, it was out to make a buck;
Napster did this by placing advertising on its web pages (and it made a lot of money
that way, a reminder of where the money really is in the Internet today). Because
the recording industry felt threatened by Napster, the company found itself under
attack: the industry had a strong incentive to upload Frank Sinatra songs and then to
label them as Lady Gaga, in the hope of making the Napster experience so erratic
that users would abandon the service. The industry also used virtualization to create
fake servers that just performed very poorly (so Tom would perhaps find a virtual
Sally, wait a very long time, and then hear Frank’s rendition of Bim Bam Baby).
This is called a Sybil attack, a reference to the famous novel about a woman suffer-
ing from multiple personality disorder. And finally, the industry sometimes attacked
servers: so many Napster users were behind firewalls (and hence unreachable) that
by attacking the few users who, like Sally, could actually accept incoming connec-
tions, the whole system could be destabilized. Napster, for its part, did all it could
to defend itself and blacklist bad players. At the end of the day, of course, a judge
settled the question, ruling that what Napster was doing was clearly illegal and shut-
ting the service down, at least in this free sharing form. Obviously, that did not end
the matter (dozens of other services soon sprang up to replace Napster, and Napster
itself resurfaced in a new and legal form), but again, let us not go there.

There has been research on all aspects of this, including defending against the
kinds of attack just listed (in effect, research on better ways of supporting illegal file
sharing), but the topic we will focus on here starts with the idea of abstracting a few
of the key steps in what Napster was doing and supporting those as clean functions.

Chord
The systems that emerged from this idea implement what is called distributed hash
tables (DHTs), and there are many examples; we will look at just a few. Although it
was not the first project to explore the topic, the first widely used DHT was Chord,
a system created at MIT (Stoica et al. 2001). Chord takes a set of machines and
organizes them as a cooperative online memory system, capable of storing infor-
mation and retrieving it. The programming interface could not be simpler: Chord
lets the user put a (key, value) tuple into the store, or get the value associated with
some key. Fancier DHTs allow multiple values associated with a single key and
ways of removing a (key, value) mapping, and there has even been work on doing
full database searches using patterns (queries) on the keys or values, but we will not
follow the idea quite so far; we will focus just on the basic get and put operations.

Chord works by creating a kind of distributed binary search tree. As a first step,
we take some form of unique machine identifer for each node in the system. Let us
not worry about firewalls and network address translation, which complicate things
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Fig. 4.3 Chord, a widely
used distributed hash table
(DHT) organizes nodes into a
ring, using hashed ids to
place each node. (key, value)
tuples are then stored at the
node with hashed key closest
to but less than or equal to the
hash of the tuple’s key and
replicated on it successors.
Any value can be located
within at most log(N) hops,
where N is the size of the ring

quite a bit, and just assume that we have a set of machines that all have unique IP
addresses; we will use these as the id’s. Chord defines a hashing function; this takes
a value (an id, for example) and maps it in a deterministic way into a range of values,
ideally in a way that looks relatively random. Let us assume that the range of values
is just the unsigned 32-bit integers. Thus if Chord has a good hashing function, and
we have a set of perhaps ten participating nodes, we would ideally hope that even if
they have very similar IP addresses, each maps to a unique value in the 32-bit range,
and those values are relatively evenly spread out within the range. Chord will work
properly if something goes wrong, but it works best if these properties hold.

One good way to hash a value in this manner is to use MD5, a so-called crypto-
graphic hash function. MD5 takes an input value, crunches it in various ways, and
returns a number that depends on the input but in a way that looks very random.
MD5 has good mathematical properties and can be computed rapidly, which is also
important in systems like Chord.

Next, we think of our 32-bit addressing space as a ring, in which positions on the
ring are identified by value. Figure 4.3 illustrates the idea.

To implement put, Chord takes the given key and applies the hashing function to
map it to a location on the ring. The rule is that a given computer owns any (key,
value) pairs that happen to map to its own hashed id, or to any hashed value up to
the id of the next node in the ring. Thus, if computer S maps to hashed location 1000
and computer T maps to hashed location 25000, and there are no other machines in
between, S owns the keys that map into [1000, 24999]. For example, if some user
(e.g. some computer using Chord) does a put of (K, V) and K maps to 3000, then
S will be asked to hold a copy of (K, V). Later if any computer does a get with the
same key K, the requestor will recompute the mapping, again obtain hashed value
3000, and the request will be directed to S. S will find the tuple in its local memory,
and return V.
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How does Chord implement the lookup that gets us from whoever did the put or
get to machine S? There are two ways to do this, and Chord supports both. One is
to just have each node track its predecessor and successor on the ring. Thus if we
happen to have machines S, T, U, V and W on our ring in that order, S will know
that its predecessor is W and that its successor is T. If W needs to find the owner
of key K, it can just forward the put or get in either direction, probably favoring
the direction that seems numerically closer. If N is the number of machines in the
ring, after (on average) N/2 hops we should reach the machine that owns key K.
Of course, that machine can respond directly to node W without needing to route
hop-by-hop back. Node W would then cache the node id that was involved, and the
(K, V) pair; if a subsequent request arrives for the same information, it would be in
a position to respond immediately.

Notice that we are acting as if the DHT treats these (K, V) tuples as immutable:
once a value is written, it remains in the DHT. In practice Chord and other DHTs are
generally fancier; they may support expiration times for tuples, deletion operations,
and ways to do updates. But none of those features really change the basic idea.

Chord also has a kind of optimization that speeds all of this up. Each machine
keeps a small table containing log(MAXINT) entries, assuming that MAXINT is
the largest possible hashed key. In this table, entry i tracks the node that owns key
myHashedKey + 2i , where myHashedKey is the hashed key of the node owning the
table. The tables will differ, of course, because each node has a different value for
myHashedKey. Thus if Chord hashes into a 64-bit address space, the table might
have 64 entries, listing 64 nodes. We call these finger pointers, and the table a finger
table.

Now, suppose that W needs to put some value at the hashed location correspond-
ing to key K. Rather than routing the (K, V) pair hop by hop around the ring, W
can just find the finger with the largest value less than or equal to the hash of K
and forward the (K, V) pair directly to that ring member. The receiving machine re-
peats this process using its own finger table. It should be easy to see that in a system
with N nodes, following a search pattern very much like a binary search, our (K, V)
pair reaches the right destination in at most log(N) hops. In practice, W would also
cache some recently contacted target nodes, so that if the same key is used again, it
can reach the right owner in just a single hop.

Of course our scheme, so far, will not tolerate failures. To deal with this, Chord
replicates information. Rather than having a member track just its immediate pre-
decessor and immediate successor, Chord tracks log(N) predecessors and log(N)

successors. And rather than storing data at just one machine, Chord replicates each
(K, V) pair at log(N) successive locations. When a computer fails, the neighbors
notice this and make extra copies of any (K, V) pairs that are no longer sufficiently
replicated; when a member joins the ring, the (K, V) pairs it should hold are copied
to it by its predecessor and successor, and any (K, V) pairs that are now overly
replicated are discarded by the ring member having the N + 1st copy.

Finally, we have the question of how to maintain all of these pointers. The basic
idea in Chord is to have a very careful scheme for managing the predecessor and
successor pointers. All the other pointers are periodically discarded and recomputed,
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but in an unsynchronized manner. Thus, every few seconds machine W might select
some finger table entry, look up the key to which it corresponds, and update the
finger table to reflect the correct id (if it changed). This type of highly randomized
algorithm can be shown to converge after almost any imaginable failure, with one
important exception: a network partitioning failure.

Imagine a Chord that has half its nodes at MIT, and half at Cornell. Now imagine
that the Cornell to MIT link fails. As the two Chords repair themselves, they will
converge towards a configuration with two distinct rings, slowly breaking one cross-
link after another as the automated ring repair algorithms run. Eventually, the two
rings will be completely disjoint, with no nodes in common, and no cross-ring links.
To prevent this from happening, Chord has a notion of landmark nodes that members
attempt to contact at some regular frequency, together with a ring merge scheme that
kicks in if two partitioned rings happen to discover each other (as might occur if the
Cornell to MIT connection is repaired). The merge is done by having nodes remove
themselves from whichever ring they are on, and then reinsert themselves into the
ring that the landmark nodes are on; the idea is that one of the rings (presumably
the one at Cornell) will fade away, with its nodes reappearing in the MIT ring, and
then replicating their (K, V) tuples through the normal process of replicating data to
successors.

This merge algorithm is a weak point for Chord: while it is not very likely, one
can “design” a failure pattern that would leave us with two rings, one at Cornell and
one at MIT, having a few lingering connections between them. If we repair the net-
work partition just at this instant, Chord can remain in this sort of stable but mostly
split brain state, and will not recover from it. Yet to provoke such a situation would
be very difficult; one needs a nearly omniscient adversary with perfect knowledge of
the system state and perfect control over when the various links will break, or be re-
freshed. Thus, Chord is an example of a system that in some technical sense cannot
guarantee correct behavior, but that does have a very high probability of correctness.

Pastry
Pastry, developed by a large collaborative team led by researchers at Microsoft
Research Labs in Cambridge England and Rice University, is very much like
Chord, but built using a slightly different short-cut method. The idea here is to
pick some radix (some numeric representation base), perhaps 16 or 10. We still
use a ring, as in Chord, and a hash function. But now we think of hashed values
as numbers expressed using this radix. For example, a given key might hash to
000000000000A43D in radix 16. In practice Pastry limits itself to radix values that
are powers of 2.

Pastry maintains finger pointers as a 2-dimensional table (a structure called a
Plaxon tree); one dimension tells us which digit we are looking at in the key (we
just number digits 0 to logradix(MAXINT), from the high-order digit down). Thus
000000000000A43D has 0 in digits 0 through 11, an A in digit 12, a 4 in digit 13, a
3 in digit 14, and a D in digit 15. We will have a row in this table for each possible
digit (hence 16 rows), and for each possible value that the digit could have (hence,
16). Had we used radix 8 (3 bits per digit), we end up with 11 rows, each with 8
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Fig. 4.4 The Pastry DHT uses a radix-based finger-table organization to gain greater flexibility in
the choice of peers. Because Pastry will often have several candidate peers to pick from at each
level (each “hop”), the system can select a node that is accessible (with no firewall or network
addressing obstacles) and will offer high performance (low latency, high bandwidth)

columns for the possible bit values. Using radix 1 (binary), Pastry would need 32
rows, but each row would have just 2 possible values, 0 or 1.

Now, let us think about machine W in our ring, with an id that hashes
to some value KW. For simplicity, let us assume that KW is the same value,
000000000000A43D, we used in our example in the prior paragraph. With this
information, W populates its table as follows. Row r corresponds to the first digit
of hashed keys. Notice that KW has a 0 in this first digit. So it puts its own node-id
in column 0 of row 0. Then, for each of the other columns, Pastry puts the address
of the closest known peer for keys matching in the prior rows and having the cor-
responding value in that column. Thus, if we were to jump down and look at row
13, we are talking about keys that start with 000000000000A and then have values
0,1, . . . , F in the next digit, and each column gives the address of the closest known
peer for keys with the corresponding next digit. Figure 4.4 illustrates this example.

The forwarding rule is just as you might expect: When dealing with a hashed
key that does not fall into the range you own, match the hashed key against your
own key up to the first point at which the keys differ. Look in the column for that
digit and forward to the machine you find listed there. You will always have some
option because you always know of at least 3 nodes: yourself, your predecessor on
the ring, and your successor. So in the worst case, you just forward to the successor
or predecessor, whichever is closer to the desired key.

With radix 2, Pastry will actually behave exactly like Chord. The advantage is
that with other radix values, Pastry gains some flexibility. Chord members are re-
quired to forward messages to a particular peer, namely the one you get to by looking
up the hashed value of a key plus 1, 2, etc. Pastry can potentially use any of a num-
ber of peers as its finger partners because there may be many machines that match
the first r digits of a key and that have a particular value as their next digit: it must
find one that matches the key up to that point, but then picks the one that is closest
in a latency sense if it still has a few to select among. For example, suppose W is
trying to forward a (K, V) pair with a key that hashes to 7000000000000000. Any
node with a 7 in the first digit of its hashed key is a legal possible peer. Thus, within
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this set, Pastry is free to look for a machine that happens to be nearby, using mea-
sured round-trip times to improve the choice of finger table partner. Studies of this
strategy show that where Chord might often end up with very high latency “hops”
in its searches, Pastry can often completely avoid that risk.

We have not said much about how Pastry initially populates the table, or how
it deals with machines that join, leave, or fail; the details do not really matter for
our treatment here and in any case, are basically similar to what Chord does. Thus
Pastry is a more general formulation of the Chord concept, with a twist that gives
Pastry a useful degree of freedom, namely the ability to chose the best among a set
of possible partners so as to optimize performance. This idea is one used in many
peer-to-peer systems. After all, why send a request from MIT to Kenya if there is a
machine at Cornell that could forward it for you, especially if the actual destination
machine turns out to be at Harvard?

Beehive
The researchers who developed Beehive, Rama Ramasubramanian and Gun Sirer,
asked themselves what would happen if Chord replicated popular (K, V) tuples so
that the system would have many copies rather than just the minimum needed for
fault-tolerance. As an extreme case, suppose that some (K, V) tuple was replicated
to the entire Chord ring. Since every node would have a copy, every query will return
immediately: Chord becomes a 0-hop DHT. Of course, storing new (K, V) tuples on
all N nodes in the ring will be costly, but the payoff would be an instant lookup.

Next, let’s imagine that we replicate just half as much: a given (K, V) tuple will
be replicated to N/2 nodes (those with key values between K and K−MAXINT/2).
Consider a lookup for some particular key K.

With probability 0.5, the node doing the lookup will be in the range of nodes on
which the (K, V) pair was replicated. If so we’re in luck and have an instant answer
with delay 0. The other possibility is that the node issuing the lookup falls into the
other half of the Chord ring: the keys between K+1 and K+MAXINT/2. In such a
case, Chord uses its finger-table to jump closer; in particular, the first hop will be of
distance MAXINT/2, and hence will take us to a node that falls into the replication
range and will therefore have a copy of the (K, V) tuple. Thus, with probability 0.5
we have a reply in 0 hops, and with probability 0.5, in 1 hop: on average, the delay
will be 0.5 hops. Figure 4.5 illustrates this case.

Generalizing, the Beehive researchers found that they could replicate tuples to
produce any desired average lookup latency between 0 and log(N). Next, they de-
signed a simple popularity-tracking mechanism: for each (K, V) tuple, each access
increments a counter at the node where the access succeeded, and then periodically,
these counters are summed up over all the copies in the Chord ring. This enables
Beehive to form a popularity ranking, at which point the system computes an op-
timal replication factor proportional to (K, V) tuple popularity: a popular item is
replicated heavily; an unpopular one, only enough to satisfy fault-tolerance require-
ments. This yields a tunable optimization scheme with whatever average lookup de-
lay the system desires. In practice Beehive is normally used with an average 1-hop
delay, a value that trades off between replication cost (due to storage consumed) and
speed.
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Fig. 4.5 The Beehive system, built over a Chord-like infrastructure, replicates (key, value) pairs to
reduce the delay in finding popular values. By matching the replication factor to popularity achieves
constant popularity, Beehive average delay O(1-hop). One application area was to support a faster
version of the Internet DNS (the CoDNS project)

We will see other uses for this form of optimization, hence it may be useful to
point out that “optimal” might not have the precise meaning one would expect here.
The issue is that some node needs to compute this optimal data replication policy,
and will do so using whatever data it has available. Those data could easily include
stale membership data and stale information about item popularities and the relative
ranking of those popularities. We would then optimize, but do so relative to a non-
optimal approximation of the true values. Generalizing, when we see optimization
used in distributed systems, we will always want to think about how the proposed
scheme might work if the underlying data become stale or skewed. Beehive has
been tested under conditions that include these kinds of staleness scenarios, and has
shown itself to be very robust.

Kelips
The next DHT to consider here is Kelips (Gupta et al. 2003), a system created at
Cornell to highlight the value of a technology called gossip communication. We
will have much more to say about gossip protocols later in the text, so for now we
will limit ourselves to a brief glimpse of the idea.

A gossip state exchange is said to occur when two machines in a network (two
peers, in the terminology used above) come into contact and share information,
much as humans do when they meet friends and spread a rumor. So, for example,
node A contacts node B and asks if B has heard the story about node C making
a killing in the stock market. Well, B certainly has heard the story now. Now A
contacts D while B contacts E. The rumor spreads exponentially quickly, eventually
reaching all nodes.

Gossip actually comes in several flavors: push gossip (the version we have just
described), pull gossip (A asks B if B has any news to report; B responds with a
hot story about C losing its fortune on a bad bet in the commodity markets. . . ), and
push-pull, which combines both patterns.
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Notice that to use gossip, A needs to have a way to get into contact with B.
Typically, this is done using a rendezvous server that hands out a few initial contacts;
A boots, downloads those contact names from the server, and from then on runs
gossip. Thus, when a gossip system starts up, each node would typically be in touch
with some small set of nodes already in the system. If a machine is the very first one
to launch the gossip application, the rendezvous service just tells is so, and it starts
in an empty state, or perhaps loads an initial state from some form of checkpoint
maintained by the application.

Once launched, most gossip systems start to gossip about multiple kinds of in-
formation concurrently, including membership in the system. Thus, if we launch
node B it might be given A as an initial contact, and the first gossip exchange it
does with A will include a long list of other members. From then on B will quickly
become a full-fledged participant, catching up very quickly with everyone else. As
membership changes, word will spread: perhaps node C joins, and first A learns (as
an initial contact), but soon B learns too, perhaps directly from C (if C happens to
gossip with B), perhaps via A, etc.

To deal with failures, many gossip systems track the last time anyone in the
system heard of each node, and gossip that information just as they gossip anything
else. The idea is that if B is healthy and gossiping in a normal way, these “last heard
from” times for B will tend to spread through the system, tracking the current time
(we are assuming clocks are synchronized well enough for this kind of thing, and
they normally should be). So while C may be slightly out of date—perhaps it thinks
that the last time anyone heard from B was at time 10:01.251 and the true last time
was 10:02.020, these numbers will advance fairly steadily, lagging the exact number
by varying amounts, but never by a lot. If B fails, on the other hand, the last-heard-
from time will become fixed at some value and we can then declare it faulty after a
suitable delay.

As mentioned, gossip can include many kinds of information; in general, one
thinks of the message as a list of elements, each having an information category
(membership, data, etc.), identifier, value and perhaps other attributes such as the
member-id that contributed this value. There is no fixed rule: the developer of a
gossip application would normally design the content of their gossip messages to fit
the way the data will be used. For use in a DHT, gossip messages could include a
list of (K, V) tuples, each giving the key and value of some tuple that forms part of
the DHT state.

One might wonder how the actual message passing should work. On this gossip
systems are extremely flexible. Obviously, they do need some form of communica-
tion infrastructure: TCP, perhaps, or UDP: in the latter case messages can get lost in
the network (leading to partial or completely failed gossip rounds), but it turns out
that the exponential spread of rumors is such a powerful force that we do not actu-
ally need ordering or reliability or other guarantees (for example, we can use UDP
messages and not wait for acknowledgements, or even retransmit lost packets). The
insight is that even if a large percentage of messages are dropped, the gossip proto-
col will not slow it down much. In fact, very little can stop a gossip protocol, short
of an outright network partitioning failure.
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Most gossip protocols take advantage of these observations and just run over
UDP with no attempt to ensure reliability. They often run at a fixed but unsynchro-
nized pace: each node picks some peer and gossips with it every t milliseconds.
And it is common to bound the size of gossip messages to whatever UDP pack-
ets can hold, typically 8 K bytes. This makes these protocols extremely stable and
predictable.

Gossip protocols need to make a section of the gossip partner. For now, assume
this is just random: node B has a list of other nodes, and at some frequency just
picks a node, gossips with it, and then sleeps until it is time to do another round of
gossip, at which point it picks again. One can build more elaborate solutions here,
such as to track just a subset of the members of the system (in a very big system,
there is not much value in tracking every single member, hence many solutions keep
just a limited peer-set at each member, taking care to pick them in a way that will
not cause a partitioning of the nodes). Kelips puts these mechanisms together in
an elegant way to implement a DHT that exists purely as a kind of virtual entity,
materialized by a gossip protocol. In doing so, it avoids the need to construct a ring,
manage predecessor and successor pointers, track levels of replication to deal with
membership changes, or even to build finger tables.

The basic idea is as follows (see Fig. 4.6 for an illustration). Given a node id,
or a key, Kelips hashes it, just as we do in Chord or Pastry. But now the system
maps the hashed values into sqrt(N) bins, so that on average each bin will contain
sqrt(N) members of the system, and 1/sqrt(N) of the (K, V) tuples. Each (K, V)
tuple is replicated within the bin to which it fell, so that all the members of that bin
have a copy. In this way, a get can be performed by just finding one member of the
appropriate bin and asking for a copy: a 1-hop lookup.

How does gossip help us implement this scheme? First, Kelips gossips about the
system membership in a continuous, steady manner. Each member hears about all
other members this way, over time.

As member W hears about other members, it separates the member id’s into two
sets: those that are in the same bin as W is in (over time there will be sqrt(N) such
members, more or less), and those that are in other bins. W tracks all the members
of its own bin, and maintains a list of contacts for each of the other bins, picking
contacts that seem to be healthy, reachable, and that have good round-trip delays.
Members age out of these lists if W has not heard from them in a while or repeated
attempts to gossip with one of them fail.

We can think of Kelips as doing two side by side gossip state exchanges. One of
them, which runs between members of the same bin (e.g. when W picks one of the
peers in its own bin as a gossip target) is used to replicate both membership data and
any (K, V) tuples that mapped into the bin. The other, running to members of other
bins, only carries membership data.

To put a new (K, V) tuple into the system, W simply maps K to the appropriate
bin, then sends it to its contact within that bin. This will be a nearby node and should
be fast. Then gossip will spread the tuple through the whole bin. To perform a get W
does the same thing, but now it queries its contact, which returns the current value
associated with the specified key.
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Fig. 4.6 Kelips uses gossip techniques to construct a DHT that emerges purely from the structure
of the gossip epidemic and offers O(1-hop) lookups. The approach requires O(

√
N) space to keep

replicated (key, value) tuples and to track membership information; the state of a typical node is
shown on the left (that of node 110 in affinity group 0). Like Pastry, Kelips can select peers so as
to optimize for low latency and high speed. In this example, node 110 stores a (key, value) tuple
into affinity group 2 (that is, the key hashes to 2). Later node 51, in affinity group

√
N − 1, fetches

the same (key, value) tuple from node 77: its preferred peer within affinity group 2. Only one hop
is needed, and the only protocol required is a gossip epidemic

Kelips trades simplicity and speed for larger amounts of space: the list of con-
tacts, the list of members of its own bin, and the list of replicated (K, V) tuples will
all be O(sqrt(N)) in size. But for this it gains a very fast way to do lookups: un-
like Chord and Pastry, which will require a log(N) delay in the worst case, Kelips
always finds the value for a given K in one hop. Put has a comparable cost: it takes
log(N) time to put a new (K, V) tuple into any of these systems.

Fireflies
In their work on the Fireflies DHT, Van Renesse and others explored robustness
of these solutions to outright attack (Johansen et al. 2006). The issue this group
raised is as follows: with very large numbers of participating nodes, and often with
open-source software that does not specifically protect itself against misuse, one
could imagine a form of attack in which some malicious user would download the
software for the DHT and then run a modified version designed to cause disruption.
The issue is not as fanciful as it may sound: the recording industry is known to
have paid hacking organizations to do precisely this, in the hope that your attempt
to listen to Lady Gaga would repeatedly trigger system crashes or keep pulling up
Frank Sinatra’s music instead of Lady Gaga’s new hit.
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Fireflies combats such problems by running multiple copies of a Chord-like DHT
side-by-side. These multiple rings are superimposed on the identical set of nodes but
in such a way that any given node has distinct sets of neighbors in the various rings.
The effect is that even if an attacker were to isolate a node in one particular ring,
it would still have a good chance of learning updates and handling lookup requests
properly through one of those other rings. Obviously, such a scheme can only toler-
ate a limited number of attackers; in Part II of the text, when we discuss Byzantine
Agreement, we will see precisely what the limits turn out to be. But the basic hope
would be that if the attacker can be outnumbered by the good guys, we can still serve
up a legitimate Lady Gaga hit song even though the compromised node is eagerly
trying to defeat this outcome. As an aside, we should perhaps mention that there are
many legal and important uses for DHTs in the modern cloud: the music sharing role
is not really their only purpose. Moreover, for these legitimate uses, resilience is of-
ten cited as a main reason for employing a DHT: these structures will self-organize
and self-heal even under attack or huge stress. Thus work of the kind done by the
Fireflies group is important because it enhances the viability of the solution relative
to these kinds of potential use cases.

Peer Selection Tools
Gossip peer selection turns out to be of such universal value and importance that
the question deserves a few further comments. Notice that several of the DHTs we
have reviewed need to select peers in non-random ways. Kelips and Pastry attempt
to optimize performance by selecting subsets of peers to optimize criteria such as
round-trip latency and bandwidth. Fireflies needs a way to lay out the peers into
k disjoint rings, hence cannot use a completely standard random hashing function:
needed are k side by side hashing functions that will give independent random lo-
cations on the various rings. A natural question to ask is whether, in imposing these
kinds of special biasing policy, those systems risk partitioning themselves into mul-
tiple disjoint subregions: one would worry that Kelips running at Cornell could, in
effect, deliberately decide to disconnect itself from Kelips running at Berkeley! We
will encounter the same question again much later in the book, in Chap. 21, where
we introduce probabilistic reliable replication and multicast protocols; indeed, those
actually predated the DHT topic and were the first systems in which this issue of
peer selection was encountered. But the core question is identical.

Let us first review the reasons a mesh creation scheme might not want to use
purely random peer selection. Imagine that we are deploying Chord world-wide, and
that two nodes in Ithaca happen to need to connect with one another, perhaps one
is looking up a (key, value) tuple that resides on the other. The nodes are physically
close to one-another, yet Chord will map them to random locations on the ring; very
likely they will be O(log(N)) hops away from one-another in a logical sense. Thus
to connect from one system at Cornell to another in the next room, messages might
easily be sent to South Africa, then to Moscow, then to Palo Alto, etc. Chord would
perform poorly in such a situation.

A second reason was the one seen in Fireflies: we may want to be sure that peer
selection picks failure-independent peers, so that a node will not somehow become
dependent on just a small subset of the peers or network links, since such situations
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could put it at risk of a network isolation outage: a so-called network partitioning
failure.

And a third reason for biased peer selection may be to optimize relative to some
higher level objective. While this text will not explore the topic in any great depth,
some systems do things like searching for data in ways that are highly sensitive to
the mesh topology. As we have seen, Pastry and Kelips both have peer selection
mechanisms that should reshape the mesh so that by and large, nodes use nearby
peers for successive hops. In fact these kinds of mechanism are nearly universal:
peer-to-peer systems that have the ability to do so will almost always bias their peer
selection to optimize performance. Thus Pastry might still need log(N) hops to find
the desired key, but hopefully all of those occur between nodes that are close to one-
another. Kelips might easily find the specific one-hop lookup path leading directly
to our target node (of course, in Kelips, any given data item is replicated on sqrt(N)

nodes, so there are many candidates).
Broadly, self-optimizing mesh construction solutions are ones that seek to select

neighbors with good connectivity and in such a way as to avoid unnecessary barri-
ers, such as firewalls or NAT translation systems that might prevent full round-trip
communication. Barriers of these kinds can be a serious problem in practice: Quema
and Kermarrec have shown that failing to account for such issues can leave members
in confused states, with lists of peers that are unreachable because communication
is blocked in one or both directions; this results in confusion about node status (un-
reachable nodes can be declared as faulty), and also frustrates the gossip algorithms
that run over the resulting damaged mesh. They recommend an indirection scheme
to avoid this problem (Kermarrec et al. 2009).

A purely practical response has been to build general purpose mesh creation
tools, over which algorithms such as Pastry or Kelips might run, thus separating
the issue of peer selection and treating it as a distinct function that should yield
high quality meshes. For example, Kermarrec and her collaborators have created
a whole series of peer-selection algorithms (Voulgaris et al. 2004, 2007; Voul-
garis and van Steen 2005; Jelasity et al. 2007). Particularly interesting among
projects in this area was the network topology management service T-Man, de-
veloped by Jelasity in collaboration with Babaoglu and others at the University
of Bologna (Jelasity and Babaoglu 2005; Jelasity et al. 2009). T-Man is a pro-
grammable infrastructure within which one can create whole families of peer-to-
peer mesh construction algorithms simply by specializing a general-purpose infras-
tructure using per-mesh decision logic. Some very elegant videos illustrating the
power of this approach can be found on the University of Bologna web site (see
http://www.cs.unibo.it/~babaoglu/projects/index.html). One could potentially com-
bine a system like T-Man with a system such as Pastry so as to “shape” the overlay
on which Pastry will end up running. Today, many peer-to-peer systems are created
by taking one of these peer-selection libraries as a starting point and then adding
application-specific logic that imposes the DHT application structure, or some other
structure, over the mesh created by the library.
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The theory for this area has been explored by a number of researchers. Two
findings are central to our modern understanding of the topic. The first was a result
in which Jon Kleinberg developed a theoretical treatment of the problem and showed
that there is an optimal solution to the question, which involves maintaining what
are called small worlds graphs (Kleinberg 2000a, 2000b, 2001, 2004). The broader
underlying theory is that of random walks on what are called expander graphs. For
example, Broder et al. (1999) presents a theory from which one can show that as
long as a gossip peer list is an expander graph, nodes can track a subset of peers
and yet any algorithm proved correct for a fully random gossip model will also run
correctly on the resulting subset mesh. It turns out that the expander property is
easily achieved and most of the real systems discussed above are extremely likely
to satisfy this requirement.

I3: How the Internet Indirection Infrastructure Uses DHTs to Route
Network Traffic
The prior subsection pushed from the idea of a DHT down to a question of mesh
construction. Also of interest are ideas that go in the other direction, building fancier
structures over a DHT. We will see a number of such solutions throughout this text:
Amazon’s Dynamo shopping cart, for example (Chap. 5), or the Astrolabe system
(Chap. 21). An example that fits well with the networking themes of the present
chapter is Berkeley’s Internet Indirection Infrastructure (I3) project, a system that
uses a distributed hash table as the basis for a variety of other technologies. The
basic idea is very simple and elegant.

I3 assumes a DHT (any of the ones we have discussed would work, but I3P is
based on Chord: the leader of the project, Ion Stoica, was one of the inventors of that
system). Applications that define services, such as printing or storage, use a standard
naming convention for those services, and put (K, V) pairs in which the key, K, is
the service name, and the value, V, is the IP address for the service. To use a service,
one simply looks it up and then contacts the given IP address. I3P defines a variety
of services: storage, message queuing, printing, etc. The system also explores the
idea of data transformation through services, for example to transcode from the
Windows mpv format into the Apple iTunes media format. A variety of mobile
applications were also proposed, in which the DHT is used as a way for a mobile
device that may have erratic connectivity to track down and load content that can be
temporarily stored on its behalf.

As these examples suggest, I3P is amazingly powerful, for such a simple idea.
Moreover, performance was shown to be quite good, and I3P enables many things
that are hard to do today. For all of these reasons, the author of this text has always
been puzzled that I3P did not become one of those smash hits that seem to transform
the world every few years right now. Yet the market somehow has not embraced the
concept. On the other hand, nobody every gets the last word, in the cloud technology
space. Perhaps I3P was just a bit ahead of the time, and its day will come sometime
in the near future!
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4.2.8 BitTorrent: A Fast Content Distribution System

The BitTorrent system uses a peer-to-peer overlay to solve a different problem: rapid
cooperative download of information. Before explaining how this works, we should
just comment that BitTorrent defines a protocol, as well as a standard way of im-
plementing that protocol. As a result, BitTorrent can and has been implemented in
many ways. At the time of this writing there were several open-source BitTorrent
clients, as well as at least one product implementing the scheme and professionally
supported. The discussion below is intended to apply to any of these.

In the period prior to the introduction of BitTorrent, data center operators faced
a challenging problem when an object, such as a video of a major news event or an
upgrade to a popular software product, needed to be send to a very large number of
clients with minimal delay. If all of those clients were to simultaneously contact a
server and request a download, the data center would be overwhelmed; if they do
so just a few at a time, some might wait for weeks. Clearly, parallelism offers an
answer, and this is the angle explored by BitTorrent. The approach deals with very
large objects as a series of moderately large pieces (perhaps, 1 Mbyte each); here,
we’ll describe its behavior in a simpler case: downloading a single piece. A larger
download would simply repeat the process we describe below multiple times.

The first step of the BitTorrent scheme involves publishing small torrent descrip-
tion files, which clients can download. Somewhat like we saw in Kelips, this process
leaves each client with contact information for some number of other clients. Bit-
Torrent gives these out in a way that creates a fairly dense graph of peers: each client
ends up knowing of some relatively random set of other clients, mostly nearby, but
if we were to draw a picture of the connections, the graph would be a highly con-
nected.

To carry out the actual piece dissemination, BitTorrent uses what we call a swarm
protocol. First, the protocol seeds the segment into the torrent by sending copies to
some random set of nodes. Each node with a complete copy of the piece becomes
a new seed, so that over time, the number of seeds will grow until the piece is fully
downloaded.

A participant lacking a piece of the file uses a peer-to-peer protocol to find a
seed or seeds with copies and that are willing (and able) to send them. At this step
an optimization problem arises: if a node can only find one such source, it will
obviously need to ask that source for a copy, but what if it finds a large number of
possible sources: which one should it ask?

BitTorrent favors a scheme that rewards a swarm participant for cooperation and
punishes self-centered behavior. The system implements a mechanism that allows a
participant to present another participant with a proof of its behavior in the torrent:
evidence that it helped other participants by uploading data to them, in the form of
unforgeable digital receipts confirming the upload. The idea is to use these receipts
to reward altruism and punish greedy behavior: a node is more likely to request a
piece from a peer that has uploaded copies to other peers successfully, and a peer
functioning as a seed that receives multiple requests will favor requests from par-
ticipants with a good track record of altruistic behavior. The receipts themselves
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are generated using a cryptographic signature scheme in the following simple way:
each seed uploads data in an encrypted form, sharing the required decryption key
only after the receiver sends a digitally signed hash of the data which will later be
used as a receipt. A peer only sends data to uncooperative peers if there are no other
requests pending, and it only contacts the Torrent server itself if it is unable to obtain
the pieces it needs in this concurrent, peer-to-peer manner.

When BitTorrent works as intended, the effect is similar to the gossip behavior
we described earlier: the first seeds rapidly propagate, so that the majority of clients
manage to download pieces concurrently from one-another in a cooperative man-
ner, and much faster than if the data center servers had to handle the majority of the
workload. In principle, the system also tends to seed data rapidly at nodes that have
good upload capabilities and that are not blocked by NATs or firewalls, leaving iso-
lated nodes that can download but are unable to upload data until the end. BitTorrent
does not always work as intended, however: although the scheme was designed to
anticipate firewalls, network address translators, and slow network links, all of these
are known to disrupt torrent behaviors to some degree. Moreover, Steve Gribble at
the University of Washington in Seattle showed that many BitTorrent downloads
fail to exploit the tit-for-tat scheme because many swarms are active for such a short
period of time that there is not enough time to learn about the behaviors of par-
ticipants (he proposed an extension to BitTorrent aimed at keeping history around
a bit longer so that the outcome of one swarm could be used as data in a subse-
quent swarm). Yet these issues mostly arise when the actual number of participants
is small. With a genuinely large crowd of downloaders active concurrently, the Bit-
Torrent approach has been highly effective, for example to download large objects
in the Internet WAN, and even more so within data centers. For example, YouTube
replicates videos within its data centers using a BitTorrent system, and is reportedly
very pleased with the performance obtained this way.

4.2.9 Sienna: A Content-Based Publish Subscribe System

We end this section by touching on another example of a peer-to-peer technology:
wide-area publish-subscribe implemented as a network overlay. Publish-subscribe
systems implement a kind of network-level broadcast service, in which client sys-
tems subscribe to data and servers publish it. The role of the system is to match
publications to subscriptions so that any message published will reach every client
that has a matching subscription.

There are several models for how subscriptions of this kind should work. The
simplest is seen in very high speed publish-subscribe systems: these label each
publication with a list of topics, and allow clients to subscribe to lists of topics;
matching is exact. Thus, if a client were to subscribe to IBM and METALS, it
would receive a message posted that lists IBM as the topic, and a message that
lists ALCOA,METALS,ALUMINUM, but would not receive a message posted to
PURINA,PETS,ANIMALFOODS. Examples of well known systems that use this
topic-list model for subscriptions include the original Isis “News” facility (Birman
and Joseph 1987a) and the Teknekron Information Bus (TIB) (Oki et al. 1993).
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A second model generalizes this same idea, but allows subscriptions to be pred-
icates over the topic list (which is often called a tag or attribute list in this case).
In effect, the topics are treated as binary valued logic variables, and the predicates
are logical expressions. The best known example of this kind of system was IBM’s
Gryphon system (Strom et al. 1998; Aguilera et al. 1999).

The last model goes one step further and eliminates topics in favor of the con-
tent of the messages themselves. In what are called content based publish-subscribe
systems, subscriptions are predicates over the contents of the messages, which are
assumed to be blocks of text annotated with standard keywords. Thus, one could
design a query that would watch for news reports describing discoveries of oil, for
example. The Sienna system is a good example in this category: it constructs a peer-
to-peer overlay network and then routes messages within the network over trees
which it maintains, from sources to matching destinations (Carzaniga et al. 2001).

The complexity of these last two kinds of system resides in the management of
subscription information and the construction of the associated overlay forwarding
trees. In a large system with many clients, each posting many subscriptions, it is easy
to see how very large databases of pending subscriptions could arise. Forwarding a
message will become slow because of the need to evaluate all of these subscriptions
against each possible message; indeed, a single complex client could easily bring
the entire forwarding infrastructure to its knees just by posting immense numbers of
queries, since each message will need to be checked against each query.

But notice also that one can always err by simplifying queries in ways that result
in overly conservative forwarding decisions. Thus a subscription table with a million
entries posing “deep” content questions could always be collapsed into a single
rule that just forwards every single message. Here, every message ends up reaching
every client, and the clients (which must filter incoming traffic) end up with huge
amounts of undesired data. The challenge turns out to be to automatically collapse
subscriptions in ways that remain selective yet also result in compact forwarding
tables suitable for rapid evaluation. Gryphon and Sienna both implement algorithms
for doing this kind of merging, then layer on top of that basic ability the needed logic
to maintain overlay forwarding trees that will adapt as new subscriptions come, old
ones are cancelled (or the associated clients depart), and topology changes.

How effective are these optimizations? To understand the answer, it helps to start
by recalling that most systems are structured hierarchically: often, as major data
centers interconnected by WAN links, within which various services are running,
each replicated to some extent, and finally supporting various groupings of clients.
This hierarchy is reflected into the queries and thus one sees that “most” messages
end up routing to most data centers, with filtering reducing the loads only as we get
closer to the leaves.

Moreover, in cloud computing systems structured into WANs there are often sub-
systems that need to collect a copy of every data item. With respect to Sienna, if
there are a cluster of Sienna users in New York, there would often also be a New
York archive of past publish-subscribe messages, available to let those users data-
mine the history of the system and establish initial context when joining an active
session. These archives will need to subscribe to everything.
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The observation leads to an interesting insight: although Gryphon and Sienna
go to quite a bit of effort to create sophisticated forwarding structures, one could
probably do almost as well by just forwarding every message over every WAN link
(hence all data centers would see all messages), and then filtering at the last hop,
when messages are about to be delivered to client systems. After all, if some ma-
chine in each data center wants everything, there will not be any opportunity to do
WAN filtering: the WAN will replicate everything. Thus as a New York user, any
useful filtering would end up occurring in the link relaying from the data center to
me.

This in turn suggests that a purely peer-to-peer implementation of the kinds of
complex filtering technology seen in systems such as these last ones is perhaps
just not the right way to go. In fact, the filtering role might better be handled by
a database: we would view the communication task challenge as that of replicating
all data to all archival systems over the WAN, and then employ a database as the
archive of postings, and to filter incoming ones for delivery to clients. Those knowl-
edgable about databases will realize that we are viewing subscription as materialized
queries. The challenge of combining subscriptions becomes a form of query opti-
mization. Cornell’s Cayuga system is a widely cited example of a database system
designed for this style of use: subscriptions can operate over temporal sequences of
events: a client can ask to be shown messages that demonstrate a 10% rise in the
price of any technology stock over a period of twenty minutes or less, for exam-
ple.

We mention this last example to make the following point: even if a technology
has an obvious mapping to the network, as for publish-and-subscribe behavior, it
is not always obvious that the best way to implement it is to do so within network
routers. Cloud computing systems impose structure in many ways, and this includes
“shaping” the traffic flows and patterns that one will observe. One could go to great
lengths to build a sophisticated solution, as occurs in these distributed data flow
filtering schemes, only to discover that in real deployments, the problem either does
not arise at all, or that it arises only in a narrower way that lends itself to a different
solution.

To summarize the analysis here: If Sienna or Gryphon will end up forwarding
every message to every cloud data center in some group of centers, there is really no
need to even use Sienna or Gryphon at that WAN level: far easier would be a simpler
replication technology that does not even look at the messages. Indeed, given the
insight that all messages will enter a database in any case, we should really define
our problem as a database query problem, despite the fact that the user thinks in
terms of networks and messages and publish-subscribe query patterns. And once
we have a database with the right properties and performance, there may not really
be any role left for enhanced routers implementing these kinds of overlay network
technology! In the case of content-based publish-subscribe, this indeed seems to be
the way things have played out.
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4.2.10 The Internet Under Attack: A Spectrum of Threats

It would not be right to wrap up a chapter on the Internet in the face of the cloud
without at least commenting on the emergence of cyber war as a serious threat to
the future of the cloud, and indeed of Western society.

Like it or not, the evolution of technology, and the co-evolution that this can
trigger for society, is a one-way process. Facebook emerges, and some people fret,
but in no time at all, Facebook announces that it has a billion users and predicts
a second billion within just a year or two. Enterprises such as medical care and
running the power grid or the military, or banking, or the transportation system, or
the phone system, which one might never have imagined on the Internet, are poised
to leap into the cloud, and completely new enterprises that did not even exist a few
years ago, may soon be revealed as nationally critical: we lived without them until
now, but may soon discover that we can no longer live without them!

In Chap. 3 we mentioned several national-scale examples: real cases in which
countries have attacked other countries through the network, downloaded massive
amounts of information, and conducted corporate espionage on a scale that boggles
the mind. At McAfree, the Vice President for threat research, Dmitri Alperovitch put
it this way in a 2011 interview: “In fact, I divide the entire set of Fortune Global 2000
firms into two categories: those that know they have been compromised and those
that do not yet know.” In the same article he detailed the massive Shady RAT in-
trusion, which penetrated hundreds of government, political and corporate systems,
downloading data that were transmitted to locations in China. While Alperovitch
stopped short of suggesting that the government of China was behind these exploits,
the possibility certainly exists.

But it is not just about China. Our world has become deeply dependent upon
the Internet. And for this reason, one simply has to look at the various forms of
hacking, whether they involve a jealous boyfriend installing a keystroke logger, or
an unethical country plotting to cripple its adversaries through the network, as very
serious matters.

And we should be honest: despite some tough laws, very little has been done to
prosecute cyber criminals or to clean up the mess.

Some studies suggest that as much as 60% of the world’s computers are infected
with viruses or other forms of malware. Vast numbers of machines have been cap-
tured by so-called botnets, which harness them to send advertising, sell drugs or
pornography, to hunt for bank and credit account numbers that can potentially be
broken into, etc. Criminals are starting to threaten companies: pay us off, or we will
take you off the Internet, and if those companies turn to the law for help, they dis-
cover that the elite cyber crime units are mostly illusory: a few dusty machines in a
corner, and a few police who have been assigned to run the investigations, but with
minimal resources.

Meanwhile, the threat is growing. Recent books have documented episodes in
which the United States, Israel, China, North Korea and Russia each apparently
used the network for forms of cyber warfare, and we are talking here about genuine
acts of war involving destruction of property and loss of life, not merely spying or
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causing minor disruptions. Some episodes were fairly minor; others had the poten-
tial to escalate into major conflicts. For example, there is some reason to believe
that at least some of these actors would be in a position to physically destroy the
electrical power grids and communication networks of their adversaries if a serious
conflict broke out. Our societies can no longer function without power, telephones
and transportation, and such an event would trigger massive civil disorder, huge
numbers of civilian deaths, and perhaps a complete breakdown of government. It is
not impossible to imagine such an event escalating into a military clash in the real
world.

At the root of such fears one finds a basic technical reality: we have invested
in various forms of research and development aimed at securing the Internet and
securing critical computing systems for decades now, but the target seems to be
moving much faster than the solutions. Thus, while we can definitely do a great deal
to protect against the threats that mattered most in the year 2000, when the world
anxiously awaited the roll-over of digital clocks and speculated fretfully about the
risk that planes would fall from the sky and computers would fail, all the good things
we have created have not given us any real protection against the new generation of
threats, or the many security loopholes and errors embodied in the latest generations
of systems. Each new operating system, and each new application, seems to create
new security flaws.

Faced with the seeming impossibility of solving this problem, governments have
begun to weaken in their resolve to even study it. While claiming that ever more
funding is being invested in research on computer systems, security and reliabil-
ity, in fact there has been a global collapse in funding for these areas. Meanwhile
research on the web and social networks (not the kind we are studying here) has
boomed. The message is clear: yes, it may rain, but until it does, let’s party!

This stance may someday be revealed, in retrospect, as a deeply flawed one. If
automobiles had a tendency to fall apart at highway speeds, there is no question we
would do something about it. And simply because ten or fifteen years of research on
computer security has not yet given us a solution does not really justify a decision to
ignore the question. Perhaps what we really need most are taxes on the Internet: if
the government’s own revenue streams were directly threatened by the insecurities
of the cloud and the Internet, it might be easier to persuade politicians to invest a bit
of that revenue to try and find new protective options.

The irony, though, is that the rapid evolution of the cloud, and the Internet, may
finally be giving us new opportunities to do something about the issues. We have dis-
cussed the potential for router enhancements. Why not explore ways of enhancing
routing that also enhance security, denying attackers the opportunity to compromise
Internet routing? Perhaps law enforcement tools hosted in the Internet could help us
identify the operators of those massive botnets and cyber warfare systems (and even
better would be to do so without compromising privacy to an even greater degree).
Perhaps we can create the Internet equivalent of what some have dubbed the Great
Internet Wall of China. China uses a barrier to block its citizens from seeing what it
considers to be inappropriate web content, but why could not the Internet itself be
used to block attacks even as they are launched?
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As this book was going to press, it would have been possible to list a dozen or
more ambitious, very active research efforts focused on just this opportunity. Will
some clever student come up with a way to layer security over the Internet in a
way that scales and performs well, defends against attack, and can be trusted? Only
a very pessimistic reader with little experience in technology would want to bet
against real progress. Change is coming, and we may finally be on the verge of a
move to a much more secure network.

4.3 Summary and Conclusions

In this chapter we have skimmed the surface of a vast and very active research area
concerned with extending modern computer networks to offer new guarantees of
reliability and security, new functionality, and greater flexibility. Much of the impe-
tus for network evolution comes from cloud computing, reflecting the eagerness of
customers to gain access to powerful new options such as streaming downloads of
movies, voice over IP telephony, and an increasingly rich mix of media content with
social networking. Yet, as we have seen, even if cloud computing may seem to be
a well-defined area, the area proves to be a rich one that confronts us with multiple
challenges, reflecting the multiple perspectives that arise in cloud settings.

If we focus on the network from the familiar perspective of the client system,
we encounter a mixture of issues dominated by addressing (and address transla-
tion), firewalls and bandwidth pinch-points, and complications due to client mobil-
ity. These issues, jointly with the desire for a reasonably seamless client experience,
have shaped today’s client-side of the cloud and will continue to do so as the tech-
nology base evolves into the future. And the client-side, in turn, places very specific
requirements and pressures on the network. Mobility for sophisticated, mostly con-
nected, client platforms seems poised to trigger the next major development in this
space.

If we instead center attention on the role of the network as the routing infras-
tructure for data moving between cloud servers and clients, we encounter another
collection of issues that now center on the options available to cloud providers for
managing routing. We did not look closely at the network within individual data
centers, but the same point could be made about trends in that space (our coverage
was skimpy precisely because of this rapid evolution).

Last, we can look at the needs of applications that share the scalability and per-
formance needs of cloud systems, and yet do not match the simple client-to-server
model that prevails in the cloud. As we have seen, these applications have their own
special needs, and those needs have driven the development of a wave of peer-to-
peer mechanisms that effectively work around limitations stemming from the way
that the cloud uses the standard infrastructures. Of course, some of these appli-
cations are entirely motivated by an illegal goal, namely unauthorized sharing of
movies and other forms of intellectual property. But others use peer-to-peer meth-
ods for purposes that mesh more closely with the legitimate cloud, such as parallel
downloads.
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Down the road we will see even more opportunities as we move applications
such as medical care, the smart power grid, and urban traffic control to networked
platforms. A secondary driver for change comes from the network operators (ISPs),
who are looking for ways to participate in the cloud computing revenue stream, and
a third force reflects the cloud vendors themselves, who need to better control the
network in order to improve cloud performance and flexibility. All of this makes the
network an exciting area for innovation today and far into the foreseeable future.

4.4 Further Readings

To learn more about the Internet, we recommend Doug Comer’s multi-volume book
on this topic (Comer 1991; Comer and Stevens 1993).

Gun Sirer and Fred Schneider have done very interesting work on security first
by an operating system kernel (Nexus) and then, using that secure kernel, creating a
highly assured BGP-based edge router (Schneider et al. 2011; Shieh et al. 2011).

The Open Flow Consortium maintains an active web site with extensive links to
papers related to the new Open Flow standards and how those can be used to control
enterprise networks.
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Clouds
I’ve looked at clouds from both sides now
from up and down and still somehow
it’s clouds illusions I recall
I really don’t know clouds at all.—Joni Mitchell

In previous chapters we looked at cloud computing from the outside; here, we will
do so from the inside, within the data center. Many technologies play important
roles, but it would not be satisfying to do a very broad but very shallow overview,
and we will also want to avoid getting bogged down in proprietary details: each
cloud vendor has its own technologies, yet at the end of the day, they tend to fall into
a few categories. Accordingly, we will focus on some well known cloud components
in enough detail to appreciate the basic ideas, why they work (and when they might
not work), and we will speculate a bit about how they might be generalized for use
in other settings. This will not necessarily be enough background to wander into a
cubicle at Google and start hacking new technologies for the GooglePlex, but should
give you a foundation to work from, if you ever take such a job.

For readers who are in the habit of learning every aspect of a technology, top to
bottom, the cloud can be frustrating. As Joni Mitchell put it, you can look at clouds
from many sides, and yet still not really know clouds at all! The important insight
is that this is not a topic for which one needs to know every single detail to work
effectively at the highest levels. By understanding how some of the major success
stories were achieved, we can learn the major patterns underlying scalability and
responsiveness, and also understand the way that major cloud platforms accomplish
the delicate balancing act required. This collection of overarching principles turn
out to matter more, in the cloud, than the precise details of how each and every
component technology operates.

K.P. Birman, Guide to Reliable Distributed Systems, Texts in Computer Science,
DOI 10.1007/978-1-4471-2416-0_5, © Springer-Verlag London Limited 2012
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5.1 The Layers of a Cloud

Prior chapters looked first at client computing systems and then at the process by
which packets are routed through the network until they arrive at the gateway into a
cloud computing data center. What happens next?

Most of today’s cloud platforms are structured in a layers (“tiers”). Application
developers tend to focus on just a subset of these tiers. For example, in Chap. 2 we
focused on the client tier. The counterpart of that tier within the cloud is the first
tier, which runs services that receive incoming client requests and are responsible
for responding as rapidly as possible. Directly behind this is a tier of developer-
configured and services, which include databases and other applications used by the
components of the first tier. Beyond these tiers cloud platforms have other recogniz-
able layers as well, and we will discuss them too: those concerned with infrastruc-
ture and platform management, for example, and the tier of systems running in what
some call the “back end”, doing offline work that can be performed in batches.

A good example of a back-end application would be the programs Google and
Microsoft employ to precompute answers to common web queries: search engines
use the output of last-night’s indexing when responding to today’s queries. But of
course this is not the only thing they use: incremental updates also play a big role,
particularly for fast-changing web pages like news web sites. Thus many first-tier
systems depend on a mixture of sources: we would view those fast-moving updates
as the output of a service living in the second tier, while the search index computed
yesterday would end up in the file system and be treated as a kind of infrastructure
resource. Notice the relative difference in size: the fast-changing index data can
probably be represented in a few hundred gigabytes. But the offline analysis needs
to index every web page in the world, pre-computing answers for every one, two or
three word query (more complex queries are usually solved by breaking them down
into several smaller ones and combining the results). The English language alone
has perhaps 100,000 vocabulary words in active use (a million if one counts the less
actively used ones), so these files will be enormous, literally petabytes in aggregate.
Thus one can think of the tiers not just in terms of roles but also in terms of the size
of the information managed: the first tier works from information it caches or holds
in memory; the second tier deals with quick responses from “larger” information
sources, and the back-end systems cope with the genuinely heavy lifting. But all
of these tiers involve very large numbers of machines. Those petabyte index files
are computed by marshaling tens of thousands of machines to jointly carry out the
required computation. In effect, roles differ and assumptions differ, but all tiers of
the cloud share an emphasis on massive scale and parallelism.

5.2 Elasticity and Reconfigurability

Applications and services running in the first tier of the cloud are often very heavily
replicated: if a service is popular, it might have hundreds of thousands of replicas,
each providing services to some number of clients whose requests were routed to it.
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Yet perhaps that same service was a sleepy backwater just last night (think of the
pattern of accesses to web services used to by sports fans to track popular Olympic
events, or the web page of a Hollywood star who was arrested for drunk driving, and
you can easily get a sense of why this sort of flash crowd might arise). To support the
necessary degree of elasticity, a special programming style is needed: loads can shift
on a dime, and cloud platforms need to be able to react by reconfiguring the first tier
so quickly that the end-user is generally completely unaware that it happened. Thus
at one instant we might have 50 instances of some service running, but seconds later,
could see 1000, or 10,000. For the developer, this means that first-tier services need
to be extremely simple, lightweight tasks that maintain no persistent state; by and
large, they run out of cached data or parcel out subtasks to second-tier services. The
idea is to end up with executable images that the cloud platform can shift around
without any setup, launch without any long delays, and shut down abruptly without
any prior negotiation. Yet lightweight though they may be, these services do need to
soak up as much load as possible. Ideally, they respond to every request the instant it
arrives, leaving an asynchronous stream of updates behind that gradually find their
way into the deeper tiers of the cloud, where updates occur. We call this rapid local
responsiveness; the property is the single most important property of tier-one cloud
components.

Reconfiguration also has implications for the cloud infrastructure itself. For ex-
ample, as deployments expand or shrink, the cloud needs to be able to route requests
to the service instances in robust manner, so that clients will not find themselves
abruptly cut off or exposed to long delays. Because caching is employed throughout
the first tier, there is high value in routing follow-up requests to the same service
instance that handled prior ones, and hence might have warm caches. Thus, routing
emerges as an important challenge in modern cloud systems, and they offer many
ways to optimize the routes that will be selected. One approach, very simple, is to
just let the cloud platform use its default policies; those are typically based on pe-
riodic load measurements, and attempt to balance load by favoring lightly loaded
replicas and reducing the frequency with which requests are sent to heavily loaded
ones. Even this kind of simple policy is not as trivial as it may sound: routing often
occurs in a cluster of gateway nodes, each making independent decisions, and ob-
viously if some replica had a very light load, it would be unwise to just route every
single incoming request to it. Thus, load-balancing is always randomized, and while
it may be slightly weighted to favor lightly loaded nodes over heavily loaded ones,
all nodes will see at least some requests.

Fancier policies are also possible. We mentioned the importance of affinity,
namely the benefits of sending requests from the same client to the same replica, if
feasible. So-called packet inspection techniques go even further: these look within
the packet, routing requests on the basis of their contents. Thus, requests to such-
and-such a service (perhaps the product-inventory service), accessing such-and-such
an item identifier (perhaps, items coded A-XXXX to C-XXXX) might be sent to
one replica, requests for items D-XXXX through G-XXXX to another replica, etc.
This kind of fine-grained packet inspection can be slow, however: packets must be
parsed, the relevant data extracted and converted into an appropriate representation,
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and then the desired pattern applied; at very high speeds, such elaborate processing
is not always feasible. Moreover, as we get more and more fine-grained, we also
run into the risk that the data being used to make these decisions might be stale: the
load information available to the routers could be out of date, the affinity patterns
may be ones that have been superseded by new data, etc. Failures or the launch of
new replicas may have changed the available options. All of these complications
argue for simpler policies that are less likely to get confused as conditions evolve
dynamically: optimal routing, in effect, can be an unrealistic objective because the
true dynamic conditions of the data center are simply not available when routing
decisions must be made.

This observation is just the tip of an iceberg: cloud management platforms need
to be able to rapidly reconfigure not just the software but also the physical hardware
in the cloud; in many modern systems, one can literally back up an 18-wheel truck
with a container of new machines, plug it into a bay of the data center, then yank out
some other container and drive it back to the factory to be refurbished or recycled!
A trucker on a tight schedule cannot sit around waiting for the cloud management
system to gracefully spin things down. Thus, while the management layer obviously
does have the ability to shut things down somewhat gracefully, by and large, such
systems reject this in favor of a more abrupt approach: if they want to shut down a
node, they just tell the operating system to shut it down, and the applications may
have little or no warning at all (in particular, they would rarely have time to make a
final checkpoint or to migrate large amounts of data in a graceful way to some other
node). That 18-wheeler pulls up, plugs in its load, yanks some other container out,
and off the driver goes.

Many systems also shut nodes down to deal with evidence of problems: if a node
seems slow, or is reporting errors, rather than have a human operator look at, the
management system will often reboot, then perhaps reimage the node (e.g. install a
clean version of the operating system and a clean, empty file system), and then just
take it offline, all in an automated process. Users would object if this happened in
their offices, but in the cloud, where we may have tens of thousands of applications
running, it just is not practical to deal with such issues in any other way. All of these
kinds of problem are handled in a fully automated manner.

5.3 Rapid Local Responsiveness and CAP

By requiring that the first tier be composed of services that can safely handle abrupt
reconfiguration events, cloud systems gain an important kind of flexibility: the man-
agement platform can be very aggressive about reconfiguring the data center as loads
vary. And while abrupt shutdown may seem a bit harsh, the ability to dramatically
expand a deployment is considered to be a key requirement in modern cloud plat-
forms, and often cited in advertising materials. Thus, our intuition as we think about
first-tier services needs to assume a very dynamic notion of cloud computing, with
very rapid changes in configuration, numbers of replicas, etc.
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Some first-tier cloud services parcel work out to an active service layer, which
comprises the second tier of a typical cloud system. For example, to respond to
a search request, Amazon might send the product search query itself to a service
that will look up the requested book, but it could also send information about the
user to dozens or even hundreds of other services that could look up the user’s
preferences, product popularity for products in the same category, special deals, etc.
Many second tier services will also be stateless, but statelessness ceases to be a hard
and fast rule in the second tier, and at least some services maintain forms of memory
of their actions, their client lists, and what those clients requested or were told.

First and second tier services do extensive caching. To achieve the local respon-
siveness property mentioned above, a service must process requests with the mini-
mum possible delay, and hence there are huge benefits to using data available locally
such as cached copies of popular data items. For example, if a product popularity
index is consulted by a service instance that has a cached copy of the desired data, a
locally responsive implementation will not need to touch bases with other replicas
before responding. Indeed, these benefits are so large that in many cloud services,
one uses cached data even if those data are known to be stale, or at potentially stale.
The value of a snappy response is simply judged to be higher than the value of a
slower but correct response.

Local responsiveness rules out certain common styles of data replication. For ex-
ample, in many popular data replication schemes, reading a single copy of a repli-
cated object involves consulting f + 1 copies, where f is a bound on how many
failures the replication scheme is expected to tolerate. Updates require access to
N − f copies, where N denotes the replication factor. Such schemes are not able
to be locally responsive, and hence are considered inappropriate in the front-line of
the cloud. One does find these methods in second-tier services and in the back end
infrastructure, but throughout the cloud there is a very noticeable skepticism where
guarantees of any kind are involved. Instead, the onus tends to be on the client com-
puting system, which is expected to tolerate responses based on stale data, resubmit
updates if a timeout occurs, and otherwise step in to achieve whatever guarantees
may be desired. The term eventual consistency is popular: cloud services offer rapid
local responses that may be inconsistent, but then are expected to somehow heal
themselves of any inconsistencies that arise, gradually moving towards a more con-
sistent state.

Not every layer of the cloud follows this principle. For example, deeper in the
cloud one finds back-end services that work from files and databases; the front tiers
consult these back-end layers if a cache-miss occurs or when a request just cannot be
handled locally. And these might offer much stronger guarantees. A good example
of a back-end service might be a transactional database system used to track pur-
chases by end-users: we want such services to maintain consistency and to provide
guarantees of durability, hence they normally are implemented using databases that
provide the standard ACID properties. We will hear more about this model later, but
the acronym stands for Atomicity (transactions never see other transactions midway
through execution), Consistency (if the database was in a consistent state when the
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transaction started, it should be when it commits), Isolation (two transactions run-
ning concurrently will not interfere with one-another), and Durability (a committed
transaction will not be forgotten by the data center).

Recall our mention of Brewer’s CAP principle, in the Introduction of this text.
What Brewer really said was that to guarantee availability (the “A” in CAP, which
corresponds to the property we are calling “rapid” responsiveness), a first-tier ser-
vice element may not have time to wait for locks or other forms of synchronization:
the “local” part of our objectives. For Brewer, the “P” in CAP stands for partition-
tolerance, but is really about this guarantee that components do not end up stuck,
waiting for actions by other components that may be overloaded, unreachable or
even in the process of recovering from failure. Thus, Brewer argues that first tier
services will need the AP properties. To achieve them, he reasons that “C” will need
to be relaxed; for him, this notion of consistency is a short-hand for the ACID prop-
erties. Thus CAP, in a nutshell, suggests that if we want rapid local responsiveness,
we may not be able to simultaneously offer ACID guarantees. On the other hand,
his focus was on the first-tier; in the inner tiers of the cloud, one might accept ACID
guarantees at the price of losing some elements of local responsiveness. Brewer has
no issue with the use of database systems internal to the cloud; he simply cautions
against viewing the first-tier systems as database components.

Database vendors, it should be noted, strongly disagree with Brewer on this point,
and back their arguments with technology: many database systems work perfectly
well in the first tier. But pulling that trick off is hard, and expensive, and what Oracle
is able to do in its first-line cloud computing products may be beyond what a more
typical development team could achieve while creating first-tier applications for use
in a medical computing platform. Thus, one sees debate about CAP, with database
vendors arguing that they have the whole story, but many cloud providers arguing
that some applications are more natural to code directly in language like Java, and
that for these applications, CAP applies. It is not clear who will win this debate, but
at the time of this writing, the prevailing view seemed to be that the first-tier needs to
be locally responsive even at the price of weakening consistency, and that because
not all first-tier systems can be built over Oracle’s scalable database product line
(sometimes for cost reasons, and sometimes simply because the application model
does not match the one favored in database settings), CAP ultimately dominates.
Indeed, there are some who argue that if one builds the identical first-tier applica-
tion using a commercial database product and then using very lightweight solutions
that accord with the CAP principal (for example, using the BASE approach (Basic
Availability using Soft State with Eventual Consistency)), that the latter will be far
more elastic and will perform much better than the former. The author is not quite
so sure; we will look more closely at this point in Part II of the text.

Returning to our discussion of responsiveness in the various tiers, we now arrive
at the innermost tier: the seventh circle of the cloud, as Dante might view it. Here,
one finds services that run offline to build the indices and other rapid-lookup data
structures employed by the client-facing side of the cloud. These work ceaselessly
to scrape copies of the entire world-wide-web, organize the data for fast access,
precompute inverted search indices to do rapid lookups, etc. Such systems are not
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really focused on local responsiveness, and yet in fact they have a very similar need,
because they break big jobs into small pieces and each small piece needs to be
completed as quickly and as autonomously as possible. Back-end systems often
concern themselves with computing on genuinely massive data sets, employ massive
parallelism, and Brewer’s points also can be applied here: a component that can
run locally and get an acceptable answer will outperform a component that strives
for a slightly stronger guarantee on its answer, yet needs to pause periodically for
purposes such as synchronization or to find the most current copy of a data item
within a collection of replicas. In effect, CAP might even be relevant at the back end
of the cloud!

Figure 2.4 illustrated these tiers and gave a few examples of services one might
find in each.

This multitiered infrastructure is supported by hardware and managerial software
systems. Very often the operating system will be one that supports virtualization, so
that these servers can run multiple virtual machines. The effect is that a cloud data
center could easily have 150,000 machines, each having 16 cores, and each hosting
10 or more virtual machines. User’s submit jobs using batch scripts that can do
things like requesting 1000 machines to run such-and-such an indexing application.
Thus, it would not be unusual for a cloud system to have what seem to be millions of
machines running in it, and these numbers will only rise as the technology continues
to grow in popularity.

5.4 Heavily Skewed Workloads and Zipf’s Law

Any large system runs up against scalability issues, and cloud platforms, which need
to run on massive scale, must be conscious of scalability considerations at every step
of the application or service design process (we will use “application” to denote the
entire application from client to cloud and “service” to mean some subsystem that
runs on the cloud and solves what may be just a narrow sub-problem within some
larger scope). Scalability shapes the properties of cloud services: even very simple
mechanisms can behave oddly when replicated onto thousands or tens of thousands
of tier-one nodes, hence things that work well and seem obvious often break once a
service becomes popular. Yet debugging such issues is extremely hard; we lack the
right tools and even getting a vague sense of where the problem is located can be a
huge challenge.

In fact, it turns out to be rare that a service can scale out, even in a dumb way,
without requiring any attention at all to the myriad the stress points that can poten-
tially malfunction as we scale up. For example, suppose that a service responds to
requests by reading data from pre-computed files and using that data to construct a
suitable web page. While the service itself will be easy to replicate, it could easily
place stress on the cloud file system, which might degrade under concurrent load,
particularly if file system caching cannot shield the core of the file system from the
majority of the requests. Thus even this trivial style of scaling poses a hard question:
can we count on caching to scale up and out?
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What saves the day both for cloud file systems and for many other kinds of cloud
service is that cloud platforms are so highly structured. We have seen that these are
hierarchical systems with heavy replication, and there is a great deal of repetition
and commonality in what clients do, too. Thus, almost any statistic one might wish
to measure reveals cloud platforms to be heavily skewed. Expressed in terms of our
file caching scenario, it will turn out that even with modest sized file caches can
often achieve remarkably high cache hit rates: some of the files will magically turn
out to be very popular and will quickly find their way into many caches, while the
unpopular and poorly cacheable ones will turn out to be accessed at a low enough
rate that the cloud file system has some chance of keeping up, although obviously it
too must be designed to scale out.

The term “skew” used here relates to the shape a graph of file popularity would
have if we were to graph frequency of access on the Y axis and list files from most
to least popular on the X axis. We will see a peak on the left: the most popular
files will be very frequently accessed, and then the distribution will quickly tail off.
While that tail will be very long (indeed, many of these distributions are “heavy
tailed”, meaning that in absolute terms, a substantial percentage of all file accesses
are to unpopular items), the files in the tail will not benefit from caching because
they are accessed so rarely.

It turns out that situations like the one seen with file system access are very
common in the cloud, and indeed scientists who have studied the statistics of other
situations involving very large populations in other settings—pretty much every set-
ting ever investigated—discover very similar patterns of popularity. If one measures
the popularity of some category of objects, one will probably find a few very pop-
ular objects and then vast numbers of rarely accessed ones. This phenomenon was
first documented by a linguist named George Kingsley Zipf, who plotted word oc-
currences in written texts for a variety of languages. The general form of a Zipf
distribution is what we call a power-law: one ranks the objects by popularity, and
then finds that the probability that the object with a given rank will be accessed is
proportional to 1/rankα (we will favor this form of the equation for a positive value
of α but should probably mention that some published papers prefer the form rankα ,
with a negative value of α). The same distribution is also called a Pareto distribution,
and in fact forms just one member of a larger class called the generalized Pareto or
GP class.

We have illustrated a simple example of this class in Fig. 5.1: it shows the fre-
quency with which various problems were reported for preprinted shipping cartons
at a large e-Tailer. Similar graphs arise if one looks at frequency of access to files, or
typical sizes of files, or rates of message sending, etc. The rough form of the curve
shown is exponential: the most common cases are quite frequent, but as we move
away from the common ones we see what can be a very long tail of rarely reported
“one time issues.” The tail can be so long, in fact, that it might include the major-
ity of all problems (a so-called “heavy-tailed” situation). It is important to realize
that a number of distributions can give rise to very similar curves; other well known
examples include the exponential, beta and power-law distributions (the latter are
one class of Pareto functions). For many cases, these different models yield nearly
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Fig. 5.1 A Pareto distribution graphing frequency of various problems with cardboard shipping
cartons

identical curves, although there are parameter values they reveal them as being ex-
tremely different. This illustrates a risk that arises when trying to model phenomena
observed in the cloud: often, very different models will seem to fit the data, and yet
precisely because the models differ in a deeper mathematical sense, conclusions one
might draw with one model may be invalidated if some other model is employed!

In distributed systems research, we generally assume that measured properties of
real systems fit a power-law distribution. The larger the value of α, the steeper the
tail-off effect, and what one finds in cloud settings is that these exponents can be
very large: values of 2–3 are common and even larger values are reported in some
situations. That is, we see some small percentage of objects that are very active (no
matter what you mean by “object” and by “active”), and vast numbers that are very
rarely accessed. This is quite a striking effect, and it tells us that even in a cloud
system managing some huge amount of data, if we can do a great job of handling
the common cases, we will often discover that we have soaked up most of the load.
We often plot power-law distributions on using a log scale for the Y axis; doing
so should yield a straight line. The slope of that line, if you fit it using a linear
regression, will let you estimate α.

This is perhaps a good place to caution the reader about a common error that
one sees frequently in research papers, or even when testing a cloud service in the
lab. Suppose you had invented a new cloud service: how would you evaluate its
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scalability? Very likely you would fuss with a paper and pencil, but at some point
you will need to run your code. But on what data set?

Lacking real data from a real cloud setting in which your application will run,
it would be very common to just create a synthetic data set by looking up previ-
ous research papers and mimicking the shape of the data sets they described. Thus
with many measurements of Zipf-like and other power-law distributions of access
to objects in cloud settings, one frequently sees papers that look up a value of α

and then create a purely synthetic data set with the desired statistics. If this seems
confusing, think about how you might create a trace of file accesses in which the file
with popularity rank r is accessed with frequency proportional to r/rankα . This is
pretty easily done. Thus, you could create a trace of accesses to, say, a billion fake
files, feed them into your new file caching software, and see how it does.

This exact sequence of steps is often followed by people developing new cloud
computing technologies. So where does it go wrong? The issue is that when one uses
a random number generator to create some new random data set that matches the
power-law statistics of the original data set, we will very likely replace the “noise”
in the original data set with random noise. The problem here is that the original data
may not have incorporated real noise. Instead, one often sees that data such as file
access statistics have a dominant behavioral trend, such as fitting a power-law file
popularity curve, perhaps with α = 2.5, but then may have a very structured residual
distribution if we subtract out the power-law component. In replacing this structure
with random variability of the kind seen in synthetic data, we often depart much
further from reality than one would expect.

Furthermore, when one fits a power-law curve to measure α, it often turns out
that the power-law portion of the curve “explains” only parts of the original data set:
normally, the portion with higher-ranked data items. That is, if we use a randomized
method to create a new synthetic data set with power-law distributions of access and
the same value of α, we will often end up with data that has a tail with very different
structure than the tail of the original data extracted from the real system. This matters
because in a power-law distribution of accesses, a substantial percentage of accesses
still fall into the tail: individual low-ranked items may be rarely accessed, yet in
aggregate, many accesses are to low-ranked items.

Heavy-tailed distributions can be confusing to work with for many reasons. First,
it turns out that simple statistics like averages often are meaningless when work-
ing with a heavy tailed distribution: whereas getting more and more data will give
us better and better estimates of Gaussian distributions, with more and more data
the mean and standard deviation just grow without limit in a heavy-tailed scenario.
A remarkable number of papers and products in the cloud computing area are rid-
dled with statistical mistakes for this reason: they quote properties that just do not
mean anything at all for the category of data being analyzed!

Next, there can be a lot of structure in the data within the tail, but synthetic data
will often lose that structure. For example, in studies of file system access one often
sees very steep power-law popularity distributions in which, just to pull a number
from the air, 80% of the accesses are to 3% of the files. But in the cloud, 20% of
the accesses may still be a huge number. Synthetic data traces will probably treat
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those as purely random. In practice, though, even those accesses to rare files will
turn out to be structured: many fine-grained studies of file access have shown high
levels of correlation in the patterns of access to rarely touched files. In effect, some
file is almost never accessed, but when it is accessed, it tends to be touched as part
of a group that also involves access to these ten other files.

This matters a great deal. It explains why the access affinity property is so impor-
tant in the cloud (we discussed it in Chaps. 2 and 3), and it really sheds a great deal
of light on how big a file system cache needs to be, and what quality of cache-hits
to expect.

Thus, the cloud can be a confusing environment for those of us who design ser-
vices intended to run in it. Superficially, we find huge levels of correlation and dra-
matic usage patterns that clearly could shape the development approach for many
kinds of scalable service. Yet we rarely know enough to model the data accurately,
and if one skips that step and uses synthetic data in testing a new cloud service,
big surprises await when it finally gets rolled out. The synthetic trace will probably
miss the correlation patterns in the tail, giving very unrealistic workloads. Far bet-
ter is to collect real user traces and play those into the new service in an emulation
framework. Yet in doing so we run into a different problem: however bad privacy
and security protection may be in the cloud, this particular privacy issue (trace col-
lection and research on traces) has gained a lot of popular attention. Any kind of
trace-driven research invites unwanted attention from the press!

5.5 A Closer Look at the First Tier

Armed with the overall picture we have developed, let us now look more closely at
the tasks performed by components running in the first tier. As we saw earlier, two
typical roles for services that run in the first tier of a cloud would be to construct
web pages on behalf of clients accessing the cloud through a web browser, or (in
the case of the Web Services remote method invocation model), to function as gate-
ways between remote applications and the services implementing the methods those
applications access. What challenges do we face?

It turns out that there are several basic issues even when building these very
simple front-end services. First, services running in the first tier are expected to
be stateless: they can communicate with other stateful services, but any storage
they maintain is expected to be purely temporary and local, and cloud platforms
are very relaxed about launching additional service instances or shutting instances
down, typically without any form of warning. Second, as we saw earlier, they need to
scale out to massive degrees without overloading in any serious way. Third, as much
as possible, they need to soak up requests, shielding inner tiers from the immense
loads they might otherwise encounter. Finally, they must be elastic: suitable for snap
deployment and able to handle abrupt shutdowns.

Statelessness turns out to pose the main challenge to the developer. Suppose that
some application issues requests that one would normally think about in terms of a
transaction that performs a sequence of actions on underlying data: we would ideally
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like an atomic, all-or-nothing behavior. But how can one achieve that behavior in a
stateless manner?

Earlier we mentioned a methodology called BASE: Basic Availability, Soft State
Replication, Eventual Consistency. BASE emerged from precisely the issues just
raised. The papers in this field, particular one by eBay cloud researcher David
Pritchett, advocate starting with a transactional mental model for your first-tier cloud
service, but then transforming it, step by step, into a non-transactional solution, in
order to promote better scalability. With BASE one forgets about begin-transaction,
abort, commit and locking operations. Instead, the first step is to deliberately break
up that transaction into pieces, accepting as you do so that it will not execute atomi-
cally and will not necessarily even see a consistent underlying data set. We want the
parts to run in parallel if possible; when impossible, we aim for short pipelines of op-
erations. Thus a typical first-tier service becomes a series of side-by-side pipelines:
the application is transformed into a kind of graph consisting of small steps that
will be sequential only if one step depends on the output of the prior one. Each step
would do one thing: access a piece of data, add it to the web page under construc-
tion, and so forth. Any updates that need to occur are often broken into a step that
optimistically guesses at what the update will do, and a separate step that fires off
the real update asynchronously. Of course the guess (the optimistic step) may have
been wrong. But in BASE the recommendation is to simply conceal such issues, as
much as possible: to embrace the asynchronous nature of the first tier and to make
these oddities part of the normal behavior of the application.

Similarly, whereas a transaction automatically rolls back if a crash occurs, BASE
recommends that if possible your application do nothing at all if a crash interrupts
execution midway through one of these graph-like executions. Instead, it should
tolerate that outcome as a normal one. Thus, if (for example) our application were
booking a complex travel plan with hotels and cars and flights, a crash might leave
us with some parts booked and some unreserved. In BASE one tries to compensate:
perhaps, if the booked hotel is not paid for within 24 hours, the booking vanishes
on its own (this is what eventual consistency really means: built-in mechanisms that
will clean up, eventually, if anything goes wrong!).

Transactions use locking to guarantee serializability, but in BASE, we eliminate
as much locking and synchronization as possible. And finally, to the extent that
some steps simply must complete even if a failure occurs, we use what are called
durable message queuing systems to store the steps in the form of messages contain-
ing scripts that describe the actions needed. A bit like an email system, a message
queuing layer will do its best to deliver each such message just once. In this partic-
ular case some form of batch processing logic would periodically check for work to
do, load the stored scripts, and run them.

With BASE, applications that might have seemed stateful and might normally
require locking can often be transformed into ones that run in a highly parallel,
locally responsive, stateless manner (that is, the only state ends up being the set of
scripts stored in the message queuing layer). Yet one also loses guarantees that the
original ACID formulation of the application would have offered. This weakening
of consistency is pushed right to the end-user: one literally modifies the front-end
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application to tolerate or hide inconsistencies, with the goal that the end-user just
should not be aware that anything odd has happened. The whole mindset does not
fit well with applications like the financial, medical and process control scenarios
we talked about earlier. But for browsing the eBay auctions, buying things from
Amazon, or hunting for news articles about Mel Gibson’s latest outburst, it works
perfectly well. The first tier of the cloud is dominated by applications buildt in this
manner.

5.6 Soft State vs. Hard State

Another important feature of the first tier is that it generally runs on soft-state to
the greatest extent possible. As Eric Brewer, the U.C. Berkeley researcher and en-
trepreneur who pioneered the approach, explains, hard-state corresponds to durable
data (i.e. files and databases), while soft-state is derived from other sources. Most
readers of this book are already hard-state experts. Soft-state, in contrast, is cached
data or other kinds of reconstructible data that can be discarded if a node managing
it were to crash and restart. Thus when we say that the first tier is stateless, what
we really mean is that first-tier systems maintain no local hard-state. But they do
maintain soft-state all the time, in caches and in other forms.

The value of soft-state is that one can replicate it massively and, if a first-tier
application uses it, the inner tiers are shielded from the associated load. For exam-
ple, if we create a huge number of tier-one caches each holding the contents of a
popular database, all the read requests encountered by first-tier applications can po-
tentially be satisfied from the cache. Under the BASE approach, we will not use
coherent caching: we might allow these caches to sometimes contain stale data, and
even serve that data up to the external user, to avoid synchronizing against the real
database. But in doing so we gain scalability: the first-tier gets to be a more and
more independent computer that can handle the majority of incoming requests on
its own. In effect it soaks up all the reads, optimistically guesses at what updates
will do, and on that basis responds to the end-user. Then, asynchronously, any up-
dates are dispatched into the inner tiers of the cloud, where they will eventually be
executed. Obviously, this oversimplifies (sometimes one simply must interact with
a hard-state service even from a first-tier application). But the basic idea is one of
the key insights that have shaped today’s cloud solutions.

Vogels, the CTO of Amazon.com, goes even further. He recommends that his
development team think hard about changing the end-user results so that minor in-
consistencies and other minor violations of a transactional model will be considered
correct, normal behavior. In some sense, he suggests, a traditional transactional de-
velopment model promises the end-user that they are getting a glimpse of an under-
lying system at an instant frozen in time, when it seemed as if no other users were
active. Vogels and Pritchett are both fine with starting the tier-one development pro-
cess by imagining such a service. But then one systematically weakens not just the
implementation, but even the promises being offered to that external user. Now we
slowly move towards a service that deliberately acknowledges the dynamic, tem-
porarily inconsistent, elastic nature of the cloud, in such a way that nothing breaks
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when these kinds of event are noticeable. As these leaders explain, one can either la-
bor heroically to build a cloud with strong assurance properties, or one can embrace
the asynchronous, dynamic nature of the thing. The former is doomed, in their view.
But the latter approach can work remarkably well, if a team simply sets its mind to
anticipating all the things that can go wrong, and then find ways to paper over them!

5.7 Services Supporting the First Tier

First-tier services that need to store state, or need other forms of stronger guarantees,
typically do so by interacting with second-tier services designed to play those roles.
In this section, we will discuss a few of the best known and most popular examples.
What quickly becomes evident is that these services are mostly storage/retrieval
systems of various kinds, each optimized for a kind of storage/retrieval task that
arises within the cloud on a truly massive scale.

5.7.1 Memcached

Memcached is a general purpose cache API backed by a widely used open source
implementation and a growing array of commercial products. Products support-
ing this API (there are several) offer in-memory storage of data indexed by keys.
The developer accesses the system through a small set of simple interfaces: mem-
cached_fetch to fetch the value associated with some key, memcached_add
to insert a new (K, V) tuple and memcached_set to modify the value associated
with some existing key. This API can be implemented in many ways: with a simple
in-memory data structure such as a hash table or tree, using some form of hardware
such as an array of storage devices (see FAWN (Anderson et al. 2009)), or using
a more sophisticated mix of larger servers connected by high speed networks (see
Chockler et al. 2011). In distinction to some of the other options in this category that
we will examine below, memcached servers normally operate independently from
one-another: each server maintains a cache on behalf of its clients, but the servers
do not cooperate in any way. For example, if a client-request cannot be satisfied by
the server it sends the request to, that server will not forward the request to other
memcached servers; indeed, the servers have no information about one-another at
all.

In a typical use of memcached, an application needing to fetch data associated
with key K might call memcached_fetch(K) to see if a cached copy is available
and, if not, retrieve it from a backend database system, calling memcached_add
to save a copy. With the most common, open source, implementation, the data would
be held in memory. Each copy of memcached is independent of every other copy, so
a memcached_add performed on one node will have no impact on the results re-
turned by memcached_fetch if the fetch is performed on some other node. How-
ever, some memcached products are implemented as more sophisticated distributed
systems, in which the cache servers collaborate and a memcached_fetch per-
formed on one node might be forwarded to memcached on some other node. This
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distributed memcached approach leverages the observation that fetching data from
memory, even on a remote node, is often two or three orders of magnitude faster
than fetching it from a tier-two server. The end-user API is unchanged.

Memcached has become a big business. According to the Wikipedia article on
this topic, memcached technology is used by YouTube, Reddit, Zynga, Facebook
and Twitter. Heroku (now part of Salesforce) offers a NorthScale-managed mem-
cached add-on service as part of their platform. Google App Engine offers a mem-
cached service through a proprietary API. Memcached is also supported by some
popular content management systems such as Drupal, Joomla and WordPress. Fi-
nally, IBM research recently published a series of papers on a new memcached tech-
nology that operates as a distributed system, with the memcached servers collabo-
rating to respond to requests in the manner outlined above (Chockler et al. 2011).

5.7.2 BigTable

Whereas Memcached is fundamentally a non-distributed service, in the sense that
its components do not cooperate with one-another to present any sort of unified
single-system image, BigTable is a distributed service for storing data in massive
clusters and data centers: it can run at many locations, but users see a single co-
herent behavior. That is, BigTable is a living proof that CAP does not necessarily
apply in all cases: this is a system that actually provides consistency, availability
and fault-tolerance in a cloud setting. BigTable would not be able to offer symmet-
ric availability if a network partitioning event split it into two halves within a single
data center, but Google never experiences such failures within any single data cen-
ter. But on WAN links (where such faults do occur), BigTable would not try to offer
that guarantee: Google runs BigTable separately in each data center (e.g. there may
be many servers in a single data center, but they jointly make up a single BigTable
service per data center). These services are then linked by running separate services
that read certain categories of BigTable data from one data center and then mirror
the data over the WAN network by reinserting it into the BigTables at remote loca-
tions. So if anyone ever tells you that CAP rules out systems of this kind, just point
out that Google published the first papers on BigTable nearly simultaneously with
the earliest papers on CAP!

BigTable was originally created by Google developers who were finding that the
Google file system (another large-scale system offering consistency) was too un-
structured for many uses, but that databases were overly general and scaled poorly.
BigTable was designed to implement a compromise: the system is file-like in many
ways, yet it has an organizational structure similar to a very simple kind of database
(the functionality is very limited, however, in comparison to a full-fledged database).
There are a number of open-source technologies and products with similar function-
ality today, but we will limit ourselves to a closer look at BigTable itself. Readers
interested in a detailed discussion of the technology should consult (Chang et al.
2008).
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Fig. 5.2 Google’s BigTable system implements a (key, value) store that looks to the user like a
giant table, but one in which many of the entries aren’t present: the data is sparse. In this system the
column names are the keys, but each machine can contribute its own value, giving multiple rows,
one per node. This figure is drawn from the primary BigTable publication, and illustrates case in a
which various web page attributes are being stored for the page “com.cnn.com”. Notice the column
name notation, which provides a flexible and powerful grouping option. The system tracks versions
(hence the timestamps shown in the figure), and has a variety of locking and atomicity mechanisms

BigTable organizes data into a conceptually massive but sparse 2-dimensional
table in which the rows and columns are each named by arbitrary strings—keys, in
the terminology of a DHT system. Each (K, K′, V) tuple is understood to have an
additional temporal dimension: a value has a creation time and remains current until
it is overwritten by an update or remove operation at some subsequent time. Queries
specify the time and hence can retrieve any version of a desired value still in the
system. BigTable garbage collects data under two conditions: the user can explicitly
delete items, but can also provide expiration times, in which case they will silently
be aged out by the BigTable system itself. This latter approach has the advantage
of being very robust: even if the code that should have done a delete never runs,
BigTable will not fill up with garbage.

The design of BigTable was motivated by some concrete examples; we will quote
one that was described in the original OSDI publication on the system. In this sce-
nario, Google was seeking a way to keep a copy of a large collection of web pages
and related information shared by many applications and a large number of differ-
ent projects. The solution involves having those projects share information through
the table, which they call the Webtable. In Webtable, URLs are employed row keys,
various aspects of web pages as column names. Columns are grouped into families.
For example, Google stores the actual contents of the web pages in a column named
by the key “contents:”. As a page evolves over time, the contents get overwritten,
giving a structure of the sort illustrated in Fig. 5.2.

One reason that this works is that in BigTable, row keys are of arbitrary size,
although the research team that created BigTable comments that few keys exceeded
a few hundred bytes in practice. Thus, any URL can be a row key.

As mentioned, columns are organized into families. A column name takes the
form “family:name”, although the name can be omitted if the family has just one col-
umn associated with it (as in the case of the “contents:” column we saw in Fig. 5.2).
Family names must be registered in advance, and the system uses the names as a
tool to physically organize table storage; in general, the system will cluster data so
that data in the same row and same family will be grouped in the underlying storage
structure, for fast access. Registration also avoids a potential problem: designers at
Google could easily pick the same column names for completely different purposes,



5.7 Services Supporting the First Tier 161

creating conflicts. But they would notice these conflicts when they try to register the
family names for their application. Thus family names play several roles: one in-
ternal to the system (as an organizational hint) but a second that is external to the
system and very social in nature (avoiding accidental conflicts over the meaning of
row and column names).

It is important to appreciate that BigTable is a very sparse data representation.
By this we mean that only a small subset of the possible (row, column) pairs will
actually be in use at any time. The insight behind this sparseness property is a sim-
ple one: many different applications use BigTable, and each application can create
its own rows, or define its own columns (or even its own column families). Thus
WebTable defines one set of columns, while some other application might use an
entirely disjoint set of columns. We end up with a conceptually huge table, but
only some blocks of the table have data. Null entries are not stored (so no space is
wasted), and attempts to access them return null strings.

We will not delve into the BigTable API in any detail; as one might expect it
offers operations to create or delete families and individual columns, to add data,
update data, query data, set (or reset) entry expiration times, etc. Iteration operators
allow a program to scan the columns within a column family, or to look at just
certain rows, columns, or timestamp ranges.

We commented earlier that whereas tier-one services typically avoid locking,
this policy does not extend beyond the first tier. BigTable is an example of a rather
synchronized, strongly consistent, scalable second-tier service. The system employs
a powerful locking mechanism, which it uses to support a form of transaction: a set
of columns within a single row can be updated as a group, so that any other client
of the system will either see all of the updates, or none of them. This behavior is
very similar to a database atomicity guarantee, and to implement it, BigTable uses
synchronization, so as to ensure that reads are blocked while updates are underway,
together with durability mechanisms to ensure that if a failure occurs, the table will
not be left in a partially updated state.

A second built-in synchronization mechanism involves a way of using cells as
shared counters, for example to generate a sequence of unique version numbers.
Again, the scheme satisfies database transaction guarantees: if one application reads
value 17 from a counter, no other application sees the same value.

The key to success for BigTable revolves around a question we will not be study-
ing in any real depth in this section, namely the steps taken to ensure that related
data will be clustered and packed for efficient access. In a nutshell, the develop-
ment team created a series of mappings (one can think of these as being analogous
to the hashing mechanisms used in DHTs) that have a high likelihood of placing
data that a user might try to iterate over onto a small set of servers, in a way that
ensures fault-tolerance (through replication) and promotes parallelism (multiple ma-
chines can cooperate to support parallel iterations). This set of features match nicely
with a second set of design decisions, namely those that determined the query API:
BigTable only allows applications to access data in ways that the implementation
can efficiently carry out. In contrast, had BigTable allowed a full range of relational
database operations, clients of the system could easily design query or update oper-
ations that might look quite innocent, but would perform extremely poorly. Thus the
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co-design of the API and the implementation turn out to be central innovations and
jointly, make BigTable a successful technology at Google. Had either step failed,
BigTable users could easily stumble into non-scalable modes of operation.

5.7.3 Dynamo

Amazon’s development team confronted a problem very much like the one seen in
BigTable, but solved it in a completely different way that requires far less synchro-
nization: Dynamo is often cited as the hallmark example of CAP put into practice.
Yet the solution, which they call Dynamo, is used in many of the same settings
where a Google developer might use BigTable.

Like BigTable, Amazon’s Dynamo system is a type of DHT managing collections
of (K, V) tuples. Dynamo’s main role is to support shopping carts and other services
that Amazon uses to track actions by its customers. As readers will know, a shopping
cart is a temporary form of storage that holds items the customer has selected while
browsing the Amazon store. Browsing is basically a read-only operation1. Thus
the shopping cart deals with the main stateful aspect of the browsing experience.
A transactional database is employed when a user makes a real purchase, but not
needed until that point is reached. As a result, the shopping cart was designed for
rapid response and scalability, but not required to provide absolute reliability or
extreme forms of synchronization.

For its intended purposes, Amazon concluded that the best fit would be a key-
value structured storage technology, but rather than using databases as their mental
model the way that the BigTable developers did, the Amazon team felt that a more
weakly convergent style of solution might better match their intended use cases. This
led them to select a DHT (a system much like Chord) and then ask how it might be
extended to play the roles needed for a shopping cart. At first glance the match is
rather close: Chord stores (K, V) tuples, replicating them for fault-tolerance, hence
one could just use the DHT out of the box and would already have a reasonable
shopping cart technology. On the other hand, such a solution might lack a few de-
sired properties. Amazon pinned down these points of divergence, then enhanced
their solution to address them, and Dynamo resulted from this incremental process.

First, it is important to be able to rapidly list the items in a shopping cart; this
argues that for any given user, all his or her items should be grouped under the same
key. But Chord-like systems usually require a unique key for each item. Addition-
ally, Dynamo extends the Chord model by allowing a single key to index multiple
objects, which are distinguished by unique object id’s, timestamps, etc. The system
also allows objects to be deleted.

Second, we run into an issue of fault-tolerance: when storing a value under time-
pressure, suppose that some node is slow to respond. For Dynamo, as for Chord,
this entails ensuring that log(N) nodes have copies. But which nodes? In Chord, the

1Obviously, Amazon does track browsing histories and takes actions to ensure that if a user clicks
the back button to return to a page, the content will not have changed, but this is a relatively simple
matter and can even be solved using browser cookies, hence we will not worry about it here.
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nodes are required to be sequential ones along the ring starting with the successor
of the node to which the key K was mapped. In Dynamo, a concern arose: what if
those particular nodes include some unresponsive ones? Delay is costly at Amazon
and the Dynamo team was unwilling to risk solutions that might be expensive in this
sense. Instead, Dynamo tries to store copies of the (K, V) tuple on those nodes, but
if a delay occurs, will retry using nodes further out along the ring.

This creates some risk: one could imagine a situation in which a (K, V) tuple
should be stored on nodes a, b, and c, but because b and c are slow to respond, ends
up stored on a, d and e. Now the user queries her shopping cart. If b has recovered
and that query request happens to be serviced by b, the cart will appear to be lacking
an item. The user could easily decide to re-add it, and end up purchasing two copies
of the same thing.

Amazon accepts this risk, but to minimize the possibility of such an outcome, im-
plemented a continuous self-repair mechanism within Dynamo. In a manner similar
to the gossip protocols we mentioned in Chap. 4, Dynamo strives to shuffle (K, V)
tuples until they are hosted on the right nodes. This is the model that gave rise to
the BASE development methodology we mentioned previously: Dynamo prioritizes
availability over all else, then replicates soft-state (in fact the (K, V) tuples are soft
in the sense of Brewer’s definitions), and then uses a self-repair protocol to ensure
that the shopping cart will erase any inconsistencies that might be caused by tran-
sient failures such as a slow node, a failure, or a join event. Should our user end up
with an unwanted second copy of the purchased object, Amazon’s customer service
team steps in to work out a suitable resolution of the error. In effect, Dynamo risks
making mistakes (at low probability) in exchange for better availability properties.

At the end of the day, should developers favor the strong consistency of a solution
like BigTable, or the more convergent style of consistency of Dynamo? This ques-
tion hints at a deeper a puzzle, much debated in the cloud computing community:
is CAP really a rule that applies in a universal way? If CAP was a universal rule,
one would have expected that every development team facing the same large-scale
questions would end up with similar large-scale answers. Here, that clearly is not
the case: Google and Amazon were looking at similar questions, yet arrived at very
different solutions, and one of them (BigTable) seems to defy the CAP principle.

If CAP is more of a convenience than a hard-and-fast requirement, there might
still be an issue here. Perhaps the level of effort needed to build BigTable was so
enormous, compared to that needed to build Dynamo, that CAP could still be valid
even if no in an iron-clad way. Or perhaps applications layered over one or the
other technology are harder to debug, or harder to maintain over their long-term life
cycles. Researchers who believe in CAP in the strongest, most general sense, would
presumably believe that this must be the case: that Google’s approach must have a
gottcha concealed within it. People who do not really accept CAP, and as we have
already commented, CAP is more of a principle than a theorem in a formal sense
(the theorem associated with CAP covers a fairly narrow case), might argue the
other way, insisting Dynamo, because of its weak consistency, will leave developers
at risk of all sorts of lingering bugs that occur but with low probability.
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Unfortunately, at the time of this writing there was absolutely no data on that
question at all. Perhaps there never will be: Amazon and Google compete and each
company is fiercely loyal to its own technologies. Thus, as a practical matter, we
have the CAP theorem, and we have Dynamo as an example of how this plays out
in a second-tier service. Yet we also have large-scale technologies such as BigTable
and the underlying Google File System, which work perfectly well in the same
roles, and there is simply no hard evidence that either is really better than the other
approach.

5.7.4 PNUTS and Cassandra

As noted in the introduction, brevity forced some decisions upon the author, and
one of those was a decision to not spend much time on transactional and database
systems. Accordingly, we will limit ourselves to two very brief notes about impor-
tant examples of key-value storage systems created specifically to support database
systems or programming models.

The Yahoo PNUTS system (Cooper et al. 2008), created by Raghu Ramakrish-
nan, is an extremely well known key-value store used in that company’s SQL (and
noSQL) platforms, both of which support forms of database-style queries against
very large datasets. PNUTS is often cited as the system that invented sharding,
which, as we have seen previously, is the process of fragmenting a data set so that
any particular value is replicated to a small set of nodes, with the overall dataset
stored in a much larger full set of nodes. For example, a database might assign some
sort of unique tuple identifier to each tuple in a large relation, using that as a key, and
then shard the data so that a set of n nodes will contain the full collection of tuples,
but with each tuple replicated on perhaps 3 of the nodes. Those three would be the
shard associated with the corresponding key. Notice that each node will probably
hold a replica for a very large number of shards. We illustrated this idea in Fig. 1.4.

The notion of sharding is really distinct from the rules used to actually carry out
the replication step. PNUTS uses a DHT-like scheme for this, but one could imagine
other ways of mapping from keys to node identifiers. Moreover, debate rages around
the important question of just what properties, if any, a PNUTS-like solution should
offer. As we have mentioned, database and transactional systems normally use some
variation on the ACID model, with the so-called snaphot-isolation model being es-
pecially popular in cloud settings. (Recall that with this model, reads are executed
at a virtual instant in time against versions of the database that were valid at that
period in time, while writes create new versions and are ordered using locking, but
not necessarily using the same “serialization ordering” used for the reads). Should
PNUTS itself directly implement such a model?

Early versions of the PNUTS system did offer strong consistency properties, but
over time, the Yahoo research team discovered that these strong properties were
at odds with their ambitious scalability goals: PNUTS runs in tier 2 of the cloud,
where elasticity and scalability needs often preclude strong consistency (the CAP
theorem). Thus modern versions of PNUTS offer a spectrum of options and en-
courage the user to work with weak models, such as a gossip-style of convergent
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consistency in which updates might not immediately reach all replicas of the rele-
vant shard, but where the replicas themselves continuously exchange state and work
to reconcile any inconsistencies as soon as the opportunity to do so arises.

Cassandra (Lakshman and Malik 2009) is a distributed storage system for man-
aging structured data that is designed to scale to a very large size across many com-
modity servers, with no single point of failure. The system is structured as a peer-
to-peer overlay, and aims to achieve scalability, high performance, high availability
and applicability. In many ways Cassandra resembles a database and shares many
design and implementation strategies with databases. Like PNUTS, however, Cas-
sandra embodies a tradeoff between the model and properties offered and the speed
and flexibility of the system, opting to support just a subset of the relational data
model: it provides clients with a simple data model that supports dynamic control
over data layout and format, but with weaker consistency guarantees that center on
eventual, rather than immediate, propagation of updates across replica sets.

5.7.5 Chubby

This is probably the right place to at least mention the core technology used in
BigTable to achieve consistency: a locking service called Chubby (Burrows 2006)
We will have a great deal to say about totally ordered reliable multicast protocols
in Part II of this text. Chubby is an application of one such protocol, namely the
Paxos protocol designed by Lamport as a very simple (but not terribly efficient)
solution to that problem, but then steadily refined over the subsequent decade into
a more and more efficient, scalable technology. In Chubby, ordered multicasts are
used to replicate lock state-changing events: lock grants and releases. Users see an
API that allows them to request locks (again, using arbitrary-length keys to name
them), and to release them. Chubby does a callback when a lock is granted. A some-
what complex mechanism is provided to handle cases where a lock holder crashes
while holding a lock: breaking such a lock might not be wise (since whatever it pro-
tected may be in an inconsistent state), yet never breaking the lock is a guarantee of
trouble! Chubby’s form of replication does not scale all that well (you cannot just
keep adding more and more members to a Chubby service; it slows down as you
increase the number). But you can run multiple Chubby instances, each handling
disjoint sets of locks, and scale up in this manner.

5.7.6 Zookeeper

The Zookeeper system is Yahoo!’s answer to the problems we have described (Jun-
queira and Reed 2009; Junqueira et al. 2009). Zookeeper looks like a file system:
one can view it as a key-value store, but in this case the file names are playing the
role of keys. It offers standard file system operations: file open, read, write, close,
create. But it also offers a strong, built-in form of file locking that was very carefully
thought out, and has ways to create file version numbers that are guaranteed to be



166 5 The Structure of Cloud Data Centers

unique. As a result, Zookeeper can do everything we have discussed above: it can be
shared by large applications, can be used for synchronization, can create counters,
etc.

Internally, Zookeeper is a replicated system that keeps any given portion of the
file system on multiple nodes, using a form of atomic broadcast (more similar to
an approach we will describe in Part II called virtual synchrony than to Paxos, for
reasons of performance). Thus operations issued to Zookeeper translate to ordered
multicasts, which are basically echoed by the Zookeeper server that first receives the
request, then applied by individual service instances to maintain consistency across
their replicated states. Notice that once again, we are looking at a tier two service
with very strong consistency properties, in seeming defiance of CAP. Scalability of
Zookeeper is tied to the hierarchical structure of the file system name space: each
Zookeeper service handles some subtree of the overall name space, in the sense
that all requests within that subtree are handled by that Zookeeper. And each of
these services are typically replicated modestly, perhaps on three to five nodes. As
they scale out, the capacity to handle read-only requests rises, but the cost of writes
slowly grows.

Zookeepers can be interconnected using a kind of file-system mount that asso-
ciates one Zookeeper file system with a file name in some other Zookeeper file sys-
tem: that name becomes the root of the file system handled by the second Zookeeper.
Thus one can scale Zookeeper without limit: any given service is rarely replicated
on more than 5 nodes, but one could still run Zookeeper on thousands of nodes,
divided into groups of 3 to 5 each, with each owning some subset of the overall file
system.

Zookeeper does not need a separate service (like Chubby) for synchronization:
because it uses reliable, ordered multicast as the basis for its file replication scheme,
the system already has a strong enough primitive within it to do locking. Thus, the
solution is basically a freestanding service covering several needs in a single pack-
age. This has made Zookeeper popular with the cloud computing research commu-
nity, many members of which have gained access to it (Yahoo! is willing to release
it for research uses) and then layered other solutions over it.

5.7.7 Sinfonia

In Aguilera et al. (2009a, 2009b), a team of researchers at Hewlett Packard Research
Labs reported on a novel system that fuses storage and communication to achieve a
very high speed and scalable data replication technology. The core idea is to push
issues of consistency and fault-tolerance down into a shared data replication sub-
system, Sinfonia, by mapping various application functionalities down to reads and
writes against the shared storage abstraction, which in Sinfonia takes the form of
an extensible log of memory versions. A built-in garbage collection layer recovers
memory once there are no further needs to access it. The scheme is quite fast, and
extremely general. However, we will not present it in any detail here; in Part II of
the text, where we will look at group communication (multicast) with strong dura-
bility, we will see that this category of functionality really generalizes into a broader
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topic, namely a model called state machine replication, in which some set of repli-
cas are maintained in a consistent state by applying the same updates in the same
order and synchronizing the handling of failures with the delivery of updates. The
model is extremely flexible; Sinfonia, in this sense, is a powerful demonstration of
the practicality of this model and its value in the modern cloud.

5.7.8 The Smoke and Mirrors File System

The SMFS system (Weatherspoon et al. 2009) is a full cloud file system implemen-
tation that offers automatic data mirroring across multiple cloud computing data
centers. The basic API offered to the user is completely standard: files that can be
created, read, written, etc. Under the surface, SMFS uses a log-structured file sys-
tem implementation in which updates are always performed as log appends. This
facilitates replication, since the log updates can simply be streamed across a WAN
link and then applied to a remote replica in the identical order.

In creating SMFS, the development team faced a difficult performance challenge:
WAN networks are very fast (10 Gbit/s being common), but round-trip latencies are
still slow enough (often 50–100 ms for a cross-country network route) that waiting
for the remote data center to acknowledge successfully logging an update imposes
too much delay. However, modern optical networks are reliable, dropping no more
than one bit in 10−19. Thus, once data has been transmitted it will almost surely be
received by the remote mirror site, even if the sender does not wait for an acknowl-
edgment.

Error correcting codes can drive these numbers down to an even greater extent:
with such a coding scheme, if a packet is dropped now and then, for example be-
cause of congestion or receiver overload, it can be recovered from an error correcting
packet later in the data stream.

If we combine these insights, we can achieve a solution that delays only until data
and the associated error correction codes have been transmitted on the sending side.
SMFS is able to offer performance nearly identical to that of a standard log-based
file system, but still has the reliability assurances of a fully mirrored solution.

Experiments with SMFS made it clear that these error correcting codes were
actually necessary: when the team ran SMFS over even completely dedicated local
area networks, they observed episodic bursty packet loss. This inspired the creation
of a new coding solution, called Maelstrom (Balakrishnan et al. 2008), that works
by sending XORs of blocks of data in a manner designed to be rapidly computable
and yet suitable for overcoming rare, bursty packet loss. Maelstrom does this by
XORing blocks 0..9, 10..19, etc., then blocks 0, 10, 20, . . . and then 0, 1000, 2000,
etc. The scheme is inexpensive and was shown to precisely match the needs of
SMFS. Recovery of a lost packet is easy when using these forms of XORed data.

But why should an otherwise idle 10 Gbit network that drops so few bits on its
optical links experience bursty loss in the first place? Resolving this puzzle led the
SMFS team deep into the timing properties of ultra-high-speed WAN networks. In
a project called BiFocals, the group designed an extremely accurate measurement
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apparatus with which it was possible to produce packet streams with highly pre-
cise inter-packet timing and to observe the timing properties when those streams
emerged from a WAN network. By negotiation with the operators of the National
Lambda Rail experimental WAN network, they were able to obtain a series of looped
WAN data routes so that packets sent at Cornell would traverse various distances
within the NLR, then reemerge at Cornell again (on a distinct IP address, of course).

What they discovered, as documented in Freedman et al. (2010), is that when
data are transmitted on even a nearly idle optical network at these speeds, it rapidly
forms into convoys of closely spaced packets that emerge in bunches. This explains
the bursty loss problem that the SMFS experiments revealed: while the network re-
ceivers that system used could keep up with as much as 1 Gbit/s of traffic arriving on
a 10 Gbit network link, these convoys caused 1 Gbit/s packet streams to bunch into
10 Gbit/s packet convoys with minimal inter-packet spacing, separated by longer
idle period. The average rate was whatever the sender used, but the instantaneous
rate could be 10 Gbit/s for a long period of time (some packet chains were as long
as 10 packets in a row). These long chains of packets would overwhelm the receiver
network interface card, causing packet loss in the receiver! Moreover, with modern
multicore receiver platforms this problem gets worse: many such platforms have rel-
atively slow internal bus speeds between the network interface and any individual
core. This works well if packets show up at the rate they were transmitted, but if
packets show up in big bursts, loss is a certainty. There simply is no place to put the
incoming data.

The root cause of these bursts is not yet known with certainty, but seems likely to
reflect mundane network congestion effects triggered by routine background traffic.
Even an idle 10 Gbit network will still have some link management traffic on it,
generally at a level of 1–3% of the network capacity. Thus when SMFS streams
data at, say, 1 Gbit/s, although its packets may depart with very even spacing, as
they travel through multiple router hops they are very likely to encounter at least
some delays. Each such delay potentially allows some packet to catch up with the
delayed packets, forming a chain that will grow in length for each successive delay.
Other possible causes include routers configured in ways that aren’t ideal for this
data pattern, links that tunnel over MPLS (a second high-speed data transmission
standard), and these are really just a few possibilities.

Most cloud computing systems offer file mirroring options over WAN links, al-
though not all work in the manner of SMFS. A very common approach is to offer
some form of queuing and transmission service. Outbound files are enqueued, and
when the service gets a chance, it uses FTP to copy file by file to the remote des-
tination. By having very large numbers of side-by-side file transfers underway, the
sorts of delays that pose an issue for SMFS are hidden: the network stays busy even
if some individual file transmission has paused to recover missing data. Services
of this kind often break big files into multiple smaller chunks, to gain further paral-
lelism. Thus, if one were to look at a WAN link connecting one Google or Microsoft
data center to another, one would often see thousands of side-by-side TCP sessions,
each copying chunks of files from source site to destination. While individual files
might arrive with some delay for the reasons SMFS and Maelstrom encountered,
the aggregated activity will still saturate the full WAN link.
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5.7.9 Message Queuing Middleware

Earlier, in connection with BASE, we touched upon the idea of a Message Ori-
ented Middleware (MOM) or Message Queuing Middleware (MQ) system. These
are basically email systems used at a program-to-program level. Applications can
place messages into the system, and they will be delivered to services that later read
messages out.

The closest analogy to a mailbox arises when using a topic-oriented MQ system:
the “topic” is just the name of the mailbox, and one often uses the term “publisher”
for programs that generate messages, and “subscriber” for the program or programs
that read data out. As one might expect, these systems offer a wide range of function-
ality: they can accommodate multiple publishers on one topic, multiple subscribers,
they can be used in a transient storage mode that does not actually save messages for
long periods, but merely relays them (e.g. a message published “now” is delivered
to the servers “currently subscribing” to the topic), or a persistent one (messages
live within the mailbox until they expire, or are removed by a subscriber).

In Chap. 3, we discussed the Sienna system. How might we rate Sienna relative
to the MQ model? First, recall that whereas MQ systems are generally topic (mail-
box) based, Sienna matches publishers to subscribers on the basis of patterns that
can query the contents of messages, not just the source and destination. Second, Si-
enna only operates in a transient store-and-forward, then delete manner. Hopefully,
however, one can see that these are all variations on a common theme. A good ex-
ample of a modern publish-subscribe system is Corona (Hall et al. 1996); it provides
scalable high-speed publish-subscribe and peer-to-peer application communication
group support in moderately large network deployments. On the other hand, Corona
was never applied in cloud-scale settings. Indeed, while there has been growing in-
terest in offering this sort of functionality within the cloud, doing so poses some
daunting research challenges.

At the highest data rates, MQ systems can sometimes be treated as message
busses, a term picked to evoke the image of a memory bus in a computer’s back-
plane. Just as a memory bus ferries data between CPUs and memory, a message
bus ferries messages from publishers to subscribers. Often these busses run in the
non-durable mode: messages are relayed as fast as possible directly between pub-
lishers and subscribers; if a published message is sent to a topic that has no cur-
rent subscribers, that message is just dropped. Products in this area often offer both
functionalities; the API has some form of flag that the publisher sets or disables
to indicate whether or not durability is required. Of course, durability is slower, but
with durability, applications can potentially replay old messages as a way to catch up
with activity that occurred before the application was started. Without durability, the
message bus may run at much higher speeds, but a new application instance would
only receive subsequent postings to the topics it subscribes to; past history is not
available. To work around this one sometimes sees non-durable message bus sys-
tems linked to database systems that subscribe to every possible topic, then archive
all incoming published messages. A new subscriber can then subscribe to new post-
ings, but can also search the database for past context. On the negative side, syn-
chronization can be tricky in this case, e.g. in applications that need to see every
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single message, since the start of the system, without any duplications, omissions or
misorderings.

Some cloud systems have used this model very aggressively; for example, it was
extremely popular at Amazon.com in the early stages of its ramp-up. Advantages
of the model are simplicity of addressing (one uses higher level topics to address
messages rather than IP addresses, which decouples the logical function of the tar-
get from the physical node on which the target system might currently be running),
speed and scalability. In principle, a well-implemented message bus could scale
without limit, support any pattern of publishing and subscriptions, and would ef-
ficiently select the best message transport options dynamically: perhaps, IP multi-
cast to send these transient messages from this publisher to those ten-thousand sub-
scribers, UDP for this other relationship here, TCP over on that side where IPMC
and UDP are not permitted.

In practice, one finds that these sorts of technologies are hard to automate to the
necessary degree and hence work better in more predictable, constrained situations.
While there are many message bus products that do their best to automatically shape
behavior to the configuration of the data center in which they find themselves, and
to the use patterns that arise in production, the wide variations in load and topology
seen in the industry today pose a hugely complex challenge that can be hard to
automatically optimize against. Thus while message bus solutions will often work
well when load is light, care must be taken as they scale up and loads rise. The
broadcast storms that were mentioned early in the book are a good example of how
an innocent message bus technology decision (in that case, a product that made
casual use of IP multicast without attention to the total number of IPMC addresses
it was using) can go wrong.

To visualize how such an event might occur, we will close by just recapping
that story as it really played out (without naming anyone, of course). The reader
should recall from the Introduction that a large web e-Tailer was using a message
bus heavily for many purposes. As it turned out, these even included debugging:
the company realized that if a typical point-to-point connection was actually imple-
mented not over TCP, but rather as a publication of a stream of messages on a topic
that only the subscriber would listen to, one could simulate TCP and yet also have
the ability to tap in later (by attaching an extra subscriber to the topic) if something
seemed abnormal. Moreover, by publishing messages to unsubscribed topics, one
could, in effect, print debug data to virtual consoles that do not exist unless someone
attaches a subscriber to the topic. (Imagine that your program for tracking product
inventories printed a stream of information to the topic inventory-debugging, for
example).

The message bus vendor in our example could potentially have implemented
logic to optimize the choice of transport, but in fact took a short-cut: the company
used IP multicast for almost everything. The company reasoned that with a single
robust IPMC-based transport solution, their software would reliably deal with pat-
terns of 1-to-1 through 1-to-n communication, and that the IPMC hardware could
filter out messages in this debugging case, where there would often be no receivers
at all. Ideally, those messages would be emitted on the local optical network link
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but would not be routed beyond it because lacking IGMP subscription messages,
the higher level routers would realize that they have no other destinations, hence
would not forward them.

We saw earlier how this went wrong: with too many IPMC addresses in use, this
simple concept breaks catastrophically at large scale. Suddenly even those debug-
ging messages that should have gone into black holes start to be relayed to every
link in the whole data center! Everything melts down.

Thus we see here in a nutshell the danger of scalability in cloud settings. A sim-
ple, seductively easy to use technology is adopted, with great success, by a company
in its early days of growth. Everything works wonderfully for a long time. Yet one
day, just because the data center needed to grow to support more load, a core compo-
nent collapses. Now a panic occurs: everything in the entire organization depended
upon this basic component—the message bus, in our example. We cannot trust it
anymore, and there is not time to understand what was going wrong. After all, the
entire data center just melted down! Money is being lost by the second.

There isn’t really any moral to our little story. The people involved in this episode
all remember it with a shudder, but if asked, none has any particularly good advice
on how to avoid such events. Indeed, if pressed, individuals who worked at Amazon,
Google and Yahoo will tell similar stories about the times that Dynamo, BigTable,
the Google File System, Chubby, and Zookeeper malfunctioned and brought their
data centers to a standstill. The bottom line is that any infrastructure service that
ends up in a sufficiently key role is a risk factor in the cloud, and that any technology
can melt down if used in ways sufficiently different from the ones that were tested.
These hardened cloud researchers offer just one form of advice: to expect things to
break, and to expect that every new factor of 10 scaleup will break some things very
badly. Thus, one should not misunderstand such stories as being stories about the
risks of any particular technology.

When things do break, there are often ways to resolve the problems. In the par-
ticular case, the eTailer resolved the issue by shifting all communication to point-
to-point TCP, including patterns that look more like IPMC or UDP. This put an end
to the broadcast storms and permitted the company to continue to scale, and even
to continue to use the message bus “design pattern” internally. Today, we know of
a second way this could have been fixed, from Chap. 1: managing the IP multicast
address space might have prevented the hardware malfunction that apparently was
at the root of this particular instability.

Given this choice of paths, it might seem as if fixing the IPMC layer would have
been the better option. At a glance, TCP is not the best way to distribute messages
in the 1-to-n cases that arise. Very likely the owners of this particular data center
would agree with that sentiment, but they would also point out that having fixed the
IP multicast hardware issue, one still faces a multicast flow control problem; TCP,
at least, automatically handles that issue. Thus, any given technology raises layers
and layers of issues. What API should we offer, and how can we best match the
API to the style of desired use? By now we have seen several tier-two examples that
overlap heavily in terms of all being able to support similar uses. Is it meaningful to
say that one is better than another?



172 5 The Structure of Cloud Data Centers

Even so, if one pins down cloud computing experts at today’s conferences, they
tend to agree on one thing. Almost all of them feel that stories like this are a reminder
that TCP itself is a miracle in many senses, and that even at age 30, IP multicast is
a very immature and ofen unruly cousin. While TCP can also malfunction, e.g. by
slowing down when packet loss is occurring, even if the packet loss is due to a
noisy link and sending faster might be a better remedy, TCP scalability has been
a genuinely astonishing story that has taken us further and further into the Internet
and cloud era with hardly a hitch. Some simple things really do scale remarkably
well. When the message bus technology in question was reimplemented over TCP,
the API that its users liked so much remained unchanged. Of course, performance
suffered in some ways. Yet performance also improved in other ways; after all, the
system used to melt down, and now it does not. This may not seem like a terribly
deep insight to carry away from the story, but apparently, those who know these
stories best feel that any deeper insight would just be a misunderstanding of what
happened here, how it was fixed, and why the fix was a good one.

Thus if you ask these same folks whether they could ever imagine switching back
from TCP to an IPMC-based solution, they actually agree that this could certainly
happen. What they tell you is that today, at this scale, they see no reason to do so.
But that perhaps tomorrow, at the next scale of ten, they won’t have any other choice,
and if that were to happen, will just cross that bridge when they come to it!

Second tier systems often are built around database or transactional products, and
it is important for cloud computing researchers to learn about these technologies.
The area is a deep, rich, and fascinating one. But it is also beyond our scope here.

5.7.10 Cloud Management Infrastructure and Tools

In this text, will not look closely at cloud management systems and tools, beyond the
broad overview offered earlier by way of explanation for what might otherwise have
seemed like strange constraints on the cloud application developer, such as the rule
that first-tier applications be stateless and prepared for sudden and extreme rescaling
or failures. The issue is simply that there are too many management systems and
while all have similar roles, they differ widely in terms of details. Moreover, the
APIs available differ greatly depending on whether the application shows up as a
virtual machine, an Azure task, a PHP script, etc.

5.8 Life in the Back

The deeper layers of a typical data center (what we earlier referred to as the back-
end) are somewhat more typical of the kinds of computing system familiar to many
readers from their prior non-cloud experiences. As we move away from the front
line services that deal directly with clients in an interactive mode, the cloud becomes
dominated by what might be thought of as batch computing applications and more
standard services, often built over high-end commercial database products. Here,
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the big change from a more standard distributed computing environment is one of
speed and scale, but not necessarily in the sense the reader might expect. Whereas
a desktop computer might have perhaps 4 cores and a few tens of gigabytes of disk
storage, cloud applications often need to process petabytes of data scraped from web
pages or other sources. Yet they do so on machines that often have substantially less
available resources than a heavily provisioned desktop platform! The key insight
here is that cutting edge machines are often disproportionately costly: cloud systems
buy machines in bulk and optimize for price, hence there is a notable tendency to
buy large numbers of mid-range servers, because in aggregate these offer more CPU
and storage space per dollar, even if they may be slower than the top-of-the-line
systems we often select for our desktop platforms. Cloud systems achieve scalability
and speed not by just optimizing the performance of the individual application on
a single machine, but also by finding ways to divide tasks so as to run them in
a massively parallel manner, perhaps on hundreds of thousands of machines over
thousands of CPU hours. The tools one encounters at this layer favor this parallel
scalability model.

Parallel performance can be achieved in many ways. Perhaps the most common
option is to program solutions using a tool designed for massive parallelism, such as
a modern database platform. However, not every application fits a database model.
A second option is to explicitly design a service to spread itself over hundreds or
thousands of nodes and to orchestrate their behavior so that they run in a coordinated
manner; we will spend a great deal of time in the pages to follow on that model,
and the Isis2 system (Appendix B) is designed specifically to support such uses.
Finally, a number of cloud systems work in a looser version of this coordinated
model, employing a technology such as MapReduce (or Hadoop, the open source
implementation of the same technology).

MapReduce offers a rather simple and stylized batch processing model, pro-
grammed using scripts, in which the application runs in phases. Each phase starts by
first mapping the job to some large number of processes (for example, by running
some application multiple times and parameterizing each copy differently, e.g. to
search different files), then reducing the size of the outputs by combining them into
some smaller number of files, and then perhaps iterating the process.

For example, suppose that we wanted to create a list of two or three-word phrases
that contain the word “dyskinesia”, within some large corpus of medical documents.
One might start by writing a simple program that looks for the word in question, then
prints out the associated phrases. MapReduce would offer a way to run that program
in parallel on our document collection: if the collection contains, for example, ten
million documents, we might break the search down into perhaps ten thousand sub-
tasks (each would search one thousand documents). MapReduce would, in essence,
schedule the ten thousand jobs on some collection of machines: perhaps one per
machine (if MapReduce happens to have ten thousand idle machines), perhaps 30
per machine (if only 333 were available), etc. If some tasks run slower than others,
MapReduce just schedules a few extra copies, discarding any duplicate results. This
compensates for machines that might be overloaded, faulty, or misconfigured and
can even work around some kinds of application bugs. If the subtask was simply
harder, a bit of work is wasted, but this tradeoff is viewed as one cost of scalability.
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The map operation yields ten thousand separate results. A typical reduce opera-
tion might combine such result sets. For our little example, this is easily done: would
just merge the result files, perhaps discarding rare phrases in favor of more common
ones (thus, the reduce operation would also keep a count). Notice that we could
merge all our result files into one big one, but we could equally well merge them
into, say, one hundred partial result files. If we needed a single answer, the former
is the way to obtain it, but if we plan to do additional computing using these files
as intermediate results, the hundred partial solutions might be quite adequate, and
by not combining them into a single file, we have the option of a more parallel next
step. Obviously, one could also just do a two-phase reduction operation to create a
single file; for reduction steps that are costly, such a splitting of the job could let us
achieve a more parallel execution.

Many MapReduce applications are created incrementally, by building something
basic, then extending it. For example, we could now expand on our basic solution.
Perhaps rather than looking for phrases associated with just the single word “dysk-
inesia”, we might modify the solution to take a list of words and to list phrases
associated with each. We might do so by developing a second phase that takes the
most common phrases that involve the “dyskinesia”, then looks for phrases that are
similar but in which “dyskinesia” is replaced by some word similar to dyskine-
sia, such as “fyskinesia” or “dyskenesia”: such an approach would yield common
spelling variants (and also common misspellings).

While the MapReduce model is very simple, one can do amazing things with it,
and we are seeing the emergence of a whole engineering discipline concerned with
transforming big problems into MapReduce implementations. The one constraint to
keep in mind here is that MapReduce is really intended for what might be thought
of as read-only applications: the files produced by a given run obviously become
part of the cloud system state, but the data read during a phase of MapReduce is
not modified by the map or reduce operations. Thus MapReduce implements a kind
of functional programming model: it reads a state, then produces output that is a
function of that state. This simplifies fault handling (MapReduce just relaunches
any interrupted work), and also scheduling, since the subtasks can run independently
and on any mix of machines that happens to be available.

General purpose database technologies can do the same things as MapReduce,
and with less limitations; after all, a database can also modify data in place, whereas
this is very risky to do in MapReduce because it often reexecutes individual steps
multiple times, and sometimes (if some step fails repeatedly) aborts entire execu-
tions without offering any opportunity to roll things back, since the system is explic-
itly not intended for update transactions. The most powerful commercial databases
could do this with very competitive performance too. Databases, though, are not
optimized for the kind of batch processing, massively parallel execution model
MapReduce offers: MapReduce is easily customized by the developer, who just
scripts out the desired execution and supplies the desired mapping and reduction
modules, often picking from preexisting ones (companies like Google have vast
repositories of prebuilt modules of this kind, created over nearly a decade now).
Thus we arrive at another example similar to the one we saw earlier in the case of
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second-tier storage systems: multiple ways of accomplishing more or less the same
thing, with each different technical option having similar “power,” and yet with each
behaving rather differently in a purely practical sense. The best choice becomes a
pragmatic engineering decision, not one that centers on fundamental questions such
as the power of the underlying model.

Should we store data in Dynamo, BigTable, or Zookeeper? Should we use
MapReduce for massive parallel search, or the cutting edge Oracle database prod-
uct? There are no hard-and-fast answers to such questions; ultimately, the right
choice comes down to the specific properties of the application, and the specific be-
havior of the technologies available to the team solving the problem. Cloud comput-
ing demands a kind of smart, street-wise decision making. Purely abstract thinking,
of the kind one might use to derive theoretical predictions of asymptotic scalability
for example, just does not turn out to have a major role.

5.9 The Emergence of the Rent-A-Cloud Model

Moving beyond the first tier, we arrive at the back-end of the cloud, which is very
much like any massive data center one might have seen in past settings, although
much more actively shared than a traditional massive data center might have been.
This sharing reflects an economic reality, coupled with a technical problem.

Let us start by appreciating the nature of the problem. Early cloud platforms
faced a problem: even when used just for proprietary purposes (for example, when
Amazon.com’s computers supported only Amazon-developed applications), a cloud
often had so many applications running that the risk of interference between appli-
cations emerged as a major annoyance. For example, if two applications happen to
store files in the temporary file area on the disk, then if one was carelessly designed
to remove all temporary files at the end of each run, it might end up removing files
created by the other. In a normal data center this sort of thing is not uncommon and
leads to sharp exchanges between the development teams. But in the cloud, where
applications might run on huge numbers of machines very remote from where the
developers work, these sorts of confusions quickly escalated to become a major
headache.

An obvious solution is to just encapsulate each application into a lightweight
virtual machine, complete with its own virtual network (a form of virtually private
network, combined with a form of virtual LAN or vlan), and its own virtual storage
area within the file system. One can do this easily: modern operating systems permit
the developer to package almost any application setup on any O/S configuration as
a virtual machine, which can then be executed on some other machine just like
any other executable: in effect, the machine (including your file system, network
configuration and applications) becomes a big application program that pretends
to be a physical machine, but might actually run side-by-side with other virtual
machines on a shared physical platform. Virtualization even allows one to run Linux
on Windows, Windows on Linux, etc. Today’s cloud platforms have embraced this
form of virtualization to the degree that non-virtualized (“bare metal”) computing is
becoming quite rare.
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Virtualization can permit the cloud management layer to pack multiple virtual
machines onto a single physical one. For example, suppose that a video player ap-
plication is single-threaded and we run it on a mid-range machine that happens to
have 8 CPU cores. The management layer will quickly discover that the machine
never keeps more than 1 core busy (perhaps, 2 cores, if one also counts the activities
of the O/S itself, which will often run on a different core than the application uses).
In a fully automated manner the cloud management system, or hypervisor, can sense
that there is unused capacity and if elasticity argues for running more copies of the
video server, might launch as many as 7 more copies, aiming for a steady state that
keeps the physical machine busy but not overloaded.

Obviously, virtualization and packing can go awry; not every packing decision
is wise and mistakes will trigger resource contention or other kinds of performance
problem. Ideally, these are eventually detected by the management layer, which will
reduce load by killing some of the virtual machines and perhaps, if needed, launch-
ing new instances elsewhere. The resulting architecture realizes a concept that was
first discussed decades ago, in which computing is available as a service, on de-
mand, much as electric power or networking bandwidth are available for us on an
as-needed basis. Today, a developer who creates an application that needs to run
for five hours on ten thousand cores can purchase the needed resources from any
of a number of companies, often for a tiny fraction of what it would cost to own
the same infrastructure. After all, Amazon amortizes load over many users, whereas
that developer might only need to do a run like this very rarely.

Of course, virtual machine models have their limitations. When we do experi-
ments with physical computers in the lab or in the corporate data center, we gener-
ally can count on a given level of service: we know how the machines are configured,
what other loads they may be experiencing, etc. In contrast, virtual machines are of-
ten very flaky: since the physical machine could be overloaded, an allocation of ten
thousand virtual machines might include a few hundred running on bare metal, a
few thousand on lightly shared machines, and a few hundred more on machines that
are suffering extreme overloads or even hardware problems. Thus the developer who
creates large-scale cloud applications cannot assume that all the participating ma-
chines will perform in comparable ways and either is forced to use a delay-tolerant
computing model, or to somehow adapt the application to live with the available
resources.

This can be a surprisingly difficult problem, depending on the programming style
one favors. The developers who find it easier to deal with are those working on
embarrassingly parallel applications (like those supported by MapReduce), since
in these cases the tasks do not talk to one-another and it does not really matter
how long each step takes to complete. The ones who struggle are those building
tightly coupled applications such as parallel database systems, or the various tier-
two subsystems we discussed above. The core teams who built the Google File
System, BigTable, Chubby, Zookeeper and Dynamo are all battle-worn veterans
with far more expertise in delay tolerant computing than anyone should ever need
to gain!
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In fact we are heading down this path too. For our purposes in this textbook, this
kind of extreme variability will be a problem. In the second half of the book we will
be exploring distributed protocols that can tolerate failures, but in which healthy ma-
chines have more or less predictable behavioral profiles. Obviously, if some healthy
machines will be extremely slow, this forces us to be very conservative in our profile
definitions: rather than assuming that messages arrive within 10 microseconds, for
example (a typical datacenter internal network latency), we might need to assume
that messages between healthy nodes sometimes take as long as 1 second to be de-
livered (a not-unreasonable worst case in a heavily loaded virtual situation). We can
view this sort of thing as a research challenge (and should), but as a purely practical
matter, it represents a serious obstacle to reliability in the existing cloud.

Fortunately, there is evidence of a positive trend: companies like Amazon are be-
ginning to offer gold-service cloud options that provide guarantees that the virtual-
ization they do will not cause these kinds of extreme overload. Obviously, Amazon
cannot protect the developer against his or her own mistakes: an application that
overloads a machine will do so whether or not it shares that machine with other
applications. Amazon charges extra exchange for targeting a lighter average load:
perhaps, rather than trying to load its servers at 90% capacity, the management plat-
form might target 50%. This will allow us to design and run highly reliable services
on the cloud, at a modest but not extreme cost premium relative to what we might
see for very lightweight tasks that run on similar numbers of nodes but with no guar-
antees, and eliminates the need for complex work-arounds such as self-monitoring
infrastructures that adaptively sense and shed nodes that seem to be underperform-
ing.

5.9.1 Can HPC Applications Run on the Cloud?

Given such a cheap way to rent cycles, it makes sense to ask if cycle-hungry ap-
plications should migrate, en-masse, to the cloud. In particular, High-performance
computing (HPC) systems have traditionally run on massive but dedicated super-
computing platforms; the cost per cycle of such systems is far higher than the cost
of a cloud solution which might offer far more storage and far more cycles. Today,
even a single large cloud-computing data center will often contain as much comput-
ing and storage as all the world’s HPC systems combined. Thus a natural question
to ask concerns the feasibility of migrating from traditional HPC settings to cloud
ones, renting resources and running them in the back-end tier of the cloud. Yet as we
saw earlier, the back end of the cloud is subject to some of the same pressures that
gave rise to Brewer’s CAP principle: applications run in virtual machines that may
be scheduled unpredictably, nodes can fail without warning, and because resources
are shared, contention between applications (for disk or network bandwidth, or CPU
time) can yield very erratic run times. Can HPC applications adapt to run under this
sort of model?

The obvious angle, well worth pursuing, starts by focusing on embarrassingly
parallel HPC applications that read but do not modify some underlying data source.
The match is especially good if the data files involved are enormous. To visual-
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ize how such an application might look, think about the model used in the SETI
(Search for Extraterrestrial Intelligence) project, or about programs written to run
under MapReduce. The steps in such a computation are idempotent: one can run
each step just once, or a dozen times; each completed step with identical input pa-
rameters yields the identical result. The cloud is a great match for applications that
fit this approach, and it matches the local-responsiveness goals of CAP. The big win,
fundamentally, centers around tolerating the unpredictable performance of virtual-
ized execution environments, coupled with the lower performance of the data center
networks used in cloud settings relative to the ones used in HPC settings. In an
embarrassingly parallel, highly decomposed mode, one achieves solutions in which
each node can compute “on its own” and even can restart steps that run unexpectedly
slowly.

Thus, researchers who work on such problems as reconstructing particle tracks
from data sets collected at Cern’s Large Hadron Collider, or on climate modeling,
are flocking to cloud platforms. The biggest win is for applications that only run
now and then: a team can access much larger amounts of equipment at much lower
cost than if they needed to own the same systems. In contrast, if the application
runs continuously, a private cloud or simply a private data center can be more cost-
effective. Still, these applications do seem to match the cloud model fairly well.

But many HPC systems are very lock-step, are not decomposable this way, and
depend on a great deal of inter-node communication. Subtasks may need to mod-
ified shared data structures in a fine-grained manner, and while such applications
do typically have ways to checkpoint themselves and restart from the checkpoints,
they may be intolerant of failures—often, even a single failure triggers a rollback of
the whole application, and if this happens a few times without progress being made,
the HPC system may stop the whole run. Obviously, this second style of HPC is
ill-matched to today’s cloud, with its aggressive management policies, high rate of
node failures (both for physical and logical reasons), and the difficulty of running
collections of nodes in anything approximating lock-step.

Over time, these physical considerations may fade away: continued popularity
of the cloud model may yield such large data centers that one could reasonably
request raw metal deployments even for hours at a time and even with hundreds of
thousands of cores, at a relatively low cost compared to owning similar systems but
leaving them idle a substantial percentage of the time (owning systems and keeping
them busy is quite a different matter; no cloud will compete very well with that
option in the near future, except in the sense that cloud computers do tend to be
upgraded often).

Similarly, while today’s HPC systems benefit from ultra-high speed interconnects
such as Infiniband, one has to wonder whether tomorrow’s data center interconnects
might not seize the upper hand simply because they cater to a much larger market
and hence can afford much greater investments in speed and latency. Cloud inter-
connects are evolving at an astonishing pace, far faster than HPC interconnects.

Perhaps the larger issue, for these reasons, centers on whether HPC systems that
operate in a tightly coupled manner can cope with the failure rates seen in very
large cloud settings. Recall that cloud computing management systems, for many
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reasons, have very high perceived node failure rates compared to other platforms.
Just as a reminder, this reflects their handling of elasticity, their use of rebooting
and reimaging as a fault-repair strategy, the way that nodes are brought online or
taken offline for maintanence purposes, and even the tendency to run massive data
centers at high temperatures to reduce cooling costs: doing so increases failure rates.
If one works out the numbers, a higher rate of failures turns out to be the price of a
dramatically reduced cooling and power bill. Thus, cloud systems embrace failure
as a feature.

Today’s HPC systems are notorious for not handling failures gracefully. Early in
the history of HPC, a form of master/slave model emerged in which many applica-
tions were configured with a single master process running on some single machine
that farmed out work to a large collection of slave processes. Standard packages like
PVM and MPI use this model, and if a node fails, such packages generally cannot
recover. Instead, as we saw above, the entire application is restarted from the most
recent checkpoint.

How does this HPC model scale, particularly in a fault-prone setting? Suppose
that we have a set of nodes that tend to fail at a rate of 1/t time units: one failure for
every t elapsed seconds. A collection of n such nodes will experience one failure
every t/n seconds: an expected time to failure that drops linearly as a function of
the number of nodes on which we run. When a failure occurs we will lose the work
done since the last checkpoint. The more nodes we have, the less work we are able
to do before the next failure. This will motivate us to make a checkpoint before the
next expected failure: thus more and more frequently, as we increase n. Eventually,
there just won’t be enough time to make a checkpoint before the next one is needed.
Worse, making a checkpoint often has cost (delay) that rises as a function of n.

From this we see that the most standard forms of HPC will hit a wall: we can
scale them by creating large numbers of separate HPC applications (embarrassing
parallelism), but not by just throwing more and more nodes into a single HPC in-
stance; the cloud may be a cheap place to rent lots of nodes, but is not a very good
option if we need rock-solid stability. HPC may simply need to migrate to new
computing models, designed to be more tolerant of failures, in order to take full
advantage of this new and inexpensive computing option. Such a trend is already
well established, with a growing HPC community using the cloud for applications
that break up nicely into smaller chunks, leaving a smaller and smaller community
to shoulder the costs of massive, super-reliable HPC platforms.

As this book was being prepared, the United States had just lost the world record
for HPC performance. Quite possibly, this testifies not to some sort of technical
weakness by US computing researchers, but rather to the massive shift away from
traditional HPC and towards the cloud. Yes, we may not be building the fastest
traditional supercomputers anymore. But perhaps the more important competition
for the future just will not involve that sort of computing!
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5.10 Issues Associated with Cloud Storage

A good place to end our architectural review of the cloud is by looking at storage.
Obviously, cloud systems exist in part because of storage: many cloud vendors are
focused on amassing truly staggering data sets and cross-correlating them to develop
profiles of their users, so as to better place advertising and to optimize other services.
Thus the cloud is a world of massive storage systems, and the storage capacity
of modern cloud-hosting data centers is rising at an amazing rate. With so much
storage available, the same thinking that led companies like Amazon to rent out
spare CPU cycles is pushing for a rental storage model. And for activities involving
really massive data centers, it can be extremely appealing to think about using that
rented storage option. The cost savings are often very striking.

Yet cloud storage also creates a conundrum for many enterprises. Imagine that
your company has created some form of very specialized, proprietary database. The
database is becoming huge and the cost of ownership has been soaring. Along comes
CloudStorageGuys.com and offers to host your system for pennies on the dollar. Is
this a risk worth taking?

More and more organizations confront just this problem today: cloud computing
really can be ten or a hundred fold cheaper, and cloud storage even more so, hence
migration from a dedicated to a cloud solution has obvious appeal. Indeed, one
might think about moving all sorts of storage-intensive applications to the cloud:
email, corporate spreadsheets, customer-contact databases, etc. Yet consider the
downside risks: if CloudStorageGuys.com were to fail, would your company even
be able to access its sensitive corporate data? After all, once assets enter bankruptcy,
they often cannot be accessed at all, and even operating a storage system to allow its
users to copy their data off can be quite costly. Some cloud platforms cost millions
of dollars per day to operate, and while you might imagine that only a tiny part of
the cloud needs to be running for you to copy your data off, there is no way to know
that this will be the case; it may actually be an all-or-nothing infrastructure.

What if a competitor purchased a big stake in CloudStorageGuys.com? Without
even knowing it, you might find that your most delicate corporate secrets were being
stored in your competitor’s data center! Even a sharp rise in storage costs could pose
a serious threat to your company’s well being. For that matter, suppose that some
minor bug or mistake by the cloud operator knocks your company off the network
for a few days. Who should be responsible for the loss of revenue, and the lost
clients? Read your cloud computing and storage user agreements closely if you
have any doubts: it probably will not be the cloud provider! Those contracts often
guarantee a certain level of service per year, but 99% uptime, over a year, is still
more than three days of downtime: a big issue if the outage occurs all at once rather
than being spread over the year in tiny, barely noticeable, events.

Further risks arise when we consider applications in which there are sensi-
tive legal issues associated with the data, such as medical record management.
If TrustedMedicalStuff.com builds a state of the art medical record system and
runs it on its own private servers, the cost of using their solution could be
sharply higher than the cost of the system offered by CheapMedicalRecords.com,
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which hosts their platform on a cloud. To make the comparison fair, let us as-
sume that the product literature for both platforms brags about their state of the
art, HiPPA-compliant technologies for record access and audit control. Yet notice
that CheapMedicalRecords.com is not really a master of its own fate. Whereas
TrustedMedicalStuff.com knows the whole story, CheapMedicalRecords.com can
only be as trustworthy as the cloud on which it runs. Thus if they rent data store
from CloudStorageGuys.com, and some employee of that cloud hosting company
happens to be engaged in inappropriate activities, all the HiPPA guarantees in the
world might not mean much.

Moreover, the story does not even end with CloudStorageGuys.com. Even the
handling of cloud backups and recycled hardware emerges as an issue: what if a
disk fails and is shipped away to be recycled, but the company doing so manages
to repair it. Could they then access your sensitive data? A backup could pose risks:
while hospitals keep data indefinitely, banks are under a legal obligation to keep
records for certain amounts of time (often five years), yet are also under an obliga-
tion to destroy them after that time expires. How can a cloud computing record be
destroyed, with any confidence at all? One does not even know where it physically
resides, much less where the backups might be!

This kind of thinking leads to further worries. The scenarios we have outlined
could easily lead to lawsuits. But who would be liable if a lawsuit were to occur?
Such cases end up in court, but as of this writing there is very little case law to point
to. Such questions will not be answered for many years; perhaps decades.

Yet if the situation creates uncertainties, it also has some very obvious elements
that favor CheapMedicalRecords.com over TrustedMedicalStuff.com. After all, as
stated, the solutions are similar in power and the former is sharply cheaper. The
worries we have expressed all sound fairly abstract: what if CloudStorageGuys.com
were to crash? What if some evil employee were to sneak in at night and steal data?
A corporate executive making a budget decision might not believe that these worries
(they do sound pretty paranoid) make all that much sense. Thus simple economics
could drive us towards less trustworthy, less secure solutions that are at much higher
risk of overnight “events” that could kill companies nearly instantly, leaving their
customers with nowhere to turn.

The good news is that both researchers and even the cloud computing vendors
recognize that these issues frighten potential customers, and much work is being
done to resolve them. For example, all the major cloud storage providers offer
backup and other redundancy features; they can protect against events localized to
a single data center. There are tools that can create mirrored copies of files or other
forms of application state, and some of those can even run across multiple cloud
providers, for example shadowing your Force.com application on Amazon’s AC3
storage system, so that if you ever need to migrate from Force.com to some other
setting, you will have an accurate backup of the system state as of the time you made
that decision.

Some ideas go much further but are still speculative. For example, many readers
of the preceding section might have the idea of using data encryption: if we encipher
data before uploading it to the cloud most of our worries evaporate. Then we can
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just provide the decryption key to the application accessing the data, and unless the
cloud hosting company is genuinely corrupt, we can run our medical applications
on the decrypted data, yet anyone who manages to get their hands on a disk will be
blocked from the sensitive content. Short of breaking into a virtual machine image
and stealing the key (entirely feasible, but only with root access to the physical
machines), such a model is pretty secure. On the other hand, since we are dealing
with distributed systems, we do run into the risk that decrypted medical data might
be transmitted on the network and hence could be visible to anyone who manages
to get their network interface card to listen on the appropriate addresses.

The more speculative idea is this: what if one could compute directly on the en-
crypted data without decrypting it first? In effect, we would encrypt the data using
some sort of a function, and then support a full range of arithmetic and logical com-
puting on that data, provided that the application doing the computing has access
to the needed keys. Then, if those keys could (for example) be kept in hardware,
we might have a fairly solid cloud computing security story for data of these kinds.
The idea is very appealing, but nobody knows how feasible this might be. Much
investment is going into this topic today and there is some hope the problem might
be solved, but as of the time this chapter was being edited, the solutions were still
quite limited in scope.

Today, there are some who believe that public models of cloud computing will
simply not be viable options for the most sensitive uses: government and military
cloud applications, for example, or the kinds of medical and banking example given
above. These analysts generally argue that the cloud model either will not be ac-
cepted by those kinds of user, or that they will be ready to pay more for stronger
guarantees. In that case one could imagine that some company might step up to the
plate with a more specialized high-assurance cloud platform that could mimic the
more standard shared clouds in many ways, but in which these sorts of questions
have been resolved at the cost of a somewhat higher cost of operation.

Others, though, believe that the basic public style of cloud will win at the end of
the day, attracting not just the low-security users but the ones with stronger needs
too. These analysts basically argue that lower costs always win, even if the cheapest
option is somehow inadequate. They also point out that no technology is frozen in
time. Thus, if a small set of companies somehow win the cloud storage market and
dominate, the huge cash flows that come from being a near monopoly might permit
quite a bit of investment. Indeed, if we look at the overall history of the computing
industry, there is no question that the companies that win in each sector do tend
to respond (eventually) by enhancing their offerings both to maintain competitive
advantage, and also to protect against any legal exposures that their cheap but inad-
equate solutions might create. Thus one can imagine a pattern in which we actually
do end up with our medical records on CheapMedicalRecords.com, hosted in turn
on CloudStorageGuys.com. Yet precisely because this style of use emerges, over
time, it might motivate CloudStorageGuys.com to come up with better options for
applications that host sensitive data. We would see a period of risk, perhaps a decade
or so, but the longer term story might be a better one. After all, many of the issues
raised above could be solved. Only time will tell us whether the pessimists or the
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optimists will win. But if the author of this text had to place a bet, he would not be
too quick to bet against the cloud computing industry. We are still in the early days,
and better technologies could plug many of the gaps.

5.11 Related Reading

Although we have included related readings sections in many other chapters in this
text, the best way to learn more about the technologies covered in Chap. 5 is just to
read the published papers about the technologies we touched upon. Google set a very
high standard by publishing wonderfully detailed papers on the Google File System,
BigTable, Chubby and MapReduce. Amazon has published extensively on Dynamo
and its interpretation of CAP and BASE. One can read all about the implementa-
tion of Zookeeper in papers available from the development team at Yahoo. There
are dozens of papers about Memcached technologies and products. Accordingly,
we will end this chapter by recommending that interested readers consult those and
other academic publications that lay out the details and design choices in careful
systematic ways for these and related cloud technologies. A wonderful emerging
source of this kind of paper would be the top cloud computing research conferences
from ACM and IEEE, such as the ACM Symposium on Cloud Computing. These
events bring experts in the field together, and often make a point of including both
the most successful cloud technology developers from industry, as well as academic
researchers. As a result, one sees the best work, learns of the open challenges, and
gets a much more balanced perspective on where trends might lead than is possi-
ble from just reading purely academic papers (which are sometimes less than fully
realistic about the realities of deployment in cloud settings), or purely trade press
(which can be overly focused on the products of the moment).





6Remote Procedure Calls and the Client/Server
Model

6.1 Remote Procedure Call: The Foundation of Client/Server
Computing

Up to now we have looked at cloud computing from a fairly high level, and used
terms such as “client” and “server” in ways intended to evoke the reader’s intuition
into the way that modern computing systems work: our mobile devices, laptops
and desktop systems operate fairly autonomously, requesting services from servers
that might run in a machine up the hall, or might be situated in a massive cloud-
computing data center across the country. Our overall plan, as outlined in the Intro-
duction, is to keep this higher level perspective through the remainder of Part I of
the book, then diving deeper in Part II as we look at more fundamental questions.
However, even here in Part I, we need to have a sufficient sense of the details to
understand some of the overall issues in a really concrete way.

Accordingly, we will pause in our overall review to look at one of the most basic
building blocks of the cloud and other distributed systems: the client–server com-
puting model. Our goals here will be to understand exactly how this model works,
what its abilities and limitations are, and how modern computing systems use it.
We will see that although cloud computing systems implement the client–server
model in a different way than previous generations of systems did so, the basic
properties and issues are really the same, and the solutions used in the cloud are
really the same ones that were used in earlier client–server architectures. As we re-
turn to our broader Part I agenda, having this material under our belts will make
it possible to look closely at an important and widely supported architecture for
client–server systems, called CORBA (the Common Object Request Broker Archi-
tecture). One might wonder why we are interested in CORBA, given that CORBA
is really a general-purpose distributed computing architecture, and not one specific
to the cloud. But as noted earlier, except for the Web Services standards, we re-
ally lack a cloud architecture today. Thus while CORBA is not an architecture for
cloud-computing, per-se, at least it does offer important insights into what such an
architecture might someday look like. Moreover, many cloud platforms make ex-
tensive use of CORBA-like infrastructures.

K.P. Birman, Guide to Reliable Distributed Systems, Texts in Computer Science,
DOI 10.1007/978-1-4471-2416-0_6, © Springer-Verlag London Limited 2012
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With this in mind, let us start with the basics. The emergence of real distributed
computing systems is often identified with the client/server paradigm and a proto-
col called remote procedure call (RPC), which is normally used in support of this
paradigm. The basic idea of a client/server system architecture involves a partition-
ing of the software in an application into a set of services, which provide a set of
operations to their users, and client programs, which implement applications and
issue requests to services as needed to carry out the purposes of the application. In
this model, the application processes do not cooperate directly with one another,
but instead share data and coordinate actions by interacting with a common set of
servers and by the order in which the application programs are executed.

There are a great number of client/server system structures in a typical distributed
computing environment, be that the enterprise system in an office complex, a cloud
computing data center, or even a single laptop talking to a line printers. Some ex-
amples of servers include the following:
• File servers: These are programs (or, increasingly, combinations of special-

purpose hardware and software) that manage disk storage units on which file
systems reside. The operating system on a workstation that accesses a file server
acts as the client, thus creating a two-level hierarchy: The application processes
talk to their local operating system. The operating system on the client worksta-
tion functions as a single client of the file server, with which it communicates
over the network.

• Database servers: The client/server model operates in a similar way for database
servers, except that it is rare for the operating system to function as an
intermediary in the manner that it does for a file server. In a database appli-
cation, there is usually a library of procedure calls with which the application
accesses the database, and this library plays the role of the client in a client/server
communication protocol to the database server.

• Network name servers: Name servers implement some form of map from a sym-
bolic name or service description to a corresponding value, such as an IP address
and port number for a process capable of providing a desired service.

• Network time servers: These are processes that control and adjust the clocks in a
network, so that clocks on different machines give consistent time values (values
with limited divergence from one another). The server for a clock is the local
interface by which an application obtains the time. The clock service, in contrast,
is the collection of clock servers and the protocols they use to maintain clock
synchronization.

• Network security servers: Most commonly, these consist of a type of directory in
which public keys are stored, as well as a key generation service for creating new
secure communication channels.

• Network mail and bulletin board servers: These are programs for sending, receiv-
ing, and forwarding e-mail and messages to electronic bulletin boards. A typical
client of such a server would be a program that sends an e-mail message or that
displays new messages to a user who is using a newsreader interface.

• Web servers: As we learned in the introduction, the World Wide Web is a large-
scale distributed document management system developed at CERN in the early
1990s and subsequently commercialized. The Web stores hypertext documents,
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images, digital movies and other information on Web servers, using standardized
formats that can be displayed through various browsing programs. These systems
present point-and-click interfaces to hypertext documents, retrieving documents
using Web document locators from Web servers, and then displaying them in
a type-specific manner. A Web server is thus a type of enhanced file server on
which the Web access protocols are supported. Most of the “apps” on today’s
mobile platforms depend upon these kinds of service.

• Web Services: This is the standard we discussed briefly in Chap. 3, used be-
tween a client system running a browser or a web client system, and a Web
server that handles documents or responds to other forms of requests. Web Ser-
vices, at a minimum, have a description of the available services encoded as
a WSDL document and support access via a protocol called SOAP, the Stan-
dard Object Access Protocol. They may also advertise themselves using forms of
name services and with a protocol called UDDI employed to represent naming
information.
In most distributed systems, and especially in cloud systems, important services

are often instantiated multiple times—for example, a distributed system can contain
multiple file servers or multiple name servers. We saw this in Chap. 5, where tier-
one cloud services were often instantied huge numbers of times, and many tier-
two services replicated at least moderately, to handle heavy read-only loads and to
provide fault-tolerance. Accordingly, in line with the language we used in Chap. 5,
we will be using the term service to denote a set of servers, and a server will be
our term for a single instance of some service. Thus, the network file system service
consists of the network file servers for a system, and the network information service
is a set of servers, provided on UNIX and Linux systems, that maps symbolic names
to ASCII strings encoding values or addresses.

We say that a binding occurs when a process that needs to talk to a distributed
service becomes associated with a specific server that will perform requests on its
behalf. Various binding policies exist, differing in how the server is selected. For
an NFS distributed file system, binding is a function of the file path name being
accessed—in this file system protocol, the servers all handle different files, so that
the path name maps to a particular server that owns that file. A program using the
UNIX network information server (NIS) normally starts by looking for a server
on its own machine. If none is found, the program broadcasts a request and binds
to the first NIS that responds, the idea being that this NIS representative is prob-
ably the least loaded and will give the best response times. (On the negative side,
this approach can reduce reliability: Not only will a program now be dependent on
availability of its file servers, but it may be dependent on an additional process on
some other machine, namely the NIS server to which it became bound.)

Within the cloud, binding has become a very complex problem. Earlier we saw
some elements of this problem: the routing issues that determine which data center
a client’s request might be sent to, the gateway choice that routes the request to a
first-tier server that handles that category of requests, be they web page construction
or web services invocation. But now a final step in binding occurs: the client must
actually bind itself to the specific server. What issues arise, particular in applica-
tions that might not be using the web services infrastructure, but could be talking



188 6 Remote Procedure Calls and the Client/Server Model

“directly” to a service? For example, suppose that some application within the cloud
uses memcached. How do we connect that application to the memcached server? Or,
suppose that an external application uses the web services primitives to issues re-
quests to a cloud-hosted service. How exactly do its requests get translated into a
form that match the expectations of the service? What happens if things go awry?

6.2 RPC Protocols and Concepts

The most common communication protocol for communication between the clients
of a service and the service itself is a Remote Procedure Call. The basic idea of an
RPC originated in work by Birrell and Nelson in the early 1980s (see Birrell and
Nelson 1984). Birrell and Nelson worked in a group at Xerox PARC that was devel-
oping programming languages and environments to simplify distributed computing.
At that time, software for supporting file transfer, remote login, electronic mail, and
electronic bulletin boards had become common. PARC researchers, however, had
ambitious ideas for developing other sorts of distributed computing applications,
with the consequence that many researchers found themselves working with the
lowest-level-message-passing primitives in the PARC distributed operating system,
which was called Cedar.

Much like a more modern operating system, message communication in Cedar
supported three communication models:
• Unreliable datagram communication, in which messages could be lost with some

(hopefully low) probability
• Broadcast communication, also through an unreliable datagram interface
• Stream communication, in which an initial connection was required, after which

data could be transferred reliably
Programmers found these interfaces hard to work with. Any time a program,

p, needed to communicate with another program, s, it was necessary for p to deter-
mine the network address of s, encode its requests in a way that s would understand,
send off the request, and await a reply. Programmers soon discovered that certain
basic operations needed to be performed in almost any network application and that
each developer was developing his or her own solutions to these standard problems.
Some programs used broadcasts to find a service with which they needed to commu-
nicate; others stored the network address of services in files or hard-coded them into
the application, and still others supported directory programs with which services
could register themselves, supporting queries from other programs at run time. Not
only was this situation confusing, it turned out to be difficult to maintain the early
versions of PARC software: A small change to a service might break all sorts of ap-
plications that used it, so that it became hard to introduce new versions of services
and applications.

Surveying this situation, Birrell and Nelson started by asking what sorts of in-
teractions programs were really needed in distributed settings. They concluded that
the problem was really no different from a function or procedure call in a non-
distributed program that uses a pre-supplied library; that is, most distributed com-
puting applications would prefer to treat other programs with which they interact
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much as they treat pre-supplied libraries, with well-known, documented, procedural
interfaces. Talking to another program would then be as simple as invoking one of
its procedures—a remote procedure call, or RPC for short.

The idea of remote procedure call is compelling. If distributed computing can
be transparently mapped to a non-distributed computing model, all the technology
of non-distributed programming could be brought to bear on the problem. In some
sense, we would already know how to design and reason about distributed programs;
how to show them to be correct; how to test, maintain and upgrade them; and all
sorts of preexisting software tools and utilities would be readily applicable to the
problem.

Unfortunately, the details of supporting a remote procedure call turn out to be
nontrivial, and some aspects result in visible differences between remote and local
procedure invocations. Although this was not evident in the 1980s when RPC re-
ally took hold, the subsequent ten or 15 years saw considerable theoretical activity
in distributed computing, out of which ultimately emerged a deep understanding of
how certain limitations on distributed computing are reflected in the semantics, or
properties, of a remote procedure call. In some ways, this theoretical work finally
lead to a major breakthrough in the late 1980s and early 1990s, when researchers
learned how to create distributed computing systems in which the semantics of RPC
are precisely the same as for local procedure calls (LPC). In Part II of this book,
we will study the results and necessary technology underlying such a solution, and
we will see how to apply it to RPC. We will also see that such approaches involve
subtle tradeoffs between the semantics of the RPC and the performance that can
be achieved; the faster solutions also weaken semantics in fundamental ways. Such
considerations ultimately lead to the insight that RPC cannot be transparent, how-
ever much we might wish that this was not the case.

Making matters worse, during the same period of time a huge engineering push
behind RPC elevated it to the status of a standard—and this occurred before it was
understood how RPC could be made to accurately mimic LPC. The result of this is
that the standards for building RPC-based computing environments (and, to a large
extent, the standards for object-based computing that followed RPC in the early
1990s) embody a nontransparent and unreliable RPC model, and this design deci-
sion is often fundamental to the architecture in ways that the developers who for-
mulated these architectures probably did not appreciate. In the next chapter, when
we study stream-based communication, we will see that the same sort of premature
standardization affected the standard stream technology, which as a result also suf-
fers from serious limitations that could have been avoided had the problem simply
been better understood at the time the standards were developed.

In the remainder of this chapter, we will focus on standard implementations of
RPC, with two specific standards in mind—the SOAP standard used in Web Ser-
vices systems and the CORBA standard, which predates and serves as a form of
template for RPC in industry platforms such as .NET and J2EE. As it happens,
the details of these varied standards will not enter into the remainder of this chap-
ter, because our interest is primarily in the basic steps by which a program RPC is
coded in a program, how that program is translated at compile time, and how it be-
comes bound to a service when it is executed. Then, we will study the encoding of
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data into messages and the protocols used for service invocation and for collecting
replies. Finally, we will try to pin down a semantic for RPC: a set of statements that
can be made about the guarantees of this protocol and that can be compared with
the guarantees of LPC. The details of exactly how a piece of data is represented
in a message, or exactly how the RPC specifies that the client wants to invoke the
“database lookup” function of the server as opposed to some other function, are
examples of the sort of aspect for which the standards are very different, but that
we will not be looking at in any detail. Interested readers, however, will find SOAP
particularly easy to understand because the encoding is entirely in ASCII, and all
aspects are accessible from a standard Web browser. Thus one can literally walk
through every step by which a client finds a Web Services system, binds to it, sends
it requests and decodes the replies, using a browser to inspect the information that
would normally be hidden inside packets exchanged directly from an application on
one computer with an application on a second one. Doing so is a useful exercise in
demystification of this important class of technologies.

It should be noted that, while SOAP is rapidly stealing the stage, CORBA (the
Common Object Request Broker Architecture) really deserves the credit for intro-
ducing many of the basic mechanisms used today. Web Services-oriented platforms
such as .NET and J2EE actually trace more of their functionality to CORBA than to
any other prior technology, and precisely because SOAP is verbose and very gen-
eral, it is also a very slow performer. CORBA is more representative of the kinds of
RPC that can really be used to build complex, high-speed applications.

The use of RPC leads to interesting problems of reliability and fault handling,
shared among all major RPC platforms. As we will see, it is not hard to make RPC
work if most or all components within a system are working well. When a system
malfunctions, however, RPC can fail in ways that leave the user with no information
at all about what has occurred and with no evident strategy for recovering from the
situation. There is nothing new about the situations we will be studying—indeed,
for many years, it was simply assumed that RPC was subject to intrinsic limitations,
and since there was no obvious way to improve on the situation, there was no reason
that RPC should not reflect these limitations in its semantic model. As we advance
through the book, however, and it becomes clear that there are realistic alternatives
that might be considered, this point of view becomes increasingly open to question.
To this author’s taste, it is a real shame that modern RPC platforms, such as .NET,
J2EE and SOAP, have missed the boat by failing to take advantage of some of the
options available to us today. Doing so would not be very difficult and might lead to
big reliability benefits in applications hosted on the technology.

The good news is that the Web Services community has launched a whole series
of projects aimed at developing a new set of standards for distributed computing.
But the bad news is that there is absolutely no evidence that these standards will
actually fix the problems, because the communities developing them have not ap-
proached the underlying issues in a systematic way, at least at the time of this writ-
ing in 2011. For example, we will see that a central issue underlying almost every
aspect of reliability concerns the manner in which a system detects failures and re-
ports them. Standard ways of solving this problem could have a huge impact and
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can transform the options for solving other problems. However, the Web Services
community has tended to accept the basic Web architecture as a given, and as any
user of a Web browser can confirm, failure detection and reporting in the Web is
very haphazard. This, then, feeds into an overall mindset in which Web Services are
expected to cope with (rather than to overcome) a great many problems associated
with the unreliability and inconsistency of lower-level event reporting. Overall, the
only conclusion one can draw is that existing standards are flawed, and the failure
of the standards community to repair these flaws has erected an enormous barrier
to the development of reliable distributed computing systems. In a technical sense,
these flaws are not tremendously hard to overcome—although the solutions would
require some reengineering of communication support for RPC in modern operating
systems. The challenge is more of an educational one: a wider range of leaders from
the relevant industry sectors needs to come to grips with the nature of the problem
and the most promising options.

Interestingly, were these conceptual blocks overcome, one could build a greatly
improved RPC environment that would have few, if any, user-visible incompatibili-
ties with the usual approaches—it would look similar but work better. The issue then
is one of education—the communities that control the standards need to understand
the issue better, and they need to understand the reasons that this particular issue
represents such a huge barrier to progress in distributed computing. They would
also need to recognize that the opportunity vastly outweighs the reengineering costs
that would be required to seize it. With this goal in mind, let us take a close look at
RPC.

6.3 Writing an RPC-Based Client or Server Program

The programmer of an RPC-based application employs what is called a stub-
generation tool. Such a tool is somewhat like a macro preprocessor: It transforms
the user’s original program into a modified version, which can be linked to an RPC
run-time library. Different systems come with different forms of stub generators.
Thus, on a UNIX or Linux system running CORBA, a stub generator is a program
that one runs separately, whereas in Microsoft’s .NET framework, users of Visual
Studio C# automatically obtain the needed stubs simply by declaring that their ap-
plications are using external objects.

From the point of view of the programmer, a server or client program looks
much like any other program, although it may be necessary to code the program
in a somewhat stylized manner. Normally, the program will import or export a set
of interface definitions, covering the remote procedures that will be obtained from
remote servers or offered to remote clients, respectively. A server program will also
have a name and a version, which are used to connect the client to the server. Once
coded, the program is compiled in two stages: First the stub generator is used to map
the original program into a standard program with added code to carry out the RPC,
and then the standard program is linked to the RPC run-time library for execution.
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RPC-based application or server programs are coded in a programming style very
similar to certain kinds of non-distributed program, namely those written to interact
through some form of graphical user interface (GUI). There is no explicit use of
message passing, and the program is structured to register a variety of “callback”
procedures, which will be invoked by the runtime system as events occur and need
to be handled (this is a familiar model for anyone who has written a program using
a standard GUI package). However, there is an important aspect of RPC program-
ming that differs from programming with local procedure calls: the separation of
the service interface definition, or IDL2, from the code that implements it. In an
RPC application, a service is considered to have two parts. The interface definition
specifies the way that the service can be located (its name), the data types used in
issuing requests to it, and the procedure calls that it supports. A version number is
included to provide for evolution of the service over time—the idea being that if a
client is developed to use version 1.1 of a service, there should be a way to check for
compatibility if it turns out that version 1.0 or 2.3 is running when the client actually
gets executed. These checks are often automated, and in some systems (notably the
Microsoft .NET environment) there are mechanisms for automatically downloading
versions of services needed by an application, and even for running two different
versions of the same service side-by-side in support of a set of clients having varied
requirements.

The basic actions of the RPC library were described earlier. In the case of a
server program, the library is responsible for registering the program with the RPC
directory service program, which is normally provided as part of the RPC run-time
environment. An RPC client program will automatically perform the tasks needed
to query the directory to find this server and to connect to it, creating a client/server
binding. For each of the server operations it invokes, code will be executed to mar-
shal a representation of the invocation into a message—that is, information about the
way that the procedure was called and values of the parameters that were passed.
Code is included to send this message to the service and to collect a reply; on the
server side, the stub generator creates code to read such a message, invoke the ap-
propriate procedure with the arguments used by the remote caller, and to marshal
the results for transmission back to the caller. Issues such as user-id handling, secu-
rity and privacy, and handling of exceptions are often packaged as part of a solution.
Finally, back on the caller side, the returning message will be demarshaled and the
result made to look like the result of a local procedure.

Although much of this mechanism is automatic and hidden from the programmer,
RPC programming differs from LPC programming in many ways. Most noticeable
is that most RPC packages limit the types of argument that can be passed to a remote
server, and some also limit the size (in bytes) of the argument information—for

2It is common to call the interface to a program its IDL, although IDL actually is a shorthand
for Interface Definition Language, which is the name of the language used to write down the
description of such an interface when using CORBA. Thus one often reads about the “IDL” of a
Web Services application, despite the fact that such applications describe their interfaces as part of
the WSDL document.
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Fig. 6.1 Remote procedure
call involves creating a
message that can be sent to
the remote server, which
unpacks it, performs the
operation, and sends back a
message encoding the result

example, suppose that a local procedure is written to search a list, and an LPC is
performed to invoke this procedure, passing a pointer to the head of the list as its
argument. One can ask whether this should work in an RPC environment—and, if
so, how it can be supported. If a pointer to the head of the list is actually delivered
to a remote program, that pointer will not make sense in the remote address space
where the operation will execute. So, it would be natural to propose that the pointer
be de-referenced, by copying the head of the list into the message. Remotely, a
pointer to the copy can be provided to the procedure. Clearly, however, this will only
work if one chases all the pointers in question—a problem because many programs
that use pointers have some representation for an un-initialized pointer, and the RPC
stub generator may not know about this.

In building a balanced tree, it is common to allocate nodes dynamically as items
are inserted. A node that has no descendents would still have left and right pointer
fields, but these would be initialized to nil and the procedure to search nodes would
check for the nil case before dereferencing these pointers. If an RPC marshalling
procedure were to automatically make a copy of a structure to send to the remote
server (see Fig. 6.1), it would need to realize that for this particular structure, a
pointer value of nil has a special meaning and should not be chased.

The RPC programmer sees issues such as these as a set of restrictions. Depending
on the RPC package used, different approaches may be used to attack them. In
many packages, pointers are simply not legal as arguments to remote procedures.
In others, the user can control some form of argument-copying mechanism, and
in still fancier systems, the user must provide general-purpose structure traversal
procedures, which will be used by the RPC package to marshal arguments. Further
complications can arise if a remote procedure may modify some of its arguments.
Again, the degree to which this is supported at all, and the degree to which the
programmer must get involved, varies from package to package.

Perhaps ironically, RPC programmers tend to complain about this aspect of RPC
no matter how it is handled. If a system is highly restrictive, the programmer finds
that remote procedure invocation is annoying, because one is constantly forced to
work around the limitations of the invocation package—for example, if an RPC
package imposes a size limit on the arguments to a procedure, an application that
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works perfectly well in most situations may suddenly fail because some dynamically
defined object has grown too large to be accepted as an RPC parameter. Suddenly,
what was a single RPC becomes a multi-RPC protocol for passing the large object in
chunks, and a perfectly satisfied programmer has developed distinct second thoughts
about the transparency of RPC. At the other extreme are programming languages
and RPC packages in which RPC is extremely transparent. These, however, often
incur high overheads to copy information in and out, and the programmer is likely to
be very aware of these because of their cost implications—for example, a loop that
repeatedly invokes a procedure having one changing parameter as well as others
(including a pointer to some large object) may be quite inexpensive to invoke in
the local case. But if the large object will be copied to a remote program on every
invocation, the same loop may cost a fortune when coded as part of a distributed
client/server application, forcing the program to be redesigned to somehow pass the
object to the remote server prior to the computational loop. These sorts of issues
make programming with RPC quite different from programming with LPC.

RPC also introduces error cases that are not seen in LPC, and the programmer
needs to deal with these. An LPC would never fail with a binding error, or a version
mismatch, or a timeout. In the case of RPC, all of these are possibilities—a binding
error would arise if the server were not running when the client was started. A ver-
sion mismatch might occur if a client was compiled against version 1 of a server,
but the server has now been upgraded to version 2.

The resulting issues are not necessarily minor. For example, in 1996, a French
Adrianne rocket crashed immediately after launch. It turned out that there was a
version mismatch between the telemetry and guidance units; the powerful rocket
motor managed to produce acceleration beyond the maximum value the telemetry
unit could represent, and it overflowed, producing a value that confused the guidance
unit. One could have fixed this by switching to a larger field for the acceleration
data, but to do so, the guidance unit would need to be upgraded to accept those larger
values, and retested. Here we see a kind of interface failure at several levels: between
the guidance and telemetry systems, but also in some sense, between the rocket
motor and the telemetry system. In another famous case, a Nasa mission to Mars
crashed because one unit was outputting data in a metric unit (meters/second), but
the unit reading those data expected it to be in non-metric format (feet/second). One
would have preferred for all such problems to be caught either during compilation
or testing, as binding-time interface mismatch exceptions. This sounds more like a
type-checking problem, a bit like trying to pass a floating point value to a procedure
that expects an integer argument.

Broadly, such issues highlight the sense in which client–server systems can en-
counter failures not seen in other settings, and may need new mechanisms to deal
with them: at a minimum, we clearly need to realize that type checking may not
be possible until the client actually finds the specific server version to which it will
be bound, and even than suggests that we may need two separate notions here: one
concerned with the version of the interface, and the other, distinct, the version of
the client and server. This way, we could patch a bug in a server without needing to
recompile the client, unless the bug fix changes the interface expected by the client
in a way that requires changes on the client side.
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In the cloud these issues are especially important because cloud systems need to
be highly automated and will run for long periods of time. We will need to upgrade
clients and servers on a regular basis, and may not be in a position to test every
possible client against every possible server. Ideally, the client–server infrastructure
should help in ways that reduce the risk of an unnoticed mistake.

Failure handling also poses problems. In RPC systems, failures are normally
sensed using timeout mechanisms. A timeout could result from a server crash, a
network problem, or even a problem on the client’s computer. Many RPC applica-
tions would view these sorts of problems as unrecoverable errors, but fault-tolerant
systems will often have alternative sources for critical services and will need to fail-
over from a primary server to a backup. The code to do this is potentially complex,
and in most RPC environments, it must be implemented by the application developer
on a case-by-case basis.

The worst error-handling case arises when an application needs to know the pre-
cise outcome of a request in order to take the next step after a failure incapacitates
the server with which it was communicating. For example, suppose that an appli-
cation process requests that a ticket-selling server check for a seat in the orchestra
of the local opera is available and, if so, record the sale. When this request fails by
timing out, the application has no way to know whether or not a seat was purchased.
Although there may be other servers to which the request can be reissued, doing so
runs some risk that the client will be sold two orchestra seats instead of one. This is
typical of a situation in which RPC’s “semantics” are too weak to address the needs
of the application.

6.4 The RPC Binding Problem

The RPC binding problem occurs when an RPC client program needs to determine
the network address of a server capable of providing a matching instance of some
service it requires: a service instance compatible, that is, with the particular version
of the client. Binding can be approached from many perspectives, but the issue is
simplified if issues associated with the name service used are treated separately, as
we do here.

The first step in binding involves asking the naming service for a form of “han-
dle” that can be used to contact the server. This interaction is highly specific to the
platform: naming in CORBA is quite different from naming in .NET, J2EE or Web
Services. However, the basic principle is the same: a library procedure is provided
and the client application invokes this procedure with the name of the desired ser-
vice, the host on which it is running, a list of properties it should have, or some other
form of pattern that can be used to find the best matching server within a potentially
longer list. Back comes a handle (in practice, an IP address and port number) or an
error code. At this stage binding takes place, and consists primarily of a protocol
for establishing a connection to the server and verifying compatibility between the
client and server version numbers.
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The compatibility problem is important in systems that will operate over long
periods of time, during which maintenance and the development of new versions
of system components will inevitably occur. Suppose that a client program, c, was
developed and tested using server s, but that we now wish to install a new version
of s, c, or both. Upgrades such as these create a substantial risk that some old copy
of c will find itself talking to a new copy of s, or vice versa—for example, in a
network of workstations it may be necessary to reload c onto the workstations one
by one, and if some machines are down when the reload occurs, an old copy of c

could remain on its disk. Unless c is upgraded as soon as the machine is rebooted—
and this may or may not occur, depending on how the system is administered—one
would find an old c talking to an upgraded s. It is easy to identify other situations in
which problems such as this could occur.

Life would be greatly simplified if all possible versions of s and c could somehow
communicate with all other versions, but this is not often the case. Indeed, it is not
necessarily even desirable. Accordingly, most RPC environments support a concept
of version number, which is associated with the server IDL and distinct from the
notion of the service revision level, which changes each time the service is patched
or otherwise upgraded. The idea is that a patch sometimes changes the interface,
but not always. When a client program is compiled, the server IDL version is noted
in software. This permits the inclusion of the client’s version of the server interface
directly in the call to the server. When the match is not exact, the server could reject
the request as being incompatible, perform some operation to map the old-format
request to a new-format request, or even preserve multiple copies of its functionality,
running the version matched to the caller.

Connection establishment is a relatively mechanical stage of binding. Depend-
ing on the type of client/server communication protocol that will be used, mes-
sages may be transmitted using unreliable datagrams or over reliable communi-
cation streams such as TCP. Unreliable datagram connections normally do not
require any initial setup, but stream connections typically involve some form
of open or initialization operation. Having identified the server to which a re-
quest will be issued, the binding mechanism would normally perform this open
operation.

The binding mechanism is sometimes used to solve two additional problems.
The first of these is called the factory problem and involves starting a server when
a service has no currently operational server. In this approach, the first phase of
binding looks up the address of the server and learns that the server is not currently
operational (or, in the connection phase, a connection error is detected and from this
the binder deduces that the server has failed). The binder then issues a request to
a “factory”, namely a service in which the system designer has stored instructions
for starting a server up when needed. The factory will now manufacture an instance
of the desired object. After a suitable pause, the binder cycles back through its first
phase, which presumably succeeds.

The second problem arises in the converse situation, when the binder discov-
ers multiple servers that could potentially handle this client. The best policy to
use in such situations depends very much on the application. For some systems,
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a binder should always pick a server on the same machine as the client, if possible,
and should otherwise pick randomly. Other systems require some form of load-
balancing, while still others may implement an affinity policy under which a certain
server might be especially well suited to handling a particular client for reasons such
as the data it has cached in memory or the type of requests the client is expected to
issue once binding has been completed.

Binding is a relatively expensive operation—for example, in a Web Services RPC
environment, binding can be more than ten times as costly as RPC. However, since
binding only occurs once for each client/server pair, this high cost is not viewed as
a major problem in typical distributed computing systems.

6.5 Marshalling and Data Types

The purpose of a data marshalling mechanism is to represent the caller’s arguments
in a way that can be efficiently interpreted by a server program. Since the client and
server will often be coded in different programming languages and perhaps running
in different operating systems or on different hardware, marshalling also seeks to
provide universal representations that can be understood by any platform. In the
most general cases, this mechanism deals with the possibility that the computer on
which the client is running uses a different data representation than the computer on
which the server is running.

Marshalling has been treated at varying levels of generality. Web Services, for
example, make use of the Extensible Markup Language (XML) to represent data
and data types. XML leads to a verbose representation, but a very general one. In
contrast, major vendors have adopted data representations of their own, such as
Sun Microsystem’s External Data Representation (XDR) format, which is used in
the widely popular Network File System (NFS) protocol. Indeed, some vendors,
such as Microsoft, support multiple marshalling mechanisms in order to provide
compatibility with a variety of “foreign” platforms while also offering the highest
possible performance when Windows platforms interact.

The basic issues that arise in a data marshalling mechanism are as follows. First,
integer representations vary for the most common CPU chips. On some chips the
most significant byte of an integer is also the low byte of the first word in mem-
ory, while on others the most significant byte is stored in the high byte of the
last word of the integer. These are called little endian and big-endian representa-
tions. At one point in the 1980s, computers with other representations—other byte
permutations—were on the market, but at the time of this writing I am not aware of
any other surviving formats.

A second representation issue concerns data alignment. Some computers re-
quire that data be aligned on 32-bit or even 64-bit boundaries, while others may
have weaker alignment rules—for example, by supporting data alignment on 16-
bit boundaries. Unfortunately, such issues are extremely common. Compilers know
about these rules, but the programmer is typically unaware of them. However, when
a message arrives from a remote machine that may be using some other alignment
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Fig. 6.2 The same number (here, a 32-bit integer) may be represented very differently on different
computer architectures. One role of the marshalling and demarshalling process is to modify data
representations (here, by permuting the bytes) so that values can be interpreted correctly upon
reception

rule, the issue becomes an important one. An attempt to fetch data directly from a
message without attention to this issue could result in some form of machine fault,
or it could result in retrieval of garbage. Thus, the data representation used in mes-
sages must encode sufficient information to permit the destination computer to find
the start of an object in the message, or the sender and destination must agree in ad-
vance on a packed representation that will be used for messages on the wire even if
the sender and destination themselves share the same rules and differ from the stan-
dard. Needless to say, this is a topic capable of generating endless debate among
computer vendors whose machines use different alignment or data representations.

A third issue arises from the existence of multiple floating-point representations.
Although there is an IEEE standard floating point representation, which has become
widely accepted, some older computers used nonstandard representations for which
conversion would be required. These still live on, hence their representations remain
relevant. Even within computers using the IEEE standard, byte-ordering issues can
still arise.

A fourth issue concerns pointers. When transmitting a complex structure in
which there are pointers, the marshalling mechanism needs to either signal that the
user has requested something illegal, or somehow represent these pointers in a way
that will permit the receiving computer to fix them upon reception of the request.
This is especially tricky in languages that use pointers heavily, such as Java or C#
or Lisp. In such cases the marshalling system must distinguish cases where data can
be passed safely by value (by making a copy of the underlying values) from cases in
which the application truely requires pointers (e.g. out or ref parameters), and hence
cannot safely be used in an RPC. Researchers have explored ways of implementing
pointers in RPC settings, but the general consensus is that even if this problem can
be solved to a degree, it makes more sense to just limit RPC to call-by-value seman-
tics.

Finally, a marshalling mechanism may need to deal with incompatibilities in
the basic data types available on computers (see Fig. 6.2)—for example, a pair
of computers supporting 64-bit integers in hardware may need to exchange mes-
sages containing 64-bit integer data. The marshalling scheme should therefore be
able to represent such integers. On the other hand, when this type of message is
sent to a computer that uses 32-bit integers the need arises to truncate the 64-bit
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quantities so that they will fit in the space available, with an exception being gen-
erated if data would be lost by such a truncation. Yet, if the message is merely
being passed through some sort of intermediary, one would prefer that data not
be truncated, since precision would be lost. In the reverse direction, sign exten-
sion or padding may need to be performed to convert a 32-bit quantity into an
equivalent 64-bit quantity, but only if the data sent is a signed integer. Thus, a
completely general RPC package needs to put a considerable amount of informa-
tion into each packet, and it may need to do quite a bit of work to represent data
in a universal manner. On the other hand, such an approach may be much more
costly than one that supports only a very limited set of possible representations, or
that compiles the data marshalling and demarshaling operations directly into in-line
code.

The approach taken to marshaling varies from RPC package to package. The Web
Service XML approach that underlies the cloud computing standards is extremely
general, but this generality comes at a high cost: although there exists a binary op-
tion, in most cases data are converted to a printable ASCII representation for trans-
mission and converted back on reception. This creates very large messages. The
binary approach, in contrast, is less flexible. Thus one sees a tradeoff: less general
schemes can gain efficiency, but only at the price of certain kinds of cross-platform
incompatibility.

6.6 Associated Services

No RPC system lives in isolation. As we will see, RPC is always with additional
mechanisms, such as security subsystems that employ keys and validate access, and
that often employ timestamps that, in turn, depend upon a clock synchronization
mechanism. For this reason, one often talks about distributed computing environ-
ments that include tools for implementing client/server applications such as an RPC
mechanism, security services and time services. The most elaborate environments,
such as J2EE and Microsoft .NET, go well beyond this, including system instrumen-
tation, management interfaces and tools, fault-tolerant tools, and so-called Fourth-
Generation Language (4GL) tools for building applications using graphical user
interfaces (GUIs). These tools are often so powerful that a developer who knows
almost nothing about programming can still create useful services in a kind of point-
and-click style, in effect operating a complex machinery without having the slightest
idea how it really works.

Cloud computing systems are even fancier: they build on top of distributed com-
puting environments, layering in additional functionality associated with replication
of the first-tier services that handle client requests. Some of these distributed en-
vironments are familiar ones; for example Microsoft’s Azure cloud builds on that
company’s powerful .NET infrastructure, which provides a wide range of distributed
computing functionality. Others are equally powerful but more proprietary. For ex-
ample, Google’s AppEngine runs over an infrastructure designed from scratch by
Google’s engineering team in the early days of that company’s history. Force.com
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runs on the infrastructure SalesForce.com built up in its own early growth period,
Amazon has yet another set of solutions, etc. Someday, perhaps we will see a win-
ner in this space and some single distributed computing environment will sweep the
others to the side. At the time of this writing, however, the best we can do is to
look at some representative examples of what one finds in them, recognizing that
any specific system on which a reader of this text might work will deviate from our
examples in a great many ways.

6.6.1 Naming Services

A naming service maintains one or more mappings from some form of name (nor-
mally symbolic) to some form of value (normally a network address). Naming ser-
vices can operate in a very narrow, focused way—for example, the Domain Naming
Service of the TCP/IP protocol suite maps short service names, in ASCII, to IP ad-
dresses and port numbers, requiring exact matches. At the other extreme, one can
talk about extremely general naming services, which are used for many sorts of
data, allow complex pattern matching on the name, and may return other types of
data in addition to, or instead of, an address. The Web Services standard specifies a
whole language for “naming,” called UDDI (the Universal Description, Discovery
and Integration language). One can even go beyond this to talk about secure naming
services, which could be trusted to only give out validated addresses for services and
dynamic naming services, which deal with applications such as mobile computing
systems in which hosts have addresses that change constantly.

In standard computer systems at the time of this writing, three naming services
are widely supported and used. As previously mentioned, the Domain Name Service
(DNS) offers limited functionality, but is very widely used. It responds to requests
on a standard network port address, and for the domain in which it is running can
map ASCII names to Internet port numbers. DNS is normally used for static ser-
vices, which are always running when the system is operational and do not change
port numbers at all—for example, the e-mail protocol uses DNS to find the remote
mail daemon capable of accepting incoming e-mail to a user on a remote system. Al-
though there are a number of extensions to the basic DNS functionality, and some
applications have tried to use DNS in a very dynamic way (notably, the Akamai
web hosting system), not all implementations of DNS comply with these more “es-
oteric” uses, and they have consequently found limited uptake in the field. Indeed,
some members of the governing organization of the Internet, IETF, have complained
about the Akamai use of DNS, arguing that DNS was not really designed to support
rapid updates and that Akamai’s pattern of use was disrupting DNS for other pur-
poses and also imposing an unreasonably high load.

On UNIX and Linux systems, the Network Information Service (NIS), previ-
ously called Yellow Pages (YP), is considerably more elaborate. NIS maintains a
collection of maps, each of which has a symbolic name (e.g., hosts, services, etc.)
and maps ASCII keywords to an ASCII value string. NIS is used on UNIX sys-
tems to map host names to Internet addresses, service names to port numbers, and
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so forth. Although NIS does not support pattern matching, there are ways for an
application to fetch the entire NIS database, one line at a time, and it is common
to include multiple entries in an NIS database for a single host that is known by a
set of aliases. NIS is a distributed service that supports replication: The same data
are normally available from any of a set of servers, and a protocol is used to update
the full set of servers if an entry changes. However, NIS is not designed to support
rapid updates: The assumption is that NIS data consists of mappings, such as the
map from host name to Internet address, which change very rarely. A 12-hour delay
before NIS information is updated is not unreasonable given this model—hence, the
update problem is solved by periodically refreshing the state of each NIS server by
having it read the contents of a set of files in which the mapping data are actually
stored. As an example, NIS is often used to store password information on UNIX
and Linux systems.

Microsoft obtains NIS-like functionality from a very elaborate naming service
called the “active registry.” Within a local area network running Windows, the reg-
istry functions as a vast database, storing everything from the list of documents a
user most recently opened to the location on the display where Word’s window was
most recently positioned. The application is notified when this information changes.

There are a number of standards for naming services such as DNS. The com-
munity that gave us the ISO standards defined X.500, an international standard that
many expect will eventually replace NIS. This service, which is designed for use by
applications running the ISO standard remote procedure call interface and ASN.1
data encoding, operates much like an NIS server. No provision has been made in the
standard for replication or high-performance update, but the interface does support
some limited degree of pattern matching. As might be expected from a standard
of this sort, X.500 addresses a wide variety of issues, including security and rec-
ommended interfaces. However, reliability issues associated with availability and
consistency of the X.500 service (i.e., when data are replicated) have not yet been
tackled by the standards organization.

The more successful standard is called LDAP. LDAP is supported by most plat-
forms and vendors, and is flexible enough to be compatible with emerging naming
mechanisms, such as the UDDI naming scheme employed by Web Services. X.500,
in contrast, probably cannot be stretched quite so far. Nonetheless, there is consid-
erable interest in using LDAP or X.500 to implement general-purpose White-Pages
(WP) servers, which would be explicitly developed to support sophisticated pat-
tern matching on very elaborate databases with detailed information about abstract
entities. Rapid update rates, fault-tolerance features, and security are all being con-
sidered in these proposals. At the time of this writing, it appears that the Web will
require such services and that work on universal resource naming for use in the Web
will be a major driving force for evolution in this overall area. One might speculate
that LDAP will ultimately prevail in the battle to be the successful standard for nam-
ing services, but X.500 cannot be ruled out, and it is also possible that Web Services
will give rise to new kinds of naming service and new, even more general, standards.

Last but (someday) most important in this list are name services for Web Ser-
vices applications. As this book was being written, there was a tremendous amount
of commercial competition to offer such services and each of the major vendors
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(IBM, BEA, Microsoft, etc.) had its own proprietary product line with a special-
ized, high-value feature set. Eventually, it seems likely that a small set of winners
will emerge to dominate this space, and that a new naming standard will then be
defined, combining best-of-breed features from the most popular solutions.

6.6.2 Security Services

In the context of an RPC environment, security is primarily concerned with the
authentication problem. The issue is similar to but not identical to the one discussed
in Chap. 3, where we touched upon Web Services security for cloud systems. The
reader will recall that in Chap. 3, the focus was on SSL security: a handshake used
to compute a symmetric session key with which data on a TCP connection could be
enciphered by the sender and deciphered by the receiver so as to hide the contents
from intruders. In the process, that scheme gave the sender some confidence that
it was really talking to the intended destination, but the receiver (the bank, in the
example we used then) learned less.

Security for an RPC protocol would normally operate at a lower level and seek to
mutually authenticate the client and server to one-another, while leaving the ques-
tion of how data are encrypted for transmission (if at all) for the application to
determine, through transport-level options that can be selectively enabled or dis-
abled. Thus, we take the authentication question further, and at the same time leave
the lower-level behavior requested from the RPC transport to be determined by the
designer of the application. On the other hand, the RPC messaging layer does the
encryption, if requested, in an automated manner: the developer provides the key but
is not forced to actually encrypt or decrypt the bytes. Still all of this is complicated
enough that whereas SSL security for web pages is common, RPC security is much
less often enabled.

Briefly stated, an RPC security infrastructure solves the problem of providing
applications with accurate information about the user-ID on behalf of which a re-
quest is being performed, but in a way that also authenticates the service to the client
system as a kind of side-effect of the protocol structure. Obviously, one would hope
that the user-ID is related in some way to the user, although this is frequently the
weak link in security architecture. Given an accurate source of user identifications,
the basic idea is to avoid intrusions that can compromise user-ID security through
break-ins on individual computers and even replacements of system components on
some machines with versions that have been compromised and hence could mal-
function. As in the case of clock services, we will look more closely at security later
in the textbook (Chap. 18) and hence limit ourselves to a brief review here.

To accomplish authentication, a typical security mechanism (e.g., the Kerberos
security architecture for DCE (see Schiller 1994; Steiner et al. 1988)) will request
some form of password or one-time key from the user at login time, and periodically
thereafter, as keys expire on the basis of elapsed time. This information is used to
compute a form of secure user identification that can be employed during connec-
tion establishment. When a client binds to a server, the security mechanism authen-
ticates both ends, and also (at the option of the programmer) arranges for data to
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be encrypted on the wire, so that intruders who witness messages being exchanged
between the client and server have no way to decode the data contained within them.
(Unfortunately, however, this step is so costly that many applications disable encryp-
tion and simply rely upon the security available from the initial connection setup.)
Notice that for such a system to work correctly, there must be a way to trust the au-
thentication server itself: The user needs a way to confirm that it is actually talking to
the authentication server and to legitimate representatives of the services it wishes to
use. Given the anonymity of network communication, these are potentially difficult
problems.

In Chap. 18, we will look closely at distributed security issues (e.g., we will dis-
cuss Kerberos in much more detail) and also at the relationship between security
and other aspects of reliability and availability—problems that are often viewed as
mutually exclusive, since one replicates information to make it more available, and
the other tends to restrict and protect the information to make it more secure. We
will also look at emerging techniques for protecting privacy, namely the true user-ID
of programs active in a network. Although the state of the art does not yet support
construction of high performance, secure, private applications, this should be techni-
cally feasible within the not-too-distant future. Of course, technical feasibility does
not imply that the technology will become widely practical and therefore useful in
building reliable applications, but at least the steps needed to solve the problems are
increasingly understood.

6.6.3 Transactions

Later in this book we will discuss a programming model from the database commu-
nity, in which applications are structured as “transactions” that operate on databases
or other forms of persistent data storage. Databases are extremely important in
commercial computing settings, and transactions are often closely integrated with
RPC environments. For example, the J2EE system was developed as a very gen-
eral purposed Java runtime environment, but has gradually become more and more
popular for database applications encapsulated as “Java Beans.” In support of this
style of programming, J2EE provides an elaborate transactional package. Simi-
larly, Microsoft’s .NET system has a very comprehensive database subsystem called
ADO.NET. Applications using this package gain automatic access to a transactional
mechanism integrated with the basic .NET remote procedure call.

The Web Services standards that underlie cloud computing systems includes per-
haps the most elaborate transactional mechanisms ever, supporting two forms of
transactions. One form matches the “operation on a database” model just mentioned.
The other is aimed at a broader problem, namely support for applications that will do
a series of the basic style of transactions over a long period of time. These so-called
“business transactions” raise all sorts of additional reliability issues. For example,
suppose that a travel agent wants to book a request for a plane ticket, a rental car
and a hotel. In the abstract this is a single transaction, but in practice each involves
talking to a separate application and those applications are not likely to cooperate.
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Accordingly, each request will probably be performed as a separate transaction—an
RPC to the appropriate kind of Web Service with “transactional properties”—but
the set will be treated as a business transaction—a series of transactions that should
all be performed. If one fails, for example because no hotel rooms are available, it
may be necessary to back the others out and return control to the user.

Later we will be looking closely at transactional mechanisms, and this is not the
place to launch into that discussion. However, it is important for RPC programmers
to be aware that many packages are designed with a model in mind. Developers
should always be attentive to the styles of examples provided by the vendor or or-
ganization promoting a given package and, even before starting to use that package,
confirm that those examples are very closely matched with the needs of the applica-
tion being constructed.

6.7 The RPC Protocol

The discussion up to this point has focused on client/server computing and RPC
from the perspective of the user. A remote procedure call protocol is concerned with
the actual mechanism by which the client process issues a request to a server and by
which the reply is transmitted back from the server to the client. We now look at this
protocol in more detail. We will focus on RPC as it arises in systems like J2EE and
.NET rather than in Web Services, where RPC (SOAP) runs over HTTP which in
turn runs on TCP—the resulting layering is very complex, and because TCP lives at
the bottom of the stack, many issues seen in other RPC settings simply do not arise
for Web Services systems. On the other hand, Web Services run like molasses when
compared with these other “native” implementations.

Abstractly, the remote procedure call problem, which an RPC protocol under-
takes to solve, consists of emulating LPC using message passing. LPC has a num-
ber of properties—a single procedure invocation results in exactly one execution
of the procedure body, the result returned is reliably delivered to the invoker, and
exceptions are raised if (and only if) an error occurs.

Given a completely reliable communication environment, which never loses, du-
plicates, or reorders messages, and given client and server processes that never fail,
RPC would be trivial to solve. The sender would merely package the invocation into
one or more messages and transmit these to the server. The server would unpack the
data into local variables, perform the desired operation, and send back the result
(or an indication of any exception that occurred) in a reply message. The challenge,
then, is created by failures.

Were it not for the possibility of process and machine crashes, an RPC protocol
capable of overcoming limited levels of message loss, disorder, and even duplication
would be easy to develop (Fig. 6.3). For each process to which it issues requests,
a client process maintains a message sequence number. Each message transmitted
carries a unique sequence number, and (in most RPC protocols) a time stamp from
a global clock—one that returns roughly the same value throughout the network,
up to clock synchronization limits. This information can be used by the server to
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Fig. 6.3 Simple RPC
interaction, showing packets
that contain data (thick) and
acknowledgements (dotted)

Fig. 6.4 RPC using a burst
protocol; here the reply is
sent soon enough so that an
acknowledgement to the burst
is not needed

detect very old or duplicate copies of messages, which are discarded, and to identify
received messages using what are called acknowledgment protocol messages.

The basic idea, then, is that the client process transmits its request and, until
acknowledgments have been received, continues to retransmit the same messages
periodically. The server collects messages and, when the full request has been re-
ceived, performs the appropriate procedure invocation. When it transmits its reply,
the same sort of reliable communication protocol is used. Often, the acknowledge-
ment is delayed briefly in the hope that the reply will be sent soon, and can be used
in place of a separate acknowledgement.

A number of important optimizations have been proposed by developers of RPC-
oriented distributed computing environments—for example, if one request will re-
quire the transmission of multiple messages, because the request is large, it is com-
mon to inhibit the sending of acknowledgments during the transmission of the burst
of messages. In this case, a negative acknowledgement is sent if the receiver detects
a missing packet; a single acknowledgement confirms reception of the entire burst
when all packets have been successfully received (Fig. 6.4).

Process and machine failures, unfortunately, render this very simple approach
inadequate. The essential problem is that because communication is over unreliable
networking technologies, when a process is unable to communicate with some other
process, there is no way to determine whether the problem is a network failure, a
machine failure, or both (if a process fails but the machine remains operational the
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Fig. 6.5 If an old request is
replayed, perhaps because of
a transient failure in the
network, a server may have
difficulty protecting itself
against the risk of
re-executing the operation

operating system will often provide some status information, permitting this one
case to be accurately sensed).

When an RPC protocol fails by timing out, but the client or server (or both) re-
mains operational, it is impossible to know what has occurred. Perhaps the request
was never received, perhaps it was received and executed but the reply was lost, or
perhaps the client or server crashed while the protocol was executing. This creates a
substantial challenge for the application programmer who wishes to build an appli-
cation that will operate reliably despite failures of some of the services upon which
it depends.

A related problem concerns the issue of what are called exactly once semantics.
When a programmer employs LPC, the invoked procedure will be executed exactly
once for each invocation. In the case of RPC, however, it is not evident that this prob-
lem can be solved. Consider a process, c, that issues an RPC to a service offered by
process s. Depending upon the assumptions we make, it may be very difficult even
to guarantee that s performs this request at most once. (Obviously, the possibility
of a failure precludes a solution in which s would perform the operation exactly
once.)

To understand the origin of the problem, consider the possible behaviors of an
arbitrary communication network. Messages can be lost in transmission, and as we
have seen this can prevent process c from accurately detecting failures of process s.
But the network might also misbehave by delivering a message after an unreason-
ably long delay—for example, suppose that a network router device fails by jam-
ming up in such a manner that until the device is serviced, the software within
it will simply wait for the hardware to be fixed. Obviously, there is no reason
to simply assume that routers will not behave this way, and in fact it is known
that some routers definitely could behave this way. Moreover, one can imagine a
type of attack upon a network in which an intruder records messages for future
replay.

One could thus imagine a situation in which process s performs a request from c,
but then is presented with the same request after a very long delay (Fig. 6.5). How
can process s recognize this as a duplicate of the earlier request?

Depending upon the specific protocol used, an RPC package can use a va-
riety of barriers to protect itself against replays of long-delayed messages—for
example, the package might check timestamps in the incoming messages, re-
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jecting any that are very old. Such an approach, however, presumes that clocks
are synchronized to a reasonable degree and that there is no danger that a mes-
sage will be replayed with a modified timestamp—an action that might well
be within the capabilities of a sophisticated intruder. The server could use a
connect-based binding to its clients, but this merely pushes the same problem
into the software used to implement network connections—and, as we shall see
shortly, the same issues occur and remain just as intractable at that level of
a system. The server might maintain a list of currently valid users, and could
insist that each message be identified by a monotonically increasing sequence
number—but a replay could, at least theoretically, re-execute the original binding
protocol.

Analyses such as these lead us to two possible conclusions. One view of the
matter is that an RPC protocol should take reasonable precautions against replay
but not be designed to protect against extreme situations such as replay attacks. In
this approach, an RPC protocol might claim to guarantee at most once semantics,
meaning that provided that the clock synchronization protocol has not been compro-
mised or some sort of active attack been mounted upon the system, each operation
will result in either a single procedure invocation or, if a communication or process
failure occurs, in no invocation. An RPC protocol can similarly guarantee at least
once semantics, meaning that if the client system remains operational indefinitely,
the operation will be performed at least once but perhaps more than once. Notice
that both types of semantics come with caveats: conditions (hopefully very unlikely
ones) under which the property would still not be guaranteed. In practice, most RPC
environments guarantee a weak form of at most once semantics: Only a mixture of
an extended network outage and a clock failure could cause such systems to deliver
a message twice, and this is not a very likely problem.

A different approach, also reasonable, is to assume a very adversarial environ-
ment and protect the server against outright attacks that could attempt to manipulate
the clock, modify messages, and otherwise interfere with the system. Security ar-
chitectures for RPC applications commonly start with this sort of extreme position,
although it is also common to weaken the degree of protection to obtain some per-
formance benefits within less hostile subsets of the overall computing system. We
will return to this issue and discuss it in some detail in Chap. 18.

At the start of this subsection, we commented that Web Services support SOAP
RPC over TCP and hence avoid many of the issues just mentioned. It is im-
portant to realize that this positioning does not eliminate those issues. For ex-
ample, TCP is a “reliable” protocol in the sense that it checks for and retrans-
mits lost messages, but this form of reliability has limits. TCP cannot detect end-
point failures and cannot distinguish host crashes from transient network out-
ages. Thus while TCP tries to be reliable, as a practical matter it is not able
to be any more reliable than a hand-coded protocol running directly on UDP.
In effect, all of the same issues just cited arise in Web Services RPC too, al-
though the sources of the problems are buried in layer upon layer of abstrac-
tions.
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Fig. 6.6 Idealized
primary-backup server
configuration. Clients interact
with the primary and the
primary keeps the backup
current

6.8 Using RPC in Reliable Distributed Systems

The uncertainty associated with RPC failure notification and the weak RPC invoca-
tion semantics seen on some systems pose a challenge to the developer of a reliable
distributed application.

A reliable application would typically need multiple sources of critical services,
so that if one server is unresponsive or faulty the application can re-issue its requests
to another server. If the server behaves as a read-only information source, this may
be an easy problem to solve. However, as soon as the server is asked to deal with
dynamically changing information, even if the changes are infrequent compared to
the rate of queries, a number of difficult consistency and fault-tolerance issues arise.
Even questions as simple as load-balancing, so that each server in a service spanning
multiple machines will do a roughly equal share of the request processing load, can
be very difficult to solve.

Suppose that an application will use a primary-backup style of fault tolerance,
and the requests performed by the server affect its state. The basic idea is that an
application should connect itself to the primary, obtaining services from that process
as long as it is operational. If the primary fails, the application will fail-over to the
backup. Such a configuration of processes is illustrated in Fig. 6.6. Notice that the
figure includes multiple client processes, since such a service might well be used by
many client applications at the same time.

Consider now the design of a protocol by which the client can issue an RPC to
the primary-backup pair such that if the primary performs the operation, the backup
learns of the associated state change. In principle, this may seem simple: The client
would issue an RPC to the server, which would compute the response and then
issue an RPC to the backup, sending it the request it performed, the associated state
change, and the reply being returned to the client. Then the primary would return
the reply, as shown in Fig. 6.7.

This simple protocol is, however, easily seen to be flawed if the sorts of problems
we discussed in the previous section might occur while it were running (see Birman
and Glade). Take the issue of timeout (see Fig. 6.8). In this solution, two RPCs
occur, one nested within the other. Either of these, or both, could fail by timeout,
in which case there is no way to know with certainty in what state the system was
left. If, for example, the client sees a timeout failure, there are quite a few possible
explanations: The request may have been lost, the reply may have been lost, and
either the primary or the primary and the backup may have crashed. Fail-over to the
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Fig. 6.7 Simplistic RPC
protocol implementing
primary-backup replication

Fig. 6.8 RPC timeouts can create inconsistent states, such as this one, in which two clients are
connected to the primary, one to the backup, and one is disconnected from the service. Moreover,
the primary and backup have become disconnected from one another—each considers the other
faulty. In practice, such problems are easily provoked by transient network failures. They can
result in serious application-level errors—for example, if the clients are air traffic controllers and
the servers advise them on the safety of air traffic routing changes, this scenario could lead two
controllers to route different planes into the same sector of the airspace! The matter is further
complicated by the presence of more than one client. One could easily imagine that different clients
could observe different and completely uncorrelated outcomes for requests issued simultaneously
but during a period of transient network or computer failures. Thus, one client might see a request
performed successfully by the primary, another might conclude that the primary is apparently faulty
and try to communicate with the backup, and yet a third may have timed out both on the primary
and the backup! We use the term “inconsistent” in conjunction with this sort of uncoordinated and
potentially incorrect behavior. An RPC system clearly is not able to guarantee the consistency of
the environment, at least when the sorts of protocols discussed above are employed, and hence
reliable programming with RPC is limited to very simple applications

backup would only be appropriate if the primary were indeed faulty, but there is no
accurate way to determine if this is the case, except by waiting for the primary to
recover from the failure—not a “highly available” approach.

The line between easily solved RPC applications and very difficult ones is not a
clear one—for example, one major type of file server accessible over the network
is accessed by an RPC protocol with very weak semantics, which can be visible to
users. Yet this protocol, called the Network File System protocol, is widely popular
and has the status of a standard, because it is easy to implement and widely available
on most vendor computing systems. NFS is discussed in some detail in Sect. 6.3 and
so we will be very brief here.
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One example of a way in which NFS behavior reflects an underlying RPC issue
occurs when creating a file. NFS documentation specifies that the file creation op-
eration should return the error code EEXISTS if a file already exists at the time the
create operation is issued. However, there is also a case in which NFS can return
error EEXISTS even though the file did not exist when the create was issued. This
occurs when the create RPC times out, even though the request was in fact delivered
to the server and was performed successfully. NFS automatically re-issues requests
that fail by timing out and will retry the create operation, which now attempts to
re-execute the request and fails because the file is now present. In effect, NFS is un-
able to ensure at most once execution of the request, and hence can give an incorrect
return code. Had NFS been implemented using LPC (as in the local file system), this
behavior would not be possible.

NFS illustrates one approach to dealing with inconsistent behavior in an RPC
system. By weakening the semantics presented to the user or application program,
NFS is able to provide acceptable behavior despite RPC semantics that create con-
siderable uncertainty when an error is reported. In effect, the erroneous behavior is
simply redefined to be a feature of the protocol.

A second broad approach that will interest us here involves the use of agreement
protocols by which the components of a distributed system maintain consensus on
the status (operational or failed) of one another. A rigorous derivation of the obliga-
tions upon such consensus protocols, the limitations on this approach, and the effi-
cient implementation of solutions will be discussed later in this book (Sect. 10.2).
Briefly, however, the idea is that any majority of the system can be empowered to
vote that a minority (often, just a single component) be excluded on the basis of ap-
parently faulty behavior. Such a component is cut off from the majority group: If it is
not really faulty, or if the failure is a transient condition that corrects itself, the com-
ponent will be prevented from interacting with the majority system processes, and
will eventually detect that it has been dropped. It can then execute a rejoin protocol,
if desired, after which it will be allowed back into the system.

With this approach, failure becomes an abstract event—true failures can trigger
this type of event, but because the system membership is a self-maintained property
of the system, the inability to accurately detect failures need not be reflected through
inconsistent behavior. Instead, a conservative detection scheme can be used, which
will always detect true failures while making errors infrequently (discussed in more
detail in Sect. 11.3).

By connecting an RPC protocol to a group membership protocol that runs such
a failure consensus algorithm, a system can resolve one important aspect of the
RPC error-reporting problems discussed above. The RPC system will still be un-
able to accurately detect failures; hence, it will be at risk of incorrectly reporting
operational components as having failed. However, the behavior will now be con-
sistent throughout the system: If component a observes the failure of component
b, than component c will also observe the failure of b, unless c is also determined
to be faulty. In some sense, this approach eliminates the concept of failure entirely,
replacing it with an event that might be called exclusion from membership in the
system. Indeed, in the case where b is actually experiencing a transient problem,
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the resulting execution is much like being exiled from one’s country: b is prevented
from communicating with other members of the system and learns this. Conversely,
the concept of a majority allows the operational part of the system to initiate actions
on behalf of the full membership in the system. The system now becomes identified
with a rigorous concept: the output of the system membership protocol, which can
itself be defined formally and reasoned about using formal tools.

As we move beyond RPC to consider more complex distributed programming
paradigms, we will see that this sort of consistency is often required in non-trivial
distributed applications. Indeed, there appears to be a dividing line between the dis-
tributed applications that give nontrivial coordinated behavior at multiple locations,
and those that operate as completely decoupled interacting components, with purely
local correctness criteria. The former type of system requires the type of consistency
we have encountered in this simple case of RPC error reporting. The latter type of
system can manage with error detection based upon timeouts, but is potentially un-
suitable for supporting any form of consistent behavior.

6.9 Layering RPC over TCP

Recall that when we discussed the interaction of cloud computing client systems
with cloud servers, we described a layering that puts the marshalling (SOAP) over
HTTP which runs, in turn, over TCP. In fact this pattern is quite common: one
often sees systems that run RPC protocols over stream protocols such as TCP, an
approach intended to simplify the implementation of the RPC interaction itself. In
this approach, the RPC subsystem establishes a stream connection to the remote
server and places it into an urgent transmission mode, whereby outgoing data are
immediately transmitted to the destination. The reliability mechanisms built into the
TCP protocol now subsume the need for the RPC protocol to implement any form
of acknowledgement or retransmission policy of its own. In the simplest cases, this
reduces RPC to a straightforward request-response protocol. When several threads
multiplex the same TCP stream, sending RPCs over it concurrently, a small amount
of additional code is needed to provide locking (so that data from different RPC
requests are not written concurrently to the stream, which could interleave the data
in some undesired manner) and to demultiplex replies as they are returned from the
server to the client.

Beyond the SOAP scenario just mentioned, the most important example of a lay-
ering of RPC over TCP arises in object-oriented architectures such as CORBA and
Web Services. In CORBA, this is part of the “inter-ORB” protocol by which one
CORBA system can talk to another CORBA system. Web Services use SOAP RPC
over HTTP over TCP to transport most of its requests. Thus the reliability of the
RPC protocol becomes a question of the reliability of TCP. A CORBA “remote”
request or a Web Services object invocation will fail if the TCP connection breaks
or times out, and neither architecture is very clear about what the application pro-
grammer should do in this situation.
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It is important to appreciate that the reliability associated with TCP will not
normally improve (or even change) the reliability semantics of an RPC protocol
superimposed upon it. A TCP stream would report a broken connection under es-
sentially the same conditions where an RPC protocol would fail by timing out, and
the underlying acknowledgement and retransmission protocol will not affect these
semantics in any useful way. The major advantage of running RPC over a stream
is that by doing so, the amount of operating system software needed in support of
communication is reduced: Having implemented flow control and reliability mech-
anisms for the stream subsystem, RPC becomes just another application-level use
of the resulting operating system abstraction. Such an approach permits the op-
erating system designer to optimize the performance of the stream in ways that
might not be possible if the operating system itself were commonly confronted
with outgoing packets that originate along different computational paths. On the
other hand, the user is left in a confusion situation: if a request fails, just as we
saw earlier, it is unclear what state the server was left in. Generally, the applica-
tion will either toss up its hands and let the (human) user sort things out, or en-
gage in some sort of application-specific resynchronization whereby connection
to the server (or to a backup) is cautiously reestablished, and then the state of
the interrupted request is determined by some form of interrogation of the server.
This is not trivial, and standards for reconnecting after a disruption are sorely
needed.

To reiterate a point made earlier, the situation need not be such a mess. In work
with Brad Glade, some years ago, we discovered that if RPC and TCP failure report-
ing was “rewired” to use a failure detection and agreement service, a considerable
degree of consistency could be superimposed on the RPC layer. This could have
widespread benefits throughout the system, and is not all that hard to do—TCP’s
timeout mechanism is controlled by a parameter, the so-called KEEPALIVE value,
and can be disabled by the user, at which point some other failure sensing mech-
anism can be introduced. Nonetheless, even if the mechanism is available, such a
change would not be minor, and unless the vendors who build the major operating
systems platforms decide to take this step, we will all have to live with the very
confusing outcomes that arise when doing RPC to a service over a protocol that
employs timeout for failure detection.

In some situations, standards are intentionally designed to leave vendors room
to innovate, and that is a good thing. Here, though, we see a situation where the
standard in some sense defines the only acceptable behavior for the protocol. An
ill-considered and yet absolute standard can be very dangerous, and the rather care-
less introduction of the TCP timeout mechanism into the Internet (David Clark
has told the author that it was added “one night” by a developer at Berkeley and
that many IETF members would have preferred an end-to-end solution) is a case
in point! If Professor Clark’s recollection is accurate, we have a good instance
here of a poorly considered mechanism, tossed into the system rather thought-
lessly, which has now emerged as central source of unreliability for the entire Inter-
net!



6.10 Stateless and Stateful Client/Server Interactions 213

6.10 Stateless and Stateful Client/Server Interactions

Up to now, this book has focused on the communication protocols used to im-
plement RPC, architectures for integrating RPC into larger applications (Chap. 7
tackles this in greater detail), and on the semantics provided when a failure oc-
curs. Independent of the way that a communication technology is implemented,
however, is the question of how the programming paradigms that employ it can
be exploited in developing applications, particularly if reliability is an important
objective. In this chapter, we examine client/server computing technologies, assum-
ing that the client/server interactions are by RPC, perhaps implemented directly;
perhaps issued over TCP. Our emphasis is on the interaction between the architec-
tural structure of the system and the reliability properties of the resulting solutions.
This topic will prove particularly important when we begin to look closely at the
Web, where both browsing and the more recent Web Services architecture employ
a stateless client/server computing paradigm, implemented over TCP connections
to Web servers. The weakness of this model poses significant challenges to the
programmer—challenges that browsers more or less ignore, but that demand much
greater effort from the Web Services programmer, who may need to “overcome”
problems emerging from deep within the system in order to achieve the strong guar-
antees required by a mission-critical application.

6.11 Major Uses of the Client/Server Paradigm

The majority of client/server applications fall into one of two categories, which can
be broadly characterized as being the file server, or stateless, architectures, and the
database-styled transactional, or stateful, architectures. Although there are a great
many client/server systems that neither manage files nor any other form of database,
most such systems share a very similar design with one or the other of these. More-
over, although there is an important middle ground consisting of stateful distributed
architectures that are not transactional (including stateful file servers). These kinds
of application can usually be understood as “enhanced stateless” architectures.

For example, Microsoft’s NTFS file system looks stateful to the user, but is im-
plemented as a “mostly stateless” system using event notification mechanisms to
warn the client when events occur on the server that might be important to it; the
client quickly rereads the changed data and, with any luck at all, applications run-
ning on it will not even notice the temporary inconsistency. If one understands the
basic ideas behind stateless system designs, a file system such as this can be un-
derstood as starting from a stateless approach and then cleverly adding mechanisms
that hide many of the usual issues encountered in stateless designs—an approach
that gives the Microsoft system substantial robustness, and that readers of this book
might want to think of as an especially good model to follow when building applica-
tions of their own. For example, the Web Services architecture invites one to follow
a similar development path.
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This chapter focuses on extreme cases: purely stateless file systems, and strongly
stateful database systems. By doing this, we will gain familiarity with the broader
technology areas of which each is representative and of the state of practice at the
time of this writing. Part III of this book, starting with Chap. 10, discusses dis-
tributed systems architectures in more general terms and in much more detail, and
will look at some systems that do not fit quite so cleanly into one category or the
other, but in doing so will also move away from the sorts of technologies that one
finds prepackaged into modern application builder tools into a class of technologies
that are not as widely supported, and hence can only be exploited by sophisticated
developers who are prepared to do quite a bit more of the nuts-and-bolts implemen-
tation.

A stateless client/server architecture is one in which neither the clients nor the
server needs to maintain accurate information about one another’s status. This is not
to say that the clients cannot cache information obtained from a server; indeed, the
use of caches is one of the key design features that permit client/server systems to
perform well. Moreover, the server might include some form of call-back or event
notification mechanism to warn its clients that information has changed and should
be re-read. However, even without such a notification mechanism, cached informa-
tion must always be understood as potentially stale, and any time an operation is
performed on the basis of data from the cache, some sort of validation scheme must
be used to ensure that the outcome will be correct even if the cached data has become
invalid.

More precisely, a stateless client/server architecture has the property that servers
do not need to maintain an accurate record of their current set of clients and can
change state without engaging in a protocol between the server and its clients. If
a server does track its clients, it may view that information as a kind of cache as
well: the list of clients is understood to be an “approximation,” and could list some
machines that have since become disconnected from the network or that have been
shut down. In a stateless architecture, when state changes occur on the server, even
though the client systems will have data that lags the changes, their “correct behav-
ior” must not be affected. That is, the client system can only used the cached data in
ways that are cautious enough to avoid problems if those data turn out to be stale.

The usual example of a stateless client/server architecture is one in which a client
caches records copied from a name server. These records might, for example, map
from ASCII names of bank accounts to the internal account numbers and branch
identification for the bank server maintaining that account. Should the account be
reassigned to a different branch (i.e., if the customer moves to a different city but
stays with the same bank), requests that access that account will be directed to the
wrong server. Since the transfer of the account is readily detected, this request will
fail and the client will realize that its cached branch record has become stale. It can
then refresh its cache record by looking up the account’s new location. The request
can then be reissued and should now reach the correct server. This is illustrated
in Fig. 6.9. Notice that the use of cached data are transparent to (concealed from)
the application program, which benefits through improved performance when the
cached record is correct, but is unaffected if an entry becomes stale and must be
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Fig. 6.9 In this example, a client of a banking database has cached the address of the server
handling a specific account. If the account is transferred, the client’s cached record is said to have
become stale. Correct behavior of the client is not compromised, however, because it is able to
detect staleness and refresh the cached information at run time. Thus, if an attempt is made to
access the account, the client will discover that it has been transferred (step 1) and will look up
the new address (step 2), or it will be told the new address by the original server. The request can
then be reissued to the correct server (step 3). The application program will benefit from improved
performance when the cached data are correct, which is hopefully the normal case, but it never sees
incorrect or inconsistent behavior if the cached data are incorrect. The key to such an architecture
lies in the ability to detect that the cached data has become stale when attempting to use this data,
and in the availability of a mechanism for refreshing the cache transparent to the application

refreshed at the time it is used. This style of caching is extremely common; indeed,
one unpublished study of Web Services by C. Mohan and G. Cuomo, senior techni-
cal leaders in the Web Services area for IBM, concluded that a typical commercial
Web Services application might include as many as ten to fifteen different caches, all
needed to accelerate performance, and with each differing slightly from the others.
The authors concluded that caching plays a central role in modern architectures,
but also found tremendous variability in the mechanisms used to detect staleness
and recover when stale data are accessed. Moreover, while most of the validation
mechanisms are simple, a small subset of them are remarkably complex.

One implication of a stateless design is that the server and client are indepen-
dently responsible for ensuring the validity of their own states and actions. In par-
ticular, the server makes no promises to the client, except that the data it provides
was valid at the time they were provided. The client, for its part, must carefully
protect itself against the risk that the data it obtained from the server subsequently
became stale. Applications that cannot be designed to behave this way should not
use a stateless approach.

Notice that a stateless architecture does not imply that there is no form
of state shared between the server and its clients. On the contrary, such
architectures often share state through the cache, as seen in Fig. 6.9. The server
might keep an approximate list of its clients, and that is also a form of shared
state. The fundamental property of the stateless paradigm is that correct func-
tion does not require that such shared information be accurate.



216 6 Remote Procedure Calls and the Client/Server Model

The reader familiar with what are called “race conditions” in concurrent operat-
ing system code may recognize that stateless architectures embody a kind of race
condition. Suppose that a client tries to access a record x by first checking to make
sure that the cached copy, x′, is still valid, and then permitting the client operation
to proceed. On the server, x will not be locked against changes during the period be-
tween the validation operation and the completion of the client’s operation, hence x

could change just as this protocol executes. The client will then validate the record,
and yet will access stale data, perhaps resulting in some sort of visible misbehavior
in the eyes of an end-user. This is fundamental to stateless designs: they lack strong
synchronization mechanisms (such as locking) and for that reason, applications may
glimpse inconsistencies. The approach can only be used when the consequences of
such anomalies are felt to be minor.

Despite its limitations, the stateless client/server paradigm is one of the most
successful and widely adopted tools for building distributed systems. File servers,
perhaps the single most widely used form of distributed system, are typically based
on this paradigm, with the caveat noted earlier: arguably the most important file sys-
tem, Windows NTFS, uses a stateless underpinning but then layers various callback
and notification mechanisms over it to give the illusion of a fairly tightly coupled,
stateful approach. The Web is based on stateless servers, and this is often cited as one
of the reasons for its rapid success. Moreover, many of the special-purpose servers
developed for individual applications employ a stateless approach.

However, as we will see momentarily, stateless architectures also carry a price:
Systems built this way often exhibit strange reliability or consistency problems un-
der what one hopes will be unlikely scenarios. Moreover, there is rarely any way to
be sure that the troublesome scenarios will always be rare. For example, many state-
less systems malfunction during network partitioning events. Networks normally
work well, hence this kind of malfunction might never be experienced during devel-
opment and may also be uncommon in practice. Even a developer aware of the risk
could conclude that these events just do not occur. However, if something occurs
to make network partitioning more common (a transient hardware failure, for ex-
ample), the associated application-level problems could suddenly be both common
and costly. An application that was perceived as working well will now be seen as
buggy. Such considerations often preclude stateless architectures in settings where
correct behavior is really important, such as medical systems or applications where
human life or property could be placed at risk. As corporations move new genera-
tions of increasingly vital applications to computers, it seems likely that the stateless
approach to server design will be less and less adequate.

A stateful architecture is one in which information is shared between the client
and server in such a manner that the client may take local actions under the assump-
tion that this information is correct. In the example of Fig. 6.9, this would have
meant that the client system would never need to retry a request. Clearly, to imple-
ment such a policy, the database and name mapping servers would need to track the
set of clients possessing a cached copy of any record that is about to be transferred.
The system would need to somehow lock these records against use during the time
of the transfer or invalidate them so that clients attempting to access the transferred
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record would first look up the new address. The resulting protocol would guarantee
that if a client is permitted to access a cached record, that record will be accurate;
however, it would do so at the cost of complexity (in the form of the protocol needed
when a record is transferred) and delay (namely, delays visible to the client when
trying to access a record that is temporarily locked, and/or delays within the servers
when a record being transferred is found to be cached at one or more clients).

Later in this text we will see that stateful systems are, at their core, systems which
depend upon replicated data, although the nature of the replicated information may
not be immediately obvious. In effect, “state” really comes down to shared state,
and what distinguishes these systems from the stateless ones is that we want the
shared (replicated) state to mimic the behavior of a system in which the data in
question is not replicated but instead resides at a single, highly available, server.
A stateful system, then, replicates certain aspects of application state so as to mimic
the behavior of a system that uses the identical information but does not replicate it.

To achieve this mimicry, stateful architectures invariably require locking mech-
anisms or other distributed synchronization protocols, permitting them to tightly
synchronize the client with the server. If a client of a stateful system is modifying
data, it must lock the data (potentially waiting until any pending readers or prior
writers have finished), read an accurate copy, modify it, and check it back in. This
behavior may be hidden from the developer or embedded into higher level mecha-
nisms, such as transactions, but the core functionality is invariably present. Stateful
systems thus embrace a more complex style of interaction between client and server
and may need to accept reduced server availability as part of the price: if the client
is temporarily unreachable but has locked some data, the server cannot allow other
client systems to access those data. Such systems often work around the result-
ing limitations, for example by having the client ship operations to the server (the
so-called “three-tier” architecture); by doing so, any availability issues that arise are
shifted into the server, where it may be possible to use special hardware to minimize
the impact of outages. But of course the application designer is now working in a
model remote from more familiar distributed object and remote method invocation
approaches. Existing platforms lack a widely accepted, well-supported, solution for
the case where the application programmer needs high availability and consistency,
and yet is not able to move to a transactional model.

Our comments on the Windows NTFS file server made it clear that a stateless
system can become fairly complex, with layers of mechanisms designed to mini-
mize the scenarios in which clients might realize that the system is ultimately not
providing guaranteed consistency. Nonetheless, these mechanisms are often simple
ones: caching, perhaps some form of event notification to warn clients that data
have changed, etc. In contrast, stateful architectures often become extremely com-
plex, because they really do provide strong guarantees. They also require a different
style of application development. This is a cost we accept in situations, like a hospi-
tal or an air traffic control application, where those guarantees matter and make the
complexity seem like a reasonable price to pay.

Stateful systems can also be associated with “coherent caching,” in which the
client system can cache data with confidence that the cached copy will not become
stale. As we will see, this problem is solvable, although necessary mechanisms are
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rarely available to developers. The issue turns out to reflect a tradeoff between per-
formance and properties. It is clear that a client system with a coherently cached
data item will obtain performance benefits by being able to perform actions cor-
rectly using local data (hence, avoiding a round-trip delay over the network) and
may therefore be able to guarantee some form of real-time response to the applica-
tion. However, the system as a whole will see reduced performance because locking
and other forms of synchronization are typically conservative, preventing some ac-
tions even when they would have been legal. Moreover, the associated mechanisms
make the underlying platform more complex. Platform developers have apparently
concluded that most users value higher performance more than they value strong
guarantees and hence have opted for a simpler, faster architecture.

For applications in which the cost of communicating with a server is very high, or
where there are relatively strict real-time constraints, coherent caching could offer
extremely useful guarantees—for example, an air traffic controller contemplating
a proposed course change for a flight would not tolerate long delays while check-
ing with the database servers in the various air sectors that flight will traverse, but
also cannot run the risk of giving out the wrong answer. Such a system accepts per-
formance that may be quite a bit slower “on average” to avoid these very costly
penalties. Similar issues are seen in many real-time applications, such as computer-
assisted conferencing systems and multimedia playback systems. But these kinds
of example are atypical, and the “usual” client/server system would not have such
stringent requirements. Vendors tend to follow the majority of the market, hence un-
til we see large-scale demand for coherent caching, the necessary mechanisms will
probably remain non-standard.

There is one way to offer clients some of the benefits of stateful architecture, but
without requiring that remotely cached data be maintained in a coherent state. The
key is to use some form of abort or backout mechanism to roll back actions taken
by a client on a server. Rollback occurs if the server detects that the client’s state
is inconsistent with its own state. This forces the client to roll back its own state
and, presumably, retry its operation with refreshed or corrected data. This is some-
times called an “optimistic” replication or caching approach, because its benefits
are achieved primarily when the optimistic assumption that the cached data has not
become stale turns out to be valid. Optimistic caching is common in transactional
database systems, perhaps the most common of the stateful client/server architec-
tures.

The basic idea in a transactional system is that the client’s requests are structured
into clearly delimited transactions. Each transaction begins, encompasses a series
of read and update operations, and then ends by committing in the case where the
client and server consider the outcome to be successful or aborting if either client or
server has detected an error. An aborted transaction is backed out both by the server,
which erases any effects of the transaction, and by the client, which will typically
restart its request at the point of the original begin, or report an error to the user
and leave it to the user to decide if the request should be retried. A transactional
system is one that supports this model, guaranteeing that the results of committed
transactions will be preserved and that aborted transactions will leave no trace.



6.12 Distributed File Systems 219

The connection between transactions and statefulness is as follows. Suppose that
a transaction is running, and a client has read a number of data items and issued
some number of updates. Often it will have locked the data items in question for
reading and writing, a topic we discuss in more detail in Chap. 20. These data items
and locks can be viewed as a form of shared state between the client and the server:
The client basically trusts the server to ensure that the data it has read is valid until it
commits or aborts and releases the locks that it holds. Just as our cached data were
copied to the client in the earlier examples, all of this information can be viewed as
knowledge of the server’s state that the client caches. And the relationship is mutual:
The server, for its part, holds an image of the client’s state in the form of updates
and locks that it maintains on behalf of the partially completed transactions.

Now, suppose that something causes the server’s state to become inconsistent
with that of the client, or vice versa. Perhaps the server crashes and then recovers,
and in this process some information that the client had provided to the server is
lost. Or, perhaps it becomes desirable to change something in the database without
waiting for the client to finish its transaction. In a stateless architecture we would
not have had to worry about the state of the client. In a transactional implementa-
tion of a stateful architecture, on the other hand, the server can exploit the abort
feature by arranging that the client’s transaction be aborted, either immediately, or
later when the client tries to commit it. This frees the server from needing to worry
about the state of the client. In effect, an abort or rollback mechanism can be used
as a tool by which a stateful client/server system is able to recover from a situa-
tion where the client’s view of the state shared with the server has been rendered
incorrect.

In the remainder of this chapter, we review examples of stateless file server ar-
chitectures from the research and commercial community, stateful file server archi-
tectures (we will return to this topic in Chap. 20), and stateful transactional architec-
tures as used in database systems. As usual, our underlying emphasis is on reliability
implications of these architectural alternatives.

6.12 Distributed File Systems

We have discussed the stateless approach to file server design in general terms. In
this section, we look at some specific file system architectures in more detail, to
understand the precise sense in which these systems are stateless, how their state-
lessness may be visible to the user, and the implications of statelessness on file
system reliability.

Client/server file systems normally are structured as shown in Fig. 6.10. Here,
we see that the client application interacts with a cache of file system blocks and file
descriptor objects maintained in the client workstation. To illustrate these points, let
us briefly review the implementation of the Network File System (NFS) client/server
architecture. NFS was not the first network file system, but it was surely one of the
most successful. The basic idea is to emulate the way that a UNIX operating system
handles mounted disk file systems, but to do so in a way that does not require that
the disk be attached to the client’s computer.
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Fig. 6.10 In a stateless file system architecture, the client may cache data from the server. Such
a cache is similar in function to the server’s buffer pool, but is not guaranteed to be accurate. In
particular, if the server modifies the data that the client has cached, it has no record of the locations
at which copies may have been cached and no protocol by which cached data can be invalidated or
refreshed. The client side of the architecture will often include mechanisms that partially conceal
this limitation—for example, by validating that cached file data are still valid at the time a file is
opened. In effect, the cached data are treated as a set of hints that are used to improve performance
but should not be trusted in an absolute sense

A UNIX file system can be understood in terms of several basic data structures.
An inode is a small data structure representing the on-disk information by which a
file is defined. The inode contains identification information for the file’s owner, a
small access control vector, dates of file creation and last modification, file size, the
file “type,” and pointers to the data (depending on the size of the file, the inode may
simply list the data blocks containing the file data, or may be “indirection” blocks
that themselves list the data blocks). A disk has a freelist listing the blocks that are
available for allocation. A directory is a type of file containing a list of file names
and associated inode numbers.

To access a file system on a local disk, a UNIX user first issues a mount operation
that associates the root directory of the mounted file system with some existing
pathname. The user then issues the file operation; perhaps, a file create followed by a
write. To perform the create operation, UNIX first searches the file system to ensure
that the desired file does not already exist; if it does, an error (EEXISTS) is returned
to the user. This behavior is widely exploited by applications that need a simple way
to obtain locks in a UNIX setting: they create a “lock file,” interpreting EEXISTS
as an indication that the file is already locked, and otherwise performing the desired
task and then releasing the lock by deleting the file. A successful create causes the
file inode to be loaded into kernel memory, its reference counter to be incremented,
and a file handle returned to the application. The application then specifies the file
handle when issuing write operations.

The remote case is designed to closely parallel the local case. A remote mount
operation is implemented by forming a message that encodes the parameters of the
create into a standard byte order. NFS uses a self-describing representation called
XDR (external data representation) for this purpose (NFS was designed in the early
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1980’s, long before the emergence of the SOAP and XML standards). The request
is then transmitted to the server on which the file system resides.

On the server system, a mount request is checked for validity: the requested file
system must be available and the client’s user-id must be one permitted to perform a
mount operation. NFS has two mechanisms for checking user-id’s; one is based on
a cryptographic authentication protocol, and provides fairly strong protection. The
other, more commonly used, mechanism simply trusts the client operating system
to set the client-id and group-id fields of the message correctly. In this mode, if my
computer wishes to access a file system on your computer, I simply tell you what
user-id I am using, and you check to see if that user is permitted to perform the
operation. Nothing stops a client from cycling through user id’s until one is found
that will be accepted by the server, and indeed some virus programs exploit this as
a way to break into UNIX file systems. As it turns out, the stronger authentication
mechanism is rarely enabled, in part because it employs proprietary protocols and
hence is incompatible with hardware and software from certain vendors. A result is
that UNIX file systems are often poorly protected. We will see more examples of
this momentarily.

It is interesting to realize that nothing requires the “server” to be a vendor-
supplied UNIX implementation of NFS. A mount operation can be handled by any
application, and in fact it is common for applications to implement the NFS proto-
col, running in user-mode and perhaps even running on the same machine where the
client doing the mount is active! This feature is very convenient for researchers who
are developing new NFS-like file systems; they can build a user-level file server and
debug it, and yet client software will see what appears to be a completely standard
file system no different from any disk-resident one. Students using this textbook
have often seized upon this ability to mount a fake file system implemented by
an application as a “hook” enabling the introduction of sophisticated functionality
without changing the operating system. For example, one can implement file sys-
tems that construct data on demand, file systems that use replication to obtain high
availability, and so forth.

At any rate, a successful mount operation returns a file-handle to the client sys-
tem, which stores it in the remote mount table. The client is now ready to issue file
system operations, such as file open or create requests. Let us consider a create in
order to maintain the similarity between our local and remote cases. The arguments
to a create request are the pathname of the file to be created and the access rights
that should be used. The client file system will recognize that the desired file is on
a remote-mounted disk while scanning the pathname, by encountering a pathname
prefix that leads to a file system mount point. When this occurs, the suffix of the
pathname and the access permission information are marshalled into an XDR mes-
sage, which is sent with the mount handle to the remote server. Again, there are
two modes; in one, the XDR request is signed cryptographically (permitting the re-
mote server to protect against attacks); in the other more common mode, any request
with a valid mounted volume handle is trusted, and no attempt is made to verify the
user-id or group-id information. The remote server will receive the create request,
perform the operation, package up the result into an XDR reply message, and send
the reply back to the client system.



222 6 Remote Procedure Calls and the Client/Server Model

Remote procedure calls are not transported reliably, leading to one of the more
peculiar issues seen with a stateless file system architecture. If our create operation
times out, the client system will reissue it, and if that happens, no action occurs
on the server side to detect repeat requests. Thus, a scenario can arise in which a
create is issued, is performed successfully, and then the reply is lost. Should this
happen, the request will be issued a second time, but will now fail, since the file
was created on the first try! If we are using files as locks, the user’s application
would incorrectly conclude that the file is locked, when in fact the lock request
succeeded. This is a good example of a case where a stateless approach sometimes
malfunctions, but where the problem is normally rare enough to be ignored. When
it does occur, however, a part of the system could go down until an administrator
takes remedial action. In UNIX, this problem is sometimes seen when using printer
spooling software, and an administrator may need to manually remove the lock file
to unjam the printer.

If successful, operations like create and open return what is called a virtualized
inode or vnode structure, providing the client operating system with basic informa-
tion about the file and also a file handle that can be used in subsequent read or write
requests. The client system will typically cache vnodes and also some subset of the
blocks of the file itself, using what is called a write through policy under which
writes modify the client cache (hence client applications will “see their own writes”
instantly), then are written back to the server as bandwidth permits. A substantial
time lag can easily arise, with the client system knowing about great numbers of up-
dates that have yet to reach the server, and hence would be lost if the client system
crashes or becomes disconnected from the network.

When performing NFS read and write operations, the split between authenti-
cated and non-authenticated operations mentioned earlier arises again: in the non-
authenticated case, any request with a valid file mount handle and vnode handle will
be accepted by the server, which keeps no records of which clients have mounted the
volume or opened a given file. Thus, an intruder can easily “spoof” the file system
into permitting a mount operation and permitting file access with falsified user-id
and group-id credentials. It is child’s play to build the client-side software needed
to exploit this form of UNIX attack, and unless the site administrator enables file
system authentication, UNIX offers no real defense against the attacker.3

For example, suppose that a hospital system were to use a mixture of NFS-based
file servers and client systems from many vendors, and for this reason found it im-
practical to use NFS authentication. Any teenage patient with a laptop and some
time to kill could potentially connect the laptop to the hospital network, use a packet
“sniffer” application to capture and examine some packets passing by, discover the
identity of the hospital file servers and a few common user-ids, and then construct
faked file system requests for those same servers using these same user-ids. He or

3The author describes this means of attacking an NFS system with some trepidation. Yet the secu-
rity problem outlined here is so well known, and NFS deployments that disable strong security are
so common, that only the most naïve hacker would be unaware of the issue. With this in mind, it
seems more important to warn the next generation of system architects about the risk, even know-
ing that some particularly uninformed hackers could learn of this security hole from this textbook!
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she would be granted unrestricted access to the hospital’s files, and could even mod-
ify records. It is disturbing to realize that there must be literally hundreds of hos-
pitals (and other similarly sensitive systems) exposed to such attacks. Even worse,
administrators are often forced to deploy NFS insecurely, because the industry has
been unable to reach agreement on cryptographic security standards, making file
system security a largely proprietary matter. Small wonder that we read of major
security intrusions on a regular basis!

Lest this all seem very dire, it is important to realize that file systems such as
NFS with authentication enabled, Microsoft NTFS, or Carnegie Mellon’s Andrew
File System and CODA file system all use stronger authentication protocols and are
far more secure. In these systems, the client system must authenticate itself and ob-
tain cryptographic credentials, which are used to sign subsequent requests. The file
server is able to reject falsified requests because they lack appropriate credentials,
and to detect and rejected tampered requests because they will not have a correct sig-
nature. It is unfortunate that these stronger authentication protocols have not been
unified into a single standard; had this occurred, file system security would today
be far stronger than is commonly the case. Microsoft NTFS, Andrew and CODA
are also more stateful than UNIX NFS: the server tracks the files open on clients,
using this information to prevent inconsistency when a file is modified while some
client systems have it open for reading and may have cached the contents. As noted
earlier, NTFS ultimately treats such information as a hint, presumably because the
designers did not want to leave files locked on a server in the event that a client us-
ing them crashes or becomes disconnected from the network. Andrew and CODA,
in contrast, do leave such files locked, although administrative commands can be
used to manually release locks if necessary.

Notice that statelessness and a relaxed approach to authentication are two sepa-
rate issues, although in practice they often go hand-in-hand. What makes NFS state-
less is a server design in which the server does not worry about copies of vnodes
or file blocks on client systems. The UNIX client protocol is responsible for notic-
ing staleness (in practice, applications are expected to use locking if they want to
avoid potential problems). Even when NFS runs with authentication enabled, it re-
mains a stateless architecture. Microsoft’s file system, and the two CMU-developed
file systems, employ not just stronger authentication mechanisms, but also forms of
statefulness. One “sees” the statelessness of the NFS file system in many situations:
when a create operation returns EEXISTS and yet the file did not exist before the
request was issued, when a file read returns a stale cached file block rather than
the most recently updated version, or when a change visible on a client system is
nonetheless not seen by the server, perhaps for a long time.

NFS does what it can to conceal its statelessness from the client. As we have
seen, client-side cached file blocks and vnodes in the cache represent the main form
of state present in an NFS configuration. The approach used to ensure that this in-
formation is valid represents a compromise between performance objectives and se-
mantics. Each time a file is opened, NFS verifies that the cached vnode is still valid.
The file server, for its part, treats a request as invalid if the file has been written (by
some other client system) since the vnode and its associated file handle was issued.
Thus, by issuing a single open request, the client system is able to learn whether the
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data blocks cached on behalf of the file are valid or not and can discard them in the
latter case.

This approach to cache validation poses a potential problem, which is that if
a client workstation has cached data from an open file, changes to the file that
originate at some other workstation will not invalidate these cached blocks, and
no attempt to authenticate the file handle will occur. For example, suppose that
process q on client workstation a has file F open, and then process p on client
workstation b opens F , writes modified data into it, and then closes it. Although
F will be updated on the file server, process q may continue to observe stale
data for an unlimited period of time, because its cache subsystem has no occa-
sion to check for staleness of the vnode. Indeed, short of closing and reopening
the file, or accessing some file block that is not cached, q might never see the
updates!

One case where this pattern of behavior can become visible to a UNIX NFS user
arises when a pipeline of processes is executed with each process on a different
computer. If p is the first program in such a pipeline and q is the second program, p

could easily send a message down the pipe to q telling it to look into the file, and q

will now face the stale data problem. UNIX programmers often encounter problems
such as this and work around them by modifying the programs to use fflush and
fsync system calls to flush the cache at p and to empty q’s cache of cached records
for the shared file.

NFS vendors provide a second type of solution to this problem through an op-
tional locking mechanism, which is accessed using the flock system call. If this
optional interface is used, the process attempting to write the file would be unable
to open it for update until the process holding it open for reads has released its read
lock. Conceptually, at least, the realization that the file needs to be unlocked and
then relocked would sensitize the developer of process p to the need to close and
then reopen the file to avoid access anomalies, which are well documented in NFS.
At any rate, file sharing is not all that common in UNIX, as demonstrated in some
studies (see Ousterhout et al. 1985), where it was found that most file sharing is
between programs executed sequentially from the same workstation.

The NFS protocol is thus stateless but there are quite a few situations in which
the user can glimpse the implementation of the protocol because its statelessness
leads to weakened semantics compared to an idealized file system accessed through
a single cache. Moreover, as noted in the previous chapter, there are also situations in
which the weak error reporting of RPC protocols is reflected in unexpected behavior,
such as the file create operation of Sect. 6.8, which incorrectly reported that a file
could not be created because a reissued RPC fooled the file system into thinking the
file already existed.

Similar to the basic UNIX file system, NFS is designed to prefetch records when
it appears likely that they will soon be needed—for example, if the application pro-
gram reads the first two blocks of a file, the NFS client-side software will typically
fetch the third block of that file without waiting for a read request, placing the result
in the cache. With a little luck, the application will now obtain a cache hit and be
able to start processing the third block even as the NFS system fetches the fourth
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one. One can see that this yields performance similar to that of simply transfer-
ring the entire file at the time it was initially opened. Nonetheless, the protocol is
relatively inefficient in the sense that each block must be independently requested,
whereas a streaming style of transfer could avoid these requests and also handle
acknowledgements more efficiently. In the following text, we will look at some file
systems that explicitly perform whole-file transfers and that are able to outperform
NFS when placed under heavy load.

For developers of mission-critical applications, the reliability of the file server is
of obvious concern. One might want to know how failures would affect the behavior
of operations. With NFS, as normally implemented, a failure can cause the file server
to be unavailable for long periods of time, can partition a client from a server, or can
result in a crash and then reboot of a client. The precise consequences depend on the
way the file system was being used just prior to the crash. For the situations where
a server becomes unreachable or crashes and later reboots, the client program may
experience timeouts, which would be reported to the application layer as errors, or
it may simply retry its requests periodically, for as long as necessary until the file
server restarts. In the latter case, an operation will be reissued after a long delay,
and there is some potential for operations to behave unexpectedly, as in the case of
create. Client failures, on the other hand, are completely ignored by the server.

Because the NFS client-side cache uses a write-through policy, in such a situation
a few updates may be lost but the files on the server will not be left in an extremely
stale state. The locking protocol used by NFS, however, will not automatically break
locks during a crash—hence, files locked by the client will remain locked until the
application detects this condition and forces the locks to be released, using com-
mands issued from the client system or from some other system. There is a mode in
which failures automatically cause locks to be released, but this action will only oc-
cur when the client workstation is restarted, presumably to avoid confusing network
partitions with failure/reboot sequences.

Thus, while the stateless design of NFS simplifies it considerably, the design also
introduces serious reliability concerns. Our discussion has touched on the risk of
processes seeing stale data when they access files, the potential that writes could be
lost, and the possibility that a critical file server might become unavailable due to a
network or computer failure. If you are building an application for which reliability
is critical, any of these cases could represent a very serious failure. The enormous
success of NFS should not be taken as an indication that reliable applications can in
fact be built over it, but rather as a sign that failures are really not all that frequent in
modern computing systems and that most applications are not particularly critical!
In a world where hardware was less reliable or the applications were more critical,
protocols such as the NFS protocol might be considerably less attractive.

Our discussion has focused on the case of a normal NFS server. There are ver-
sions of NFS that support replication in software for higher availability: R/NFS and
Deceit (see Siegel et al. 1989), HA-NFS (see Bhide et al. 1991), and Harp (see
Ladin et al. 1990, 1992; Liskov et al. 1991), as well as dual-ported NFS server units
in which a backup server can take control of the file system. The former approaches
employ process-group communication concepts of a sort we will discuss later, al-
though the protocol used to communicate with client programs remains unchanged.
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By doing this, the possibility for load-balanced read access to the file server is
created, enhancing read performance through parallelism. At the same time, these
approaches allow continuous availability even when some servers are down. Each
server has its own disk, permitting tolerance of media failures. And, there is a pos-
sibility of varying the level of the replication selectively, so that critical files will
be replicated and non-critical files can be treated using conventional nonreplicated
methods. The interest in such an approach is that any overhead associated with file
replication is incurred only for files where there is also a need for high availability,
and hence the multiserver configuration comes closer to also giving the capacity and
performance benefits of a cluster of NFS servers. Many users like this possibility of
paying only for what they use.

The dual-ported hardware approaches, in contrast, primarily reduce the time to
recovery. They normally require that the servers reside in the same physical location,
and are intolerant of media failure, unless a mirrored disk is employed. Moreover,
these approaches do not offer benefits of parallelism: One pays for two servers, or
for two servers and a mirror disk, as a form of insurance that the entire file system
will be available when needed. These sorts of file servers are, consequently, expen-
sive. On the other hand, their performance is typically that of a normal server—there
is little or no degradation because of the dual configuration.

Clearly, if the performance degradation associated with replication can be kept
sufficiently small, the mirrored server and/or disk technologies will look expensive.
Early generations of cluster-server technology were slow, hence software performed
relatively poorly when compared with mirroring. However, the trend seems to be for
this overhead to become smaller and smaller, in which case the greater flexibility
and enhanced read performance, due to parallelism, would argue in favor of the
NFS cluster technologies.

Yet another file system reliability technology has emerged into prominence over
the past decade or so. It involves the use of clusters or arrays of disks to implement
a file system that is more reliable than any of the component disks. Such so-called
RAID file systems (see Patterson et al. 1988) normally consist of a mixture of hard-
ware and software: the hardware for mediating access to the disks themselves, and
the software to handle the buffer pool, oversee file layout, and optimize data access
patterns. The actual protocol used to talk to the RAID device over a network would
be the same as for any other sort of remote disk: It might be the NFS protocol or
some other remote file access protocol. The use of RAID in the disk subsystem itself
would normally not result in protocol changes.

RAID devices typically require physical proximity of the disks to one another
(this is needed by the hardware). The mechanism that implements the RAID is typ-
ically constructed in hardware and employs a surplus disk to maintain redundant
data in the form of parity for sets of disk blocks; such an approach permits a RAID
system to tolerate one or more disk failures or bad blocks, depending on the way the
system is configured. A RAID is thus a set of disks that mimics a single more reli-
able disk unit with roughly the summed capacity of its components, minus overhead
for the parity disk. However, even with special hardware, management and config-
uration of RAID systems can require specialized software architectures (see Wilkes
et al. 1995).
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Similar to the case for a mirrored disk, the main benefits of a RAID architec-
ture are high availability in the server itself, together with large capacity and good
average seek time for information retrieval. In a large-scale distributed application,
the need to locate the RAID device at a single place, and its reliance on a single
source of power and software infrastructure, often means that in practice such a file
server has the same distributed reliability properties as any other form of file server.
In effect, the risk of file server unavailability as a source of downtime is reduced,
but other infrastructure-related sources of file system unavailability remain to be ad-
dressed. In particular, if a RAID file system implements the NFS protocol, it would
be subject to all the limitations of the NFS architecture.

6.13 Stateful File Servers

The performance of NFS is limited by its write-through caching policy, which has
led developers of more advanced file systems to focus on improved caching mech-
anisms and, because few applications actually use the optional locking interfaces,
on greater attention to cache validation protocols. In this section, we briefly discuss
some of the best-known stateful file systems. Breakout 6.1 discusses the Andrew
File System.

6.1 The Andrew File System (AFS)
Although the Andrew File System (AFS) was developed roughly two decades
ago, the system continued to be widely cited for the innovative way that it
combined a strong security architecture with file consistency guarantees, and
was something of a model for the Windows file system, which uses a very
similar approach to achieve comparable guarantees. Andrew was developed
at Carnegie Mellon University and subsequently used as the basis of a world-
wide file system product offered by Transarc, Inc. (see Satyanarayanan et al.
1985, 1989; Spasojevic and Satyanarayanan 1996), a company that was ulti-
mately acquired by IBM. The basic ideas are easily summarized.
AFS was built with the assumption that the Kerberos authentication technol-
ogy would be available. We present Kerberos in Chap. 18, and therefore limit
ourselves to a brief summary of the basic features of the system here. When a
user logs in (and, later, periodically, if the user remains connected long enough
for timers to expire), Kerberos prompts for a password. Using a secure proto-
col, which employs DES to encrypt sensitive data, the password authenticates
the user to the Kerberos server, which will now act as a trustworthy intermedi-
ary in establishing connections between the user and the file servers he or she
will access. The file servers similarly authenticate themselves to the Kerberos
authentication server at startup.
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In Andrew, file system access is by whole-file transfer, except in the case of
very large files, which are treated as sets of smaller ones. Files can be cached
in the AFS subsystem on a client, in which case requests are satisfied out of
the cached information whenever possible (in fact, there are two caches—
one of file data and one of file status information—but this distinction need
not concern us here). The AFS server tracks the clients that maintain cached
copies of a given file, and, if the file is opened for writing, uses callbacks to
inform those clients that the cached copies are no longer valid. Additional
communication from the client to the server occurs frequently enough so that
if a client becomes disconnected from the server, it will soon begin to con-
sider its cached files to be potentially stale. (Indeed, studies of AFS file server
availability have noted that disconnection from the server is a more common
source of denial of access to files in AFS than genuine server downtime.)
AFS provides a strong form of security guarantee, based on access control
lists at the level of entire directories. Because the Kerberos authentication
protocol is known to be highly secure, AFS can trust the user identification
information provided to it by client systems. Short of taking over a client
workstation, an unauthorized user would have no means of gaining access
to cached or primary copies of a file for which access is not permitted. AFS
destroys cached data when a user logs out or an authorization expires and is
not refreshed (see Bellovin and Merritt 1990; Birrell 1985; Lampson et al.
1992; Satyanarayanan et al. 1985, 1989; Schiller 1994; Steiner et al. 1988).
At its peak level of use, AFS functioned as a wide area file system, that in-
cluded perhaps 1,000 servers and 20,000 clients in ten countries—all united
within a single file system name space (see Spasojevic and Satyanarayanan
1996). Approximately 100,000 users used the system on a regular basis. Ob-
viously, today we would not call this particularly large scale, but at the time, it
was the largest scale file system deployment in steady use, and was therefore
a topic of great interest and careful study. Interestingly, it turned out that in
AFS, more than 96 percent of file system accesses were successfully resolved
through cache hits, and server inaccessibility (primarily due to communica-
tion timeouts) was as little as a few minutes per day. Moreover, this was true
even when a significant fraction of file references were to remote files.
Today’s Windows file system is much like AFS in many ways, and achieves
similar success. Of course, the cloud has brought us much larger file systems:
user’s who store data on a cloud platform such as GoogleDocs or who use
Amazon’s AC3 storage infrastructure are effectively accessing file systems
literally millions of times larger than AFS. Yet many of the lessons learned in
building AFS shaped these systems, and if AFS itself has faded into history,
its impact remains large. Moreover, whereas we can learn a great deal about
AFS at the most detailed levels, these more contemporary large-scale systems
are proprietary products that compete in a very hotly contested arena for cloud
computing. The vendors who built and operate them are thus loath to reveal a
similar level of detail.
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Work on stateful file systems architectures can be traced in part to an influential
study of file access patterns in the Sprite system at Berkeley (see Baker et al. 1991).
This work sought to characterize the file system workload along a variety of axes:
read/write split, block reuse frequency, file lifetimes, and so forth. The findings, al-
though not surprising, were at the same time eye-openers for many of the researchers
in this field. In this study, it was discovered that all file access was sequential, and
that there was very little sharing of files between different programs. When file shar-
ing was observed, the prevailing pattern was the simplest one: One program tended
to write the file, in its entirety, and then some other program would read the same
file. Often (indeed, in most such cases), the file would be deleted shortly after it was
created. In fact, most files survived for less than ten seconds or longer than 10,000
seconds. The importance of cache consistency was explored in this work (it turned
out to be quite important, but relatively easy to enforce for the most common pat-
terns of sharing), and the frequency of write/write sharing of files was shown to be
so low that this could almost be treated as a special case. (Later, there was con-
siderable speculation that on systems with significant database activity, this finding
would have been challenged.) Moreover, considerable data were extracted on pat-
terns of data transfer from server to client: rate of transfer, percentage of the typical
file that was transferred, and so forth. Out of this work came a new generation of file
systems that used closer cooperation between client and file system to exploit such
patterns.

Best known among existing stateful file systems is the Windows file system, al-
though as noted earlier, Windows is in some ways more of a stateless than a stateful
system. Basically, NTFS starts with an NFS-like client/server structure, although us-
ing cryptographic authentication to prevent unauthorized file access. Layered over
this basic mechanism, however, is an event notification subsystem that will notify
applications when parts of the file system that they are using change. For example, a
program displaying a file system directory (a folder) can register itself to receive an
event notifying it if that directory changes, and then redisplay the modified contents.
Moreover, the Windows file system has a coherent caching mechanism, so that a file
cannot be modified by more than one program at a time without using a special lock-
ing interface, and any program reading a file will see the most current data. (This can
be very irritating, of course, if a program crashes without unlocking the file). Un-
fortunately, however, relatively little has been written about the detailed design and
performance of the Windows file system (see Vogels 1999). Rather than speculate,
we will instead look closely at some other systems for which a great deal of detail is
available.

Examples of well-studied file systems that employ a stateful approach to provide
increased performance (as opposed to availability) are AFS (see Howard et al. 1987;
Satyanarayanan et al. 1985, 1989) and Sprite (see Ousterhout et al. 1988; Srinivasan
and Mogul 1989), a research file system and operating system developed at Uni-
versity of California, Berkeley. On the availability side of the spectrum, the Coda
project (see Kistler and Satyanarayanan 1992; Mummert et al. 1995), a research
effort at Carnegie Mellon University, takes these ideas one step further, integrating
them into a file system specifically for use on mobile computers that operate in a dis-
connected, or partially connected, mode. Ficus, a project at UCLA, uses a similar
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approach to deal with file replication in very wide area networks with nonuniform
connectivity and bandwidth properties. To varying degrees, these systems can all be
viewed as stateful ones in which some of the information maintained within client
workstations is guaranteed to be coherent. The term stateful is used a little loosely
here, particularly in comparison with the approaches we will examine in Chap. 14.
Perhaps it would be preferable to say that these systems are “more stateful” than
the NFS architecture, gaining performance through the additional state. Among the
four, only Sprite actually provides strong cache coherence to its clients. The other
systems provide other forms of guarantees, which are used either to avoid inconsis-
tency or to resolve inconsistencies after they occur. Finally, we will briefly discuss
XFS, a file system developed at the University of California, Berkeley, which ex-
ploits the file system memory of client workstations as an extended buffer pool,
paging files from machine to machine over the network to avoid the more costly I/O
path from a client workstation over the network to a remote disk.

Both AFS and Sprite replace the NFS write-through caching mechanism and file
handle validation protocols with alternatives that reduce costs. The basic approach
in AFS is to cache entire files, informing the server that a modified version of a
file may exist in the client workstation. Through a combination of features, such as
whole-file transfers on file open and for write back to the server, and by having the
file server actively inform client systems when their cached entries become invalid,
considerable performance improvements are obtained with substantially stronger
file access semantics than for NFS. Indeed, the workload on an AFS server can be
an order of magnitude or more lower than that for an NFS server, and the perfor-
mance observed by a client is comparably higher for many applications. AFS was
commercialized subsequent to the initial research project at CMU, becoming the
component technology for a line of enterprise file systems (worldwide file systems)
marketed by Transarc, a subsidiary of IBM.

Sprite, which caches file system blocks (but uses a large 4 KB block size), takes
the concept of coherent caching one step further, using a protocol in which the server
actively tracks client caching, issuing callbacks to update cached file blocks if up-
dates are received. The model is based on the caching of individual data blocks, not
whole files, but the client caches are large enough to accommodate entire files. The
Sprite approach leads to such high cache hit rates that the server workload is reduced
to almost pure writes, an observation that triggered some extremely interesting work
on file system organizations for workloads that are heavily biased towards writes.
Similar to AFS, the technology greatly decreases the I/O load and CPU load on the
servers that actually manage the disk.

Sprite is unusual in two ways. First, the system implements several different
caching policies depending upon how the file is opened: One policy is for read-only
access; a second and more expensive one is used for sequential write access, which
occurs when a file is updated by one workstation and then accessed by a second one
later (but in which the file is never written simultaneously from several systems);
and a third policy is used for concurrent write access, which occurs when a file
is written concurrently from several sources. This last policy is very rarely needed
because Sprite does not cache directories and is not often used in support of database



6.13 Stateful File Servers 231

applications. Second, unlike NFS, Sprite does not use a write-through policy. Thus, a
file that is opened for writing, updated, then closed and perhaps reopened by another
application on the same machine, read, and then deleted, would remain entirely in
the cache of the client workstation. This particular sequence is commonly seen in
compilers that run in multiple passes and generate temporary results and in editors
that operate on an intermediate copy of a file, which will be deleted after the file is
rewritten and closed. The effect is to greatly reduce traffic between the client and
the server relative to what NFS might have, but also to leave the server out of date
with respect to a client system that may be writing cached files.

Sequential write sharing is handled using version numbers. When a client opens a
file, the server returns the current version number, permitting the client to determine
whether or not any cached records it may have are still valid. When a file is shared
for concurrent writing, a more costly but simple scheme is used, whereby none of
the clients are permitted to cache it. If the status of a file changes because a new
open or close has occurred, Sprite issues a callback to other clients that have the file
open, permitting them to dynamically adapt their caching policy in an appropriate
manner. Notice that because a stateless file system such as NFS has no information
as to its current client set, this policy would be impractical to implement within NFS.
On the other hand, Sprite faces the problem that if the callback RPC fails, it must
assume that the client has genuinely crashed; the technology is thus not tolerant
of communication outages that can partition a file server from its clients. Sprite
also incurs costs that NFS can sometimes avoid: Both open and close operations
must be performed as RPCs, and there is at least one extra RPC required (to check
consistency) in the case where a file is opened, read quickly, and then closed.

The recovery of a Sprite server after a crash can be complicated, because some
clients may have had files opened in a cache for writing mode. To recover, the server
makes use of its knowledge of the set of clients that had cached files for writing,
which is saved in a persistent storage area, and of the fact that the consistency state
of a file cannot change without the explicit approval of the server. This permits the
server to track down current copies of the files it manages and to bring itself back to
a consistent state.

The developers of Sprite commented that most of the complexity in the recovery
mechanism comes in detecting crashes and reboots, rather than in rebuilding state.
This is done by tracking the passage of RPC packets, and using periodic keep-alive
packets to detect when a client or server has crashed or rebooted: The same mech-
anism also suffices to detect network partitions. There is a cost to tracking RPC
packets, but a reliable crash and reboot detection mechanism is of course useful for
other purposes besides recovering file server state (see Srinivasan and Mogul 1989).
This may at first seem confusing, because we have seen that RPC mechanisms can-
not reliably detect failures. However, Sprite is not subject to the restrictions we cited
earlier because it can deny access to a file while waiting to gain access to the most
current version of it. Concerns about RPC arose in trying to determine the cause of
an RPC failure in real time. A system that is able to wait for a server to recover is
fortunate in not needing to solve this problem: If an apparent failure has occurred, it
can simply wait for the problem to be repaired if doing otherwise would violate file
system consistency guarantees.
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Experiments have shown the Sprite cache-consistency protocols to be highly ef-
fective in reducing traffic to the file server and preserving the illusion of a sin-
gle copy of each file. Performance of the system is extremely good, utilization of
servers very low, and the anomalous behaviors that can arise with NFS are com-
pletely avoided. However, the technology relies on the veracity of user-ID’s, and
hence suffers from some of the same security concerns that we will discuss in rela-
tion to NFS in Chap. 18.

The next file system we will consider is CODA, and was created to explore avail-
ability in disconnected mode, for example when a laptop user loads a file and then
edits it while offline. It can be understood as implementing a very generalized ver-
sion of the whole-file caching methods first introduced in AFS: Whereas AFS caches
individual files, CODA caches groups of files and directories so as to maintain a
complete cached copy of the user’s entire file system or application. The idea within
CODA is to track updates with sufficient precision so that the actions taken by the
user while operating on a cached copy of part of the file system can be merged
automatically into the master file system from which the files were copied. This
merge occurs when connection between the disconnected computer and the main
file system server is reestablished.

Much of the sophistication of CODA is concerned with tracking the appropriate
sets of files to cache in this manner and with optimizing the merge mechanisms
so that user intervention can be avoided when possible. (See Breakout 6.2) The
approach was extremely successful, to the point that Microsoft apparently explored
moving to a CODA-like approach for its file systems, and Doug Terry headed a
group that created a candidate product intended to play this role. However, this
occurred just as the cloud computing trend shifted thinking: rather than disconnect
and carry files away on a laptop, more and more users began to focus on a model in
which their files lived in the cloud, and could be accessed from any of a number of
platforms but without really having the true location of the definitive version shift
around. Microsoft never released its product (or at least, has not done so yet), and
today we are watching the cloud computing storage model slowly mature, but also
encounter some of the very same issues that motivated the CODA work in the first
place! Thus perhaps Doug Terry’s hard work will eventually pay off. If so, it will
not be the first time that a major project was launched, then halted, and then much
later taken off the shelves and released!

In fact CODA was not the first file system to look at versioning and related is-
sues. The much earlier Ficus system, developed by Jerry Popek’s group at UCLA
(see Reiher et al. 1994), explores a similar set of issues but focuses on an enter-
prise computing environment similar to the world-wide file system problems to
which AFS has been applied in recent years. (For brevity we will not discuss a
previous system developed by the same group, Locus (see Walter et al. 1993).) In
Ficus, the model is one of a large-scale file system built of file servers that logi-
cally maintain replicas of a single file system image. Communication connectivity
can be lost and servers can crash—hence, at any point, a server will have replicas
of some parts of the file system and will be out of touch with some other repli-
cas for the same data. This leads to an approach in which file type information is
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used both to limit the updates that can be performed while a portion of the file sys-
tem is disconnected from other segments, and to drive a file merge process when
communication is reestablished (see Heidemann and Popek 1995). Where CODA
is focused on disconnected operation, however, Ficus emphasizes support for pat-
terns of communication seen in large organizations that experience bandwidth limits
or partitioning problems that prevent servers from contacting each other for brief
periods of time. The resulting protocols and algorithms are similar to the ones
used in CODA, but place greater attention on file-by-file reconciliation methods,
whereas CODA is oriented towards mechanisms that deal with groups of files as an
ensemble.

All of these systems are known for additional contributions beyond the ones we
have discussed. CODA, for example, makes use of a recoverable virtual memory
mechanism, which offers a way to back out changes made to a segment of virtual
memory, using a logging facility that performs replay on behalf of the user. Ficus
is also known for work on stackable file systems, in which a single file system in-
terface is used to provide access to a variety of types of file-like abstraction. These
contributions, and others not cited here, are beyond the scope of our present discus-
sion.

The last file system we will cover here is the Google File System, often referred
to as GFS. This file system is used only within Google’s data centers and supports
all sorts of cloud computing activities. Because so many of Google’s file are mas-
sive, the architecture is biased towards efficient support for very large file transfers,
leading to an interesting hierarchical structure.

The basic architecture is easily summarized. At the conceptual core of GFS is
a subsystem called the master, running as a small replicated server that can handle
very large data rates, but does not deal directly with file system data at all. The
requests to this server are from clients trying to open files, and the responses it
sends them tell those clients where to find the file: in effect, the client is redirected
to what GFS calls a chunk server.

Chunk servers manage the real data. Because files are sometimes so large at
Google, the approach treats a file as a set of chunks, 64 MB in length (actual chunks
can be shorter, obviously, if a file does not evenly split into 64 MB parts, and in any
case this chunk size is a parameter that Google may have subsequently played with).
Each chunk is replicated a minimum of three-fold for fault-tolerance, but perhaps to
a greater extent if the file is heavily used in a read-intensive manner.

Thus, a client seeking a file asks the master which chunk servers have the desired
content, and is granted a time-limited “lease” to read the desired chunk from a suit-
able chunk server. Then, as long as the lease is still valid, it fetches the content by
downloading from the chunk server. At this stage it can download just portions of
the chunk, or the whole thing.

File updates are handled by granting the application an update lease on a file.
When granted, such a lease gives the user permission to update the master chunk
for a limiter period of time (the leaser can be renewed, of course). The chunk servers
themselves then collaborate to replicate the new version to the desired level, invali-
dating old versions if any remain.
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For finer-grained synchronization, applications use the Chubby locking service.
GFS is often used in conjunction with Chubby (and the GFS implementation uses
Chubby internally), but locking is still treated as a separate task that occurs outside
the file system itself.

In Chap. 5, when we discussed cloud computing infrastructure components, we
looked at BigTable. That system layers cleanly onto GFS. Thus Google applications
have choices: they can work with relatively conventional (albeit potentially enor-
mous) files, or if they prefer, can create virtual tables using BigTable and treat their
storage in a more structured manner. The popularity of BigTable at Google suggests
that for many cloud computing purposes, this loosely structured approach is often
the better fit to what the application developer has in mind.

6.2 Mobile File Access in CODA
The challenge faced by CODA is easily appreciated when the following ex-
ample is considered. Suppose that Fred and Julia are collaborating on a major
report to an important customer of their company. Fred is responsible for cer-
tain sections of the report and Julia for others, but these sections are also cited
in the introductory material and boilerplate used to generate the report as a
whole. As many readers of this book will appreciate, there are software tools
with varying degrees of ease of use for this type of collaborative work. The
most primitive tools provide only for locking of some sort, so that Julia can
lock Fred out of a file while she is actually editing it. More elaborate ones
actually permit multiple users to concurrently edit the shared files, annotating
one another’s work, and precisely tracking who changed what through mul-
tiple levels of revisions. Such tools typically view the document as a form of
database and keep some type of log or history showing how it evolved through
time.
If the files in which the report are contained can be copied onto portable
computers that become disconnected from the network, however, these an-
notations will be introduced independently and concurrently on the vari-
ous copies. Files may be split or merged while the systems are discon-
nected from each other, and even the time of access cannot be used to or-
der these events, since the clocks on computers can drift or be set incor-
rectly for many reasons. Thus, when copies of a complex set of files are re-
turned to the file system from which they were removed, the merge problem
becomes a nontrivial one both at the level of the file system itself (which
may have to worry about directories that have experienced both delete and
add operations of potentially conflicting sorts in the various concurrent users
of the directory) and at the level of the application and its concept of file
semantics.

Not surprisingly, systems such as CODA and Ficus incorporate special-purpose
programming tools and applications that are well matched to their styles of dis-
connected and partially connected operation (see Mummert et al. 1995; Reiher et
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al. 1994). These tools include, for example, e-mail systems that maintain logs of
actions taken against mailboxes, understanding how to delete mail that has been
deleted while in a disconnected mode, or merging e-mails that arrived separately
in different copies of a mailbox that was split within a large-scale distributed envi-
ronment. One can speculate that, over time, a small and fairly standard set of tools
might emerge from such research and that developers would implement special-
ized disconnected applications, which rely on well-tested reconciliation methods to
recorrect inconsistencies that occur during periods of disconnected interaction.

The last of the stateful file systems mentioned at the start of this section is XFS,
a Berkeley project that seeks to exploit the memory of the client workstations con-
nected to a network as a form of distributed storage region for a high-performance
file server (see Anderson et al. 1995). XFS could be called a “serverless network
file system,” although in practice the technology would more often be paired to a
conventional file system, which would serve as a backup storage region. The ba-
sic idea of XFS, then, is to distribute the contents of a file system over a set of
workstations so that when a block of data is needed, it can be obtained by a direct
memory-to-memory transfer over the network rather than by means of a request to a
disk server, which, having much less memory at its disposal, may then need to delay
while fetching it from the disk itself.

XFS raises some very complex issues of system configuration management and
fault tolerance. The applications using an XFS need to know what servers belong to
it, and this set changes dynamically over time. Thus, there is a membership manage-
ment problem that needs to be solved in software. Workstations are reliable, but not
completely reliable—hence, there is a need to deal with failures. XFS does this by
using a RAID-style storage scheme in which each set of n workstations is backed
by an n + 1 machine, which maintains a parity block. If one of the n + 1 machines
fails, the missing data can be regenerated from the other n. Moreover, XFS is dy-
namically reconfigurable, creating some challenging synchronization issues. On the
positive side, all of this complexity brings with it a dramatic performance improve-
ment when XFS is compared with more traditional server architectures. It should be
noted that XFS draws heavily on the log-structured file system (see Rosenblum and
Ousterhout 1991), a technology that is beyond the scope of this book.

The reliability properties of these stateful file systems go well beyond those of
NFS. For AFS and Sprite, reliability is limited by the manner in which the servers
detect the failure of clients, since a failed client clears its cache upon recovery and
the server needs to update its knowledge of the state of the cache accordingly. In
fact, both AFS and Sprite detect failures through timeouts—hence, there can be pat-
terns of failure that would cause a client to be sensed incorrectly as having failed,
leaving its file system cache corrupted until some future attempt to validate cache
contents occurs, at which point the problem would be detected and reported. In
Sprite, network partition failures are considered unlikely because the physical net-
work used at Berkeley is quite robust and, in any case, network partitions cause the
client workstations to initiate a recovery protocol. Information concerning the pre-
cise handling of network partitions, or about methods for replicating AFS servers,
was not available at the time of this writing. XFS is based on a failure model similar
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to that of AFS and Sprite, in which crash failures are anticipated and dealt with in
the basic system architecture, but partitioning failures that result in the misdiagnosis
of apparent crash failures is not an anticipated mode of failure.

CODA and Ficus treat partitioning as part of their normal mode of operation,
dealing with partitioning failures (or client and server failures) using the model of
independent concurrent operation and subsequent state merge that was presented
earlier. Such approaches clearly trade higher availability for a more complex merge
protocol and greater sophistication within the applications themselves. (See Break-
out 6.3.)

6.14 Distributed Database Systems

Distributed database systems represent another use of client/server architectures in
distributed systems. Unlike the case of distributed file systems, however, database
technologies use a special programming model called the transactional approach
and support this through a set of special protocols (see Gray 1978; Gray and Reuter
1993). The reliability and concurrency

6.3 Lotus Notes
The Lotus Notes system is a commercial database product that uses a
client/server model to manage collections of documents, which can draw upon
a great variety of applications (word processing, spreadsheets, financial anal-
ysis packages, etc.). The system is widely popular because of the extremely
simple sharing model it supports and its close integration with e-mail and
chat facilities, supporting what has become known as a groupware collabora-
tion model. The term “computer-supported collaborative work,” or CSCW, is
often used in reference to activities that are supported by technologies such as
Lotus Notes.
Notes is structured as a client/server architecture. The client system is a graph-
ical user interface, which permits the user to visualize information within
the document database, create or annotate documents, “mine” the database
for documents satisfying some sort of a query, and exchange e-mail or send
memos which can contain documents as attachments. A security facility per-
mits the database to be selectively protected using passwords, so that only
designated users will have access to the documents contained in those parts
of the database. If desired, portions of especially sensitive documents can be
encrypted so that even a database administrator would be unable to access
them without the appropriate passwords.
Lotus Notes also provides features for replication of portions of its database
between the client systems and the server. Such replication permits a user to
carry a self-contained copy of the desired documents (and others to which
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they are attached) and update them in a disconnected mode. Later, when the
database server is back in contact with the user, updates are exchanged to
bring the two sets of documents back into agreement. Replication of docu-
ments is also possible among Notes servers within an enterprise, although the
Notes user must take steps to limit concurrent editing when replication is em-
ployed. (This is in contrast with CODA, which permits concurrent use of files
and works to automatically merge changes.) At the time of this writing, Notes
did not support replication of servers for increased availability, but treated
each server as a separate security domain with its own users and passwords.
Within the terminology of this chapter, Lotus Notes is a form of partially state-
ful file server, although presented through a sophisticated object model and
with powerful tools oriented towards cooperative use by members of work-
groups. However, many of the limitations of stateless file servers are present
in Notes, such as the need to restrict concurrent updates to documents that
have been replicated. The Notes user environment is extremely well engi-
neered and is largely successful in presenting such limitations and restrictions
as features that the skilled Notes user learns to employ. In effect, by drawing
on semantic knowledge of the application, the Lotus Notes developers were
able to work around limitations associated with this style of file server. The
difficulty encountered in distributed file systems is precisely that they lack this
sort of semantic knowledge and are consequently forced to solve such prob-
lems in complete generality, leading to sometimes surprising or nonintuitive
behavior, reflecting their distributed infrastructure.

semantics of a database are defined by this model, and its efficient implementation
is a major topic of research—and an important arena for commercial competition.
For the purposes of this chapter, we will simply discuss the main issues, returning
to implementation issues in Chap. 20.

Transactional systems are based upon a premise that applications can be di-
vided into client programs and server programs, such that the client programs
have minimal interactions with one another. Such an architecture can be visual-
ized as a set of wheels, with database servers forming the hubs to which client
programs are connected by communication pathways—the spokes. One client pro-
gram can interact with multiple database servers, but although the issues this raises
are well understood, such multi-database configurations are relatively uncommon
in commercial practice. Existing client/server database applications consist of some
set of disjoint groups, each group containing a database server and its associ-
ated clients, with no interaction between client programs except through sharing
a database, and with very few, if any, client programs that interact with multi-
ple databases simultaneously. Moreover, although it is known how to replicate
databases for increased availability and loadbalancing (see Bernstein et al. 1987;
Gray and Reuter 1993), relatively little use is made of this option in existing sys-
tems. Thus, the hubs of distributed database systems rarely interact with one another.
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(We will see why this is the case in Part III; ultimately, the issue turns out to be one
of performance.)

A central premise of the approach is that each interaction by a client with the
database server can be structured as a begin event, followed by a series of database
operations (these would normally be database queries, but we can think of them
as read and update operations and ignore the details), followed by a commit or
abort operation. Such an interaction is called a transaction, and a client program
will typically issue one or more transactions, perhaps interacting with a user or the
outside world between the completion of one transaction and the start of the next.
A transactional system should guarantee the persistence of committed transactions,
although we will see that high-availability database systems sometimes weaken this
guarantee to boost performance. When a transaction is aborted, on the other hand, its
effects are completely rolled back, as if the transaction had never even been issued.

Transactional client/server systems are stateful: Each action by the client assumes
that the database remembers various things about the previous operations done by
the same client, such as locking information that comes from the database concur-
rency control model and updates that were previously performed by the client as
part of the same transaction. The clients can be viewed as maintaining coherent
caches of this same information during the period while a transaction is active (not
yet committed).

The essential property of the transactional execution model, which is called the
serializability model, is that it guarantees isolation of concurrent transactions. Thus,
if transactions T1 and T2 are executed concurrently by client processes p and q , the
effects will be as if T1 had been executed entirely before T2, or entirely after T2—
the database actively prevents them from interfering with one another. The reasoning
underlying this approach is that it will be easier to write database application pro-
grams to assume that the database is idle at the time the program executed. Rather
than force the application programmer to cope with real-world scenarios in which
multiple applications simultaneously access the database, the database system is
only permitted to interleave operations from multiple transactions if it is certain that
the interleaving will not be noticeable to users. At the same time, the model frees
the database system to schedule operations in a way that keeps the server as busy as
possible on behalf of a very large number of concurrent clients. (See Fig. 6.11.)

Notice that simply running transactions one at a time would achieve the serial-
izability property.4 However, it would also yield poor performance, because each
transaction may take a long time to execute. By running multiple transactions at
the same time, and interleaving their operations, a database server can give greatly

4An important special case arises in settings where each transaction can be represented as a single
operation, performing a desired task and then committing or aborting and returning a result. Many
distributed systems are said to be transactional but, in fact, operate in this much more restrictive
manner. However, even if the application perceives a transaction as being initiated with a single
operation, the database system itself may execute that transaction as a series of operations. These
observations motivate a number of implementation decisions and optimizations, which we discuss
in Chap. 20.
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Fig. 6.11 A nonserializable transaction interleaving (left), and one serializable in the order T2,
T1 (right). Each transaction can be understood as a trace, which records the actions of a program
that operates on the database, oblivious to other transactions that may be active concurrently. In
practice, of course, the operations become known as the transaction executes, although our example
shows the situation at the time these two transactions reach their commit points. The database is
presented with the operations initiated by each transaction, typically one by one, and schedules
them by deciding when to execute each operation. This results in an additional trace or log, showing
the order in which the database actually performed the operations presented to it. A serializable
execution is one that leaves the database in a state that could have been reached by executing the
same transactions one by one, in some order, and with no concurrency

improved performance, and system utilization levels will rise substantially, just as a
conventional uniprocessor can benefit from multitasking. Even so, database systems
sometimes need to delay one transaction until another completes, particularly when
transactions are very long. To maximize performance, it is common for client/server
database systems to require (or at least strongly recommend) that transactions be
designed to be as short as possible. Obviously, not all applications fit these assump-
tions, but they match the needs of a great many computing systems.

There are a variety of options for implementing the serializability property. The
most common is to use locking—for example, by requiring that a transaction obtain
a read-lock on any data item that it will read, and a write-lock on any data item it will
update. Read-locks are normally nonexclusive: Multiple transactions are typically
permitted to read the same objects concurrently. Write-locks, however, are mutually
exclusive: An object with a write lock cannot have any other locks on it (either write
or read). In the most standard locking protocol, called two-phase locking, transac-
tions retain all of their locks until they commit or abort, and then release them as a
group. It is easy to see that this achieves serializability: If transaction Tb reads from
Ta , or updates a variable after Ta does so, Tb must first acquire a lock that Ta will
have held exclusively for its update operation. Transaction Tb will therefore have to
wait until Ta has committed and will be serialized after Ta . Notice that the trans-
actions can obtain read-locks on the same objects concurrently, but because read
operations commute, they will not affect the serialization order (the problem gets
harder if a transaction may need to upgrade some of its read-locks to write-locks).
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Concurrency control (and hence locking) mechanisms can be classified as opti-
mistic or pessimistic. The locking policy described above is a pessimistic one, be-
cause each lock is obtained before the locked data item is accessed. An optimistic
policy is one in which transactions simply assume that they will be successful in
acquiring locks and perform the necessary work in an opportunistic manner. At
commit time, the transaction also verifies that its optimistic assumption was justi-
fied (that it got lucky, in effect), and aborts if it now turns out that some of its lock
requests should in fact have delayed the computation. As one might expect, a high
rate of aborts is a risk with optimistic concurrency-control mechanisms, and they
can only be used in settings where the granularity of locking is small enough so that
the risk of a real locking conflict between two transactions is actually very low.

The pessimistic aspect of a pessimistic concurrency-control scheme reflects the
assumption that there may be frequent conflicts between concurrent transactions.
This makes it necessary for a pessimistic locking scheme to operate in a more con-
ventional manner, by delaying the transaction as each new lock request occurs until
that lock has been granted; if some other transaction holds a lock on the same item,
the requesting transaction will now be delayed until the lock-holding transaction has
committed or aborted.

Deadlock is an important concern with pessimistic locking protocols—for exam-
ple, suppose that Ta obtains a read-lock on x and then requests a write-lock on y.
Simultaneously, Tb obtains a read-lock on y and then requests a write-lock on x.
Neither transaction can be granted its lock, and in fact one transaction or the other
(or both) must now be aborted. At a minimum, a transaction that has been wait-
ing a very long time for a lock will normally abort; in more elaborate schemes, an
algorithm can obtain locks in a way that avoids deadlock or can use an algorithm
that explicitly detects deadlocks when they occur and overcomes them by aborting
one of the deadlocked transactions. Deadlock-free concurrency-control policies can
also be devised—for example, by arranging that transactions acquire locks in a fixed
order or by using a very coarse locking granularity so that any given transaction re-
quires only one lock. We will return to this topic, and related issues, in Chap. 20,
when we discuss techniques for actually implementing a transactional system.

Locking is not the only way to implement transactional concurrency control.
Other important techniques include so-called timestamped concurrency control al-
gorithms, in which each transaction is assigned a logical time of execution, and its
operations are performed as if they had been issued at the time given by the times-
tamp. Timestamped concurrency-control is relatively uncommon in the types of sys-
tem that we consider in this book—hence, for reasons of brevity, we omit any de-
tailed discussion of the approach. We do note, however, that optimistic timestamped
concurrency control mechanisms have been shown to give good performance in sys-
tems where there are few true concurrent accesses to the same data items, and that
pessimistic locking schemes give the best performance in the converse situation,
where a fairly high level of conflicting operations result from concurrent access to
a small set of data items. Additionally, timestamped concurrency-control is con-
sidered preferable when dealing with transactions that do a great deal of writing,
while locking is considered preferable for transactions that are read-intensive. It
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has been demonstrated that the two styles of concurrency control cannot be mixed:
One cannot use timestamps for one class of transactions and locks for another on
the same database. However, a hybrid scheme, which combines features of the two
approaches and works well in systems with mixtures of read-intensive and write-
intensive transactions, has been proposed.

It is common to summarize the properties of a client/server database system so
that the mnemonic ACID can be used to recall them:
• Atomicity: Each transaction is executed to completion, or not at all. The term

atomic will be used throughout this text to refer to operations that have multi-
ple suboperations but that are performed in an all-or-nothing manner. If a failure
interrupts an atomic transaction it may be necessary to back out (roll back) any
partially completed work.

• Concurrency: Transactions are executed so as to maximize concurrency, in this
way maximizing the degrees of freedom available within the server to schedule
execution efficiently (e.g., by doing disk I/O in an efficient order).

• Independence: Transactions are designed to execute independently from one an-
other. Each client is written to execute as if the entire remainder of the system
were idle, and the database server itself prevents concurrent transactions from
observing one another’s intermediate results. This is also referred to as isolation.

• Durability: The results of committed transactions are persistent.
Notice that each of these properties could be beneficial in some settings but could

represent a disadvantage in others—for example, there are applications in which one
wants the client programs to cooperate explicitly. The ACID properties effectively
constrain such programs to interact using the database as an intermediary. Indeed,
the overall model makes sense for many classical database applications, but is less
suited to message-based distributed systems consisting of large numbers of servers
and in which the programs coordinate their actions and cooperate to tolerate failures.
All of this will add up to the perspective that complex distributed systems need a
mixture of tools, which should include database technology but not legislate that
databases be used to the exclusion of other technologies.

We turn now to the question raised earlier: the sense in which transactional sys-
tems are stateful, and the implications that this has for client/server software archi-
tectures.

A client of a transactional system maintains several forms of state during the
period that the transaction executes. These include the transaction ID by which op-
erations are identified, the intermediate results of the transactional operation (values
that were read while the transaction was running or values that the transaction will
write if it commits), and any locks or concurrency-control information that has been
acquired while the transaction was active. This state is shared with the database
server, which for its part must keep original values of any data objects updated by
noncommitted transactions; keep updates sorted by transactional-ID to know which
values to commit if the transaction is successful; and maintain read-lock and write-
lock records on behalf of the client, blocking other transactions that attempt to ac-
cess the locked data items while allowing access to the client holding the locks.
The server thus knows which processes are its active clients, and must monitor their
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health in order to abort transactions associated with clients that fail before commit-
ting (otherwise, a failure could leave the database in a locked state).

The ability to use commit and abort is extremely valuable in implementing trans-
actional systems and applications. In addition to the role of these operations in defin-
ing the scope of a transaction for purposes of serializability, they also represent a
tool that can be used directly by the programmer—for example, an application be
designed to assume that a certain class of operations (such as selling a seat on an air-
line) will succeed, and to update database records as it runs under this assumption.
Such an algorithm would be optimistic in much the same sense as a concurrency-
control scheme can be optimistic. If, for whatever reason, the operation encounters
an error condition (no seats available on some flight, customer credit card refused,
etc.), the operation can simply abort and the intermediate actions that were taken
will be erased from the database. Moreover, the serializability model ensures that
applications can be written without attention to one another: Transactional serial-
izability ensures that if a transaction would be correct when executed in isolation,
it will also be correct when executed concurrently against a database server that
interleaves operations for increased performance.

The transactional model is also valuable from a reliability perspective. The isola-
tion of transactions from one another avoids inconsistencies that might occur if one
transaction were to see the partial results of some other transaction—for example,
suppose that transaction Ta increments variable x by 1 and is executed concurrently,
with transaction Tb , which decrements x by 1. If Ta and Tb read x concurrently they
might base their computations on the same initial value of x. The write operation
that completes last would then erase the other update. Many concurrent systems are
prone to bugs because of this sort of mutual-exclusion problem; transactional sys-
tems avoid this issue using locking or other concurrency control mechanisms that
would force Tb to wait until Ta has terminated, or the converse. Moreover, transac-
tional abort offers a simple way for a server to deal with a client that fails or seems
to hang: It can simply timeout and abort the transaction that the client initiated. (If
the client is really alive, its attempt to commit will eventually fail: Transactional
systems never guarantee that a commit will be successful). Similarly, the client is
insulated from the effects of server failures: It can modify data on the server without
concern that an inopportune server crash could leave the database in an inconsistent
state.

There is, however, a negative side to transactional distributed computing. As we
will see in Chap. 20, transactional programming can be extremely restrictive. The
model basically prevents programs from cooperating as peers in a distributed set-
ting, and although extensions have been proposed to overcome this limitation, none
seems to be fully satisfactory—that is, transactions really work best for applications
in which there is a computational master process, which issues requests to a set of
slave processors on which data are stored. This is, of course, a common model, but
it is not the only one. Any transactional application in which several processes know
about each other and execute concurrently is difficult to model in this manner.

Moreover, transactional mechanisms can be costly, particularly when a transac-
tion is executed on data that has been replicated for high availability or distributed
over multiple servers. The locking mechanisms used to ensure serializability can
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severely limit concurrency, and it can be very difficult to deal with transactions that
run for long periods of time, since these will often leave the entire server locked and
unable to accept new requests. It can also be very difficult to decide what to do if a
transaction aborts unexpectedly: Should the client retry it or report to the user that
it aborted? Decisions such as these are very difficult, particularly in sophisticated
applications in which one is essentially forced to find a way to roll forward.

For all of these reasons, although transactional computing is a powerful and pop-
ular tool in developing reliable distributed software systems, it does not represent a
complete model or a complete solution to all reliability issues that occur.

6.15 Applying Transactions to File Servers

Transactional access to data may seem extremely well matched to the issue of file
server reliability. Typically, however, file servers either do not implement transac-
tional functionality, or do so only for the specific case of database applications. The
reasons for this illustrate the sense in which a mechanism such as transactional data
access may be unacceptably constraining in nontransactional settings.

General-purpose computing applications make frequent and extensive use of
files. They store parameters in files, search directories for files with special names,
store temporary results in files that are passed from phase to phase of a multiphase
computation, implement ad hoc structures within very large files, and even use the
existence or nonexistence of files and the file protection bits as persistent locking
mechanisms, compensating for the lack of locking tools in operating systems such
as UNIX.

As we saw earlier, file systems used in support of this model are often designed to
be stateless, particularly in distributed systems—that is, each operation by a client is
a complete and self-contained unit. The file system maintains no memory of actions
by clients, and although the clients may cache information from the file system
(such as handles pointing to open file objects), they are designed to refresh this
information if it is found to be stale when referenced. Such an approach has the
merit of extreme simplicity. It is certainly not the only approach: Some file systems
maintain coherent caches of file system blocks within client systems, and these are
necessarily stateful. Nonetheless, the great majority of distributed file systems are
stateless.

The introduction of transactions on files thus brings with it stateful aspects that
are otherwise avoided, potentially complicating an otherwise simple system archi-
tecture. However, transactions pose more problems than mere complexity. In partic-
ular, the locking mechanisms used by transactions are ill-matched to the pattern of
file access seen in general operating systems applications.

Consider the program that was used to edit this book. When started, it displays
a list of files that end with the extension “.doc,” and waited for me to select the file
on which I wished to work. Eventually, the file selected and opened, an extended
editing session ensued, perhaps even appearing to last overnight or over a week-
end if some distraction prevented me from closing the file and exiting the program
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before leaving for the evening. In a standard transactional model, each of the read
accesses and each of the write accesses would represent an operation associated
with the transaction, and transactional serialization ordering would be achieved by
delaying these operations as needed to ensure that only serializable executions are
permitted—for example, with locks.

This now creates the prospect of a file system containing directories that are
locked against updates (because some transaction has read the contents), files that
are completely untouchable (because some transaction is updating, or perhaps even
deleting the contents), and of long editing sessions that routinely end in failure (be-
cause locks may be broken after long delays, forcing the client program to abort its
transaction and start again from scratch). It may not seem obvious that such files
should pose a problem, but suppose that a transaction’s behavior was slightly dif-
ferent as a result of seeing these transient conditions? That transaction would not be
correctly serialized if the editing transaction were now aborted, resulting in some
other state. No transaction should have been allowed to see the intermediate state.

Obviously, this analysis could be criticized as postulating a clumsy application
of transactional serializability to the file system. In practice, one would presumably
adapt the model to the semantics of the application. However, even for the specific
case of transactional file systems, the system has been less than convincing—for
example, at Xerox the early versions of the Clearinghouse software (a form of file
system used for e-mail and other user-profile information) offered a fully transac-
tional interface. Over time, this was greatly restricted because of the impractical-
ity of transactional concurrency-control in settings that involve large numbers of
general-purpose applications.

Moreover, many file-based applications lack a practical way to assign a transac-
tion-ID to the logical transaction. As an example, consider a version control software
system. Such a system seems well matched to the transactional model: A user checks
out a file, modifies it, and then checks it in; meanwhile, other users are prevented
from doing updates and can only read old copies. Here, however, many individual
programs may operate on the file over the period of the transaction. What is lacking
is a practical way to associate an identifier with the series of operations. Clearly, the
application programs themselves can do so, but one of the basic principles of relia-
bility is to avoid placing excessive trust in the correctness of individual applications;
in this example, the correctness of the applications would be a key element of the
correctness of the transactional architecture, a very questionable design choice.

On the other hand, transactional file systems offer important benefits. Most often
cited among these are the atomic update properties of a transaction, whereby a set of
changes to files is made entirely, or not at all. This has resulted in proposals for file
systems that are transactional in the limited sense of offering failure atomicity for
updates, but without carrying this to the extreme of also providing transactional se-
rializability. Hagmann’s use of group commit to reimplement the Cedar file system
(see Hagmann 1987) and IBM’s QuickSilver file system (see Schmuck and Wyllie
1991) are examples of a research efforts that are viewed as very successful in of-
fering such a compromise. However, transactional atomicity remains uncommon in
the most widely used commercial file system products because of the complexity
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associated with a stateful file system implementation. The appeal of stateless de-
sign, and the inherent reliability associated with an architecture in which the clients
and servers take responsibility only for their own actions and place limited trust in
information that they do not own directly, continues to rule the marketplace.

The most popular alternative to transactions is the atomic rename operation of-
fered by many commercially standard file systems. For complex objects represented
as a single file, or as a rooted graph of files, an application can atomically update the
collection by creating a new root object containing the modifications, or pointing to
modified versions of other files, and then rename the result to obtain the equiva-
lent effect of an atomic commit, with all the updates being installed simultaneously.
If a crash occurs, it suffices to delete the partially modified copy; the original ver-
sion will not be affected. Despite having some minor limitations, designers of fairly
complex file systems applications have achieved a considerable degree of reliabil-
ity using operations such as rename, perhaps together with an fsync operation that
forces recent updates to an object or file out to the persistent disk storage area.

In conclusion, it is tempting to apply stateful mechanisms and even transactional
techniques to file servers. Yet similar results can be obtained, for this particular
application, with less costly and cumbersome solutions. Moreover, the simplicity of
a stateless approach has enormous appeal in a world where there may be very little
control over the software that runs on client computers, and in which trust in the
client system will often be misplaced. In light of these considerations, file systems
can be expected to remain predominantly stateless even in settings where reliability
is paramount.

More generally, this point illustrates an insight to which we will return repeatedly
in this book. Reliability is a complex goal and can require a variety of tools. While
a stateless file system may be adequately reliable for one use, some other applica-
tion may find its behavior hopelessly inconsistent and impossible to work around.
A stateful database architecture works wonderfully for database applications, but it
turns out to be difficult to adapt to general purpose operating systems applications
that have less structure, or that merely have a nontransactional structure. Only a
diversity of tools, integrated in an environment that encourages the user to match
the tool to the need, can possibly lead to reliability in the general sense. No single
approach will suffice.

6.16 Related Reading

A tremendous amount has been written about client/server computing, and several
pages of references could easily have been included here. Good introductions into
the literature, including more detailed discussions of DCE and ASN.1, can be found
in Birrell and Nelson (1984), Comer and Stevens (1993), Coulouris et al. (1994),
Tanenbaum (1988).

On RPC performance, the classic reference is Shroeder and Burrows (1989). Cri-
tiques of the RPC paradigm appear in Birman and van Renesse (1994, 1996, 2010),
Tanenbaum and van Renesse (1988).
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On the problem of inconsistent failure detection with RPC and TCP (see Birman
and Glade 1995).

Other relevant publications include Bal et al. (1992), Bellovin and Merritt (1990),
Berners-Lee et al. (1994, 1995), Birrell and Nelson (1984), Braun and Diot (1995),
Brockschmidt (1994), Engler et al. (1995), Govindran and Anderson (1991), Hei-
demann and Popek (1994), Jacobson (1988, 1990), Mullender et al. (1990), Rashid
(1986), Shroeder and Burrows (1989), Thekkath and Levy (1993), von Eicken et al.
(1995).

A good reference to DCE is Open Software Foundation and to OLE-2 is
Brockschmidt (1994). Readers interested in CORBA will find Doug Schmidt’s
ACE/TAO web sites useful: http://www.cs.wustl.edu/~schmidt/; these are popular
CORBA platform technologies (ACE is the “distributed computing environment”
and TAO is a CORBA Object Request Broker implemented over ACE).

Web Services and SOAP RPC are documented at www.w3.org and in extensive
online repositories maintained by the major vendors in the field, such as IBM, Mi-
crosoft, BEA, etc.

Kerberos is discussed in Bellovin and Merritt (1990), Schiller (1994), Steiner et
al. (1988).

I am not aware of any good general reference on NFS itself, although the standard
is available from Sun Microsystems and is widely supported.

The definitive paper on performance of the Berkeley File System is McKusick et
al. (1984), Ousterhout et al. (1988), Vogels (1999). A “contrary” view on file system
performance can be found in Ganger et al. (2000).

NFS performance and access patterns is studied in Ousterhout et al. (1985) and
extended to the Sprite file system in Baker et al. (1991).

References to NFS-like file systems supporting replication include Bhide et al.
(1991), Digital Equipment Corporation (1995), Kronenberg et al. (1985), Ladin et
al. (1992), Liskov et al. (1991), Siegal (1992).

Topics related to the CMU file system work that lead to AFS are covered in
Bellovin and Merritt (1990), Birrell (1985), Howard et al. (1987), Lampson et al.
(1992), Satyanarayanan et al. (1985, 1989), Schiller (1994), Spector (1985), Steiner
et al. (1988).

CODA is discussed in Kistler and Satyanarayanan (1992), Mummert et al.
(1995). The definitive paper on the CODA file system was published in ACM TOCS:
see Kistler and Satyanarayanan (1992). Readers interested in mobile file systems
should also read about the innovative work on so-called low bandwidth file sys-
tems, as presented at SOSP in Muthitacharoen et al. (2001). In this effort, novel
compression schemes were developed to let a mobile user modify files that need
to be mirrored to the main storage system. By using a non-standard file chunking
approach, remarkable levels of compression were achieved.

MIT’s Rover Toolkit is discussed in Joseph et al. (1995).
RAID is discussed in Patterson et al. (1988). Sprite is discussed in Nelson et al.

(1987), Ousterhout et al. (1988), Srinivasan and Mogul (1989). Ficus is discussed
in Reiher et al. (1994), Locus in Heidemann and Popek (1995), Walter et al. (1993).

XFS is discussed in Anderson et al. (2009).
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The world’s largest distributed file systems are the ones used in cloud computing
systems. While there are many such file systems today (almost every cloud vendor
has one of its own), Google’s GFS is perhaps the best documented; readers should
refer to the paper by Ghemawat et al. (2003).

Additional important work on file systems includes Ganger et al. (2000), Rosen-
blum and Ousterhout (1991), McKusick et al. (1984), Hartman and Ousterhout
(1993) and Santry et al. (1999). A clever way to reduce the bandwidth needed by
mobile file systems is described in Muthitacharoen et al. (2001). Frangiapani, a
scalable distributed file system based on group communication mechanisms, is de-
scribed in Thekkath et al. (1997) and is worth reading both as an interesting paper
and because the Paxos mechanisms employed in the core of this system have been
embraced by Microsoft Corporation for internal purposes and hence could someday
become visible to developers using that company’s platforms.

Work on global memory is covered in Feeley et al. (1995), Johnson et al. (1995).
Database references for the transactional approach are studied in Bernstein et al.

(1987), Gray (1978), Gray and Reuter (1993).
Tandem’s system is presented in Bartlett et al. (1987).
Nomadic transactional systems are covered in Alonso and Korth (1993), Amir

(1995).
Transactions on file systems are discussed in Hagmann (1987), Schmuck and

Wyllie (1991).
Related work is treated in Liskov and Scheifler (1983), Liskov et al. (1991),

Macedo et al. (1993), Moss (1982).





7CORBA: The Common Object Request Broker
Architecture

With the emergence of object-oriented programming languages, such as Modula
and C++, came a recognition that object-orientation could play a role similar to
that of the OSI hierarchy for complex distributed systems. In this view, one would
describe a computing system in terms of the set of objects from which it was as-
sembled, together with the rules by which these objects interact with one another.
Object-oriented system design became a major subject for research, with many of
the key ideas pulled together for the first time by a British research effort, called
the Advanced Network Systems Architecture group, or ANSA. In this chapter, we
will briefly discuss ANSA, and then focus on CORBA, which draws on some of
the ideas introduced by ANSA, and has emerged as a widely accepted standard
for objected-oriented distributed computing. Finally, we touch briefly on J2EE and
.NET, two modern object-oriented environments that make extensive use of ideas
from CORBA.

As noted earlier, cloud computing systems generally lack anything one could
view as a truly comprehensive architecture, although they do use the web services
standards for requests from web clients that issue RPC-like requests, which are then
dispatched to services running in the first tier of the cloud for handling. Web ser-
vices, however, is still far from offering the completeness and coherent design one
sees in CORBA. Indeed, a better way to think of the cloud is to view cloud platforms
as building upon CORBA, or similar architectures (the other very well known one is
the COM architecture used in Microsoft’s .NET framework; we will say less about
that because it closely resembles CORBA in most respects).

But the best examples of CORBA use cases arise in slightly smaller settings,
where CORBA really shines. Many of today’s distributed systems are composed
of multiple subsystems that cooperate to accomplish tasks, and CORBA is ideally
matched to that sort of modularity. Thus rather than approach CORBA by think-
ing about a massive cloud-computing system that may reflect some aspects of the
CORBA architecture, it would probably be best to visualize some sort of complex
but narrower system, such as the Air Traffic Control example we have used a few
times. An ATC system would (obviously) have large numbers of subsystems: one
doing flight tracking, one talking to the controllers, one tracking weather, etc. These

K.P. Birman, Guide to Reliable Distributed Systems, Texts in Computer Science,
DOI 10.1007/978-1-4471-2416-0_7, © Springer-Verlag London Limited 2012
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would need to talk to one-another, and that form of modularity, and that level of
scale, is precisely what CORBA was invented to address.

A well known and popular implementation of the CORBA model is the TAO
system, developed by Doug Schmidt. TAO runs over a remote procedure call and
“execution environment” technology called ACE. Readers of this text who wish
to experiment with CORBA and are using a Linux platform for development are
encouraged to download ACE and TAO.

7.1 The ANSA Project

The ANSA project, headed by Andrew Herbert, was the first systematic attempt
to develop technology for modeling complex distributed systems (see Architecture
Projects Management Limited 1989, 1991a, 1991b). ANSA was intended as a tech-
nology base for writing down the structure of a complex application or system and
then translating the resulting description into a working version of that system in a
process of stepwise refinement.

Abstractly, ANSA consists of a set of models, which deal with various aspects
of distributed systems design and representation problems. The enterprise model is
concerned with the overall functions and roles of the organizational structure within
which the problem at hand is to be solved—for example, an air-traffic control system
would be an application within the air traffic control organization, an enterprise. The
information model represents the flow of information within the enterprise; in an air
traffic application this model might describe flight control status records, radar in-
puts, radio communication to and from pilots, and so forth. The computation model
is a framework of programming structures and program development tools that are
made available to developers. The model deals with such issues as modularity of the
application itself, invocation of operations, parameter passing, configuration, con-
currency and synchronization, replication, and the extension of existing languages
to support distributed computing. The engineering and technology models reduce
these abstractions to practice, providing the implementation of the ANSA abstrac-
tions and mapping these to the underlying run-time environment and its associated
technologies.

In practical terms, most users viewed ANSA as a set of rules for system design,
whereby system components could be described as objects with published inter-
faces. An application with appropriate permissions could obtain a handle on the
object and invoke its methods using the procedures and functions defined in this
interface. The ANSA environment would automatically and transparently deal with
such issues as fetching objects from storage, launching programs when a new in-
stance of an object was requested, implementing the object invocation protocols,
and so forth. Moreover, ANSA explicitly included features for overcoming failures
of various kinds, using transactional techniques drawn from the database commu-
nity, as well as process group techniques in which sets of objects are used to im-
plement a single highly available distributed service. We will consider both types of
technology in considerable detail in Part III of the book.
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Fig. 7.1 Distributed objects abstraction. Objects are linked by object references, and the dis-
tributed nature of the environment is hidden from users. Access is uniform even if objects are
implemented to have special properties or internal structure, such as replication for increased avail-
ability or transactional support for persistence. Objects can be implemented in different program-
ming languages, but this is invisible to users

ANSA treated the objects that implement a system as the concrete realization of
the enterprise computing model and the enterprise information model. These models
capture the essence of the application as a whole, treating it as a single abstraction
even if the distributed system as implemented necessarily contained many com-
ponents. Thus, the enterprise-computing model might support the abstraction of a
collision-avoidance strategy for use by an air traffic control enterprise and the en-
terprise data model might define the standard data objects used in support of this
service. The actual implementation of the service would be reached by a series of
refinements in which increasing levels of detail are added to this basic set of defi-
nitions. In effect, one passes from the abstraction of a collision-avoidance strategy
to the more concrete concept of a collision-avoidance subsystem located at each set
of primary sites and linked to one another to coordinate their actions (see Fig. 7.1).
This concept evolved to one with further refinements, defining the standard services
composing the collision-avoidance system as used on a single air traffic control
workstation, and then evolved still further to a description of how those services
could be implemented.

In very concrete terms, the ANSA approach required the designer to write down
the sort of knowledge of distributed system structure that, for many systems, is im-
plicit but never encoded in a machine-readable form. The argument was that by writ-
ing down these system descriptions, a better system would emerge: one in which the
rationale for the structure used was self-documenting and in which detailed infor-
mation would be preserved about the design choices and objectives that the system
carries out; in this manner the mechanisms for future evolution could be made a part
of the system itself. Such a design promotes extensibility and interoperability, and
offers a path to system management and control. Moreover, ANSA designs were
expressed in terms of objects, whose locations could be anywhere in the network,
with the actual issues of location developing only after the design was further elab-
orated, or in specific situations where location of an object might matter (Fig. 7.2).
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Fig. 7.2 In practice, the objects in a distributed system execute on machines or reside in storage
servers. The run-time environment works to conceal movement of objects from location to location
and to activate servers when they are initially referenced after having been passively stored. The
environment also deals with fault-tolerance issues, the life-cycle of an object, garbage collection,
and other issues that span multiple objects or sites

This type of object-oriented, location-transparent design has proved very popular
with distributed systems designers.

7.2 Beyond ANSA to CORBA

While the ANSA technology per se never gained a wide following, these ideas have
had a huge impact on the view of system design and function adopted by modern
developers. In particular, as the initial stages of the ANSA project ended, a new
project was started by a consortium of computer vendors. Called the Common Ob-
ject Request Broker Architecture, CORBA defines a range of standards permitting
interoperation between complex object-oriented systems potentially built by diverse
vendors (see Object Management Group and X/Open 1991). CORBA has become
a widely used, important platform. At the time of this writing, the J2EE and .NET
platforms have become dominant, and CORBA receives somewhat less attention.
Web Services are just emerging. Yet CORBA will be with us for many years into
the future. Moreover, essentially all aspects of CORBA have analogs within J2EE
and .NET.

CORBA represents a consensus developed within an industry standards organi-
zation called the Object Management Group, or OMG. The mission of OMG was
to develop architecture standards promoting interoperability between systems de-
veloped using object-oriented technologies—the stress, then, is on getting legacy
applications to talk to one-another and to new applications. In some ways, this rep-
resents a less-ambitious objective than the task with which ANSA was charged,
since ANSA set out both to develop an all-encompassing architectural vision for
building enterprise-wide distributed computing systems, and to incorporate reliabil-
ity technologies into its solutions. However, ANSA was sometimes criticized for
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its emphasis on new generations of systems and its inattention to the difficulties of
legacy integration. CORBA’s early success was almost certainly related to the good
treatment of this topic. As CORBA has evolved, it has tackled more and more of
ANSA’s original topics.

At the time of this writing, CORBA was basically a framework for building dis-
tributed computing environments and letting applications running in one CORBA
environment issue requests to applications running in another. Notice that different
vendors might offer their own CORBA solutions with differing properties. Nonethe-
less, adherence to the CORBA guidelines should permit such solutions to inter-
operate. For example, a distributed system programmed using a CORBA product
from Hewlett-Packard should be useful from within an application developed using
CORBA products from Sun Microsystems, IBM, or some other CORBA-compliant
vendor.

Interoperability has steadily grown in importance over the decade since CORBA
was first introduced. In fact, it is quite striking to discover that in some ways, J2EE
and .NET have replayed the same questions that initially distinguished CORBA
from ANSA. J2EE (Java version 2 Enterprise Edition) is a “commercial strength”
runtime environment for Java applications—specifically, Java applications that talk
to databases and other forms of servers (they are constructed using what is called the
“Java Beans” component of the overall architecture). Initially, the vision of the Java
community was that Java would sweep other languages to the side. As a result, much
of the early effort in the Java development activities at SUN and elsewhere concen-
trated on pure Java applications, with interoperability arising only in the binding
between a Java Bean and the server (normally, database server) to which it was con-
nected. J2EE incorporated most aspects of the CORBA framework and all aspects
of the CORBA database architecture.

J2EE was tremendously successful right from the outset, and this motivated Mi-
crosoft to fight back with a J2EE-like environment of its own. Microsoft needed
a distinguishing product focus, however, hence while .NET includes analogous
database and server functionality to J2EE (in the architectural framework called
ADO.NET), the platform goes much further in its handling of integration issues.
.NET promotes a tremendous range of integration and legacy systems features, in-
cluding full language interoperability, easy mechanisms for binding a new system
to a specific instance of an old system and a means for making sure that the right
versions are running at the same time, cross-language debugging tools, and so forth.
This position was an immediate success within the Microsoft market, and J2EE
almost immediately began to lose market share. Accordingly the J2EE developers
responded by developing a new “object adaptor” framework for J2EE, offering all
of the kinds of interoperability available for .NET users.

J2EE is a framework aimed at Java users, and Microsoft is often portrayed as
an opponent of Java. In fact, however, .NET offers reasonable support for the Java
language. For users who seek to make more use of Microsoft’s famework, .NET
introduces a new programming language called C# (C-sharp), which builds on Java,
but goes well beyond both the Java language and the associated runtime. .NET ap-
plications can be executed on Linux platforms using a complier called Mono, and
the Isis2 system presented in Appendix A was implemented in C#.
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Fig. 7.3 The conceptual architecture of CORBA uses an object request broker as an intermediary
that directs object invocations to the appropriate object instances. There are two cases of invoca-
tions; the static one, which we focus on in the book, and the dynamic invocation interface (DII),
which is more complex to use and hence not discussed here

7.3 The CORBA Reference Model

The key to understanding the structure of a CORBA environment is the Reference
Model, which consists of a set of components that a CORBA platform should typ-
ically provide. These components are fully described by the CORBA architecture,
but only to the level of interfaces used by application developers and functionality.
Individual vendors are responsible for deciding how to implement these interfaces
and how to obtain the best possible performance; moreover, individual products may
offer solutions that differ in offering optional properties such as security, high avail-
ability, or special guarantees of behavior that go beyond the basics required by the
model.

At a minimum, a CORBA implementation must supply an Object Request Bro-
ker, or ORB, which is responsible for matching a requestor with an object that will
perform its request, using the object reference to locate an appropriate target ob-
ject (see Fig. 7.3). The implementation will also contain translation programs, re-
sponsible for mapping implementations of system components (and their IDLs) to
programs that can be linked with a run-time library and executed. A set of object
services provide the basic functionality needed to create and use objects: These in-
clude such functions as creating, deleting, copying, or moving objects; giving them
names that other objects can use to bind to them; and providing security. An interest-
ing service, which we will discuss in more detail, is the Event Notification Service
or ENS: This allows a program to register its interest in a class of events. All events
in that class are then reported to the program. It thus represents a communication
technology different from the usual RPC-style or stream-style of connection. A set
of Common Facilities contains a collection of standardized applications that most
CORBA implementations are expected to support, but that are ultimately optional:
These include, for example, standards for system management and for electronic
mail that may contain objects. And, finally, of course, there are Application Objects
developed by the CORBA user to solve a particular problem.
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Fig. 7.4 IDL interface to a
server for a grid object coded
in Orbix, a popular
CORBA-compliant
technology

In many respects the Object Request Broker is the core of a CORBA implemen-
tation. Similar to the function of a communication network or switching system,
the ORB is responsible for delivering object invocations that originate in a client
program to the appropriate server program, and routing the reply back to the client.
The ability to invoke an object, of course, does not imply that the object that was
invoked is being used correctly, has a consistent state, or is even the most appro-
priate object for the application to use. These broader properties fall back upon the
basic technologies of distributed computing that are the general topic of this book;
as we will see, CORBA is a way of talking about solutions, but not a specific set of
prebuilt solutions. Indeed, one could say that because CORBA worries about syn-
tax but not semantics, the technology is largely superficial: a veneer around a set of
technologies. However, this particular veneer is an important and sophisticated one,
and it also creates a context within which a principled and standardized approach to
distributed systems reliability becomes possible.

For many users, object-oriented computing means programming in Java, C++
or C#, although SmallTalk and Ada are also object-oriented languages, and one can
develop object interfaces to other languages like FORTRAN and COBOL. Nonethe-
less, Java and C++ are the most widely used languages, and most Java programmers
focus on J2EE, while C# programmers tend to use .NET. Thus for illustration of
CORBA it makes sense to employ C++, since the average CORBA programmer
would work in this language. Our examples are drawn directly from the program-
mer’s guide for Orbix, an extremely popular CORBA technology at the time of this
writing.

An example of a CORBA object interface, coded in the Orbix interface definition
language (IDL), is shown in Fig. 7.4. This interface publishes the services available
from a grid server, which is intended to manage two-dimensional tables such as are
used in spreadsheets or relational databases (apologies to those who were hoping
that this example is from the Grid Computing world). The server exports two read-
only values, width and height, which can be used to query the size of a grid object.
There are also two operations that can be performed upon the object: “set,” which
sets the value of an element, and “get,” which fetches the value. Set is of type void,
meaning that it does not return a result, get, on the other hand, returns a long integer.

To build a grid server, the user would need to write a C++ program that imple-
ments this interface. To do this, the IDL compiler is first used to transform the IDL
file into a standard C++ header file in which Orbix defines the information it will
need to implement remote invocations on behalf of the client. The IDL compiler
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Fig. 7.5 Orbix conceals the location of objects by converting remote operations into operations
on local proxy objects, mediated by stubs. However, remote access is not completely transparent
in standard CORBA applications if an application is designed for reliability—for example, error
conditions differ for local and remote objects. Such issues can be concealed by integrating a relia-
bility technology into the CORBA environment, but transparent reliability is not a standard part of
CORBA, and solutions vary widely from vendor to vendor

also produces two forms of stub files—one that implements the client side of the get
and set operations; the other implements the server side. These stub files must be
compiled and linked to the respective programs. (See Fig. 7.5.)

If one were to look at the contents of the header file produced for the grid IDL
file, one would discover that width and height have been transformed into functions;
that is, when the C++ programmer references an attribute of a grid object, a function
call will actually occur into the client-side stub procedures, which can perform an
RPC to the grid server to obtain the current value of the attribute.

We say RPC here, but in fact a feature of CORBA is that it provides very efficient
support for invocations of local objects, which are defined in the same address space
as the invoking program. The significance of this is that although the CORBA IDL
shown in Fig. 7.4 could be used to access a remote server that handles one or more
grid objects, it can also be used to communicate to a completely local instantiation
of a grid object, contained entirely in the address space of the calling program. In-
deed, the concept goes even further: In Orbix+Isis, a variation of Orbix, the grid
server could be replicated using an object group for high availability. And in the
most general case, the grid object’s clients could be implemented by a server run-
ning under some other CORBA-based environment, such as IBM’s DSOM product,
HP’s DOMF or ObjectBroker, Sun’s DOE, or other object-oriented environments
with which CORBA can communicate using an adapter, such as Microsoft’s OLE.
CORBA implementations thus have the property that object location, the technology
or programming language used to build an object, and even the ORB under which it
is running can be almost completely transparent to the user.

What exactly would a grid server look like? If we are working in C++, a grid
would be a C++ program that includes an implementation class for grid objects.
Figure 7.6 shows the code that might be used to implement this abstract data type,
again drawing on Orbix as a source for our example. The “Environment” parameter
is used for error handling with the client. The BOAImpl extension (“gridBOAImpl”)
designates that this is a Basic Object Adaptor Implementation for the grid interface.
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Fig. 7.6 Server code to implement the grid_i class in Orbix

Fig. 7.7 Enclosing program
to declare a grid object and
accept requests upon it

Finally, our server needs an enclosing framework: the program itself that will
execute this code. The code in Fig. 7.7 provides this; it implements a single grid
object and declares itself to be ready to accept object invocations. The grid object is
not named in this example, although it could have been, and indeed the server could
be designed to create and destroy grid objects dynamically at run time.

The user can now declare to Orbix that the grid server is available by giving it a
name and storing the binary of the server in a file, the path name of which is also
provided to Orbix (see Figs. 7.8, 7.9). The Orbix life-cycle service will automati-
cally start the grid server if an attempt is made to access it when it is not running.
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Fig. 7.8 Client program for
the grid object—assumes that
the grid was registered under
the server name “gridSrv.”
This example lacks error
handling; an elaborated
version with error handling
appears in Fig. 7.10

CORBA supports several concepts of reliability. One is concerned with recover-
ing from failures—for example, when invoking a remote server. A second reliability
mechanism is provided for purposes of reliable interactions with persistent objects,
and is based upon what is called a transactional architecture. We discuss transactions
elsewhere in this book and will not digress onto that subject at this time. However,
the basic purpose of a transactional architecture is to provide a way for applications
to perform operations on complex persistent data structures, without interfering with
other concurrently active but independent operations, in a manner that will leave the
structure intact even if the application program or server fails while it is running.
Unfortunately, as we will see in Chap. 20, transactions are primarily useful in ap-
plications that are structured as database systems on which programs operate using
read and update requests. Such structures are important in distributed systems, but

Fig. 7.9 Illustration of Orbix
error-handling facility.
Macros are used to catch
errors; if one occurs, the error
can be caught and potentially
worked around. Notice that
each remote operation can
potentially fail—hence,
exception handling would
normally be more
standardized. A handler for a
high-availability application
would operate by rebinding to
some other server capable of
providing the same
functionality. This can be
concealed from the user,
which is the approach used in
systems like Orbix+Isis or
Electra, a CORBA
technology layered over the
Horus distributed system
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there are many distributed applications that match the model poorly, and, for them,
transactional reliability is not a good approach.

Outside of its transactional mechanisms, CORBA offers relatively little help to
the programmer concerned with reliability or high availability. For example, Orbix
can be notified that a server application can be run on one of a number of machines.
When a client application attempts to use the remote application, Orbix will au-
tomatically attempt to bind to each machine in turn, selecting at random the first
machine that confirms that the server application is operational. However, Orbix
does not provide any form of automatic mechanisms for recovering from the fail-
ure of such a server after the binding is completed. The reason for this is that a
client process that is already communicating with a server may have a complex
state that reflects information specific to that server, such as cached records with
record identifiers that came from the server, or other forms of data that differ in
specific ways even among servers able to provide the same functionality. To rebind
the client to a new server, one would somehow need to refresh, rebuild, or roll back
this server-dependent state. And doing so is potentially very difficult; at a minimum,
considerable detailed knowledge of the application will be required.

The same problems can also arise in the server itself. For example, consider a
financial trading service, in which the prices of various stocks are presented. Now,
suppose that these data are extremely dynamic due to rapidly changing market data.
The server may need to have some form of setup that it uses to establish a client
profile, and it may need to have an internal state that reflects the events that have
occurred since the client first bound to it. Even if some other copy of the server
is available and can provide the same services, there could be a substantial time
lag when rebinding and there may be a noticeable discontinuity if the new server,
lacking this state of the session, starts its financial computations from the current
stream of incoming data. Such events will not be transparent to the client using the
server and it is unrealistic to try and hide them.

The integration of a wider spectrum of reliability-enhancing technologies with
CORBA represents an important area for research and commercial development,
particularly if reliability is taken in the broad sense of security, fault tolerance,
availability, and so forth. High-performance, commercially appealing products will
be needed to demonstrate the effectiveness of the architectural features that re-
sult: When we discuss transactions on distributed objects, for example, we will see
that merely supporting transactions through an architecture is not likely to make
users happy. Even the execution of transactions on objects raises deeper issues that
would need to be resolved for such a technology to be accepted as a genuinely valid
reliability-enhancing tool—for example, the correct handling of a transactional re-
quest by a non-transactional service is unspecified in the architecture.

More broadly, CORBA can be viewed as the ISO hierarchy for object-oriented
distributed computing: It provides us with a framework within which such systems
can be described and offers ways to interconnect components without regard for the
programming language or vendor technologies used in developing them. Exploiting
this to achieve critical reliability in distributed settings, however, stands as a more
basic technical challenge that CORBA does not directly address. CORBA tells us
how to structure and present these technologies, but not how to build them.
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Fig. 7.10 From the interface
definition, the IDL compiler
creates stub and interface
files, which are used by
clients that invoke the object
and by servers that implement
it

7.4 IDL and ODL

IDL is the language used to define an object interface (in the TINA standard, there is
an ODL language that goes beyond IDL in specifying other attributes of the object,
and in allowing each object to export more than one interface). (See Fig. 7.10.)
CORBA defines an IDL for the various languages that can be supported: C++,
SmallTalk, Ada95, and so forth. The most standard of these is the IDL for C++,
and the examples given above are expressed in C++ for that reason. However, ex-
panded use of IDL for other programming languages is likely in the future.

The use of C++ programs in a CORBA environment can demand a high level of
sophistication in C++ programming. In particular, the operator overload function-
ality of C++ can conceal complex machinery behind deceptively simple interfaces.
In a standard programming language one expects that an assignment statement such
as a = b will execute rapidly. In C++ such an operation may involve allocation and
initialization of a new abstract object and a potentially costly copying operation. In
CORBA such an assignment may involve costly remote operations on a server re-
mote from the application program that executes the assignment statement. To the
programmer, CORBA and C++ appear as a mixed blessing: Through the CORBA
IDL, operations such as assignment and value references can be transparently ex-
tended over a distributed environment, which can seem like magic. But the magic
is potentially tarnished by the discovery that a single assignment might now take
seconds (or hours) to complete!

Such observations point to a deficiency in the CORBA IDL language and, per-
haps, the entire technology as currently conceived. IDL provides no features for
specifying behaviors of remote objects that are desirable or undesirable conse-
quences of distribution. There is no possibility of using IDL to indicate a perfor-
mance property (or cost, in the above example) or to specify a set of fault-tolerant
guarantees for an object that differ from the ones normally provided in the envi-
ronment. Synchronization requirements or assumptions made by an object, or guar-
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antees offered by the client, cannot be expressed in the language. This missing in-
formation, potentially needed for reliability purposes, can limit the ability of the
programmer to fully specify a complex distributed system, while also denying the
user the basic information needed to validate that a complex object is being used
correctly.

One could argue that the IDL should be limited to specification of the interface
to an object and that other types of service would manage any behavioral specifica-
tions. Indeed, in the case of the life-cycle service, one has a good example of how
the CORBA community approaches this problem: The life-cycle aspects of an ob-
ject specification are treated as a special type of data managed by this service, and
are not considered to be a part of the object interface specification. Yet this infor-
mation often belongs in the interface specification, in the sense that these types of
property may have direct implications for the user that accesses the object and may
be information of a type that is important in establishing that the object is being used
correctly. The specification of an object involves more than the specification of its
interfaces, and indeed the interface specification involves more than just the manner
in which one invokes the object. In contrast, the CORBA community considers be-
havior to be orthogonal to interface specification, and hence it relegates behavioral
aspects of the object’s specification to the special-purpose services directly con-
cerned with that type of information. Unfortunately, it seems likely that much basic
research will need to be done before this issue is addressed in a convincing manner.

7.5 ORB

An Object Request Broker, or ORB, is the component of the run-time system that
binds client objects to the server objects they access, and that interprets object in-
vocations at run time, arranging for the invocation to occur on the object that was
referenced. (CORBA is thus the OMG’s specification of the ORB and of its as-
sociated services.) ORBs can be thought of as switching systems through which
invocation messages flow. A fully compliant CORBA implementation supports in-
teroperation of ORBs with one another over TCP connections, using what is called
the Internet Inter-ORB Protocol (IIOP) protocol. In such an interoperation mode,
any CORBA server can potentially be invoked from any CORBA client, even if the
server and client were built and are operated on different versions of the CORBA
technology base.

Associated with the ORB are a number of features designed to simplify the life
of the developer. An ORB can be programmed to automatically launch a server
if it is not running when a client accesses it (this is called factory functionality),
and can be asked to automatically filter invocations through user-supplied code that
automates the handling of error conditions or the verification of security properties.
The ORB can also be programmed to make an intelligent choice of an object if many
objects are potentially capable of handling the same request; such a functionality
would permit, for example, load-balancing within a group of servers that replicate a
particular database.



262 7 CORBA: The Common Object Request Broker Architecture

7.6 Naming Service

A CORBA naming service is used to bind names to objects. Much as a file system
is organized as a set of directories, the CORBA naming architecture defines a set of
naming contexts, and each name is interpreted relative to the naming context within
which that name is registered. The CORBA naming architecture is potentially a very
general one, but, in practice, many applications are expected to treat it as an object-
oriented generalization of a traditional naming hierarchy. Such applications would
build hierarchical naming context graphs (directory trees), use ASCII style path
names to identify objects, and standardize the sets of attributes stored for each object
in the naming service (e.g., size, access time, modification time, owner, permissions,
etc.). The architecture, however, is sufficiently flexible to allow a much broader
concept of names and naming.

A CORBA name should not be confused with an object reference. In the CORBA
architecture, an object reference is essentially a pointer to the object. Although a
reference need not include specific location information, it does include enough
information for an ORB to find a path to the object, or to an ORB that will know
how to reach the object. Names, in contrast, are symbolic ways of naming these
references. By analogy to a UNIX file system, a CORBA object name is similar
to a path name (and, as with a path name, more than one name can refer to the
same object). A CORBA object reference is similar to a UNIX vnode reference: a
machine address and an identifier for a file inode stored on that machine. From the
name one can lookup the reference, but this is a potentially costly operation. Given
the object reference one can invoke the object, and this (one hopes) will be quite a
bit cheaper.

7.7 ENS—The CORBA Event Notification Service

The CORBA Event Notification Service, or ENS, provides for notifications of asyn-
chronous events to applications that register an interest in those events by obtaining
a handle, to which events can be posted and on which events can be received. Relia-
bility features are optionally supplied. The ENS is best understood in terms of what
is called the publish/subscribe communication architecture1. In this approach, mes-
sages are produced by publishers that label each new message using a set of subjects
or attributes. Separately, applications that wish to be informed when events occur
on a given subject will subscribe to that subject or will poll for messages relating
to the subject. The role of the ENS is to reliably bind the publishers to the sub-
scribers, ensuring that even though the publishers do not know who the subscribers
will be, and vice versa, messages are promptly and reliably delivered to them. (See
Fig. 7.11.)

1It should be noted, however, that the ENS lacks the sort of subject mapping facilities that are
central to many publish-subscribe message-bus architectures, and is in this sense a more primitive
facility than some of the message bus technologies that will be discussed later in this book, such
as the TIBCO Information Bus (TIB).
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Fig. 7.11 The CORBA ENS is a form of message bus that supports a publish/subscribe archi-
tecture. The sources of events (boxes) and consumers (ovals) need not be explicitly aware of one
another, and the sets can change dynamically. A single object can produce or consume events of
multiple types, and, in fact, an object can be both producer and consumer

Two examples will make the value of such a model more clear. Suppose that
one were using CORBA to implement a software architecture for a large brokerage
system or a stock exchange. The ENS for such an environment could be used to
broadcast stock trades as they occur. The events in this example would be named
using the stock and bond names that they describe. Each broker would subscribe to
the stocks of interest, again using these subject names, and the application program
would then receive incoming quotes and display them to the screen. Notice that
the publisher program can be developed without knowing anything about the nature
of the applications that will use the ENS to monitor its outputs: It need not have
compatible types or interfaces except with respect to the events that are exchanged
between them. And the subscriber, for its part, does not need to be bound to a par-
ticular publisher: If a new data source of interest is developed, it can be introduced
into the system without changing the existing architecture.

A second example of how the ENS can be useful would arise in system manage-
ment and monitoring. Suppose that an application is being developed to automate
some of the management functions occurring in a VLSI fabrication facility. As time
goes by, the developers expect to add more and more sources of information and
introduce more and more applications that use this information to increase the ef-
ficiency and productivity of the factory. An ENS architecture facilitates doing so,
because it permits the developers to separate the information architecture of their
application from its implementation architecture. In such an example, the informa-
tion architecture is the structure of the ENS event space itself: The subjects under
which events may be posted, and the types of event that can arise in each subject.
The sources and consumers of the events can be introduced later, and will in general
be unaware of one another. Such a design preserves tremendous flexibility and fa-
cilitates an evolutionary design for the system. After basic functionality is in place,
additional functions can be introduced in a gradual way and without disrupting ex-
isting software. Here, the events would be named according to the aspect of factory
function to which they relate: status of devices, completion of job steps, scheduled
downtime, and so forth. Each application program would subscribe to those classes
of events relevant to its task, ignoring all others by not subscribing to them.

Not all CORBA implementations include the ENS—for example, the basic Or-
bix product described above lacks an ENS, although the Orbix+Isis extension makes
use of a technology called the Isis Message Distribution Service to implement ENS
functionality in an Orbix setting. This, in turn, was implemented using the Isis
Toolkit, which we will discuss in more detail in Chap. 16.
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7.8 Life-Cycle Service

The Life-Cycle Service, or LCS, standardizes the facilities for creating and destroy-
ing objects, and for copying them or moving them within the system. The service
includes a factory for manufacturing new objects of a designated type. The Life-
Cycle Service is also responsible for scheduling backups, periodically compressing
object repositories to reclaim free space, and initiating other life-cycle activities. To
some degree, the service can be used to program object-specific management and
supervisory functions, which may be important to reliable control of a distributed
system.

7.9 Persistent Object Service

The Persistent Object Service, or POS, is the CORBA equivalent of a file sys-
tem. This service maintains collections of objects for long-term use, organizing
them for efficient retrieval and working closely with its clients to give application-
specific meanings to the consistency, persistency, and access-control restrictions
implemented within the service. This permits the development of special-purpose
POSs—for example, to maintain databases with large numbers of nearly identical
objects organized into relational tables, as opposed to file system-style storage of
very irregular objects.

7.10 Transaction Service

Mentioned earlier, the transaction service is an embedding of database-style transac-
tions into CORBA architecture. If implemented, the service provides a concurrency
control service for synchronizing the actions of concurrently active transactions;
flat and (optionally) nested transactional tools, and special-purpose persistent ob-
ject services, which implement the transactional commit and abort mechanisms.
The transaction service is often used with the relationship service, which tracks re-
lationships among sets of objects—for example, if they are grouped into a database
or some other shared data structure. We looked at the transactional execution model
in Sect. 6.6, and return to it in Chap. 20.

7.11 Interobject Broker Protocol

The IOB, or Interobject Broker Protocol, is a protocol by which ORBs can be inter-
connected. The protocol is intended for use between geographically dispersed ORBs
from a single vendor and to permit interoperation between ORBs developed inde-
pendently by different vendors. The IOB includes definitions of a standard object
reference data structure by which an ORB can recognize a foreign object reference
and redirect it to the appropriate ORB, as well as definitions of the messages ex-
changed between ORBs for this purpose. The IOB is defined for use over a TCP
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channel; should the channel break or not be available at the time a reference is used,
the corresponding invocation will return an exception.

7.12 Properties of CORBA Solutions

While the CORBA architecture is impressive in its breadth, the user should not be
confused into believing that CORBA therefore embodies solutions for the sorts of
problems that were raised in the first chapters of this book. To understand this point,
it is important to again stress that CORBA is a somewhat superficial technology
in specifying the way things look but not how they should be implemented. In lan-
guage terminology, CORBA is concerned with syntax but not semantics. This is a
position that the OMG adopted intentionally, and the key players in that organization
would certainly defend it. Nonetheless, it is also a potentially troublesome aspect of
CORBA, in the sense that a correctly specified CORBA application may still be un-
derspecified (even in terms of the interface to the objects) for purposes of verifying
that the objects are used correctly or for predicting the behavior of the application.

Another frequently cited concern about CORBA is that the technology can re-
quire extreme sophistication on the part of developers, who must at a minimum
understand exactly how the various object classes operate and how memory man-
agement will be performed. Lacking such knowledge, which is not an explicit part
of the IDL, it may be impossible to use a distributed object efficiently. Even experts
complain that CORBA exception handling can be very tricky. Moreover, in very
large systems there will often be substantial amounts of old code that must interop-
erate with new solutions. Telecommunication systems are sometimes said to involve
millions or tens of millions of lines of such software, perhaps written in outmoded
programming languages or incorporating technologies for which source code is not
available. To gain the full benefits of CORBA, however, there is a potential need
to use CORBA throughout a large distributed environment. This may mean that
large amounts of old code must somehow be retrofitted with CORBA interfaces and
IDLs—neither a simple nor an inexpensive proposition.

The reliability properties of a particular CORBA environment depend on a great
number of implementation decisions that can vary from vendor to vendor and often
will do so. Indeed, CORBA is promoted to vendors precisely because it creates a
level playing field within which their products can interoperate but compete: The
competition would revolve around this issue of relative performance, reliability, or
functionality guarantees. Conversely, this implies that individual applications can-
not necessarily count upon reliability properties of CORBA if they wish to maintain
a high degree of portability: Such applications must in effect assume the least com-
mon denominator. Unfortunately, in the CORBA architectural specification this least
level of guarantees is quite weak: Invocations and binding requests can fail, perhaps
in inconsistent ways, corresponding closely to the failure conditions we identified
for RPC protocols that operate over standard communication architectures. Secu-
rity, being optional, must be assumed not to be present. Thus, CORBA creates a
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Fig. 7.12 Comparison of round-trip delay when performing a method invocation using a variety
of common technologies. The graph is designed to highlight the incremental overheads associated
with various technology layerings. As we work our way up to higher and higher levels of abstrac-
tion (in this graph, the extreme case is Enterprise Java Beans implemented using Jboss on the TAO
CORBA object request broker), we pay higher costs but gain power and flexibility. This graph, and
graphs 7.12 and 7.13, were provided by Dr. Gautam Thaker, Lockheed Martin ATL

framework within which reliability technologies can be standardized, but, as cur-
rently positioned, the technology base is not necessarily one that will encourage a
new wave of reliable computing systems.

7.13 Performance of CORBA and Related Technologies

A large number of middleware, network infrastructure and operating systems
choices are available to designers and builders of distributed systems. Yet there
are limited data available that permit potential users and researchers to understand
actual, measured real-time performance of various technologies. Lockheed Martin
Advanced Technology Labs has, over many years, carried out systematic evalua-
tions of operating system determinism, network transport behavior, and middleware
performance. The company and the researcher who headed this effort, Dr. Gautam
Thaker, have made their findings available to the public and also provided some
representative data for use in this textbook.

Thaker’s methodology has been, to the extent possible, to use identical test condi-
tions (application, hardware etc.) which permits comparisons to reveal performance
differences between various systems. The graph seen in Fig. 7.12 shows measured
roundtrip latencies to exchange a “n” byte message between two processes on a 2
node SMP as one progresses from shared memory to TCP (in C and Java), ORB
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Fig. 7.13 The cost of improved fault-tolerance can be very low. Here we see that the use of STCP,
a protocol that maintains duplicate TCP channels to reduce the risk of a lost connection, introduces
only a negligible overhead

(TAO), RMI, and EJB. Shared memory communication, as expected, is the fastest
means of message exchange as there are no protocol stacks to traverse and speed
is dominated by operating system process synchronization efficiency and memcpy
speed. However, shared memory architectures are inflexible, and for this reason
many systems are built on top of a network transport such as TCP/IP. As we can ob-
serve in the graph, moving from shared memory to TCP/IP costs almost an order of
magnitude in roundtrip latencies, although the TCP/IP configuration has increased
flexibility and generality.

As we move up to higher levels of abstractions, CORBA and RMI, we see the
costs associated with the extra software layers required. CORBA and RMI both uti-
lize TCP/IP in the configuration evaluated here. Also, we note that at the TCP/IP
level the difference between C and Java implementations is about 10 usec, but that
the difference between TAO (an ORB implemented in C) and RMI (implemented
in Java) is about 100 usec. Finally, moving to Enterprise Java Beans (“EJB”), the
most popular database access technology for Java users (here, the EJB implemen-
tation was Jboss 3.2.1) adds almost another order of magnitude delay over RMI.
ATL reports that these tradeoffs continue to hold as one moves from two processes
on a single node to two processes on two nodes interconnected via a highspeed
(100 Mbps) network.

Figure 7.13 compares a CORBA Component Model (CCM) implementation’s
round-trip latencies using both the TCP/IP based IIOP and SCTP/IP based SCIOP
protocols mappings. Here we observe that benefits of SCTP, a specialized version
of TCP that provides network fault tolerance by path multiplexing, come with just



268 7 CORBA: The Common Object Request Broker Architecture

Fig. 7.14 Developers of applications that incorporate some form of responsiveness guarantee need
to track not just the average response delay but also the worst case delay. Here we see that when
performing method invocations on a machine with some background load (the TCP-C benchmark
suite), delays can be very large. Use of an operating system with real-time scheduling capabilities
reduces this delay substantially

a slight increase in latency. The ATL site includes similar studies of a great many
other TCP variants.

In addition to tests under unloaded conditions, numerous tests were performed
with background stress on the system, revealing some surprising problems. An ex-
ample of this is seen in Fig. 7.14. Knowledge of average latencies is not always
good enough. Developers of distributed, real-time, embedded systems often need to
anticipate maximum latency values. Figure 7.14 shows range of latencies recorded
for TCP/IP based on a Timesys RTOS node in presence of very heavy disk interrupt
load. We observe that under these conditions use of real-time support from the un-
derlying operating system makes a crucial difference in holding down the maximum
latencies.

Beyond the results summarized in Figs. 7.12–7.14, a large amount of ex-
perimental data is available from ATL through a web interface to its web site
(www.atl.external.lmco.com/projects/QoS). In most tests a very large number of
samples (typically 1 million) were collected. Careful histograms are maintained and
the website permits examination of not just the mean latencies but also entire dis-
tribution (including the maximum.) Sophisticated “Comparator” utilities (known as
“MW_Comparator” and “Jitter Comparator”) are available on the website. These
permit the viewer to select a subset of collected data and to generate charts that
overlay these results for easy visual and tabular comparison.
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7.14 Related Reading

On the ANSA project and architecture (see Architecture Projects Management Lim-
ited 1989, 1991a, 1991b). Another early effort in the same area was Chronus: (see
Gurwitz et al. 1986; Schantz et al. 1986).

On CORBA (see Object Management Group and X/Open 1991). Other publica-
tions are available from the Object Management Group, a standards organization;
see their Web page, http://www.omg.org.

For the CORBA products cited, such as Orbix, the reader should contact the
relevant vendor. Documentation for ACE and TAO, Doug Schmidt’s Open Source
CORBA platform, can be found at http://www.cs.wustl.edu/~schmidt/; this system
is an excellent choice for readers wishing to work with a good quality CORBA
implementation on Linux or other popular platforms.





8System Support for Fast Client/Server
Communication

Cloud computing systems put a tremendous amount of stress on network communi-
cation paths at every level: from the client over the Internet to the cloud provider’s
data center, from the point of ingress to the first-tier server that will process the re-
quest and compute a response, and internal to the data center as well. In light of this
network emphasis, it may seem strange to worry about performance in client–server
systems where the client is either one hop from the server or might even be on the
same machine. However, it turns out that this critical path is more performance-
limiting for cloud computing than any other single element of the data center archi-
tecture. Indeed, the success of object oriented systems has led developers to break
many kinds of larger applications into “objects” that interact over RPC. Thus the
speed of many applications, including modern desktop applications, is often a direct
function of the speed of RPC.

Communication-system is typically measured in terms of the latency and
throughput for typical messages that traverse that system, starting in a source ap-
plication and ending at a destination application. Accordingly, these issues have
received considerable scrutiny within the operating systems research community,
which has developed a series of innovative proposals for improving performance
in communication-oriented applications. In the following text, we review some of
these proposals.

8.1 Lightweight RPC

The study of RPC performance as a research area surged in 1989 when Shroeder and
Burrows undertook to precisely measure the costs associated with RPC on the Fire-
fly operating system (see Shroeder and Burrows 1989). These researchers started
by surveying the costs of RPC on a variety of standard platforms. Their results
have subsequently become outdated because of advances in systems and processor
speeds, but the finding that RPC performance varies enormously even in relative
terms probably remains true today. In their study, the range of performance was
from 1.1 ms to do a null RPC (equivalent to 4,400 instructions) on the Cedar system,
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highly optimized for the Dorado multiprocessor, to 78 ms (195,000 instructions) for
a very general version of RPC running on a major vendor’s top-of-the-line platform
(at that time). One interesting finding of this study was that the number of instruc-
tions in the RPC code path was often high (the average in the systems they looked at
was approximately 6,000 for systems with many limitations and about 140,000 for
the most general RPC systems). Thus, faster processors would be expected to have
a big impact on RPC performance, which is one of the reasons that the situation has
improved somewhat since the time of this study.

Using a bus analyzer to pin down costs to the level of individual machine cycles,
this effort led to a tenfold performance improvement in the RPC technology under
investigation, which was based originally on the Berkeley UNIX RPC. Among the
optimizations that had the biggest impact were the elimination of copying within
the application address space by marshalling data directly into the RPC packet us-
ing an in-line compilation technique, and the implementation of an RPC fast path,
which eliminated all generality in favor of a hand-coded RPC protocol using the
fewest instructions possible, subject to the constraint that the normal O/S protection
guarantees would be respected.

Soon after this work on Firefly RPC was completed, researchers at the University
of Washington became interested in other opportunities to optimize communication
paths in modern operating systems. Lightweight RPC originated with the observa-
tion that as computing systems adopt RPC-based architectures, the use of RPC in
nondistributed settings is rising as rapidly as is RPC over a network. Unlike a net-
work, RPC in the nondistributed case can accurately sense many kinds of failures,
and because the same physical memory is potentially visible to both sender and des-
tination, the use of shared memory mechanisms represents an appealing option for
enhancing performance. Bershad and others set out to optimize this common special
case (see Bershad et al. 1989).

A shared memory RPC mechanism typically requires that messages be allocated
within pages, starting on page boundaries and with a limit of one message per page.
In some cases, the pages used for message passing are from a special pool of mem-
ory maintained by the kernel; in others, no such restriction applies but there may
be other restrictions, such as limits on passing data structures that contain point-
ers. When a message is sent, the kernel modifies the page table of the destination
to map the page containing the message into the address space of the destination
process. Depending on the operating system, the page containing the message may
be mapped out of the memory of the sender, modified to point to an empty page,
or marked as read-only. In this last approach (where the page is marked as read-
only) some systems will trap write-faults and make a private copy if either process
attempts a modification. This method is called “copy on write,” and was first sup-
ported in the Mach microkernel (see Rashid 1986).

If one studies the overheads associated with RPC in the local, shared memory
case, the cost of manipulating the page tables of the sender and destination and of
context switching between the sending and receiving processes emerges as a major
factor. The University of Washington team focused on this problem in developing
what they called a Lightweight Remote Procedure Call facility (LRPC). In essence,
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this approach reduces time for local RPC both by exploiting shared memory and by
avoiding excess context switches. Specifically, the messages containing the RPC ar-
guments are placed in shared memory, while the invocation itself is done by chang-
ing the current page table and flushing the TLB so that the destination process is
essentially invoked in coroutine style, with the lowest overhead possible given that
virtual memory is in use on the machine. The reply from the destination process is
similarly implemented as a direct context switch back to the sender process.

Although LRPC may appear to be as costly as normal RPC in the local case,
the approach actually achieves substantial savings. First, a normal RPC is imple-
mented by having the client program perform a message send followed by a sep-
arate message receive operation, which blocks. Thus, two system calls occur, with
the message itself being copied into the kernel’s data space, or (if shared mem-
ory is exploited) a message descriptor being constructed in the kernel’s data space.
Meanwhile, the destination process will have issued a receive request and would
often be in a blocked state. The arrival of the message makes the destination process
runnable, and on a uniprocessor this creates a scheduling decision, since the sender
process is also runnable in the first stage of the algorithm (when it has sent its re-
quest and not yet performed the subsequent receive operation). Thus, although the
user might expect the sender to issue its two system calls and then block, causing the
scheduler to run and activate the destination process, other sequences are possible.
If the scheduler runs right after the initial send operation, it could context switch to
the RPC server leaving the client runnable. It is now possible that a context switch
back to the client will occur, and then back to the server again, before the server
replies. The same sequence may then occur when the reply is finally sent.

We thus see that a conventional operating system requires four system calls to im-
plement an LRPC operation, and that although a minimum of two context switches
must occur, it is easily possible for an additional two context switches to take place.
If the execution of the operating system scheduler represents a significant cost, the
scheduler may run two or more times more than the minimum. All of these excess
operations are potentially costly.

LRPC is implemented using a special system call whereby the client process
combines its send and receive operations into a single request, and the server (which
will normally delay waiting for a new RPC request after replying to the client) issues
the reply and subsequent receive as a single request. Moreover, execution of the
scheduler is completely bypassed.

As in the case of RPC, the actual performance figures for LRPC are of limited
value because processor speeds and architectures have been evolving so rapidly. One
can get a sense of the improvement by looking at the number of instructions required
to perform an LRPC. Recall that the Shroeder and Burrows study had found that
thousands of instructions were required to issue an RPC. In contrast, the LRPC team
calculated that only a few hundred instructions are required to perform an LRPC—a
small enough number to make such factors as TLB misses (caused when the hard-
ware cache associated with the virtual memory mapping system is flushed) emerge
as important determinants of performance. LRPC was, in any case, somewhat more
expensive than the theoretical minimum: about 50 percent slower measured in terms
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of round-trip latency or instructions executed for a null procedure call. Nonetheless,
this represents a factor of at least five when compared to the performance of typi-
cal RPC in the local case, and ten or more when the approach is compared to the
performance of a fairly heavyweight vendor supported RPC package.

This effect is so dramatic that some operating systems vendors began to sup-
port LRPC immediately after the work was first reported. Others limited themselves
to fine-tuning their existing implementations or improving the hardware used to
connect their processors to the network. At the time of this writing, RPC perfor-
mances have improved somewhat, but faster processors are no longer bringing com-
mensurate improvements in RPC performance. Vendors tend to point out that RPC
performance, by itself, is only one of many factors that enter into overall system
performance, and that optimizing this one case to an excessive degree can bring di-
minishing returns. They also argue for generality even in the local case: that LRPC is
undesirable because it requires a different RPC implementation than the remote case
and thus increases the complexity of the operating system for a scenario that may
not be as common in commercial computing settings as it seems to be in academic
research laboratories.

To some degree, these points are undoubtedly valid ones: When an RPC arrives at
a server, the program that will handle it may need to be scheduled, it may experience
page faults, buffering and caching issues can severely impact its performance, and
so forth. On the other hand, the performance of a null RPC or LRPC is entirely a
measure of operating system overhead, and hence is wasted time by any reasonable
definition. Moreover, the insights gained in LRPC are potentially applicable to other
parts of the operating system: Bershad, for example, demonstrated that the same idea
can be generalized using a concept of thread activations and continuations, with
similarly dramatic impact on other aspects of operating system performance (see
Bershad et al. 1989, 1995). This work seems not to have impacted the commercial
operating systems community, at least at the time of this writing.

8.2 fbufs and the x-Kernel Project

During the same period, the University of Arizona, under Larry Peterson, developed
a series of innovative operating system extensions for high-performance communi-
cation. Most relevant to the topic of this chapter are the x-Kernel, a stand-alone
operating system for developing high speed communication protocols, and the fbufs
architecture (see Drushel and Peterson 1993), which is a general-purpose technique
for optimizing stack-structured protocols to achieve high performance. While these
extensions were developed based on the context of a particular operating system,
but they are potentially applicable to most standard vendor-supported operating sys-
tems.

The x-Kernel (see Peterson et al. 1989b) is an operating system dedicated to the
implementation of network protocols for experimental research on performance,
flow control, and other issues. The assumption that x-Kernel applications are purely
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Fig. 8.1 In a conventional layered architecture, as messages pass from layer to layer (here shown
from left to right), messages and headers may need to be copied repeatedly. This contributes to
high overhead. In this illustration, the white and gray buffers are independent regions in virtual
memory

communication-oriented greatly simplified the operating system design, which con-
fines itself to addressing those issues encountered in the implementation of pro-
tocols, while omitting support for elaborate virtual memory mechanisms, special-
purpose file systems, and many of the other operating facilities that are considered
mandatory in modern computing environments.

Recall from the early chapters of this book that many protocols have a layered
structure, with the different layers having responsibility for different aspects of the
overall communication abstraction. In x-Kernel, protocols having a layered struc-
ture are represented as a partially ordered graph of modules. The application process
involves a protocol by issuing a procedure call to one of the root nodes in such a
graph, and control then flows down the graph as the message is passed from layer to
layer. x-Kernel includes built-in mechanisms for efficiently representing messages
and managing their headers and for dynamically restructuring the protocol graph
or the route that an individual message will take, depending upon the state of the
protocols involved and the nature of the message. Other x-Kernel features include a
thread-based execution model, memory management tools, and timer mechanisms.

Using the x-Kernel, Peterson implemented several standard RPC and stream pro-
tocols, demonstrating that his architecture was indeed powerful enough to permit a
variety of such protocols to co-exist and confirming its value as an experimental
tool. Layered protocol architectures are often thought to be inefficient, but Peterson
suggested a number of design practices that, in his experience, avoided overhead
and permitted highly modular protocol implementations to perform as well as the
original monolithic protocols on which his work was based. Later, researchers such
as Tennenhouse confirmed that standard implementations of layered protocols, par-
ticularly in the UNIX stream architecture, have potentially high overheads, but also
that appropriate design techniques can be used to greatly reduce these costs.

Peterson’s interest in layered protocols subsequently led him to look at perfor-
mance issues associated with layered or pipelined architectures, in which modules of
a protocol operate in protected memory regions (Fig. 8.1). To a limited degree, sys-
tems such as UNIX and NT have an architecture similar to this—UNIX streams, for
example, are based on a modular architecture, which is supported directly within the



276 8 System Support for Fast Client/Server Communication

Fig. 8.2 In Peterson’s scheme, the buffers are in fact shared using virtual memory, exploiting
protection features to avoid risk of corruption. To pass a buffer, access to it is enabled in the
destination address space and disabled in the sender’s address space. (In the figure, the white buffers
represent real pointers and the gray ones represent invalid page-table entries pointing to the same
memory regions but with access disabled.) When the buffer finally reaches the last module in the
pipeline, it is freed and reallocated for a new message arriving from the left. Such an approach
reduces the overhead of layering to the costs associated with manipulation of the page table entries
associated with the modules comprising the pipeline

kernel. As an example, an incoming message is passed up a stack that starts with the
device driver and then includes each of the stream modules that have been pushed
onto the stream connection, terminating finally in a cross-address space transfer of
control to the application program. UNIX programmers think of such a structure
as a form of pipe implemented directly in the kernel. Unfortunately, like a pipe, a
stream can involve significant overhead.

Peterson’s fbufs architecture focuses on the handling of memory in pipelined op-
erating systems contexts such as these. An fbuf is a memory buffer for use by a
protocol; it will typically contain a message or a header for a message. The archi-
tecture concerns itself with the issue of mapping such a buffer into the successive
address spaces within which it will be accessed and with the protection problems
that arise if modules are to be restricted so that they can only operate on data that
they own. The basic approach is to cache memory bindings, so that a protocol stack
that is used repeatedly can reuse the same memory mappings for each message in
a stream of messages. Ideally, the cost of moving a packet from one address space
to another can be reduced to the flipping of a protection bit in the address space
mappings of the sending and receiving modules (Fig. 8.2). The method completely
eliminates copying, while retaining a fairly standard operating system structure and
protection boundaries.

8.3 Active Messages

At the University of California, Berkeley, and Cornell University, researchers ex-
plored techniques for fast message passing in parallel computing systems. Culler
and von Eicken observed that operating system overheads are the dominant source
of overhead in message-oriented parallel computing systems (see Thekkath and
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Levy 1993; von Eicken et al. 1992). Their work resulted in an extremely aggres-
sive attack on communication costs, in which the application interacts directly with
an I/O device and the overhead for sending or receiving a message can be reduced
to as little as a few instructions. The CPU and latency overhead of an operating
system is slashed in this manner, with important impact on the performance of par-
allel applications. Moreover, as we will see, similar ideas can be implemented in
general-purpose operating systems.

An active message is a type of message generated within a parallel application
that takes advantage of knowledge that the program running on the destination node
of a parallel computer is precisely the same as the program on the source node to
obtain substantial performance enhancements. In this approach, the sender is able to
anticipate much of the work that the destination node would normally have to do if
the source and destination were written to run on general-purpose operating systems.
Moreover, because the source and destination are the same program, the compiler
can effectively short circuit much of the work and overhead associated with mech-
anisms for general-purpose message generation and for dealing with heterogeneous
architectures. Finally, because the communication hardware in parallel computers
does not lose messages, active messages are designed for a world in which message
loss and processor failure do not occur.

The basic approach is as follows. The sender of a message generates the mes-
sage in a format that is preagreed between the sender and destination. Because the
destination is running the same program as the sender and is running on the same
hardware architecture, such a message will be directly interpretable by the destina-
tion without any of the overhead for describing data types and layout that one sees in
normal RPC environments. Moreover, the sender places the address of a handler for
this particular class of message into the header of the message—that is, a program
running on machine A places an address of a handler that resides within machine B

directly into the message. On the reception machine, as the message is copied out
of the network interface, its first bytes are already sufficient to transfer control to
a handler compiled specifically to receive messages of this type. This reduces the
overhead of communication from the tens of thousands of instructions common on
general-purpose machines to as few as five to ten instructions. In effect, the sender
is able to issue a procedure call directly into the code of the destination process,
with most of the overhead associated with triggering an interrupt on the destination
machine and with copying data into the network on the sending side and out of the
network on the receiving side. In some situations (e.g., when the destination node
is idle and waiting for an incoming request) even the interrupt can be eliminated by
having the destination wait in a tight polling loop.

Obviously, active messages make sense only if a single application is loaded
onto multiple nodes of a parallel computer and hence has complete trust in those
programs and accurate knowledge of the memory layout of the nodes with which
it communicates. In practice, the types of system that use the approach normally
have identical programs running on each node. One node is selected as the mas-
ter and controls the computation, while the other nodes, its slaves, take actions on
the orders of the master. The actual programming model visible to the user is one



278 8 System Support for Fast Client/Server Communication

Fig. 8.3 An active message includes the address of the handler to which it should be passed di-
rectly in the message header. In contrast with a traditional message-passing architecture, in which
such a message would be copied repeatedly through successively lower layers of the operating sys-
tem, an active message is copied directly into the network adapter by the procedure that generates it
in the application program. It is effectively transferred directly to the application-layer handler on
the receiving side with no additional copying. Such a zero copy approach reduces communication
latencies to a bare minimum and eliminates almost all overhead on the messages themselves. How-
ever, it also requires a high level of mutual trust and knowledge between source and destination,
a condition that is more typical of parallel supercomputing applications than general distributed
programs

in which a sequential program initiates parallel actions by invoking parallel oper-
ations, or procedures, which have been programmed to distribute work among the
slaves and then to wait for them to finish computing before taking the next step. This
model is naturally matched to active messages, which can now be viewed as opti-
mizing normal message passing to take advantage of the huge amount of detailed
information available to the system regarding the way that messages will be han-
dled. In these systems, there is no need for generality, and generality proves to be
expensive. Active messages are a general way of optimizing to extract the maximum
performance from the hardware by exploiting this prior knowledge. (See Fig. 8.3.)

Active messages are useful in support of many programming constructs. The
approach can be exploited to build extremely inexpensive RPC interactions, but is
also applicable to direct language support for data replication or parallel algorithms
in which data or computation is distributed over the modes of a parallel proces-
sor. (See Fig. 8.4) Culler and von Eicken have explored a number of such options
and reported particular success with language-based embedding of active messages
within a parallel version of the C programming language they call “split C,” and in
a data-parallel language called ID-90.

8.4 Beyond Active Messages: U-Net and the Virtual Interface
Architecture (VIA)

At Cornell University, von Eicken continued the work begun in his study of active
messages, looking for ways of applying the same optimizations in general-purpose
operating systems connected to shared communication devices. U-Net is a com-
munication architecture designed for use within a standard operating system such
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Fig. 8.4 A typical parallel program employs a sequential master thread of control, which initiates
parallel actions on slave processors and waits for them to complete before starting the next com-
putational step. While computing, the slave nodes may exchange messages, but this too tends to be
both regular and predictable. Such applications match closely with the approach to communication
used in active messages, which trades generality for low overhead and simplicity

as UNIX or NT; it is intended to provide the standard protection guarantees taken
for granted in these sorts of operating systems (see von Eicken et al. 1995). These
guarantees are provided, however, in a way that imposes extremely little overhead
relative to the performance that can be attained in a dedicated application that has di-
rect control over the communication device interface. U-Net gains this performance
using an implementation that is split between traditional software functionality inte-
grated into the device driver and nontraditional functionality implemented directly
within the communication controller interfaced to the communication device. Most
controllers are programmable—hence, the approach is more general than it may
sound, although it should also be acknowledged that existing systems very rarely
reprogram the firmware of device controllers to gain performance!

The U-Net system (see Fig. 8.5) starts with an observation we have made repeat-
edly in prior chapters, namely that the multiple layers of protocols and operating
system software between the application and the communication wire represent a
tremendous barrier to performance, impacting both latency and throughput. U-Net
overcomes these costs by restructuring the core operating system layers that handle
such communication so that channel setup and control functions can operate out of
band, while the application interacts directly with the device itself. Such a direct
path results in minimal latency for the transfer of data from source to destination,
but it raises significant protection concerns: If an application can interact directly
with the device, there is no obvious reason that it will not be able to subvert the
interface to violate the protection on memory controlled by other applications or
break into communication channels that share the device but were established for
other purposes.

The U-Net architecture is based on a concept of a communication segment, which
is a region of memory shared between the device controller and the application pro-
gram. Each application is assigned a set of pages within the segment for use in
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Fig. 8.5 In a conventional communication architecture, all messages pass through the kernel be-
fore reaching the I/O device (a), resulting in high overheads. U-Net bypasses the kernel for I/O
operations (b), while preserving a standard protection model

sending and receiving messages, and is prevented from accessing pages not belong-
ing to it. Associated with the application are three queues: one pointing to received
messages, one to outgoing messages, and one to free memory regions. Objects in
the communication segment are of fixed size, simplifying the architecture at the cost
of a small amount of overhead. (See Fig. 8.6.)

Each of these communication structures is bound to a U-Net channel, which is a
communication session for which permissions have been validated, linking a known
source to a known destination over an established communication channel. The ap-
plication process plays no role in specifying the hardware communication channels
to which its messages will be sent: It is restricted to writing in memory buffers that
have been allocated for its use and update the send, receive, and free queue appro-
priately. These restrictions are the basis of the U-Net protection guarantees cited
earlier.

U-Net maps the communication segment of a process directly into its address
space, pinning the pages into physical memory and disabling the hardware caching
mechanisms so that updates to a segment will be applied directly to that segment.
The set of communication segments for all the processes using U-Net is mapped
to be visible to the device controller over the I/O bus of the processor used; the
controller can thus initiate DMA or direct memory transfers in and out of the shared
region as needed and without delaying any setup. A limitation of this approach is
that the I/O bus is a scarce resource shared by all devices on a system, and the U-Net
mapping excludes any other possible mapping for this region. However, on some
machines (e.g., cluster-style multiprocessors), there are no other devices contending
for this mapping unit, and dedicating it to the use of the communication subsystem
makes perfect sense.
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Fig. 8.6 U-Net shared memory architecture permits the device controller to directly map a com-
munication region shared with each user process. The send, receive and free message queues are
at known offsets within the region. The architecture provides strong protection guarantees and yet
slashes the latency and CPU overheads associated with communication. In this approach, the kernel
assists in setup of the segments but is not interposed on the actual I/O path used for communication
once the segments are established

The communication segment is directly monitored by the device controller. U-
Net accomplishes this by reprogramming the device controller, although it is also
possible to imagine an implementation in which a kernel driver would provide this
functionality. The controller watches for outgoing messages on the send queue; if
one is present, it immediately sends the message. The delay between when a mes-
sage is placed on the send queue and when sending starts is never larger than a few
microseconds. Incoming messages are automatically placed on the receive queue
unless the pool of memory is exhausted; should that occur, any incoming messages
are discarded silently. Specifically, U-Net was implemented using an ATM network
controller. With this device, it only needs to look at the first bytes of the incoming
message, which give the ATM channel number on which it was transmitted (this
could just as easily be a MAC address in the case of Ethernet). These are used to
index into a table maintained within the device controller that gives the range of ad-
dresses within which the communication segment can be found, and the head of the
receive and free queues are then located at a fixed offset from the base of the seg-
ment. To minimize latency, the addresses of a few free memory regions are cached
in the device controller’s memory.

Such an approach may seem complex because of the need to reprogram the de-
vice controller. In fact, however, the concept of a programmable device controller is
a very old one (IBM’s channel architecture for the 370 series of computers already
supported a similar programmable channel architecture nearly 20 years ago). Pro-
grammability such as this remains fairly common, and device drivers that download
code into controllers are not unheard of today. Thus, although unconventional, the
U-Net approach is not actually unreasonable. The style of programming required
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is similar to that used when implementing a device driver for use in a conventional
operating system.

With this architecture, U-Net achieves impressive application-to-application per-
formance. The technology easily saturates an ATM interface operating at the OC3
performance level of 155 MB/sec, and measured end-to-end latencies through a sin-
gle ATM switch are as low as 26 µs for a small message. These performance levels
are also reflected in higher-level protocols: Versions of UDP and TCP have been
layered over U-Net and shown capable of saturating the ATM for packet sizes as
low as 1 KB; similar performance is achieved with a standard UDP or TCP tech-
nology only for very large packets of 8 KB or more. Overall, performance of the
approach tends to be an order of magnitude or more better than with a conventional
architecture for all metrics not limited by the raw bandwidth of the ATM: throughput
for small packets, latency, and computational overhead of communication. Such re-
sults emphasize the importance of rethinking standard operating system structures
in light of the extremely high performance that modern computing platforms can
achieve.

Vendors saw these numbers and became very interested in doing something com-
parable in commodity operating systems. As a result, an initiative called the VIA
(Virtual Interface Architecture) effort was launched, eventually resulting in a U-Net
like technology that can be hidden under conventional interfaces such as Unix or
Windows sockets (although Winsock Direct, as the latter is known, loses some of
the performance benefits of VIA). VIA operates today over many faster technolo-
gies, such as Infiniband, gigabit Ethernet, and fiber switches; an evaluation of the
performance of the standard can be found in Liu (1998). This is a good example of
a successful transition of a clever idea from research into mainstream products!

Returning to the point made at the beginning of this chapter, a technology such as
U-Net also improves the statistical properties of the communication channel. There
are fewer places at which messages can be lost; hence reliability increases and, in
well-designed applications, may approach perfect reliability. The complexity of the
hands-off mechanisms employed as messages pass from application to controller to
ATM and back up to the receiver is greatly reduced—hence, the measured latencies
are much tighter than in a conventional environment, where dozens of events could
contribute towards variation in latency. Overall, then, U-Net is not just a higher-
performance communication architecture; it is also one that is more conducive to
the support of extremely reliable distributed software.

8.5 Asynchronous I/O APIs

Modern operating systems that seek to exploit some of the opportunities we’ve
described face a problem: the cost of a system call can be high enough so that
even performing a single system call per message sent and received can become a
performance-limiting factor. Yet attempts to eliminate this bottleneck run up against
standardization: so much code has been developed over so many years against to-
day’s standard network systems-call API that introducing a new API can be imprac-
tical. Users resist departing from the standards.
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Handling of the resulting tension depends very much on the platform. In Mi-
crosoft’s Windows system, the most popular approach has been to encourage de-
velopers to issue asynchronous I/O requests by posting message read requests and
message sends in batches, arranging for the operating system to notify the applica-
tion (via delivery of some form of event upcall, similar to the way mouse clicks are
reported in a graphical GUI). This way, the application can preprovision the com-
munication layer with large numbers of buffers and if a burst of messages arrives,
the O/S can potentially deliver all of them via a single event. However, users who
want to be certain that their code will port to other platforms, such as Linux, can use
a more stanfard Windows version of the UNIX Socket library, called WinSock.

Linux approaches the same issue quite differently. In this and other UNIX-based
operating systems, asynchronous I/O system calls are an option but are not widely
popular. More common is a style of event loop in which the application places I/O
sockets into non-blocking mode, then uses the select system call to wait until
incoming packets arrive, or perhaps (if the application does both input and output),
until some form of I/O is possible. Then the application will loop rapidly, doing a
series of socket operations, until one of them fails, returning an EWOULDBLOCK
error code. The application can then process the batch of received messages.

With modern multicore machines, a third style of application has emerged, in
which separate threads are dedicated to doing receive and send operations, coupled
to the threads that process data by bounded buffers; the I/O threads would generally
run at high priority and in a blocking mode, potentially combining this with the
multiple buffers at a time approach mentioned earlier.

None of these three options achieves the highest data rates, but they have the
benefit of greater portability from platform to platform. However, they do bring
considerable complexity. Accordingly, modern communication platforms such as
the Isis2 system of Appendix B often implement specialized libraries that embody
all the needed logic, perhaps together with additional code to handle application-
specific flow control, loss recovery, security, or other functionality. Developers who
work directly with the network socket layer are thus an increasingly rare commu-
nity, somewhat like those who prefer to build low-level compute loops directly in
assembler language.

8.6 Related Reading

For work on kernel and microkernel architectures for high-speed communication:
Amoeba (see Mullender et al. 1990; van Renesse et al. 1988, 1989), Chorus (see
Armand et al. 1989; Rozier et al. 1988a, 1988b), Mach (see Rashid 1986), QNX
(see Hildebrand 1992), Sprite (see Ousterhout et al. 1988).

Issues associated with the performance of threads are treated in Anderson et al.
(1995).

Packet filters are discussed in the context of Mach in Mogul et al. (1987).
The classic paper on RPC cost analysis is Shroeder and Burrows (1989), but see

also Clark and Tennenhouse (1987, 1990).
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TCP cost analysis and optimizations are presented in Clark et al. (1989), Jacob-
son (1988, 1990).

Lightweight RPC is treated in Bershad et al. (1989).
Active Messages are covered in Thekkath and Levy (1993), von Eicken et al.

(1992), and U-Net is discussed in von Eicken et al. (1995). An evaluation of VIA, the
industry standard “Virtual Interface Architecture” based on the U-Net architecture,
can be found in Liu et al. (1999).

Fbufs and the x-Kernel are discussed in Abbott and Peterson (1993), Drushel
and Peterson (1993), Peterson et al. (1989b). A really interesting piece of follow-on
work is the I/O Lite system described in Pai et al. (1999). This system implements
an exceptionally efficient framework for building applications that make extensive
use of message-passing.

An architecture for building very high speed Web servers and other event-driven
systems is discussed in Welsh et al. (2001). Called SEDA, the approach is offered
by Welsh as an alternative to extensive multi-threading and has been controversial
because it requires a change in programming style on the part of developers.



Part II
Reliable Distributed Computing

In this second part of the book, we ask how distributed computing systems can be
made reliable—a question motivated by our review of servers used in Web settings,
but that also tries to generalize beyond the ways that today’s cloud platforms im-
plement reliability, so that what we learn might also apply to future web services
that may be introduced by developers of new classes of critical distributed comput-
ing applications down the road. Our focus is on communication technologies, but
we do review persistent (durable) storage technologies based on the transactional
computing model, particularly as generalized to apply to objects in distributed envi-
ronments. Our goals here will be to develop the core mechanisms needed; the third
and final part of the book applies these mechanisms to Web Services and explores
some related topics.
Earlier, we talked about the sense in which the cloud, as architected today, often
makes a deliberate decision to weaken properties in order to guarantee snappy re-
sponse. As we will see, the underlying tension involves the costs of reliability for a
distributed application. To offer strong guarantees, such as the forms of consistency
that Brewer’s CAP conjecture talks about, a distributed system sometimes needs to
pause while it repairs damage done by a failure. For example, if it senses that a mes-
sage was lost, the system might delay subsequent updates until the missing message
has been recovered through retransmissions and applied to the system state in the
right order. If a server crashes, the system might pause briefly to clean up anything
it was doing just at that instant, for example by rolling back a partially completed
update to the service state, or by completing a multicast if the crash happened just
as the multicast was being sent. These events can slow responsiveness: they put
the reliability property ahead of speed of response, if you want to think about the
prioritization of goals that they implicitly reflect.
Even from these simple cases we see that when a system makes promises, it also
accepts obligations that can involve delayed responses. In the cloud, where fast local
response is key to scalability, we can turn this around by saying that the forms of
reliability meaningful in cloud services will often be limited to those that can be
achieved without delay. Which properties fall into this class?
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It turns out that we will be able to say a great deal about such questions. Reliable
distributed computing is a much-studied topic, and while the cloud brings new chal-
lenges such as guaranteeing stability even at large scale, as the saying goes, “plus
ça change; plus c’est lá meme chose”. We will find that the new issues posed by
the cloud do not change the foundational principles. Moreover, while not all forms
of reliability scale well enough to use casually in the cloud, some consistency and
reliability models We do not have all the answers yet, but can already be sure that
any future science of reliable cloud computing will be an outgrowth from the more
basic science of reliable distributed computing.



9How and Why Computer Systems Fail

Before jumping into the question of how to make systems reliable, it will be useful
to briefly understand the reasons that distributed systems fail. Although there are
some widely cited studies of the consequences of failures (see, for example, Peter-
son 1995), causes of failure are a murkier topic. Our treatment here draws primarily
from work by Jim Gray (see Gray 1990; Gray and Reuter 1993; Gray et al. 1987,
1996), who studied the question of why systems fail while he was working at Tan-
dem Computers, and on presentations by Anita Borr (see Borr and Wilhelmy 1994),
Joel Bartlett, a developer of Tandem’s transactional system architecture (see Bartlett
1981), and Ram Chilaragee, who has studied the same question at IBM (see Chila-
ragee 1994). These are all fairly old papers, and one might reasonably ask if they
still apply in the cloud, especially because these studies were done before strongly
typed languages like Java and C# entered into widespread use; obviously, with bet-
ter languages, we write better programs. Moreover, all three researchers focused on
systems designed to be as robust as possible and might have drawn different con-
clusions had they looked at large distributed systems that incorporate technologies
built with less-stringent reliability standards. To this authors’s knowledge, nobody
has done the sorts of updated studies of failure rates and causes that might shed light
on what happens in modern cloud platforms.

Further complicating the picture, as we’ve seen, not only are today’s cloud sys-
tems typically engineered with strong forms of reliability as a secondary goal, but
they even view failure as a kind of feature, for example by literally pulling the plug
on a first-tier cloud component as a part of an elasticity event, or when something
might be malfunctioning. For example, many cloud platforms have a built-in cy-
cle in which they monitor response times for important services and, if something
seems slow, reboot the node or even reimage the node, and then finally take it out
of service. From the perspective of the end-user, these events look like failures! The
thinking is as follows: if a node is malfunctioning and we ask it to cleanup or to oth-
erwise participate in a self-diagnostic process, we may have a long wait, and might
not be able to trust it to do what we’ve requested. Meanwhile, as noted in Chap. 5,
the cloud has many stateless components that can be shut down rather casually.
Given this, it can be simpler and also safer to just kill the malfunctioning compo-
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nent (if, indeed, it is malfunctioning) and then to launch a new, healthy copy. The
upshot is that cloud platforms kill nodes with abandon. Thus, we know surprisingly
little about the ways that cloud systems fail, although we do know that failure has
become a very common event in the modern cloud; in many ways, a design element.

The situation on an end-user platform is quite different. In principle, the client
runs relatively well-tested software, written in modern languages, and should be
quite reliable in ways that the cloud might not be. Cloud platforms are also under
more stress than client systems, most of the time. Yet client systems are sometimes
under attack by viruses, and struggle with mobility that can cut the client off from
needed services. Moreover, client systems deal with such issues as environmental
problems (heat, humidity, being dropped), and might not be properly configured.
The implications of all this haven’t been carefully investigated, but must be very
significant in terms of overall reliability for modern cloud applications.

9.1 Hardware Reliability and Trends

Hardware failures were a dominant consideration in architecting reliable systems
until late in the 1980s. Hardware can fail in many ways, but as electronic packaging
has improved and the density of integrated circuits increased, hardware reliability
has grown enormously. This improved reliability reflects the decreased heat pro-
duction and power consumption of smaller circuits, the reduction in the number of
off-chip connections and wiring, and improved manufacturing techniques. A conse-
quence is that hardware-related system downtime is fast becoming a minor compo-
nent of the overall reliability concerns faced in a large, complex distributed system.
Obviously, hardware failure does remain a factor, particularly on small handheld
devices, devices dependent upon battery power, and laptop or desktop computers,
all of which tend to be treated more roughly than servers. However, the frequency of
hardware failures is down across the board, and dramatically so on server platforms.

To the degree that hardware failures remain a significant reliability concern to-
day, the observed problems are most often associated with the intrinsic limitations of
connectors and mechanical devices, especially when operated in humid or hot con-
ditions, or in settings where mechanical shocks and environment interference can be
significant effects. Thus, computer network problems (manifested through message
loss or partitioning failures, where a component of the system becomes discon-
nected from some other component) are high on the list of hardware-related causes
of failure for any modern system. Disk failures are also a leading cause of downtime
in systems dependent upon large file or database servers, although RAID-style disk
arrays can protect against such problems to a considerable degree. Of course, even
RAID disks fail (rather often because of foolish repair mistakes, such as pulling the
wrong module when servicing a RAID unit that has experienced a single failure).
Disk failures of all kinds are down by at least an order of magnitude compared with
the situation seen in the 1980s.

A common hardware-related source of downtime has very little to do with fail-
ures, although it can seriously impact system availability and perceived reliability.
Any critical computing system will, over its life cycle, live through a series of hard-
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ware generations. These can force upgrades, because it may become costly and im-
practical to maintain old generations of hardware. Thus, routine maintenance and
downtime for replacement of computing and storage components with more mod-
ern versions must be viewed as a planned activity that can emerge as one of the more
serious sources of system unavailability if not dealt with through a software archi-
tecture that can accommodate dynamic reconfiguration of critical parts of the system
while the remainder of the system remains on-line. This issue of planning for future
upgrading, expansion, and for new versions of components extends throughout a
complex system, encompassing all its hardware and software technologies.

9.2 Software Reliability and Trends

It is common to say that software reliability is best understood as a process, encom-
passing not just the freedom of a system from software bugs, but also such issues as
the software design methodology, the testing and life-cycle quality assurance pro-
cess used, the quality of self-checking mechanisms and of user interfaces, the degree
to which the system implements the intended application (i.e., the quality of match
between system specification and problem specification), and the mechanisms pro-
vided for dealing with anticipated failures, maintenance, and upgrades. This rep-
resents a rich, multidimensional collection of issues, and few critical systems deal
with them as effectively as one might wish. Software developers, in particular, often
view software reliability in simplified terms, focusing exclusively on the software
specification that their code must implement and on its correctness with regard to
that specification.

This narrower issue of correctness remains an important challenge; indeed, many
studies of system downtime in critical applications have demonstrated that even
after rigorous testing, software bugs account for a substantial fraction of unplanned
downtime (figures in the range of 25 percent to 35 percent are common), and that
this number is extremely hard to reduce (see, for example, Peterson 1995). Jim
Gray and Bruce Lindsey, who studied reliability issues in transactional settings, once
suggested that the residual software bugs in mature systems can be classified into
two categories, which they called Bohrbugs and Heisenbugs (see Gray and Reuter
1993; Gray et al. 1987, 1996). (See Fig. 9.1.)

A Bohrbug is a solid, reproducible problem: If it occurs, and one takes note of
the circumstances, the scenario can be reproduced and the bug will repeat itself.
The name is intended to remind us of Bohr’s model of the atomic nucleus: a small
hard object, well localized in space. Bruce Lindsey used to comment that the whole
point is that Bohrbugs are boring: you simply run the program again and again
and the problem always repeats, until you’ve found it and fixed it. Gray and Lindsey
found that as systems mature, the relative frequency of Bohrbugs drops steadily over
time, although other studies (notably by Anita Borr) suggest that the population of
Bohrbugs is periodically replenished when a system must be upgraded or maintained
over its life cycle.
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Fig. 9.1 Developers are likely to discover and fix Bohrbugs, which are easily localized and re-
producible sources of errors. Heisenbugs are fuzzy and hard to pin down. Often, these bugs are
actually symptoms of some other problem that occurs while the program is running, but doesn’t
cause an immediate crash; the developer will tend to work around them but may find them ex-
tremely hard to fix in a convincing way. The frequency of such bugs diminishes very slowly over
the life cycle of an application

Heisenbugs are named for the Heisenberg model of the nucleus: a complex wave
function that is influenced by the act of observation. They seem to wiggle around,
are very hard to localize or reliably reproduce, and for this reason, are very hard to
fix. These bugs are typically associated with concurrency, and may be side-effects
of problems that occurred much earlier in an execution, such as overrunning an
array or accidentally dereferencing a pointer after the object to which it points has
been freed. Such errors can corrupt the application in a way that will cause it to
crash, but not until the corrupted data structure is finally referenced, which may
not occur until long after the bug actually was exercised. Because such a bug is
typically a symptom of the underlying problem, rather than an instance of the true
problem itself, Heisenbugs are exquisitely sensitive to the order of execution. Even
with identical inputs, a program that crashed once may run correctly back in the
laboratory.

Not surprisingly, the major source of crashes in a mature software system turns
out to be Heisenbugs. Anita Borr’s work actually goes further, finding that most
attempts to fix Heisenbugs actually make the situation worse than it was in the first
place. This observation is not surprising to engineers of complex, large software
systems: Heisenbugs correspond to problems that can be tremendously hard to track
down, and are often fixed by patching around them at run time. Nowhere is the gap
between theory and practice in reliable computing more apparent than in the final
testing and bug correction stages of a major software deployment that must occur
under time pressure or a deadline.

Better programming languages can help, although language evolution in some
ways lives in tension relative to the parallel evolution of the runtime environment.
Starting with the introduction of Java and now continuing with languages like C#,
for the first time we are seeing large numbers of programmers moving towards lan-
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guages that enforce strong type-checking, automatically handle garbage collection,
and will detect and flag problematic control structures and other possible signs of
mistakes. Yet we are also seeing widespread adoption of multicore hardware, which
can push developers towards multithreaded software designs that can be very hard
to get right. Computing platforms like J2EE and .NET reach beyond the individual
application by tracking dependencies upon specific versions of external services and
libraries, and at runtime will enforce these dependencies. Runtime monitoring and
debugging tools have taken enormous steps forward (earlier, we mentioned that Mi-
crosoft’s Visual Studio .NET is an especially good example, but there are many such
systems, manufactured by dozens of vendors). All of these steps really can help, yet
those underlying trends towards more sophisticated hardware and multicore appli-
cation designs hurt, from a reliability perspective.

Moreover, even the best languages only go so far. It is not particularly hard to
make mistakes in Java or C#, or to trigger an unrecoverable runtime exception. An
infinite loop is still an error, no matter what the language, and object-oriented lan-
guages bring problems of their own, such as challenges in simply making a copy of
an object. As programmers familiar with these languages rapidly learn, a deep copy
is made by copying the object and all other objects to which it is linked, recursively,
while a shallow copy retains linked-to objects, with the effect that a single physical
object may now be accessed by multiple paths, possibly including some unintended
ones. In today’s object oriented systems, code paths that incorrectly create shal-
low copies when deep copies are needed are said to account for great numbers of
bugs and programming errors. Incorrectly implemented equality testing is another
widespread source of mistakes (in these languages, the standard “==” operator de-
termines whether two variables refer to the identical object; if one wants to do a
value comparison, the .Equals() method must be invoked instead). New languages
are not about to eliminate software reliability problems.

Particularly puzzling to the cloud computing community has been the question
of how best to present cloud computing tools to developers who might need to cus-
tomize those tools as part of the application-creation process. Many cloud comput-
ing applications need to leverage prebuilt solutions for data replication, synchroniza-
tion, client-to-server access and load-balancing, etc. Yet we also need to control the
detailed behavior of those solutions: we want data replication with such-and-such a
consistency model, or load-balancing that respects some form of affinity, or fault-
tolerance that behaves in such-and-such a manner. Moreover, we increasingly need
to integrate those mechanisms with multithreaded application designs that leverage
modern multicore platforms. Taken jointly, these goals can easily lead to very com-
plex application designs that can break in subtle ways under conditions that don’t
arise often, but will still occur often enough to be disruptive causes of failure in mas-
sive cloud-scale deployments. The area is thus a fertile opportunity for researchers
interested in having a real impact. We’ve mentioned MapReduce and some of the
related back-end programming tools found in the modern cloud; it would not be at
all surprising if the next edition of this text needs to dedicate a chapter to the topic,
and covers not just MapReduce but a dozen other options, as well.
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9.3 Other Sources of Downtime

Jointly, hardware and software downtime, including downtime for upgrades, is typ-
ically said to account for some two-thirds of system downtime in critical applica-
tions. The remaining one-third of downtime is attributable to planned maintenance,
such as making backups, and environmental factors, such as power outages, air con-
ditioning or heating failures, leaking pipes, and other similar problems.

Although there may be little hope of controlling these forms of downtime, the
trend is to try and treat them using software techniques that distribute critical func-
tionality over sufficient numbers of computers, and separate them to a sufficient
degree so that redundancy can overcome unplanned outages. Having developed
software capable of solving such problems, downtime for hardware maintenance,
backups, or other routine purposes can often be treated in the same way as other
forms of outages. Such an approach tends to view system management, monitoring,
and on-line control as a part of the system itself: A critical system should, in effect,
be capable of modeling its own configuration and triggering appropriate actions if
critical functionality is compromised for any reason. In the chapters that follow, this
will motivate us to look at issues associated with having a system monitor its own
membership (the set of processes that compose it) and, dynamically, adapting itself
in a coordinated, consistent manner if changes are sensed. Although the need for
brevity will prevent us from treating system management issues in the degree of de-
tail that the problem deserves, we will develop the infrastructure on which reliable
management technologies can be implemented, and will briefly survey some recent
work specifically on the management problem.

9.4 Complexity

Many developers would argue that the single most serious threat to distributed sys-
tems reliability is the complexity of today’s large distributed systems: rather than
coding the entire system from the ground up, to a growing degree we work by en-
hancing some existing (often massive) infrastructure with a bit of logic that lives
around the edges and orchestrates the behavior of the rather mysterious machinery
embedded into the platforms with which we work. In the past, students learned the
entire software stack: the computer architecture, the compiler, the operating sys-
tem. Today we learn to invoke preexisting packages of various kinds, with little
deep insight into how they were created and how they might malfunction. Thus, the
distributed systems used in today’s systems, including many of the most critical ap-
plications often interconnect huge numbers of components using subtle protocols,
and the resulting architecture may be extremely complex. The good news, however,
is that when such systems are designed for reliability, the techniques used to make
them more reliable may also tend to counteract this complexity.

In the chapters that follow we will be looking at replication techniques that per-
mit critical system data and services to be duplicated as a way to increase reliability.
We will also look at new-age technologies for tracking system status and reacting to
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problems if they arise at runtime. When these kinds of mechanism are used appro-
priately, the replicas will be consistent with one another and the system as a whole
can be thought of as containing just a single instance of the replicated object, but
one that happens to be more reliable or more secure than any single object normally
would be. If the object is active (a program), it can be actively replicated by dupli-
cating the inputs to it and consolidating the outputs it produces. These techniques
lead to a proliferation of components but also impose considerable regularity upon
the set of components. They thus embody complexity themselves, and yet they si-
multaneously control the complexity associated with the robustness intervention. If
one believes that a platform can, over time, be hardened to a nearly arbitrary degree,
the tradeoff thus shifts complexity into the platform, while reducing the complexity
of the tasks confronting typical application developers, a tradeoff that favors relia-
bility.

As just mentioned, we will also be looking at system management tools that
monitor sets of related components, treating them as groups within which a com-
mon management, monitoring, or control policy can be applied. Again, by factoring
out something that is true for all system components in a certain class or set of
classes, these techniques reduce complexity. What were previously a set of appar-
ently independent objects are now explicitly seen to be related objects that can be
treated in similar ways, at least for purposes of management, monitoring, or control.

Broadly, then, we will see that although complexity is a serious threat to reli-
ability, complexity can potentially be controlled by capturing and exploiting reg-
ularities in distributed system structure—regularities that are common when such
systems are designed to be managed, fault tolerant, secure, or otherwise reliable. To
the degree that this is done, the system structure becomes more explicit and hence
complexity is reduced. In some ways, the effort of building the system will increase:
This structure needs to be specified and needs to remain accurate as the system sub-
sequently evolves. But in other ways, the effort is decreased: By managing a set of
components in a uniform way, one avoids the need to do so in an on ad hoc basis,
which may be similar for the members of the set but not identical if the component
management policies were developed independently.

These observations are a strong motivation for looking at technologies that can
support grouping of components in various ways and for varied purposes. However,
they also point to a secondary consideration: Unless such technologies are well in-
tegrated with system development software tools, they will prove to be irritating and
hard to maintain as a system is extended over time. As we will see, researchers have
been more involved with the former problem than the latter one, but this situation
has now begun to change, particularly with the introduction of CORBA-based re-
liability solutions, which are well integrated with CORBA development tools. For
example, CORBA offers an FTOL architecture for building fault-tolerant active ob-
jects. On the downside, these kinds of feature remain rather tentative and have yet
to be adopted by CORBA’s siblings (progeny?), J2EE and .NET. The Web Services
community seems to be at the verge of rejecting such mechanisms precisely because
the CORBA community has had mixed experience with the specific versions they
adopted. None of these developments is especially encouraging for those of us “in
the business” of high assurance.
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9.5 Detecting Failures

Surprisingly little work has been done on the problem of building failure detection
subsystems. A consequence is that many distributed systems detect failures using
timeouts—an error-prone approach that forces the application to overcome inaccu-
rate failure detections in software.

Work by Vogels (see Vogels 1996) suggests that many distributed systems may
be able to do quite a bit better. Vogels makes the analogy between detecting a fail-
ure and discovering that one’s tenant has disappeared. If a landlord were trying to
contact a tenant whose rent check is late, it would be a little extreme to contact the
police after trying to telephone that tenant once, at an arbitrary time during the day,
and not receiving any reply. More likely, the landlord would telephone several times,
inquire of neighbors, check to see if the mail is still being collected and if electric-
ity and water are being consumed, and otherwise check for indirect evidence of the
presence or absence of the tenant. Vogels suggests that modern failure detectors
operate like that extreme landlord, and that it wouldn’t be hard to do far better.

Modern distributed systems offer a great number of facilities that are analogous
to these physical options. The management information base of a typical computing
node (its MIB) provides information on the active processes and their consumption
of resources such as memory, computing time, and I/O operations. Often, the net-
work itself is instrumented, and indeed it may sometimes be possible to detect a
network partition in an accurate way by querying MIBs associated with network
interface and routing nodes. If the operating system on which the application in
question is running is accessible, one can sometimes ask it about the status of the
processes it is supporting. In applications designed with fault-tolerance in mind,
there may be the option of integrating self-checking mechanisms directly into the
code, so that the application will periodically verify that it is healthy and take some
action, such as resetting a counter, each time the check succeeds. Through such a
collection of tactics, one can potentially detect most failures rapidly and accurately
and even distinguish partitioning failures from other failures such as crashes or ap-
plication termination. Vogels has implemented a prototype of a failure investigator
service that uses these techniques, yielding much faster and better failure detection
than is traditionally assumed possible in distributed systems. Unfortunately, how-
ever, this approach is not at all standard. Many distributed systems rely entirely on
timeouts for failures; as one might expect, this results in a high rate of erroneous
detections and a great deal of complexity in order to overcome their consequences.

Vogels has gone beyond this initial point in his most recent work on the problem
(see Vogels and Re 2003). He is now arguing that Web Services systems should
include a module, WS_MEMBERSHIP, implementing the failure detection func-
tionality and guaranteeing system-wide consistency. As noted earlier, it is not at all
clear how industry views this proposal, although he is certainly seen as a leader in
the Web Services architecture community.

It is particularly interesting to realize that these forms of advice come from a
person who became Amazon.com’s CTO and thus oversees a cloud computing in-
frastructure that operates on a massive scale and, as we’ve noted earlier, often delib-
erately shuts down and then restarts components, using planned failure as a remedy
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for unstable behavior. Thus those who lead in the field, like Vogels, have become
both pragmatists and failure experts: they use controlled failures as a tool, they are
sophisticated in use of forensic tools to understand causes of uncontrolled failures,
and they are elevating the notion of debugging to a new scale: debugging applica-
tions that may not exhibit problems until they are running on tens or hundreds of
thousands of nodes. In single-node machines, we think of failure as something that
one uses debugging tools to “eliminate” as a problem. In cloud settings, failures
can only be seen as a characteristic of the environment that must be anticipated and
appropriately managed.

What we lack in the cloud, at the time of this writing, but would find extremely
useful, would be a standard means for the cloud management infrastructure to warn
cloud applications about planning elasticity events. Suppose, for example, that be-
fore reconfiguring a first-tier or second-tier application, the management system
were to issue an upcall to the application. Even a few seconds of advance notice
might be enough to reconfigure data and functional mappings so that the disrup-
tion resulting from the actual elasticity event would be much reduced. Sharded data
could be shifted in anticipation of the new service membership, so we wouldn’t run
a risk of seeing all members of a shard killed off simultaneously in an abrupt, uncon-
trollable manner. Of course this would cut both ways: when Amazon reconfigures a
first-tier EC2 service, the platform needs to see that change occur within a short de-
lay. So the design of such an interface would be a non-trivial task embodying some
subtle tradeoffs, and would probably make a very good topic for a research paper.
But with this sort of service, our options for building highly assured cloud solutions
would immediately be greatly improved.

9.6 Hostile Environments

The discussion in this chapter has enumerated a great variety of reliability threats,
which a typical distributed system may need to anticipate and deal with. The prob-
lems considered, however, were all of a nature that might be considered “routine,”
in the sense that they all fall into the category of building software and hardware to
be robust against anticipated classes of accidental failures and to be self-managed
in ways that anticipate system upgrades and maintenance events.

Just a few years ago, it seemed unnatural to think of the Internet as a hostile en-
vironment, and one steadily growing more so. Today, after decades of viruses and
“denial of service” attacks, only a very trusting individual would still see the net-
work as a benign place. Modern computer networks are shared with a huge popula-
tion of computer-literate users, whose goals and sense of personal ethics may differ
tremendously from those of the system developer. Whether intentionally or other-
wise, these network users represent a diffuse threat; they may unexpectedly probe a
distributed system for weaknesses or even subject it to a well-planned and orches-
trated assault without prior warning. Simply visiting a standard, public, web page
can leave one’s computer in the hands of malefactors, who are starting to leverage
cross-scripting features to hude malicious content within otherwise unremarkable
content.
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The intentional threat spectrum is as varied as the accidental threat spectrum re-
viewed earlier. The most widely known of the threats are computer viruses, which
are software programs designed to copy themselves from machine to machine and
to do damage to the machines on which they manage to establish themselves. (A be-
nign type of virus that does no damage is called a worm, but because the mere pres-
ence of an unanticipated program can impact system reliability, it is perhaps best to
take the view that all undesired intrusions into a system represent a threat to reliable
behavior.) A virus may attack a system by violating assumptions it makes about
the environment or the network, breaking through security codes and passwords,
piggybacking a ride on legitimate messages, or any of a number of other routes. At-
tacks that exploit several routes at the same time are more and more common—for
example, simultaneously compromising some aspect of the telecommunication in-
frastructure on which an application depends while also presenting the application
with an exceptional condition that it can only handle correctly when the telecom-
munication subsystem is also functioning.

Other types of intentional threat include unauthorized users or authorized users
who exceed their normal limitations. In a banking system, one worries about a rogue
trader or an employee who seeks to divert funds without detection. A disgruntled
employee may seek to damage the critical systems or data of an organization. In
the most extreme case, one can imagine hostile actions directed at a nation’s critical
computing systems during a period of war or terrorism. Today, this sort of informa-
tion warfare may seem like a suitable topic for science fiction writers, yet, as society
shifts increasingly critical activities onto computing and communication technology,
the potential targets for attack will eventually become rich enough to interest mili-
tary adversaries. A recent non-fiction book by Richard Clarke, past national security
advisor to the White House (“Cyber War: The Next Threat to National Security and
What to Do About It” by Richard A. Clarke and Robert Knake (2010)), emphasizes
this emerging reality; a second such book, by Jeffery Hunker (“Creeping Failure:
How We Broke the Internet and What We Can Do to Fix It”, Jeffrey Hunker (2011)),
a policy analyst who headed the PCCIP under the Clinton-Gore administration takes
the same points even further.

A distributed denial of service (DDoS) attack occurs when a collection of ma-
chines, often subverted by hackers who have broken in over the network, are directed
to barrage some server or data center with a tremendous load of costly messages,
such as the first-phase messages for establishing a TCP connection. Often, origin
data are concealed for such messages so as to prevent the server from using a sim-
ple filtering mechanism to weed out the bad connections. The server grinds to its
knees and legitimate users are unable to connect. The basic DDoS attack has many
variants, some aimed at key services such as DNS, some at routers or “weak links”
in the network, and some aimed at other kinds of infrastructure or even the applica-
tion itself. Moreover, DDoS attacks can be effective, but the good news is that they
have limits.

For example, when Metallica unveiled its new Web site in early 2003, the band at-
tracted the attention of the music swapping community, which had previously been
attacked by Metallica and its lawyers through an organization called the RIAA.
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Metallica’s site fielded some 6M requests per minute for several days, until network
providers worldwide devised a strategy for blocking the problematic packets. Sur-
prisingly, though, rather few Metallica fans were actually disrupted by the event: the
DDoS traffic made it hard to register with their Web site but because the actual Web
content was cached on a huge data center maintained by Akamai, once a user was
registered, the DDoS traffic had little impact. Thus the attackers were only able to
shut down one aspect of the overall system, and only for a few days. At the other
end of the spectrum, Clarke and Hunker both report cases in which entire countries
were brought down, for weeks, by more sophisticated large-scale attacks that fo-
cused not on single applications, but rather on critical elements of the underlying
Internet infrastructure.

Later in this part of the book we will be looking at issues of scalability, and
we will see that some high availability techniques have overheads that are poten-
tially quite significant when certain “rare” events occur. A clever attacker might
even launch a denial of service attack by triggering an unusually high frequency of
these kinds of event, knowing that the system will pay a steep price dealing with
them. Yet because the events are normal ones, albeit normally not so frequent, the
system administrator may have a tough time even noticing that a problem has oc-
curred. For example, in a replication protocol one could repeatedly add, then re-
move, some process—again and again. The group membership protocol will have
to run each time, and while this happens, updates can be delayed, effectively de-
grading the group. Peer-to-peer protocols are often sensitive to churn, the analogous
problem but on a large scale. Thus an attack might not even be predicated on the use
of some sort of really abnormal traffic pattern!

Clearly, no computing system can be protected against every conceivable form of
internal and external threat. Distributed computing can, however, offer considerable
benefits against a well-known and fully characterized threat profile. By distributing
critical functionality over sets of processes that must cooperate and coordinate their
actions in order to perform sensitive functions, the barrier against external threats
can be formidable. For example, Metallica’s decision to host content on a Web server
farm maintained by Akamai meant that DDoS attacks would have had to shut down
all of Akamai’s thousands of computers to really shut down Metallica itself. Simi-
larly, a terrorist who might easily overcome a system that lacks any defenses at all
would face a much harder problem overcoming firewalls, breaking through security
boundaries, and interfering with critical subsystems designed to continue operating
correctly even if some limited number of system components crash or are compro-
mised. Later we will discuss virtual private network technologies, which take such
approaches even further, preventing all communication within the network except
that initiated by authenticated users. Clearly, if a system uses a technology such as
this, it will be relatively hard to break into. However, the cost of such a solution may
be higher than most installations can afford.

As the developer of a critical system, the challenge is to anticipate the threats
that it must overcome and to do so in a manner that balances costs against benefits.
Often, the threat profile that a component subsystem may face will be localized to
that component—hence, the developer may need to go to great lengths in protecting
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some especially critical subsystems against reliability and security threats, while us-
ing much more limited and less-costly technologies elsewhere in the same system.
One goal of this part of the book involves a corresponding issue—that of under-
standing not just how a reliability problem can be solved, but also how the solution
can be applied in a selective and localized manner, so that a developer who faces a
specific problem in a specific context can draw on a solution tailored to that problem
and context, without requiring that the entire system be reengineered to overcome a
narrow threat.

Today, we lack a technology with these attributes. Most fault-tolerant and secu-
rity technologies demand that the developer adopt a fault-tolerant or secure comput-
ing and communication architecture starting with the first lines of code entered into
the system. With such an approach, fault tolerance and security become very hard
to address late in the game, when substantial amounts of technology already exist.
Unfortunately, however, most critical systems are built up out of preexisting tech-
nology, which will necessarily have been adapted to the new use and hence will be
confronted with new types of reliability and security threat that were not anticipated
in the original setting. Worse, as we saw earlier, the cloud is architected in ways that
make failures more common. In the past, one thought of failure as a rare event. In
cloud settings, failure is a common fact of life.

What is needed is a technology base that is flexible enough to help us how to
overcome a great variety of possible threats, but that is also matched to the special
conditions that arise in modern styles of computing: client computing, networks,
cloud applications. Solutions must be scalable and efficient (so that these costs are
as low as possible), and suitable for being introduced late in the game, when a
system may already include substantial amounts of preexisting technology.

Can this be done? The author believes so; research is making major strides in this
direction. In the following chapters, we will be looking at many of the fundamental
challenges that occur in overcoming various classes of threats. We will discuss com-
puting models that are dynamic, self-managed, and fault tolerant, and will see how
a technology based on wrapping preexisting interfaces and components with look-
alike technologies that introduce desired robustness features can be used to harden
complex, pre-existing systems, albeit with many limitations. Finally, we will con-
sider some of the large-scale system issues raised when a complex system must be
managed and controlled in a distributed setting. While it would be an overstatement
to claim that all the issues have been solved, it is clear that considerable progress
towards an integrated technology base for hardening critical systems is being made.

But the author’s view is not necessarily the prevailing one. Many cloud platform
vendors see reliability as a kind of operational property, not one with a strong basis
in theory or guarantees. They design systems that work pretty well, then as the
systems run, improve the things that fail in annoying ways, while finding clever
tricks to hide other forms of inconsistency or unreliability where the end-user will
not notice. We have seen how this can lead to a view in which the cloud becomes
unreliable by design, trading reliability against faster response times or other desired
scalability properties. Thus, even an optimist about the technical trends should have
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few illusions about reliability: Critical computing systems will continue to be less
reliable than they should be until the customers and societal users of such systems
demand reliability, and the developers begin to routinely concern themselves with
understanding the threats to reliability in a given setting—planning a strategy for
responding to those threats and for testing the response. However, there is reason to
believe that in those cases where this process does occur, a technology base capable
of rising to the occasion can be provided.

9.7 Related Reading

On dramatic system failures and their consequences (see Gibbs 1994; Peterson
1995).

How and why systems fail and what can be done about it (see Birman and van
Renesse 1996; Borr and Wilhelmy 1994; Chilaragee 1994; Gray 1990; Gray and
Reuter 1993; Gray et al. 1987, 1996).

On the failure investigator (see Vogels 1996; Vogels and Re 2003).
On understanding failures (see Cristian 1996).





10Overcoming Failures in a Distributed System

10.1 Consistent Distributed Behavior

In this and the next two chapters, we will be focused on mechanisms for repli-
cating data and computation while guaranteeing some form of consistent behavior
to the end-user. For example, we might desire that even though information has
been replicated, some system based on that data behaves as if that information was
not replicated and instead resides at a single place. This is an intuitively attractive
model, because developers find it natural to think in terms of non-distributed sys-
tems, and it is reasonable to expect that a distributed system should be able to mimic
the behavior of a non-distributed one. At the same time, though, it is not a minor un-
dertaking to ensure that a distributed system will behave just like a non-distributed
one.

Distributed systems are inherently concurrent: actions occur at multiple places,
and if data is replicated, the possibility arises that access will occur simultaneously
at more than one location, introducing synchronization challenges. Obviously, in
an ideal world, actions would occur as asynchronously as possible, consistent with
such pragmatic concerns as management of flow control (we would not want un-
bounded amounts of data to build up within the communication channels of an
asynchronous system, as might occur if one node was permitted to get far ahead
of others), fault-tolerance (we would not want the user to be sent a reply that reflects
updates that were done at one location, only to see a crash erase those updates so that
they never reach other nodes), and the selected consistency model. But taken jointly,
these goals representing a surprisingly difficult objective to achieve. It is hard to vi-
sualize concurrent behaviors of a system, because one needs to think about all the
things that can be happening at all the locations in the system, and the possible ex-
ecution scenarios generally grow in number as the cross product of the numbers of
possible local scenarios. Concurrency can be a source of serious bugs: under pre-
cisely what conditions is it safe to reply to an end-user before a set of updates have
been completed? Even seemingly minor implementation issues are incredibly dif-
ficult to resolve: how threaded should a concurrent system be, and how should it
use such features as thread priorities to maximize performance, and how should its
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threads do locking? These kinds of concerns often lead to very conservative (hence
slow) implementations. But slow solutions, while they may be easier to debug, bat-
tle against cloud’s need for rapid responses: any reply that gets delayed longer than
necessary could cost the cloud enterprise revenue!

For readers who recall the introduction and first chapters of this text, it should
not be hard to see how the CAP theorem and methodology emerged from such
worries. After all, if data replication in the cloud turns out to be slow, it becomes
very appealing to build first-tier cloud services that run on potentially stale data, as a
way to avoid waiting for locks, or waiting for updates to complete. CAP can then be
recognized as a pragmatic response to the complexities of building really scalable,
high-speed consistency mechanisms. Accordingly, in what follows our goal will be
to first see what the best that can be done might be. Can we build really fast, scalable,
replication protocols? Then we can revisit design principles such as CAP and ask
whether they are really the final word on consistency in cloud settings.

To simplify this thicket of complications and competing objectives, we will start
by looking at models of systems that do not have any kind of replicated data, which
we can then “emulate” in a distributed manner. In this way one can incrementally
build towards that goal of a maximally concurrent yet always safe solution that
might really be deployable at cloud-scale. Moreover, in a somewhat unexpected new
twist, this way of thinking will also offer us a path towards concurrent solutions for
use in multi-core settings, since to a growing degree, those systems look like small
clusters of machines.

With this in mind, in what follows we will work our way up to a model in which
one thinks about a system as if it is not using replicated data and does not exhibit
concurrency, then shows how to implement that model in a fault-tolerant manner
using a distributed system. This latter model supports a consistency model often re-
ferred to as state machine replication. State machine replication was introduced by
Leslie Lamport in the 1970s, but at the time was really just a name he used for a
very simple idea, namely that if a set of replicas for some service are determinis-
tic1, and if they apply the same set of actions (e.g. updates) in the same order, they
will remain in the same state—what today would be called a consistent replicated
state. Although the state machine model will seem somewhat trivial when stated this

1Determinism is a very unrealistic assumption for modern programs coded in languages like Java
or C#, which support threads and do background garbage collection. The assumption is even more
questionable if an application might receive input from multiple sources, for example by having
TCP connections from multiple clients. Thus today we tend to think of the determinism assumption
not as a statement about the programming language or the program “as a whole” but rather, in terms
of the way some module within a program handles operations against the state maintained within
that module. For example, a module might be non-threaded even if the program that uses it is
multi-threaded. The module might use some form of locking to enforce ordering. In this way, we
create a deterministic subsystem within which the state machine replication assumption makes
sense. While one might reasonably wonder if this more restrictive notion of determinism will have
to be questioned if the current trend towards highly pipelined multi-core machines continues to
play out, it seems likely that future computers will still have some way to guarantee determinism
no matter how complex they become in these dimensions. We literally would not know how to
write programs for computing models that are non-deterministic at their core.
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way, state machine replication implementations can be quite complex: they need to
deal with concurrency, failures, and reconfiguration, each bringing its own set of
issues. Yet, such problems can be solved, and this is why state machine replication
has become the most standard way to understand the conditions under which repli-
cated information will be updated correctly within a set of replicas even when the
set experiences failures, or evolves by adding or dropping members over time (that
is, what started as a definition for replication gradually became more of a model for
dealing with groups of replicas that might vary in size and role dynamically). On
the other hand, it took time for state machine replication to have this more general
meaning. At the outset, the model assumed that the set of replicas was fixed. More-
over, the model did not evolve in a simple way: there were actually many proposals
for dynamic membership management in systems that adopt the state machine ap-
proach, offered by many researchers. In what follows, we will look at several of
those options.

The history in this area was quite complex; we will summarize it, but just briefly.
The idea of replicating a service or system dates quite far back, it was certainly rec-
ognized before Lamport introduced the state machine replication model, and proba-
bly could be traced to the earliest days of computing. After all, the moment informa-
tion was somehow moved from one computer to another, data was effectively being
replicated. By the mid-1970s papers on replication despite failures had appeared. It
was in the context of one such paper that Lamport suggested the state machine repli-
cation model. Although Lamport’s use of the model was in a crash-failure scenario,
however, many of the early papers focused on very aggressive failure models, oth-
ers quickly adapted it and it became popular in connection with the Byzantine fault
model, in which components of the system actively try to attack it from within. We
will say more about that model below; it offers very strong assurances, but is also
costly and in some ways, not very realistic (studies at Yahoo! and elsewhere sug-
gest that real failures are rarely Byzantine). Some researchers favor this Byzantine
state replication model, suggesting that even if real failures tend to be less messy,
the extreme pessimism of the Byzantine model certainly covers anything a real sys-
tem could possibly do. For this chapter, though, we will stick with the most widely
used failure model: one in which machines fail by crashing and this is detected by
timeout.

The more practical history of data replication was catalyzed by the introduction
of hardware supporting a special kind of one-to-many communication option. The
first use of this hardware feature was in particular networking device called the Eth-
ernet, invented at Xerox Parc in the early 1980s. With an ethernet, it was easy to send
one message that would be received (unreliably) by multiple receivers; basically, all
the receivers just listened for some single agreed-on network address, and any mes-
sage sent to that address would be accepted by all their network interfaces. Thus,
a single message-send could potentially reach an unlimited number of destination
machines. But hardware multicast soon morphed into a software-supported notion
of network multicast, implemented by routers. Moreover, researchers began to study
the use of this feature for various purposes: to find a service in a network where the
location of the server might not be fixed, and to support inexpensive data replica-
tion. Papers such as the Zwaenepoel and Cheriton paper on an operating system they
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called V speculated about a wide variety of other possible uses for multicast. The V
system itself offered a simple way to access the hardware feature, but did not really
explore those applications in much detail.

This set the stage for the author’s own work (with Tommy Joseph and others)
in the 1985–1987 period, which yielded both a practical tool for replicating data or
computation, as well as a model called virtual synchrony for explaining precisely
what that guarantees this tool provides to its users. A program could count on those
guarantees, and they represented a kind of virtualized execution environment, very
much in the same sense that a virtual machine allows applications to run in a virtual-
ized setting. As we will see below, virtual synchrony focuses on the communication
layer, and offers a kind of distributed programming environment that supports ways
to form groupings of applications (process groups), to replicate data or coordinate
actions within those groups, to update data in a consistent manner, etc.

In other words, virtual synchrony formalizes a practical replication solution that
guarantees a strong form of consistency, and fault-tolerance for a specified class of
failures. It supports a variety of multicast protocols with varied ordering properties;
the user picked whichever protocol was strong enough for the need, but cheapest
within its class. The corresponding system was called the Isis Toolkit, and first en-
tered general use around 1987. The Isis Toolit was ultimately used to create the New
York Stock Exchange floor communications networking system (it ran that system
for more than a decade before being replaced), the French Air Traffic Control Sys-
tem (which gradually spread through Europe and remains active today), the US
Navy AEGIS system, and many other applications. Virtual synchrony was adopted
in many other systems, including Totem, Transis, Phoenix, Horus, Ensemble and
JGroups (a component of JBoss). Appendix A formalizes a modern version of the
model, and the Isis2 platform described in Appendix B implements a modern ver-
sion of the virtual synchrony model, extended to work well in cloud computing
environments.

But virtual synchrony was just one of several replication approaches. In 1988,
Brian Oki and Barbara Liskov published a paper describing a database replication
scheme called viewstamped replication; it uses a different protocol, of their own
design, and implements a model that guarantees stronger durability properties than
most of the virtual synchrony protocols2. They argued that these properties were
ideally matched to replication scenarios that arise when supporting ACID trans-
actions. Today, we would say that the target is replicated hard state in a modern
cloud computing system. In contrast, the majority of the virtual synchrony replica-
tion protocols are suitable for soft state replication, but lack a durability property
needed for hard state (the “D” in ACID). If all this seems confusing, it was even at
the time: basically, from the outset, there have been a dismaying variety of options
for replicating data, scaling replicated services up, and tolerating failures. All of
these choices, and the subtle differences in the ways they were portrayed in papers

2We say “most” here because virtual synchrony actually had several flavors of reliable multicast;
we will discuss them below.
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describing them, made the early days of the field extremely chaotic; we are only
starting to see real standards today.

As just mentioned, Leslie Lamport stepped into the fray in 1990, with the first
paper on his Paxos protocol (the official journal publication did not appear until
1998, but the paper was in wide circulation from its first release as a technical re-
port). Lamport’s innovation was not so much the protocol itself, which contained
elements familiar from his own papers and the 1988 Oki and Liskov protocol. Lam-
port’s innovation centered on the balance he struck between offering a practical
protocol side by side with a more rigorous formal analysis. Moreover, Paxos was
really as much a methodology as a protocol: he offered a very elegant step-by-step
way of transforming a very simple but inefficient basic Paxos protocol into a more
and more efficient, optimized version that preserved the correctness of the original
solution. His first papers took some initial steps along these lines, and then were
followed by additional refinements over nearly a decade. Indeed, widespread inter-
est in Paxos probably did not occur until around 2001, coinciding with a paper he
entitled “Paxos made Simple,” and with a few success stories on using Paxos in the
Frangipani File System (1998) and the Google Chubby Lock Service (2006).

In the contemporary, fanciest, versions of Paxos one finds most features of the
virtual synchrony protocols. But whereas the virtual synchrony protocol suite was
hard to prove correct, these fancier versions of Paxos inherit simple correctness
properties from the the less elaborate versions that from which they were derived.
This was a tremendously important innovation at the time and really changed the
way that people design and reason about protocols. On the negative side, that early
Paxos paper was somewhat hard to read, in part because the best ways of presenting
this kind of work had not yet been discovered, and in part because the paper itself
made extensive use of Greek (not merely for symbols, but entire words and short
phrases). The Paxos Made Simple paper did not just revisit Paxos, but went beyond
the original paper by untangling and structuring the proofs and approach. Those
steps transformed Paxos from being a specific protocol into more of a technique,
which is the way many researchers think of it today. In effect, we tend to view
Paxos as a method for starting with a simple but inefficient replication protocol, and
then improving it step by step into a much more practical one, while retaining the
key correctness properties in each step.

If replication ever becomes a topic for future historians, all of this may be tough
going. As we have seen, many of the key ideas turn out to have been invented (and
then reinvented) at least a few times, by multiple researchers. One could argue that
several researchers, the author of this text included, reinvented their own ideas a few
times, before finally getting the right balance between practicality, performance, and
clarity of the correctness proofs. In retrospect, one can tease out elements of Paxos
in both the virtual synchrony “view management” protocol, and in the Liskov and
Oki work. But this is because we know what we are looking for. Readers of these
three papers, at the time, would have noticed similarities but probably would not
have realized that the underlying mechanisms were essentially isomorphic. More
likely they would have found it all confusing, as the various authors themselves did:
everyone was searching for clarity, but as it worked out, clarity emerged only after
many years of research and development.
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But it is interesting to realize that these and other efforts arrived at similar so-
lutions, and did so because they were trying to solve similar problems. At the end
of the day, it turns out that there are not very many ways to solve those problems.
Virtual synchrony, as we will see below, was focused on what today we would call
consistent data replication in the soft-state services that live in the first tier of the
modern cloud. Liskov and Oki were interested in strong durability guarantees (the
ACID properties needed in database systems); their solution thus aimed at consis-
tency but in the inner hard-state tiers, to use cloud terminology. And in the first
Paxos papers, Lamport was not asking about either of these applications, although
in fact his model was very close to the one used by Liskov’s group. Lamport’s focus
was on Paxos as an elegant solution to state machine replication (Lamport 1984),
and on the best ways to derive the required proofs.

Further complicating the picture was an engineering issue: as mentioned, virtual
synchrony was notably complicated in its early incarnation, making it hard to under-
stand. Yet it was also real: the Isis Toolkit was in use by 1985, and the 1987 version
quickly was picked up by dozens of users worldwide. The system was ultimately
commercialized, which is how it came to be used in the settings listed earlier, and
many others (and it was never rewritten: the commercial version was basically a
very cleaned-up version of that original 1985 system). The Liskov and Oki work
was used at MIT, but never adopted outside of the research project on which Oki
worked. Paxos was mostly viewed as a theory and methodology contribution in the
early days, but today is supported by a high quality implementation created at Mi-
crosoft Research. Turning Paxos into a really practical option, however, required
a number of extensions and improvements to the original basic protocol. Nearly a
decade elapsed after Paxos was first published, before practical use of the solution
became an option.

During that same time period, virtual synchrony evolved by becoming more and
more modular, separating concerns that in the initial protocols were mixed together.
So we have a mix here of competing solutions, each evolving, and each targeting
somewhat different use cases.

The story has not ended yet. In recent work, Dahlia Malkhi led an effort that
managed to merge the Paxos and virtual synchrony protocols into a single model;
we include it here as Appendix A. Her approach offers advantages relative to both
virtual synchrony and the most current version of Paxos.

And who deserves credit for all of this? Was it Lamport, who clarified what
had been very confusing? Virtual synchrony for being first to actually implement
these mechanisms in a generally useable form? Liskov and Oki, for being clos-
est to the specifics of the first version of Paxos, but predating Paxos? Any reason-
able analysis would have to conclude that today’s theory and practice of replicated
data with strong consistency owes much to many researchers, including not just
the ones associated with the work just mentioned, but also many others not explic-
itly touched upon above. A proper history would also talk about the contributions
of Amir, Babaoglu, Chockler, Dolev, Guerraoui, Kaashoek, Keidar, Meliar-Smith,
Moser, Moses, Schiper, Stephenson, Van Renesse and many others.
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For this book, all of this forces a choice. One option would be to present the
various protocols more or less as they were invented: virtual synchrony in one sec-
tion, Paxos in another, the Liskov and Oki protocol in a third, etc. Such a treatment
might touch upon each of the researchers just listed, explaining precisely how each
contributed to an evolving but very complex, multifacted, concurrent process. After
all, the community did not work on one solution; rather, dozens of contributions that
overlapped in many ways slowly let us tease out today’s story.

What we will do here takes the opposite approach: we will develop a single story,
step by step, in a way that draws on all of this prior work and yet represents a single
line of thinking, not many conflicting, concurrent lines of thought. Our treatment
comes closer to Malkhi’s version of virtual synchrony combined with Paxos than
to any other prior approach, but what it really tries to do (hopefully, in a successful
way) is to motivate each feature of the model by seeing how the need for that feature
arises in real cloud settings, or in other practical contexts. We will use the term
virtual synchrony for this model, but the reader should be aware that the definitions
we use here are not identical to those from the earliest uses of the term.

The model we will work towards here is one that lets us substitute groups of pro-
cesses or objects where we might have used a single one in our conceptual design,
in effect offering the developer an incremental way to introduce replication and
to achieve a high degree of concurrency. In addition to Isis2, virtual synchrony is
supported by several other popular communications packages, including the widely
used JBoss and Spread technologies. Although Web Services development tools do
not yet provide integrated support for these kinds of mechanism, down the road that
type of integrated solution will almost certainly become available. Meanwhile, for
those who need high assurance, there are practical ways to apply the ideas in this
and the subsequent chapter to real systems, by using standard Web Services devel-
opment tools and integrating them with communication libraries implementing the
mechanisms we will be studying.

Although our “real” goal is to support replicated data and replicated computation
for high availability and improved performance, we will tackle the problem a little
bit at a time. In particular, the main topics on which we will focus in this chapter
concerns the best options for tracking the set of members of a distributed system
and on the building block primitives needed to implement those options, notably
2-phase commit and its generalization, 3-phase commit.

Monitoring membership in a system may not seem all that central to replicat-
ing data, but in fact plays a fundamental role: after all, it makes no sense to talk
about replicating information unless we can explain precisely where the replicas
are supposed to be! Moreover, it turns out that the way we solve the membership
problem has stunning performance implications. Getting membership “right” can
result in replicated update rates thousands of times superior to those seen in systems
that approach the membership problem naively. Indeed, while there are many who
would suggest that “agreeing on something” is the most fundamental distributed
computing problem, the author of this text could make a pretty strong argument that
agreeing on membership is perhaps at the real core.



308 10 Overcoming Failures in a Distributed System

Why worry about agreement on system membership? Why not simply trust pro-
cesses to make their own decisions, in accordance with the end-to-end philosophy,
perhaps using timeouts?3 Readers may recall that in the introduction of this book,
we saw that when timeout is used to detect failures, events unrelated to failure such
as network congestion, brief disconnections of some computers from the network,
or routing changes can trigger timeouts and thus fool the system into believing that
such-and-such a node has crashed.

Worse still, this can happen in wildly inconsistent ways. Perhaps process p will
conclude that processes q, r , and s are up but that process t has crashed, while
process q thinks that all five are healthy, and process t believes that it is the only
survivor of some sort of massive outage. Such problems can percolate up to the user,
resulting in confusing or even unsafe behavior. For example, in the introduction, we
saw a “split brain” scenario, where an air traffic control system might partition into
two side-by-side systems, each claiming to be in control—and each unaware of the
other.

It is not hard to see why confusion about membership will translate to trouble if
we want to replicate data. To summarize that story from the introduction, suppose
that our five processes are part of an air traffic control service that needs to maintain
information about which planes are in the sky and where they are going, and the
data in question is updated when controllers give instructions to the planes, or when
a plane changes its course. If the system is not consistent about which members are
operational, it may neglect to update one of the replicas, in which case that replica
will start to give incorrect information to the pilots and controllers who are unlucky
enough to query it. Conversely, if we can trust a membership service to tell us which
processes “belong” to the system, we will be in a position to use that information in
support of simple tools, like libraries that maintain replicated data and provide ways
to lock items for exclusive use, and then in higher level algorithms, for example to
rapidly “fail over” from a process that crashes to one that remains healthy so as to
maintain near-continuous availability. In many ways, agreement on membership is
thus at the center of the universe, at least insofar as high assurance computing is
concerned.

Not many people build distributed air traffic control systems, so it makes sense
to ask if all of this matters in the modern cloud. The answer is mixed. Today, the
cloud is dominated by applications for which relatively weak consistency properties
suffice. Many systems are deliberately designed to sometimes give wrong answers
rather than wait for a lock or an update that might be needed in order to give the right
answer: the bias, in effect, favors rapid response over correctness. Instead of offer-
ing continuous guarantees of consistency, services of this kind offer eventual con-
sistency: they clean up the mess in the background, if anything actually goes wrong,

3Of course, one can interpret almost any distributed system built without changes to the core In-
ternet protocols as an “end-to-end” system. But the end-to-end approach is often understood to
refer to a model in which properties are enforced pairwise, between cooperating end-points. If we
understand the model in this strong sense, the introduction of new services that play a role such as
membership tracking throughout the entire system represents a major departure.
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and do their best to conceal this from users. And it works. To repeat a question we
posed earlier, how much consistency does YouTube or Facebook really need?

But if we begin to host high assurance systems on the cloud, this may change.
Moreover, as noted earlier, many kinds of mundane system need consistency for
mundane reasons. A cloud routing infrastructure that uses an inconsistent routing
table, even briefly, might have loops, black holes or routing flaps. A medical record-
management system that gives out inconsistent data might confuse a healthcare
worker into making a dangerous mistake. A smart electric power-grid management
system that behaves inconsistently could suffer blackouts. Thus if today’s cloud can
get away with weak consistency and eventual self-repair, it is not certain that to-
morrow’s cloud will have such an easy time. Fortunately, as we will see in this and
the chapters that follow, we actually can build scalable consistency stories for the
cloud. So the good news is that if the industry comes around to wanting to do more,
no technical barriers stand in the way. For example, the CAP theorem, mentioned in
the introduction, turns out to preclude scaling some forms of consistency in certain
ways, but there are other forms of consistency (including virtual synchrony) that
scale perfectly well. In effect, one can evade CAP, given a sufficiently sophisticated
mindset.

10.1.1 Static Membership

There are many ways to obtain consistency in a distributed system, and not all boil
down to the use of a group membership tracking subsystem. For example, many sys-
tems start with a list of the possible constituent computers that might be operational,
and rather than continuously tracking the state of each node, deal with availability
on an operation-by-operation manner. Such a system would basically have a list,
readily available to all the processes in the system, listing the places where replicas
might be found. In this “static” model, one has an unchanging list of members, but
at any given point in time, only a subset of them will typically be available.

Let us think for a moment about how one might support replicated data on a
static membership model. We have our five processes and we would like to maintain
some sort of information—for simplicity, we will focus on just a single variable x

and assume that it takes integer values. Obviously any real system might have more
elaborate data structures, but it turns out that a method that works for a single integer
can usually be generalized to handle more complex information in a straightforward
manner.

Now, if x were a non-replicated variable, living in some place that never fails,
we could track its values over time and in this manner, build a history. It might look
like this: from time 0 to 20, x was zero. Then, an update occurred at time 21 and x

took on the value 17. An additional update occurred at time 25, changing x to 97,
and so forth. Here an “update” might overwrite x with a new value, or it might read
x, perform some computation that involves the old value, and then write back a new
changed value.
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In our real system, processes p, q , r , s and t need to maintain replicas of x. For
this purpose, let us require that each process in the system keep a single copy of x

and also record the time at which it was lasted updated. When we start the system
up, we will assume that all five know that at time 0, the value of x was zero. Now,
at time 21, p wants to initiate an update. How should it do so?

Recall that in a static membership model, p knows the locations at which other
processes in the system might be running, but does not know which ones are cur-
rently operational. It may be that if p sends an update request to each of its coun-
terparts, asking them to record a new value for x, perhaps only some will get the
message and of those, perhaps only some of the replies will get back to p. (On top
of this, one needs to worry about concurrent updates, but for the purposes of this
part of the chapter, one update is already quite adequate to understand the basic is-
sues.) We also need a way to read the value of x. Suppose that s wants to read x.
If it simply looks at its own value, how can it be sure that nobody else has a more
“recent” update that did not get through, perhaps because of a network problem?

There is an obvious way to work around such problems, and almost all systems
that use the static membership model employ it. The idea is to make sure that each
operation reaches a majority of the processes in the system. Suppose that we know
that if p wants to update x it always makes sure that at least three out of the five
processes in the system record that update (since it cannot be sure how many will
respond in advance of trying to do the operation, this means than an update has
multiple phases—an initial attempt, then some sort of decision as to whether the
operation was successful, and then a second phase in which the processes learn
the outcome). If s similarly reads copies from a majority of members, at least one
process is guaranteed to overlap any successful update and the read, hence at least
one process will know the most current value of x!

Generalizing, this way of designing systems leads to what are called quorum up-
date and read architectures (see Gifford 1979; Skeen 1982b; Thomas 1979). Rather
than requiring that reads and updates both reach a majority, we instead define a min-
imum number of copies that must be read, QR, and a minimum number of copies
that must be updated, QW, such that both QW + QW and QR + QW exceed the size
of the system. For example, in a system with n processes, we might set QW = n− 1
and QR = 2. In this way, we can successfully update our variable even if one of the
group members is faulty, and any read will definitely “see” the most current update.

Returning to our example, process p thus updates x as follows. First, it does a
read operation to find the most current value of x and the associated time—and to
do this, it issues an RPC-style read requests to one replica after another until it has
QR replies. The current version of x will be the one with the largest time, and the
value is the value associated with that version. (Several processes may report the
same version and value.)

Process p now computes a time at which the new version will become active—
any value will do as long as it is larger than the maximum number it read from
the group, and the new value. And it issues RPCs to at least QW members, asking
them to “prepare” to update x. (In practice, of course, it would probably just issue
requests to all group members, but the rule allows a bit more flexibility.)
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The processes in the group now respond, acknowledging that they are prepared
to do the update. Process p looks to see if it has a write quorum. If the number of
acknowledgements is QW or larger, p allows the update to commit, and otherwise,
it must be aborted, meaning that the members do not change their replica’s value.
We will revisit the protocol later and pin down some of the details, but this should
already give the basic sense of how it works.

Typical presentations of the Paxos protocol present this sequence in a different
way, and it may be helpful to summarize that approach simply because Paxos is
widely cited in the literature. Paxos works by defining a sequence of slots each of
which can contain a message, or a null entry. Values are written into slots by leaders,
and more than one leader can attempt to define the value for a particular slot. This
is important, as we will see below.

To determine the sequence of updates to apply to the replicated state machine or
database, a process must read the slots one by one, learn what the value associated
with each is, and apply that value to the database or state machine. Paxos itself
is concurrent and can actually define a value for, say, slot 3 when slots 1 and 2
are still being determined. Should this occur, the event associated with 3 cannot be
processed until after the events associated with slots 1 and 2 (or the null events) have
been processed first, since the slots determine the delivery order. Thus, the life of
the database system (or whatever else uses Paxos) is to wait until the value for slot k

has been decided, apply the associated value (update), if non-null, and then advance
to slot k + 1.

Now, to delve further into Paxos, let us fix the slot number, say slot 1. The way
the protocol works is to run a series of rounds (called ballots) that work to decide
what that slot will contain, using a quorum agreement to make that decision. Ballots
are associated with specific leaders: for example, perhaps one leader is assigned to
use even ballot numbers, and a second leader odd ones, or perhaps the ballots use a
sequential numbering rule but append the leader’s IP address to avoid ties. Thus if
we consider any particular slot and ballot pair, only one leader ever runs a protocol
associated with that pair.

The way this occurs is as follows: a client hands the leader some sort of request:
perhaps, the client has asked the leader to try and deliver message x. The leader now
picks the slot it wishes to use (the next one, as far as it knows), and a ballot number
larger than any it has previously used for ballots associated with this slot. It proposes
to use value x for slot 1 on this ballot number. The group members (the term in the
Paxos literature would be acceptors) can only agree to accept a single value for a
particular slot, and only agree to do so once. The rule is that if an acceptor receives
a proposal, and the slot number is larger than the largest slot number for which they
have previously agreed to accept a value, and they have not previously accepted a
proposal in that slot, they accept the new proposal. The value x will be successfully
committed in the slot the instant that a quorum of leaders have accepted it, even
before they respond to the leader: the decision to accept is what matters. Moreover,
the acceptors do not worry about tabulating this: each acts separately. The threshold
is thus reached “silently”.
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The leader, meanwhile, attempts to learn the outcome of its proposal. As we
have seen, even a successful leader might not realize that it was successful, because
failures, timeouts or message loss could prevent it from collecting the responses to
its proposal. Thus message x could be successful in ballot 0 for slot 1, and yet it is
entirely possible that nobody knows this.

In Paxos, once a message is accepted in a particular slot, no other message (value)
can ever be accepted in that slot. However, the same value can be accepted again in
a subsequent ballot.

If a leader believes its proposal failed (it could be wrong), it simply retries the
proposal with a new slot number, but with one caveat. If an acceptor has accepted
some other value in the same slot, it sends the leader the value, and a leader that
learns of some other accepted value with a larger ballot number than its own must
switch and begin to propose that value, instead of its own, for the slot. This way if
there are two leaders contending to put two different values—to send two different
messages—in slot 1, say x and y, and they actually do get responses from the ac-
ceptors, both will end up proposing the same message, albeit using different ballot
numbers.

A leader stops proposing a value in a particular slot and switches to a new slot
number when it discovers a failure. This occurs because some other value becomes
committed in the slot, or because it discovers that no value can be committed (for
example, perhaps x has been accepted by members p and q , y by members r and
s, and z by member t , and this covers the full acceptor set. Here, no value can be
delivered in that slot).

Ideally, in Paxos, we run with one leader at a time. Even so, it can take a long time
for the status of a slot to be resolved, and for anyone to learn what the outcome was.
This is because if some group members fail, we might face a situation in which there
is a seeming tie between multiple outcomes for that slot: null, message x, message
y, and so forth. While learning that a quorum of members accepted a given message
in a given slot is definitive (and learning that a quorum did not accept it in that slot
is also definitive), we may be unable to deduce this because the pattern of failures
could conceal the result! This is really a concrete manifestation of the so-called
Fischer, Lynch and Patterson Impossibility Result (FLP), which establishes that one
cannot build a fault-tolerant protocol that guarantees that it will reach agreement on
something (here, the contents of a particular Paxos slot) in finite time. At best we
can build systems that will preserve correctness and with a little luck will also make
progress.

So we have this issue of possible ambiguity. To make progress one could wait to
learn the histories of all the group members, but a failure can endure for a long time.
Paxos will not do anything incorrect in such cases, but will not necessarily make
rapid progress either.

And to close the loop on a point made earlier: while we have described this as the
Paxos protocol, it is also the Viewstamped Replication protocol, and is very similar
to Herlihy’s Quorum Ratchet Lock protocol, and also to the earliest group member-
ship algorithms used in the Isis Toolkit. But if the earliest papers on Paxos were not
describing a completely novel protocol, one can certainly credit Lamport for being
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the first to single out that protocol, and the first to explain its properties in a de-
tailed and correct way. The first and most important correctness properly Lamport
established for Paxos was his proof that when using this sort of quorum scheme, no
message will be delivered anywhere unless it will become durable (quorum reads
will subsequently find it), and the ordering will be unique. Every subsequent refine-
ment of Paxos carefully preserved these properties.

Notice that in a fault-tolerant system, QW will necessarily have to be smaller
than n. As a result, even if p only wants to read x it still needs to do an RPC to
some other process, because QR > 1! This means that when using Paxos, read op-
erations cannot run any faster than the speed of an RPC. Similarly, to do an update,
p needs to perform two rounds of RPCs. Obviously, this is going to be at least as
slow as the slowest respondent, and while one can shift the costs around with clever
programming, static membership does tend to incur significant costs. In practice,
one finds that systems built in this manner would be able to sustain tens of updates
per second in a “real” group of five processes, but perhaps not much more.

Further, notice that Paxos seems to require a quorum read prior to any quorum
write. If this was really needed in practical uses of Paxos, the costs of that extra
read could easily be prohibitive. Fortunately, however, because Paxos is normally
used with a single, stable, leader, the leader can normally do a single read when
it starts execution, but subsequently retain (cache) the current values and versions
of variables that are in active use. This allows the leader to optimistically skip the
read step and, during the inital phase of the quorum write, one can simply validate
that these optimistic values are in fact the correct versions of the corresponding data
(they will be, if no other leader ran concurrently). Thus we can safely eliminate the
initial quorum read in the steady state and jump directly to the quorum write step.

We will call this style of replication in a subset of a fixed list of participants
the “static membership” model, although many readers might want to think of it as
“basic Paxos”. The set of potential system members is fixed, even though the op-
erational subset varies, and the algorithms are quorum based. Moreover the mem-
bers are typically denoted by the names of the computers on which they run, since
process-ids change if a machine fails, then restarts. Obviously, networks evolve over
time, and even static systems will need to update the membership list now and then,
but the presumption is that this can be treated as an offline activity.

10.1.2 Dynamic Membership

When we introduce a group membership service, complexity rises, but performance
also improves, and this will be important in the chapters that follow (if we were
weren’t aiming for blindingly fast and scalable solutions, we could already stop
and just use the basic Paxos protocol outlined above). Protocols that trust such a
service to monitor the system state are able to avoid doing much of the work done
in the static case and this translates to dramatic speedups, at least for operations like
updating replicated data. The “dynamic group membership” model is concerned
with systems built this way. In experiments with one of the systems we will talk
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about later in this part of the book, called Horus, it was possible to send as many
as 80,000 update operations per second within a group of five members—literally
thousands of times faster than in the static case. The core issue here is that even
for the cheapest category of operations (those that change the “internal state” of a
service), a quorum-based system cannot perform an operation until a majority of
its members have seen the operation, while a system like Horus can perform an
operation as soon as the multicast describing it is received. This limits the quorum
system: pending operations impose overhead on the initiating system. The larger
such a system gets, the longer an operation will be pending before it can be executed,
and the higher the impact of these overheads. Thus quorum systems will usually
slow down at least linearly in the system size. In fact, the situation is often quite
a bit worse: Jim Gray, winner of the ACM Turing Award, reported on studies that
found the slowdown to be roughly O(n2) where n is the number of members in the
service (in a more elaborated analysis that assumed a database application using the
ACID model, he shows that the slowdown could rise to as much as O(n5) due to
transaction rollback and redo costs). Thus, if you accept his analysis, a system with
2 nodes will be at best half as fast as one with 1 node, but a system with 4 nodes will
be no better than 1/16th the speed of the single-node system, and could be hundreds
of times slower if the application on top of the protocol is a transactional database
using a naively implemented replication model. As a practical matter, it is extremely
uncommon to talk about quorum systems having more than about 5 members4.

To give a sense of our reasons for tackling the complexity that dynamic mem-
bership will bring, it helps to remind ourselves that Horus, in similar uses, might
be thousands of times faster! Horus will also turn out to have scaling limits, but the
issue is of a different nature. The Horus protocols scale well up to some bounded
group size (usually around 32 members); over a multicast layer such as IP multi-
cast, throughput may be roughly constant in this range (and similarly for other such
systems, including Spread). Moreover, because Horus and Spread do not need to
wait for acknowledgements on these cheapest operations, the delay seen in quorum
systems is avoided. However, as Horus or Spread configurations get very large, they
too begin to slow down; detailed studies suggest that this degradation in throughput
is at first linear, but that eventually a quadratic factor dominates. The problem is ini-
tially one of flow control (it is easy to see why collecting acknowledgements from
a set of n members should take time proportional to n if n is large enough), but
then becomes more complex, involving overheads associated with retransmission
of lost messages and membership health tracking. Thus, for smaller configurations,
Horus and Spread will vastly outperform quorum systems, and they can also be used

4There has been recent work on so-called “Byzantine Quorum” systems, in which we think of the
server as having n2 members organized as a square array; a read quorum would be any row and
a write quorum any column. Jim Gray actually argues that the costs of replication will often rise
as O(n) due to concurrency control conflicts and, independently, will also rise as O(n) due to the
cost of the quorum operations. Thus Byzantine Quorum systems, in his analysis, would slow down
as O(n∗√n). This is still quite severe and any practical application would need to keep n as small
as possible.
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in somewhat larger group settings than can the quorum schemes. They also have a
limitation: cloud computing platforms are subject to large, unpredictable scheduling
and message delivery delays. Both Horus and Spread work best in systems that are
lightly loaded, have very low scheduling overheads, and in which message latencies
are extremely low.

In a system he called Quicksilver Scalable Multicast (QSM), Ostrowski showed
how to build a hierarchical acknowledgment layer that he overlays on top of very
large groups (Ostrowski et al. 2008a, 2008b), and also systems with very large num-
bers of overlapping groups (a pattern seen often in the cloud, where a massive num-
ber of replicas might handle some data set such as user mailboxes, but with each
individual mailbox only replicated to a small number of them, perhaps 3—this is
called sharding). QSM was successfully scaled to vastly larger configurations with
thousands of group members. The Isis2 system offers both schemes: it behaves like
Horus for smaller groups, because this gives the best performance and latency. But
with large groups, users can ask Isis2 to switch to a version of the QSM protocol.
Doing so allows Isis2 to support much larger scenarios, at the price of higher latency
in smaller cases where the basic groups might still have been a viable option.

In dynamic membership models, we usually assume that individual processes are
the members of the system, rather than focusing on the computers hosting those pro-
cesses. Processes come and go, and we will model them as “joining” and “leaving”
the system. Sometimes a process fails and hence “leaves” without warning. The
model is quite flexible, and in fact when working with it, one often mixes it with
elements of the static approach. For example, one can build applications composed
of dynamic groups, but with the restriction that no group can be formed without
having members on such and such a set of servers. This flexibility, combined with
the higher speed of applications built using the model, is a strong argument in its
favor.

Interestingly, even the basic Paxos protocol can accommodate dynamic member-
ship: papers by Lamport and others have shown how to do this by using a two-level
quorum update scheme; one to change the membership, and the other to do quo-
rum reads and writes during periods when membership is not changing. This strikes
some as overkill: one ends up with two ways to deal with a faulty process: we could
absorb it into the f parameter used in the quorum update and read protocol, or we
can change membership. The argument in favor of offering both options is that some
failures are transient (for example, perhaps a replica crashes and must reboot), and
for those, changing membership may seem to abandon hope that the replica in ques-
tion will ever resume. With Paxos such a replica can just repair itself and restart;
if any updates managed to commit while it was down, they obviously will not be
reflected in its durable state, but this does not matter since subsequent reads and
updates need to access a quorum and will find at least one replica that knows about
the event. Otherwise, it would not have been able to commit. Thus we can reserve
membership changes for permanent events: the replica just went up in flames, and
will definitely not be back in business, ever.

The downside, though, is that Lamport’s solution for this particular case turns
out to be both complex and expensive, and is also rather tricky to use: it involves
something he calls a window of concurrency and can deliver messages that were sent



316 10 Overcoming Failures in a Distributed System

during some previous, no longer active, system membership in a future membership
state where those messages might not make sense. We will not discuss the details
here; a more formal treatment appears in Appendix A.

These are not the only two consistency models that have been proposed. We
touch on some of the others later in this chapter. For example, the static and dynamic
system models assume that when a machine fails, it does so by crashing, and this
of course simplifies matters in important ways. If we introduce the possibility that
data is corrupt or that group members might behave maliciously, the most appro-
priate consistency model changes to one called the “Byzantine” model. Byzantine
fault tolerance is a powerful idea and is increasingly useful in systems concerned
with obtaining very strong guarantees (for example, security mechanisms), but not
many developers actually work with such subsystems. For this reason, we limit our-
selves to a brief mention of the Byzantine model, and similarly for several other
well-known but less practically significant approaches to high assurance distributed
computing.

Our basic goal, then, is to explore two kinds of system. The static ones assume a
pre-specified set of servers but are able to handle failures of minority subsets. These
solutions tend to be easy to describe but rather slow. The dynamic systems use a
software group membership service to track membership, resulting in a more flexi-
ble but somewhat more complex architecture. The main merit of this architecture is
the tremendous speedup it brings. It also brings some limitations, and we will touch
on those, but in practice, they do not seem to represent real problems for users.

10.2 Time in Distributed Systems

In discussing the two views of system membership, we made casual reference to
temporal properties of a system. For example, we said that processes should “agree”
on the membership in a system—but when should they agree? Clearly, the concept
of time represents a fundamental component of any distributed computing model.
In the simplest terms, a distributed system is any set of processes that communi-
cates by message passing and carrying out desired actions over time. Specifications
of distributed behavior often include such terms as “when,” “before,” “after,” and
“simultaneously,” and we will need to develop the tools to make this terminology
rigorous.

In nondistributed settings, time has an obvious meaning—at least to non-
physicists. The world is full of clocks, which are accurate and synchronized to
varying degrees. Something similar is true for distributed systems: All computers
have some form of clock, and clock synchronization services are a standard part of
any distributed computing environment. Moreover, just as in any other setting, these
clocks have limited accuracy. Two different processes, reading their local clocks at
the same instant in (real) time, might observe different values, depending on the
quality of the clock synchronization algorithm. Clocks may also drift over long pe-
riods of time.
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The use of time in a distributed system raises several problems. One obvious
problem is to devise algorithms for synchronizing clocks accurately. In Chap. 19 we
will look at several such algorithms, although the use of inexpensive GPS hardware
may someday eliminate the need for complex protocols in many settings. How-
ever, even given very accurate clocks, communication systems operate at such high
speeds that the use of physical clocks for fine-grained temporal measurements can
only make sense for processes sharing the same clock—for example, by operating
on the same computer. This leads to something of a quandary: In what sense is it
meaningful to say that one event occurs and then another does so, or that two events
are concurrent, if no means are available by which a program could label events and
compare their times of occurrence?

Looking at this question in 1978, Leslie Lamport proposed a model of logical
time that answers this question (see Lamport 1978a, 1984). Lamport considered
sets of processes (they could be static or dynamic) that interact by message passing.
In his approach, the execution of a process is modeled as a series of atomic events,
each of which requires a single unit of logical time to perform. More precisely, his
model represents a process by a tuple (Ep,<p), where Ep is a set of events that
occurred within process p, and <p is a partial order on those events. The advantage
of this representation is that it captures any concurrency available within p. Thus, if
a and b are events within p,a <p b means that a happens before b, in some sense
meaningful to p—for example, b might be an operation that reads a value written by
a, b could have acquired a lock that a released, or p might be executing sequential
code in which operation b is not initiated until after a has terminated.

Notice that there are many levels of granularity at which one might describe the
events that occur as a process executes. At the level of the components from which
the computer was fabricated, computation consists of concurrent events that im-
plement the instructions or microinstructions executed by the user’s program. At a
higher level, a process might be viewed in terms of statements in a programming
language, control-flow graphs, procedure calls, or units of work that make sense in
some external frame of reference, such as operations on a database. Concurrency
within a process may result from interrupt handlers, parallel programming con-
structs in the language or run-time system, or from the use of lightweight threads.
Thus, when we talk about the events that occur within a process, it is understood
that the designer of a system will typically have a granularity of representation that
seems natural for the distributed protocol or specification at hand and that events are
encoded to this degree of precision. In this book, most examples will be at a very
coarse level of precision, in which we treat all the local computation that occurs
within a process, between when it sends or receives a first message, and when it
sends or receives a second message, as a single event or even as being associated
with the send or receive event itself.

Lamport models the sending and receiving of messages as events. (See Fig. 10.1.)
Thus, an event a could be the sending of a message m, denoted snd(m); the re-
ception of m, denoted rcv(m); or the delivery of m to application code, denoted
deliv(m). When the process at which an event occurs is not clear from context, we
will add the process identifier as a subscript: sndp(m), rcvp(m) and delivp(m), as
seen here:
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Fig. 10.1 Process send,
receive and deliver events

The reasons for separating receive events from delivery events are to enable us
to talk about protocols that receive a message and do things to it, or delay it, be-
fore letting the application program see it. Not every message sent will necessarily
be received, and not every message received will necessarily be delivered to the
application; the former property depends upon the reliability characteristics of the
network, and the latter upon the nature of the message.

Consider a process p with an event snd(m) and a process q in which there is
a corresponding event rcv(m) for the same message m. Clearly, the sending of a
message precedes its receipt. Thus, we can introduce an additional partial order that
orders send and receive events for the same messages. Denote this communication
ordering relation by <m so that we can write sndp(m) <m rcvq(m).

This leads to a definition of logical time in a distributed system as the transitive
closure of the <p relations for the processes p that comprise the system and <m.
We will write a → b to denote the fact that a and b are ordered within this tempo-
ral relation, which is often called the potential causality relation for the system. In
words, we will say that a happened before b. If neither a → b nor b → a, we will
say that a and b occur concurrently.

Potential causality is useful in many ways. First, it allows us to be precise when
talking about the temporal properties of algorithms used in distributed systems—for
example, when we have used phrasing such as “at a point in time” or “when” in
relation to a distributed execution, it may not have been clear just what it means
to talk about an instant in time that spans a set of processes composing the system.
Certainly, the discussion at the start of this chapter, in which it was noted that clocks
in a distributed system will not often be sufficiently synchronized to measure time,
should have raised concerns about the concept of simultaneous events. An instant in
time should correspond to a set of simultaneous events, one per process in the sys-
tem, but the most obvious way of writing down such a set (namely, writing the state
of each process as that process reaches some designated time) would not physically
be realizable by any protocol we could implement as a part of such a system.

Consider, however, a set of concurrent events, one per process in a system. Such
a set potentially represents an instantaneous snapshot of a distributed system, and
even if the events did not occur at precisely the same instant in real time, there is no
way to determine this from within the system, nor do we care. We will use the term
consistent cut to refer to a set of events with this property (see Chandy and Lamport
1985). A second term, consistent snapshot, is commonly used in the literature to
refer to the full set of events that happen before or on a consistent cut; we will not
make use of snapshots here, but readers who explore the topic in more detail will
want to be aware of the concept, which is a bit like a checkpoint but includes all
the processes in the system and the contents of all the communications channels
between them. The messages in the channels of a snapshot will be those for which
the snapshot contains a snd event but lacks a corresponding rcv event.
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Fig. 10.2 Examples of consistent (black) and inconsistent (gray) cuts. The gray cuts illustrate
states in which a message receive event is included but the corresponding send event is omitted.
Consistent cuts represent system states that could have occurred at a single instant in real time.
Notice, however, that a consistent cut may not actually capture simultaneous states of the processes
in question (i.e., a cut might be instantaneous in real time, but there are many consistent cuts that
are not at all simultaneous) and that there may be many such cuts through a given point in the
history of a processD..

Figure 10.2 illustrates both the notion of causal time and also the concept of
a consistent cut. With respect to potential causality, one can easily see that, for
example, event a is prior (in a potentially causal sense) to events c and f , whereas
events a and b are concurrent—even though b “looks” like it happens after a in
the figure. The point is that, as just explained, no information could have reached b

from a hence the ordering in this case is essentially arbitrary.
What about the various cuts shown in Fig. 10.2? The gray cuts are inconsistent

because they include message receive events but exclude the corresponding send
events. The black cuts satisfy the consistency property. If one thinks about process
execution timelines as if they were made of rubber, the black cuts correspond to
possible distortions of the execution in which time never flows backward; the gray
cuts correspond to distortions that violate this property.

If a program or a person were to look at the state of a distributed system along
an inconsistent cut (i.e., by contacting the processes one by one to check each indi-
vidual state and then assembling a picture of the system as a whole from the data
obtained), the results could be confusing and meaningless—for example, if a system
manages some form of data using a lock, it could appear that multiple processes hold
the lock simultaneously. To see this, imagine that process p holds the lock and then
sends a message to process q in which it passes the lock to q . If our cut happened
to show q after it received this message (and hence obtained the lock) but showed p

before it sent it (and hence when it still held the lock), p and q would appear to both
hold the lock. Yet in the real execution, this state never occurred. Were a developer
trying to debug a distributed system, considerable time could be wasted in trying to
sort out real bugs from these sorts of virtual bugs introduced as artifacts of the way
the system state was collected!

The value of consistent cuts is that they represent states the distributed system
might actually have been in at a single instant in real time. Of course, there is no
way to know which of the feasible cuts for a given execution correspond to the actual
real-time states through which the system passed, but Lamport’s observation was
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that in a practical sense, to even ask this question reveals a basic misunderstanding
of the nature of time in distributed systems. In his eyes, the consistent cuts for a
distributed system are the more meaningful concept of simultaneous states for that
system, while external time, being inaccessible within the system, is actually less
meaningful. Lacking a practical way to make real-time clocks that are accurate to
the resolution necessary to accurately timestamp events, he argued that real time is
in fact not a very useful property for protocols that operate at this level. Of course,
we can still use real time for other purposes that demand lesser degrees of accuracy,
and will reintroduce it later, but for the time being, we accept this perspective. For a
discussion about some uses of consistent cuts, see Babaoglu and Marzullo (1993).

Potential causality is a useful tool for reasoning about a distributed system, but it
also has more practical significance. There are several ways to build logical clocks
with which causal relationships between events can be detected, to varying degrees
of accuracy.

A very simple logical clock can be constructed by associating a counter with each
process and message in the system. Let LTp be the logical time for process p (the
value of p’s copy of this counter). Then when a message is sent, LTp is copied into
the message. We will denote this by LTm the logical time associated with message
m (also called the logical timestamp of m). When m is delivered, or some other
event occurs at a process p, the following rules are used to update LTp .
1. If LTp < LTm, process p sets LTp = LTm + 1
2. If LTp ≥ LTm, p sets LTp = LTp + 1
3. For important events other than reception of a message, p sets LTp = LTp + 1

The application can decide what an “important” event is—in practice, it only
makes sense to track the time of events if the application needs that temporal in-
formation for some other purpose, such as concurrency control in a transactional
subsystem, or deciding how to order events in ways consistent with causality. For
example, some algorithms for updating replicated data generate multicasts that can
be delivered out of order, and it is important to put them into timestamp order be-
fore applying the updates so as to ensure that the replicate data item ends up with
the correct value. Logical timestamps turn out to be a very compact way to label
the multicasts so as to achieve this goal. Similarly, some algorithms for replicating
a transactional service allow operations to occur concurrently, but need to know if
there might have been a causal relation between two events, because when this oc-
curs the former transaction will need to be serialized before the one that may have
run later. Using logical timestamps, such algorithms are able to efficiently recognize
such cases. We will see additional uses for logical timestamps in the remainder of
this chapter and in Chaps. 11 through 14.

We will use the notation LT(a) to denote the value of LTp when event a occurred
at process p. It can easily be shown that if a → b,LT(a) < LT(b): From the defi-
nition of the potential causality relation, we know that if a → b, there must exist a
chain of events a ≡ e0 → e1 · · · → ek ≡ b, where each pair is related either by the
event ordering <p for some process p or by the event ordering <m on messages. By
construction, the logical clock values associated with these events can only increase,
establishing the desired result. On the other hand, LT(a) < LT(b) does not imply
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that a → b, since concurrent events may have arbitrary timestamps. This means that
in the kinds of application just mentioned, logical clocks may sometimes indicate a
potential ordering relationship when none is present—and if such a situation could
be costly, the developer might want a more accurate way of representing time that
is not misleading in this way.

For systems in which the set of processes is static, logical clocks can be gen-
eralized in a way that permits a more accurate representation of causality. A vec-
tor clock is a vector of counters, one per process in the set (see Fidge 1988;
Mattern 1989; Schiper et al. 1989, 2003). Similar to the concept of logical clocks,
we will say that VTp and VTm represent the vector times associated with process p

and message m, respectively. Given a vector time VT, the notation VT[p] denotes
the entry in the vector corresponding to process p.

The rules for maintaining a vector clock are similar to the ones used for logical
clocks, except that a process only increments its own counter. Specifically:
1. Prior to performing an important event, process p sets VTp[p] = VTp[p] + 1
2. When sending a message, process p sets VTm = VTp

3. Upon delivering a message m, process p sets VTp = max(VTp,VTm)

In the third situation, the function max applied to two vectors is just the element-
by-element maximum of the respective entries. We now define two comparison
operations on vector times. If VT(a) and VT(b) are vector times, we will say
that VT(a) ≤ VT(b) if ∀i: VT(a)[i] ≤ VT(b)[i]. When VT(a) ≤ VT(b) and ∃i:
VT(a)[i] < VT(b)[i], we will write VT(a) < VT(b).

In words, a vector time entry for a process p is just a count of the number of
events that have occurred at p. If process p has a vector clock with VTp[q] set to
six, and p 
= q , this means that some chain of events has caused p to hear (directly or
indirectly) from process q subsequent to the sixth event that occurred at process q .
Thus, the vector time for an event e tells us, for each process in the vector, how
many events occurred at that process causally prior to when e occurred. If VT(m) =
[17,2,3], corresponding to processes {p,q, r}, we know that 17 events occurred at
process p that causally precede the sending of m, two at process q , and three at
process r .

It is easy to see that vector clocks accurately encode potential causality. If a → b,
then we again consider a chain of events related by the process or message ordering:
a ≡ e0 → e1 · · · → ek ≡ b. By construction, at each event the vector time can only
increase (i.e., VT(ei) < VT(ei+1)), because each process increments its own vec-
tor time entry prior to each operation, and receive operations compute an element-
by-element maximum. Thus, VT(a) < VT(b). However, unlike a logical clock, the
converse also holds: If VT(a) < VT(b), then a → b. To see this, let p be the pro-
cess at which event a occurred, and consider VT(a)[p]. In the case where b also
occurs at process p, we know that ∀i: VT(a)[i] ≤ VT(b)[i]—hence, if a and b are
not the same event, a must happen before b at p. Otherwise, suppose that b oc-
curs at process q . According to the algorithm, process q only changes VTq [p] upon
delivery of some message m for which VT(m)[p] > VTq [p] at the event of the de-
livery. If we denote b as ek and deliv(m) as ek−1, the send event for m as ek−2,
and the sender of m by q ′, we can now trace a chain of events back to a process
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q ′′ from which q ′ received this vector timestamp entry. Continuing this procedure,
we will eventually reach process p. We will now have constructed a chain of events
a ≡ e0 → e1 · · · → ek ≡ b, establishing that a → b, the desired result.

For example, referring back to Fig. 10.2, if we follow the event chain denoted by
a, b, c, e, each successive event increments one counter in the vector: a increments
the counter associated with process p0, and b, c, and e each increment the counter
associated with process p1. We will be left with a VT = [1,3,0,0]. After events
a and d at process p0, the vector timestamp at that process is [2,0,0,0]. And we
can see that events d and e were concurrent by comparing these two vectors. Neither
vector is less than the other, hence neither event preceded the other in a causal sense.
In contrast, if we compare event a at process p0 (which will have vector timestamp
[1,0,0,0]) with event d (vector timestamp [1,3,0,0]), the latter timestamp is larger
than the former, pointing to the existence of a causal path from a to d .

The key insight is that if two events are concurrent, there must be causal paths
to each of them along which different vector timestamp entries will be incremented.
Lacking a causal path from one to the other, neither can “learn” about the updates
that occurred on the other’s path. So each ends up with a vector timestamp that
has some counters larger than in the other—counters for events along these disjoint
parts of the causal histories. We see this when the vector timestamp associated with
event d is compared with that of event e. In contrast, if an event occurred before
some other event, the latter will have learned about all the counter increments that
occurred up to the point that the earlier event took place. Since that time, some of
these counters may have been incremented, but the resulting vector timestamp will
always be recognizable as larger than the one for the earlier event. And this is the
case if we compare the time at event e ([1,3,0,0]) with that at events a ([1,0,0,0]),
b ([1,1,0,0]) or c ([1,2,0,0]).

This tells us that if we have a fixed set of processes and use vector timestamps
to record the passage of time, we can accurately represent the potential causality
relationship for messages sent and received, and other events, within that set. Doing
so will also allow us to determine when events are concurrent: This is the case if
neither a → b nor b → a. For algorithms where we need temporal information but
will pay a steep price if that information is inaccurate, vector timestamps can be
a good choice. However, they also bring some costs of their own: the vectors are
obviously larger than the single counter needed to implement a logical clock, and
(as defined above), they only make sense for a system with static membership.

There has been considerable research on optimizing the encoding of vector time-
stamps, and the representation presented above is far from the best possible in a large
system (see Charron-Bost 1991). For a very large system, it is considered preferable
to represent causal time using a set of event identifiers, {e0, e1, . . . , ek} such that the
events in the set are concurrent and causally precede the event being labeled (see
Peterson 1987; Melliar-Smith and Moser 1993). Thus if a → b, b → d and c → d

one could say that event d took place at causal time {b, c} (meaning “after events
b and c”), event b at time {a}, and so forth. In practice the identifiers used in such
a representation would be process identifiers and event counters maintained on a
per-process basis—hence, this precedence-order representation is recognizable as a
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compression of the vector timestamp. The precedence-order representation is use-
ful in settings where processes can potentially construct the full → relation and in
which the level of true concurrency is fairly low. The vector timestamp representa-
tion is preferred in settings where the number of participating processes is fairly low
and the level of concurrency may be high.

As for the membership issue, there turn out to be several ways to work around
this. One obvious option is to just list the process identifier associated with each
counter in the vector itself. Thus, [1,3,0,0] in our previous example could be
written as [p0 : 1,p1 : 3], with zero entries omitted. We will see another option
in Chap. 12, when we introduce the idea of process groups that advance through a
well-defined set of membership views. In that approach, we can associate a vector
timestamp with a view; the list of members in the view then tells us which counter
in the vector is associated with which process in the group.

Logical and vector clocks will prove to be powerful tools in developing protocols
for use in real distributed applications. The method favored in a specific setting will
typically depend upon the importance of precisely representing the potential causal
order and on the overhead that can be tolerated. We will use logical clocks when
possible, because the overhead is tiny. Vector clocks are useful too, but their larger
size can turn out to be a serious problem, for example in systems with large groups
and very small messages, where the vector timestamp itself may be much larger
than the data in a message.

The remainder of this chapter focuses on problems for which logical time, repre-
sented through some form of logical timestamp, represents the most natural tempo-
ral model. In many distributed applications, however, some concept of real time is
also required, and our emphasis on logical time in this section should not be taken
as dismissing the importance of other temporal schemes.

10.3 The Distributed Commit Problem

An implementable way to talk about logical time represents a kind of building block
that can be used in many ways in systems and protocols. We now explore a sec-
ond kind of building block that addresses a classical problem seen in several of the
replication methods that follow. This is the distributed commit problem. Distributed
commit arises in many settings where one wants to perform an operation in an all-
or-nothing manner (see Gray 1978; Gray and Reuter 1993). We are going to start by
talking about commit in a static membership model, but in fact we will later use the
commit protocol as our way to implement the dynamic membership model. Then
we will use the resulting membership mechanisms to implement replicated data.

The commit problem arises when we wish to have a set of processes that all agree
on whether or not to perform some action that may not be possible at some of the
participants. To overcome this initial uncertainty, it is necessary to first determine
whether or not all the participants will be able to perform the operation and then
communicate the outcome of the decision to the participants in a reliable way (the
assumption is that once a participant has confirmed that it can perform the operation,
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this remains true even if it subsequently crashes and must be restarted). We say that
an operation can be committed if the participants can all perform it. Once a commit
decision is reached, this requirement will hold even if some participants fail and
later recover. On the other hand, if one or more participants are unable to perform
the operation when initially queried, or some cannot be contacted, the operation as
a whole aborts, meaning that no participant should perform it.

Consider a system composed of a static set S containing processes {p0,p1, . . . ,

pn} that fail by crashing and that maintain both volatile data, which is lost if a crash
occurs, and persistent data, which can be recovered after a crash in the same state
they had at the time of the crash. An example of persistent data would be information
in a disk file; volatile data is any information in a processor’s memory, on some
sort of a scratch area, that will not be preserved if the system crashes and must be
rebooted. It is frequently much cheaper to store information in volatile data—hence,
it would be common for a program to write intermediate results of a computation
to volatile storage. The commit problem will now occur if we wish to arrange for
all the volatile information to be saved persistently. The all-or-nothing aspects of
the problem reflect the possibility that a computer might fail and lose the volatile
data it held; in this case the desired outcome would be that no changes to any of the
persistent storage areas occur.

As an example, we might want all of the processes in S to write some mes-
sage into their persistent data storage. During the initial stages of the protocol, the
message would be sent to the processes, which would each store it in their volatile
memory. When the decision is made to try to commit these updates, the processes
clearly cannot just modify the persistent area, because some process might fail be-
fore doing so. Consequently, the commit protocol involves first storing the volatile
information into a persistent but temporary region of storage. Having done so, the
participants would signal their ability to commit.

If all the participants are successful, it is safe to begin transfers from the tem-
porary area to the real data storage region. Consequently, when these processes are
later told that the operation as a whole should commit, they would copy their tem-
porary copies of the message into a permanent part of the persistent storage area.
If the operation aborts, they would not perform this copy operation. As should be
evident, the challenge of the protocol will be to handle with the recovery of a par-
ticipant from a failed state; in this situation, the protocol must determine whether
any commit protocols were pending at the time of its failure and, if so, whether they
terminated in a commit or an abort state.

A distributed commit protocol is normally initiated by a process that we will call
the coordinator; assume that this is process p0. In a formal sense, the objective of
the protocol is for p0 to solicit votes for or against a commit from the processes in S

and then to send a commit message to those processes only if all of the votes are in
favor of commit; otherwise an abort message is sent. To avoid a trivial solution in
which p0 always sends an abort, we would ideally like to require that if all processes
vote for commit and no communication failures occur, the outcome should be com-
mit. Unfortunately, however, it is easy to see that such a requirement is not really
meaningful because communication failures can prevent messages from reaching
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the coordinator. Thus, we are forced to adopt a weaker nontriviality requirement
that states that if all processes vote for commit and all the votes reach the coordina-
tor, the protocol should commit.

For a researcher wearing a “theoretician’s hat,” this solves the problem by sepa-
rating the obligations on the protocol from the whole question of how the network
behaves. Practitioners often find such slight-of-hand annoying: all we have done is
to shift any uncertainty into the network. However, one can reconcile these perspec-
tives by recalling that our goal here is just to talk about protocol correctness—does
the protocol do the right thing when the means of doing so are “placed in its hands”?
A separate but equally important question is “will my network work well enough
to ensure that the protocol functions in the desired manner?” Theoreticians rarely
worry about that second question; practitioners will typically want to start with a
correct protocol, and then take the step of engineering a network so that the overall
probability that the system will be reliable satisfies some end-user objective. Thus,
our non-triviality condition does not sweep the whole issue under the rug, it simply
separates the issue into two aspects that can be attacked separately.

A commit protocol can be implemented in many ways. The most standard im-
plementations are called two- and three-phase commit protocols, often abbreviated
as 2PC and 3PC. In what follows, we will focus on 2PC and 3PC, but the reader
should keep in mind that the commit “pattern” is sometimes concealed in a proto-
col that does not actually use this specific style of message exchange. When faced
with such a protocol—perhaps, a protocol that sends a token twice around a ring of
processes, taking actions only on the second pass—it is often helpful to realize that
if the protocol “could” have been implemented using a more standard 2PC or 3PC
approach, then many of the insights one can have concerning 2PC or 3PC probably
apply to that protocol as well. Indeed (to pursue the analogy a little further), if one
implements point to point message passing over a token ring network device, what
looks to the application like a 2PC protocol might look to the network like a token
circulating among a ring of processes, on which varying sets of point to point mes-
sages are piggybacked. When confronting such a duality, we should again fall back
by recalling our goals.

If the goal is basically theoretical—proving correctness, or proving an impossi-
bility result—the implementation “details” may not matter. Such results often apply
to any solution to a given problem and are independent of the way a particular so-
lution operates. If our goals are more practical, we should think of the problem
statement as laying out the requirements that any implementation needs to satisfy.
Within the space of possible implementations, we can then use clever engineering
to maximize performance, minimize cost, and achieve other objectives. The differ-
ent goals of theoreticians and engineers can sometimes create tensions, but these
tensions are rarely fundamental. More often, they reflect poor communication: the
theory community sometimes neglects to point out that their problem statements
matter far more than the implementation of a protocol they use to illustrate a gen-
eral principle. And engineers sometimes forget that no matter how a protocol is
implemented, the solution may need to live within deeper constraints imposed by
the nature of the problem itself. We will see several examples of this tension in the
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remainder of the book, including some that have provoked major debates which,
seen from the perspective just outlined, turn out to be almost entirely the result of
confusion and miscommunication!

10.3.1 Two-Phase Commit

A 2PC protocol operates in rounds of multicast communication. Each phase is com-
posed of one round of messages to the participants and one round of replies from the
recipients to the sender. The coordinator initially selects a unique identifier for this
run of the protocol—for example, by concatenating its own process ID to the value
of a logical clock. The protocol identifier will be used to distinguish the messages
associated with different runs of the protocol that happen to execute concurrently,
and in the remainder of this section we will assume that all the messages under
discussion are labeled by this initial identifier.

The coordinator starts by sending out a first round of messages to the participants.
These messages normally contain the protocol identifier, the list of participants (so
that all the participants will know who the other participants are), and a message
“type” indicating that this is the first round of a 2PC protocol. In a static system,
where all the processes in the system participate in the 2PC protocol, the list of par-
ticipants can be omitted because it has a well-known value. Additional fields can be
added to this message depending on the situation in which the 2PC was needed—for
example, it could contain a description of the action that the coordinator wishes to
take (if this is not obvious to the participants), a reference to some volatile infor-
mation that the coordinator wishes to have copied to a persistent data area, and so
forth. 2PC is thus a very general tool, which can solve any of a number of specific
problems sharing the attribute of needing an all-or-nothing outcome as well as the
requirement that participants must be queried if they will be able to perform the
operation before it is safe to assume that they can do so.

Each participant, upon receiving the first round message, takes such local actions
as are needed to decide if it can vote in favor of commit—for example, a participant
may need to set up some sort of persistent data structure, recording that the 2PC
protocol is underway and saving the information that will be needed to perform the
desired action if a commit occurs. In the previous example, the participant would
copy its volatile data to the temporary persistent region of the disk and then force the
records to the disk. Having done this (which may take some time), the participant
sends back its vote. The coordinator collects votes, but also uses a timer to limit the
duration of the first phase (the initial round of outgoing messages and the collection
of replies). If a timeout occurs before the first-phase replies have all been collected,
the coordinator aborts the protocol. Otherwise, it makes a commit or abort decision
according to the votes it collects5.

5As described, this protocol already violates the nontriviality goal that we expressed earlier. No
timer is really safe in an asynchronous distributed system, because an adversary could just set the
minimum message latency to the timer value plus one second, and, in this way cause the protocol
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Fig. 10.3 Skeleton of two-phase commit protocol

Now we enter the second phase of the protocol, in which the coordinator sends
out commit or abort messages in a new round of communication. Upon receipt of
these messages, the participants take the desired action or, if the protocol is aborted,
they delete the associated information from their persistent data stores. Figure 10.3
illustrates this basic skeleton of the 2PC protocol.

Several failure cases need to be addressed. The coordinator could fail before
starting the protocol, during the first phase, while collecting replies, after collecting
replies but before sending the second-phase messages, or during the transmission
of the second-phase messages. The same is true for a participant. For each case we
need to specify a recovery action, which will lead to successful termination of the
protocol with the desired all-or-nothing semantics.

In addition to this, the protocol described above omits consideration of the stor-
age of information associated with the run. In particular, it seems clear that the
coordinator and participants should not need to keep any form of information in-
definitely in a correctly specified protocol. Our protocol makes use of a protocol
identifier, and we will see that the recovery mechanisms require that some informa-
tion be saved for a period of time, indexed by protocol identifier. Thus, rules will be
needed for garbage collection of information associated with terminated 2PC pro-
tocols. Otherwise, the information base in which these data is stored might grow
without limit, ultimately posing serious storage and management problems.

We start by focusing on participant failures, then turn to the issue of coordinator
failure, and finally discuss the question of garbage collection.

Suppose that a process pi fails during the execution of a 2PC protocol. With
regard to the protocol, pi may be in any of several states. In its initial state, pi

will be unaware of the protocol. In this case, pi will not receive the initial vote

to abort despite the fact that all processes vote commit and all messages will reach the coordinator.
Concerns such as this can seem unreasonably narrow-minded, but are actually important in trying
to pin down the precise conditions under which commit is possible. The practical community tends
to be fairly relaxed about such issues, while the theory community takes problems of this sort very
seriously. It is regrettable but perhaps inevitable that some degree of misunderstanding results from
these different points of view.
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message; therefore, the coordinator aborts the protocol. The initial state ends when
pi has received the initial vote request and is prepared to send back a vote in favor
of commit (if pi does not vote for commit, or is not yet prepared, the protocol will
abort in any case). We will now say that pi is prepared to commit. In the prepared
to commit state, pi is compelled to learn the outcome of the protocol even if it fails
and later recovers. This is an important observation because the applications that
use 2PC often must lock critical resources or limit processing of new requests by
pi while they are prepared to commit. This means that until pi learns the outcome
of the request, it may be unavailable for other types of processing. Such a state can
result in denial of services. The next state entered by pi is called the commit or abort
state, in which it knows the outcome of the protocol. Failures that occur at this stage
must not be allowed to disrupt the termination actions of pi , such as the release of
any resources that were tied up during the prepared state. Finally, pi returns to its
initial state, garbage collects all information associated with the execution of the
protocol, and is left in a state that retains only the effects of any committed actions.

From this discussion, we see that a process recovering from a failure will need
to determine whether or not it was in a prepared to commit, commit, or abort state
at the moment of the failure. In a prepared to commit state, the process will need to
find out whether the 2PC protocol terminated in a commit or abort, so there must be
some form of system service or protocol outcome file in which this information is
logged. Having entered a commit or abort state, the process needs a way to complete
the commit or abort action even if it is repeatedly disrupted by failures in the act
of doing so. We say that the action must be idempotent, meaning that it can be
performed repeatedly without ill effects. An example of an idempotent action would
be copying a file from one location to another: Provided that access to the target file
is disallowed until the copying action completes, the process can copy the file once
or many times with the same outcome. In particular, if a failure disrupts the copying
action, it can be restarted after the process recovers.

Not surprisingly, many systems that use 2PC are structured to take advantage
of this type of file copying. In the most common approach, information needed
to perform the commit or abort action is saved in a log on the persistent storage
area. The commit or abort state is represented by a bit in a table, also stored in the
persistent area, describing pending 2PC protocols and indexed by protocol identifier.
Upon recovery, a process first consults this table to determine the actions it should
take, and then uses the log to carry out the action. Only after successfully completing
the action does a process delete its knowledge of the protocol and garbage collect
the log records that were needed to carry it out. (See Fig. 10.4.)

Up to now, we have not considered coordinator failure—hence, it would be rea-
sonable to assume that the coordinator itself plays the role of tracking the protocol
outcome and saving this information until all participants are known to have com-
pleted their commit or abort actions. The 2PC protocol thus needs a final phase in
which messages flow back from participants to the coordinator, which must retain
information about the protocol until all such messages have been received.

Consider next the case where the coordinator fails during a 2PC protocol. If we
are willing to wait for the coordinator to recover, the protocol requires a few changes
to deal with this situation. The first change is to modify the coordinator to save its
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Coordinator: Participant:
multicast: ok to commit? ok to commit ⇒
collect replies save to temp area, reply ok

all ok ⇒ log “commit” to “outcomes” commit ⇒
table send commit make change permanent

else ⇒ send abort abort ⇒
collect acknowledgments delete temp area
garbage-collect protocol outcome After failure:
information for each pending protocol

contact coordinator to learn outcome

Fig. 10.4 2PC extended to handle participant failures

commit decision to persistent storage before sending commit or abort messages to
the participants6. Upon recovery, the coordinator is now guaranteed to have avail-
able the information needed to terminate the protocol, which it can do by simply re-
transmitting the final commit or abort message. A participant not in the precommit
state would acknowledge such a message but take no action; a participant waiting
in the precommit state would terminate the protocol upon receipt of it.

One major problem with this solution to 2PC is that if a coordinator failure oc-
curs, the participants are blocked, waiting for the coordinator to recover. As noted
earlier, preparing to commit often ties down resources or involves holding locks—
hence, blocking in this manner can have serious implications for system availability.
(See Fig. 10.4.) Suppose that we permit the participants to communicate among
themselves. Could we increase the availability of the system so as to guarantee
progress even if the coordinator crashes?

Again, there are three stages of the protocol to consider. If the coordinator crashes
during its first phase of message transmissions, a state may result in which some
participants are prepared to commit, others may be unable to commit (they have
voted to abort and know that the protocol will eventually do so), and still other
processes may not know anything at all about the state of the protocol. If it crashes
during its decision, or before sending out all the second-phase messages, there may
be a mixture of processes left in the prepared state and processes that know the final
outcome.

6It is actually sufficient for the coordinator to save only commit decisions in persistent storage—
this is called the “presumed abort” approach. After failure, a recovering coordinator can safely
presume the protocol to have aborted if it finds no commit record; the advantage of such a change
is to make the abort case less costly, by removing a disk I/O operation from the critical path
before the abort can be acted upon. The elimination of a single disk I/O operation may seem like
a minor optimization, but in fact can be quite significant in light of the tenfold latency difference
between a typical disk I/O operation (10–25 ms) and a typical network communication operation
(perhaps 1–4 ms latency). One does not often have an opportunity to obtain an order of magnitude
performance improvement in a critical path—hence, these are the sorts of engineering decisions
that can have very important implications for overall system performance. Similarly, it is possible
to architect systems to “presume commit” and only log abort decisions. If aborts are very rare this
can be a good option, although doing so imposes a continuous low-level of costs that can turn out
to dominate the cost savings associated with the “trick.”
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Coordinator: Participant: first time message received
multicast: ok to commit? ok to commit ⇒
collect replies save to temp area, reply ok

all ok ⇒ log commit to outcomes table commit ⇒
wait until safe on persistent store make change permanent
send commit abort ⇒

else ⇒send abort delete temp area
collect acknowledgements Message is a duplicate
garbage-collect protocol outcome (recovering coordinator)
information send acknowledgment

After failure: After failure:
for each pending protocol in outcomes table for each pending protocol

send outcome (commit or abort) contact coordinator to learn outcome
wait for acknowledgements
garbage collect outcome information

Fig. 10.5 2PC protocol extended to overcome coordinator failures

Suppose that we add a timeout mechanism to the participants: In the prepared
state, a participant that does not learn the outcome of the protocol within some
specified period of time will timeout and seek to complete the protocol on its own.
Clearly, there will be some unavoidable risk of a timeout occurring because of a
transient network failure, much as in the case of RPC failure-detection mechanisms
discussed early in the book. Thus, a participant that takes over in this case cannot
safely conclude that the coordinator has actually failed. Indeed, any mechanism for
takeover will need to work even if the timeout is set to 0 and even if the participants
try to run the protocol to completion starting from the instant that they receive the
phase-one message and enter a prepared to commit state!

Accordingly, let pi be some process that has experienced a protocol timeout in
the prepared to commit state. What are pi’s options? The most obvious would be
for it to send out a first-phase message of its own, querying the state of the other pj .
From the information gathered in this phase, pi may be able to deduce that the pro-
tocol either committed or aborted. This would be the case if, for example, some pro-
cess pj had received a second-phase outcome message from the coordinator before
it crashed. Having determined the outcome, pi can simply repeat the second phase
of the original protocol. Although participants may receive as many as n copies of
the outcome message (if all the participants time out simultaneously), this is clearly
a safe way to terminate the protocol.

On the other hand, it is also possible that pi would be unable to determine the
outcome of the protocol. This would occur, for example, if all processes contacted
by pi , as well as pi itself, were in the prepared state, with a single exception: pro-
cess pj , which does not respond to the inquiry message. Perhaps pj has failed,
or perhaps the network is temporarily partitioned. The problem now is that only
the coordinator and pj can determine the outcome, which depends entirely on pj ’s
vote. If the coordinator is itself a participant, as is often the case, a single failure
can thus leave the 2PC participants blocked until the failure is repaired! This risk is
unavoidable in a 2PC solution to the commit problem. (See Fig. 10.5.)
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Earlier, we discussed the garbage collection issue. Notice that in this extension
to 2PC, participants must retain information about the outcome of the protocol until
they are certain that all participants know the outcome. Otherwise, if a participant
pj were to commit but promptly forget that it had done so, it would be unable
to assist some other participant pi in terminating the protocol after a coordinator
failure.

Garbage collection can be done by adding a third phase of messages from the
coordinator (or a participant who takes over from the coordinator) to the partici-
pants. This phase would start after all participants have acknowledged receipt of
the second-phase commit or abort message, and it would simply tell participants
that it is safe to garbage collect the protocol information. The handling of coordi-
nator failure can be similar to that during the pending state. A timer is set in each
participant that has entered the final state but not yet seen the garbage collection
message. Should the timer expire, such a participant can simply echo the commit or
abort message, which all other participants acknowledge. Once all participants have
acknowledged the message, a garbage collection message can be sent out and the
protocol state safely garbage collected.

Notice that the final round of communication, for purposes of garbage collec-
tion, can often be delayed for a period of time and then run once in a while, on
behalf of many 2PC protocols at the same time. When this is done, the garbage col-
lection protocol is itself best viewed as a 2PC protocol that executes perhaps once
per hour. During its first round, a garbage collection protocol would solicit from
each process in the system the set of protocols for which they have reached the final
state. It is not difficult to see that if communication is first in, first out (FIFO) in the
system, then 2PC protocols—even if failures occur—will complete in FIFO order.
This being the case, each process need only provide a single protocol identifier, per
protocol coordinator, in response to such an inquiry: the identifier of the last 2PC
initiated by the coordinator to have reached its final state. The process running the
garbage collection protocol can then compute the minimum over these values. For
each coordinator, the minimum will be a 2PC protocol identifier, which has fully
terminated at all the participant processes that can be garbage collected throughout
the system.

We now arrive at the final version of the 2PC protocol shown in Fig. 10.6. No-
tice that this protocol has a potential message complexity which increases as O(n2)

with the worst case occurring if a network communication problem disrupts com-
munication during the three basic stages of communication. Further, notice that
although the protocol is commonly called a two phase commit, a true two-phase
version will always block if the coordinator fails. The version of Fig. 10.6 gains
a higher degree of availability at the cost of additional communication for pur-
poses of garbage collection. However, although this protocol may be more avail-
able than our initial attempt, it can still block if a failure occurs at a critical stage.
In particular, participants will be unable to terminate the protocol if a failure of
both the coordinator and a participant occurs during the decision stage of the proto-
col.
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Coordinator: Participant: first time message received
multicast: ok to commit? ok to commit ⇒
collect replies save to temp area, reply ok

all ok ⇒ log commit to outcomes table commit ⇒
wait until safe on persistent store log outcome, make change permanent
send commit abort ⇒

else ⇒ send abort log outcome, delete temp area
collect acknowledgements Message is a duplicate (recovering

coordinator) send acknowledgment
After failure: After failure:

for each pending protocol in outcomes table for each pending protocol
send outcome (commit or abort) contact coordinator to learn outcome
wait for acknowledgements After timeout in prepare to commit state:

Periodically: query other participants about state
query each process: terminated protocols? outcome can be deduced ⇒
for each coordinator: determine fully run coordinator-recovery protocol

terminated protocols outcome uncertain ⇒
2PC to garbage collect outcomes information must wait

Fig. 10.6 Final version of 2PC commit: Participants attempt to terminate protocol without block-
ing periodic 2PC protocol used to garbage collect outcome information saved by participants and
coordinators for recovery

10.3.2 Three-Phase Commit

In 1981, Skeen and Stonebraker studied the cases in which 2PC can block (see
Skeen 1982a). Their work resulted in a protocol called three-phase commit (3PC),
which is guaranteed to be nonblocking provided that only fail-stop failures occur.
(A subsequent generalization by Keidar and Dolev weakens this requirement, mak-
ing progress whenever a connected majority of processes is achieved). Before we
present this protocol, it is important to stress that the fail-stop model is not a very
realistic one: This model requires that processes fail only by crashing, and that
such failures be accurately detectable by other processes that remain operational.
As we will see, inaccurate failure detections and network partition failures continue
to pose the threat of blocking in this protocol. In practice, these considerations limit
the utility of the protocol (because we lack a way to accurately sense failures in
most systems, and network partitions are a real threat in most distributed environ-
ments). Nonetheless, the protocol sheds light both on the issue of blocking and on
the broader concept of consistency in distributed systems; therefore, it is presented
here.

As in the case of the 2PC protocol, 3PC really requires a fourth phase of messages
for purposes of garbage collection. However, this problem is easily solved using the
same method presented in Fig. 10.6 for the case of 2PC. For brevity, we focus on
the basic 3PC protocol and overlook the garbage collection issue.

Recall that 2PC blocks under conditions in which the coordinator crashes and
one or more participants crash, such that the operational participants are unable to
deduce the protocol outcome without information that is only available to the coor-
dinator and/or these participants. The fundamental problem is that in a 2PC proto-
col, the coordinator can make a commit or abort decision, which would be known to
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Coordinator: Participant: logs state on each message
multicast: ok to commit? ok to commit ⇒
collect replies save to temp area, reply ok

all ok ⇒log precommit precommit ⇒
send precommit enter precommit state, acknowledge

else ⇒ send abort commit ⇒
collect acks from non-failed participants make change permanent

all ack ⇒log commit abort ⇒
send commit delete temp area

collect acknowledgements After failure:
garbage-collect protocol outcome information collect participant state information

all precommit, or any committed ⇒
push forward to commit

else ⇒
push back to abort

Fig. 10.7 Outline of a three-phase commit protocol

some participant pj and even acted upon by pj , and yet might be totally unknown
to other processes in the system. The 3PC protocol prevents this from occurring by
introducing an additional round of communication and delaying the prepared state
until processes receive this phase of messages. By doing so, the protocol ensures
that the state of the system can always be deduced by a subset of the operational
processes, provided that the operational processes can still communicate reliably
among themselves.

A typical 3PC protocol operates as shown in Fig. 10.7. As in the case of 2PC, the
first-round message solicits votes from the participants. However, instead of entering
a prepared state, a participant that has voted for commit enters an ok to commit state.
The coordinator collects votes and can immediately abort the protocol if some votes
are negative or if some votes are missing. Unlike for a 2PC, it does not immediately
commit if the outcome is unanimously positive. Instead, the coordinator sends out
a round of prepare to commit messages, receipt of which causes all participants to
enter the prepare to commit state and to send an acknowledgment. After receiving
acknowledgements from all participants, the coordinator sends commit messages
and the participants commit. Notice that the ok to commit state is similar to the
prepared state in the 2PC protocol, in that a participant is expected to remain capable
of committing even if failures and recoveries occur after it has entered this state.

If the coordinator of a 3PC protocol detects failures of some participants (recall
that in this model, failures are accurately detectable) and has not yet received their
acknowledgements to its prepare to commit messages, the 3PC can still be commit-
ted. In this case, the unresponsive participants can be counted upon to run a recovery
protocol when the cause of their failure is repaired, and that protocol will lead them
to eventually commit. The protocol thus has the property of only committing if all
operational participants are in the prepared to commit state. This observation per-
mits any subset of operational participants to terminate the protocol safely after a
crash of the coordinator and/or other participants.
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Fig. 10.8 States for a
nonfaulty participant in 3PC
protocol

The 3PC termination protocol is similar to the 2PC protocol, and it starts by
querying the state of the participants. If any participant knows the outcome of the
protocol (commit or abort), the protocol can be terminated by disseminating that
outcome. If the participants are all in a prepared to commit state, the protocol can
safely be committed.

Suppose, however, that some mixture of states is found in the state vector. In this
situation, the participating processes have the choice of driving the protocol forward
to a commit or back to an abort. This is done by rounds of message exchange that
either move the full set of participants to prepared to commit and then to commit
or that roll them back to ok to commit and then abort. Again, because of the fail-
stop assumption, this algorithm runs no risk of errors. Indeed, the processes have
a simple and natural way to select a new coordinator at their disposal: Since the
system membership is assumed to be static, and since failures are detectable crashes
(the fail-stop assumption), the operational process with the lowest process identifier
can be assigned this responsibility. It will eventually recognize the situation and will
then take over, running the protocol to completion.

Notice also that even if additional failures occur, the requirement that the protocol
only commit once and that all operational processes are in a prepared to commit
state and only abort when all operational processes have reached an ok to commit
state (also called prepared to abort) eliminates many possible concerns. However,
this is true only because failures are accurately detectable and because processes
that fail will always run a recovery protocol upon restarting. (The “inquire” state in
Fig. 10.8.)

It is not hard to see how this recovery protocol should work. A recovering process
is compelled to track down some operational process that knows the outcome of
the protocol, and to learn the outcome from that process. If all processes fail, the
recovering process must identify the subset of processes that were the last to fail
(see Skeen 1985), learning the protocol outcome from them. In the case where the
protocol had not reached a commit or abort decision when all processes failed, it
can be resumed using the states of the participants that were the last to fail, together
with any other participants that have recovered in the interim.

Unfortunately, however, the news for 3PC is actually not quite as good as this
protocol may make it seem, because real systems do not satisfy the fail-stop failure
assumption. Although there may be some specific conditions under which failures



10.3 The Distributed Commit Problem 335

are detectable by crashes, these most often depend upon special hardware. In a typ-
ical network, failures are only detectable using timeouts, and the same imprecision
that makes reliable computing difficult over RPC and streams also limits the failure-
handling ability of the 3PC.

The problem that occurs is most easily understood by considering a network par-
titioning scenario, in which two groups of participating processes are independently
operational and trying to terminate the protocol. One group may see a state that
is entirely prepared to commit and would want to terminate the protocol by com-
mit. The other, however, could see a state that is entirely ok to commit and would
consider abort to be the only safe outcome: After all, perhaps some unreachable pro-
cess voted against commit! Clearly, 3PC will be unable to make progress in settings
where partition failures can occur. We will return to this issue in Sect. 11.2, when we
discuss a basic result by Fisher, Lynch, and Paterson; the inability to terminate a 3PC
protocol in settings that do not satisfy fail-stop failure assumptions is one of many
manifestations of the so-called “FLP impossibility result” (see Fisher et al. 1985a,
1985b). For the moment, though, we find ourselves in the uncomfortable position
of having a solution to a problem that is similar to, but not quite identical to, the
one that occurs in real systems. One consequence of this is that few systems make
use of 3PC commit protocols today: Given a situation in which 3PC is less likely to
block than 2PC, but may nonetheless block when certain classes of failures occur,
the extra cost of the 3PC is not generally seen as bringing a return commensurate
with its cost.

Keidar and Dolev at Technion University and Hebrew University, respectfully,
did some interesting work with 3PC in 1995 that illustrates a point made earlier: the
theoretical structure of a problem and the engineering of a protocol sometimes lead
to very different insights. In this effort, the researchers asked how one should build
systems that may need to tolerate very long communication outages—extended
“partitioning” events. To make the problem as interesting as possible, they focused
on the most extreme scenario possible: now and then a pair of processes managed
to communicate, but the system was otherwise partitioned. Thus there were never
any opportunities for a majority to communicate all at the same time. On the other
hand, the group eliminated the notion of communication timeout: processes were ei-
ther able to communicate, or unable to “reach” one-another. Failures look like long
periods of unreachability in this model.

The group was able to show that one can “simulate” a 3PC protocol by pig-
gybacking information on messages exchanged during the brief periods when pro-
cesses manage to reach one-another, and furthermore that doing so is the optimal
availability strategy for replicating data under these extreme conditions. They also
showed that relatively little data actually needs to be carried in the messages to ac-
complish this objective. Up to the present, this work has been of largely academic
value. However, with the increasing interest in mobility and widespread use of ad-
hoc network routing protocols, one can easily imagine situations in which a “nearly
always partitioned” model for data replication could become important in a practi-
cal sense, and the Dolev, Keidar and Chockler implementation of 3PC would then
be an obvious choice.



336 10 Overcoming Failures in a Distributed System

Fig. 10.9 Quorum update
algorithm uses a quorum read
followed by a 2PC protocol
for updates

10.3.3 Quorum Update Revisited

Recall the discussion of quorum updates from the start of this chapter. The “actual”
algorithm uses 2PC, as seen in Fig. 10.9. In the example shown in the figure, we
have a group with three members, and the quorum size is set to two for both reads
and writes7. The read is done as a one-phase algorithm, collecting values and ver-
sion numbers from two replicas, picking the correct version, and returning that to
the application. The update, in contrast, is done as a read followed by a 2-phase
commit protocol—not 3-phase commit, since we do not have an accurate way to
detect failures, so the extra phase will not bring any significant benefit. Instead, the
first phase proposes a new value, and the second phase commits or aborts depending
on the success of the first. A failed process would need to track down the outcome
of any pending commit protocol before it could resume actions in a system built this
way, presumably by contacting some form of logging service or some process that
has been up long enough to know the status of past updates.

10.4 Related Reading

On logical concepts of time (see Lamport 1978a, 1984).
Causal ordering in message delivery (see Birman and Joseph 1987a, 1987b).
Consistent cuts (see Babaoglu and Marzullo 1993, Chandy and Lamport 1985).
Vector clocks (see Fidge 1988; Mattern 1989).
Vector clocks used in message delivery (see Birman et al. 1991; Schiper et al.

1989, 2003).
Optimizing vector clock representations (see Charron-Bost 1991; Melliar-Smith

and Moser 1993).
Compression using topological information about groups of processes (see Bir-

man et al. 1991; Rodrigues and Verissimo 1995; Rodrigues et al. 1993, 2000).

7We have illustrated a scenario in which the read and update protocols optimistically assume that
their targets are healthy and will respond. In practice, however, lacking knowledge of the states of
the processes in the service, a quorum system might need to send additional messages simply to
maximize the likelihood of reaching a quorum of healthy group members. This, of course, makes
the protocol even more costly.
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Static groups and quorum replication (see Bernstein et al. 1987; Birman and
Joseph 1987a; Cooper 1985).

Two-phase commit (see Bernstein et al. 1987; Gray 1978; Gray and Reuter 1993).
Three-phase commit (see Skeen 1982a, 1985).
Method of Keidar and Dolev (see Keidar and Dolev 1995, 2000).
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11.1 Dynamic Group Membership

We now have the tools to develop the dynamic membership tracking service, and
ultimately to build the desired high speed data replication protocols. The basic ele-
ments of the dynamic membership model are as follows. The system is initialized
by starting some set of processes, perhaps by hand or on a pool of servers that have
been specially designated by the system administrator—an initial bootstrapping step
that we will not discuss in any detail here1. For the remainder of the lifetime of the
system, new processes are started and join the system, while active processes leave
the system when they terminate, fail, or simply chose to disconnect themselves. Of
course, a dynamic membership model does not preclude having some static set of
resources that play special roles; the basic idea is that the majority of the processes
in the system can come and go as they like.

1Readers interested in learning more about that first step might want to look at Shlomi Dolev’s work
on self-stabilization (Dolev 2000). A self-stabilizing bootstrap algorithm would work as follows.
During periods when applications can find an active membership service, they would do so. But if
an application is launched and cannot find the service, it would run Dolev’s self-stabilizing leader
election protocol. That protocol can automatically handle various numbers of concurrent processes
and is guaranteed to eventually converge to a state in which a single leader has been picked and
every process knows who the leader is (the eventual convergence does require that any severe
churn that may be happening settle down). At any rate, once this bootstrap step selects a leader,
one would delay for a sufficient amount of time to have reasonable confidence that two leaders have
not been picked (Dolev’s theory lets us calculate the needed delay). Finally, the leader could boot
our dynamic membership protocol. Non-leaders, in contrast, simply wait until the leader is running
the membership protocol, at which point they join the now-running system. In effect, we would run
the self-stabilization protocol only while no copies of the membership service are active. Thus, the
normal case becomes one in which the membership service is running, and some processes either
wish to join, or are terminating deliberately, or seem to have failed (other processes are reporting
timeouts). We would revert to the self-stabilization approach again if all copies of the membership
service crash, but otherwise will not use it again.

K.P. Birman, Guide to Reliable Distributed Systems, Texts in Computer Science,
DOI 10.1007/978-1-4471-2416-0_11, © Springer-Verlag London Limited 2012
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Notice that membership really involves dealing with two related problems. The
GMS service itself needs to track its own membership, because it will not otherwise
be able to provide consistent responses to applications using it. So, we need a pro-
tocol by which GMS servers talk to one-another. The second problem is that GMS
servers need to track the states of other (non-GMS) processes in the system. They
will use this monitoring mechanism to update their list of system members, and to
report events back out to processes in the system as a whole. We end up with a 2-tier
architecture.

Notice that even a static system can be treated as a special case of the dynamic
membership model. For example, consider a cluster-style data center in which an
instance of some database application is to be launched on every node. A static
system model may seem to be a good match for such a clustered architecture, but
we have seen that it brings high costs. We can just as easily adopt the view that the
processes comprising the database application are launched dynamically (when the
corresponding node is booted), and that they form a dynamic group whose members
“own” the local database stores on their respective computers. This approach will
turn out to have important benefits if the database system needs to use replicated
data. Thus, our broad approach is to add a group membership service to the system,
using the protocol developed below to implement it. Then we can layer groups of
various kinds “over” the GMS-supported abstractions, including groups that have
special relationships to various kinds of hardware.

Finally, to repeat a point made at the end of the previous chapter, some systems
use both static and dynamic membership tracking. The best known example in this
category is Lamport’s Paxos protocol, which he derives by a series of transforma-
tions from a basic Paxos protocol that assumes static membership, using quorum
operations in the manner discussed previously to ensure that updates will be durable
and totally ordered. The basic scheme can tolerate some number of crashed pro-
cesses: the maximum number of crashes that it can withstand is a parameter, t , and
the number of replicas is required to be at least 2t + 1. In normal operation, some
replicas might lack some updates, but any read that accesses a read-quorum of repli-
cas would see every update. Notice, though, that in a system updating an underlying
database, this model is awkward: what would it mean for some databases to know
that such-and-such an employee has left the company, if others do not know this? In
practice, how would one query such a replicated database? For example, how would
one run the query “Count employees on the payroll of the manufacturing division
in North Carolina:” the query requires that we have a single relation with the cor-
rect count in one place. If we were to use Paxos in its static form, any individual
database replica might have extra employee tuples, or be missing some employee
tuples. Clearly, Paxos in that form is not really useful except for maintaining a list
of the database updates, and even then, we can only actually know the full list if we
query multiple replicas, allowing us to patch the gaps that any single replica’s list of
updates might contain!

From this example, we see that there are many situations in which we really
would need to update all our replicas; doing so would let the user run a query and
obtain a sensible answer from any single replica. In particular, if we are actually
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applying updates more or less as they occur, to a complex underlying system such
as a database, the static version of Paxos (call it basic Paxos) will not be a very
satisfactory option. Lamport’s approach was to extend his basic Paxos scheme by
adding a way to reconfigure the replica set, creating what he called a new epoch.
This allows users to run with f = 0 if they prefer to avoid the case just described:
with f = 0 every write must update every replica, and any single replica can safely
be read (queried). A write would not be able to complete if a replica were to fail,
but Lamport solves this by creating a new epoch each time a failure occurs. In many
textbooks, this way of deriving a dynamic group communication system from a
static one would be the main focus, but as we will see, we can achieve a much more
efficient solution if we go about it the other way around: by creating a dynamic
membership protocol that can run in a bare-bones environment, and then laying
replicated update protocols over the dynamic layer. We will end up at the same
place: we can define a version of Paxos that offers dynamic membership in this
model, for example. But by approaching it in this manner, we will be able to avoid
some inefficiencies that Lamport’s Paxos approach encounters.

One simple way to understand the reason that a dynamic membership protocol
can outperform a static approach is this: in a static scheme such as basic Paxos, we
design a protocol that uses quorum methods to tolerate varying numbers of failures
up to some limit f . But as we just saw, we might decide to execute it with f = 0, to
update a database. Now one would need to go back and ask if that original protocol
was as efficient as possible for this configuration. In fact, it will not be: we end up
with protocol steps that can be trimmed out entirely because with f = 0, they never
execute. The dynamic protocol we will develop in this Chapter lacks those unneeded
steps. The version Malkhi developed and that we’ve included into Appendix A goes
even further: it revists Paxos and, unlike Lamport’s version (with its dual options
for handling failure), simplifies Paxos by handling failure in just a single way, using
reconfiguration. This leads to a faster, more optimized, Paxos, but with identical
properties: the protocol Isis2 offers as SafeSend.

11.1.1 GMS and Other System Processes

The interface between the GMS and other system processes provides three opera-
tions, shown in Table 11.1, and further illustrated by Fig. 11.1. The join operation
is invoked by a process that wishes to become a system member. The monitor oper-
ation is used by a process to register its interest in the status of some other process;
should that process be dropped from the membership, a callback will occur to notify
it of the event. Such a callback is treated as the equivalent of a failure notification in
the fail-stop computing model: The process is considered to have crashed, all com-
munication links with it are severed, and messages subsequently received from it
are rejected. Finally, the leave operation is used by a process that wishes to discon-
nect itself from the system, or by some other system component that has detected a
fault and wishes to signal that a particular process has failed. We assume throughout
this section that failure detections are inaccurate in the sense that they may result
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Table 11.1 GMS operations

Operation Function Failure handling

Join (process-ID,
callback) returns (time,
GMS list)

Calling process is added to membership list
of system, returns logical time of the join
event and a list giving the membership of
the GMS service. The callback function is
invoked whenever the core membership of
the GMS changes.

Idempotent: can be
reissued to any GMS
process with same
outcome

leave (process-ID)
returns void

Can be issued by any member of the
system. GMS drops the specified process
from the membership list and issues
notification to all members of the system. If
the process in question is really operational,
it must rejoin under a new process-ID.

Idempotent: fails only
if the GMS process
that was the target is
dropped from the GMS
membership list

monitor (process-ID,
callback) Returns
callback-ID

Can be issued by any member of the
system. GMS registers a callback and will
invoke callback (process-ID) later if the
designated process fails.

Idempotent: as for
leave

Fig. 11.1 In a system with a GMS, clients (c0 and c1) do not monitor one-another’s health directly.
Instead, they are monitored by the GMS, and trust the GMS to notify them if a counterpart fails.
This ensures that members of the system will react in a consistent manner when a failure occurs.
We can now separate concerns: one challenge is to build a highly available GMS, and a separate
one is to implement the protocols by which clients cooperate, i.e., to replicate data or synchronize
actions

from partitioning of the network, but are otherwise of sufficiently good quality as to
rarely exclude an operational process as faulty.

The GMS itself will need to be highly available—hence, it will typically be im-
plemented by a set of processes that cooperate to implement the GMS abstraction.
Although these processes would normally reside on a statically defined set of server
computers, so that they can readily be located by a process wishing to join the sys-
tem, the actual composition of the group may vary over time due to failures within
the GMS service itself, and one can imagine other ways of tracking down represen-
tatives (files, name services, the use of hardware broadcast to poll for a member,
etc.). Notice that in order to implement the GMS abstraction on behalf of the rest of
the system, a GMS server needs to solve the GMS problem on its own behalf. We
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will say that it uses a group membership protocol, or GMP, for this purpose. Thus,
the GMP deals with the membership of a small service, the GMS, which the rest of
the system (a potentially large set of processes) employs to track the composition of
the system as a whole.

Similar to the situation for other system processes that do not comprise the GMS,
the GMP problem is defined in terms of join and leave events; the latter being trig-
gered by the inability of the GMS processes to communicate with one another.
Clearly, such an environment creates the threat of a partitioning failure, in which
a single GMS might split into multiple GMS sub-instances, each of which considers
the other to be faulty. What should our goals be when such a partitioned scenario
occurs?

Suppose that our distributed system is being used in a setting such as air traf-
fic control. If the output of the GMS is treated as being the logical equivalent of
a failure notification, one would expect the system to reconfigure itself after such
notification to restore full air traffic control support within the remaining set of pro-
cesses. If some component of the air traffic control system is responsible for advis-
ing controllers about the status of sectors of the airspace (free or occupied), and the
associated process fails, the air traffic system would probably restart it by launching
a new status manager process.

A GMS partition would be the likely consequence of a network partition, raising
the prospect that two air traffic sector services could find themselves simultaneously
active, both trying to control access to the same portions of the airspace, and nei-
ther aware of the other! Such an inconsistency would have disastrous consequences.
While the partitioning of the GMS might be permissible, it is clear that at most one
of the resulting GMS components should be permitted to initiate new actions.

From this example we see that although one might want to allow a system to
remain operational during partitioning of the GMS, we also need a way to pick
one component of the overall system as the primary one, within which authorita-
tive decisions can be taken on behalf of the system as a whole (see Malkhi 1994;
Ricciardi 1993). Nonprimary components might report information on the basis of
their state as of the time when a partitioning occurred, but would not permit poten-
tially conflicting actions (such as routing a plane into an apparently free sector of
airspace) to be initiated. Such an approach clearly generalizes: One can imagine a
system in which some applications would be considered primary within a compo-
nent considered nonprimary for other purposes. Moreover, there may be classes of
actions that are safe even within a nonprimary component; an example would be the
reallocation of air traffic within sectors of the air traffic service already owned by
the partition at the time the network failed. But it is clear that any GMP solution
should at least track the primary component, so that actions can be appropriately
limited.

The key properties of the primary component of the GMS are that its member-
ship should overlap with the membership of a previous primary component of the
GMS and that there should only be one primary component of the GMS within any
partitioning of the GMS as a whole. As for the clients of the GMS, they inherit the
“primaryness” property of the GMS server to which they are connected. Thus, a
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client connected to a GMS server in the primary component is also in the primary
component, and a client connected to a GMS server that has lost contact with the
primary component is itself a non-primary client (even if the vast majority of clients
end up in this unhappy state).

In the beginning of this chapter, we discussed concepts of time in distributed set-
tings. In defining the primary component of a partitioned GMS we used temporal
terms without making it clear exactly what form of time was intended. In the fol-
lowing text, we have logical time in mind. In particular, suppose that process p is a
member of the primary component of the GMS, but then suddenly becomes parti-
tioned away from the remainder of the GMS, executing for an arbitrarily long period
of time without sending or receiving any additional messages and finally shutting
down. From the discussion up to now, it is clear that we would want the GMS to re-
configure itself to exclude p, if possible, forming a new primary GMS component,
which can permit further progress in the system as a whole. But now the question
occurs as to whether or not p would be aware that this has happened. If not, p might
consider itself a member of the previous primary component of the GMS, and we
would now have two primary components of the GMS active simultaneously.

There are two ways in which we could respond to this issue. The first involves a
limited introduction of time into the model. Where clocks are available, it would be
useful to have a mechanism whereby any process that ceases to be a member of the
primary component of a partitioned GMS can detect this situation within a bounded
period of time—for example, it would be helpful to know that within two seconds
of being excluded from the GMS, p knows that it is no longer a member of the
primary component. If clocks are synchronized, a process that is taking over some
role would be able to delay its first action long enough to ensure that the process
that previously had the role has become quiescent. For example, in an air traffic
application, if process a was responsible for decisions about air-traffic sector S, and
now b is informed that a has either failed or become partitioned away from the
primary component, b could delay for an appropriate amount of time. During this
period, we would know that a will experience a “loss of connectivity” timeout. By
the time that b takes over a’s role, any controller still in contact with a will be told
that a has lost contact with the primary component of the system. The controller
could then shift to some other, operational, machine and would find him or herself
in contact with b. Notice that there would never be a point in real time where there
are two processes claiming to be in control of S.

The second option involves designing our system so that if a partition does form,
any process taking over some role will be able to duplicate the actions of the pro-
cess that became partitioned away. In this second approach, b takes over the role of
a but does so with accurate knowledge of the actions a might have taken prior to
losing connectivity to the primary partition. In practice, this involves fully replicat-
ing the information a will use within the group before taking any action based on
that information.

The two approaches can be combined, and for an application as “mission critical”
as air traffic control, normally would be. One would arrive at a system in which, if
a process fails, no process takes over from it until the failed (or disconnected) pro-
cess has quiesced, and moreover, a process taking over from some other process
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also can reproduce the last actions taken by its quiescent counterpart prior to crash-
ing or becoming disconnected. Of course, this is a costly approach, because every
update to the group state needs to be registered with every group member before
any action can be taken on the basis of that update. The delay while waiting for
acknowledgements that everyone has seen the update will reduce the rate of updates
we can do substantially. On the other hand, we will still be able to operate a small
group at a rate of perhaps a few tens or even hundreds of events per second, and for
an application like air traffic control, this may be adequate.

In addition to these considerations, we will need a way to capture the sense in
which it is legal for p to lag the GMS in this manner, albeit for a limited period of
time. Notice that because we wish to require that primary components of the GMS
have overlapping membership, if we are given two different membership lists for the
GMS, a and b, either a → b, or b → a. Thus, rather than say that there should be
at most one primary component of the GMS active simultaneously, we will say that
any two concurrently active membership lists for the GMS (in the sense that each is
considered current by some process) should be ordered by causality. Equivalently,
we could now say that there is at most a single sequence of GMS membership lists
that is considered to represent the primary component of the GMS. We will use the
term “view” of the GMS membership to denote the value of the membership list
that holds for a given process within the GMS at a specified point in its execution.

If the GMS experiences a partitioning failure and the non-primary partition is
permitted to remain active, steps must be taken to handle the merging of partitions
(see Amir et al. 1992a, 1992b; Malkhi 1994; Moser et al. 1994a, 1994b). Finally,
if all the members of the GMS fail, or if the primary partition is somehow lost, the
GMP should provide for a restart from complete failure or for identification of the
primary partition when the merge of two nonprimary partitions makes it possible to
determine that there is no active primary partition within the system. We will discuss
this issue at some length in Chap. 14.

The protocol that we now present is based on one that was developed as part
of the Isis system in 1987 (see Birman and Joseph 1987b), but was subsequently
extended by Ricciardi in 1991 as part of her Ph.D. dissertation (see Ricciardi et al.
1992; Ricciardi 1993; Ricciardi and Birman 1991). The protocol has the interesting
property that all GMS members see exactly the same sequence of join and leave
events. The members use this property to obtain an unusually efficient protocol ex-
ecution.

To avoid placing excessive trust in the correctness or fault tolerance of the clients,
our goal will be to implement a GMS for which all operations are invoked using a
modified RPC protocol. Our solution should allow a process to issue requests to any
member of the GMS server group with which it is able to establish contact. The
protocol implemented by the group should stipulate that join operations are idem-
potent: If a joining process times out or otherwise fails to receive a reply, it can
reissue its request, perhaps to a different server. Having joined the system, clients
that detect apparent failures merely report them to the GMS. The GMS itself will be
responsible for all forms of failure notification, both for GMS members and other
clients. Thus, actions that would normally be triggered by timeouts (such as reissu-
ing an RPC or breaking a stream connection) will be triggered in our system by a
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GMS callback notifying the process doing the RPC or maintaining the stream that
the party it is contacting has failed. Table 11.1 summarizes this interface.

11.1.2 Protocol Used to Track GMS Membership

We now develop the protocol used to track the core membership of the GMS service
itself. These are the processes responsible for implementing the GMS abstraction,
but not their clients. For simplicity, we assume that the processes all watch one an-
other using some form of network-level ping operation, detecting failures by time-
out. In practice, failure detection does not necessarily require an all-to-all pattern
of monitoring, but this assumption makes the GMS protocol easier to explain. The
only real requirement here is that if a process or a set of processes fail, the survivors
will eventually detect all the failures.

Both the addition of new GMS members and the deletion of apparently failed
members are handled by the GMS coordinator, which is the GMS member that has
been operational for the longest period of time. As we will see, although the GMS
protocol permits more than one process to be added or deleted at a time, it orders all
add and delete events so that this concept of oldest process is well defined and con-
sistent throughout the GMS. If a process believes the GMS coordinator has failed,
it treats the next highest ranked process (perhaps itself) as the new coordinator.

Our initial protocol will be such that any process suspected of having failed is
subsequently shunned by the system members that learn of the suspected failure.
This has the effect of emulating what we called fail-stop behavior earlier. Upon
detection of an apparent failure, a GMS process immediately ceases to accept com-
munication from the failed process. It also immediately sends a message to every
other GMS process with which it is communicating, informing them of the apparent
failure; they then shun the faulty process as well. If a shunned process is actually
operational, it will learn that it is being shunned when it next attempts to communi-
cate with some GMS process that has heard of the fault; at this point it is expected
that the shunned process will rejoin the GMS under a new process identifier. In this
manner, a suspected failure can be treated as if it were a real one. As we’ve seen,
this behavior is very common in cloud settings, where the cloud management infras-
tructure would often do precisely the same things to deal with sets of machines that
have someone become partitioned away from the majority of the datacenter (e.g. a
rack that suffered a network switch failure).

Having developed this initial protocol, we will discuss extensions that allow par-
titions to form and later merge in Sect. 11.1.5, and then will return to the topic in
Chap. 14, where we present an execution model that makes use of this functionality.

Upon learning of a failure or an addition request, the GMS coordinator starts a
protocol that will lead to the updating of the membership list, which is replicated
among all GMS processes. The protocol requires two phases when the processes
being added or deleted do not include the old GMS coordinator; a third phase is used
if the coordinator has failed and a new coordinator is taking over. Any number of add
operations can be combined into a single round of the protocol. A single round can
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also perform multiple delete operations, but here there is a limit: At most a minority
of the processes present in a given view can be dropped from the subsequent view
(more precisely, a majority of the processes in a given view must acknowledge the
next view; obviously, this implies that the processes in question must be alive).

In the two-phase case, the first round of the protocol sends the list of add and
delete events to the participants, including the coordinator itself. All acknowledge
receipt. The coordinator waits for as many replies as possible, but also requires a
majority response from the current membership. If less than a majority of processes
are reachable it waits until communication is restored before continuing. If pro-
cesses have failed and only a minority are available, a special protocol is executed.

Unless additional failures occur at this point in the protocol, which would be
very unlikely, a majority of processes acknowledge the first-round protocol. The
GMS coordinator now commits the update in a second round, which also carries
with it notifications of any failures that were detected during the first round. Indeed,
the second-round protocol can be compacted with the first round of a new instance
of the deletion protocol, if desired. The GMS members update their membership
view upon reception of the second-round protocol messages.

In what one hopes will be an unusual condition, it may be that a majority of the
previous membership cannot be contacted because too many GMS processes have
crashed. In this case, a GMS coordinator still must ensure that the failed processes
did not acquiesce in a reconfiguration protocol of which it was not a part. In general,
this problem may not be solvable—for example, it may be that a majority of GMS
processes have crashed, and prior to crashing they could have admitted any number
of new processes and deleted the ones now trying to run the protocol. Those new
processes could now be anywhere in the system. In practice, however, this problem
is often easy to solve: The GMS will most often execute within a static set of pos-
sible server hosts, and even if this set has some small degree of dynamicism, it is
normally possible to track down any GMS server by checking a moderate number
of nodes for a representative.

A three-phase protocol is employed when the current coordinator is suspected as
having failed and some other coordinator must take over. The new coordinator starts
by informing at least a majority of the GMS processes listed in the current member-
ship that the coordinator has failed and then collects their acknowledgements and
current membership information. At the end of this first phase, the new coordinator
may have learned of pending add or delete events that were initiated by the prior
coordinator before it was suspected of having failed. The first-round protocol also
has the effect of ensuring that a majority of GMS processes will start to shun the
old coordinator. The second and third rounds of the protocol are exactly as for the
normal case: The new coordinator proposes a new membership list, incorporating
any add events it has learned about, as well as all the delete events, including those
it learned about during the initial round of communication and those from the prior
coordinator. It waits for a majority to acknowledge this message and then commits
it, piggybacking suspected failure information for any unresponsive processes.

Ricciardi has given a detailed proof that the above protocol results in a single,
ordered sequence of process add and leave events for the GMS and that it is immune
to partitioning (see Ricciardi et al. 1992). The key to her proof is the observation that
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any new membership list installed successfully necessarily must be acknowledged
by a majority of the previous list, and therefore that any two concurrent protocols
will be related by a causal path. One protocol will learn of the other, or both will
learn of one another, and this is sufficient to prevent the GMS from partitioning.
Ricciardi shows that if the ith round of the protocol starts with n processes in the
GMS membership, an arbitrary number of processes can be added to the GMS and
at most �n/2�−1 processes can be excluded (this is because of the requirement that
a majority of processes agree with each proposed new view). In addition, she shows
that even if a steady stream of join and leave or failure events occurs, the GMS
should be able to continuously output new GMS views provided that the number of
failures never rises high enough to prevent majority agreement on the next view. In
effect, although the protocol may be discussing the proposed i + 2 view, it is still
able to commit the i + 1 view.

11.1.3 GMS Protocol to Handle Client Add and Join Events

We now turn to the issues that occur if a GMS server is used to manage the member-
ship of some larger number of client processes, which interact with it through the
interface given earlier.

In this approach, a process wishing to join the system will locate an operational
GMS member. It then issues a join RPC to that process. If the RPC times out, the
request can simply be reissued to some other member. When the join succeeds, it
learns its logical ranking (the time at which the join took place) and the current
membership of the GMS service, which is useful in setting up subsequent monitor-
ing operations. Similarly, a process wishing to report a failure can invoke the leave
operation in any operational GMS member. If that member fails before confirm-
ing that the operation has been successful, the caller can detect this by receiving a
callback reporting the failure of the GMS member itself and then can reissue the
request.

To solve these problems, we could now develop a specialized protocol. Before
doing so, however, it makes sense to ask if the GMS is not simply an instance of a
service that manages replicated data on behalf of a set of clients; if so, we should
instead develop the most general and efficient solutions possible for the replicated
data problem, and then use them within the GMS to maintain this specific form of
information. And, indeed, it is very natural to adopt this point of view.

To transform the one problem into the other, we need to understand how an RPC
interface to the GMS can be implemented such that the GMS would reliably offer
the desired functionality to its clients, using data replication primitives internally
for this purpose. Then we can focus on the data replication problem separately and
convince ourselves that the necessary primitives can be developed and can offer
efficient performance.

The first problem that needs to be addressed concerns the case where a client
issues a request to a representative of the GMS that fails before responding. This
can be solved by ensuring that such requests are idempotent, meaning that the same
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operation can be issued repeatedly and will repeatedly return the identical result—
for example, an operation that assigns the value 3 to a variable x is idempotent,
whereas an operation that increments x by adding 1 to it would not be. We can
make the client join operation idempotent by having the client uniquely identify
itself, and repeat the identifier each time the request must be reissued. Recall that
the GMS returns the time of the join operation; this can be made idempotent by
arranging it so that if a client join request is received from a client already listed as
a system member, the time currently listed is returned and no other action is taken.

The remaining operations are all initiated by processes that belong to the system.
These, too, might need to be reissued if the GMS process contacted to perform
the operation fails before responding (the failure would be detected when a new
GMS membership list is delivered to a process waiting for a response, and the GMS
member it is waiting for is found to have been dropped from the list). It is clear
that exactly the same approach can be used to solve this problem. Each request
need only be uniquely identifiable—for example, using the process identifier of the
invoking process and some form of counter (for example: request 17 from process
p on host h).

The central issue is thus reduced to replication of data within the GMS or within
similar groups of processes. We will postpone this problem momentarily, returning
later when we give a protocol for implementing replicated data within dynamically
defined groups of processes.

11.1.4 GMS Notifications with Bounded Delay

If the processes within a system possess synchronized clocks, it is possible to bound
the delay before a process becomes aware that it has been partitioned from the sys-
tem. Consider a system in which the health of a process is monitored by the con-
tinued reception of some form of “still alive” messages received from it; if no such
message is received after delay σ , any of the processes monitoring that process can
report it as faulty to the GMS. (Normally, such a process would also cease to accept
incoming messages from the faulty process and would also piggyback this informa-
tion on messages to other processes to ensure that if p considers q to have failed,
then any process that receives a message from p will also begin to shun messages
from q .) Now, assume further that all processes receiving a “still alive” message
acknowledge it.

In this setting, p will become aware that it may have been partitioned from the
system within a maximum delay of 2ε+σ , where ε represents the maximum latency
of the communication channels. More precisely, p will discover that it has been
partitioned from the system 2ε+σ time units after it last had contact with a majority
of the previous primary component of the GMS. In such situations, it would be
appropriate for p to break any channels it has to system members and to cease
taking actions on behalf of the system as a whole.

Notice that the GMS may run its protocol to exclude p as early as 2ε time units
before p discovers that it has been partitioned from the main system, hence there is
a potentially long window of time during which the exact status of p is unknown.
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Fig. 11.2 If channel delays are bounded, a process can detect that it has been partitioned from
the primary component within a bounded time interval, making it safe for the primary component
to take over actions from it even if externally visible effects may be involved. The gray region
denotes a period during which the new primary process will be unable to take over because there
is some possibility that the old primary process is still operational in a nonprimary component and
may still be initiating authoritative actions. At the end of the gray period a new primary process
can be appointed within the primary component. There may be a period of real time during which
no primary process is active, but there is very little risk that two could be simultaneously active.
One can also bias a system in the other direction, so that there will always be at least one primary
active provided that the rate of failures is limited

The new primary system component can safely break locks held by p or otherwise
takeover actions for which p was responsible after 2ε time units have elapsed, but
this event may actually follow a long period during which the system was essentially
idle, waiting for this to happen. (See Fig. 11.2.) Our only options for narrowing
this window are to use as fast a communication network as possible, and to detect
failures aggressively, so that ε and σ will be small. If clocks are synchronized, any
process q taking over from p will know how long to wait before doing so, and
also will know the wall clock time for the last action that p could have initiated.
In applications such as air traffic control, these guarantees are sufficient to design a
safe take-over protocol.

Reasoning such as this is only possible in systems where clocks are synchronized
to a known precision and in which the delays associated with communication chan-
nels are also known (if the wall-clock time issue does not arise in the application,
it suffices to ensure that the various clocks advance at the same rate—that 2ε + σ

time units means the same thing system-wide). In practice, such values are rarely
known with any accuracy, but coarse approximations may exist. Thus, in a system
where message-passing primitives provide expected latencies of a few milliseconds,
one might take ε to be a much larger number: one second or ten seconds. Although
extremely conservative, such an approach would in practice be quite safe. Later,
we will examine real-time issues more closely, but it is useful to keep in mind that
very coarse-grained real-time problems are often easy to solve in distributed sys-
tems where the equivalent fine-grained real-time problems would be very difficult
or provably impossible. At the same time, even a coarse-grained rule such as this
one would only be safe if there was good reason to believe that the value of ε was a
safe approximation. Some systems provide no guarantees of this sort at all, in which
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case incorrect behavior could result if a period of extreme overload or some other
unusual condition caused the ε limit to be exceeded.

To summarize, the core primary partition GMS protocol must satisfy the follow-
ing properties:
• C-GMS-1: The system membership takes the form of system views. There is an

initial system view, which is predetermined at the time the system starts. Subse-
quent views differ by the addition or deletion of processes.

• C-GMS-2: Only processes that request to be added to the system are added. Only
processes that are suspected of failure or that request to leave the system are
deleted.

• C-GMS-3: A majority of the processes in view i of the system must acquiesce in
the composition of view i + 1 of the system.

• C-GMS-4: Starting from an initial system view, subsequences of a single se-
quence of system views are reported to system members. Each system member
observes such a subsequence starting with the view in which it was first added
to the system and continuing until it fails, when it either leaves the system or is
excluded from the system.

• C-GMS-5: If process p suspects process q of being faulty, and if the core GMS
service is able to report new views, either q will be dropped from the system, or
p will be dropped, or both.

• C-GMS-6: In a system with synchronized clocks and bounded message latencies,
any process dropped from the system view will know that this has occurred within
bounded time.
As noted previously, the core GMS protocol will not always be able to make

progress: There are patterns of failures and communication problems that can pre-
vent it from reporting new system views. For this reason, C-GMS-5 is a conditional
liveness property: If the core GMS is able to report new views, then it eventually acts
upon process add or delete requests. It is not yet clear what conditions represent the
weakest environment within which liveness of the GMS can always be guaranteed.
For the protocol given above, the core GMS will make progress provided that at
most a minority of processes from view i fail or are suspected of having failed dur-
ing the period needed to execute the two- or three-phase commit protocol used to
install new views. Such a characterization may seem evasive, since such a proto-
col may execute extremely rapidly in some settings and extremely slowly in others.
However, unless the timing properties of the system are sufficiently strong to sup-
port estimation of the time needed to run the protocol, this seems to be as strong a
statement as can be made.

We note that the failure detector called �W in Chandra and Toueg’s work is
characterized in terms somewhat similar to this (see Chandra and Toueg 1991;
Chandra et al. 1992). Related work by several researchers (see Babaoglu et al. 1995;
Friedman et al. 1995; Guerraoui 1995) has shown that the �W failure detector can
be adapted to asynchronous systems in which messages can be lost during failures
or processes can be killed because the majority of processes in the system consider
them to be malfunctioning. Although fairly theoretical in nature, these studies are
shedding light on the conditions under which problems such as membership agree-
ment can always be solved and those under which agreement may not always be
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possible (the theoreticians are fond of calling the latter problems “impossible”). In-
deed, the protocols presented in Appendix A closely resemble a core mechanism
used in the Chandra and Toueg papers; in some sense, then, the protocols in Ap-
pendix A “implement” the Chandra and Toueg scheme for achieving consensus us-
ing a weakly consistent failure detector! And the methods of Appendix A, in turn,
are the basis of the protocols implemented in Isis2. To present this work here, how-
ever, is beyond the scope of this book.

11.1.5 Extending the GMS to Allow Partition and Merge Events

Research on the Transis system, at Hebrew University in Jerusalem, has yielded in-
sights into the extension of protocols, such as the one used to implement our primary
component GMS, so that it can permit continued operation during partitionings that
leave no primary component, or allow activity in a non-primary component, rec-
onciling the resulting system state when partitions later remerge (see Amir et al.
1992a, 1992b; Malkhi 1994). Some of this work was done jointly with the Totem
project at University of California, Santa Barbara (see Moser et al. 1996).

Briefly, the approach is as follows. In Ricciardi’s protocols, when the GMS is
unable to obtain a majority vote in favor of a proposed new view, the protocol basi-
cally gets stuck—it ceases to make progress. This ripples up to the application layer,
since the application will eventually try to send a multicast or block waiting for a
message from some other process, and while the membership protocol is blocked,
these operations also will block. Thus, with little delay, the entire portioned portion
of the system is likely to grind to a halt waiting until a primary partition can be
reestablished, or for some kind of “shut down” action initiated in the application
or by a human operator. In practice, such problems should never occur in a local
area network, since it is easy to design a LAN so that partitioning will only occur
in situations where a small subset of the machines have somehow become isolated
from the network being used by a large majority of the datacenter. However, if an
application runs over wide-area links and tries to treat the entire infrastructure as
a single, seamless network, partitioning failures could be common. The choice is
between designing such applications differently (basically, as a set of loosely inter-
connected systems, with each system residing within a single LAN), or to extend
the communication platform to deal with partitioning. Such an extension needs to
start with a partitionable GMS.

In the extended protocol, a GMS experiencing a partitioning failure continues to
produce new views, but no longer considers itself to be the primary partition of the
system. Of course, there is also a complementary case in which the GMS encounters
some other GMS and the two merge their membership views. It may now be the
case that one GMS or the other was the primary component of the system, in which
case the new merged GMS will also be primary for the system. On the other hand,
perhaps a primary component fragmented in such a way that none of the surviving
components considers itself to be the primary one. When this occurs, it may be
that later, such components will remerge and “primaryness” can then be deduced by
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study of the joint histories of the two components. Thus, one can extend the GMS
to make progress even when partitioning occurs.

Work at the University of Bologna, on a system named Relacs, subsequently
refined this approach into one that is notable for its simplicity and clarity. Ozalp
Babaoglu, working with Alberto Bartoli and Gianluca Dini, demonstrated that a very
small set of extensions to a view-synchronous environment suffice to support EVS-
like functionality. They call their model Enriched View Synchrony and describe it in
a technical report (see Babaoglu et al. 1996). Very briefly, Enriched View Synchrony
arranges to deliver only nonoverlapping group views within different components of
a partitioned system. The reasoning behind this is that overlapping views can cause
applications to briefly believe that the same process or site resides on both sides of a
partition, leading to inconsistent behavior. Then, they provide a set of predicates by
which a component can determine whether or not it has a quorum that would permit
direct update of the global system state, as well as algorithmic tools for assisting in
the state merge problem that occurs when communication is reestablished. I am not
aware of any implementation of this model yet, but the primitives are simple and an
implementation in a system such as Horus (Chap. 17) would not be difficult.

Having described these approaches, an important question remains: whether or
not it is desirable to allow a GMS to make progress in this manner. We defer this
point until Chap. 15, but the author’s belief is that few systems require the ability to
continue operation on both sides of a failure that partitions the network, and that the
primary partition model (in which the non-primary partition is basically shut down
until the problem has been fixed) is preferable because it is much simpler for the user
to understand. In addition, as was noted in footnote 3, Keidar, Chockler and Dolev
have shown that there are cases in which no component is ever the primary one
for the system, and yet durable, strongly consistent actions can still be performed
through a type of gossip that occurs whenever the network becomes reconnected
and two nonminority components succeed in communicating. Although interesting,
this protocol is costly: Prior to taking any action, a majority of all the processes
in the system must be known to have seen the action. Indeed, Keidar and Dolev
develop their solution for a static membership model, in which the GMS tracks
subsets of a known maximum system membership. The majority requirement makes
this protocol costly—hence, although it is potentially useful in the context of wide
area systems that experience frequent partition failures, it is not likely that one would
use it directly in the local area communication layers of a system. We will return
to this issue in Chap. 14 in conjunction with the model called Extended Virtual
Synchrony.

11.2 Replicated Data with Malicious Failures

In this and the next section we touch on two problems that are basically tangential
to the overall topic of interest here, yet important enough so that a well-read student
should at least be aware of them. Nonetheless, the contents of Sects. 11.2 and 11.3
are not particularly central to the remainder of the book and can be skipped by
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practitioners focused on building highly assured Web Services but having less of an
interest in the broad area.

The discussion in the previous sections assumed a crash-failure model, which
is approximated in most distributed systems, but may sometimes represent a risky
simplification. Consider a situation in which the actions of a computing system have
critical implications, such as the software responsible for adjusting the position of an
aircraft wing in flight or for opening the cargo door of the Space Shuttle. In settings
such as these, the designer may hesitate to simply assume that the only failures that
will occur will be benign ones.

There has been considerable work on protocols for coordinating actions under
extremely pessimistic failure models, centering on what is called the Byzantine gen-
erals’ problem, which explores a type of agreement protocol under the assumption
that failures can produce arbitrarily incorrect behavior, but that the number of fail-
ures is known to be bounded. Although this assumption may seem more realistic
than the assumption that processes fail by clean crashes, the model also includes
a second type of assumption, which some might view as unrealistically benign: It
assumes that the processors participating in a system share perfectly synchronized
clocks, permitting them to exchange messages in rounds that are triggered by the
clocks (e.g., once every second). Moreover, the model assumes that the latencies
associated with message exchange between correct processors is accurately known.

Thus, the model permits failures of unlimited severity, but at the same time as-
sumes that the number of failures is limited and that operational processes share
a very simple computing environment. Notice in particular that the round model
would only be realistic for a very small class of modern parallel computers and is
remote from the situation on distributed computing networks. The usual reasoning
is that by endowing the operational computers with extra power (in the form of
synchronized rounds), we can only make their task easier. Thus, understanding the
minimum cost for solving a problem in this model will certainly teach us something
about the minimum cost of overcoming failures in real-world settings.

We should emphasize that, to the author’s knowledge, Byzantine Agreement has
never been used as the basis for a GMS-like mechanism; doing so is thus an open
research topic that might be worth exploring at some point. We’ll report on the basics
of the agreement problem itself, in this model, leaving the application of Byzantine
Agreement to problems such as supporting a Byzantine-fault-tolerant GMS as an
open direction for future work.

The Byzantine generals’ problem is as follows (see Lynch 1996). Suppose that an
army has laid siege to a city and has the force to prevail in an overwhelming attack.
However, if divided, the army might lose the battle. Moreover, the commanding
generals suspect that there are traitors in their midst. Under what conditions can
the loyal generals coordinate their action so as to either attack in unison or not
attack at all? The assumption is that the generals start the protocol with individual
opinions on the best strategy: to attack or to continue the siege. They exchange
messages to execute the protocol, and if they decide to attack during the ith round
of communication, they will all attack at the start of round i +1. A traitorous general
can send out any messages he or she likes and can lie about his or her own state,
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but can never forge the message of a loyal general. Finally, to avoid trivial solutions,
it is required that if all the loyal generals favor attacking, an attack will result, and
that if all favor maintaining the siege, no attack will occur. Protocols solving this
problem are generally referred to as “Byzantine Agreement” protocols.

To see why this is difficult, consider a simple case in which three generals sur-
round the city. Assume that two are loyal, but that one favors attack and the other
prefers to hold back. The third general is a traitor. Moreover, assume that it is known
that there is at most one traitor. If the loyal generals exchange their votes, they will
both see a tie: one vote for attack, one opposed. Now suppose that the traitor sends
an attack message to one general and tells the other to hold back. The loyal gener-
als now see inconsistent states: One is likely to attack while the other holds back.
With the forces divided, they would be defeated in battle. The Byzantine generals’
problem is thus seen to be impossible for t = 1 and n = 3.

With four generals and at most one failure, the problem is solvable, but not triv-
ially so. Assume that two loyal generals favor attack, the third favors retreat, and the
fourth is a traitor. Again, it is known that there is at most one traitor. The generals
exchange messages, and the traitor sends “retreat” to one, and “attack” to two oth-
ers. One loyal general will now have a tied vote: two votes to attack, two to retreat.
The other two generals will see three votes for attack, and one for retreat. A second
round of communication will clearly be needed before this protocol can terminate!
Accordingly, we now imagine a second round in which the generals circulate mes-
sages concerning their state in the first round. Two loyal generals will start this
round knowing that it is safe to attack: On the basis of the messages received in the
first round, they can deduce that even with the traitor’s vote, the majority of loyal
generals favored an attack. The remaining loyal general simply sends out a message
that it is still undecided. At the end of this round, all the loyal generals will have
one undecided vote, two votes that it is safe to attack, and one message from the
traitor. Clearly, no matter what the traitor votes during the second round, all three
loyal generals can deduce that it is safe to attack. Thus, with four generals and at
most one traitor, the protocol terminates after two rounds.

In the general case, most Byzantine Agreement algorithms operate by having
some form of “witnessing” mechanism. In a typical algorithm, during the first
round, each process broadcasts its proposed agreement value—its “vote.” In a sec-
ond round, each process broadcasts the list of votes it “witnessed” in the first round,
and if a third round occurs, each processes sends messages listing the events it wit-
nessed in the second one, and so forth. The goal is to arrive at a state in which, no
matter what the faulty processes do, the correct processes are able to force a unique
outcome all by themselves.

By using this model, one can prove what are called lower bounds and upper
bounds on the Byzantine generals’ problem. A lower bound would be a limit to
the quality of a possible solution to the problem—for example, one can prove that
any solution to the problem capable of overcoming t traitors requires a minimum
of 3t + 1 participants (hence: 2t + 1 or more loyal generals). The intuition into
such a bound is fairly clear: The loyal generals must somehow be able to deduce
a common strategy even with t participants whose votes cannot be trusted. For the
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others there must be a way to identify a majority decision. However, it is surpris-
ingly difficult to prove that this must be the case. For our purposes, such a proof
would represent a digression and is omitted, but interested readers are referred to
the excellent treatment in Fisher et al. (1985a). Another example of a lower bound
concerns the minimum number of messages required to solve the problem: No pro-
tocol can overcome t faults with fewer than t + 1 rounds of message exchange, and
hence O(t ∗ n2) messages, where n is the number of participating processes.

A curious property of Byzantine protocols is the following: they normally assume
that when the protocol starts, all the participants know how many processes are in the
system, and have worst-case bounds on the number of failures that can occur. These
protocols will typically execute to completion under those worst-case assumptions,
no matter what actually transpires in a real run—no attempt is made to check for and
detect faults, or to somehow exclude processes based on faulty behavior. Up to the
limited number of failures that can be tolerated, these protocols simply push forward
and overwhelm the attacker with the weight of correct messages they exchange. The
attacker, knowing the futility of attacking, might not even bother. Thus, in some
sense, these protocols kill a mosquito with a sledge-hammer: most likely, no failure
even occurs, and yet the protocol grinds away under worst-case assumptions! (In
fairness, we should perhaps note that there are some “early stopping” Byzantine
protocols, but they tend to be slower when failures actually do occur—in effect, one
loses performance either way!)

In practical terms, the formulas just cited represent costly findings: Recall that
our 2PC protocol is capable of solving a problem much like Byzantine generals’
problem in two rounds of message exchange requiring only 3n messages, albeit for
a simpler failure model. Moreover, the quorum methods permit data to be repli-
cated using as few as t + 1 copies to overcome t failures. Later in the book we will
discuss even cheaper replication schemes below, albeit with slightly weaker guaran-
tees. Thus, a Byzantine protocol is very costly, and the best solutions are also fairly
complex.

An upper bound on the problem would be a demonstration of a protocol that actu-
ally solves Byzantine generals’ problem and an analysis of its complexity (number
of rounds of communication required or messages required). Such a demonstration
is an upper bound because it rules out the need for a more costly protocol to achieve
the same objectives. Clearly, one hopes for upper bounds that are as close as pos-
sible to the lower bounds, but unfortunately no such protocols have been found for
the Byzantine generals’ problem. The simple protocol illustrated here can easily be
generalized into a solution for t failures that achieves the lower bound for rounds of
message exchange, although not for numbers of messages required.

In recent years, there has been a flurry of research using Byzantine Agreement
protocols as the core of practical data replication systems. Several bodies of work
are worthy of special note, although both are best understood as examples of broad
areas of research. The first is a project called Phalynx, in which Reiter and Malkhi
combined Byzantine Agreement with quorum data replication to replicate informa-
tion critical to a security architecture. Their approach assumes that each object will
be replicated on k2 nodes, for some suitable value of k (typically, 2 or 3, although
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larger values are certainly possible). The nodes are assigned coordinates in a k × k

coordinate system. A read quorum is defined to be a row in this “array” of nodes,
and a write quorum is defined to be a column. Obviously, reads and writes will over-
lap. Byzantine Agreement is then used to determine the value actually read or the
value to be written.

Research by Castro and Liskov took Byzantine Agreement in a slightly differ-
ent direction, by exploring the potential value of the protocol for file or database
replication. The idea these researchers addressed involves replicating data over a set
of untrusted servers, then using Byzantine Agreement to update or read the values.
They actually have two versions of their basic solution: one in which agreement is
performed on the entire data object, and a second in which agreement is performed
only on a “digital signature,” which is a type of encoded checksum that cannot be
forged or guessed. By means of a clever analysis of the application, this project
showed that for many purposes, one can tolerate Byzantine failures and yet incur
very little overhead relative to a less secure solution. This gave rise to a whole fam-
ily of practical Byzantine solutions. A group at UT Austin created one of the most
efficient protocols in the series, calling it Zyzzyva with tongue-in-cheek: the term
happens to be the last word in the English dictionary. Presumably they intended that
particular protocol to be the last word in Byzantine Fault Tolerance (and Zyzzyva is
indeed quite efficient) (Kotla et al. 2009). But there have probably been dozens of
further refinements on Byzantine Agreement since Zyzzyva was published. Indeed,
Quema and Guerraoui published a kind of meta-protocol shortly before this book
went to press: they described it as a kind of a template for generating “the next 700
BFT protocols” (Guerraoui et al. 2010).

Yet despite these and other success stories, Byzantine Agreement remains a
rather costly and relatively unpopular technology. Suppose that we wanted to use
Byzantine Agreement to solve a static data replication problem in a very critical
or hostile setting. To do so, it would be necessary that the setting somehow cor-
respond to the setup of the Byzantine generals’ problem itself—for example, one
could imagine using this problem to control an aircraft wing or the Space Shut-
tle cargo door by designing hardware that carries out voting through some form of
physical process. The hardware would be required to implement the mechanisms
needed to write software that executes in rounds, and the programs would need to
be carefully analyzed to be sure that when operational, all the computing they do in
each round can be completed before that round terminates.

On the other hand, one would not want to use a Byzantine protocol in a system
where, at the end of the protocol, some single program will take the output of the
protocol and perform a critical action. In that sort of a setting (unfortunately, far
more typical of real computer systems), all we will have done is to transfer complete
trust in the set of servers within which the agreement protocol runs into a complete
trust in the single program that carries out their decision.

This has resulted in quite a bit of debate between the cloud computing com-
munity and the Byzantine fault-tolerance community. The BFT community tends
to argue that these days, BFT is a perfectly practical option and that cloud devel-
opers should use their BFT protocols whenever building high-assurance services,
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such as services that maintain security keys. The argument is that if something re-
ally matters, you should manage it using the strongest possible model. Moreover,
they would argue that after all, even normal bugs might lead to data corruption or
abnormal behavior. BFT protocols are provably safe when such things occur, if the
frequency is low enough and the faults do not impact all the replicas at once. But the
cloud community, led in this case by Ben Reed and Flavio Junqueira at Yahoo, sees
things differently (these are the two inventor’s of Yahoo’s ZooKeeper service). They
have described informal studies of how applications and machines at Yahoo failed,
concluding that the frequency of Byzantine failures was extremely small relative to
the frequency of crash failures. Sometimes they did see data corruption, but then
they often saw it occur in a correlated way that impacted many replicas all at once.
And very often they saw failures occur in the client layer, then propagate into the
service. BFT techniques tend to be used only within a service, not in the client layer
that talks to that service, hence offer no protection against malfunctioning clients.
All of this, Reed and Junqueira conclude, lead to the realization that BFT just does
not match the real needs of a cloud computing company like Yahoo, even if the data
being managed by a service really is of very high importance. Unfortunately, they
have not published on this study; it was reported at an “outrageous opinions” session
at the ACM Symposium on Operating Systems Principles, in 2009.

The practical use of the Byzantine protocol raises another concern: The timing
assumptions built into the model are not realizable in most computing environments.
While it is certainly possible to build a system with closely synchronized clocks and
to approximate the synchronous rounds used in the model, the pragmatic reality is
that few existing computer systems offer such a feature. Software clock synchro-
nization, on the other hand, is subject to intrinsic limitations of its own, and for this
reason is a poor alternative to the real thing. Moreover, the assumption that message
exchanges can be completed within known, bounded latency is very hard to satisfy
in general-purpose computing environments.

Continuing in this vein, one could also question the extreme pessimism of the
failure model. In a Byzantine setting the traitor can act as an adversary, seek-
ing to force the correct processes to malfunction. For a worst-case analysis this
makes a good deal of sense. But having understood the worst case, one can also
ask whether real-world systems should be designed to routinely assume such a pes-
simistic view of the behavior of system components. After all, if one is this negative,
should not the hardware itself also be suspected of potential misbehavior, as well
as the compiler and the various prebuilt system components that implement mes-
sage passing? In designing a security subsystem or implementing a firewall, such
an analysis makes a lot of sense. But when designing a system that merely seeks to
maintain availability despite failures, and is not expected to come under active and
coordinated attack, an extremely pessimistic model would be both unwieldy and
costly.

From these considerations, one sees that a Byzantine computing model is of value
in applications (or subsystems) demanding the utmost in security provisions, and
may be applicable to certain types of special-purpose hardware, but it will rarely
be directly useful in more general distributed computing environments where we
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might raise a reliability goal. As noted above, recent work with the model (see
Malkhi and Reiter 1998, 2000; Castro et al. 2003a, 2003b) focuses on such uses:
in one effort, a “Byzantine Quorums” mechanism is employed to build core com-
ponents of a high-security architecture (see Malkhi and Reiter 1998; Malkhi et al.
2001a, 2001b; Alvisi et al. 2001b; Abraham and Malkhi 2003), while the other
uses Byzantine Agreement to ensure the integrity of data in a replicated file server
where the servers themselves are not very trustworthy (see Castro and Liskov 2002).
As an aside, it should be noted that Rabin has introduced a set of probabilistic
Byzantine protocols that are extremely efficient, but that accept a small risk of error
(the risk diminishes exponentially with the number of rounds of agreement exe-
cuted) (see Rabin 1983). Meanwhile, Avlisi and Dahlin have recently proposed a
fast Byzantine Agreement protocol for use in settings like the ones considered by
Malkhi, Reiter, Castro and their respective colleagues. But it still is not especially
fast!

11.3 The Impossibility of Asynchronous Consensus (FLP)

We now turn to the second of the two “tangential” topics mentioned at the start
of Sect. 11.2, namely the “impossibility” of achieving agreement in asynchronous
distributed systems. Even before tackling the topic, it may be appropriate to remind
the reader that this section of the book is covering some rather theoretical material,
and that the theory community sometimes defines terms in unexpected ways. In
particular, as we will use it below, the term “impossible” does not mean “never
possible.” Rather, it means “is not always possible.”

To illustrate this definition, consider the challenge of reaching the author of this
book by telephone during a busy day filled with meetings, talks by students, classes
to teach, and so forth. Perhaps, over the eight hours of an academic working day,
I am actually at my telephone for just four hours. Is it “possible” to reach me?
A pragmatic answer is that of course it is: just keep trying. If your call is timed
at random, with probability roughly 1/2 you will reach me. If you make n calls
at random times, the likelihood of reaching me will be 1–1/2n. These sound like
pretty good odds. But a theoretician might not be satisfied with such an analysis.
He or she would reason as follows: suppose that the caller makes n extremely brief
calls at times specified by a clever adversary who is keeping one eye on my desk
through the door. It will not be difficult for that adversary to steer the caller towards
times when I am not at my desk. Indeed, one could formalize a model in which it
is provably impossible to reach me; such a result might hold even if I am “almost
always” at my desk. The impossibility result considered below is of such a nature:
it has limited practical importance yet the result matters because it tells us that there
are certain properties our distributed systems simply cannot be shown to possess—
notably, liveness guarantees. We will be able to build systems that are safe, in the
sense of “not doing bad things,” and that are probabilistically live, in the sense of
being “very likely to do a good thing.” But we will not be able to build systems that
are guaranteed to “always do a good thing.” Such a goal would violate the theory.
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Although we refer to our model as asynchronous, it is in fact more con-
strained. In the asynchronous model, as used by distributed systems theo-
reticians, processes communicate entirely by message passing and there is no
concept of time. Message passing is reliable but individual messages can be
delayed indefinitely, and there is no meaningful concept of failure except for
a process that crashes (taking no further actions) or that violates its protocol
by failing to send a message or discarding a received message. Even these two
forms of communication failure are frequently ruled out.
The form of asynchronous computing environment used in this chapter, in
contrast, is intended to be “realistic.” This implies that there are clocks on the
processors and expectations regarding typical round-trip latencies for mes-
sages. Such temporal data can be used to define a concept of reachability or
to trigger a failure-detection mechanism. The detected failure may not be at-
tributable to a specific component (in particular, it will be impossible to know
if a process failed or just the link to it), but the fact that some sort of problem
has occurred will be detected, perhaps very rapidly. Moreover, in practice, the
frequency with which failures are erroneously suspected can be kept low.
Jointly, these properties make the asynchronous model used in this book dif-
ferent than the one used in most theoretical work. And this is a good thing,
too: In the fully asynchronous model, it is known that the group membership
problem cannot be solved, in the sense that any protocol capable of solving
the problem may encounter situations in which it cannot make progress. In
contrast, these problems are always solvable in asynchronous environments,
which satisfy sufficient constraints on the frequency of true or incorrectly de-
tected failures and on the quality of communication.

Fig. 11.3 The asynchronous computing model

Recall that in Sect. 11.2, we focused on the synchronous computing model. At
the other side of the spectrum is what we call the asynchronous computing model
(see Fig. 11.3), in which a set of processes cooperate by exchanging messages over
communication links that are arbitrarily slow and balky. The assumption here is that
the messages sent on the links eventually get through, but that there is no mean-
ingful way to measure progress except by the reception of messages. Clearly such
a model is overly pessimistic, but in a way that is different from the pessimism of
the Byzantine model, which extended primarily to failures—here we are pessimistic
about our ability to measure time or to predict the amount of time actions will take.
A message that arrives after a century of delay would be processed no differently
than a message received within milliseconds of being transmitted. At the same time,
this model assumes that processes fail by crashing, taking no incorrect actions and
simply halting silently.
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One might wonder why the asynchronous system completely eliminates any
physical concept of time. We have seen that real distributed computing systems lack
ways to closely synchronize clocks and are unable to distinguish network partition-
ing failures from processor failures, so there is a sense in which the asynchronous
model is not as unrealistic as it may initially appear. Real systems do have clocks
and use these to establish timeouts, but generally they lack a way to ensure that
these timeouts will be accurate, as we saw when we discussed RPC protocols and
the associated reliability issues in Chap. 5. Indeed, if an asynchronous model can
be criticized as specifically unrealistic, this is primarily in its assumption of reliable
communication links: Real systems tend to have limited memory resources, and a
reliable communication link for a network subject to extended partitioning failures
will require unlimited spooling of the messages sent. This represents an impractical
design point: A better model would state that when a process is reachable, mes-
sages will be exchanged reliably with it, but if it becomes inaccessible, messages to
it will be lost and its state, faulty or operational, cannot be accurately determined.
In Italy, Babaoglu and his colleagues are studying such a model, but this is recent
work and the full implications of this design point are not yet fully understood (see
Babaoglu et al. 1994). Other researchers, such as Cristian, are looking at models that
are partially asynchronous: They have time bounds, but the bounds are large com-
pared to typical message-passing latencies (see Cristian 1996). Again, it is too early
to say whether or not this model represents a good choice for research on realistic
distributed systems.

Within the purely asynchronous model, a famous theoretical result limits what
we can hope to accomplish. In 1985, Fischer, Lynch, and Patterson proved that
the asynchronous consensus problem (similar to the Byzantine generals’ prob-
lem, but posed in an asynchronous setting; see Fig. 11.3) is impossible if even a
single process can fail. Their proof revolves around the use of type of message
scheduler that delays the progress of a consensus protocol and holds regardless of
the way that the protocol itself works. Basically, they demonstrate that any pro-
tocol guaranteed to produce only correct outcomes in an asynchronous system
can be indefinitely delayed by a complex pattern of network partitioning failures.
More recent work has extended this result to some of the communication proto-
cols we will discuss in the remainder of this chapter (see Chandra et al. 1996;
Ricciardi 1996).

The Fisher, Lynch, and Paterson (FLP) proof is short but quite sophisticated, and
it is common for practitioners to conclude that it does not correspond to any scenario
that would be expected to occur in a real distributed system—for example, recall
that 3PC is unable to make progress when failure detection is unreliable because
of message loss or delays in the network. The FLP result predicts that if a protocol
such as 3PC is capable of solving the consensus problem, it can be prevented from
terminating. However, if one studies the FLP proof, it turns out that the type of
partitioning failure exploited by the proof is at least superficially very remote from
the pattern of crashes and network partitioning that forces the 3PC to block.

Thus, it is a bit facile to say that FLP predicts that 3PC will block in this specific
way, because the proof constructs a scenario that seems to have relatively little to
do with the one that causes problems in a protocol like 3PC. At the very least, one
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would be expected to relate the FLP scheduling pattern to the situation when 3PC
blocks, and I am not aware of any research that has made this connection concrete.

Indeed, it is not entirely clear that 3PC could be used to solve the consensus
problem: Perhaps the latter is actually a more difficult problem, in which case the
inability to solve consensus might not imply that 3PC cannot be solved in asyn-
chronous systems.

As a matter of fact, although it is obvious that 3PC cannot be solved when the
network is partitioned, if we carefully study the model used in FLP we realize that
network partitioning is not actually considered in this model: The FLP result as-
sumes that every message sent will eventually be received, in FIFO order. Thus,
FLP essentially requires that every partition eventually be fixed and that every mes-
sage eventually get through. The tendency of 3PC to block during partitions, which
concerned us above, is not captured by FLP because FLP is willing to wait until
such a partition is repaired (and implicitly assumes that it will be), while we wanted
3PC to make progress even while the partition was present (whether or not it will
eventually be repaired).

To be more precise, FLP tells us that any asynchronous consensus decision can
be indefinitely delayed, not merely delayed, until a problematic communication link
is fixed. Moreover, it says that this is true even if every message sent in the system
eventually reaches its destination. During this period of delay the processes may
thus be quite active. Finally, and in some sense most surprising of all, the proof does
not require that any process fail at all: It is entirely based on a pattern of message
delays. Thus, FLP not only predicts that we would be unable to develop a 3PC
protocol guaranteeing progress despite failures, but that, in actuality, there is no
3PC protocol that can terminate at all, even if no failures actually occur and the
network is merely subject to unlimited numbers of network partitioning events. We
convinced ourselves that 3PC would need to block (wait) in a single situation; FLP
tells us that if a protocol such as 3PC can be used to solve the consensus, then
there is a sequence of communication failures that would prevent it from reaching a
commit or abort point regardless of how long it executes!

11.3.1 Three-Phase Commit and Consensus

To see that 3PC solves consensus, we should be able to show how to map one prob-
lem to the other and back—for example, suppose that the inputs to the participants
in a 3PC protocol are used to determine their vote, for or against commit, and that
we pick one of the processes to run the protocol. Superficially, it may seem that this
is a mapping from 3PC to consensus. But recall that consensus of the type consid-
ered by FLP is concerned with protocols that tolerate a single failure, which would
presumably include the process that starts the protocol. Moreover, although we did
not get into this issue, consensus has a nontriviality requirement, which is that if all
the inputs are 1 the decision will be 1, and if all the inputs are 0 the decision will
be 0. As stated, our mapping of 3PC to consensus might not satisfy non-triviality
while also overcoming a single failure. Thus, while it would not be surprising to find
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that 3PC is equivalent to consensus, neither is it obvious that the correspondence is
an exact one.

But assume that 3PC is in fact equivalent to consensus. In a theoretical sense,
FLP would represent a very strong limitation on 3PC. In a practical sense, however,
it is unclear whether it has direct relevance to developers of reliable distributed soft-
ware. Previously, we commented that even the scenario that causes 2PC to block is
extremely unlikely unless the coordinator is also a participant; thus, 2PC (or 3PC
when the coordinator actually is a participant) would seem to be an adequate proto-
col for most real systems. Perhaps we are saved from trying to develop some other
protocol to evade this limitation: FLP tells us that any such protocol will sometimes
block. But once 2PC or 3PC has blocked, one could argue that it is of little practical
consequence whether this was provoked by a complex sequence of network parti-
tioning failures or by something simple and blunt, such as the simultaneous crash of
a majority of the computers in the network. Indeed, we would consider that 3PC has
failed to achieve its objectives as soon as the first partitioning failure occurs and it
ceases to make continuous progress. Yet the FLP result, in some sense, has not even
kicked in at this point: It relates to ultimate progress. In the FLP work, the issue of
a protocol being blocked is not really modeled in the formalism at all, except in the
sense that such a protocol has not yet reached a decision state.

We thus see that although FLP tells us that the asynchronous consensus prob-
lem cannot always be solved, it says nothing at all about when problems such as
this actually can be solved. As we will see, more recent work answers this ques-
tion for asynchronous consensus. However, unlike an impossibility result, to apply
this new result one would need to be able to relate a given execution model to the
asynchronous one and a given problem to consensus.

As noted earlier, FLP is frequently misunderstood having proved the impossibil-
ity of building fault-tolerant distributed software for realistic environments. At the
risk of seeming repetitious, this is not the case at all! FLP does not say that one can-
not build a consensus protocol tolerant of one failure or of many failures. It simply
says that if one does build such a protocol, and then runs it in a system with no con-
cept of global time whatsoever and no timeouts, there will be a pattern of message
delays that prevents it from terminating. The pattern in question may be extremely
improbable, meaning that one might still be able to build an asynchronous protocol
that would terminate with overwhelming probability. Moreover, realistic systems
have many forms of time: timeouts, loosely synchronized global clocks, and (often)
a good idea of how long messages should take to reach their destinations and to
be acknowledged. This sort of information allows real systems to evade the limi-
tations imposed by FLP or at least to create a run-time environment that differs in
fundamental ways from the FLP-style of asynchronous environment.

This brings us to the more recent work in this area, which presents a precise
characterization of the conditions under which a consensus protocol can terminate
in an asynchronous environment. Chandra and Toueg have shown how the consen-
sus problem can be expressed using what they call “weak failure detectors,” which
are a mechanism for detecting that a process has failed without necessarily doing so
accurately (see Chandra and Toueg 1991; Chandra et al. 1992). A weak failure de-
tector can make mistakes and change its mind; its behavior is similar to what might
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result by setting some arbitrary timeout—declaring a process faulty if no commu-
nication is received from it during the timeout period, and then declaring that it is
actually operational after all if a message subsequently turns up (the communica-
tion channels are still assumed to be reliable and FIFO). Using this model, Chandra
and Toueg prove that consensus can be solved provided that a period of execution
arises during which all genuinely faulty processes are suspected as faulty, and dur-
ing which at least one operational process is never suspected as faulty by any other
operational process. One can think of this as a constraint on the quality of the com-
munication channels and the timeout period: If communication works well enough,
and timeouts are accurate enough, for a long enough period of time, a consensus de-
cision can be reached. Interested readers should also refer to Babaoglu et al. (1995),
Friedman et al. (1995), Guerraoui and Schiper (1996), Ricciardi (1996). Two rela-
tively recent papers in the area are by Babaoglu et al. (1996) and Neiger (1996).

What Chandra and Toueg have done has general implications for the developers
of other forms of distributed systems that seek to guarantee reliability. We learn
from this result that to guarantee progress, the developer may need to guarantee a
higher quality of communication than in the classical asynchronous model, a degree
of clock synchronization (lacking in the model), or some form of accurate failure
detection. With any of these, the FLP limitations can be evaded (they no longer
hold). In general, it will not be possible to say “my protocol always terminates”
without also saying “when such and such a condition holds” on the communication
channels, the timeouts used, or other properties of the environment.

This said, the FLP result does create a quandary for practitioners who hope to
be rigorous about the reliability properties of their algorithms by making it difficult
to talk in rigorous terms about what protocols for asynchronous distributed systems
actually guarantee. We would like to be able to talk about one protocol being more
tolerant of failures than another, but now we see that such statements will apparently
need to be made about protocols in which one can only guarantee fault tolerance in
a conditional way and where the conditions may not be simple to express or to
validate.

What seems to have happened here is that we lack an appropriate concept of
what it means for a protocol to be live in an asynchronous setting. The FLP con-
cept of liveness is rigorously defined and not achievable, but does not address the
more relative concept of liveness that we seek when developing a nonblocking com-
mit protocol. As it happens, even this more relative form of liveness is not always
achievable, and this coincidence has sometimes led practitioners and even theo-
reticians to conclude that the forms of liveness are the same, since neither is always
possible. This subtle but very important point has yet to be treated adequately by the
theoretical community. We need a model within which we can talk about 3PC mak-
ing progress under conditions when 2PC would not do so without getting snarled in
the impossibility of guaranteeing progress for all possible runs in the asynchronous
model.

Returning to our data replication problem, these theoretical results do have some
practical implications. In particular, they suggest that there may not be much more
that can be accomplished in a static computing model. The quorum methods give us
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a way to overcome failures or damage to limited numbers of data objects within a set
of replicas; although expensive, such methods clearly work. While they would not
work with a very serious type of failure in which processes behave maliciously, the
Byzantine agreement and consensus literature suggest that one cannot always solve
this problem in an asynchronous model, and the synchronous model is sufficiently
specialized as to be largely inapplicable to standard distributed computing systems.

Our best hope, in light of these limitations, will be to focus on the poor perfor-
mance of the style of replication algorithm arrived at above. Perhaps a less-costly al-
gorithm would represent a viable option for introducing tolerance to at least a useful
class of failures in realistic distributed environments. Moreover, although the FLP
result tells us that for certain categories of objectives availability must always be lim-
ited, the result does not speak directly to the sorts of tradeoffs between availability
and cost seen in 2PC and 3PC. Perhaps we should talk about optimal progress and
identify the protocol structures that result in the best possible availability without
sacrificing consistency, even if we must accept that our protocols will (at least theo-
retically) remain exposed to scenarios in which they are unable to make progress.

11.4 Extending Our Protocol into a Full GMS

We have developed a protocol by which the GMS can track its own member-
ship, converting potentially inconsistent and hence confusing timeout events into
an agreed-upon sequence of join and leave events. But these events pertain only to
the members of the GMS per-se. In a typical local area network, one might have a
single instance of the GMS service, with perhaps three to five members belonging
to it. How then should these servers handle membership information for everything
else in the system?

In Chap. 12, we will tackle this problem as part of a more general one. The basic
idea, though, is as follows. Each process in the system will register itself with some
member of the GMS service. GMS service members monitor other GMS service
members (since there are not very many, this is not going to be a big load), and
also all members registered with them. Since few systems have more than a few
thousand processes in them, a typical GMS service member might thus monitor a
few hundred or even a thousand processes.

There are many ways to monitor the health of a process, and we leave it to the
developer of a GMS on a given platform to pick the best option. Examples include
periodically pinging the process, or having each process periodically send an “I’m
still fine” event to the GMS, or watching the MIB within the operating system (the
Management Information Base, or MIB, contains a variety of information, normally
including the identity of currently active processes), maintaining a TCP connection
to the monitored process, and so forth. In a very large system, one could use so-
called gossip protocols (we will explore a number of them in our chapter on peer-to-
peer techniques) to gossip about the “most recent signs of life” for processes within
the system. Ideally, failure detection should be a sophisticated mechanism which
reflects a keen awareness of what it means to say that the application is healthy. The
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outcome of all of this is that the GMS process should be able to detect, within a few
seconds (or perhaps a minute or two) the failure of any of the other members or of
any of the processes it as been asked to monitor.

In a system where extremely rapid crash detection is needed, and where it is
acceptable to pay a high price to get fast response, one can do better. We can install
a health-monitoring agent on each node in the system and have it open a very small
shared-memory file. Each process that registers with the GMS would be assigned a
slot in the shared memory file, and would begin to modify the corresponding entry
at an agreed upon rate by copying clock values into that slot. The agent would then
scan the file periodically, looking for entries that have not changed since the last
scan, and then checking to see if the corresponding failure detection threshold has
been reached yet. One could achieve failure detection speeds of a few milliseconds
in such a model. As for detecting the failure of the entire operating system, such a
system would need to send a steady stream of messages to the GMS server at some
agreed upon rate, perhaps ten per second. In this manner, one could push failure
detection times down to perhaps 200 ms.

The GMS server that detects a failure would notify other GMS members using
a multicast. In Chap. 12 we will discuss various kinds of multicast, but the “fla-
vor” required here is perhaps the most basic: a totally ordered multicast called Or-
deredSend. Technically speaking, we would want to use what is called a “strongly
durable” version of this protocol, but the issue is a bit esoteric and we will not di-
gress into it for the time being.

Upon receiving such a multicast, a member of the GMS service would relay the
failure notification to the processes registered with it. They can then use these noti-
fication events as a trustworthy source of failure information, for example to discon-
nect TCP channels to the failed process, etc. Such events will not be very common
and there is no real need to filter them prior to relaying them to the registered pool of
processes, but if scalability is a major concern in a given setting, one could certainly
do so.

It is useful to number the GMS events. Since each server sees the same ordering
of events, this is trivial.

If a GMS server fails, the processes connected to it should probe some other GMS
member to see if their failure detection is accurate. If confirmed, such a process
would re-register with a different GMS member. Upon reregistering, it informs the
new server that it has seen all events up to some number, and the new server forwards
notifications that it may have missed. Since this should not take more than a few
seconds, it suffices for each server to maintain a log of events and to keep the last
few seconds of the log in memory. A process that is registering for the first time
would not need to request any replay, since it will not yet be interested in the status
of other processes in the system.

Thus, as we move forward in Chaps. 12 to 15, we can presume a simple mech-
anism for detecting failures promptly and, while mistakes can be made, we can
assume that they are converted into a trustworthy input. If a process is “falsely” de-
tected as having failed, it would be dropped from the system anyhow, and would
need to reconnect. But such events should be extremely rare and in fact when they
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occur, would probably reflect real failures that somehow corrected themselves—a
machine that hung, for example, or a network link that was broken for a while. The
tradeoff evident here is between having the entire distributed application hang wait-
ing to find out if one node has failed or not, and having the system as a whole move
forward at the risk that very rarely, some application program may have to reconnect
(or just shut down and be restarted from scratch). Since we would like to achieve
high availability, the latter scenario is simply a small price we will have to pay for
the benefits of improved responsiveness when failures do occur, which is in any case
likely to be the far more common scenario.

11.5 Related Reading

Byzantine protocol (see Ben-Or 1985; Coan and Thomas 1990; Coan et al. 1986;
Cristian et al. 1985, 1990; Rabin 1983; Schneider 1984).

On defense against Byzantine attacks, some interesting recent papers are Haber-
man’s use of BFT techniques to defend against “reputation” attacks (see PeerRe-
view (Haeberlen et al. 2007)), and Li’s very clever integration of Byzantine faults
with self-centered (“rational”) and irrationally helpful (“altrustic”) behavior, in the
so-called BAR Gossip model. The SPORC project offers a generic framework for
building a wide variety of collaborative applications with untrusted server, using
cryptographic techniques to protect against a wide range of attack scenarios.

Byzantine quorum systems (see Malkhi and Reiter 1998, Malkhi et al. 2001a;
Alvisi et al. 2001b; Abraham and Malkhi 2003).

Byzantine Agreement in servers (see Castro and Liskov 2002). Zyzzyva (see
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12.1 Group Communication

As explained at the start of Chap. 10, our goal in this part of the book is to find
the very best possible way to implement high-speed data replication and other tools
needed for fault-tolerant, highly assured Web Services and other forms of distributed
computing. Given the GMS, one option would be to plunge right in and build repli-
cated applications using the protocol directly in the application. However, as we
just saw (Sect. 11.4), rather than expect every developer to reimplement these pro-
tocols in largely identical ways, perhaps slightly tuned to reflect application-specific
optimizations, it is often preferable to implement a more general-purpose communi-
cation primitive such as the Isis2 OrderedSend, and then use it to update data within
a group that maintains replicas. Doing so is more general than building a specialized
data replication scheme for our service, because that OrderedSend API might have
many uses. Arguing the other side of the coin, generality sometimes has a price; we
saw that in our discussion of Paxos, which has a very general reconfigurable, fault-
tolerant protocol, but turns out to be quite inefficient if a system always reconfigures
itself when a failure occurs, and hence never actually needs to tolerate faults.

Here, we will try and find general solutions that include a sufficient range of
options to let the developer do the most efficient thing: we will create a whole family
of primitives, with different properties matching different styles of use. We will
see that there are many possible properties that a group multicast might offer. By
supporting a few of these, we will arrive not just at a replication algorithm, but
rather at a set of tools that can easily support replicated data, while also being useful
for other purposes, such as implementing locking, or supporting fancy kinds of load-
balancing.

Readers who are not interested in details may want to skip to Chap. 14. The bot-
tom line is that the OrderedSend (or totally ordered) virtually synchronous multicast
primitive used in Sect. 12.3 is probably all that one needs in most applications, and
Chap. 13 covers “esoteric” topics that only arise if a system supports the creation
of large numbers of groups (something platforms for group communication prob-
ably should do, but that in fact is often omitted). On the other hand, the topic of
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multicast reliability and ordering is an interesting one, and it is not all that hard
to understand how the desired properties correspond to protocol mechanisms—one
property requires an extra phase of communication before delivery, another requires
such-and-such information in each message, etc. Indeed, one can easily come up
with new mixtures of properties and can usually implement them by just composing
the basic mechanisms we will explore here in a new but straightforward manner.

In this chapter, we will discuss the options for implementing quite a few forms
of ordering, and some other properties as well. Here is a quick summary for those
who plan to skip the details.
1. Send. This is a “FIFO” ordered multicast. Messages from a sender are delivered

in the order they were sent. For example, if process p sends message a fol-
lowed by message b, all recipients deliver a before b. Messages sent by different
senders can be delivered in different orders at different recipients. In a Web Ser-
vices setting, a server streaming data to a set of clients might use Send to do so;
the multicast stream would act much like n side-by-side TCP connections, but
could potentially achieve much higher throughput than is possible with TCP (for
example, Send can exploit IP multicast, if available).

2. CausalSend. This is a “causally” ordered multicast (in the sense of Lamport’s
“causal” ordering relation, discussed in Sect. 10.2). As we will see, a CausalSend
multicast would be an ideal way to implement data replication and locking within
process groups, for example when replicating the state of a high-availability
server. What makes CausalSend especially powerful is that it can be used in ap-
plications that need a very loosely coupled, asynchronous-style of connectivity
for reasons of performance: with CausalSend it will turn out that we can launch
an asynchronous update to a replicated data item, immediately update the local
copy (without waiting for messages to be sent or delivered) and then move on to
the next task without worrying about a race condition in which some application
component might try to access the data and see them “before” that update has
been applied. In systems that lack a CausalSend option, there are reasonable al-
ternatives (one can usually do most of the same things with Send) but the needed
code becomes more complicated).

With CausalSend, messages from a single thread of computation are delivered
in the order they were sent, and this is true even when that thread spans multi-
ple processes. For example, one could have a situation in which process p sends
message a and then asks process q to do something, causing q to send message
b. Notice that a and b are ordered (after all, p asked q to take the action), yet
they are not ordered in the eyes of Send, since p and q are different processes.
In object-oriented systems, such situations arise very often and may not even
be obvious to the developer, since object invocation can sometimes cross a pro-
cess boundary transparently. Even so, CausalSend would say that b came after
a and deliver a before b at any destinations they have in common. Messages
sent concurrently by different senders, where there is no implicit causal order-
ing, can be delivered in different orders at different recipients. Some people find
CausalSend confusing, but it is easy to understand if one just thinks of it as a
version of Send fixed to work properly in a world of remote procedure calls and
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cross-address space object invocations: when p asked q to perform b, this is as
if the execution timeline of p extended into the address space of q , and it makes
perfect sense to say that action b happens after a. For many purposes, b might
not even make sense unless the receiver saw a first! Indeed, Send is in some ways
the more confusing primitive, especially in platforms like Microsoft .NET, where
object invocations can occur without the programmer even realizing that one was
requested!

3. OrderedSend. Within any single group of processes, the system sorts messages
into a total ordering and delivers them to group members in this order (histori-
cally, this primitive was also called “atomic broadcast”). The OrderedSend prim-
itive is usually understood to also share the same property as Send: messages
from a single source will be delivered in the order they were sent. In many set-
tings, OrderedSend is the easiest multicast primitive to work with, although it can
be slower than CausalSend if it is not used carefully. Just the same, if in doubt,
a developer cannot really go wrong by using OrderedSend to send multicasts,
update replicated data, inform other group members of state changes, etc.

Token passing is a common way to actually implement a protocol such as
OrderedSend. Without getting into the details of how failures are handled, the
basic idea is to associate a token with the group. The holder of the token can
take actions on behalf of the group, such as deciding the ordering to use for a set
of concurrent multicasts. The idea is to have senders send their messages using
Send. On reception, the delivery is delayed. The token holder sends an Send of
its own from time to time, giving the official ordering to use; recipients then sort
their delayed OrderedSend messages into order and deliver them accordingly. Of
course one can make such a protocol fancier, and there are issues of how often to
send the ordering messages and how to recover the token if the process holding
it fails. We will tackle those later in this chapter.

Token passing schemes require a rule for when the token should be moved. In
some approaches, the token is moved on demand and remains at a sender long
enough for it to send a burst of messages. This can be advantageous because the
burst can then be sent using Send, since there is just a single sender during that
period. At the other extreme, one can have a token that rotates rapidly through
the entire group, permitting a sender to send a single message each time the token
is in its possession. Although both approaches are useful, in what follows we’ll
have the former style in mind when we talk about token-based OrderedSend
protocols.

4. OrderedCausalSend. There have been some suggestions that systems should ac-
tually implement OrderedSend with an additional causal ordering property, as if
it was an extension of the CausalSend property into a total order. In this proposal,
if the sending events for some messages are causally ordered, the messages are
delivered in a total order consistent with that causal order. However, Ordered-
CausalSend is not widely used, despite the arguments suggesting that it is an
even safer choice than OrderedSend.

5. SafeSend. Ordered with respect to all other kinds of communication (historically,
this was also called “globally atomic broadcast”), and also durable in the sense
that if any delivery occurs, every surviving group member will eventually deliver
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the message. SafeSend is a version of Paxos: it has the identical properties to the
protocols in the Paxos suite (those interested in Paxos will find that our version of
SafeSend is most similar to what Lamport would call Faster Generalized Paxos
with a leader, in a dynamic membership model). If a group of processes deliv-
ers a SafeSend while other multicasts are being transmitted, any given multicast
is delivered entirely before or entirely after the SafeSend. The protocol is used
within the Isis2 system for updating the membership of a group of processes, but
has many other uses as well. For example, a developer working with a database
might consider employing SafeSend for database updates. On the other hand, af-
ter a crash followed by a recovery, a cleanup will still be needed, and for many
purposes, OrderedSend should suffice.

6. Failure atomicity. This is a term that can mean different things for different com-
munities, and to avoid the risk of confusion, we won’t use in the remainder of
the book. As “normally” defined, failure atomicity refers to a multicast that is
delivered in the same order at all destinations, and that will be delivered to all
operational processes if it is delivered to any, even in the event of a crash. For our
purposes, the former property is really an ordering property—the one associated
with OrderedSend. As for the handling of crashes, we will break this down into
two cases: strongly durable and non-durable failure handling, as seen below.

7. Durable and non-durable multicasts. In addition to ordering, multicasts can also
differ in their guarantees in the event that a failure occurs while the multicast
is being delivered. A durable multicast guarantees that if any process delivers a
message (even if it fails immediately upon doing so), all destinations that remain
operational will deliver a copy of the message too. A weakly durable multicast
would be one that achieves durability rapidly, but still has a window of vulnera-
bility during which a multicast that has been delivered to a subset of the members
of a group, but then forgotten and not delivered to other members if all of the ones
that received it were to fail. Another term for this property is amnesia freedom,
and we will show how it can be achieved and used in cloud settings when we
look at multicast use cases in Chap. 15.

For example, suppose a sends a multicast to group G and process b receives
and delivers that multicast. If a and b both crash, it is possible that the group will
repair itself and resume execution, but that no other members will deliver a’s
message! Had the multicast been strongly durable, such a condition could not
arise. Weak decreability can pose problems for developers. Say that the group is
implementing a replicated bank account: a is an application withdrawing some
cash and b is the ATM machine. With a multicast, we could get into a situa-
tion where the customer withdraws $100 from the ATM machine, then unplugs
it (very) quickly, and the main servers at the bank’s data center never find out
about the transaction. Using a strongly durable multicast, that kind of problem
just cannot arise.

Strong durability is sometimes called safe delivery, in the sense that when
a durable message is delivered, it is “safe” to take actions that leave externally
visible effects with respect to which the remainder of the system must be con-
sistent. However, a multicast is not necessarily unsafe. Often, it is perfectly safe
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for applications in which the action taken upon receipt of the message has only
internal effects on the system state or when consistency with respect to exter-
nal actions can be established in other ways—for example, from the semantics
of the application. Moreover, this use of the term “safe” may confuse theoreti-
cians, who prove protocols correct by establishing that they are “safe and live.”
Nonetheless, we do use this term in our SafeSend primitive, which is, in fact, a
strongly durable protocol.

Given that it offers stronger failure guarantees, why not just insist that all
multicast primitives be durable (e.g. just use SafeSend for everything)? Here,
the right answer depends somewhat on whether one wears a theoretician’s or
a practitioner’s hat. From a theory perspective, it makes sense to do precisely
this. Strong durability is a simple property to formalize, and applications using a
strongly durable multicast layer are easier to prove correct.

But the bad news is that strong durability is very costly when compared to
non-durable protocols under conditions where performance is of the utmost im-
portance. It should not be hard to see why this is the case: to achieve durability,
we need to make sure that there is a copy of the message buffered at every group
member before any member can be allowed to deliver it (otherwise, just kill all
the processes with copies and clearly, the durability property will be violated, no
matter what protocol we use to clean up after failure). This means that the slow-
est member of the group delays delivery of a message to all the other members.
In cloud settings, for example, if we were to use SafeSend as our primary tool for
replicating data, we might be unable to scale the resulting services to the desired
degree. In contrast, a protocol such as Send or OrderedSend can be so fast that
one could even use it for replication in the first-tier services of the cloud: doing
so would give us a form of soft-state service in which there are consistency guar-
antees on the replicated soft-state, and yet with performance fully competitive to
that of any other way of building those kinds of soft-state, first-tier solutions.

Our bias in this book is pretty practical, especially where huge performance
factors arise, as turns out to be the situation here. Accordingly, we do not make
much use of strong durability in the algorithms presented later in the book, and
SafeSend won’t be seen often even in the chapter where we present the Isis2

system in greater detail. On the other hand, there are major systems (notably
Paxos), for which the behavior of a SafeSend primitive is the default. If one does
use SafeSend, it can be important to split the members of a group into two sets.
Lamport does this; one set, the acceptors, are group members used to vote on
ordering and durability. A second set, the learners, are members that will receive
the ordered updates and would normally include the acceptors, but also include
a great many additional non-acceptors. This way we can run SafeSend in a way
that uses the acceptors during its first phase, and only deals with massive scale
in the second phase. With a small acceptor set (in Isis2 we often use three accep-
tors), the performance of the protocol is dramatically better, and yet the strong
durability property still holds.

Experts in the field have debated the pros and cons of a Paxos-like guaran-
tee of strong durability versus a weaker “Isis-like” multicast until all concerned
have reached utter exhaustion. There simply is not any agreement on the matter.
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Many engineers are convinced that replication is far too costly to use in settings
like Web Services systems; they point to the CORBA fault tolerance standard,
which was implemented using a strongly durable SafeSend in support of their
basic point, and to database replication as further evidence supporting it. But all
of these are examples in which the cost of strong durability is at the core of the
performance problems they cite. In effect, durability is an appealing choice on
conceptual and esthetic grounds, but once you decide to use it, you will end up
using it very sparingly or rejecting it as too slow. Weakly durable or non-durable
multicast can be harder to work with, but gives much faster solutions. Engineers
have been quite successful using these primitives in the field; we will see exam-
ples such as the New York and Swiss Stock Exchange systems, the French Air
Traffic Control system, the US Naval AEGIS warship, and many others (these
are Isis success stories, but Spread has lots of stories of its own).

8. Flush. This is more of an algorithm than a property of a multicast primitive; we
will need it as an antidote to the non-durability problems just described. In a
system where multicasts are weakly durable, flush provides the application with
a way to pause until multicasts it has sent (or received prior to calling flush)
have actually reached their destinations and hence cannot be lost even if a failure
occurs. That is, a multicast becomes durable if a receiver calls flush before pro-
cessing (delivering) it! Thus we can have our cake (higher performance) and eat
it too (achieve strong durability where we really need this costly guarantee), by
using a non-durable multicast “most of the time” and calling flush now and then,
when durability is really needed.

12.2 A Closer Look at Delivery Ordering Options

Let us look carefully at multicast delivery ordering, starting with a multicast that
offers no guarantees whatsoever. Using such a multicast, a process that sends two
messages, m0 and m1, concurrently would have no assurances at all about their rela-
tive order of delivery or relative atomicity—that is, suppose that m0 was the message
sent first. Not only might m1 reach any destinations that it shares with m0 first, but a
failure of the sender might result in a scenario where m1 was delivered atomically to
all its destinations, but m0 was not delivered to any process that remains operational
(Fig. 12.1). Such an outcome would be atomic on a per-multicast basis, but might not
be a very useful primitive from the perspective of the application developer! Thus,
while we should ask what forms of order a multicast primitive can guarantee, we
should also ask how order is connected to atomicity in our failure-atomicity model.

As just summarized, we will be studying a hierarchy of increasingly ordered de-
livery properties. The weakest of these is usually called “sender order” or “FIFO
order” and requires that if the same process sends m0 and m1 then m0 will be deliv-
ered before m1 at any destinations they have in common (see Fig. 12.2). A slightly
stronger ordering property, “causal delivery order,” ensures that if send(m0) →
send(m1), then m0 will be delivered before m1 at any destinations they have in
common (see Fig. 12.3). Still stronger is an order whereby any processes that re-
ceive the same two messages receive them in the same order: If at process p,
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Fig. 12.1 An unordered
multicast provides no
guarantees. Here, m0 was sent
before m1, but is received
after m1 at destination p0.
The reception order for m2,
sent concurrently by process
r , is different at each of its
destinations

Fig. 12.2 Sender ordered or
FIFO multicast. Notice that
m2, which is sent
concurrently, is unordered
with respect to m0 and m1

Fig. 12.3 Causally ordered multicast delivery. Here m0 is sent before m1 in a causal sense, be-
cause a message is sent from q0 to q1 after m0 was sent, and before q1 sends m1. Perhaps q0 has
requested that q1 send m1. m0 is consequently delivered before m1 at destinations that receive
both messages. Multicast m2 is sent concurrently and no ordering guarantees are provided. In this
example, m2 is delivered after m1 by p0 and before m1 by p1

deliv(m0) → deliv(m1), then m0 will be delivered before m1 at all destinations they
have in common. This is sometimes called a totally ordered delivery protocol, but
this is something of a misnomer, since one can imagine a number of ordering proper-
ties that would be total in this respect without necessarily implying the existence of
a single system wide total ordering on all the messages sent in the system. The rea-
son for this is that our definition focuses on delivery orders where messages overlap,
but it does not actually relate these orders to an acyclic system wide ordering. The
Transis project calls this type of locally ordered multicast an “agreed” order, and
we like this term too: The destinations agree on the order, even for multicasts that
may have been initiated concurrently and that may be unordered by their senders
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Fig. 12.4 When using a
totally ordered multicast
primitive, p0 and p1 receive
exactly the same multicasts,
and the message are delivered
in identical order. Hence, the
order happens to also be
causal, but this is not a
specific guarantee of the
primitive

(Fig. 12.4). However, the agreed order is more commonly called a “total” order or
an “atomic” delivery order in the systems that support multicast communication and
in the literature.

One can extend the agreed order into a causal agreed order (now one requires that
if the sending events were ordered by causality, the delivery order will respect the
causal send order) or into a system-wide agreed order (one requires that there exists
a single system wide total order on messages, such that the delivery ordering used at
any individual process is consistent with the message ordering in this system’s total
order). Later we will see why these are not identical orderings. Moreover, in systems
that have multiple process groups, the issue of how to extend ordering properties to
span multiple process groups will occur.

It has been proposed that total ordering be further classified as weak or strong
in terms analogous to the strongly durable and weakly durable properties. A weak
total ordering property would be one guaranteed to hold only at correct processes,
namely those remaining operational until the protocol terminates. A strong total
ordering property would hold even at faulty processes, namely those that fail after
delivering messages but before the protocol as a whole has terminated.

Suppose that a protocol fixes the delivery ordering for messages m1 and m2 at
process p, delivering m1 first. If p fails, a weak total ordering would permit the
delivery of m2 before m1 at some other process q that survives the failure, even
though this order is not the one seen by p. Like strong durability, the argument
for strong total ordering is that this may be required if the ordering of messages
may have externally visible consequences, which could be noticed by an external
observer interacting with a process that later fails, and then interacts with some other
process that remained operational. Naturally, this guarantee has a price, though,
and one would prefer to use a less costly weak protocol in settings where such a
guarantee is not required.

Let us now return to the issue raised briefly above, concerning the connection
between the ordering properties for a set of multicasts and their failure-atomicity
properties. To avoid creating an excessive number of possible multicast protocols,
we will assume here that the developer of a reliable application will also want the
specified ordering property to extend into the failure-atomicity properties of the
primitives used. That is, in a situation where the ordering property of a multicast



12.2 A Closer Look at Delivery Ordering Options 377

Fig. 12.5 In this undesirable scenario, the failure of q0 leaves a causal gap in the message deliv-
ery order, preventing q1 from communicating with members of G. If m1 is delivered, the causal
ordering property would be violated, because send(m0) → send(m1). But m0 will never be deliv-
ered. Thus, q1 is logically partitioned from G. Process r , in contrast is free to communicate with
G (message m2)

would imply that message m0 should be delivered before m1 if they have any des-
tinations in common, we will require that if m1 is delivered successfully, then m0

must also be delivered successfully, whether or not they actually do have common
destinations. This is sometimes called a gap-freedom guarantee: It is the constraint
that failures cannot leave holes or gaps in the ordered past of the system. Such a gap
is seen in Fig. 12.5.

Notice that this rule is stated so that it would apply even if m0 and m1 have
no destinations in common. The reason is that ordering requirements are normally
transitive: If m0 is before m1, and m1 is before m2, then m0 is also before m2, and
we would like both delivery ordering obligations and failure-atomicity obligations
to be guaranteed between m0 and m2. Had we instead required that “in a situation
where the ordering property of a multicast implies that message m0 should be deliv-
ered before m1, then if they have any destinations in common, we will also require
that if m1 is delivered successfully, then m0 must be too,” the delivery atomicity
requirement might not apply between m0 and m2.

Lacking a gap-freedom guarantee, one can imagine runs of a system that would
leave orphaned processes that are technically prohibited from communicating with
one another—for example, in Fig. 12.5, q1 sends message m1 to the members of
group G causally after m0 was sent by q0 to G. The members of G are now required
to deliver m0 before delivering m1. However, if the failure-atomicity rule is such
that the failure of q0 could prevent m0 from ever being delivered, this ordering
obligation can only be satisfied by never delivering m1. One could say that q1 has
been partitioned from G by the ordering obligations of the system! Thus, if a system
provides ordering guarantees and failure-atomicity guarantees, it should normally
extend the latter to encompass the former.

Yet an additional question arises if a process sends multicasts to a group while
processes are joining or leaving it. In these cases the membership of the group will
be in flux at the time that the message is sent, and one can imagine several ways of
interpreting how a system could implement group atomicity.
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12.2.1 Nondurable Failure-Atomic Group Multicast

Consider the following simple, but inefficient group multicast protocol. The sender
adds a header to its message listing the membership of the destination group at
the time that it sends the message. It now transmits the message to the members
of the group, perhaps taking advantage of a hardware multicast feature (such as IP
multicast) if one is available, and otherwise transmitting the message over stream-
style reliable connections to the destinations. However, unlike a conventional stream
protocol, here we will assume that the connection is only broken if the GMS reports
that one of the end points has left the system.

Upon receipt of a message, the destination processes deliver it immediately,
but also resend it to the remaining destinations. Again, each process uses reliable
stream-style channels for this retransmission stage, breaking the channel only if the
GMS reports the departure of an end point. A participant will now receive one copy
of the message from the sender and one from each nonfailed participant other than
itself. After delivery of the initial copy, it discards any duplicates. We will now argue
that this protocol is failure-atomic, although not strongly durable.

To see that it is failure-atomic, assume that some process pi receives and delivers
a copy of the message and remains operational. Failure-atomicity tells us that all
other destinations that remain operational must also receive and deliver the message.
It is clear that this will occur, since the only condition under which pi would fail
to forward a message to pj would be if the GMS reports that pi has failed, or if
it reports that pj has failed. But we assumed that pi does not fail, and the output
of the GMS can be trusted in this environment. Thus, the protocol achieves failure
atomicity. To see that the protocol is not strongly durable, consider the situation if
the sender sends a copy of the message only to process pi and then both processes
fail. In this case, pi may have delivered the message and then executed for some
extended period of time before crashing or detecting that it has been partitioned
from the system. The message has thus been delivered to one of the destinations and
that destination may well have acted on it in a visible way; however, none of the
processes that remain operational will ever receive it. As we noted earlier, this often
will not pose a problem for the application, but it is a behavior that the developer
must anticipate and treat appropriately.

As can be seen in Fig. 12.5, this simple protocol is a costly one: To send a mes-
sage to n destinations requires O(n2) messages. Of course, with hardware broadcast
functions, or if the network is not a bottleneck, the cost will be lower, but the pro-
tocol still requires each process to send and receive each message approximately n

times.
But now, suppose that we delay the retransmission stage of the protocol, retrans-

mitting only if the GMS informs the participants that the sender has failed. This
change yields a less-costly protocol, which requires n messages (or just one, if hard-
ware broadcast is an option), but in which the participants may need to save a copy
of each message indefinitely. They would do this just in case the sender fails.

Recall that we are transmitting messages over a reliable stream. It follows that
within the lower levels of the communication system, there is an occasional ac-
knowledgment flowing from each participant back to the sender. If we tap into this
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Fig. 12.6 A very simple
reliable multicast protocol.
The initial round of messages
triggers a second round of
messages as each recipient
echoes the incoming message
to the other destinations

information, the sender will know when the participants have all received copies of
its message. It can now send a second-phase message, informing the participants
that it is safe to delete the saved copy of each message, although they must still save
the message identification information to reject duplicates if the sender happens to
crash midway through this stage. At this stage the participants can disable their
retransmission logic and discard the saved copy of the message. Later, the sender
could run still a third phase, telling the participants that they can safely delete even
the message identification information, because after the second phase completes
there will be no risk of a failure that would cause the message to be retransmitted
by the participants.

But now a further optimization is possible. There is no real hurry to run the third
phase of this protocol, and even the second phase can be delayed to some degree.
Moreover, most processes that send a multicast will tend to send a subsequent one
soon afterwards: This principle is well known from all forms of operating systems
and database software. It can be summarized by this maxim: The most likely action
by any process is to repeat the same action it took most recently. Accordingly, it
makes sense to delay sending out messages for the second and third phase of the
protocol in the hope that a new multicast will be initiated; this information can
be piggybacked onto the first stage of an outgoing message associated with that
subsequent protocol!

In this manner, we arrive at a solution, illustrated in Fig. 12.7, that has an av-
erage cost of n messages per multicast, or just one if hardware broadcast can be
exploited, plus some sort of background cost associated with the overhead to imple-
ment a reliable stream channel. When a failure does occur, any pending multicast

Fig. 12.7 An improved
three-phase protocol. Ideally,
the second and third phases
would be piggybacked onto
other multicasts from the
same sender to the same set
of destinations and would not
require extra messages
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will suddenly generate as many as n2 additional messages, but even this effect can
potentially be mitigated. Since the GMS provides the same membership list to all
processes and the message itself carries the list of its destinations, the participants
can delay briefly in the hope that some jointly identifiable lowest-ranked participant
will turn out to have received the message and will terminate the protocol on behalf
of all. We omit the details of such a solution, but any serious system for reliable
distributed computing would implement a variety of such mechanisms to keep costs
down to an absolute minimum and to maximize the value of each message actually
transmitted using piggybacking, delaying tactics, and hardware broadcast.

Notice that because the protocol in Fig. 12.7 delivers messages in the first phase,
it is non-durable.

12.2.2 Strongly Durable Failure-Atomic Group Multicast

We can extend the above protocol to one that is strongly durable. Doing so requires
that no process deliver the message until it is known the processes in the destination
group all have a copy. (In some cases it may be sufficient to know that a majority
have a copy, but we will not concern ourselves with these sorts of special cases
now, because they are typically limited to the processes that actually run the GMS
protocol.) Earlier, we mentioned the Paxos system and commented that it, and other
similar systems that provide strong durability, tend to be quite slow. The problem
is precisely the one just cited, namely the need to wait until a majority of processes
have a copy of each message before that message can be delivered.

We could accomplish our goal with the original inefficient protocol of Fig. 12.6,
by modifying the original nondurable protocol to delay the delivery of messages un-
til a copy has been received from every destination that is still present in the mem-
bership list provided by the GMS. However, such a protocol would suffer from the
inefficiencies that led us to optimize the original protocol into the one in Fig. 12.7.
Accordingly, it makes more sense to focus on that improved protocol.

Here, it can be seen that an additional round of messages will be needed before
the multicast can be delivered initially; the rest of the protocol can then be used
without change (Fig. 12.8). Unfortunately, though, this initial round also delays the
delivery of the messages to their destinations. In the original protocol, a message
could be delivered as soon as it reached a destination for the first time—thus, the
latency to delivery is precisely the latency from the sender to a given destination
for a single hop. Now the latency might be substantially increased: For a strongly
durable delivery, we will need to wait for a round trip to the slowest process in the
set of destinations, and then one more hop until the sender has time to inform the
destinations that it is safe to deliver the messages. In practice, this may represent
an increase in latency of a factor of ten or more. Thus, while durability guarantees
are sometimes needed, the developer of a distributed application should request this
property only when it is genuinely necessary, or performance (to the degree that
latency is a factor in performance) will suffer badly.



12.2 A Closer Look at Delivery Ordering Options 381

Fig. 12.8 A strongly durable version of the optimized, reliable multicast protocol. Latency to
delivery may be much higher, because no process can deliver the message until all processes have
received and saved a copy. Here, the third and fourth phases can piggyback on other multicasts, but
the first two stages may need to be executed as promptly as possible to avoid increasing the latency
still further. Latency is often a key performance factor

12.2.3 Dynamic Process Groups

When we introduced the GMS, our system became very dynamic, allowing pro-
cesses to join and leave at will. But not all processes in the system will be part of the
same application, and the protocols presented in the previous section are therefore
assumed to be sent to groups of processes that represent subsets of the full system
membership. This is seen in Fig. 12.9, which illustrates the structure of a hypo-
thetical trading system in which services (replicated for improved performance or
availability) implement theoretical pricing calculations. Here we have one big sys-
tem, with many small groups in it. How should the membership of such a subgroup
be managed?

In this section, we introduce a membership management protocol based on the
idea that a single process within each group will serve as the coordinator for syn-
chronizing the delivery of events reporting membership changes with the delivery
of events reporting new multicast messages. If a process wishes to join the group,
or voluntarily leaves the group, this coordinator will update the group membership
accordingly. (The role of coordinator will really be handled by the layer of soft-
ware that implements groups, so this will not be visible to the application process
itself.) Additionally, the coordinator will monitor the members (through the GMS
and by periodically pinging them to verify that they are still healthy), excluding any
failed processes from the membership (much as in the case of a process that leaves
voluntarily).

In the approach we present here, all processes that belong to a group maintain
a local copy of the current membership list. We call this the “view” of the group
and will say that each time the membership of the group changes, a new view of the
group is reported to the members. Our protocol will have the property that all group
members see the identical sequence of group views within any given component of
a partitioned system. In practice, we will mostly be interested in primary compo-
nent partitions, and, in these cases, we will simply say that all processes either see
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Fig. 12.9 Distributed trading system may have both static and dynamic uses for process groups.
The historical database, replicated for load-balancing and availability, is tied to the databases them-
selves and can be viewed as static. This is also true of the market data feeds, which are often re-
dundant for fault tolerance. Other parts of the system, however, such as the analytics (replicated for
parallelism) and the client interface processes (one or more per trader), are highly dynamic groups.
For durability of the model, it makes sense to adopt a dynamic group model, but to keep in mind
that some of these groups manage physical resources

identical views for a group or, if excluded from the primary component, cease to see
new views and eventually detect that they are partitioned, at which point a process
may terminate or attempt to rejoin the system much like a new process.

The members of a group depend upon their coordinator for the reporting of new
views and consequently monitor the liveness of the coordinator by periodically ping-
ing it. If the coordinator appears to be faulty, the member or members that detect
this report the situation to the GMS in the usual manner, simultaneously cutting
off communication to the coordinator and starting to piggyback or gossip this in-
formation on messages to other members, which similarly cut their channels to the
coordinator and, if necessary, relay this information to the GMS. The GMS will
eventually report that the coordinator has failed, at which point the lowest ranked of
the remaining members takes over as the new coordinator.

Interestingly, we have now solved our problem, because we can use the non-
durable multicast protocol to distribute new views within the group. In fact, this
hides a subtle point, to which we will return momentarily—namely, the way to deal
with ordering properties of a reliable multicast, particularly in the case where the
sender fails and the protocol must be terminated by other processes in the system.
However, we will see below that the protocol has the necessary ordering properties
when it operates over stream connections that guarantee FIFO delivery of messages,
and when the failure-handling mechanisms introduced earlier are executed in the
same order that the messages themselves were initially seen (i.e., if process pi first
received multicast m0 before multicast m1, then pi retransmits m0 before m1).
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Fig. 12.10 Although m was sent when p0 belonged to G, it reaches p2 and p3 after a view change
reporting that p0 has failed. The earlier (at p1) and later (p2,p3) delivery events thus differ in that
the recipients will observe a different view of the process group at the time the message arrives.
This can result in inconsistency if, for example, the membership of the group is used to subdivide
the incoming tasks among the group members

12.2.4 View-Synchronous Failure Atomicity

We have now created an environment within which a process that joins a process
group will receive the membership view for that group as of the time it was added
to the group. It will subsequently observe any changes that occur until it crashes
or leaves the group, provided only that the GMS continues to report failure infor-
mation. Such a process may now wish to initiate multicasts to the group using the
reliable protocols presented earlier. But suppose that a process belonging to a group
fails while some multicasts from it are pending? When can the other members be
certain that they have seen all of its messages, so that they can take over from it if
the application requires that they do so?

Up to now, our protocol structure would not provide this information to a group
member—for example, it may be that process p0 fails after sending a message to
p1 but to no other member. It is entirely possible that the failure of p0 will be
reported through a new process group view before this message is finally delivered
to the remaining members. Such a situation would create difficult problems for the
application developer, and we need a mechanism to avoid it. This is illustrated in
Fig. 12.10.

It makes sense to assume that the application developer will want failure notifi-
cation to represent a final state with regard to the failed process. Thus, it would be
preferable for all messages initiated by process p0 to have been delivered to their
destinations before the failure of p0 is reported through the delivery of a new view.
We will call the necessary protocol a flush protocol, meaning that it flushes partially
completed multicasts out of the system, reporting the new view only after this has
been done. The reader may recall from Sect. 12.1 that flush is also useful in “con-
verting” multicasts to durable ones, so as to take an external action safely. In fact
the same protocol can address both requirements.

In the example shown in Fig. 12.10, we did not include the exchange of messages
required to multicast the new view of group G. Notice, however, that the figure is
probably incorrect if the new-view coordinator of group G is actually process p1. To
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Fig. 12.11 Process p1
flushes pending multicasts
before initiating the new-view
protocol

see this, recall that the communication channels are FIFO and that the termination
of an interrupted multicast protocol requires only a single round of communication.
Thus, if process p1 simply runs the completion protocol for multicasts initiated by
p0 before it starts the new-view multicast protocol that will announce that p0 has
been dropped by the group, the pending multicast will be completed first. This is
shown in Fig. 12.11.

We can guarantee this behavior even if multicast m is strongly durable, simply
by delaying the new-view multicast until the outcome of the durablity protocol has
been determined.

On the other hand, the problem becomes harder if p1 (which is the only process
to have received the multicast from p0) is not the coordinator for the new-view pro-
tocol. In this case, it will be necessary for the new-view protocol to operate with an
additional round, in which the members of G are asked to flush any multicasts that
are as yet unterminated, and the new-view protocol runs only when this flush phase
has finished. Moreover, even if the new-view protocol is being executed to drop p0
from the group, it is possible that the system will soon discover that some other
process, perhaps p2, is also faulty and must also be dropped. Thus, a flush protocol
should flush messages regardless of their originating process, with the result that all
multicasts will have been flushed out of the system before the new view is installed.

These observations lead to a communication property that Babaoglu and his col-
leagues have called view synchronous communication, which is one of several prop-
erties associated with the virtual synchrony model introduced by Thomas Joseph
and the author in 1985. A view-synchronous communication system ensures that
any multicast initiated in a given view of some process group will be failure-atomic
with respect to that view and will be terminated before a new view of the process
group is installed.

One might wonder how a view-synchronous communication system can prevent
a process from initiating new multicasts while the view installation protocol is run-
ning. If such multicasts are locked out, there may be an extended delay during which
no multicasts can be transmitted, causing performance problems for the application
programs layered over the system. But if such multicasts are permitted, the first
phase of the flush protocol will not have flushed all the necessary multicasts!

A solution for this problem was suggested independently by Ladin and Malkhi,
working on systems called Harp and Transis, respectively. In these systems, if a
multicast is initiated while a protocol to install view i of group G is running, the
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multicast destinations are taken to be the future membership of G when that new
view has been installed—for example, in the Fig. 12.11, a new multicast might be
initiated by process p2 while the protocol to exclude p0 from G is still running.
Such a new multicast would be addressed to {p1,p2,p3} (not to p0), and would
be delivered only after the new view is delivered to the remaining group members.
The multicast can thus be initiated while the view change protocol is running and
would only be delayed if, when the system is ready to deliver a copy of the message
to some group member, the corresponding view has not yet been reported. This ap-
proach will often avoid delays completely, since the new-view protocol was already
running and will often terminate in roughly the same amount of time as will be
needed for the new multicast protocol to start delivering messages to destinations.
Thus, at least in the most common case, the view change can be accomplished even
as communication to the group continues unabated. Of course, if multiple failures
occur, messages will still queue up on receipt and will need to be delayed until the
view flush protocol terminates, so this desirable behavior cannot always be guaran-
teed.

The Horus and Ensemble systems use a slightly different approach. In these sys-
tems, the sender of a message is guaranteed that the message will be delivered in the
same view that it finds itself in when it performs the send operation. However, these
systems also implement a form of interlock between the view installation layer and
the application. When membership will be changed, the system first asks the appli-
cation to stop sending new multicasts, and the application acknowledges the request.
Next, the system delivers the new view. Finally, the application can resume sending
multicasts, using the new view.

12.2.5 Summary of GMS Properties

The following is an informal (English-language) summary of the properties that a
group membership service guarantees to members of subgroups of the full system
membership. We use the term “process group” for such a subgroup. When we say
“guarantees” the reader should keep in mind that a GMS service does not, and in
fact cannot, guarantee that it will remain operational despite all possible patterns of
failures and communication outages. Some patterns of failure or of network outages
will prevent such a service from reporting new system views and will consequently
prevent the reporting of new process group views. Thus, the guarantees of a GMS
are relative to a constraint—namely, that the system provides a sufficiently reliable
transport of messages and that the rate of failures is sufficiently low.
1. GMS-1: Starting from an initial group view, the GMS reports new views that dif-

fer by addition and deletion of group members. The reporting of changes is by
the two-stage interface described previously, which gives protocols an opportu-
nity to flush pending communication from a failed process before its failure is
reported to application processes.

2. GMS-2: The group view is not changed capriciously. A process is added only if
it has started and is trying to join the system, and deleted only if it has failed or
is suspected of having failed by some other member of the system.
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3. GMS-3: All group members observe continuous subsequences of the same se-
quence of group views, starting with the view during which the member was
first added to the group and ending either with a view that registers the voluntary
departure of the member from the group or with the failure of the member.

4. GMS-4: The GMS is fair in the sense that it will not indefinitely delay a view
change associated with one event while performing other view changes. That is,
if the GMS service itself is live, join requests will eventually cause the requesting
process to be added to the group, and leave or failure events will eventually cause
a new group view to be formed that excludes the departing process.

5. GMS-5: The GMS permits progress only in a primary component of a parti-
tioned network. In fact we will see that GMS-5 can be weakened; some group
communication systems permit operation despite partitioning failures, and offer
extensions to the GMS-5 property so that a recipient of a message can also learn
whether it (the recipient) is still connected to the primary partition. But such ex-
tensions have not been very popular with developers, who either do not often run
into partitioning scenarios or find it too difficult to work with such extensions.
Although we will not pursue these points here, it should be noted that many

networks have some form of critical resources on which the processes reside. Al-
though the protocols given above are designed to make progress when a majority
of the processes in the system remain alive after a partitioning failure, a more rea-
sonable approach would also take into account the resulting resource pattern. In
many settings, for example, one would want to define the primary partition of a
network to be the one that retains the majority of the servers after a partitioning
event. One can also imagine settings in which the primary should be the compo-
nent within which access to some special piece of hardware remains possible, such
as the radar in an air traffic control application. These sorts of problems can gen-
erally be solved by associating weights with the processes in the system and re-
defining the majority rule as a weighted majority rule. Such an approach recalls
work in the 1970s and early 1980s by Bob Thomas of BBN on weighted major-
ity voting schemes and weighted quorum replication algorithms (see Gifford 1979;
Thomas 1979).

12.2.6 Ordered Multicast

Earlier, we observed that our multicast protocol would preserve the sender’s order if
executed over FIFO channels and if the algorithm used to terminate an active multi-
cast was also FIFO. Of course, some systems may seek higher levels of concurrency
by using non-FIFO-reliable channels, or by concurrently executing the termination
protocol for more than one multicast, but, even so, such systems could potentially
number multicasts to track the order in which they should be delivered. Freedom
from gaps in the sender order is similarly straightforward to ensure.

This leads to a broader issue of what forms of multicast ordering are useful in
distributed systems and how such orderings can be guaranteed. In developing ap-
plication programs that make use of process groups, it is common to employ what
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Leslie Lamport and Fred Schneider call a state machine style of distributed algo-
rithm (see Schneider 1990). Later, we will see reasons that one might want to relax
this model, but the original idea is to run identical software at each member of
a group of processes and to use a failure-atomic multicast to deliver messages to
the members in identical order. Lamport’s proposal stated that Byzantine protocols
should be used for this multicast, and, in fact, he also uses Byzantine protocols on
messages output by the group members. The result of this is that the group as a
whole gives the behavior of a single ultra-reliable process, in which the operational
members behave identically and the faulty behaviors of faulty members can be tol-
erated up to the limits of the Byzantine protocols. One limitation is that this method
requires deterministic programs and thus could not be used in applications that are
multithreaded or that accept input through an interrupt-style of event notification.
Both are common in modern software, so the restriction is a serious one.

As we will use the concept, however, there is really only one aspect that is
exploited—namely that of building applications that will remain in identical states if
presented with identical inputs in identical orders. Here we may not require that the
applications actually be deterministic, but merely that they be designed to maintain
identically replicated states. This problem, as we will see, is solvable even for pro-
grams that may be very nondeterministic in other ways and very concurrent. More-
over, we will not be using Byzantine protocols, but will substitute various weaker
forms of multicast protocols. Nonetheless, it has become usual to refer to this as a
variation on Lamport’s state machine approach, and it is certainly the case that his
work was the first to exploit process groups in this manner.

FIFO Order
We have talked about the FIFO multicast protocol, Send. Such a protocol can be
developed using the methods previously discussed, provided that the software used
to implement the failure-recovery algorithm is carefully designed to ensure that the
sender’s order will not get lost when a crash occurs and processes other than the
original sender step in to ensure that all group members will receive copies.

There are two variants on the basic Send: a normal Send, which is nondurable,
and a SafeSend, which guarantees strong durability property at the cost of an extra
round of communication. The SafeSend protocol is actually a version of Lamport’s
famous Paxos protocol.

The costs of a protocol are normally measured in terms of the latency before de-
livery can occur, the message load imposed on each individual participant (which
corresponds to the CPU usage in most settings), the number of messages placed on
the network as a function of group size (this may or may not be a limiting factor,
depending on the properties of the network), and the overhead required to represent
protocol-specific headers. When the sender of a multicast is also a group member,
there are two latency metrics that may be important: latency from when a message is
sent to when it is delivered, which is usually expressed as a multiple of the commu-
nication latency of the network and transport software, and the latency from when
the sender initiates the multicast to when it learns the delivery ordering for that mul-
ticast. During this period, some algorithms will be waiting—in the sender case, the
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sender may be unable to proceed until it knows when its own message will be deliv-
ered (in the sense of ordering with respect to other concurrent multicasts from other
senders). And in the case of a destination process, it is clear that until the message
is delivered, no actions can be taken.

In all of these cases, Send and SafeSend are inexpensive protocols. The latency
seen by the sender is minimal: In the case of Send, as soon as the multicast has
been transmitted, the sender knows that the message will be delivered in an order
consistent with its order of sending. Still focusing on Send, the latency between
when the message is sent and when it is delivered to a destination is exactly that
of the network itself: Upon receipt, a message is deliverable as soon as any prior
messages have been delivered—hence, if message loss is rare, immediately upon
receipt. The protocol requires only a single round of communication, and other costs
are hidden in the background and often can be piggybacked on other traffic. And the
header used for Send needs only to identify the message uniquely and capture the
sender’s order—information that may be expressed in a few bytes of storage.

For SafeSend, on the other hand, these costs would be quite a bit higher, because
an extra round of communication is needed to find out if all the intended recipients
have a copy of the message. Suppose that the network has latency σ and the slowest
destination adds an additional delay of δ. Then SafeSend has a latency at the sender
of roughly 2σ + δ. The non-sender processes need to learn that the message is safe
from the sender, so they see a delay of 3σ + δ. Notice that even the fastest desti-
nations are limited by the response times of the slowest destinations, although one
can imagine partially safe implementations of the protocol in which a majority of
replies would be adequate to permit progress.

Notice that although Send can also be converted into SafeSend by invoking flush
after sending the multicast, doing so would be even more costly. Thus if SafeSend
will be used often, one should implement the optimized version just described. The
Send and SafeSend protocols can be used in a state-machine style of computing un-
der conditions where the messages transmitted by different senders are independent
of one another, and hence the actions taken by recipients will commute—for exam-
ple, suppose that sender p is reporting trades on a stock exchange and sender q is
reporting bond pricing information. Although this information may be sent to the
same destinations, it may or may not be combined in a way that is order sensitive.
When the recipients are insensitive to the order of messages that originate in differ-
ent senders, Send is a strong enough ordering to ensure that a state machine style
of computing can safely be used. However, many applications are more sensitive to
ordering than this, and the ordering properties of Send would not be sufficient to
ensure that group members remain consistent with one another in such cases.

Causal Order
An obvious question to ask concerns the maximum amount of order that can be
provided in a protocol that has the same cost as Send. At the beginning of this chap-
ter, we discussed the causal ordering relation, which is the transitive closure of the
message send/receive relation and the internal ordering associated with processes.
In 1985, Thomas Joseph and the author developed a causally ordered protocol with
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costs similar to that of Send and showed how it could be used to implement repli-
cated data. We named the protocol CausalSend. Soon thereafter, Schmuck was able
to show that causal order is a form of maximal ordering relation among Send-like
protocols (see Schmuck 1988). More precisely, he showed that any ordering prop-
erty that can be implemented using an asynchronous protocol can be represented
as a subset of the causal ordering relationship. This proves that causally ordered
communication is the most powerful protocol possible with cost similar to that of
Send.

The basic idea of a causally ordered multicast is easy to express. Recall that a
FIFO multicast is required to respect the order in which any single sender sends
a sequence of multicasts. If process p sends m0 and then later sends m1, a FIFO
multicast must deliver m0 before m1 at any overlapping destinations. The ordering
rule for a causally ordered multicast is almost identical: if send(m0) → send(m1),
then a causally ordered delivery will ensure that m0 is delivered before m1 at any
overlapping destinations. In some sense, causal order is just a generalization of the
FIFO sender order. For a FIFO order, we focus on events that happen in some order
at a single place in the system. For the causal order, we relax this to events that
are ordered under the “happens before” relationship, which can span multiple pro-
cesses but is otherwise essentially the same as the send order for a single process.
A causally ordered multicast simply guarantees that if m0 is sent before m1, then
m0 will be delivered before m1 at destinations they have in common.

The first time one encounters the concept of causally ordered delivery, it can
be confusing because the definition does not look at all like a definition of FIFO
ordered delivery. In fact, however, the underlying idea is extremely similar. Most
readers will be comfortable with the idea of a thread of control that moves from
process to process when RPC is used by a client process to ask a server to take some
action on its behalf. We can think of the thread of computation in the server as being
part of the thread of the client. In some sense, a single computation spans two ad-
dress spaces. Causally ordered multicasts are simply multicasts ordered along such
a thread of computation—they are FIFO ordered, but along computational threads
rather than by individual processes. When this perspective is adopted one sees that
FIFO ordering is in some ways the less natural concept: Send tracks ordering of
events only when they occur in the same address space. If process p sends message
m0 and then asks process q to send message m1, it seems natural to say that m1 was
sent after m0. Causal ordering expresses this relation, but FIFO ordering only does
so if p and q are in the same address space.

There are several ways to implement multicast delivery orderings that are con-
sistent with the causal order. We will now present two such schemes, both based
on adding a timestamp to the message header before it is initially transmitted. The
first uses a logical clock; the resulting change in header size is very small but the
protocol itself has high latency. The second uses a vector timestamp and achieves
much better performance. Finally, we discuss several ways of compressing these
timestamps to minimize the overhead associated with the ordering property.
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Causal Ordering with Logical Timestamps Suppose that we are interested in
preserving causal order within process groups and in doing so only during peri-
ods when the membership of the group is fixed (the flush protocol that implements
view synchrony makes this a reasonable goal). Finally, assume that all multicasts
are sent to the full membership of the group. By attaching a logical timestamp to
each message, maintained using Lamport’s logical clock algorithm, we can ensure
that if send(m1) → send(m2), then m1 will be delivered before m2 at overlapping
destinations. The approach is extremely simple: Upon receipt of a message m a pro-
cess pi waits until it knows that there are no messages still in the channels to it from
other group members, pj that could have a timestamp smaller than LT(m).

How can pi be sure of this? In a setting where process group members contin-
uously emit multicasts, it suffices to wait long enough. Knowing that m will even-
tually reach every other group member, pi can reason that eventually every group
member will increase its logical clock to a value at least as large as LT(m) and will
subsequently send out a message with that larger timestamp value. Since we are
assuming that the communication channels in our system preserve FIFO ordering,
as soon as any message has been received with a timestamp greater than or equal
to that of m from a process pj , all future messages from pj will have a timestamp
strictly greater than that of m. Thus, pi can for a message from every other process
in the group with a timestamp greater than that of m. If there are messages with
timestamps less than or equal to LT(m), they can be delivered in timestamp order. If
two messages have the same timestamp, they must have been sent concurrently, and
pi can either deliver them in an arbitrary order or can use some agreed-upon rule
(e.g., by breaking ties using the process-ID of the sender or its ranking in the group
view) to obtain a total order. With this approach, it is no harder to deliver messages
in an order that is causal and total than to do so in an order that is only causal.

Of course, in many (if not most) settings, some group members will send to the
group frequently while others send rarely or participate only as message recipients.
In such environments, pi might wait in vain for a message from pj , preventing the
delivery of m. There are two obvious solutions to this problem: Group members can
be modified to send a periodic multicast simply to keep the channels active, or pi

can ping pj when necessary—in this manner flushing the communication channel
between them.

Although simple, this causal ordering protocol is too costly for most settings.
A single multicast will trigger a wave of n2 messages within the group, and a long
delay may elapse before it is safe to deliver a multicast. For many applications, la-
tency is the key factor that limits performance, and this protocol is a potentially slow
one because incoming messages must be delayed until a suitable message is received
on every other incoming channel. Moreover, the number of messages that must be
delayed can be very large in a big group, creating potential buffering problems.

Causal Ordering with Vector Timestamps If we are willing to accept a higher
overhead, the inclusion of a vector timestamp in each message permits the im-
plementation of a much more accurate message-delaying policy. Using the vec-
tor timestamp, we can delay an incoming message mi precisely until any missing
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Fig. 12.12 Upon receipt of a
message with vector
timestamp [1,1,0,0] from
p1, process p2 detects that it
is too early to deliver this
message, and delays it until a
message from p0 has been
received and delivered

causally prior messages have been received. This algorithm, like the previous one,
assumes that all messages are multicast to the full set of group members.

Again, the idea is simple. Each message is labeled with the vector timestamp of
the sender as of the time when the message was sent. This timestamp is essentially a
count of the number of causally prior messages that have been delivered to the appli-
cation at the sender process, broken down by source. Thus, the vector timestamp for
process p1 might contain the sequence [13,0,7,6] for a group G with membership
{p0,p1,p2,p3} at the time it creates and multicasts mi . Process p1 will increment
the counter for its own vector entry (here we assume that the vector entries are or-
dered in the same way as the processes in the group view), labeling the message
with timestamp [13,1,7,6]. The meaning of such a timestamp is that this is the
first message sent by p1, but that it has received and delivered 13 messages from
p0, seven from p2 and six from p3. Presumably, these received messages created a
context within which mi makes sense, and if some process delivers mi without hav-
ing seen one or more of them, it may run the risk of misinterpreting mi . A causal
ordering avoids such problems.

Now, suppose that process p3 receives mi . It is possible that mi would be the
very first message that p3 has received up to this point in its execution. In this
case, p3 might have a vector timestamp as small as [0,0,0,6], reflecting only the
six messages it sent before mi was transmitted. Of course, the vector timestamp
at p3 could also be much larger: The only “hard” upper limit is that the entry for
p1 is necessarily 0, since mi is the first message sent by p1. The delivery rule for
a recipient such as p3 is now clear: It should delay message mi until both of the
following conditions are satisfied:
1. Message mi is the next message, in sequence, from its sender.
2. Every causally prior message has been received and delivered to the application.

We can translate rule 2 into the following formula: If message mi sent by process
pi is received by process pj , then we delay mi until, for each value of k different
from i and j,VT(pj )[k] ≥ VT(mi)[k]. Thus, if p3 has not yet received any messages
from p0, it will not deliver mi until it has received at least 13 messages from p0.
Figure 12.12 illustrates this rule in a simpler case, involving only two messages.
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Fig. 12.13 When processes p0 and p1 crash, message m1 is causally orphaned. This would be
detected during the flush protocol that installs the new group view. Although m1 has been received
by the surviving processes, it is not possible to deliver it while still satisfying the causal ordering
constraint. However, this situation can only occur if the sender of the message is one of the failed
processes. By discarding m1 the system can avoid causal gaps. Surviving group members will
never be logically partitioned (prevented from communicating with each other)

We need to convince ourselves that this rule really ensures that messages will be
delivered in a causal order. To see this, it suffices to observe that when mi was sent,
the sender had already received and delivered the messages identified by VT(mi).
Since these are precisely the messages causally ordered before mi , the protocol only
delivers messages in an order consistent with causality.

The causal ordering relationship is acyclic—hence, one would be tempted to
conclude that this protocol can never delay a message indefinitely. But, in fact, it can
do so if failures occur. Suppose that process p0 crashes. Our flush protocol will now
run, and the 13 messages that p0 sent to p1 will be retransmitted by p1 on its behalf.
But if p1 also fails, we could have a situation in which mi , sent by p1 causally after
having received 13 messages from p0, will never be safely deliverable, because no
record exists of one or more of these prior messages! The point here is that although
the communication channels in the system are FIFO, p1 is not expected to forward
messages on behalf of other processes until a flush protocol starts when one or more
processes have left or joined the system. Thus, a dual failure can leave a gap such
that mi is causally orphaned.

The good news, however, is that this can only happen if the sender of mi fails,
as illustrated in Fig. 12.13. Otherwise, the sender will have a buffered copy of any
messages that it received and that are still unstable, and this information will be
sufficient to fill in any causal gaps in the message history prior to when mi was sent.
Thus, our protocol can leave individual messages that are orphaned, but it cannot
partition group members away from one another in the sense that concerned us
earlier.

Our system will eventually discover any such causal orphan when flushing the
group prior to installing a new view that drops the sender of mi . At this point, there
are two options: mi can be delivered to the application with some form of warning
that it is an orphaned message preceded by missing causally prior messages, or mi

can simply be discarded. Either approach leaves the system in a self-consistent state,
and surviving processes are never prevented from communicating with one another.
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Causal ordering with vector timestamps is a very efficient way to obtain this
delivery ordering property. The overhead is limited to the vector timestamp itself
and to the increased latency associated with executing the timestamp ordering al-
gorithm and with delaying messages that genuinely arrive too early. Such situations
are common if the machines involved are overloaded, channels are backlogged, or
the network is congested and lossy, but otherwise they would rarely be observed. In
the best case, when none of these conditions are present, the causal ordering prop-
erty can be assured with essentially no additional cost in latency or messages passed
within the system! On the other hand, notice that the causal ordering obtained is
definitely not a total ordering, as was the case in the algorithm based on logical
timestamps. Here, we have a genuinely cheaper ordering property, but it is also less
ordered.

Timestamp Compression The major form of overhead associated with a vector-
timestamp causality is that of the vectors themselves. This has stimulated interest
in schemes for compressing the vector-timestamp information transmitted in mes-
sages. Although an exhaustive treatment of this topic is well beyond the scope of
this book, there are some specific optimizations that are worth mentioning.

Suppose that a process sends a burst of multicasts—a common pattern in many
applications. After the first vector timestamp, each subsequent message will con-
tain a nearly identical timestamp, differing only in the timestamp associated with
the sender itself, which will increment for each new multicast. In such a case, the
algorithm could be modified to omit the timestamp: A missing timestamp would be
interpreted as being the previous timestamp, incremented in the sender’s field only.
This single optimization can eliminate most of the vector timestamp overhead seen
in a system characterized by bursty communication. More accurately, what has hap-
pened here is that the sequence number used to implement the FIFO channel from
source to destination makes the sender’s own vector-timestamp entry redundant. We
can omit the vector timestamp because none of the other entries were changing and
the sender’s sequence number is represented elsewhere in the packets being trans-
mitted.

An important case of this optimization occurs if all the multicasts to some group
are sent along a single causal path—for example, suppose that a group has some
form of token, which circulates within it, and only the token holder can initiate
multicasts to the group. In this case, we can implement CausalSend using a single
sequence number: the first CausalSend, the second CausalSend, and so forth. Later,
this form of CausalSend will turn out to be important. Notice, however, that if there
are concurrent multicasts from different senders (i.e., if senders can transmit mul-
ticasts without waiting for the token), the optimization is no longer able to express
the causal ordering relationships on messages sent within the group.

A second optimization is to reset the vector-timestamp fields to zero each time the
group changes its membership, and to sort the group members so that any passive
receivers are listed last in the group view. With these steps, the vector timestamp for
a message will tend to end in a series of zeros, corresponding to those processes that
have not sent a message since the previous view change event. The vector timestamp
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can then be truncated: The reception of a short vector would imply that the missing
fields are all zeros. Moreover, the numbers themselves will tend to stay smaller
and hence can be represented using shorter fields (if they threaten to overflow, a
flush protocol can be run to reset them). Again, a single very simple optimization
would be expected to greatly reduce overhead in typical systems that use this causal
ordering scheme.

A third optimization involves sending only the difference vector, representing
those fields that have changed since the previous message multicast by this sender.
Such a vector would be more complex to represent (since we need to know which
fields have changed and by how much) but much shorter (since, in a large system,
one would expect few fields to change in any short period of time). This generalizes
into a run-length encoding.

This third optimization can also be understood as an instance of an ordering
scheme introduced originally in the Psync, Totem, and Transis systems. Rather than
representing messages by counters, a precedence relation is maintained for mes-
sages: a tree of the messages received and the causal relationships between them.
When a message is sent, the leaves of the causal tree are transmitted. These leaves
are a set of concurrent messages, all of which are causally prior to the message
now being transmitted. Often, there will be very few such messages, because many
groups would be expected to exhibit low levels of concurrency.

The receiver of a message will now delay it until those messages it lists as
causally prior have been delivered. By transitivity, no message will be delivered un-
til all the causally prior messages have been delivered. Moreover, the same scheme
can be combined with one similar to the logical timestamp ordering scheme of the
first causal multicast algorithm to obtain a primitive that is both causally and totally
ordered. However, doing so necessarily increases the latency of the protocol.

Causal Multicast and Consistent Cuts At the outset of Chap. 10, we discussed
concepts of logical time, defining the causal relation and introducing the definition
of a consistent cut. Notice that the delivery events of a multicast protocol such as
CausalSend are concurrent and can be thought of as occurring at the same time in
all the members of a process group (Fig. 12.14). In a logical sense, CausalSend
delivers messages at what may look to the recipients like a single instant in time.
Unfortunately, however, the delivery events for a single CausalSend do not represent
a consistent cut across the system, because communication that was concurrent with
the CausalSend could cross it. Thus, one could easily encounter a system in which
a CausalSend is delivered at process p, which has received message m, but where
the same CausalSend was delivered at process q (the eventual sender of m) before
m had been transmitted.

With a second CausalSend message, it is actually possible to identify a true con-
sistent cut, but to do so we need to either introduce a concept of an epoch number
or inhibit communication briefly. The inhibition algorithm is easier to understand. It
starts with a first CausalSend message that tells the recipients to inhibit the sending
of new messages. The process group members receiving this message send back an
acknowledgment to the process that initiated the CausalSend. The initiator, having
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Fig. 12.14 A protocol for creating a consistent cut or snapshot. In this figure, processes are send-
ing point-to-point messages (dashed lines) when process p initiates the protocol by sending a
multicast to q, r , and s (dark lines). The delivery of the multicast is closed under causality and
hence is a consistent cut. A second phase of multicasts can be used to flush communication chan-
nels (any pending message in a channel will be causally prior to the second multicast and hence
delivered before it is delivered; the four messages in this category are shown in a darker dashed
line style). Notice that during the period between delivery of the two multicasts, the sending of
other messages is temporarily inhibited

collected replies from all group members, now sends a second CausalSend telling
the group members that they can stop recording incoming messages and resume
normal communication. It is easy to see that all messages that were in the com-
munication channels when the first CausalSend was received will now have been
delivered and that the communication channels will be empty. The recipients now
resume normal communication. (They should also monitor the state of the initiator,
in case it fails!) The algorithm is very similar to the one for changing the member-
ship of a process group, discussed previously.

Noninhibitory algorithms for forming consistent cuts are also known. One way
to solve this problem is to add epoch numbers to the multicasts in the system. Each
process keeps an epoch counter and tags every message with the counter value. In
the consistent cut protocol, the first phase message now tells processes to increment
the epoch counters (and not to inhibit new messages). Thus, instead of delaying new
messages, they are sent promptly but with epoch number k + 1 instead of epoch
number k. The same algorithm now works to allow the system to reason about the
consistent cut associated with its kth epoch even as it exchanges new messages dur-
ing epoch k + 1. Another well-known solution takes the form of what is called an
echo protocol, in which two messages traverse every communication link in the
system (see Chandy and Lamport 1985). For a system with all-to-all communica-
tion connectivity, such protocols will transmit O(n2) messages, in contrast with the
O(n) required for the inhibitory solution.

This CausalSend algorithm provides a relatively inexpensive way of testing the
distributed state of the system to detect a desired property. In particular, if the pro-
cesses that receive a CausalSend compute a predicate or write down some element
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of their states at the moment the message is received, these states will fit together
cleanly and can be treated as a glimpse of the system as a whole at a single instant
in time. To count the number of processes for which some condition holds, it is suf-
ficient to send a CausalSend asking processes if the condition holds and to count
the number that return true. The result is a value that could in fact have been valid
for the group at a single instant in real time. On the negative side, this guarantee
only holds with respect to communication that uses causally ordered primitives. If
processes communicate with other primitives, the delivery events of the CausalSend
will not necessarily be prefix closed when the send and receive events for these mes-
sages are taken into account. Marzullo and Sabel have developed optimized versions
of this algorithm.

Some examples of properties that could be checked using our consistent cut al-
gorithm include the current holder of a token in a distributed locking algorithm (the
token will never appear to be lost or duplicated), the current load on the processes
in a group (the states of members will never be accidentally sampled at different
times yielding an illusory load that is unrealistically high or low), the wait-for graph
of a system subject to infrequent deadlocks (deadlock will never be detected when
the system is in fact not deadlocked), and the contents of a database (the database
will never be checked at a time when it has been updated at some locations but
not others). On the other hand, because the basic algorithm inhibits the sending of
new messages in the group, albeit briefly, there will be many systems for which the
performance impact is too high and a solution that sends more messages but avoids
inhibition states would be preferable. The epoch-based scheme represents a reason-
able alternative, but we have not treated fault-tolerance issues; in practice, such a
scheme works best if all cuts are initiated by some single member of a group, such
as the oldest process in it, and a group flush is known to occur if that process fails
and some other takes over from it.

Exploiting Topological Knowledge Many networks have topological properties,
which can be exploited to optimize the representation of causal information within a
process group that implements a protocol such as CausalSend. Within the NavTech
system, developed at INESC in Portugal, wide area applications operate over a com-
munication transport layer implemented as part of NavTech. This structure is pro-
grammed to know of the location of wide area network links and to make use of
hardware multicast where possible (see Rodriguez and Verissimo 1995; Rodrigues
et al. 1993, 2000). A consequence is that if a group is physically laid out with mul-
tiple subgroups interconnected over a wide area link, as seen in Fig. 12.15, the mes-
sage need only be sent once over each link.

In a geographically distributed system, it is frequently the case that all messages
from some subset of the process group members will be relayed to the remaining
members through a small number of relay points. Rodriguez exploits this observa-
tion to reduce the amount of information needed to represent causal ordering rela-
tionships within the process group. Suppose that message m1 is causally dependent
upon message m0 and that both were sent over the same communication link. When
these messages are relayed to processes on the other side of the link, they will ap-
pear to have been sent by a single sender and the ordering relationship between them
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Fig. 12.15 In a complex
network, a single process
group may be physically
broken into multiple
subgroups. With knowledge
of the network topology, the
NavTech system is able to
reduce the information
needed to implement causal
ordering

can be compressed into a single vector-timestamp entry. In general, this observation
permits any set of processes that route through a single point to be represented using
a single sequence number on the other side of that point.

Stephenson explored the same question in a more general setting involving com-
plex relationships between overlapping process groups (the multigroup causality
problem) (see Stephenson 1991). His work identifies an optimization similar to this
one, as well as others that take advantage of other regular layouts of overlapping
groups, such as a series of groups organized into a tree or some other graph-like
structure.

Total Order
In developing our causally ordered communication primitive, we really ended up
with a family of such primitives. The cheapest of these are purely causal in the sense
that concurrently transmitted multicasts might be delivered in different orders to
different members. The more costly ones combined causal order with mechanisms
that resulted in a causal, total order. We saw two such primitives: One was the causal
ordering algorithm based on logical timestamps, and the second (introduced very
briefly) was the algorithm used for total order in the Totem and Transis systems,
which extend the causal order into a total one using a canonical sorting procedure,
but in which latency is increased by the need to wait until multicasts have been
received from all potential sources of concurrent multicasts.1 In this section we
discuss totally ordered multicasts, known by the name OrderedSend, in more detail.

There are many ways to implement total ordering, and it may be best to start
by just describing the most commonly used approach, partly for reasons of brevity,
but partly because this has become prevalent. The idea can be traced to work by
Chang and Maxemchuk, which then was simplified and refined over time by Frans
Kaashoek in his PhD. thesis and finally by Robbert van Renesse in his work on the
Horus system. An ordering “token” is associated with some member of the group

1Most ordered of all is the flush protocol used to install new views: This delivers a type of message
(the new view) in a way that is ordered with respect to all other types of message. In the Isis Toolkit,
there was actually a SafeSend primitive, which could be used to obtain this behavior at the request
of the user, but it was rarely used and more recent systems tend to use this protocol only to install
new process group views.
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(usually, the first member in the current list of group members—the least ranked
process in the group’s current “view”). The token holder is in charge of deciding
the OrderedSend ordering. To send an OrderedSend a process uses Send to send it
out, but on receipt, members delay the message briefly. The token holder, however,
sends a tiny Send giving ordering information: “deliver message 1234 from process
p1 as your 20th message. (Obviously, you can make this fancier by delaying the
ordering message and trying to batch a few notifications up.) All recipients just
follow the instructions: they reorder messages according to the specified order and
then deliver them. If a failure happens, the “flush” mechanism discussed later in
this chapter ensures that everyone remaining operational gets a copy of these Send
operations. Thus, after a failure, all surviving group members will have delivered
identical sequences of messages. A new token holder is selected if the old one was
the process that failed, and it just takes over the role of sending ordering messages.
This is a simple and efficient way to implement total ordering, and can be extremely
fast if the developer takes care to optimize the critical paths. Notice also that a
big message is sent directly to its destinations; some early versions of this protocol
relayed all messages through the token holder, but with big messages, I/O bandwidth
at that process becomes a serious bottleneck. By sending messages directly and
sending ordering information separately, this can be avoided.

As described above, we end up with a version of OrderedSend capable of violat-
ing causal ordering. Suppose that process pi sends an OrderedSend, and then sends
some other point to point message or multicast (not an OrderedSend) which process
pj receives immediately. Now process pj sends an OrderedSend “in response” to
that message. Since the OrderedSend is implemented as a protocol over Send there
is no reason to assume that the token holding process will order the one from pi

before the one from pj . Yet the message sent by pj could be a form of response to
the one sent by pi . For example, perhaps pi is a message asking group members to
create a new slot in the employees table for a recently hired employee, and pj re-
acts by sending out some default security information. If the messages arrive out of
causal order, applications may receive the “second” message, look up the employee,
and then throw an exception when they are unable to find an entry for that employee
in their current-employees tables. Thus we might prefer a stronger guarantee.

It is also possible to use the causally ordered multicast primitive to implement
a token-based ordering scheme that is simultaneously causal and totally ordered.
Such a primitive would respect the delivery ordering property of CausalSend when
causally prior multicasts are pending in a group, similar to OrderedSend when two
processes concurrently try to send a multicast. Rather than present this algorithm
here, however, we defer it until Chap. 14, when we present it in the context of a
method for implementing replicated data with locks on the data items. We do this
because, in practice, token-based total ordering algorithms are more common than
the other methods. The most common use of causal ordering is in conjunction with
the specific replication scheme presented in Chap. 14; therefore, it is more natural
to treat the topic in that setting.

Yet an additional total ordering algorithm was introduced by Leslie Lamport in
his very early work on logical time in distributed systems (see Lamport 1978a) and
later adapted to group communication settings by Skeen during a period when he
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and the author collaborated on an early version of the Isis totally ordered communi-
cation primitive. The algorithm uses a two-phase protocol in which processes vote
on the message ordering to use, expressing this vote as a logical timestamp.

The algorithm operates as follows. In the first phase of communication, the orig-
inator of the multicast (we will call it the coordinator) sends the message to the
members of the destination group. These processes save the message but do not yet
deliver it to the application. Instead, each proposes a delivery time for the message
using a logical clock, which is made unique by appending the process-ID. The co-
ordinator collects these proposed delivery times, sorts the vector, and designates the
maximum time as the committed delivery time. It sends this time back to the partici-
pants. They update their logical clocks (and hence will never propose a smaller time)
and reorder the messages in their pending queue. If a pending message has a com-
mitted delivery time, and this time is smallest among the proposed and committed
times for other messages, it can be delivered to the application layer.

This solution can be seen to deliver messages in a total order, since all the pro-
cesses base the delivery action on the same committed timestamp. It can be made
fault tolerant by electing a new coordinator if the original sender fails. One curious
property of the algorithm, however, is that it has a ordering guarantee. To see this,
consider the case where a coordinator and a participant fail and that participant also
proposed the maximum timestamp value. The old coordinator may have committed
a timestamp that could be used for delivery to the participant, but that will not be
reused by the remaining processes, which may therefore pick a different delivery
order. Thus, just as strong durability (“safety”) is costly to achieve as an atomicity
property, one sees that a durable ordering property may be quite costly. It should be
noted that durability and total ordering tend to go together: If delivery is delayed un-
til it is known that all operational processes have a copy of a message, it is normally
possible to ensure that all processes will use identical delivery orderings

This two-phase ordering algorithm, and a protocol called the “born-order” proto-
col, which was introduced by the Transis and Totem systems (messages are ordered
using unique message identification numbers that are assigned when the messages
are first created, or “born”), have advantages in settings with multiple overlapping
process groups, a topic to which we will return in Chap. 13. Both provide what is
called “globally total order,” which means that even OrderedSend messages sent in
different groups will be delivered in the same order at any overlapping destinations
they may have.

12.3 Communication from Nonmembers to a Group

Up to now, all of our protocols have focused on the case of group members commu-
nicating with one another. However, in many systems there is an equally important
need to provide reliable and ordered communication from nonmembers into a group.
This section presents two solutions to the problem—one for a situation in which the
nonmember process has located a single member of the group but lacks detailed
membership information about the remainder of the group, and one for the case of
a nonmember that has cached group membership information.
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Fig. 12.16 Nonmember of a
group uses a simple
RPC-based protocol to
request that a multicast be
done on its behalf. The ID of
the message can be assigned
by the sender. This protocol
becomes complex when
ordering considerations are
added, particularly because
the forwarding process may
fail during the protocol run

Before launching into this topic, we should note that there is a class of systems
for which this problem does not really arise. When using a system such as Spread,
which consists of a core set of long-running daemons to which all application pro-
cesses connect (or Ensemble in its “outboard” mode), the application itself is not re-
ally responsible for group communication. Instead, all group operations are passed
to the servers, which implement multicast among themselves, then relay messages
up to the appropriate application processes. Since the daemons “know” the mem-
bership of the groups, communication by a non-member to a group is no different
than communication from a member to a group: the request is forwarded through
a daemon. However, there are performance and “single point of failure” concerns
with this kind of 2-tier architecture. Many systems implement multicast directly, as
an end-to-end protocol, and these are the ones for which the mechanisms described
below are useful.

In the first case, our algorithm will have the nonmember process ask some group
member to issue the multicast on its behalf, using an RPC for this purpose. In this
approach, each such multicast is given a unique identifier by its originator, so that
if the forwarding process fails before reporting on the outcome of the multicast, the
same request can be reissued. The new forwarding process would check to see if
the multicast was previously completed, issue it if not, and then return the outcome
in either case. Various optimizations can then be introduced, so that a separate RPC
will not be required for each multicast. The protocol is illustrated in Fig. 12.16 for
the normal case, when the contact process does not fail. Not shown is the eventual
garbage collection phase needed to delete status information accumulated during
the protocol and saved for use in the case where the contact eventually fails.

Our second solution uses what is called an iterated approach, in which the non-
member processes cache possibly inaccurate process group views. Specifically, each
group view is given a unique identifier, and client processes use an RPC or some
other mechanism to obtain a copy of the group view (e.g., they may join a larger
group within which the group reports changes in its core membership to interested
non-members). The client then includes the view identifier in its message and multi-
casts it directly to the group members. Again, the members will retain some limited
history of prior interactions using a mechanism such as the one for the multiphase
commit protocols. (See Fig. 12.17.)
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Fig. 12.17 An iterated protocol. The client sends to the group as its membership is changing (to
drop one member). Its multicast is terminated by the flush associated with the new-view installation
(message just prior to the new view), and when one of its messages arrives late (dashed line), the
recipient detects it as a duplicate and ignores it. Had the multicast been so late that all the copies
were rejected, the sender would have refreshed its estimate of group membership and retried the
multicast. Doing this while also respecting ordering obligations can make the protocol complex,
although the basic idea is quite simple. Notice that the protocol is cheaper than the RPC solution:
The client sends directly to the actual group members, rather than indirectly sending through a
proxy. However, while the figure may seem to suggest that there is no acknowledgment from the
group to the client, this is not the case: The client communicates over a reliable FIFO channel
to each member—hence, acknowledgements are implicitly present. Indeed, some effort may be
needed to avoid an implosion effect, which would overwhelm the client of a large group with a
huge number of acknowledgements

There are now three cases that may occur. Such a multicast can arrive in the cor-
rect view, it can arrive partially in the correct view and partially late (after some
members have installed a new group view), or it can arrive entirely late. In the
first case, the protocol is considered successful. In the second case, the group flush
algorithm will push the partially delivered multicast to a view-synchronous termi-
nation; when the late messages finally arrive, they will be ignored as duplicates by
the group members that receive them, since these processes will have already deliv-
ered the message during the flush protocol. In the third case, all the group members
will recognize the message as a late one that was not flushed by the system and
all will reject it. Some or all should also send a message back to the nonmember
warning it that its message was not successfully delivered; the client can then retry
its multicast with refreshed membership information. This last case is said to iterate
the multicast. If it is practical to modify the underlying reliable transport protocol,
a convenient way to return status information to the sender is by attaching it to the
acknowledgment messages such protocols transmit.

This protocol is clearly quite simple, although its complexity grows when one
considers the issues associated with preserving sender order or causality informa-
tion in the case where iteration is required. To solve such a problem, a nonmem-
ber that discovers itself to be using stale group view information should inhibit the
transmission of new multicasts while refreshing the group view data. It should then
retransmit, in the correct order, all multicasts that are not known to have been suc-
cessfully delivered in while it was sending using the previous group view. Some
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care is required in this last step, however, because new members of the group may
not have sufficient information to recognize and discard duplicate messages.

To overcome this problem, there are basically two options. The simplest case oc-
curs when the group members transfer information to joining processes, including
the record of multicasts successfully received from nonmembers prior to when the
new member joined. Such a state transfer can be accomplished using a mechanism
discussed in the next chapter. Knowing that the members will detect and discard du-
plicates, the nonmember can safely retransmit any multicasts that are still pending,
in the correct order, followed by any that may have been delayed while waiting to
refresh the group membership. Such an approach minimizes the delay before normal
communication is restored.

The second option is applicable when it is impractical to transfer state infor-
mation to the joining member. In this case, the nonmember will need to query the
group, determining the status of pending multicasts by consulting with surviving
members from the previous view. Having determined the precise set of multicasts
that was dropped upon reception, the nonmember can retransmit these messages
and any buffered messages and then resume normal communication. Such an ap-
proach is likely to have higher overhead than the first one, since the nonmember
(and there may be many of them) must query the group after each membership
change. It would not be surprising if significant delays were introduced by such an
algorithm.

12.4 Communication from a Group to a Nonmember

The discussion of the preceding section did not consider the issues raised by trans-
mission of replies from a group to a nonmember. These replies, however, and other
forms of communication outside of a group, raise many of the same reliability issues
that motivated the ordering and gap-freedom protocols presented previously—for
example, suppose that a group is using a causally ordered multicast internally, and
that one of its members sends a point-to-point message to some process outside the
group. In a logical sense, that message may now be dependent upon the prior causal
history of the group, and if that process now communicates with other members of
the group, issues of causal ordering and freedom from causal gaps will arise.

This specific scenario was studied by Ladin and Liskov, who developed a system
in which vector timestamps could be exported by a group to its clients; the client
later presented the timestamp back to the group when issuing requests to other mem-
bers, and in this way the client was protected against causal ordering violations. The
protocol proposed in that work used stable storage to ensure that even if a failure
occurred, no causal gaps will occur.

Other researchers have considered the same issues using different methods. Work
by Schiper, for example, explored the use of an n × n matrix to encode point-to-
point causality information (see Schiper et al. 1989), and the Isis Toolkit introduced
mechanisms to preserve causal order when point-to-point communication was done
in a system. We will present some of these methods in Chap. 15.
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12.5 Summary of Multicast Properties

Table 12.1 Terminology

Concept Brief description

OrderedSend View-synchronous totally ordered group communication. If processes p

and q both receive m1 and m2, then either both deliver m1 prior to m2, or
both deliver m2 prior to m1.

As noted earlier, OrderedSend comes in several versions. Throughout the
remainder of this book, we will assume that OrderedSend is a locally
ordered but weakly durable protocol—that is, we focus on the least costly
of the possible OrderedSend primitives, unless we specifically indicate
otherwise. By weakly durable we mean that the protocol could have brief
windows during which a message has been delivered to some group
members and yet some pattern of failures could cause the message to be
lost (forgotten, in effect). Obviously, such windows are short; typically,
just a few milliseconds.

OrderedCausalSend Totally ordered but also causal group communication. The delivery order
is as for OrderedSend, but it is also consistent with the causal sending
order (normally, an OrderedSend would be consistent with the FIFO
sending order for any single source, but would not respect causal order
over sets of senders that have some sort of synchronization relationship,
such as passing tokens that designate permission to send). We will not say
much about this protocol here.

CausalSend Causally ordered group communication. If send(m1) → send(m2), then
processes that receive both messages deliver m1 prior to m2.

Send View-synchronous FIFO group communication. If the same process p

sends m1 prior to sending m2, then processes that receive both messages
deliver m1 prior to m2.

Gap freedom The guarantee that if message mi should be delivered before mj and some
process receives mj and remains operational, mi will also be delivered to
its remaining destinations. A system that lacks this property can be
exposed to a form of logical partitioning, where a process that has received
mj is prevented from (ever) communicating to some process that was
supposed to receive mi but will not because of failure.
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Table 12.1 (Continued)

Concept Brief description

SafeSend A multicast having the property that if any group member delivers it, then
all operational group members will also deliver it and in the same total
order. This property is costly to guarantee and corresponds to a dynamic
form of durability (that is, strong durability, but now with dynamic
membership). Most multicast primitives can be implemented in a durable
(safe) or weakly durable (unsafe) version; the less costly one is usually
preferable. In this book, we are somewhat hesitant to use the term “safe,”
because a protocol lacking this property is not necessarily “unsafe.”
Consequently, we will normally describe a protocol as being strongly
durable (safe) or nondurable (unsafe). If we do not specifically say that a
protocol needs to be strongly durable, the reader should assume that we
intend the nondurable case. Yet an additional option arises if a nondurable
multicast is combined with a subsequent call to Flush; this sequence yields
a form of weak durability that also goes by the name amnesia-freedom,
and turns out to be ideally matched to replication in the first tier of cloud
computing systems, which are limited to using soft-state and hence do not
actually benefit from durability.

View-synchronous
multicast

A way of sending a message to a process group so all the group members
that do not crash will receive the message between the same pair of group
views. If a process sends a multicast when the membership consists of
{p0, . . . , pk} and it does not crash, the message will be delivered while the
view is still {p0, . . . , pk}.

Virtual synchrony A distributed communication system in which process groups are
provided, supporting view-synchronous communication and gap freedom,
and in which algorithms are developed using a style of closely
synchronous computing in which all group members see the same events
in the same order and consequently can closely coordinate their actions.
Such synchronization become virtual when the ordering properties of the
communication primitive are weakened in ways that do not change the
correctness of the algorithm. By introducing such weaker orderings, a
group can be made more likely to tolerate failure and can gain a significant
performance improvement.

12.6 Related Reading

On logical concepts of time (see Lamport 1978a, 1984).
Causal ordering in message delivery (see Birman and Joseph 1987a, 1987b).
Consistent cuts (see Babaoglu and Marzullo 1993; Chandy and Lamport 1985).
Vector clocks (see Fidge 1988; Mattern 1989).
Vector clocks used in message delivery (see Birman et al. 1991; Schiper et al.

1989, 2003).
Optimizing vector clock representations (see Charron-Bost 1991; Melliar-Smith

and Moser 1993).
Compression using topological information about groups of processes (see Bir-

man et al. 1991; Rodrigues and Verissimo 1995; Rodrigues et al. 1993, 2000).
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Static groups and quorum replication (see Bernstein et al. 1987; Birman and
Joseph 1987a; Cooper 1985).

Two-phase commit (see Bernstein et al. 1987; Gray 1978; Gray and Reuter 1993).
Three-phase commit (see Skeen 1982a, 1985).
Byzantine protocol (see Ben-Or 1985; Coan and Thomas 1990; Coan et al. 1986;

Cristian et al. 1985, 1990; Rabin 1983; Schneider 1984).
Asynchronous Consensus (see Chandra and Toueg 1991; Fisher et al. 1985a,

1985b); but see also Babaoglu et al. (1995), Friedman et al. (1995), Guerraoui and
Schiper (1996), Ricciardi (1996).

The method of Chandra and Toueg (see Babaoglu et al. 1995; Chandra and Toueg
1991; Chandra et al. 1992, 1996; Friedman et al. 1995).

Group membership (see Birman and Joseph 1987a, 1987b; Chandra et al. 1996;
Cristian 1991a; Melliar-Smith et al. 1991; Mishra et al. 1991; Ricciardi and Birman
1991); but see also Agarwal (1994), Anceaume et al. (1995), Babaoglu et al. (1994,
1995), Birman and Glade (1995), Chandra et al. (1996), Cristian and Schmuck
(1995), Friedman et al. (1995), Golding (1992), Guerraoui and Schiper (1996), Re-
iter (1994a, 1994b), Ricciardi et al. (1992), Ricciardi (1993, 1996), Rodrigues et al.
(1993).

Merging the Paxos form of state machine replication with virtual synchrony to
obtain a single model that spans all of these options (see Birman et al. 2010; Ap-
pendix A).

Partitionable membership (see Amir et al. 1992a; Moser et al. 1994a, 1994b).
Fail-stop illusion (see Sabel and Marzullo 1994).
Token-based total order (see Chang and Maxemchuk 1984; Kaashoek 1992).
Lamport’s method (see Birman and Joseph 1987b; Lamport 1978a).
Communication from nonmembers of a group (see Birman and Joseph 1987b;

Wood 1991).
Point-to-point causality (see Schiper et al. 1989, 2003).
On the timestamp technique used in Harp (see Ladin et al. 1992; Liskov et al.

1991).
On preserving causality in point-to-point message-passing systems (see Schiper

et al. 1989, 2003).
On the associated controversy (see Cheriton and Skeen 1993), and on the re-

sponses (see Birman 1994; Cooper 1994; van Renesse 1993).





13Point to Point and Multi-group
Considerations

As noted at the start of Chap. 12, researchers have carried the idea of group commu-
nication to something of an extreme, although the cloud computing user community
has been a bit less ambitious in its embrace of these technology. This chapter tackles
some of the more esoteric topics that arise when building a group-communication
platform that permits the creation of large numbers of groups without requiring (as
in the Spread system) that they all be subgroups of a single encompassing group.
The questions raised by such a model are quite interesting, but are not central to
the use of group communication platforms for data replication, because existing
platforms such as Isis2, JGroups, Ensemble or Spread are more typically used in
applications that employ a small number of groups. Some of these systems offer a
kind of end-run around the issue, permitting the creation of subgroups within large
groups; multicasts are sent to the larger group, then filtered and delivered only to
the target subgroup members. Other systems, including Isis2, are designed to sup-
port somewhat larger numbers of groups, but even given a system that can support
many groups, restrictions often still apply. For example, with Isis2, if any individual
process were to join a genuinely large number of groups, performance problems
would surely arise; thus a single application could have large numbers of groups,
but any single process would need to limit itself to joining just a few of them.

With these caveats, let us look at some of the best ideas for letting applications
create vast numbers of process groups, as casually as they create objects in non-
distributed environments. We have already touched on some of the issues raised by
this sort of aggressive multigroup scenario. The most obvious concerns are purely
practical. For example, in Chap. 4 of the text we pointed out that in modern cloud
computing systems, data centers use routers with a limited capacity for handling IP
multicast addresses. Now, not all group communication systems require IP multicast
(in Isis2 the decision is controlled by a runtime parameter; if desired, the system
will tunnel over TCP rather than using IP multicast). But for very large scenarios,
IP multicast has obvious appeal.

The issue, as we saw in Chap. 4, is that modern data center routers represent IP
multicast addresses using Bloom Filters and those filters can fill up, hence with a
large number of IP multicast addresses in simultaneous use, the router algorithms

K.P. Birman, Guide to Reliable Distributed Systems, Texts in Computer Science,
DOI 10.1007/978-1-4471-2416-0_13, © Springer-Verlag London Limited 2012
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fails, forwarding every multicast message to every multicast receiver even where the
IP multicast addresses in use were very different, and even if the multicast group in
which the send was done had no receivers at all! It should be easy to see how an
application that works well in the lab, using a few IP multicast groups, might be de-
ployed into a cloud setting successfully, then scaled up, gradually approaching this
meltdown threshold. Once the threshold is reached, suddenly the working applica-
tion will seem to collapse.

This risk of resource exhaustion forces group multicast systems to either run over
a non-multicast protocol such as TCP (e.g. to emulate multicast without use of IP
multicast addresses), or to run code that manages a small pool of physical IP multi-
cast addresses. In that approach, which is implemented in Isis2 (pioneered in a paper
called the Dr. Multicast paper, by Ymir Vigfusson and others), applications use vir-
tual IP multicast addresses, and are mapped to physical IP multicast addresses only
if there are enough to go around. Otherwise, the most demanding groups get the real
addresses, and other groups are either forced to share a real address (filtering and
discarding unwanted traffic), or to use an emulation scheme. Thus, because Isis2

implements Dr. Multicast, it runs no risk of meltdown unless deliberately miscon-
figured (the defaults it uses are very conservative). But many other platforms would
lack this feature, and hence risk melting down when scaled up.

Another issue, also seen in Isis2, is that the data structures used to implement
virtual synchrony are not small or simple. Each new group brings its own copies
of these structures; eventually, the sheer space required can be a serious problem.
The question extends beyond data structures. For example, in Isis2 we use multiple
threads for each process group to which an application belongs: three threads (one
to send multicasts, one to receive and deliver multicasts and one more to receive
a deliver P2P messages). From time to time, Isis2 even spins off additional helper
threads, for example while changing membership. As a rule of thumb, one thinks of
a single group has having about five associated threads, on average. In C# on .NET
threads are fairly cheap, but even so, it should not be hard to see that any appli-
cation using more than five or ten groups will have performance issues due to the
proliferation of threads. Other per-group data overheads include lists and dictionar-
ies of various kinds that are maintained for each group, buffering for out-of-order
messages, etc.

What these observations should convey is that even if a system supports large
numbers of process groups, it is not at all safe for individual applications to use
many groups at one time. Developers who dream of using process groups like rain-
drops are probably not being at all realistic about the costs of the mechanisms they
are invoking, and will surely end up with applications that either do not work at all,
or perform poorly.

13.1 Causal Communication Outside of a Process Group

Although there are sophisticated protocols in guaranteeing that causality will be
respected for arbitrary communication patterns, the most practical solutions gener-
ally confine concurrency and associated causality issues to the interior of a process
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Fig. 13.1 In the replication protocol used by Ladin and Liskov in the Harp system, vector times-
tamps are used to track causal multicasts within a server group. If a client interacts with a server
in that group, it does so using a standard RPC protocol. However, the group timestamp is included
with the reply and can be presented with a subsequent request to the group. This permits the group
members to detect missing prior multicasts and to appropriately delay a request, but omits the
client’s point-to-point messages from the causal state of the system. Such tradeoffs between prop-
erties and cost seem entirely appropriate, because an attempt to track causal order system-wide
can result in significant overheads. A system such as the Isis Toolkit, which enforces causal order
even for point-to-point message passing, generally do so by delaying after sending point-to-point
messages until they are known to be stable—a simple and conservative solution that avoids the
need to represent ordering information for such messages

group—for example, at the end of Sect. 12.3, we briefly cited the replication proto-
col of Ladin and Liskov (see Ladin et al. 1992; Liskov et al. 1991). This protocol
transmits a timestamp to the client, and the client later includes the most recent of the
timestamps it has received in any requests it issues to the group. The group members
can detect causal ordering violations and delay such a request until causally prior
multicasts have reached their destinations, as seen in Fig. 13.1.

An alternative is to simply delay messages sent out of a group until any causally
prior multicasts sent within the group have become stable—in other words, have
reached their destinations. Since there is no remaining causal ordering obligation in
this case, the message need not carry causality information. Moreover, such an ap-
proach may not be as costly as it sounds, for the same reason that the flush protocol
introduced earlier turns out not to be terribly costly in practice: Most asynchronous
CausalSend or Send messages become stable shortly after they are issued—long
before any reply is sent to the client. Thus, any latency is associated with the very
last multicasts to have been initiated within the group, and will normally be small.
We will see how this can benefit the cloud computing developer in Chap. 15, which
discusses the use of group communication in support of data replication in the vari-
ous tiers of cloud services. As we will see, one can use Send together with Flush for
replication in the first tier of the cloud, because applications running in that tier are
required to be stateless and hence the stronger guarantees one associates with Safe-
Send (Paxos) simply do not have any value. In contrast, one would use SafeSend
for services running deeper in the cloud that maintain durable state across failures
and need to ensure that any updates are delivered in a durable manner. Interestingly,
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Send with a Flush prior to replying to the end-user scales extremely well, and yields
a way to offer consistency in the first tier: an exciting option, especially when com-
pared with the very weak guarantees associated with the BASE alternative.

There has been some work aimed at promoting causal order as a system-wide
guarantee, applying to point-to-point communication as well as multicasts. Unfor-
tunately, representing such ordering information requires a matrix of size O(n2) in
the size of the system (one for each sender-receiver pair). Moreover, this type of
ordering information is only useful if messages are sent asynchronously (without
waiting for replies). But, if this is done in systems that use point-to-point communi-
cation, there is no obvious way to recover if a message is lost (when its sender fails)
after subsequent messages (to other destinations) have been delivered. Cheriton and
Skeen discuss this form of all-out causal order in a well-known paper and con-
clude that it is probably not desirable (see Birman 1994; Cheriton and Skeen 1993;
Cooper 1994; Schiper et al. 1989, 2003; van Renesse 1993). If point-to-point mes-
sages are treated as being causally prior to other messages, it is best to wait until
they have been received before sending causally dependent messages to other desti-
nations.1 (We will discuss Cheriton and Skeen’s paper in Chap. 15.)

Early versions of the Isis Toolkit solved this problem without actually represent-
ing causal information at all, although later work replaced this scheme with one that
waits for point-to-point messages to become stable (see Birman and Joseph 1987b;
Birman et al. 1991). The approach was to piggyback pending messages (those that
are not known to have reached all their destinations) on all subsequent messages,
regardless of their destination (Fig. 13.2)—that is, if process p has sent multicast m1
to process group G and now wishes to send a message m2 to any destination other
than group G, a copy of m1 is included with m2. By applying this rule system-
wide, p can be certain that if any route causes a message m3, causally dependent
upon m1, to reach a destination of m1, a copy of m1 will be delivered too. A back-
ground garbage collection algorithm is used to delete these spare copies of messages
when they do reach their destinations, and a simple duplicate suppression scheme
is employed to avoid delivering the same message more than once if it reaches a
destination several times.

This scheme may seem wildly expensive, but it rarely sends a message more
than once in applications that operate over Isis. One important reason for this is that
Isis has other options available for use when the cost of piggybacking becomes too
high—for example, instead of sending m0 piggybacked to some destination far from
its true destination, q , any process can simply send m0 to q , in this way making it
stable. The system can also wait for stability to be detected by the original sender,
at which point garbage collection will remove the obligation. Additionally, notice
that m0 only needs to be piggybacked once to any given destination. In Isis, which
typically runs on a small set of servers, this meant that the worst case is just to

1Notice that this issue does not occur for communication to the same destination as for the point-
to-point message: One can send any number of point-to-point messages or individual copies of
multicasts to a single process within a group without delaying. The requirement is that messages
to other destinations be delayed until these point-to-point messages are stable.



13.2 Extending Causal Order to Multigroup Settings 411

Fig. 13.2 After sending m0 asynchronously to q,p sends m1 to r . To preserve causality, a copy
of m0 is piggybacked on this message. Similarly, when r sends m3 to q a copy of m0 is included.
q will receive m0 by the first causal path to reach it. A background garbage collection algorithm
cleans up copies of messages that have become stable by reaching all of their destinations. To avoid
excessive propagation of messages, the system always has the alternative of sending a message
directly to its true destination and waiting for it to become stable, or it can simply wait until the
message reaches its destinations and becomes stable

piggyback the message once to each server. For all of these reasons, the cost of
piggybacking is never excessive in the Isis Toolkit. This original Isis algorithm also
has the benefit of avoiding any potential gaps in the causal communication order: If
q has received a message that was causally after m1, then q will retain a copy of m1
until m1 is safe at its destinations.

On the other hand, we are not aware of any system other than that early ver-
sion of Isis in which piggybacking was viewed as a serious option for implement-
ing CausalSend, and as noted below, many modern group communication systems
(including Isis2) limit the developer to a choice between Send, OrderedSend and
SafeSend, treating CausalSend as a kind of exotic novelty. The bottom line is that
most developers understand these three options easily. No matter how one imple-
ments CausalSend, the issue still remains of whether end-users will find it equally
easy and natural to work with, and the evidence tends to suggest that they do not.

13.2 Extending Causal Order to Multigroup Settings

Additional issues occur when groups can overlap. Suppose that a process sends or
receives multicasts in more than one group—a pattern that is commonly observed
in complex systems that make heavy use of group computing. Just as we asked how
causal order can be guaranteed when a causal path includes point-to-point messages,
we can also ask how causal and total order can be extended to apply to multicasts
sent in a series of groups.

Consider first the issue of causal ordering. If process p belongs to groups g1
and g2, one can imagine a chain of multicasts that includes messages sent asyn-
chronously in both groups—for example, perhaps we will have m1 → m2 → m3,
where m1 and m3 are sent asynchronously in g1 and m2 is sent asynchronously
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Fig. 13.3 Message m3 is
causally ordered after m1,
and therefore may need to be
delayed upon reception if m1
has not yet been delivered
when m3 is received

in g2. Upon receipt of a copy of m3, a process may need to check for and detect
causal ordering violations, delaying m3 if necessary until m1 has been received. Ac-
tually, this example illustrates two problems, since we also need to be sure that the
delivery atomicity properties of the system extend to sequences of multicasts sent
in a different group. Otherwise, scenarios can occur whereby m3 becomes causally
orphaned and can never be delivered.

In Fig. 13.3, for example, if a failure causes m1 to be lost, m3 can never be deliv-
ered. There are several possibilities for solving the atomicity problem, which lead
to different possibilities for dealing with causal order. A simple option is to delay
a multicast to group g2 while there are causally prior multicasts pending in group
g1. In the example, m2 would be delayed until m1 becomes stable. Most existing
process group systems use this solution, which is called the conservative scheme. It
is simple to implement and offers acceptable performance for most applications. To
the degree that overhead is introduced, it occurs within the process group itself and
hence is both localized and readily measured.

Less-conservative schemes are riskier in the sense that safety can be compro-
mised when certain types of failure occur and they require more overhead; this
overhead is less localized and consequently harder to quantify—for example, a
k-stability solution might wait until m1 is known to have been received at k + 1
destinations. The multicast will now be atomic provided that no more than k simul-
taneous failures occur in the group. However, we now need a way to detect causal
ordering violations and to delay a message that arrives prematurely to overcome
them.

One option is to annotate each multicast with multiple vector timestamps. This
approach requires a form of piggybacking: Each multicast carries with it only times-
tamps that have changed or (if timestamp compression is used) only those with fields
that have changed. Stephenson has explored this scheme and related ones and has
shown that they offer general enforcement of causality at low average overhead. In
practice, however, I am not aware of any systems that implement this method, ap-
parently because the conservative scheme is so simple and because of the risk of a
safety violation if a failure causes k processes to fail simultaneously.

Another option is to use the Isis style of piggybacking CausalSend implementa-
tion. Early versions of the Isis Toolkit employed this approach, and, as noted earlier,
the associated overhead turns out to be fairly low. The details are essentially identi-
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Fig. 13.4 Overlapping process groups, seen from above and in a time-space diagram. Here, m0
was sent to {p,q},m1 to {q, r} and so forth, and since each group received only one message,
there is no ordering requirement within the individual groups. Thus, an OrderedSend protocol
would never delay any of these messages. But one can deduce a global ordering for the multicasts.
Process p sees m0 after m3, q sees m0 before m1, r sees m1 before m2, and s sees m2 before m3.
This global ordering is thus cyclic, illustrating that many of our OrderedSend ordering algorithms
provide locally total ordering but not globally total ordering

cal to the method presented in Sect. 12.3. This approach has the advantage of also
providing atomicity, but it has the disadvantage of having unpredictable costs.

In summary, there are several possibilities for enforcing causal ordering in multi-
group settings. One should ask whether the costs associated with doing so are rea-
sonable. The consensus of the community has tended to accept costs that are limited
to within a single group (i.e., the conservative mode delays) but not costs that are
paid system-wide (such as those associated with piggybacking vector timestamps or
copies of messages). Even the conservative scheme, however, can be avoided if the
application does not actually need the guarantee that this provides. Thus, the appli-
cation designer should start with an analysis of the use and importance of multigroup
causality before deciding to assume this property in a given setting.

13.3 Extending Total Order to Multigroup Settings

The total ordering protocols presented in Sect. 12.3 guarantee that messages sent in
any one group will be totally ordered with respect to one another. However, even if
the conservative stability rule is used, this guarantee does not extend to messages
sent in different groups but received at processes that belong to both. Moreover, the
local versions of total ordering permit some surprising global ordering problems.
Consider, for example, multicasts sent to a set of processes that form overlapping
groups, as shown in Fig. 13.4. If one multicast is sent to each group, we could easily
have process q receive m1 followed by m2, process r receive m2 followed by m3,
process s receive m3 followed by m4, and process s receive m4 followed by m1.
Since only a single multicast was sent in each group, such an order is total if only
the perspective of the individual group is considered. Yet this ordering is clearly
cyclic in a global sense.
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A number of schemes for generating a globally acyclic total ordering are known,
and indeed one could have qualms about the use of the term “total” for an ordering
that now turns out to sometimes admit cycles. Perhaps it would be best to say that
previously we identified a number of methods for obtaining locally total multicast
ordering whereas now we consider the issue of globally total multicast ordering.

The essential feature of the globally total schemes is that the groups within which
ordering is desired must share some resource that is used to obtain the ordering
property—for example, if a set of groups shares the same ordering token, the or-
dering of messages assigned using the token can be made globally total as well as
locally total. Clearly, however, such a protocol could be costly, since the token will
now be a single bottleneck for ordered multicast delivery.

In the Psync system an ordering scheme that uses multicast labels was first
introduced (see Peterson 1987; Peterson et al. 1989a); soon after, variations of
this were proposed by the Transis and Totem systems (see Amir et al. 1992b;
Melliar-Smith and Moser 1989). All of these methods work by using some form
of unique label to place the multicasts in a total order determined by their labels.
Before delivering such a multicast, a process must be sure it has received all other
multicasts that could have smaller labels. The latency of this protocol is thus prone
to rise with the number of processes in the aggregated membership of groups to
which the receiving process belongs.

Each of these methods, and in fact all methods with which the author is familiar,
has performance that degrades as a function of scale. The larger the set of processes
over which a globally total ordering property will apply, the more costly the ordering
protocol. When deciding if globally total ordering is warranted, it is therefore useful
to ask what sort of applications might be expected to notice the cycles that a local
ordering protocol would allow. The reasoning is that if a cheaper protocol is still ad-
equate for the purposes of the application, most developers would favor the cheaper
protocol. In the case of globally total ordering, there are very few applications that
really need this property.

Indeed, the following explanation is the only good example of which this author
is aware in which locally total order is inadequate and globally total order is conse-
quently needed. Louise Moser and Michael Melliar Smith first suggested it. Suppose
that we wish to solve the dining philosophers’ problem. In this problem, which is a
classical synchronization problem well known to the distributed system community,
a group of philosophers gather around a table. Between each pair of philosophers is
a single shared fork, and at the center of the table is a plate of pasta. In order to eat, a
philosopher must have one fork in each hand. The life of a philosopher is an infinite
repetition of the sequence think, pick up forks, eat, put down forks. Our challenge is
to implement a protocol that solves this problem and avoids deadlock.

Now, imagine that the processes in our example are the forks and that the multi-
casts originate in philosopher processes arrayed around the table. The philosophers
can thus request their forks by sending totally ordered multicasts to the process
group of forks to their left and right (in effect we are creating a kind of chain of
groups of 3 replicas around the table).
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Before we look closely at the issue this creates, it may be helpful to understand
that this specific pattern, in which we arrange a potentially large set of processes
into a ring, and then replicate data or other information at subsets of three is a very
common one in the cloud. As mentioned in the early chapters of the text, this arises
because in many cloud systems, we need to manage really huge data sets. For fault-
tolerance one needs a degree of replication, but any single data item is often safe if
we just replicate it with one or two backups. In such cases cloud systems often use
what they call sharding: each data item is considered to have some sort of name,
or key, and we use the key to map the item to a set of 2 or 3 processes within the
larger group. These sets can overlap, and the replicas do not need to be next to one-
another, although in many systems, purely for convenience, they are picked to be
adjacent. Thus, in a distributed hash table (DHT), we might map our processes to
random locations in a virtual key-space and form it into a ring, but in a replicated
process group, we could just use the index of the process within the membership
list as a kind of ring-partitioning rule (in either case, when membership changes,
shards often must be copied around to ensure that the right processes have the right
data). However one implements, them kinds of scheme make it easy to figure out
which processes to talk to when updating or querying a particular data item: with
group membership, one knows immediately; with a DHT (like Chord or Amazon’s
Dynamo) it may require a logarithmic search.

So now we have mapped Dining Philosophers onto a shared cloud-style stor-
age structure. In this setup, it is easy to see that if forks are granted in the order
that the requests arrive, a globally total order avoids deadlock, but a locally total
order is deadlock prone. Presumably, there is a family of multigroup locking and
synchronization protocols for which similar results would hold. However, to repeat
the point made above, the author has never encountered a real-world application
in which globally total order is needed. This being the case, such strong ordering
should perhaps be held in reserve as an option for applications that specifically re-
quest it, but not as a default. If globally total order were as cheap as locally total
order, the conclusion would be reversed.

In today’s cloud, with very weak consistency, this concern is hardly worth dis-
cussing. But one can imagine that in the future, if cloud systems offer stronger con-
sistency, the question might begin to matter. After all, not every group will be huge,
so while the deadlock scenario we have outlined is probably very unlikely in a large
group, it is not hard to see how it could arise with, say, 3 shard groups in a ring that
might have a total of perhaps just 4 or 5 processes! Thus, this is the kind of issue
that future cloud developers may need to be aware of.

13.4 Causal and Total Ordering Domains

We have seen that when ordering properties are extended to apply to multiple heavy-
weight groups, the costs of achieving ordering can rise substantially. Sometimes,
however, such properties really are needed, at least in subsets of an application. If
this occurs, one option may be to provide the application with control over these
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costs by introducing what are called causal and total ordering domains. Such a do-
main would be an attribute of a process group: At the time a group is created, it
would be bound to an ordering domain identifier, which remains constant thereafter.
We can then implement the rule that when two groups are in different domains, mul-
ticast ordering properties do not need to hold across them—for example, if group
g1 and group g2 are members of different ordering domains, the system could ig-
nore causal ordering between multicasts sent in g1 and multicasts sent in g2. More
general still would be a scheme in which a domain is provided for each type of
ordering: Two groups could then be in the same causal ordering domain but be in
different total ordering domains. Implementation of ordering domains is simple if
the corresponding multi-group ordering property is available within a system—for
example, if group g1 and group g2 are members of different causal ordering do-
mains, the conservative rule would be overlooked when a process switched from
sending or receiving in one group to sending in the other. Delays would only occur
when two groups are explicitly placed in the same ordering domain, presumably
because the application actually requires multi-group ordering in this case.

It can be argued that the benefits associated with preserving causal order through-
out a large system, as was done in the Isis Tookit, are significantly greater than those
for supporting globally total order. The reasoning is that causal order is needed to
implement asynchronous data replication algorithms, and, since these have such a
large performance advantage over other schemes, the benefits outweigh the costs
of needing to enforce causal order across group boundaries. However, the conser-
vative causality scheme is an adequate solution to this particular problem, and has
the benefit of providing a system-wide guarantee with a local method. When com-
bined with causal domains, such a mechanism has a highly selective cost. This said,
however, it should also be noted that the flush primitive proposed earlier offers the
same benefits and is quite easy to use. Thus, many real systems opt for causal or-
dering, do not delay when sending messages outside of a group, and provide a flush
primitive for use by the application itself when causal ordering is needed over group
boundaries. Such a compromise is visible to the user and is easily understood.

Similar reasoning seems to argue against globally total order: The primitive has
a significant cost (mostly in terms of latency) and limited benefit. Thus, my work
has stopped providing this property, after initially doing so in the early versions
of the Isis Toolkit. The costs were simply too high to make globally total ordering
the default, and the complexity of supporting a very rarely used mechanism argued
against having the property at all.

13.5 Multicasts to Multiple Groups

An additional multigroup issue concerns the sending of a single multicast to a set
of process groups in a single atomic operation. Until now, such an action would re-
quire that the multicast be sent to one group at a time, raising issues of nonatomic
delivery if the sender fails midway. One can imagine solving this problem by imple-
menting a multigroup multicast as a form of nonblocking commit protocol; Schiper
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and Raynal have proposed such a protocol in conjunction with their work on the
Phoenix system (see Schiper and Raynal 1996). However, there is another option,
which is to create a new process group superimposed on the multiple destination
groups and to send the multicast in that group. Interestingly, the best implemen-
tations of a group-creation protocol require a single Send—hence, if one creates a
group, issues a single multicast in it, and then deletes the group, this will incur a
cost comparable to doing a multiphase commit over the same set of processes and
then garbage collecting after the protocol has terminated!

This last observation argues against explicit support for sending a multicast to
several groups at the same time, except in settings where the set of groups to be
used cannot be predicted in advance and is very unlikely to be reused for subse-
quent communication—that is, although the application process can be presented
with an interface that allows multicasts to be sent to sets of groups, it may be best
to implement such a mechanism by creating a group in the manner described previ-
ously. In the belief that most group communication patterns will be reused shortly
after they are first employed, such a group could then be retained for a period of time
in the hope that a subsequent multicast to the same destinations will reuse its mem-
bership information. The group can then be torn down after a period during which
no new multicasts are transmitted. Only if such a scheme is impractical would one
need a multicast primitive capable of sending to many groups at the same time, and
I am not familiar with any setting in which such a scheme is clearly not viable.

13.6 Multigroup View Management Protocols

A final issue that occurs in systems where groups overlap heavily is that our view
management and flush protocol will run once for each group when a failure or join
occurs, and our state transfer protocol will only handle the case of a process that
joins a single group at a time. Clearly, these will be sources of inefficiency (in the
first case) and inconvenience (in the second case) if group overlap is common. This
observation, combined with the delays associated with conservative ordering algo-
rithms and the concerns raised above in regard to globally total order, has motivated
research on methods of collapsing heavily overlapped groups into smaller numbers
of larger groups. Such approaches are often described as resulting in lightweight
groups, because the groups seen by the application typically map onto some enclos-
ing set of heavyweight groups.

Glade explored this approach in Isis and Horus (see Glade et al. 1993). His
work supports the same process group interfaces as for a normal process group, but
maps multicasts to lightweight groups into multicasts to the enclosing heavyweight
groups. Such multicasts are filtered on arrival, so that an individual process will
only be given copies of messages actually destined for it. The approach essentially
maps the fine-grained membership of the lightweight groups to a coarser-grained
membership in a much smaller number of heavyweight groups.

The benefit of Glade’s approach is that it avoids the costs of maintaining large
numbers of groups (the membership protocols run just once if a process joins or
leaves the system, updating multiple lightweight groups in one operation). More-
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over, the causal and total ordering guarantees of our single-group solutions will now
give the illusion of multigroup causal and total ordering, with no changes to the pro-
tocols themselves. Glade argues that when a system produces very large numbers
of overlapping process groups, there are likely to be underlying patterns that can be
exploited to efficiently map the groups to a small number of heavyweight ones.

13.7 Related Reading

On multiple groups in Isis (see Birman and Joseph 1987b; Birman et al. 1991, 1994,
1999, 2010).

On communication from a nonmember of a group to a group (see Birman and
Joseph 1987b; Wood 1993).

On graph representations of message dependencies (see Amir et al. 1992b;
Melliar-Smith and Moser 1989; Peterson 1987; Peterson et al. 1989a, 1989b).

On lightweight process groups (see Glade et al. 1993).



14The Virtual Synchrony Execution Model

We finally have the basics out of the way and can put things together into a com-
prehensive platform for group communication! The process group communication
primitives introduced in the previous chapters create a powerful framework for
algorithmic development. When the properties of the model are combined with
these primitives, we will say that a virtually synchronous execution environment
results (see Birman and Joseph 1987a, 1987b; Birman and van Renesse 1994). In
Chaps. 10–12 of the book we built up our primitives from basic message passing, but
for this chapter, it is probably easier to understand the idea behind virtual synchrony
in a top-down treatment. We will then use the approach to develop an extremely
high performance replicated data algorithm, as well as several other tools for con-
sistent distributed computing. Here, we explore the question in a slightly informal
way; Appendix A shows how the same concepts can be expressed using a more
mathematical notation.

14.1 Virtual Synchrony

Suppose that we want to use a process group (or a set of process groups) as a build-
ing block in a distributed application. The group members will join that group for
the purpose of cooperation, perhaps to replicate data or to perform some operation
in a fault-tolerant manner. The issue now arises of designing such algorithms with a
high degree of confidence that they will operate correctly.

Recall the discussion of transactional serializability from Sects. 7.4 and 7.5. In
that context, we encountered a similar problem: a set of concurrently executed pro-
grams that share files or a database and want to avoid interference with one another.
The basic idea was to allow the developer to code these applications as if they would
run in isolation, one by one. The database itself is permitted to interleave operations
for greater efficiency, but only in ways that preserve the illusion that each transac-
tion executes without interruption. The results of a transaction are visible only after
it commits; a transaction that aborts is automatically and completely erased from
the memory of the system. As we noted at the time, transactional serializability al-
lows the developer to use a simple programming model, while offering the system
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Fig. 14.1 Closely synchronous execution: All group members see the same events (incoming
messages and new group views) in the same order. In this example only the nonmembers of the
group send multicasts to it, but this is just to keep the picture simple. In practice, group members
can also multicast to one another, and can send point-to-point messages to the nonmembers—for
example, a group RPC could be performed by sending a multicast to the group, to which one or
more members reply

an opportunity to benefit from high levels of concurrency and asynchronous com-
munication.

Virtual synchrony is not based on transactions, but introduces a similar approach
for developers who are programming with process groups. In the virtual synchrony
model, the simplifying abstraction seen by the developer is that of a set of processes
(the group members) which all see the same events in the same order. These events
are incoming messages to the group and group membership changes. The key in-
sight, is not particularly profound: Since all the processes see the same inputs, they
can execute the same algorithm and in this manner stay in consistent states. This
is illustrated in Fig. 14.1, which shows a process group receiving messages from
several nonmembers. It then has a new member join and transfers the state of the
group to this new member. Having completed the transfer, one of the old members
crashes or terminates (this can accidentally, but would also occur when migrating
a task from p0 to p2). Notice that the group members see identical sequences of
events while they belong to the group. The members differ, however, in their rela-
tive ranking within the group membership. There are many possible ways to rank
the members of a group, but the most common one, which is used in this chapter,
assumes that the rank is based on when members joined—the oldest member having
the lowest ranking, and so forth.

The State Machine approach of Lamport and Schneider first introduced this ap-
proach as part of a proposal for replicating objects in settings subject to Byzan-
tine failures (see Schneider 1988, 1990). Lamport’s work made a group of identical
replicas of the object in question, and used the Byzantine protocol for all interac-
tions with the group and to implement its interactions with the external world. How-
ever, the State Machine approach saw little use when it was first proposed for the
same reason that the Byzantine protocol sees limited practical use: Few computing
environments satisfy the necessary synchronous computing and communications
requirements, and it is difficult to utilize a service that employs a Byzantine fault
model without extending the same approach to other aspects of the environment,
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such as any external objects with which the service interacts and the operating sys-
tems software used to implement the communication layer.

A further concern about the State Machine approach arises because all copies
of the program see identical inputs in exactly the identical order, and execute each
request in exactly the same state. If one copy of a program crashes because of a soft-
ware bug, so will all the replicas of that program. Unfortunately, as we saw earlier,
studies of real-world computing installations reveal that even in mature software
systems, bugs that crash the application remain a proportionately important cause
of failures. Thus, by requiring correct processes that operate deterministically and in
lockstep, the State Machine approach is unable to offer protection against software
faults.

Virtual synchrony is similar to the State Machine abstraction, but it moves outside
of the original Byzantine setting, while also introducing optimizations that over-
come the concerns mentioned previously. The idea is to view the State Machine as a
sort of reference model but to implement it in a way that yields better performance
and requires less of the environment. The effect of these optimizations is that the true
execution of a process group will be very far from the kind of lockstep synchrony
that could cause trouble. In effect, just as transactional executions allow operations
to be interleaved, provided that the behavior is indistinguishable from some serial
execution, a virtually synchronous execution allows operations to be interleaved,
provided that the result is indistinguishable from some closely synchronous (State
Machine) execution. The benefit of this approach is that the executions of the dif-
ferent replicas will often be different enough to let the group as a whole tolerate
software bugs that cause individual members to crash.

To take a very simple example, suppose that we wish to support a process group
whose members replicate some form of database and perform load-balanced queries
upon it. The operations on the service will be queries and updates, and we will
overlook failures (for the time being) to keep the problem as simple as possible.

Next, suppose that we implement both queries and database updates as totally or-
dered multicasts to the group membership. Every member will have the same view
of the membership of the group, and each will see the same updates and queries
in the same order. By simply applying the updates in the order they were received,
the members can maintain identically replicated copies of the database. As for the
queries, an approximation of load-balancing can be had using the ranking of pro-
cesses in the group view. For example, suppose that the process group view ranks the
members in [0 . . . n−1]. Then the ith incoming query can be assigned to the process
whose rank is (i mod n). Each query will be handled by exactly one process.

We will call this a closely synchronous execution. Frank Schmuck was the first to
propose this term, observing that the actions of the receiving processes were closely
synchronized but might be spread over a significant period of real time. The syn-
chronous model, as discussed previously, would normally require real-time bounds
on the time period over which an action is performed by the different processes.
Notice that a closely synchronous execution does not require identical actions by
identical processes: If we use the load-balancing idea outlined above, actions will
be quite different at the different copies. Thus, a closely synchronous group is simi-
lar to a group that uses State Machine replication, but it is not identical.
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Having developed this solution, however, there will often be ways to weaken the
ordering properties of the protocols it uses—for example, it may be the case that
updates are only initiated by a single source, in which case an Send protocol would
be sufficient to provide the desired ordering. Updates will no longer be ordered with
respect to queries if such a change is made, but in an application where a single
process issues an update and follows it with a query, the update would always be
received first and hence the query will reflect the result of doing the update. In a
slightly fancier setting, CausalSend might be needed to ensure that the algorithm
will operate correctly—for example, with CausalSend one would know that if an
application issues an update and then tells some other process to do a query, that
second process will see the effects of the causally prior updates. Often, an analysis
such as this one can be carried very far.

Having substituted Send or CausalSend for the original OrderedSend, however,
the execution will no longer be closely synchronous, since different processes may
see different sequences of updates and queries and hence perform the same actions
but in different orders. The significant point is that if the original analysis was per-
formed correctly, the actions will produce an effect indistinguishable from what
might have resulted from a closely synchronous execution. Thus, the execution ap-
pears to be closely synchronous, even though it actually is not. It is virtually syn-
chronous in much the same sense that a transactional system creates the illusion of
a serial execution even though the database server is interleaving operations from
different transactions to increase concurrency—one might say that a transactional—
system is “virtually serial.”

Our transformation has the advantage of delivering inputs to the process group
members in different orders, at least some of the time. Moreover, as we saw earlier,
the process groups themselves are constructed dynamically, with processes joining
them at different times. Also, the ranking of the processes within the group differs.
Thus, there is substantial room for processes to execute in slightly different ways,
affording a degree of protection against software bugs that could crash some of the
members.

Recall the Gray/Lindsey characterization of Bohrbugs and Heisenbugs from
Chap. 9. It is interesting to note that virtually synchronous replication can protect
against many Heisenbugs (see Birman and van Renesse 1994, 1996). If a replica
crashes because such a bug has been exercised, the probability that other group
members will crash simultaneously is reduced by the many aspects of the exe-
cution that differ from replica to replica. Our transformation from a closely syn-
chronous system to a virtually synchronous system increases the natural resiliency
of the group, assuming that its constituent members are mature, well-debugged
code. Nonetheless, some exposure to correlated failures is unavoidable, and the de-
signer of a critical system should keep this in mind.

Additionally, notice that the CausalSend primitive can be used asynchronously:
There is no good reason for a process that issues a CausalSend to perform an update
to wait until the update has been completed by the full membership of the group. The
properties of the CausalSend protocol ensure that these asynchronously transmitted
messages will reliably reach their destinations and that any causally subsequent ac-
tions by the same or different processes will see the effects of the prior CausalSends.
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In an intuitive sense, one could say that these CausalSend protocols look as if they
were performed instantly, even when they actually execute over an extended period
of time.

In practice, the most common transformation that we will make is precisely the
approach just described: the replacement of a totally ordered OrderedSend primi-
tive with an asynchronous, causally ordered CausalSend primitive. In the following
sections, this pattern will occur repeatedly.

Notice that in weakening the degree of synchronization within the group, we also
transformed a closely synchronous group application, in which the members oper-
ate largely in lockstep, into a very asynchronous implementation in which some
members can pull ahead and others can lag behind, communication can occur con-
currently with other execution, and the group may be able to tolerate software bugs
that crash some of its members. Such scheduling flexibility often translates to bet-
ter overall performance, and weaker multicast primitives are also much faster than
the more strongly ordered ones. Thus, our solution is likely to be far faster than the
original closely synchronous one.

When an application has multiple process groups in it, an additional level of
analysis is often required. As we saw in the previous chapter, multigroup causal
(and total) ordering is expensive. When one considers real systems, it also turns out
that multigroup ordering is often unnecessary: Many applications that need multiple
groups use them for purposes that are fairly independent of one another. Operations
on such independent groups can be thought of as commutative, and it may be pos-
sible to use CausalSend to optimize such groups independently without taking the
next step of enforcing causal orderings across groups. Where multigroup ordering
is needed, it will often be confined to small sets of groups, which can be treated
as an ordering domain. In this manner, we obtain a general solution that can scale
to large numbers of groups while still preserving the benefits of the asynchronous
communication pattern seen in the CausalSend protocol.

Our overall approach is less effective when strong durability (safe delivery) is
required. The problem arises because asynchronous CausalSend delivers messages
during its first phase of communication, pretty much as soon as the multicast can
reach its destination. In contrast, a strongly durable protocol will necessarily delay
delivery until a second phase because we need to be certain that all processes in the
system have received a copy before any process is permitted to deliver the message.
Once we have given up on quick delivery, the benefit of replacing OrderedSend with
CausalSend has been lost.

Thus, one begins to see a major split between the algorithms that operate syn-
chronously, requiring more than a single phase of message passing before delivery
can occur, and those that operate asynchronously, allowing the sender of a multicast
to continue computing while multicasts that update the remainder of a group or that
inform the remainder of the system of some event propagate concurrently to their
destinations. The split corresponds to an enormous performance difference, with
asynchronous algorithms frequently outperforming their more synchronous siblings
by several orders of magnitude. In effect, the asynchronous protocols can run as
fast as the network is able to “pipeline” data from sources to destinations, while
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the synchronous ones are limited by the slowest round-trip times in the system as a
whole!

The following is a summary of the key elements of the virtual synchrony model:
• Support for process groups: Processes can join groups dynamically and are auto-

matically excluded from a group if they crash.
• Identical process group views and mutually consistent rankings: Members of

a process group are presented with identical sequences of group membership,
which we call views of that process group. If a nonprimary component of the
system forms after a failure, any process group views reported to processes in
that component are identified as nonprimary, and the view sequence properties
will otherwise hold for all the processes in a given component. The view ranks
the components, and all group members see identical rankings for identical group
views.

• State transfer to the joining process: A process that joins a group can obtain the
group’s current state from some prior member or from a set of members.

• A family of reliable, ordered multicast protocols: We have seen a number of these,
including Send, CausalSend, OrderedSend, and SafeSend, together with a group
Flush primitive.

• Gap-freedom guarantees: After a failure, if some message, mj , is delivered to its
destinations, then any message, mi , that the system is obliged to deliver prior to
mj will also have been delivered to its destinations.

• View-synchronous multicast delivery: Any pair of processes that are both mem-
bers of two consecutive group views receive the same set of multicasts during the
period between those views.1

• Use of asynchronous, causal, or FIFO multicast: Although algorithms will of-
ten be developed using a closely synchronous computing model, a systematic
effort is made to replace synchronous, totally ordered, and strongly durable (safe)
multicasts with less synchronous, less-costly alternatives—notably the Send,
CausalSend or OrderedSend primitive, none of which guarantee durability, fol-
lowed by a call to Flush, which will delay the computation until any prior mul-
ticasts have become durable. In effect, we have deconstructed SafeSend into one
or more multicasts followed by a pause until safety is achieved. As we will see in
Chap. 15, this approach is ideally matched to the needs of modern cloud comput-
ing systems.

14.2 Extended Virtual Synchrony

Even before launching into a brief discussion of tolerating partitioning events
(where a group splits into two components, perhaps because of a network failure),
we should warn the reader that what follows is a bit hard to understand and, in fact,

1In some systems this is interpreted so that if a process fails, but its failure is not reported promptly,
it is considered to have received multicasts that would have been delivered to it had it still been
operational.
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is probably not a mechanism one would really want to use except in a small cate-
gory of very demanding applications! The reader focused on high assurance Web
Services might wish to skip directly to Sect. 14.3. However, other readers have now
been warned, and with that out of the way, we tackle partitioning. Notice that, as
presented in the previous section, the virtual synchrony model is intolerant of par-
titioning failures: The model was defined in terms of a single system component
within which process groups reside. In this primary component approach, if a net-
work partitioning failure occurs and splits a group into fragments, only the fragment
that resides in the primary component of the system is able to continue operation.
Fragments that find themselves in the nonprimary component(s) of the system are
typically forced to shut down, and the processes within them must reconnect to the
primary component when communication is restored.

The basis of the primary component approach lies in a subtle issue, which we first
saw when discussing commit protocols. In a dynamic distributed environment there
can be symmetric failure modes resulting from communication problems that mimic
process failures. In such a situation perhaps process p will consider that process q

has failed while process q assumes that p has failed. To make progress, one or the
other (or perhaps both) of these events must become official. In a partitioned run of
the system, only one of these conflicting states can become official.

At the core of this problem is the observation that if a system experiences a par-
titioning failure, it is impossible to guarantee that multiple components can remain
operational (in the sense of initiating new actions, delivering messages, and new
group views) with guarantees that also span both sides of the partition. To obtain
strong system-wide guarantees a protocol must always wait for communication to
be reestablished under at least some executions in at least one side of the partition.
When we resolve this problem using the protocols discussed in the previous chap-
ters, the primary component is permitted to make progress at the expense of incon-
sistency relative to other components: Within other components, the set of messages
delivered may be different from the set in the primary component, and the order
may also be different. In the case of the strongly durable protocols the guarantees
are stronger, but nonprimary components may be left in a state where some strongly
durable multicasts are still undelivered and where new strongly durable ones are
completely blocked. The primary component, in contrast, can make progress so long
as its GMS protocol is able to make progress.

Some researchers, notably those involved with the Transis and Totem projects,
have pointed out that there are applications that can tolerate inconsistency of the sort
that could occur if progress were permitted in a nonprimary component of a parti-
tioned system (see Agarwal 1994; Dolev et al. 1995; Malkhi 1994). In these systems,
any component that can reach internal agreement on its membership is permitted to
continue operation. However, only a single component of the system is designated
as the primary one. An application that is safe only in the primary component could
simply shut down in nonprimary components. Alternatively, the application could
remain available in nonprimary components, but buffer any update requests for de-
layed execution. Later, when the partition is repaired, these buffered requests would
be replayed, with the effect of merging information collected by the non-primary
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component back into the primary component. However, not all applications can be
designed in this manner—often, the user needs to see the effect of an update as soon
as it is requested, in which case buffering such requests is not practical.

Carrying this observation even further, the Transis group has shown that there
are distributed systems in which no component ever can be identified as the primary
one, and yet every action initiated within the system can eventually be performed in
a globally consistent manner (see Dolev et al. 1995; Keidar 1998, 2010; Chockler et
al. 2001). However, this work involves both a static system model and a relatively
costly protocol, which delays performing an action until a majority of the processes
in the system as a whole have acknowledged receipt of it. The idea is that actions
can be initiated within dynamically defined components, which represent subsets of
the true maximal system configuration, but these actions remain in a pending state
until a sufficient number of processes are known to have seen them, which occurs
when communication is restored between components. Eventually, knowledge of
the actions reaches enough processes so that it becomes safe to perform them. The
protocol is intended for systems that operate in a partitioned mode over very long
periods of time and where there is no special hurry to perform actions. Yair Amir
has extended this approach to deal with more urgent actions, but his approach in-
volves weakening global consistency properties (see Amir 1995). Thus, one is faced
with a basic tradeoff between ensuring that actions will occur quickly and providing
consistency between the primary component of the system and other components.
We can have one or the other, but not both at once.

Cornell’s Horus and Ensemble systems support an extended model of the former
sort (see Malkhi 1994). (In fact, this part of Horus was actually implemented by
Malkhi, who ported the associated code from Transis into Horus, and then the code
was used as the basis for the Ensemble version, which is coded in the O‘CaML
language.) However, many users complain that the extended model is quite a bit
harder to work with than the primary partition model. The merge of states when an
arbitrary application resumes contact between a nonprimary and a primary compo-
nent cannot, in general, be automated. In practice, such an application would use the
buffered update approach just described, capturing any update actions on a queue.
When a merge becomes possible, a process that joins the primary partition would
replace its state with that of the primary component and then replay these updates,
if any, for the benefit of the entire group. Experience with Horus and Ensemble
suggests that very few applications can operate this way. Moreover, unless strongly
durable protocols are employed for updates, the nonprimary component’s state may
be inconsistent with the primary one in significant ways.

On the other hand, the primary component model is awkward in wide area net-
works where partitioning events occur more easily (see Fig. 14.2). Here, the model
will in effect shut down parts of the overall system that are physically remote from
the main part of the system. Each time these parts manage to restart after a commu-
nication failure, a new communication problem may soon cut them off again. (See
Fig. 14.3.)

Recent work, which we will not discuss in detail, points to yet a third possible
mode of operation. In this mode, a computing system would be viewed as a wide
area network composed of interconnected local area networks, as was first proposed
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Fig. 14.2 When a partitioning failure occurs, an application may be split into two or more frag-
ments, each complete in the sense that it may potentially have a full set of processes and groups.
In the primary component model, however, only one set is permitted to remain operational—hope-
fully one that has a full complement of process and groups. In this figure, the white component
might thus be alive after the link breaks, while the members of the gray component are prevented
from continuing execution. The rationale underlying this model is that it is impossible to guarantee
consistency if both sides of a partitioning failure are permitted to remain available while a com-
munication failure is pending. Thus, we could allow both to run if we sacrifice consistency, but
then we face a number of problems: Which side owns critical resources? How can the two sides
overcome potential inconsistencies in their states as of the time of the partition failure event? There
are no good general answers to these questions

in the Transis project. Within each of the LAN systems one would run a local subsys-
tem: a complete primary-component system with its own sets of process groups and
a self-sufficient collection of services and applications. The WAN layer of the sys-
tem would be built up by superimposing a second communication structure on the
aggregate of LANs and would support its own set of WAN services. At this higher
level of the system, one would use a true asynchronous communication model: If a
partitioning event does occur, such a WAN system would wait until the problem is
resolved. The WAN system would then be in a position to make use of protocols that
do not attempt to make progress while communication is disrupted, but rather wait
as long as necessary until the exchange of messages resumes and the protocol can
be pushed forward. The consensus protocol of Chandra and Toueg or the Paxos pro-
tocols developed by Lamport are good examples of protocols one could use at the
WAN level of a system structured in this manner, while the virtual synchrony model
would be instantiated multiple times separately: once for each LAN subsystem.

In this two-tiered model (see Fig. 14.4), an application would typically be imple-
mented as a local part designed to remain available in the local component and to
reconfigure itself to continue progress despite local failures. The primary component
virtual synchrony model is ideal for this purpose. When an action is taken that has
global implications, the local part would initiate a global action by asking the WAN
architecture to communicate this message through the WAN system. The WAN sys-
tem would use potentially slow protocols, which offer strong global ordering and
atomicity properties at the expense of reduced progress when partitioning failures
occur, delivering the resulting messages back into the various local subsystems. The
local subsystems would then apply these updates to their global states.

Danny Dolev has suggested the following simple way to understand such a two-
tiered system. In his view, the LAN subsystems run applications that are either en-
tirely confined to the LAN (and have no interest in global state) or that operate by
reading the global state but updating the local state. These applications do not di-
rectly update the global system state. Rather, if an action requires that the global
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Fig. 14.3 The extended virtual synchrony model allows both white and gray partitions to continue
progress despite the inconsistencies that may occur between their states. However, only one of the
components is considered to be the primary one. Thus, the white partition might be considered to
be authoritative for the system, while the gray partition is permitted to remain alive but is known
to be potentially stale. Later, when the communication between the components is restored, the
various process group components merge, resulting in a single, larger system component with a
single instance of each process group (shown at the bottom of the figure). The problem, however,
is that merging must somehow overcome the inconsistencies that may have occurred during the
original partitioning failure, and this may not always be possible. Working with such a model is
potentially challenging for the developer. Moreover, one must ask what sorts of applications would
be able to continue operating in the gray partition knowing that the state of the system may at that
point may be inconsistent—for example, it may reflect the delivery of messages in an order that
differs from the order in the main partition, having atomicity errors or gaps in the message-delivery
ordering

Fig. 14.4 In a two-tiered model, each LAN has its own complete subsystem and runs using its own
copy of the primary-component virtual synchrony model. A WAN system (gray) spans the LANs
and is responsible for distributing global updates. The WAN layer may block while a partitioning
failure prevents it from establishing the degree of consensus needed to safely deliver updates, but
the local systems continue running even if global updates are delayed. Such a mixed approach
splits the concerns of the application into local ones, where the focus is on local consistency and
high availability, and global ones, where the focus is on global consistency even if partitioning
failures can introduce long delays. This approach is used in the Isis Toolkit’s long-haul subsystem
and was applied successfully in such Isis applications as its wide area publish-subscribe facility
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state be updated, the LAN subsystem places the associated information on a WAN
action queue, perhaps replicating this for higher availability. From that queue, the
WAN protocols will eventually propagate the action into the WAN level of the sys-
tem, from where it will filter back down into the LAN level in the form of an update
to the global system state. The LAN layer will then update its local state to reflect the
fact that the requested action has finally been completed. The LAN layer of such a
system would use the primary-component virtual synchrony model, while the WAN
layer employs protocols based on the method discussed by Keidar and Dolev.

First introduced in the Isis system’s long-haul service by Makpangou, and then
extended through Dolev and Malkhi’s work on the Transis architecture (which
has a “LANsys” and a “WANsys” subsystem), two-tier architectures such as this
have received attention in many projects and systems (see Amir et al. 2000;
Keidar et al. 2002a, 2002b; Keidar and Khazan 2002, and also Zhao et al. 2002a,
2002b, which uses a similar two-level structure, albeit for a different purpose). They
are now used in Transis, Horus, NavTech, Phoenix, and Relacs. By splitting the ap-
plication into the part that can be done locally with higher availability and the part
that must be performed globally even if availability is limited, two-tiered architec-
tures do not force a black or white decision on the developer. Moreover, a great
many applications seem to fit well with this model. It seems likely that we will soon
begin to see programming tools that encapsulate this architecture into a simple-to-
use, object-oriented framework, making it readily accessible to a wide community
of potential developers.

At the very end of Chap. 10, we discussed partitioning as an issue within the con-
text of the GMS itself. At that time we observed that although a partition-tolerant
GMS is certainly practical, it is not so clear that one should really expose the end-
user to the resulting complexity. The same issue arises here. Yes, we can build
a group communication system to tolerate partitions and support merge events—
Cornell’s Ensemble platform, in fact, does so. But users find this very hard to work
with. Systems like Horus and Spread,2 where the default behavior is to use the pri-
mary partition model are much simpler for most users. And, realistically, how often
do partitioning events occur in local area networks, where these platforms are most
commonly employed? The author of this text has slowly come to the conclusion
that partitionable group communication is just a bit too much for the average user.
Yes, there should be a way to activate such mechanisms—but only a very skilled,
knowledgeable user should ever do so!

2In fact, Spread goes further and implements a single non-partitionable “group,” within which the
user’s process groups are actually supported as subgroups. A multicast, for example, is performed
by multicasting to the whole group but then filtering messages on arrival so only the appropriate
subset of group members receive a copy. This proves to be an especially easy model to implement
and performance is good. On the other hand, the “deliver, then filter and discard” approach imposes
considerable overhead if most messages are destined for just a small subset of processes.
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14.3 Virtually Synchronous Algorithms and Tools

In the following sections, we will develop a set of simple algorithms to illustrate the
power and limitations of reliable multicast within dynamic process groups. These
algorithms are just a small subset of the ones that can be developed using the primi-
tives, and the sophisticated system designer may sometimes find a need for a causal
and total multicast primitive (cOrderedSend) or one with some other slight variation
on the properties we have focused on here. Happily, the protocols we have presented
are easily modified for special needs, and modern group communication systems,
such as the Horus system, are designed precisely to accommodate such flexibility
and fine-tuning. The following algorithms, then, should be viewed as a form of tem-
plate upon which other solutions might be developed through a process of gradual
refinement and adaptation.

14.3.1 Replicated Data and Synchronization

When discussing the static process group model, we put it to the test by using it to
implement replicated data. The reader will recall from Sect. 10.1.1 that this approach
was found to have a number of performance problems. The algorithm that resulted
would have forced group members to execute nearly in lockstep, and the protocols
themselves were costly both in latency and messages required. Virtual synchrony,
on the other hand, offers a solution to this problem that is inexpensive in all of these
aspects, provided that strong durability is not required. In fact, even when strong
durability is required, the cost is still lower than for the static, quorum-replication
methods, but the advantage is less pronounced.

We start by describing our replication and synchronization algorithm in terms of
a closely synchronous execution model. We will initially focus on the nondurable
case. Suppose that we wish to support READ, UPDATE, and LOCK operations on
data replicated within a process group. As a first approximation to a solution, we
would use OrderedSend to implement the UPDATE and LOCK operations, while
allowing any group member to perform READ operations using its local replica of
the data maintained by the group.

Specifically, we will require each group member to maintain a private replica
of the group data. When joining a group, the state transfer algorithm (developed
below) must be used to initialize the replica associated with the joining process.
Subsequently, all members will apply the same sequence of updates by tracking the
order in which UPDATE messages are delivered and respecting this order when ac-
tually performing the updates. READ operations, as suggested above, are performed
using the local replica (this is in contrast to the quorum methods, where a read must
access multiple copies).

An UPDATE operation can be performed without waiting for the group members
to actually complete the individual update actions. Instead, an OrderedSend is issued
asynchronously (without waiting for the message to be delivered), and the individual
replicas perform the update when the message arrives.
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Many systems make use of nonexclusive read locks. If necessary, these can also
be implemented locally. The requesting process will be granted the lock immedi-
ately unless an exclusive (write) lock is registered at this copy.

Finally, exclusive (write) LOCK operations are performed by issuing an Ordered-
Send to request the lock and then waiting for each group member to grant it. A re-
cipient of such a request waits until there are no pending read locks and then grants
the request in the order it was received. The lock will later be released either with
another OrderedSend message or upon reception of a new view of the process group
reporting the failure of the process that holds the lock.

This implementation of replicated data will be tolerant of failures and guarantee
the consistency of the copies. The individual replicas start in identical states because
the state transfer to a joining member copies the state of the replicated data object
from some existing member. Subsequent updates and lock operations behave iden-
tically at all copies. Thus, all see the same events in the same order, and all remain
in identical states.

Now, let us ask how many of these OrderedSend operations can be replaced with
asynchronous CausalSend operations. In particular, suppose that we replace all of
the OrderedSends with asynchronous CausalSend operations. Remarkably, with just
two small changes, the modified algorithm will be correct. The first change is that
all updates must be guarded by a lock with appropriate granularity—that is, if any
update might be in conflict with a concurrent update, we will require that the appli-
cation must use locks to obtain mutual exclusion. On the other hand, updates that are
independent can be issued concurrently—for example, updates to two different vari-
ables maintained by the same process group can be issued concurrently. In groups
where all the updates for a specific type of data originate with a single process, no
locks are required at all.

The second change is a bit more subtle: It has to do with the way that ordering is
established when a series of write locks are requested within the group. The change
is as follows. We will say that the first process to join the group, when the group is
created, is its initial writer. This process is considered to control write access to all
the data items managed by the group.

Now, before doing an update, a process will typically request a lock, sending
a CausalSend to inform the group members of its LOCK request and waiting for
the members to grant the request. In our original closely synchronous algorithm,
a recipient of such a request granted it in first-come, first-served order when no
local read-lock was pending. Our modified algorithm, however, will wait before
granting lock requests. They simply pile up in a queue, ordered in whatever order
the CausalSend messages were delivered.

When the writer for a given lock no longer needs that lock, we will say that it
becomes prepared to pass the lock. This process will react to incoming lock requests
by sending out a CausalSend that grants the first lock request on its copy of the
queue. The grant message will be delivered to all group members. Once the grant
message is received, a member dequeues the corresponding lock request (the causal
ordering properties ensure that the request will indeed be found on the pending lock-
request queue) and then grants it when any read locks present for the same item have
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Fig. 14.5 A set of conflicting updates is ordered because only one process can write at a time.
Each update, and the lock-granting message, is an asynchronous CausalSend. Because the causal
order is in fact a total one along this causal path (shown in bold), all group members see the same
updates in the same order. Lock requests are not shown, but they too would be issued using an
asynchronous CausalSend. Notice that lock requests will not be seen in the same order by all
processes, but this is not required for the algorithm to behave correctly. All that matters is that the
grant operation grant a currently pending lock request, and, in this algorithm, all processes do have
a way to track the pending requests, even though they may learn about those requests in different
orders

been released. A writer grants the lock to the process that issued the oldest of the
pending lock requests on its version of the lock queue.

Having obtained a grant message for its lock request, as well as individual confir-
mation messages from each group member that the lock has been acquired locally,
the writer may begin issuing updates. In many systems the local read-lock mecha-
nism will not be required, in which case the members need not confirm write-lock
acquisition, and the writer need not wait for these messages. The members simply
dequeue the pending lock request when the grant message arrives, and the writer
proceeds to issue updates as soon as it receives the grant message.

It may at first seem surprising that this algorithm can work: Why should it ensure
that the group members will perform the same sequence of updates on their replicas?
To understand this, start by noticing that the members actually might not perform
identical sequences of updates (Fig. 14.5). However, any sequence of conflicting
updates will be identical at all replicas, for the following reason: Within the group,
there can be only one writer that holds a given lock. That writer uses CausalSend
(asynchronously) to issue updates and uses CausalSend (asynchronously) to grant
the write lock to the subsequent writer. This establishes a total order on the updates:
One can imagine a causal path traced through the group, from writer to writer, with
the updates neatly numbered along it—the first update, the second, the granting of
the lock to a new writer, the third update, the granting of the lock to a new writer,
the fourth update, and so forth. Thus, when CausalSend enforces the delivery order,
any set of updates covered by the same lock will be delivered in the same order to
all group members.

As for the nonconflicting updates: These commute with the others and hence
would have had the same effect regardless of how they were ordered. The ordering
of updates is thus significant only with respect to other conflicting updates.
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Finally, the reader may have noticed that lock requests are not actually seen in
the same order by each participant. This is not a problem, however, because the
lock-request order is not used in the algorithm. As long as the grant operation grants
a request that is genuinely pending, the algorithm will work.

The remarkable thing about this new algorithm is that it is almost entirely asyn-
chronous. Recall that our CausalSend protocol delivers messages in the same view
of the process group as the one that was in place when the CausalSend was initiated.
This implies that the sender of a CausalSend can always deliver its own copy of the
multicast as soon as it initiates the message. After all, by definition, a causally prior
CausalSend will already have been delivered to the sender, and the flush protocol
enforces the view synchrony and causal gap-freedom guarantees. This means that
a process wanting to issue an update can perform the update locally, sending off a
CausalSend that will update the other replicas without delaying local computation.
Clearly, a lock request will block the process that issues it—unless that process
happens to hold the write lock already, as is often the case in systems with bursty
communication patterns. But it is clear that this minimal delay—the time needed to
request permission to write and for the grant message to travel back to the requesting
process—is necessary in any system.

The algorithm can be simplified further. Although we used CausalSend here, one
could potentially replace this with Send by employing a sequence number: The ith
update would be so labeled, and all group members would simply apply updates in
sequence order. The token would now represent permission to initiate new updates
(and the guarantee that the values a process reads are the most current ones). Such a
change eliminates the vector-timestamp overhead associated with CausalSend, and
it is also recognizable as an implementation of one of the OrderedSend protocols
we developed earlier!

From the perspective of an application, this asynchronous replication and locking
scheme may seem astonishingly fast. The only delays imposed upon the application
are when it requests a new write lock. During periods when it holds the lock, or if it
is lucky enough to find the lock already available, the application is never delayed
at all. Read operations can be performed locally, and write operations respond as
soon as the local update has been completed. The CausalSend or Send (we will just
call it a CausalSend for simplicity) will be performed asynchronously in commu-
nication subsystem. Later, we will see that the Horus system achieves performance
that can reach 85,000 such updates per second. Reads are essentially free—hence,
millions could be done per second. When this is compared with a quorum read and
update technology, in which it would be surprising to exceed 100 reads and up-
dates (combined) in one second, the benefits of an asynchronous CausalSend are
nothing short of astonishing! In practice, quorum schemes are often even slower
than this analysis suggests, because of the overheads built into the algorithm. More-
over, a quorum read or update forces the group members into lockstep, while our
asynchronous replication algorithm encourages them to leap ahead of one another,
buffering messages to be transmitted in the background.

However, this algorithm is not identical to the quorum replication scheme, be-
cause that scheme provides the equivalent of a strong durability guarantee and a
strong total ordering. The algorithm described above could be modified to provide
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such a guarantee by using a safe CausalSend in place of the standard CausalSend.
But such a change will make the protocol dramatically slower, because each UP-
DATE will now be delayed until at least a majority of the group members acknowl-
edge receipt of the update message. Thus, although the algorithm would continue
to perform READ operations from local replicas, UPDATE operations will now be
subject to the same performance limits as for a quorum update. The advantage of
this scheme over a quorum scheme would be much reduced.

In the author’s experience, strong durability is rarely needed. If an application
is about to take an externally visible action and it is important that in the event of
a failure the other replicas of the application be in a consistent state with that of
the application taking the action, this guarantee becomes important. In such cases,
it can be useful to have a way to flush communication within the group, so that
any prior asynchronous multicasts are forced out of the communication channels
and delivered to their destinations. A CausalSend followed by a flush is thus the
equivalent of a safe CausalSend (stronger, really, since the flush will flush all prior
CausalSends, while a safe CausalSend might not provide this guarantee). Many pro-
cess group systems, including Horus and Ensemble, adopt this approach rather than
one based on a safe CausalSend. The application developer is unlikely to use flush
very frequently—hence, the average performance may approximate that of our fully
asynchronous algorithm, with occasional short delays when a flush pushes a few
messages through the channels to their destinations. Unless large backlogs develop
within the system, long delays are unlikely to occur. Thus, such a compromise can
be very reasonable from the perspective of the application designer.

By way of analogy, many system developers are familiar with the behavior of
operating systems that buffer disk I/O. In such settings, to increase performance, it
is common to permit the application to continue operation as soon as a disk write is
reflected in the cache contents—without waiting for the data to be flushed to the disk
itself. When a stronger guarantee is required, the application explicitly requests that
the disk buffer be flushed by invoking an appropriate primitive, such as the UNIX
fsync system call. The situation created by the asynchronous CausalSend is entirely
analogous, and the role of the flush primitive is precisely the same as that of fsync.

What about a comparison with the closely synchronous algorithm from which
ours was derived? Interestingly, the story here is not so clear. Suppose that we adopt
the same approach to the strong durability issue, by using a flush primitive with this
property if required. Now, the performance of the closely synchronous OrderedSend
algorithm will depend entirely on the way OrderedSend is implemented. In particu-
lar, one could implement OrderedSend using the CausalSend-based lock and update
scheme described in this section or using a rotating token (with very similar results).
Indeed, if the lock (token) never moves unless the holder fails, we can use Send to
implement the desired primitive.

Such an OrderedSend solution would push the logic of our algorithm into the
communication primitive itself. In principle, performance could converge to that
of an algorithm using CausalSend explicitly—this level of performance has been
achieved in experiments with the Horus system. The major issues is that to use the
approach just outlined, one needs to use an OrderedSend algorithm well matched
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to the communication pattern of the user, and this is not always possible: Many
developers lack information at design time that would be required to predict such
patterns accurately.

14.3.2 State Transfer to a Joining Process

There is often a need to transfer information about the current state of a process
group to a joining member at the instant it joins. In a replicated data algorithm, for
example, there is clearly a need to transfer a current copy of the data in question to
the joining process.

The most appropriate representation of the state of the group, however, will be
highly dependent on the application. Some forms of state may be amenable to ex-
treme compression or may be reconstructable from information stored on files or
logs using relatively small amounts of information at the time the process joins. Ac-
cordingly, we adopt the view that a state transfer should be done by the application
itself. Such a transfer is requested at the time of the join. The mechanism looks very
much like the creation of a checkpoint file.

The basic idea is to introduce state transfer as a mechanism within the protocol
for group flush. At the time a process first requests that it be added to the group, it
should signal its intention to solicit state from the members. The associated infor-
mation is passed in the form a message to the group members and is carried along
with the join protocol to be reported with the new group view after the members
perform the flush operation.

Each member now faces a choice: It can stop processing new requests at the in-
stant of the flush, or it can make a copy of its state as of the time of the flush for
possible future use, in which case it can resume processing. The joining process
will solicit state information RPC-style, pulling it from one or more of the prior
members. If state information is needed from all members, they can send it without
waiting for it to be solicited (Fig. 14.6), although this can create a burst of communi-
cation load just at the moment when the flush protocol is still running, with the risk
of momentarily overloading some processes or the network. At the other extreme, if
a transfer is needed from just a single member, the joining process should transmit
an asynchronous multicast, terminating the transfer after it has successfully pulled
the state from some member. The remaining members can now resume processing
requests or discard any information saved for use during the state transfer protocol.

Perhaps the best among these options, if one single approach is desired as a de-
fault, is for the joining process to pull state from a single existing member, switching
to a second member if a failure disrupts the transfer. The members should save the
state in a buffer for later transfer, and should use some form of out-of-band trans-
fer (e.g., over a specially created TCP channel) to avoid sending large state objects
over the same channels used for other forms of group communication and request
processing. When the transfer is completed, the joining process should send a mul-
ticast telling the other members it is safe to delete their saved state copies. This is
illustrated in Fig. 14.7.
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Fig. 14.6 One of several state transfer mechanisms. In this very simple scheme, the group mem-
bers all send their copies of the state to the joining member and then resume computing. The
method may be a good choice if the state is known to be small, since it minimizes delay, is fault
tolerant (albeit sending redundant information), and is very easy to implement. If the state may be
large, however, the overhead could be substantial

Fig. 14.7 A good state
transfer mechanism for cases
where the state is of unknown
size—the joining member
solicits state from some
existing member and then
tells the group as a whole
when it is safe to delete the
saved data

Developers should be wary of one possible problem with this approach to state
transfer. In many systems, the group state can be so large that transferring it rep-
resents a potentially slow operation—for example, in a file system application, the
state transferred to a joining process might need to contain the full contents of every
file modified since that process was last operational. Clearly, it would be a terrible
idea to shut down the request processing by existing group members during this
extended period of time! Clearly, if state becomes large enough so that the system
could pause for an unacceptable amount of time while recording it and reloading it
at the joining member, both operations need to be forked off as asynchronous tasks
that can be performed while still accepting new requests.

Such considerations lead to three broad recommendations. First, if the state is
very large, it is advisable to transfer as much of it as possible before initiating
the join request. A mechanism can then be implemented by which any last-minute
changes are transferred to the joining process—without extended delays. Second,
the state transfer should be done asynchronously—in a manner that will not lead to
congestion or flow-control problems impeding the normal processing of requests by
the service. A service that remains available, but is inaccessible because its com-
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munication channels are crammed with data to a joining process may seem very
unavailable to other users. Finally, where possible, the approach of jotting down the
state is preferable to one that shuts down a server even briefly during the transfer.
Again, this reflects a philosophy whereby every effort is made to avoid delaying the
response by the server to ongoing requests during the period while the join is still in
progress.

14.3.3 Load-Balancing

One of the more common uses of process groups is to implement some form of load-
balancing algorithm, whereby the members of a group share the workload presented
to them in order to obtain a speedup from parallelism. It is no exaggeration to say
that parallelism of this sort may represent the most important single property of
process group computing systems: The opportunity to gain performance while also
obtaining fault-tolerant benefits on relatively inexpensive cluster-style computing
platforms is one of the main reasons that developers turn to such architectures.

There are several broad styles of load-balancing algorithms. The first style in-
volves multicasting the client’s request to the full membership of the group; the
decision as to how the request should be processed is left for the group members to
resolve. This approach has the advantage of requiring little trust in the client, but the
disadvantage of communicating the full request (which may involve a large amount
of data) to more processes than really need to see this information. In the second
style, the client either makes a choice among the group members or is assigned a
preferred group member to which its requests are issued. Here, some degree of trust
in the behavior of the clients is accepted in order to reduce the communication load
on the system. In this second style, the client may also need to implement a fail-over
policy by which it reissues a request if the server to which it was originally issued
turns out to be faulty or fails while processing it. A third style of load-balancing is
the replicated load-balancer. Here, the server state is replicated on multiple machines
and the client requests are sprayed over them, often randomly. It should perhaps be
noted that in commercial practice, this third style is the most common, particularly
for Web sites that have unchanging or very slowly changing content, since such
content is easy to replicate.

Load-balancing algorithms of the first sort require some form of deterministic
rule by which incoming requests can be assigned within the server group. As an
example, if incoming requests are issued using an OrderedSend protocol, the group
can take advantage of the fact that all members see the requests in the same order.
The ith request can now be assigned to the server whose rank within the group is
i (mod n), or the servers can use some other deterministic algorithm for assigning
the incoming work. (See Fig. 14.8.)

If group members periodically send out load reports to one another, also using
OrderedSend, these load measures can be used to balance work in the following
manner. Suppose that the servers in the group measure their load on a simple nu-
meric scale, with 0 representing an unloaded server, 1 representing a server currently
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Fig. 14.8 Load-balancing
based on a coordinator
scheme using ranking.
Ideally, the load on the
members will be fairly
balanced

handling a single request, and so forth. The load on a group of n servers now can be
represented as a vector [l0, . . . , ln]. Think of these load values as intervals within a
line segment of total length L = (l0 + · · · + ln) and assume that the group members
employ an algorithm for independently but identically generating pseudorandom
numbers—the seed of which is transferred as part of the state passed to a joining
process when it joins the group. Then, as each new request is received, the group
members can independently pick the same random number on the segment [0,L],
assigning the request to the process corresponding to the interval within which that
number falls. Such an approach will tend to equalize load by randomly spreading it
within the group, and it has the benefit of working well even if the load values are
approximate and may be somewhat inaccurate.

The same methods can be used as the basis for client affinity load-balancing
schemes. In these, the group members provide the client with information that it
uses to select the server to which requests will be sent—for example, the group can
statically assign clients to particular members at the time the client first interacts
with the group. Such an approach risks overloading a server whose clients happen
to be unusually active, but it can also be advantageous if caching is a key determinate
of request processing performance, since this server is more likely to benefit from
the use of a caching algorithm. Alternatively, the client can randomly select a server
for each new request within the group membership, or it can use the same load-
balancing scheme outlined above to spread requests over the group membership
using approximate load information, which the members would periodically broad-
cast to the clients. Any of these methods represents a viable option for distributing
work, and the best choice for a given setting will depend on other information avail-
able only to the application designer, such as the likely size of the data associated
with each request, fault-tolerant considerations (discussed in the next section), or
issues such as the balance between queries (which can often be load-balanced) and
update requests (which generally cannot).

14.3.4 Primary-Backup Fault Tolerance

Earlier, we illustrated the concept of primary-backup fault tolerance, in which a pair
of servers are used to implement a critical service. Virtually synchronous process
groups offer a good setting within which such an approach can be used (see Budhi-
raja et al. 1993).
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Primary-backup fault tolerance is most easily understood if one assumes that the
application is completely deterministic—that is, the behavior of the server program
will be completely determined by the order of inputs to it and is therefore repro-
ducible by simply replaying the same inputs in the same order to a second copy.
Under this assumption, a backup server can track the actions of a primary server
by simply arranging that a totally ordered broadcast be used to transmit incom-
ing requests to the primary-backup group. The client processes should be designed
to detect and ignore duplicate replies to requests (by numbering requests and in-
cluding the number in the reply). The primary server can simply compute results
for incoming requests and reply normally, periodically informing the backup of the
most recent replies known to have been received safely. The backup mimics the pri-
mary, buffering replies and garbage collecting them when such a status message is
received. If the primary fails, the backup resends any replies in its buffer.

Most primary-backup schemes employ some form of checkpoint method to
launch a new replica if the primary process actually does fail. At some convenient
point soon after the failure, the backup turned primary makes a checkpoint of its
state, and simultaneously launches a new backup process.3 The new process loads
its initial state from the checkpoint and joins a process group with the primary. State
transfer can also be used to initialize the backup, but this is often harder to imple-
ment because many primary-backup schemes must operate with old code, which is
not amenable to change and in which the most appropriate form of state is hard to
identify. Fortunately, it is just this class of server that is most likely to support a
checkpoint mechanism.

The same approach can be extended to work with nondeterministic primary
servers, but doing so is potentially much harder. The basic idea is to find a way
to trace (keep a record of) the nondeterministic actions of the primary, so that the
backup can be forced to repeat those actions in a trace-driven mode—for example,
suppose that the only nondeterministic action taken by the primary is to request the
time of day from the operating system. This system call can be modified to record
the value so obtained, sending it in a message to the backup. If the backup pauses
each time it encounters a time-of-day system call, it will either see a copy of the
value used by the primary (in which case it should use that value and ignore the
value of its local clock), or it will see the primary fail (in which case it takes over
as primary and begins to run off its local clock). Unfortunately, there can be a great
many sources of nondeterminism in a typical program, and some will be very hard to
deal with: lightweight thread scheduling, delivery of interrupts, shared memory al-
gorithms, I/O ready notifications through system calls such as “select,” and so forth.
Moreover, it is easily seen that to operate a primary-backup scheme efficiently, the
incoming requests, the corresponding replies, and these internal trace messages will
need to be transmitted as asynchronously as possible, while respecting causality.

3Interested readers may also want to read about log-based recovery techniques, which we do not
cover in this book because these techniques have not been applied in many real systems. Alvisi
gives a very general log-based recovery algorithm and reviews other work in the area in his Ph.D.
dissertation and in a paper with Marzullo.
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Fig. 14.9 Primary-backup scheme for nondeterministic servers requires that trace information
reach the backup. The fundamental requirement is a causal gap-freedom property: If a reply or
some other visible consequence of a primary’s actions is visible to a client or the outside world,
all causally prior inputs to the primary, as well as trace information, must also be delivered to the
backup. The trace data contain information about how nondeterministic actions were performed
in the primary. The ordering obligation is ultimately a fairly weak one, and the primary could run
far ahead of the backup, giving good performance and masking the costs of replication for fault
tolerance. The complexity of the scheme is fairly high, because it can be hard to generate and
use trace information—hence, it is rare to see primary-backup fault tolerance in nondeterministic
applications

(See Fig. 14.9.) Our causal ordering algorithms were oriented towards group mul-
ticast, and this particular case would demand nontrivial analysis and optimization.
Thus, in practice, primary-backup replication can be very hard to implement when
using arbitrary servers.

Another drawback to the approach is that it may fail to overcome software bugs.
As we can see, primary-backup replication is primarily appealing for deterministic
applications. But these are just the ones in which Heisenbugs would be carefully
repeated by a primary-backup solution, unless the fact of starting the backup from a
state checkpoint introduces some degree of tolerance to this class of failures. Thus,
the approach is likely to be exposed to correlated failures of the primary and backup
in the case where it can be most readily applied.

14.3.5 Coordinator-Cohort Fault Tolerance

The coordinator-cohort approach to fault tolerance generalizes the primary-backup
approach in ways that can help overcome the limitations previously mentioned. In
this fault-tolerant method, the work of handling requests is shared by the group
members. (The same load-sharing mechanisms discussed previously are used to
balance the load.) The handler for a given request is said to be the coordinator for
processing that request and is responsible for sending any updates or necessary trace
information to the other members, which are termed the cohorts for that request. As
in the primary-backup scheme, if the coordinator fails, one of the cohorts takes over.

Unlike the primary-backup method, there may be many coordinators active in
the same group for many different requests. Moreover, the trace information in a
primary backup scheme normally contains the information needed for the backup
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Fig. 14.10 Coordinator-cohort scheme. The work of handling requests is divided among the pro-
cesses in the group. Notice that as each coordinator replies, it also (atomically) informs the other
group members that it has terminated. This permits them to garbage collect information about
pending requests that other group members are handling. In the scheme, each process group mem-
ber is active handling some requests while passively acting as backup for other members on other
requests. The approach is best suited well for deterministic applications, but it can also be adapted
to nondeterministic ones

to duplicate the actions of the primary, whereas the trace data of a coordinator-
cohort scheme will often consist of a log of updates the coordinator applied to the
group state. In this approach, the cohorts do not actively replicate the actions of the
coordinator, but merely update their states to reflect its updates. Locking must be
used for concurrency control. In addition, the coordinator will normally send some
form of copy of the reply to its cohorts, so that they can garbage collect information
associated with the pending requests for which they are backups. The approach is
illustrated in Fig. 14.10.

Some practical cautions limit the flexibility of this style of load-balanced and
fault-tolerant computing (which is quite popular among users of systems such as
the Isis Toolkit and Horus, we should add!). First, it is important that the coordi-
nator selection algorithm do a good job of load-balancing, or some single group
member may become overloaded with the lion’s share of the requests. In addition
to this, the method can be very complex for requests that involve nontrivial up-
dates to the group state or that involve nondeterministic processing that the cohort
may be expected to reproduce. In such cases, it can be necessary to use an atomic
protocol for sending the reply to the requesting client and the trace information or
termination information to the cohorts. Isis implements a protocol for this purpose:
It is atomic and can send to the members of a group plus one additional member.
However, such protocols are not common in most systems for reliable distributed
computing. Given appropriate protocol support, however, and a reasonably simple
server (e.g., one processing requests that are primarily queries that do not change
the server state), the approach can be highly successful, offering scalable parallelism
and fault-tolerance for the same price.
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14.3.6 Applying Virtual Synchrony in the Cloud

One of the most exciting application areas for virtual synchrony concerns data repli-
cation within cloud settings. Here, though, we face a challenge not really discussed
in this or the previous two chapters: can virtual synchrony scale?

To answer such a question, it makes sense to first think about precisely how
one might want to leverage the virtual synchrony model in a cloud environment.
Below are a few examples among many that we could offer. Before discussing them,
however, it may be helpful to quickly recap a topic we covered in the introduction,
namely the distinction between tiers within typical cloud systems, and the way that
each tier’s deployment model shapes the design of services for that tier.

As you will recall from Chaps. 2–6, and illustrated in Fig. 1.4, most cloud com-
puting systems have a first tier of services that face the clients and are intended to
be extremely responsive: upon receiving a request, they should ideally reply based
on purely local data and without obtaining any form of locks or delaying in any
way to coordinate with other replicas. These first-tier services are typically limited
to soft-state: data that can be discarded if the service instance shuts down. A new
instance starts in a clean state even if the node where it runs used to host an instance
of the service.

Examples of soft-state include cached data that might be extracted from inner
hard-state services such as databases or index files, transient information built up
as the application executes such as load-balancing data, configuration data that tells
this service instance what role to play right now, but that will not be relevant if
the service instance shuts down (e.g. because any new instance would be given
new roles), etc. A new generation of cloud-hosted systems for monitoring large
collections of devices (such as sensors embedded into the environment), and use
that data to control large numbers of actuators falls into this soft-state class: while
they may maintain some form of audit trail for later use, such systems would often
lack the capacity to log every event that occurs, and for many such applications, the
fine-grained data isn’t saved for offline analysis.

Examples of hard-state include a user’s credit card transactions: we want the hard
state to be durable and if a machine crashes and later restarts, its copy of a hard-state
service should still be intact and correct up to the point when it crashed. Ideally, it
would just obtain the delta between that state and the one currently in use in the
system and then could resume normal operations by applying the delta.

As we saw in those early chapters, first-tier services would often consist of a
web page of some kind (for example, in Microsoft’s platform this might be a .ASP
page, short for Application Service Page) bound to some kind of logic that could be
a script written in a language like Javascript or Silverlight, or could be a true soft-
state program. The code translates between requests originating in the client and the
services within the cloud. Soft-state services are intended to be highly elastic: if a
cloud platform wants to run a few thousand more instances, it just spins them up in
whatever state is considered to be their initial runtime conditions, providing a small
amount of configuration data through configuration services (registries). Since there
is no runtime-specific initial data, the needed executables can be “predeployed” so
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that they are ready to launch on a moments notice and can literally transition from
being idle to being fully active in milliseconds. Too many instances? The cloud
platform will just shut down the unwanted ones, with no fuss (and no warning).
Some degree of control is provided so that the service layer can inform the routing
layer of its preferences, but that is about the extent of the configurability available.

In contrast, hard-state cloud services tend to be installed on long-running virtual
partitions that have durable data associated with them. Such services are much closer
to what we might think of when we visualize a large parallel Oracle deployment with
a bank of machines each running a high-end database product and performing tens
of thousands of transactions per second. Strong properties like snapshot isolation
are common (a weak form of ACID in which reads see a virtual instant in time (the
snapshot) but do not ever delay updates, while updates are ordered with respect to
one-another in traditional ACID style); some services support a full ACID transac-
tional model. Other services might have weaker models, such as the key-value stores
we discussed in the early chapters (Dynamo, memcached, BigTable), but would still
be viewed as hard-state services because of their long lifetimes and use of durable
state.

Finally, we saw that the back-end systems in the cloud are more typical of mod-
ern kinds of batch processing system. They run applications like MapReduce or
Hadoop, are hosted on massive clusters of machines and huge data sets, and often
compute by crunching data for hours at a time to produce index files that can be
pushed up to the first-tier so that those services can achieve their response goals.

What replication issues arise? In the first tier, we see a need for replication and
consistency guarantees can be important, even though the data in question are soft
state. True, we will discard any replicas that are bound to a service instance we shut
down, or that crashes, but this does not mean that consistency isn’t needed. Indeed,
one can anticipate that many kinds of high-assurance services will be hosted mostly
or even entirely in the first tier, and performing a gamut of active mission-critical
tasks, in settings as sensitive as health care, operating the smart power grid, or doing
or air traffic control. Consistency for such uses entails giving the right answer and
is not necessarily a function of data durability. After all, will we really care which
machine was controlling such and such a traffic light yesterday? Yet we might care
very much that the role be owned by one machine, and that it use the correct data to
decide the traffic cycle it will use.

Thus first-tier services would use replication to share control state, coherently
cached data, or even active state, among counterparts. This might happen within
an entire first-tier service entity, or it could occur within shards: key-value data in
which each key maps to some small subset of replicas (typically three), which own
the associated data item. In a database, each shard might own a separate set of rows.
The database consists of the full set of rows, but no machine holds the whole thing.
This pattern is very common, and notice that again, we see a need for replication.

Many kinds of inner-tier services need consistency to an even greater degree. For
these services, where ACID or snapshot isolation guarantees dominate, we would
often place a multicast group “in front” of a set of replicas, sending updates through
the group and into the replicas. Here the challenge we face is that durability for the
multicast might not be the same thing as durability for the update.
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To understand this, it may be useful to appreciate that when Lamport defined
Paxos, he assumed that the acceptor group for a Paxos implementation actually is
the database, and that the database in question is managed using quorum reads and
updates, as we have discussed earlier. Then he defined the learners to be an ad-
ditional set of machines that monitor the acceptors, for example caching popular
database records.

But if we use Paxos as a multicast protocol, this distinction does not make sense,
because neither the acceptors nor the learners are the true database. More likely, the
developer has replicated the database to run with one replica each on some set of
nodes. Our process group has a relaying role: it sits in front of those nodes to pass
requests into it a replicated manner, so that each replica will see the same updates
in the same order (we can ignore queries for this discussion, because with Paxos
or SafeSend each individual replica will turn out to be complete and identical, so
that there is no need to multicast queries unless we want to perform a parallel read
operation).

Returning to our key point, notice that if we were to claim that an update has
become durable because the acceptors have logged copies of the corresponding
multicast (perhaps on disk, perhaps in memory), that claim simply would not be
correct. A multicast, for this particular use case, becomes durable only when the
application-level update has been completed. That may happen long after the de-
livery of the multicast, and if a crash disrupts an update operation, the associated
multicast would need to be redelivered—and redelivered again and again, if needed
(always in the right order), until it can be successfully completed. Obviously, this
model demands some way of filtering duplicate events; we will just have to push
that into the list of things that database application needs to support.

If we consider these goals with respect to our earlier presentation of Safe-
Send, we see that SafeSend was actually incomplete. Indeed, if you consult the
Isis2 manual pages for SafeSend, you will find an extensive discussion of just
this point, culminating in an API (called g.SetDurabilityMethod) used to tell the
platform how durability should work for your application. The user can also call
g.SetDurabilityThreshold to specify the number of acceptors, which are taken to be
the first φ members of the group view. In effect, to use SafeSend correctly, the user
is required to configure the protocol, not just use it out of the box.

Two durability methods are built into Isis2: one, the memory logger, is default;
in this, if an acceptor has a copy of a message in memory, it can acknowledge it, and
progress will occur. Clearly, if a group experiences total failure, in that sense that all
of its members crash and the whole group must restart from a checkpoint, this form
of durability will not suffice: our database could end up in a partially updated and
hence inconsistent state, at least at some replicas. Yet this behavior does match what
many implementations of Paxos, as a pure multicast protocol, offer. The key insight
here is that when Paxos is used purely for multicast, the durability obligation of the
protocol ends, in some sense, as soon as it has done the upcalls to the application
layer, thereby delivering the multicast. What happens in the application is not of
interest to the multicast protocol. . . even if the application were to crash instantly,
without even looking at the message, on all n member nodes!
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This may not sound much like durability, and indeed, for applications that use
SafeSend to maintain some form of replicated durable state, memory logging is not a
sufficient story. The second option is called the DiskLogger. This module maintains
φ distinct logs, each containing active multicasts: the first φ members of the current
view each own one of the log files (if the view changes, the ownership will be
remapped, hence these need to live in a globally accessible part of the file system).

Multicasts are logged (written into the log file, and then the log file is forced
to disk using a disk fsync system call), when they first reach an acceptor, but of
course at this point we lack ordering data: such a message has a unique identifier
(the sender address, view id in which it was sent, and message id, which is just a
counter incremented on each send, on a per-sender basis). To this the logger adds an
additional id of its own, namely a receive-time logical clock (in the Lamport sense)
that represents the sequence number of the message in its own local log: this is the
fifth message logged by acceptor 2, this is the sixth, etc. Until the leader running the
SafeSend protocol receives acknowledgements from all φ members, such a message
has no ordering in the sense of the true SafeSend delivery order. Recall that if the
desired level of acknowledgement is not reached, the leader iterates the protocol,
requesting additional rounds of voting until finally the protocol succeeds.

Once the leader has acknowledgements from all acceptors, it uses the maximum
of these logger-id values as the “time at which to deliver this message”, append-
ing the sender’s address to break ties. Now it releases the message for delivery to
the application, using a virtually synchronous Send. Receivers keep the committed
messages in the same queue, but update their logical clock value and mark them
committed, reordering the queue as they update the delivery time. Thus, a commit-
ted message could have a non-committed one in front of it (later that non-committed
message will also receive a final committed sequence number). This puts messages
in a total order, in such a way that it is always safe to deliver committed messages
off the front of the pending messages queue. Notice that no message can be de-
livered unless it is logged in all log files, and that the delivery time can always be
recomputed if all copies of the log files can be scanned.

This total-order algorithm was originally proposed by Lamport (1984), and has
several nice properties. The important one is this: once a message m receives its
final delivery time and reaches the front of the queue (namely, the final value for the
logical clock timestamping it), no other message can be committed at an earlier de-
livery time! Thus it is safe to deliver messages, in committed timestamp order, from
the front of the queue. It may be worthwhile for the reader to work out a small ex-
ample or two to see how elegantly this works, and why. In our use, which resembles
a Paxos protocol called vertical Paxos (Lamport et al. 2009a) it has the additional
nice property that by inspection of the full set of logs a process can always recon-
struct the state of the system. In fact this means that DiskLogger does not actually
need to update the disk copy of the file, even though the commit timestamp may not
be the version it initially used (perhaps one of the other proposed timestamps was
the maximum and hence “won” the competition to determine the commit ordering).
If needed, we could always figure this out, again, by scanning the full set of logs.
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Thus, while DiskLogger did not know the delivery order when it first logged
the message, when a message becomes committed for delivery to the application,
it finally learns the committed order that was used. Up goes the message to the
application, but recall from above that mere handoff to the application does not make
the message durable! To achieve that form of strong application-specific durability
the application may work hard for a fairly long time. Thus the DiskLogger awaits
a downcall to DiskLogger.Done, allowing it to accurately sense the point when the
update has finished—be that milliseconds after delivery, or twenty minutes later
when a long-running Oracle update operation may finally finish. Until that “done”
point is reached for every replica, the multicast is considered to still be active within
the group.

Last, we have the question of failure handling. A new view will become defined,
and the role of being acceptor will be remapped; current acceptors may need to close
the log file they were responsible for, and to open a different one (this would happen
if their ranks in the view changed: for example, the process previously functioning
as acceptor number 2 and hence responsible for the second log file were now to
become acceptor number 1, responsible for the first log file; the log files have distinct
names, hence that acceptor would need to close the former file, then open the latter
one). Meanwhile, newly assigned acceptors must open and load the log file that was
previously owned and written by their predecessors. Because of the failure, some
attempted SafeSend protocols might fail to receive φ acknowledgments. Those will
be retried in the new view. Notice that a resent message may be present in some or
even all logs but because the message identifier is constant (the sender, viewid and
message id used by the sender), the duplicates are always identifiable.

We should emphasize that with less than φ members, the restart blocks. This style
of group simply cannot do anything unless it has at least φ members and requires
that each of the φ have access to the log file used by the previous acceptor with
the same rank that it has now. Thus loss of a log file leaves our group wedged.
(Lamport’s quorum-style logging, discussed earlier, would overcome this limitation,
but the Isis2 protocol is simpler and faster and the price of speed is this slight loss
of resiliency.)

Upon taking over as the new leader (the rank-0 acceptor) a process reruns the
SafeSend protocol for any messages it finds in its log. Participants check for dupli-
cates and use the same response as they did the first time, if a message is already
known to them. Thus, if a SafeSend was in progress we complete it. The delivery
happens, in the correct order, a second time (from the perspective of the application
layer updates 1, 2, . . . , 10 might be delivered, then a glitch occurs and the group
repeats the delivery of 7, 8, 9, 10, but then it resumes with new messages: we can
get duplicates, but every message is delivered at least once, and in the same order
each time if a delivery is repeated).

The upshot of this is that after a crash, DiskLogger is able to replay, in a correct
order, any pending multicasts. But to reach that guarantee, the logger pays a sub-
stantial cost, both in normal operation (where we need to incur the overhead of disk
I/O (with file syncs) during the first phase), and later on recovery, when duplicates
will often be presented to the application. These costs are inevitable given the split
of functionality.
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What about garbage collection? Here, we use a slightly awkward multiphase pro-
tocol. Once a message is Done at all group members, it becomes legal to garbage
collect it, but care must be taken because once we delete a message from the
DiskLogger logs, the retransmission scheme outlined above could malfunction,
treating the message as new and assigning new logical timestamp values in those
logs. It would then be redelivered but in a potentially different order.

Accordingly, the rank-0 member periodically runs a protocol that first queries the
log states of the full set of acceptors. Perhaps in this manner it learns that message x

is safe to garbage collect. It now runs a second phase protocol in which all members
update their log files, marking the disk-copy of x as garbage, but retaining the iden-
tification data so that if x were ever to show up again, the participant can respond
with the old timestamp information (DiskLogger handles this by just writing a sep-
arate message to the end of the log indicating that x, earlier in the log, is garbage;
this is cheaper than actually rewriting the whole log, which may be large). Finally,
in a third phase, the leader says “garbage collect x” and the log file can be replaced,
atomically, with a version in which x has been removed. Ideally, the live part of the
log will be so small compared to the full log that we will be replacing a huge file
with a small one and the cost will be very low. The file system itself has an atomic
replace operation that can be used for this.

Now we go back and revise the logic of the replay step: after failure, a new
rank-0 acceptor replays only the messages that are not marked as garbage in its
log. We also need to revise the garbage collection step: a member should include
information about known garbage in its response on the first phase. This way, if the
leader’s file was garbage-collected (hence lacks x entirely), but some member has
an old copy of x (marked as garbage but still in the log), the leader can include x

into its third phase garbage collection message.
While SafeSend with a DiskLogger may not be a trivial protocol, we would ar-

gue that by combining virtual synchrony with Paxos in this way we have gained
important benefits. One is that applications never need to read a quorum of copies:
a read quorum is just a single replica of the application database, because in this
scheme, if a failure occurs, the group simply reconfigures to drop the faulty member
and possibly to reassign the role to some other member. A quorum write must reach
every member: first, every acceptor, and then, every copy of the database; some
application logic will be needed to handle this last aspect if a copy might lack a
group representative for a period of time because of a failure. For example, imagine
a group with 100 replicas of a database and just 3 acceptors. If the group drops to
have 90 active members for a few minutes, the other 10 replicas will fall behind:
they will be correct up to some point, but then will lack a series of updates, and
because they are not members of the acceptor subset, SafeSend will not worry about
replay of those missing messages to these particular replicas. Thus state transfer will
need to resync the replicas: on recover, they will need to inform some group mem-
ber that they have the state up to update 1234, and it should respond with updates
1235–5432, even as 5433 and subsequent updates are delivered by the communica-
tion layer. Complicated? Perhaps, a bit. But this is the price of strong durability and
one of the reasons that the CAP community is convinced that strong consistency and
durability, jointly, are just not adequately scalable!
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With all of this context, we can finally summarize some of the opportunities for
using virtual synchrony in cloud settings:
1. Amnesia-tolerant soft-state replication using virtually synchronous ordered mul-

ticast in first-tier (soft-state) cloud services. As we have seen, first tier services
are designed to be massively replicated and must support elasticity: the degree of
replication can change dramatically and without notice. To this end, most cloud
platforms require that such services either be entirely stateless (e.g. the first-tier
servers, when launched, have some standard initial state that can be wrapped into
a virtual machine), or use only soft-state such as caches, data that can be collected
while active but discarded without risk such as load-balancing information, etc.

Many cloud platforms urge the developer to use the BASE methodology when
designing these soft-state services, citing the CAP theorem. The argument is
fairly simple: CAP suggests that we probably cannot have consistency here any-
how, at least of the ACID database kind, hence some form of convergent model
based on gossip or other eventual consistency mechanisms may represent the
best tradeoff.

But virtual synchrony creates a new option. As we have seen, virtual syn-
chrony has several levels of data durability. The basic Send (as well as the
CausalSend or OrderedSend primitives) offers predictable ordering and synchro-
nization with respect to group membership changes, but no durability at all. On
the other hand, the developer can call Flush prior to interacting with an exter-
nal client, in which case the computation will pause briefly until any unstable
multicasts have stabilized (become permanent). Let us call this mixture of a non-
durable multicast with Flush a guarantee of amnesia-freedom: once the service
replies to the client, it would only forget the updates it performed in the event of
some kind of total failure in which all its representatives crash simultaneously.
In a modern cloud system with well-debugged and tested software, we can es-
sentially eliminate that risk: elasticity tells us that individual replicas might come
and go suddenly, but even an elastic service will still remain continually available
(often we think of elastic services as if their membership can change arbitrarily,
but a more typical situation would be one in which replication varies from 1000
replicas to 10,000 without ever dropping below 1000).

Thus we have two weak consistency options that might be compatible with
soft-state replication in tier-one services: a completely non-durable but consis-
tent option that could be used to share data among replicas with strong consis-
tency but at the risk of amnesia if an update is launched but the associated server
crashes immediately, and a second amnesia-free option in which we use the non-
durable but consistent style of replication up to the point of interacting with an
external user, but at that point first call Flush, as we saw early in this text in
Fig. 1.7.

Amnesia-freedom may seem to be a fairly weak form of durability, in the fol-
lowing sense. Imagine that some update X is issued to a set of replicas. P receives
X and does the update. But now a crash wipes out P and also causes the sender
of X to crash, and perhaps this happens in such a way that no other group mem-
ber ever saw X. X basically has been erased from the memory of the system.
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Amnesia-freedom does not preclude such a sequence of events, but instead hides
it: if the sender of X issued that weakly durable multicast, before replying to the
external user, it would be required to call Flush. That call will be blocked (after
all, our message has not yet reached the rest of the group). Thus X happened at
P, but P has now crashed, and from the perspective of the client, the request has
not completed. In fact, whichever server representative the client was talking to
will time out since, in our scenario, it crashes before the Flush completes.

Strong durability requires that we perform updates using a substantially
slower protocol, but would prevent this from happening: we would gain the guar-
antee that if any process delivers X (as P did), then every process also does so.
Thus we will not need to do the Flush operation, because it will not do anything
useful: once the request is delivered to any group member (and presumably we
will not know what reply to send the client until at least some group member sees
the request, so we will be waiting for that point to be reached), it also will reach
every other group member.

Yet the interesting insight is that strong durability is pointless here. We have
defined our scenario in the context of a soft-state service running in the first tier
of the cloud. P crashed, and even if it were to restart on the identical node, by
definition it restarts in a clean state. P will have no idea whether or not X was
delivered and processed prior to the crash. The state updated by X would have
been temporary state: used while P is up, but discarded (reconstructed from a
state transfer, or by querying tier-two services) on recovery!

From this we see that while one could use SafeSend (Paxos) in a first-tier ser-
vice, that primitive would work hard to achieve a property that, by definition,
simply is not needed in soft-state services. The core strength of SafeSend is that
every single update promises that if any replica delivers and processes an up-
date request, then even if it crashes immediately, when it recovers and compares
its saved state with the state of other replicas, the durable state will match the
durable state of those other replicas up to the moment of the crash. This is a valu-
able property in a system with massive amounts of data to store but soft-state
services just do not work that way, because the platform always automatically
discards any local data when closing a server instance down, and every server
restarts in a fresh state even if running on a node where it had previously been
running and might even have been using substantial soft-state data files and other
objects. In a soft-state service, the only way to recover the active state of the ser-
vice is to ask some other active replica for a copy: to perform a state transfer. As
we have just seen, that option is built into the virtual synchrony model.

Thus amnesia-freedom is as strong a guarantee of durability as one could
“need” in a tier-one cloud application. This is important because whereas
strongly durable protocols are typically fairly slow and may not scale very well,
amnesia-free virtual synchrony is an outstanding performer and fully compat-
ible with the performance requirements of the first-tier. For example, suppose
that our service is designed to host some large number of data records, one per
customer of a company. Thus there might be hundreds of millions of records.
We can make the rule that from the customer-id and the group view, each record
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has an assigned primary update source, using any kind of simple hashing rule
(for example, take the customer-id modulo the number of members in the view,
and then assign the member with that index as the primary update source. We
will route update requests to the update source and it will use Send to propagate
the update within the replica set: this can be as cheap as a single IP multicast,
if IP multicast is available; if not, a tunneled multicast that runs over some sort
of point-to-point protocol like TCP will not be much slower (Isis2 offers both
options). Since updates come from only one source in any particular group view,
FIFO ordering suffices: if two updates show up in inconsistent orders, they will
always turn out to be updates associated with different customers and hence non-
conflicting.

As for the degree of replication, this will depend upon the degree to which
read-only requests are expected. For many purposes, just as we mapped the cus-
tomer to a single primary update owner, we would want to map to a small number
of additional read-only replicas. Thus, in a group with perhaps 10,000 members
the pattern could be one in which we see perhaps 10,000 subgroups of 3 or 5
members each, with each subgroup replicating data associated with some owner,
and hosting data for some subset of the customer database. Much less common
would be a pattern in which all 10,000 group members host a read-only copy of
all the data, but one can certainly imagine cases in which that would be desired.
For the former case, read-only requests would be sprayed by a load-balancer over
the appropriate subgroup of 3 to 5 members, determined by that simple hashing
rule from the customer ID and the current view. For the latter, read-only requests
could be sent to any member of the entire group.

Obviously, if we do just one call to Send and then immediately call Flush, this
approach will not be all that fast in comparison to SafeSend with a small num-
ber of acceptor processes (in Isis2, many applications run with three acceptors,
irrespective of the number of group members (learners)). But if our application
lends itself to parallelism, we might see a burst of concurrent Send operations,
followed by a single Flush prior to the response being sent to the client that ini-
tiated the update. This will win because that single flush protocol will have its
cost amortized over the burst of prior Sends. Moreover, the Send implementation
will often be able to combine acknowledgements so that the stabilization step for
a set of concurrent multicasts can be quite a bit cheaper than it would be had we
performed stabilization on a one-by-one basis.

The actual work of computing answers to client queries will be low in this
scheme. A read-only query can be performed by just reading local data at any
copy that has the customer’s information: there is no need for any interaction
between the service replica that receives the request and its peers, at all. So this
kind of request runs at the speed of that individual application on the associated
machine. Hopefully, the customer data will be found in-memory and the response
would then be blindingly fast.

For requests that trigger asynchronous updates, we get almost the same story.
The work of doing the computation triggered by the request can be done on
whichever server replica receives that request. Even the updates can be issued us-
ing asynchronous Send operations. Only the final Flush represents a delay point.
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(In practice, if a request triggers multiple suboperations, since we do not want to
end up with just some of them completed and others not finished in the event of a
failure. we might also want to send some form of Commit message, but this can
be done using another Send right before the Flush). Thus the cost of computing
the web page or web services response for the client is determined by the local
speed of the machine handling the request—in this case, the update owner for
the relevant client records—and the only delay associated with replication arises
when that single flush protocol occurs at the very end, before sending the reply
to the client. We obtain a very fast response and yet amnesia-freedom, all within
the first tier of the cloud.

Some updates need to modify durable state. Here the first-tier services would
update themselves, then forward the update to whatever second-tier database is
used for durable client data. Should the process performing this task crash before
it finishes, the same request can be reissued if necessary. Thus a true relaying
failure, from the first-tier service to the inner durable service, can only occur
if all replicas fail. In a properly configured system this should not be common,
but it does represent the only risk that the amnesia-freedom property might be
violated.

In comparison with an approach that uses the BASE model, our solution
would be expected to have similar overall cost (even BASE needs to somehow
propagate updates, eventually). Yet because the replication model provides vir-
tual synchrony, the guarantees offered to the end-user are quite strong in com-
parison with those of BASE, which has very weak consistency guarantees, and
often entails computing a response using stale data. Thus the frequency of “mis-
takes” visible to the end-user will be an issue when using BASE, but should not
arise at all when using virtual synchrony. For the virtual synchrony model, the
only risk is that amnesia freedom could be violated if all replicas associated with
some client’s data shut down simultaneously (for example, if an update carries a
poison pill that causes a crash, but does so after the client already has been sent a
reply). BASE, in contrast, provides no real guarantees at all: while the “E” stands
for “Eventual Consistency”, BASE doesn’t offer any assurance that eventual con-
sistency will be achieved, or have any single standard way of implementing such
a property.

2. Virtually synchronous data replication in cloud caches. Another scenario of in-
terest focuses on cloud caching. Here, one has very much the same situation
we have just outlined, except that whereas the external client was the source of
updates in the case associated with Fig. 1.7, a cache would normally see read-
only requests from the first-tier application that uses it, together with updates
that propagate “up” from some underlying hard-state service running in an inner
tier of the cloud. The analysis of this situation is very similar and we will not
repeat it; again, the Send primitive should be sufficiently powerful to accomplish
our goals. Here there is no risk of amnesia-freedom violations at all, because
the update source is itself durable. Should some form of extreme failure occur
and knock out all the first-tier service replicas associated with some client, or
perhaps even the entire firs-tier service, upon restart it launches a cold (empty)
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cache and then reloads cache records, as needed. The durable hard-state service
just tracks the current set of cached records, and sends an update using Send that
either updates a cached record, or invalidates it, as needed.

3. Virtually synchronous key-value storage or sharded dataset. We have seen in the
early chapters of the text how key-value storage systems such as memcached,
Dynamo, BigTable and Beehive play important roles in many cloud settings, par-
ticularly in second-tier services (see Fig. 1.4). As noted earlier, the term sharding
is sometimes used here; it originated in the PNUTS (Cooper et al. 2008) system,
where data are managed in database tuples, but each tuple is treated as having
an associated key and replicated to a set of nodes (usually 3) selected using that
key: a shard. Some cloud systems, such as FaceBook, maintain nearly all of their
active data in forms of key-value store systems, using a durable logging service
purely for recovery after major outages, and running entirely from the key-value
service for almost all active purposes, and many Yahoo applications run entirely
over PNUTS. Here the situation is actually identical to the two cases just dis-
cussed. What virtual synchrony can bring to the table is a new kind of assurance
property. Whereas a key-value service such as Dynamo uses the BASE method-
ology and might sometimes not reflect a recent update for a “long time” (e.g.
if the update somehow finds its way to the wrong nodes, which can easily oc-
cur, and then a long delay occurs before the eventual consistency reconciliation
mechanism discovers and merges the data to the right place), with virtual syn-
chrony this can never happen. Our keys would map to small groups (presumably,
using exactly the same idea of hashing from the client-id into the current view
to identify some subset of its members). We thus identify the correct members
immediately, and then interact with the subgroup using the client-to-group pro-
tocols discussed in Chap. 13.

The costs of this approach are difficult to quantify without experiments on real
clouds, and these had not yet been undertaken at the time of this writing. In their
motivation for Dynamo, Amazon’s research team argued that sometimes, finding
the correct membership in a cloud system entails delays. Thus Dynamo would
enter an inconsistent state primarily in situations where a virtual synchrony sys-
tem would need to wait, presumably while tracking down the membership of the
target subgroup in a larger group undergoing rapid membership changes (churn).
On a large scale, membership changes certain occur fairly often, yet because one
can often batch them, the pattern is typically one in which at some frequency, a
batch of joins occur (the data center launches 150 new instances, for example), or
a batch of leaves must be processed. Much less frequently a failure might occur.
At Amazon’s realistic deployment scale, would these delays really be serious
enough to justify accepting inconsistency in order to respond rapidly, rather than
waiting for membership to catch up? Only experiments can answer such a ques-
tion (and before reaching conclusions, the associated platforms might both need
some tuning: we would want to know the best-case answer, not an answer based
on taking some system that has never been used in this way and doing a few
quick runs that quite possibly depend on unrealistic load patterns, or that might
be impacted by bugs or unoptimized code paths).
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4. Paxos style durable and strongly consistent data replication, using the virtually
synchronous SafeSend in a hard-state cloud service. For hard state services, such
as databases, the world splits broadly into two categories of solutions. In the
first category, the hard state service itself handles replication and uses its own
methods to optimize update patterns and query workloads. Most professional
databases from companies such as Oracle, Microsoft and IBM operate in this
manner; true ACID semantics or variations such as snapshot isolation are com-
mon here.

The second category consists of hard-state services that were designed to
run on just a single node, and that we wish to “wrap” for scalability and fault-
tolerance by deploying them on multiple nodes and then delivering replicated
updates to the instances by using an ordered reliable multicast as our request
transport protocol. Here the need is clearly for a protocol such as SafeSend, and
indeed one might even want to consider modifying the protocol to make sure
that the first phase, in which the acceptors receive messages but only acknowl-
edge them, actually logs those messages to disk, so as to ensure that they can
be replayed after a crash and would never be lost under any conditions. Then by
delivering the updates in the correct order to all the replicas, one can maintain a
replicated, consistent state. In the event that some replica fails and later recovers,
version numbers can be used to find the most current version of any data desired
(in which case any read must access f + 1 replicas, if f might have been down
when the update was done). Alternatively, the recovering system can transfer a
log of updates that it missed while down, applying those that its local database
instance lacks. For systems that have modest update rates and short downtimes,
the latter scheme makes more sense; the former one might be more appropriate
in hard-state services that face huge loads even after the first-tier does all it can
to shield them from the full client-generated data rate.

Notice that while the virtual synchrony guarantees ease some aspects of this
problem, the problem as a whole remains complex. Above we reviewed the main
challenges when discussing the idea of the DiskLogger durability module in
Isis2, which automates the needed steps; lacking such a package, the task faced
by the developer would be a substantial challenge and it would be fairly easy to
end up with a solution that performs poorly. But with help from a well-designed
package, it should be possible to achieve very high speed replication in this man-
ner: the core protocol, SafeSend, performs quite well and scales surprisingly well
too, provided that the acceptor set size is bounded and small (see Birman et al.
2012). The performance limiting step turns out to be the logging step, as one
might expect, but with small values of φ is not intolerably slow. Nonetheless,
one can easily see why the CAP community, with its focus on using Paxos for
replication, concluded that consistent replication is too slow and not scalable
enough for really ambitious scalability within the cloud, a point raised by many
(Vogels 2008; Pritchett 2008).

This last point touches upon a further complication. The role of the φ accep-
tors are to ensure the durability of active multicasts, which can occur in various
ways. One option is to simply use a sufficiently large number of acceptors to be
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sure that some will survive any possible failure. Here, if an acceptor set is kept
small (perhaps three members), it becomes imperative to know that the acceptors
are running on failure-independent nodes. Unfortunately, few cloud systems of-
fer a way to accomplish this today, although perhaps demand for such a feature
would lead to it being added to the management platforms on systems like Azure
or Google AppEngine.

Lacking any way to know where the acceptors are running, one might be
forced to use a large acceptor set: perhaps, some fraction of the group members.
But with this change, the SafeSend protocol would slow down linearly as the
size of the group increases. Notice also that with large acceptor sets, while we
can dispense with the need to log updates during the accept stage, we end up
displacing the question to the delivery phase of the protocol: if a major crash
were to occur at this step, we could end up in a situation in which an update
reaches less than a quorum of the group members. Thus recovery from a quorum
loss event (a major crash of the majority of the replicas) would require some form
of cleanup, potentially quite expensive. This is a common problem in the kinds
of product mentioned above; many of them have very slow restarts after major
crashes, although most will ride out crashes of individual server nodes without
much disruption. Thus, when implementing a durable service, a protocol such
as SafeSend really must be integrated with the underlying application to actually
achieve a meaningful form of safety, and we uncover a spectrum of challenges
that are not much easier than those faced by developers of commercial databases
and other replicated products! Many of those cost millions of dollars to license
in substantial cloud deployment scenarios.

It is interesting to reflect upon this and then reread papers about Paxos or
about uses of that system, for example in Google’s Chubby service, which uses
Paxos to implement a lock service. It quickly becomes clear that the notion of
hard failure used in most such papers is divorced from the application that would
use the protocol in a way that might not always make sense. Chubby maintains
its own hard-state service: a kind of customized variant on what DiskLogger
is doing. In this sense, a service such as Chubby occupies a space somewhere
between what we have called hard state and what we have called soft state! But
with Paxos as the front-end to a durable service, as would arise if our locking
service was built by using SafeSend as a front-end to a second component that
actually maintains the lock state, we lose this option and are forced to integrate
the acceptor phase of the protocol with whatever it means to ensure durability
for an update in the application.

5. Virtually synchronous parallel search. Here, we use a virtually synchronous mul-
ticast to query a group. Because all the members receive the identical message
in the identical group membership view, they are able to use the membership list
to subdivide the work of performing the query. Obviously, if we use an ordered
multicast, we get the further benefit of knowing that the query arrives in a defined
state with respect to other multicasts that use a compatible ordering policy; this
additional step, it will often follow that the group members are also in identical
states (have consistent data), insofar as they maintain replicas of the group data.
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6. Virtually synchronous security-key management. These same mechanisms can
be used to replicate security keys, a problem first studied by Mike Reiter, and
supported in the Isis2 system via the g.SetSecure API. Data exchanged by group
members can be enciphered so that only a legitimate member in possession of
the group key will be able to decipher the contents of messages and process the
data. Here virtual synchrony helps us answer the fundamental question: which
members should be permitted to have a copy of the key?

7. Virtual synchrony used to develop new routing services. A perennial problem of
computer networks is that while routing tables are being updated, periods of in-
consistency can arise during which routes have black holes (they lead nowhere),
or cycles (packets go around and around until their TTLs expire), or might flap
(switching rapidly back and forth between options in ways that destabilize ap-
plications running over the network). If we use virtual synchrony or a similar
protocol suite to update routing tables, we can reduce this risk: one now can
think in terms of packets that only move from one routing “epoch” to some other
more current epoch, and it is easy to see that many of these routing issues imme-
diately vanish. This topic has been explored by Arvind and Tom Anderson at the
University of Washington in a paper they called Consensus Routing; it illustrates
just one of many potential opportunities. Additional opportunities exist within
the routers themselves: modern routers are implemented using hardware clusters
and it makes sense to think about using replication to enhance the availability of
routing services (see, for example, Agapi et al. 2011), to share data across router
nodes as a way to promote parallelism, to support new kinds of cloud-driven
routing option, etc.

14.4 Related Reading

On virtual synchrony (see Birman and van Renesse 1994, 1996; Powell 1996); but
see also Birman and Joseph (1987a, 1987b), Birman and van Renesse (1996), Dolev
and Malkhi (1996), Schiper and Raynal (1996).

On extended virtual synchrony (see Malkhi 1994); but see also Agarwal (1994),
Amir (1995), Keidar and Dolev (2000), Moser et al. (1996). Malkhi new mode
(2010)l, integrating virtual synchrony with Paxos is covered in Appendix A. Lam-
port and Van Renesse have both written papers that seek to make Paxos simple, see
Lamport (2001), van Renesse (2011).

Security keys replicated in groups: See Reiter (1996).
On uses of the virtual synchrony model (see Birman and Joseph 1987a; Birman

and van Renesse 1994).
On primary-backup schemes (see Budhiraja et al. 1993).
A discussion of other approaches to the same problems can be found in Cristian

(1996).
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We now tackle the last of the “process group internals” topics that will be covered
in this textbook. As mentioned at the start of Chap. 10, a reader focused primarily
on high assurance for Web Services does not really need to read the material that
follows in any detail. The questions tackled here are a bit esoteric and while they
do matter, platforms like Isis2, Horus, JGroups, Spread and Ensemble address these
issues in a simple, standardized manner reflecting a sensible tradeoff between per-
formance and guarantees. If your goal is to just use a group communication tool,
it is not necessarily important to understand precisely how that tool was imple-
mented, just as one can use TCP without understanding the details of TCP “slow
start” and the so called additive-increase multiplicative-backoff congestion control
used in that protocol. On the other hand, we cite TCP as an example of why read-
ers might want to be familiar with this information just the same. If you use TCP
in a mission-critical application, the behavior of the protocol might really matter;
it can be hard to get good performance without understanding how TCP itself is
designed. Sometimes, what you do not know can surprise you, and certainly for
those readers building an elaborate or very critical application, understanding ex-
actly how a platform behaves can avoid nasty misunderstandings. In a similar spirit,
this chapter seeks to pull together what we learned in Part II into a single synthesized
overview.

In the previous chapters, we examined options for implementing replicated data
in various group membership models and looked at protocols for ordering conflict-
ing actions under various ordering goals. We then showed how these protocols could
be used as the basis of a computational model, virtual synchrony, in which members
of distributed process groups see events that occur within those groups in consistent
orders and with failure-atomicity guarantees and are consequently able to behave in
consistent ways. All that is lacking is a more general synthesis, which we provide
in this chapter. Key ideas underlying virtual synchrony are:
• Self-defining system and process group membership, in which processes are ex-

cluded from a system, if necessary, to permit continued progress.
• Tools for joining a group, state transfer, communication, and reporting new mem-

bership views.

K.P. Birman, Guide to Reliable Distributed Systems, Texts in Computer Science,
DOI 10.1007/978-1-4471-2416-0_15, © Springer-Verlag London Limited 2012
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• Depending on the model, a concept of primary component of the system.
• Algorithms that seek to achieve internal (as opposed to strongly durable) consis-

tency.
• Distributed consistency achieved by ordering conflicting replicated events in con-

sistent ways at the processes that observe those events.
The remainder of this chapter reviews these points relative to the alternatives we
touched upon in developing our protocols and tools.

15.1 Consistency in the Static and Dynamic Membership
Models

In the static model, the system is understood to be the set of places at which pro-
cesses that act on behalf of the system execute. Here, the system is a relatively
fixed collection of resources, which experience dynamic disruptions of communica-
tion connectivity, process failures, and restarts. Obviously, a static system may not
be static over very long periods of time, but the time scale on which membership
changes is understood to be long compared to the time scale at which these other
events occur. The protocols for adding new members to the static set or dropping
them are treated as being outside of the normal execution model. In cases where
the system is symmetric, meaning that any correct execution of the system would
also have been correct if the process identifiers were permuted, static systems rely
on agreement protocols within which the majority of the statically defined compo-
sition of the full system must participate, directly or indirectly. As we have seen,
the static model matches well with the Paxos protocol suite, although Paxos does
include a way to reconfigure the list of places that are included in the static set (call
it “mostly” static, if you wish).

The dynamic model employs a concept of system membership that is self-defined
and turns out to be more complex to support but cheaper than the static one. Dy-
namic systems add and lose members on a very short time scale compared to static
ones. In the case where the system is symmetric, the set of processes that must par-
ticipate in decisions is based on a majority of a dynamically defined group; this is
a weaker requirement than for the static model and hence permits progress under
conditions when a static system would not make progress. (See Fig. 15.1.)

These points are already significant when one considers what it means to say
that a protocol is live in the two settings. However, before focusing on liveness, we
review the question of consistency.

Consistency in a static model is typically defined with regard to an external ob-
server, who may be capable of comparing the state and actions of a process that
has become partitioned from the other processes in the system with the states and
actions of the processes that remained connected. Such an external observer could
be a disk that contains a database that will eventually have to be reintegrated and
reconciled with other databases maintained by the processes remaining in the con-
nected portion of the system, an external device or physical process with which the
system processes interact, or some form of external communication technology that
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Fig. 15.1 Static and dynamic views of a single set of sites. From a static perspective, the set has
fixed membership but changing connectivity and availability properties—for example, the black
nodes may be available and the gray ones treated as not available. Depending upon how such
a system is implemented, it may be impossible to perform certain types of operation (notably,
updates) unless a majority of the nodes are available. The dynamic perspective treats the system
as if it were partitioned into a set of components whose membership is self-defined. Here, the
black component might be the primary one and the gray components nonprimary. In contrast to the
static approach, the primary component remains available, if primaryness can be deduced within
the system. If communication is possible between two components, they are expected to merge
their states in this model. Neither perspective is more correct than the other: The most appropriate
way to view a system will typically depend upon the application, and different parts of the same
application may sometimes require different approaches to membership. However, in the dynamic
model, it is frequently important to track one of the components as being primary for the system,
restricting certain classes of actions to occur only in this component (or not at all, if the primaryness
attribute cannot be tracked after a complex series of failures)

lacks the flexibility of message passing but may still transfer information in some
way between system processes.

Consistency in a dynamic system is a more internal concept, although we have
seen that the combination of a protocol like the Isis2 SafeSend with a module such as
the DiskLogger can bridge the gap from the static to the dynamic worlds (at the end
of Chap. 14; see also Fig. 15.2). In essence, a dynamic form of consistency requires
that processes permitted to interact with one another will never observe contradic-
tions in their states, which are detectable by comparing the contents of messages
they exchange. Obviously, process states and the system state evolve through time,
but the idea here is that if process p sends a message to process q that in some way
reflects state information shared by them, process q should never conclude that the
message sent by process p is impossible on the basis of what q itself has seen in
regard to this shared state. If the state shared by p and q is a replicated variable, and
q has observed that variable to increment only by 2s from 0 to its current value of
40, it would be inconsistent if p sent a message, ostensibly reflecting a past state,
in which the variable’s value was 7. For q such a state would not merely be stale, it
would be impossible, since q believes itself to have seen the identical sequence of
events, and the variable never had the value 7 in q’s history.

Although this example is unrealistic, it corresponds to more realistic scenarios in
which dynamic consistency is precisely what one wants—for example, when a set of
processes divides the work of performing some operation using a coordinator-cohort
rule, or by exploiting a mutually perceived ranking to partition a database, dynamic
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Fig. 15.2 Strong (sometimes called interactive) consistency is the guarantee that the members of
a given system component will maintain mutually consistent states (here, by agreeing upon the
sequence of values that a variable, x, has taken). If a protocol is not strongly durable, it may allow
a process that becomes partitioned from a component of the system to observe events in a way
that is inconsistent with the event ordering observed within that component. Thus, in this example,
the component on the right (consisting of a single process) observes x to take on the values 7 and
9, while the larger component on the right sees x pass through only even values. By pronouncing
at most one of these components to be the primary one for the system, we can impose a sensible
interpretation on this scenario. Alternatives are to use strongly durable protocols with external
consistency guarantees. Such protocols can be supported both in the dynamic membership model
and the static one, where this guarantee is almost always required. However, they are far more
costly than protocols that do not provide strong durability

consistency is required for the partitioning to make sense. Dynamic consistency is
also what one might desire from the Web proxies and servers that maintain copies
of a document: They should agree on the version of the document that is the most
current one and provide guarantees to the user that the most current document is
returned in response to a request.

The significance of the specific example described above is thus not that applica-
tions often care about the past state of a replicated variable, but rather that cooper-
ation or coordination or synchronization in distributed settings all involve cases in
which a process, p, may need to reason about the state and actions of some other
process, q . When this occurs, p can be understood to be using a form of replicated
system state that it believes itself to share with q . Our shared variable has now be-
come the shared concept of the state of a lock or the shared list of members and
ranking of members for a process group to which both belong. Inconsistency in
these cases means that the system is visibly misbehaving: Two processes both think
they have locked the same variable, or each thinks the other holds the lock when nei-
ther in fact holds it. Perhaps both processes consider themselves primary for some
request, or perhaps neither does. Both may search the first half of a database, each
thinking the other is searching the second half. These same issues only get worse if
we move to larger numbers of processes.

Of course, as the system evolves through time, it may be that p once held a lock
but no longer does. So the issue is not so much one of being continuously consistent,
but of seeing mutually consistent and mutually evolving histories of the system state.
In effect, if the processes in a system see the same events in the same order, they can
remain consistent with one another. This extremely general concept is at the heart
of all forms of distributed consistency.

In the purest sense, the dynamic system model is entirely concerned with free-
dom from detectable inconsistencies in the logically derivable system state. This
concept is well defined in part because of the following rule: When a dynamic sys-
tem considers some process to have failed, communication to that process is perma-
nently severed. Under such a rule, p cannot communicate to q unless both are still
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within the same component of the possibly partitioned system, and the protocols for
dynamic systems operate in a manner that maintains consistency within subsets of
processes residing in the same component. The system may allow a process to be
inconsistent with the state of the system as a whole, but it does so only when that
process is considered to have failed; it will never be allowed to rejoin the system
until it has done something to correct its (presumably inconsistent) state.

The ability to take such an action permits dynamic systems to make progress
when a static system might have to wait for a disconnected process to reconnect
itself or a failed process to be restarted. Thus, a process in the dynamic model can
sometimes (often, in fact) make progress while a process in the static model would
not be able to do so.

The static model, on the other hand, is in many ways a more intuitive and sim-
pler one than the dynamic one. It is easy to draw an analogy between a static set
of resources and a statically defined set of system processes. External consistency
constraints, being very strong, are also easy to understand. The dynamic model is in
some sense superficially easy to understand, but much harder to fathom upon close
study. Suppose we are told that process p is a member of a dynamically defined
system component and sets a replicated variable x to 7. In a static system we would
have concluded that, since the system guarantees the consistency of this action, p

was safe in taking it. In a dynamic system, it may be that it is too early to know
if p is a valid member of the system and that setting x to 7 is a safe action in the
broader sense. The problem is that future events may cause the system to reconfig-
ure itself in a way that excludes p and leads to an evolution of system state in which
x never does take on the value 7. Moreover, the asynchronous nature of communi-
cation means that even if in real time p sets x to 7 before being excluded by the
other system members as if it were faulty, in the logical system model, p’s action
occurs after it has been excluded from the system.

Where external actions are to be taken, the introduction of time offers us a way to
work around this dilemma. Recall our air traffic control example (see Sect. 11.1.5).
Provided that p shares a clock with the remainder of the system, it (p) can be warned
with adequate time to avoid a situation where two processes ever own the air traffic
space at the same time. Of course, this does not eliminate the problem that during
the period after it became disconnected and before the remainder of the system took
over, p may have initiated actions. We can resolve this issue by acknowledging that
it is impossible to improve on the solution and by asking the application program
to take an appropriate action. In this specific example, p would warn the air traffic
controller that actions taken within the past δ seconds may not have been properly
recorded by the main system, and connection to it has now been lost. With a person
in the loop, such a solution would seem adequate. In fact, there is little choice, for
no system that takes actions at multiple locations can ever be precisely sure of its
state if a failure occurs while such an action is underway.

Faced with such seemingly troubling scenarios, one asks why we consider the
dynamic model at all. Part of the answer is that the guarantees it offers are almost
as strong as those for the static case, and yet it can often make progress when a
static solution would be unable to do so. Moreover, the static model sometimes just
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does not fit a problem. Web proxies, for example, are a very dynamic and unpre-
dictable set: The truth is out there, but a server will not be able to predict in advance
just where copies of its documents may end up (imagine the case where one Web
proxy obtains a copy of a document from some other Web proxy!). But perhaps the
best answer is, as we saw in previous chapters, that the weaker model permits dra-
matically improved performance, perhaps by a factor of hundreds if our goal is to
replicate data.

Both the static and dynamic system models offer a strong form of consistency
whereby the state of the system is guaranteed to be consistent and coordinated
over large numbers of components. But while taking an action in the static model
can require a fairly slow, multiphase protocol, the dynamic system is often able
to exploit asynchronous single-phase protocols, such as the non-durable Send and
CausalSend primitives, for similar purposes. It is no exaggeration to say that these
asynchronous protocols may result in levels of performance that are hundreds of
times superior to those achievable when subjected to static consistency and mem-
bership constraints—for example, as was mentioned earlier, the Horus system is
able to send nearly 85,000 small multicasts per second to update a variable repli-
cated between two processes. This figure drops to about 50 updates per second when
using a quorum-style replication scheme such as the one in the Paxos system, and
perhaps 1,500 per second when using an RPC scheme that is disconnected from
any concept of consistency. As we have seen, the issue is not the quality of imple-
mentation (although Horus is a heavily optimized system), but rather the protocols
themselves: these latter systems are limited by the need to receive acknowledge-
ments from what may be very slow participants. The latency improvements can be
even larger: In Horus, there are latency differences of as much as three orders of
magnitude between typical figures for the dynamic case and typical protocols for
taking actions in static, strongly durable manner. Other systems using the dynamic
model, for example Ensemble or the Spread toolkit from John Hopkins University,
achieve similar performance benefits.

Paxos offers an interesting illustration of this point. Lamport developed Paxos us-
ing a series of refinements on a basic protocol that was defined initially for a static
membership case. If one goes back and rereads the Paxos papers in historical or-
der, one finds that the earliest paper (The Part-Time Parliament, published in ACM
TOCS in 1998, but first released as a technical report around 1990) builds on this
very basic version of Paxos. It employed a simple quorum mechanism to achieve
strong durability and agreed ordering. That first paper already introduced a series of
optimizations aimed at improving performance without breaking the correctness of
the original protocol. For example, Lamport proposed a simple form of leader elec-
tion. This leader-based form of Paxos has an opportunistic feel to it: during periods
when Paxos happens to have a single stable leader, Paxos never needs to retry a mul-
ticast multiple times. In contrast, with two or more concurrent leaders contending to
order distinct multicasts, the protocol might fail to commit any multicast in slot after
slot (think about a case in which some set of leaders run in near lock-step, each time
getting some acceptors to agree on their proposals, but with none of them ever able
to get a quorum: at least one will fail, and perhaps all, forcing them to loop again
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and again. Thus, a retry is inevitable without a single leader, but would not occur if
a single leader issued all proposals). Lamport then generalized Paxos to operate on
batches of messages. And only then did Lamport suggest a way to make membership
dynamic, using an idea reminiscent of something called a Quorum Ratchet Scheme
(the name here is a reference to work by Maurce Herlihy, done in the 1990’s on this
style of reconfigurable quorum system). Basically, one introduces a second level of
quorum mechanism that can inhibit new multicasts and then change the agreed upon
membership of the group. In this way Lamport derived the version of Paxos people
use today. The fascinating innovation was that he managed to preserve the basic
Paxos correctness proof as each of these steps was taken (the Paxos protocol itself,
in particularly, was not all that innovative; as noted earlier, it is basically identical to
a protocol called Viewstamped Replication introduced by Oki and Liskov, and also
to the virtual synchrony group management protocol introduced even earlier in the
first versions of the Isis system) (Birman 1985; Herlihy 1986; Oki and Liskov 1988;
Lamport 1998).

At the end of Chap. 14, we basically reimplemented Paxos in a virtual synchrony
setting, with a group membership service. As we saw, this can be done by combin-
ing the in-memory durability of the basic SafeSend protocol with a DiskLogger that
provides durability even across failures that cause the whole group to crash. More-
over, it has the needed interlocking to deal with an external application such as a
database that has been replicated on a set of nodes.

In fact the type of thing that this mixture of SafeSend and DiskLogger accom-
plishes was considered by Dahlia Malkhi and others in a 2010 paper (Birman et al.
2010), the contents of which have been reproduced as Appendix A in this text. In
general, because a virtual synchrony system standardizes and manages membership,
one can use virtual synchrony to implement a simplified version of Paxos. The re-
sulting virtually synchronous Paxos protocol (the protocol called SafeSend in Isis2)
gains a number of efficiencies over the dynamic membership versions of Paxos, but
as we saw, the precise definition of durability is central to the actual safe use of this
protocol: without the DiskLogger, SafeSend is durable in one sense (if any member
delivers a message, all will do so) but not in a different sense (if all members crash,
on recover the group has no memory of its past state). The DiskLogger overcomes
that behavior at some cost and complexity, and yet Malkhi would view all of this as
just a question of how one defines durability.

Thus for her work, the key to strong durability really centers on the use of a first
phase that logs messages in a manner matched to the durability goal, but does not
necessarily need to include every single group member; using an idea of Lamport’s,
we can run the first phase at a subset of group members (the acceptors), then deliver
at a potentially larger set (learners). For example, in the Isis2 SafeSend, the default
is to use 3 acceptors even in a group with 1000 members. The advantages of doing
this are twofold.

First, in a standard Paxos implementation, because some members might be
faulty when an event occurs, updates are only guaranteed to reach n − f members,
where f is a fault threshold (n, of course, is the group size). With virtual synchrony,
provided that the amount of group state that would need to be transferred to joining
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members is reasonably small, we can change the group membership inexpensively
each time a failure occurs. Thus there is no need to use a quorum update in this up-
date protocol, making it quite a bit cheaper. One also gains on read-only operations:
with standard Paxos, a process must read f + 1 or more replicas to be sure of find-
ing at least one replica with the most current updates. With virtually synchronous
Paxos, any single replica still belonging to the group is certain to be correct. This
makes reads much faster. And there is even a third benefit: with the standard form
of dynamic membership for Paxos, there turns out to be some uncertainty about
the outcome of pending updates that were underway when the membership was up-
dated. Lamport introduces a parameter, call it α, and builds the protocol in such a
way that when the new membership becomes defined (the new view, if you wish),
at most α updates initiated in the prior view might still be delivered. But for many
purposes, these late updates can be confusing, particularly because they can be de-
livered arbitrarily late. Thus, hours after a membership change, a very old update
might suddenly complete (this is a side-effect of the way that future membership
changes occur; they can cause an undelivered update to finally achieve the required
quorum and become deliverable). With Malkhi’s virtual synchronous Paxos, this
cannot happen: all pending actions in a given view terminate before the next view is
installed.

In practical work with dynamic system models, we typically need to assume that
the system is “usually” well-behaved, despite experiencing some infrequent rate
of failures. Under such an assumption, the model is easy to work with and makes
sense. If a system experiences frequent failures (relative to the time it takes to re-
configure itself or otherwise repair the failures), the static model becomes more and
more appealing and the dynamic one less and less predictable. Fortunately, most
real systems are built with extremely reliable components, hence experience infre-
quent failures. This pragmatic consideration explains why dynamically consistent
distributed systems have become popular: The model behaves reasonably in real en-
vironments, and the performance is superior compared to what can be achieved in
the static model.

Indeed, one way to understand the performance advantage of the dynamic model
is that by precomputing membership information, the dynamic algorithms represent
optimizations of the static algorithms. As one looks closely at the algorithms, they
seem more and more similar in a basic way, and perhaps this explains why that
should be the case. In effect, the static and dynamic models are very similar, but
the static algorithms (such as quorum data replication) are forced to compute the
membership information they needed on each operation, while the dynamic ones
precompute this information and are built using a much simpler fail-stop model.

Moreover, it is important to realize that the external concept of consistency as-
sociated with static models is in some ways much stronger, and consequently more
restrictive, than is necessary for realistic applications. This can translate to periods
of mandatory unavailability, where a static system model forces us to stop and wait
while a dynamic consistency model permits reconfiguration and progress. Many
distributed systems contain services of various kinds that have small server states
(which can therefore be transferred to a new server when it joins the system) and
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that are only of interest when they are operational and connected to the system as
a whole. Mutual consistency between the servers and the states of the applications
using them is all that one needs in such internal uses of a consistency-preserving
technology. If a dynamic approach is dramatically faster than a static one, so much
the better for the dynamic approach!

These comments should not be taken to suggest that a dynamic system can al-
ways make progress even when a static one must wait. For example, Chandra, Toueg
and Vassilacos established that a result similar to the FLP result holds for group
membership protocols (see Chandra et al. 1996)—showing, in effect, that there are
conditions under which an asynchronous system can be prevented from reaching
consensus upon its own membership and therefore prevented from making progress.
Other researchers have pinned down precise conditions (in various models) under
which dynamic membership consensus protocols are guaranteed to make progress
(see Babaoglu et al. 1995; Friedman et al. 1995; Guerraoui and Schiper 1996;
Neiger 1996), and the good news is that for most practical settings the protocols
make progress if the probability of failures and message loss is uniform and inde-
pendent over the processes and messages sent in the system. In effect, only parti-
tioning failures or a very intelligent adversary (one that in practice could never be
implemented) can prevent these systems from making progress.

Thus, we know that all of these models face conditions under which progress
is not possible. As a practical matter, the evidence is that all of these models are
perfectly reasonable for building reliable distributed systems. The theoretical im-
possibility results do not appear to represent practical impediments to implementing
reliable distributed software; they simply tell us that it is possible for the system to
encounter complex runtime failure conditions that these reliability approaches can-
not overcome. The choice, in a practical sense, is to match the performance and
consistency properties of the solution to the performance and consistency require-
ments of the application. The weaker the requirements, the better the performance
we can achieve.

Our study also revealed two other issues that deserve comment: the need, or
lack thereof, for a primary component in a partitioned membership model and the
broader but related question of how consistency is tied to ordering properties in
distributed environments.

The question of a primary component is readily understood in terms of the air
traffic control example we looked at earlier. In that example, there was a need to take
authoritative action within a service on behalf of the system as a whole. In effect, a
representative of a service needed to be sure that it could safely allow an air traffic
control to take a certain action, meaning that it ran no risk of being contradicted
by any other process (or, in the case of a possible partitioning failure, that before
any other process could start taking potentially conflicting actions, a timeout would
elapse and the air traffic controller would be warned that this representative of the
service was now out of touch with the primary partition).

In the static system model, there is only a single concept of the system as a whole,
and actions are taken upon the authority of the full system membership. Naturally,
it can take time to obtain majority acquiescence in an action—hence, this is a model
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in which some actions may be delayed. However, when an action is actually taken,
it is taken on behalf of the full system.

In the dynamic model we lose this guarantee and face the prospect that our con-
cept of consistency can become trivial because of system partitioning failures—a
dynamic system could partition arbitrarily, with each component having its own
concept of authoritative action. All of this seems to argue that practical systems
should limit themselves to supporting a single, primary component. If a partition
forms and some process is operating in a non-primary component, an exception
should be delivered to the application (“you have become partitioned away from the
system”), and the application can deal with this, perhaps by terminating the discon-
nected process. Progress would be limited to the primary partition.

This is not really all that restrictive an approach. First, partitions are rare in most
systems, so the whole issue of continuing execution while partitioned away from
the majority of the system should be very rare. We’ve seen that in the cloud, such
partitioning scenarios won’t occur at all: if a small group of machines becomes
isolated, the cloud would shut them down as soon as possible, then force them to
restart in a clean state, thus mapping partitioning faults to failures. Secondly, some
form of read-only behavior may suffice. A nonprimary component may, for exam-
ple, continue to operate a device that it owns, but that may not be reliable for use
in instructing an air traffic controller about the status of air space sectors or other
global forms of state-sensitive data unless they were updated using strongly durable
protocols.

Of course, a dynamic distributed system can lose its primary component, and,
making matters still more difficult, there may be patterns of partial communication
connectivity within which a dynamic model must block. Suppose, for example, that
a system partitions so that all of its members are disconnected from one another.
Now we can selectively reenable connections so that over time a majority of a static
system membership set are able to vote in favor of an action. Such a pattern of
communication could allow progress—for example, there is the protocol of Keidar
and Dolev, cited several times previously, in which an action can be terminated
entirely on the basis of point-to-point connections. However, as we commented, this
protocol delays actions until a majority of the processes in the entire system know
about them, which will often take a very long time.

This type of reasoning might not apply in new kinds of system that deviate from
the usual behavior seen in a local network. Frequent periods of partitioned operation
could occur in very mobile situations, such as when units are active on a battlefield.
Thus, there are probably systems that should use a static model with partial com-
munications connectivity as their basic model, systems that should use a primary
component consistency model, and perhaps still other systems for which a virtual
synchrony model that does not track primaryness would suffice. These represent
successively higher levels of availability, and even the lowest level retains a mean-
ingful concept of distributed consistency. At the same time, they do provide weaker
forms of consistency. This suggests that there are unavoidable tradeoffs in the design
of reliable distributed systems for critical applications.
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Fig. 15.3 Conceptual options for the distributed systems designer. Even when one seeks con-
sistency, there are choices concerning how strong the consistency desired should be and which
membership model to use. The least-costly and highest-availability solution for replicating data,
for example, looks only for internal consistency within dynamically defined partitions of a sys-
tem and does not limit progress to the primary partition. This model, as we have suggested, may
be too weak for practical purposes. A slightly less available approach, which maintains the same
high level of performance, allows progress only in the primary partition. As one introduces fur-
ther constraints, such as strong durability or a static system model, costs rise and availability falls,
but the system model becomes simpler and simpler to understand. The most costly and restrictive
model sacrifices nearly three orders of magnitude of performance in some studies relative to the
least-costly one. Within any given model, the degree of ordering required for multicasts introduces
further fine-grained cost/benefit tradeoffs

The two-tiered architecture discussed in the previous chapter can be recognized
as a response to this impossibility result. Such an approach explicitly trades higher
availability for weaker consistency in the LAN subsystems, while favoring strong
consistency at the expense of reduced availability in the WAN layer (which might
run a protocol based on the Chandra/Toueg consensus algorithm). The LAN level of
a system might use nondurable protocols for speed, while the WAN level uses tools
and protocols similar to the ones proposed by the Transis effort or by Babaoglu’s
group in their work on Relacs.

We alluded briefly to the connection between consistency and order. This topic
is perhaps an appropriate one on which to end our review of the models. Starting
with Lamport’s earliest work on distributed computing systems, it was already clear
that consistency and the ordering of distributed events are closely linked. Over time,
it has become apparent that distributed systems contain what are essentially two
forms of knowledge or information. Static knowledge is that information that is well
known to all of the processes in the system at the outset—for example, the member-
ship of a static system is a form of static knowledge. Being well known, it can be
exploited in a decentralized but consistent manner. Other forms of static knowledge
can include knowledge of the protocol that processes use, knowledge that some pro-
cesses are more important than others, or knowledge that certain classes of events
can only occur in certain places within the system as a whole. (See Fig. 15.3.)
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Dynamic knowledge is information that stems from unpredicted events occurring
within the system—either as a consequence of nondeterminism of the members,
failures or event orderings that are determined by external physical processes, or
inputs from external users of the system. The events that occur within a distributed
system are frequently associated with the need to update the system state in response
to dynamic events. To the degree that system state is replicated, or is reflected in the
states of multiple system processes, these dynamic updates of the state will need to
occur at multiple places. In the work we have presented here, process groups are the
places where such state resides, and multicasts are used to update such state.

Viewed from this perspective, it becomes apparent that consistency is order, in
the sense that the distributed aspects of the system state are entirely defined by
process groups and multicasts to those groups, and these abstractions, in turn, are
defined entirely in terms of ordering and atomicity. Moreover, to the degree that the
system membership is self-defined, as in the dynamic models, atomicity is also an
order-based abstraction.

This reasoning leads to the conclusion that the deepest of the properties in a
distributed system concerned with consistency may be the ordering in which dis-
tributed events are scheduled to occur. As we have seen, there are many ways to
order events, but the schemes all depend upon either explicit participation by a ma-
jority of the system processes or upon dynamically changing membership, managed
by a group membership protocol. These protocols, in turn, depend upon majority
action (by a dynamically defined majority). Moreover, when examined closely, all
the dynamic protocols depend upon some concept of token or special permission,
which enables the process holding that permission to take actions on behalf of the
system as a whole. One is strongly inclined to speculate that in this observation
lies the grain of a general theory of distributed computing, in which all forms of
consistency and all forms of progress could be related to membership and in which
dynamic membership could be related to the liveness of token passing or leader
election protocols. At the time of this writing, I am not aware of any clear presen-
tation of this theory of all possible behaviors for asynchronous distributed systems,
but perhaps it will emerge in the not-too-distant future.

15.2 Practical Options for Coping with Total Failure

The reader who follows the above recommendations will be guided towards a style
of system in which replication is used to maintain availability in the primary parti-
tion of a system that dynamically tracks its own membership. If a machine becomes
partitioned away from the primary group, it will detect this and should probably shut
down.

But this recommendation raises an obvious concern. What happens if (after some
sort of rare event like a power outage), the network itself shuts down, and as a result
all the nodes in the system seem to be isolated from the primary partition? Should
they all shut down? And more broadly, how can a system recover after a total failure?
Earlier we saw one way of handling this issue, in the context of the DiskLogger. But
what can be said about the question in the abstract?
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To some extent, this problem has been solved by researchers. In a 1985 paper (see
Skeen 1985), an algorithm was published for “determining the last process to fail”
after a total failure. In this protocol, the processes in a system compare notes and
in this way track down the last survivor of the wave of outages. That node restarts
first, and the others then join. But in practice, such an approach is unlikely to be
satisfactory for several reasons.

The central problem is that in most systems, not all machines are equal. Servers
are more important than clients, and if a system includes a mixture (as many do),
restarting the system from a client machine is often a nonsensical proposition: one
restarts servers. Thus, the “last process to fail” may not be the issue. Furthermore,
while an algorithm for picking the last server that failed can be designed, Skeen’s
solution involves waiting until all the last servers to fail are operational again. In any
real-world setting, we may not want to wait so long.

This leads to the following advice. First, if possible, applications partitioned
away from the majority should checkpoint their states and then either shut down
(as in cloud settings), or sit idle waiting to connect with the primary partition. Thus
when the network goes down, any isolated machines stop processing new opera-
tions.

There are now two cases. The easy one arises when a server in this state manages
to connect to the primary partition. It should just discard the checkpointed state and
“rejoin” with a state transfer. The second case arises if there is no primary parti-
tion. Here, a less than completely automated solution makes sense. The application
should simply ask a human operator for help. That human operator will presumably
study the system state, pick the “official” last node to fail, and tell it via command
to restart (perhaps from its checkpoint). This reestablishes the primary partition and
the others now follow the first rule above.

Not all problems can or should be solved in fully automated ways, and the au-
thor has become convinced that handling of severe partitionings or total failure are
among them. Fortunately, such situations are infrequent, and as long as there is a
simple way to restart the system, most application developers should be satisfied by
the resulting mechanism.

15.3 Summary and Conclusion

There has been a great deal of debate over the concepts of consistency and reliability
in distributed systems (which are sometimes seen as violating end-to-end principles)
and of causal or total ordering (which are sometimes too weak or too strong for
the needs of a specific application that does need ordering). See, for example, van
Renesse (1993, 1994), Cheriton and Skeen (1993), Birman (1994), Cooper (1994).

Finally, although we have not focused on this here, there is the criticism that
technologies such as the ones we have reviewed do not fit with standard styles of
distributed systems development.

As to the first concern, the best argument for consistency and reliability is to
simply exhibit classes of critical distributed computing systems that will not be suf-
ficiently “assured” unless data are replicated and will not be trustworthy unless the
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data is replicated consistently. One would not want to conclude that most distributed
applications need these properties: Today, the ones that do remain a fairly small sub-
set of the total. However, with the advent of Web Services, this subset is poised for
rapid growth. Moreover, even if one believed that consistency and reliability are
extremely important in a great many applications, one would not want to impose
potentially costly communication properties system-wide, especially in applications
with very large numbers of overlapping process groups. To do so is to invite poor
performance, although there may be specific situations where the enforcement of
strong properties within small sets of groups is desirable or necessary.

Turning to the second issue, it is clearly true that different applications have
different ordering needs. The best solution to this problem is to offer systems that
permit the ordering and consistency properties of a communication primitive or pro-
cess group to be tailored to their needs. If the designer is concerned about paying
the minimum price for the properties an application really requires, such a system
can then be configured to only offer the requested properties. Later in the book, will
see that the Horus and Ensemble systems adopt this approach, while others (notably
Spread) simply adopt an easily understood multicast and focus on making it as fast
as possible. Both approaches make sense, and users seem to find both rather easy to
use.

Finally, as to the last issue, it is true that we have presented a distributed com-
puting model that, so far, may not seem very closely tied to the software engineer-
ing tools normally used to implement distributed systems. In the next chapter we
study this practical issue, looking at how group communication tools and virtual
synchrony can be applied to real systems that may have been implemented using
other technologies.

15.4 Related Reading

On concepts of consistency in distributed systems (see Birman and van Renesse
1994, 1996); in the case of partitionable systems (see Amir 1995; Keidar and Dolev
1995, 2000; Malkhi 1994; Moser et al. 1996). For Malkhi’s integration of virtual
synchrony with Paxos, see Birman and Joseph (1987a) and Malkhi (1994).

On the causal controversy (see van Renesse 1993).
On the dispute over CATOCS (see Cheriton and Skeen 1993); but see also Bir-

man (1994), Cooper (1994), van Renesse (1994) for responses.
The end-to-end argument was first put forward in Saltzer et al. (1990).
Regarding theoretical work on tradeoffs between consistency and availability

(see Babaoglu et al. 1995; Chandra et al. 1996; Fisher et al. 1985a, 1985b; Fried-
man et al. 1995). The survey of group communication systems in Vitenberg et al.
(2001) is considered to be a classic treatment of the topic, looking at a wide range
of group multicast models, with a focus on placing them into a standard theoretical
framework and on comparing their failure assumptions and guarantees.



Part III
Applications of Reliability Techniques

In this third part of the book, we apply the techniques developed in Part III to real
problems seen in a wide variety of systems, including Web Services. The techniques
on which we focus are fairly practical and a talented student should not have much
trouble employing them in conjunction with a platform such as Spread or Ensemble.
We pick problems that are interesting in their own terms, but are also representative
of broader classes of issues seen in a wide range of settings and systems, in the hope
that the examples developed here might serve as templates for developers working
on mission-critical problems in production settings.
In fact at the end of Chap. 14 we see some preliminary ideas along these lines,
when asking how one might use virtual synchrony in the first tier services of a cloud
system, or as a front-end to a replicated and durable database; we wo will not repeat
that material here, although the reader of this chapter should certainly review those
options if he or she has not already done so. Particularly important is the discussion
of how the Isis2 SafeSend protocol must be used with its DiskLogger component if
placed in front of a durable database, and even then, an appropriate application-layer
state transfer might be needed (would be needed, in fact, if the SafeSend parameter
φ has a value smaller than n). By working out that detailed case we intended both
to show how the problem can be solved, but also to make it clear that doing so
is not trivial even with a powerful tool at one’s disposal! These are just not simple
problems to solve, although tools of that kind do make them simpler than they would
be without such help.
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In this chapter, we explore options for presenting group computing tools to the ap-
plication developer. Two broad approaches are considered: those involving wrappers
that encapsulate an existing piece of software in an environment that transparently
extends its properties—for example, by introducing fault tolerance through replica-
tion or security—and those based upon toolkits that provide explicit procedure-call
interfaces. We will not examine specific examples of such systems now, but will
instead focus on the advantages and disadvantages of each approach and on their
limitations. At the time of this writing, it remains unclear how best to integrate re-
liability mechanisms with Web Services, although it is clear that doing so would be
feasible (and also of considerable commercial value).

Down the road, it seems likely that we will see a third and perhaps more preva-
lent option: platforms that include reliability functionality as an integral component.
For example, when doing cloud programming on Microsoft platforms, the developer
works with an environment called Azure that integrates with the Visual Studio prod-
uct, an editing and debugging framework with support for many languages. In Visual
Studio, one can literally drag-and-drop complex functionality into an application. To
turn a C# application into a Web Services program, in Azure, one basically extends
a stylized template that starts by using an ASP.NET template to define a web page
or web-services API, then grafts application-specific logic to it. The develop essen-
tially fills in the contents of a kind of dialog box to define this logic, which can
be as simple as a script written in a language like SilverLight, or as complex as a
full-fledged C# application program. Further dialog boxes allow the user to specify
which classes should be exported, and to control such aspects as how the interface
will appear in a UDDI-compliant name server. Through a combination of dialog
boxes associated with the template and implementation of any application-specific
methods, the user is led rather directly to a working Web Services program. A sim-
ilar approach (a bit less automated) is used by Google’s AppEngine; FaceBook and
Force.com and Yahoo each offer substantial packages to their users, etc.

Thus one could imagine a path by which industry would embrace the kinds of
solutions discussed in this book and even package them to a point where by drag-
ging “replication” onto a Visual Studio application (or doing the analogous action
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in some other development platform, since many share this style of intentional pro-
gramming), group communication technology, security tools, or other specialized
reliability mechanisms could be requested. All that we really need is to see broad
demand emerge for such functionality, and this may finally be occurring as the Web
Services community begins to roll out an increasingly critical class of applications
and to encounter the reliability and availability limitations of the initial Web Ser-
vices architecture and platform technologies.

16.1 Wrappers and Toolkits

The introduction of reliability technologies into a complex application raises two
sorts of issues. One is that many applications contain substantial amounts of pre-
existing software or make use of off-the-shelf components (the military and gov-
ernment favor the acronym COTS for this), meaning “commercial off the shelf.” In
these cases, the developer is extremely limited in terms of the ways that the old tech-
nology can be modified. A wrapper is a technology that overcomes this problem by
intercepting events at some interface between the unmodifiable technology and the
external environment (see Jones 1993), replacing the original behavior of that inter-
face with an extended behavior, which confers a desired property on the wrapped
component, extends the interface itself with new functionality, or otherwise offers
a virtualized environment within which the old component executes. Wrapping is a
powerful technical option for hardening existing software, although it also has some
practical limitations. In this section, we will review a number of approaches to per-
forming the wrapping operation itself, as well as a number of types of intervention
that wrappers can enable.

Wrapping is not trivial. Returning to our earlier example, while it may seem
natural to wrap a replicated database by just putting a group that uses the durable
SafeSend in front of the replicas, that solution would not actually be correct. Only
by instantiating SafeSend with the appropriate durability option (the DiskLogger),
setting a suitable durability threshold value (φ), and then making certain to call the
DiskLogger.Done API after the application-layer updates complete can we achieve
the desired robustness. Moreover, even that was not the whole story: we also needed
a fairly elaborate state transfer capable of bringing a replica up to date if it missed a
series of updates. Often this will cause the application to maintain a duplicate of the
same log files that the DiskLogger employs! The point of this chapter, then, is that
we need to move towards a day when tools like the Azure/VisualStudio automate
enough of these steps to make it easy for a typical developer to understand the
sequence and to carry it out (and then to debug and test the resulting system). The
steps are far easier than they would be without help, but still daunting for a developer
working in today’s versions of these kinds of cloud development platform, which
entirely lack this sort of support.

On the positive side of the coin, the notion of wrapping as we use it here should
not seem unfamiliar; what we lack is really the specific wrappers that might yield
reliability and other forms of high assurance. Many developers view Web Services
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as wrappers, because the Web Services model and interfaces are often used as a
gateway between a “new” application and a legacy server to which the Web Ser-
vices dispatcher has been linked. Unfortunately, however, the notion of wrapping
is not currently a first-class part of the Web Services architecture, and wrapping
an entire Web Services system is not (yet) a straightforward action. Additionally,
because the Web Services request dispatch and routing component often runs on a
different computer than does the back-end server, the extra layer between the client
and the server can raise availability and reliability issues of its own, for example
because it might experience a crash even when the client and server both remain
operational; the client would then lose connectivity to the server even though the
server is still healthy. As we saw in Part I of the book, the reliability mechanisms
of the Web Services architecture focus on this problem but address it in a way that
favors a pipelined, very asynchronous style of interaction with the back-end server.
High availability for Web Services applications is just not anticipated in the initial
architectural designs for the technology.

An alternative to wrapping is to explicitly develop a new application program
designed from the outset with the reliability technology in mind—for example, we
might set out to build an authentication service for a distributed environment that im-
plements a particular encryption technology and uses replication to avoid denial of
service when some of its server processes fail. Such a program would be said to use
a toolkit style of distributed computing, in which the sorts of algorithms developed
in the previous chapter are explicitly invoked to accomplish a desired task. A toolkit
approach packages potentially complex mechanisms, such as replicated data with
locking, behind easy-to-use interfaces (in the case of replicated data, LOCK, READ
and UPDATE operations). The disadvantage of such an approach is that it can be
hard to glue a reliability tool into an arbitrary piece of code, and the tools them-
selves will often reflect design tradeoffs that limit generality. Thus, toolkits can be
very powerful in the hands of a developer with the freedom to use them in the in-
tended manner, and who understands their limitations, but they are also inflexible:
They adopt a programming paradigm, and, having done so, it is potentially difficult
to use the functionality encapsulated within the toolkit in a setting other than the
one envisioned by the tool designer.

Toolkits can also take other forms—for example, one could view a firewall,
which filters messages entering and exiting a distributed application, as a tool for
enforcing a limited security policy. When one uses this broader interpretation of the
term, toolkits include quite a variety of presentations of reliability technologies—
even a Web Services system is a toolkit in this very broad sense. In addition to the
case of firewalls, a toolkit could package a reliable communication technology as a
message bus, a system monitoring and management technology, a fault-tolerant file
system or database system, or a wide area name service (Table 16.1). Moreover, one
can view a programming language that offers primitives for reliable computing as a
form of toolkit.

As we see in Table 16.1, each toolkit would address a set of application-specific
problems, presenting an API specialized to the programming language or environ-
ment within which the toolkit will be used and to the task at hand. While it is also
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Table 16.1 Types of toolkit useful in building or hardening distributed systems

Toolkit Description

Server replication Tools and techniques for replicating data to achieve high availability,
load-balancing, scalable parallelism, very large memory-mapped caches,
and so forth. Cluster APIs for management and exploitation of clusters.

Video server Technologies for striping video data across multiple servers, isochronous
replay, and single replay when multiple clients request the same data.

WAN replication Technologies for data diffusion among servers that make up a corporate
network.

Client groupware Integration of group conferencing and cooperative work tools into Java
agents, TCL/TK, or other GUI builders and client-side applications.

Client reliability Mechanisms for transparently fault-tolerant RPC to servers, consistent
data subscription for sets of clients that monitor the same data source,
and so forth.

System management Tools for instrumenting a distributed system and performing reactive
control. Different solutions might be needed when instrumenting the net-
work itself, cluster-style servers, and user-developed applications.

Firewalls and
containment tools

Tools for restricting the behavior of an application or for protecting it
against a potentially hostile environment-for example, such a toolkit
might provide a bank with a way to install a partially trusted client/server
application in order to permit its normal operations while preventing
unauthorized ones.

possible to develop extremely general toolkits, which seek to address a great variety
of possible types of user, doing so can result in a presentation of the technology
that is architecturally weak and does not guide users to the best system structure for
solving their problems. In contrast, application-oriented toolkits often reflect strong
structural assumptions, which are known to result in solutions that perform well and
achieve high reliability.

In practice, many real-world distributed applications are so large and so complex
that they require a mixture of toolkit solutions and wrappers. To the degree that a
system has new functionality, which can be developed with a reliability technology
in mind, the designer is afforded a great deal of flexibility and power through the
execution model supported (e.g., transactional serializability or virtual synchrony)
and may be able to provide sophisticated functionality that would not otherwise
be feasible. On the other hand, in any system that reuses large amounts of old code,
wrappers can be invaluable by shielding the previously developed functionality from
the programming model and assumptions of the toolkit.

16.1.1 Wrapper Technologies

In our usage, a wrapper is any technology that intercepts an existing execution path
in a manner transparent to the wrapped application or component. By wrapping a
component, the developer is able to virtualize the wrapped interface, introducing an
extended version with new functionality or other desirable properties. In particular,
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wrappers can be used to introduce various robustness mechanisms, such as replica-
tion for fault tolerance or message encryption for security. A wrapper may be quite a
non-trivial component; the database wrapper of Chap. 14 makes that clear: while its
way of dealing with SafeSend and the DiskLogger is fairly simple (it receives mes-
sages and called DiskLogger.Done when finished with updates), understanding that
SafeSend needs to be configured this way, and why, and implementing the needed
state transfer code to bring a lagging replica back up to date without discarding its
state entirely (the easy way out) will be a challenge. Moreover, for many kinds of
application, knowing when they have finished doing an update is not so easy. With
disk I/O in an operating system, an update has not occurred until the file has been
synced (flushed) to disk. With a database, an update is not final unless the database
has done a strong form of update commit. A wrapper, in effect, needs to stick its
fingers into the state of the application it wraps, and this may not be trivial to do.
But often it is possible, and that leads to the following possible use cases.

Wrapping at Object Interfaces
Object-oriented interfaces are the best example of a wrapping technology (Fig. 16.1),
and systems built using CORBA or OLE-2 are, in effect, pre-wrapped in a manner
that makes it easy to introduce new technologies or to substitute a hardened imple-
mentation of a service for a nonrobust one. Suppose, for example, that a CORBA im-
plementation of a client/server system turns out to be unavailable because the server
has crashed. Earlier, when discussing CORBA, we pointed out that the CORBA
architectural features in support of dynamic reconfiguration or fail-over are diffi-
cult to use. If, however, a CORBA service could be replaced with a process group
(object group) implementing the same functionality, the problem becomes trivial.
This is the main insight underlying the CORBA Fault Tolerant Objects standard
(FTOL), and has been implemented by researchers at UCSD as part of a system
they call Eternal. The approach is an older one; technologies such as Orbix+Isis
and Electra, described in Chap. 17, also provided this ability; on the other hand,
the CORBA standard was the first time that replication was embraced by a major
standards body. In effect, the CORBA interface wraps a service in such a manner
that any other service providing a compatible interface can be substituted for the
original one transparently.

Moreover, the CORBA Fault Tolerance standard has not been widely popular.
Early in this book, we alluded to the distinction between a standard, and a widely
accepted standard. Simply standardizing a technology does not mean that the tech-
nology will ever become widely used, or even that it works well—all it tells us
is that some community saw value in sitting down and hammering out a political
document expressing their agreement as to the interfaces to the technology, its func-
tionality, and the appropriate patterns of use. Only if the standard is embodied into
products that become popular does the term take on real importance. On the other
hand, commercial users often reject complex, non-standard technologies. Industry
needs standards, even though many proposed standards are quickly abandoned.

In the case of CORBA, users apparently find that the standard, which provides
for state-machine replication of active (server) objects and the data they maintain,
and requires that the server code be completely deterministic, is overly restrictive.
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Fig. 16.1 Object-oriented
interfaces permit the easy
substitution of a reliable
service for a less- reliable
one. They represent a simple
example of a wrapper
technology. However, one can
often wrap a system
component even if it were not
built using object-oriented
tools

Thus while the associated wrapper technology is extremely simple to use and highly
transparent, the “positioning” of this standard seems not to accord with a large mar-
ket. It seems likely that any Web Services High Availability standard would need to
offer greater flexibility to the user (perhaps, integrated with a comprehensive devel-
opment environment) to gain wider acceptance.

Wrapping by Library Replacement
Even when we lack an object-oriented architecture, similar ideas can often be em-
ployed to achieve the same sorts of objectives. As an example, one can potentially
wrap a program by relinking it with a modified version of a library procedure that it
calls. In the relinked program, the code will still issue the same procedure calls as it
did in the past. But control will now pass to the wrapper procedures, which can take
actions other than those taken by the original versions. In this sense, an RPC stub is
a wrapper.

In practice, this specific wrapping method would only work on older operating
systems, because of the way that libraries are implemented on typical modern oper-
ating systems. Until fairly recently, it was typical for linkers to operate by making
a single pass over the application program, building a symbol table and a list of
unresolved external references. The linker would then make a single pass over the
library (which would typically be represented as a directory containing object files
or as an archive of object files), examining the symbol table for each contained ob-
ject and linking it to the application program if the symbols it declares include any
of the remaining unresolved external references. This process causes the size of the
program object to grow, and it results in extensions both to the symbol table and,
potentially, to the list of unresolved external references. As the linking process con-
tinues, these references will in turn be resolved, until there are no remaining external
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Fig. 16.2 A linker
establishes the
correspondence between
procedure calls in the
application and procedure
definitions in libraries, which
may be shared in some
settings

references. At that point, the linker assigns addresses to the various object modules
and builds a single program file, which it writes out. In some systems, the actual ob-
ject files are not copied into the program, but are instead loaded dynamically when
first referenced at run time. (See Fig. 16.2.)

Operating systems and linkers have evolved, however, in response to pressure
for more efficient use of computer memory. Most modern operating systems sup-
port some form of shared (also called “dynamically linked”) libraries. In the shared
library schemes, it would be impossible to replace just one procedure in the shared
library. Any wrapper technology for a shared library environment would then in-
volve reimplementing all the procedures defined by the shared library—a daunting
prospect if the library is large enough, especially if the documentation available
was not designed for the developer of such a wrapper. Indeed, many libraries have
important but undocumented internal interfaces.

Wrapping by Object Code Editing
Object code editing is an example of a wrapping technology that has been exploited
in a number of research and commercial application settings. The approach was
originally developed by Wahbe, Lucco, Anderson, and Graham and involves analy-
sis of the object code files before or during the linking process. A variety of object
code transformations are possible. Lucco, for example, used object code editing to
enforce type safety and to eliminate the risk of address boundary violations in mod-
ules that will run without memory protection—a software fault isolation technique.
Object code editors for languages such as C# and Java, which compile into an inter-
mediate representation, should be even easier to build, since so much information is
preserved about object types and uses.

For purposes of wrapping, object code editing would permit the selective remap-
ping of certain procedure calls into calls to wrapper functions, which could then
issue calls to the original procedures if desired (see Fig. 16.3). In this manner, an
application that uses the UNIX send to system call to transmit a message could be
transformed into one that calls filter_sendto (perhaps even passing additional argu-
ments). This procedure, presumably after filtering outgoing messages, could then
call sendto if a message survives its output filtering criteria. Notice that an approx-
imation to this result can be obtained by simply reading in the symbol table of the
application’s object file and modifying entries prior to the linking stage. Of course,
this can only be done if the object file format is well documented and is not pro-
tected against such tampering. Unfortunately, modifying programs in this manner



480 16 Retrofitting Reliability into Complex Systems

Fig. 16.3 A wrapper (gray) intercepts selected procedure calls or interface invocations, permitting
the introduction of new functionality transparently to the application or library. The wrapper may
itself forward the calls to the library, but it can also perform other operations. Wrappers are an
important option for introducing reliability into an existing application, which may be too complex
to rewrite or to modify easily with explicit procedure calls to a reliability toolkit or some other new
technology

could also be done for purposes of attacking a system, hence it is less and less
practical to take such a step—many operating systems now support some form of
cryptographic signature scheme to detect evidence of “tampering” and will refuse
to run a program that has been modified in this manner.

On the other hand, some systems exploit object code editing as a way to secure
themselves against a threat. For example, one important application of object code
editing, discussed earlier, involves importing untrustworthy code into a client’s Web
browser. When we discussed this option in Sect. 3.4, we described it simply as a
security enhancement tool. Clearly, however, the same idea could be useful in many
other settings. Thus, it makes sense to understand object code editing as a wrapping
technology and how specific use of it in Web browser applications might permit us
to increase our level of trust in applications that would otherwise represent a serious
security threat.

Because programming languages such as C# and Java are compiled into an inter-
mediary language, then “JIT” compiled, they offer new opportunities for code trans-
formation and rewriting. Indeed, Java environments often include powerful rewrit-
ers. These would appear to offer substantial opportunities for those seeking ways to
automatically introduce replication or fault-tolerance mechanisms.

Wrapping with Interposition Agents and Buddy Processes
Until now, we have focused on wrappers that operate directly upon the application
process and that live in its address space. However, wrappers need not be so intru-
sive.

Interposition involves placing some sort of object or process in between an ex-
isting object or process and its users, much as in our recurring database replication
example from Chap. 14. An interposition architecture based on what are called “co-
processes” or “buddy processes” is a simple way to implement this approach, par-
ticularly for developers familiar with UNIX pipes (Fig. 16.4). Such an architecture
involves replacing the connections from an existing process to the outside world
with an interface to a buddy process that has a much more sophisticated view of the
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Fig. 16.4 A simple way to wrap an old program may be to build a new program, which would
control the old one through a pipe. The buddy process now acts as a proxy for the old process.
Performance of pipes is sufficiently high in modern systems to make this approach surprisingly
inexpensive. The buddy process is typically very simple and hence is likely to be very reliable; a
consequence is that the reliability of the pair (if both run on the same processor) is typically the
same as that of the old process

external environment—for example, perhaps the existing program is basically de-
signed to process a pipeline of data, record by record, or to process batch-style files
containing large numbers of records. The buddy process might employ a pipe or file
system interface to the original application, which will often continue to execute as
if it were still reading batch files or commands typed by a user at a terminal; there-
fore, it may not need to be modified. To the outside world, however, the interface
seen is the one presented by the buddy process, which may now exploit sophis-
ticated technologies such as CORBA, Web Services, Spread or Horus, a message
bus, and so forth. (One can also imagine imbedding the buddy process directly into
the address space of the original application, coroutine style, but this is likely to be
much more complex and the benefit may be small unless the connection from the
buddy process to the older application is known to represent a bottleneck.) The pair
of processes would be treated as a single entity for purposes of system management
and reliability: They would run on the same platform and be set up so that if one
fails, the other automatically fails too.

Interposition is easier in some settings than in others. In CORBA, for example,
any object can be replaced by a link to a remote object, accessed via the CORBA
remote object invocation protocol (IIOP). The ability to make this replacement turns
out to be the “hook” that permitted developers of the CORBA Fault Tolerance spec-
ification to slide group replication into CORBA in a relatively clean manner. Win-
dows, similarly, includes a fairly general way to interpose an object providing iden-
tical interfaces where some existing object is used in the system; the author is not
aware of that ability having been exploited to introduce high assurance properties,
but it is used for other purposes (indeed, within the operating system itself, the
Windows virtual memory subsystem is interposed under a number of other mech-
anisms, including the file system, permitting the developers of the system to reuse
functionality and simplifying the core of the operating system). This, then, could be
an attractive development path for future work on high assurance Windows-based
applications. On the other hand, it would result in proprietary solutions that depend
upon features of Windows.

Interposition wrappers may also be supported as a general capability provided by
the operating system. Many operating systems provide some form of packet filter
capability, which would permit a user-supplied procedure to examine incoming or
outgoing messages, selectively operating on them in various ways. Clearly, a packet
filter can implement wrapping. The streams communication abstraction in UNIX
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and Linux supports a related form of wrapping, in which stream modules are pushed
and popped from a protocol stack. Pushing a stream module onto the stack is a way
of wrapping the stream with some new functionality implemented in the module.
The stream still looks the same to its users, but its behavior changes.

Interposition wrappers were elevated to a real art form in the Chorus operating
system (see Rozier et al. 1988a, 1988b), which is object oriented and uses object
invocation for procedure and system calls. In Chorus, an object invocation is done
by specifying a procedure to invoke and providing a handle referencing the target
object. If a different handle is specified for the original one, and the object refer-
enced has the same or a superset of the interface of the original object, the same
call will pass control to a new object. This object now represents a wrapper. Chorus
uses this technique extensively for a great variety of purposes, including the sorts of
security and reliability objectives discussed above.

What systems like Chorus failed to recognize however, and what we’ve now seen
in the database example, is the sense in which a wrapper needs to extend the reli-
ability semantics it offers the user deep into the things it wraps. If the end-user is
expecting to see a high-assurance, secure, durable version of such-and-such a func-
tionality, our wrapper will need to understand the corresponding properties within
the wrapped object, so as to correctly translate between the two works. This may
not always be easy, and when we can do it, may not always be the most efficient
solution to the problem at hand. Our challenge, as wrapper-designers, is to bridge
the two worlds. Work on this topic in systems such as Chorus often focused on
the bridging of two software worlds (“how can object A invoke object B given that
they run in different operating systems?”) without tackling this deeper question (“A
needs to know that B has made such-and-such a part of its state durable. How can it
sense that?”)

This last point is somewhat discouraging, because there is little agreement on
the necessary steps for building a highly assured applications, much less on stan-
dardizing them, so that a term like “durability” would have a standard meaning and
applications would offer standard APIs for requesting durability, sensing that it has
been achieved, etc. Object orientation of the kind seen in Chorus without standard
interfaces is just glue without any kind of rationale for precisely how and when to
glue things together: a recipe for chaos.

Wrapping Communication Infrastructures: Generalized Virtual Private
Networks
Sometime in the near future, it may become possible to wrap an application by
replacing the communication infrastructure it uses with a virtual infrastructure.
A great deal of work on the Internet and on telecommunication information ar-
chitectures is concerned with developing a technology base that can support virtual
private networks, having special security or quality-of-service guarantees. A virtual
network could also wrap an application—for example, by imposing a firewall inter-
face between certain classes of components or by encrypting data so that intruders
can be prevented from eavesdropping.
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The concept of a generalized virtual private network runs along the following
lines. In Sect. 3.4 we saw how cross-scripting languages permit a server to down-
load special-purpose display software into a client’s browser. One could also imag-
ine doing this in the network communication infrastructure itself, so that the network
routing and switching nodes would be in a position to provide customized behavior
on behalf of specialized applications needing particular, non-standard communica-
tion features. We call the resulting structure a generalized virtual private network
(GVPN)1 because, from the perspective of each individual user, the network seems
to be a dedicated one with precisely the properties needed by the application. This
is a virtual behavior, however, in the sense that it is superimposed on a physical
network of a more general nature. Uses to which a GVPN could be put include the
following:
• Support for a security infrastructure within which only legitimate users can send

or receive messages. This behavior might be accomplished by requiring that mes-
sages be signed using some form of GVPN key, which the GVPN itself would
validate. This is the most common meaning for the term “GVPN.”

• Communication links with special video transmission properties, such as guaran-
tees of limited loss rate or real-time delivery (so-called “isochronous” communi-
cation).

• Tools for stepping down data rates when a slow participant conferences to indi-
viduals who all share much higher-speed video systems. Here, the GVPN would
filter the video data, sending through only a small percentage of the frames to
reduce load on the slow link.

• Concealing link-level redundancy from the user. In current networks, although
it is possible to build a redundant communication infrastructure that will remain
connected even if a link fails, one often must assign two IP addresses to each
process in the network, and the application itself must sense that problems have
developed and switch from one to the other explicitly. A GVPN could hide this
mechanism, providing protection against link failures in a manner transparent to
the user.

16.1.2 Introducing Robustness in Wrapped Applications

Our purpose in this text is to understand how reliability can be enhanced through
the appropriate use of distributed computing technologies. How do wrappers help
in this undertaking? Examples of robustness properties that wrappers can introduce
into an application include the following:

1This uses the term somewhat loosely: a VPN, in platforms like Windows and Linux, is a fairly
specific technology packaging focused on providing secure remote access to a corporate network
by tunneling through the firewall using a shared-key cryptographic scheme. In contrast, here we
are employing the same term to connote a more general idea of overlaying a network with “other
properties” on a base network with “base properties.” Others might call this an overlay network—
but, overlay networks, like VPNs, also have come to have a fairly specific meaning, associated with
end-to-end implementations of routing. Rather than invent some completely new term, the book
uses VPN in a generalized way.



484 16 Retrofitting Reliability into Complex Systems

• Fault tolerance: Here, the role of the wrapper is to replace the existing I/O inter-
face between an application and its external environment with one that replicates
inputs so that each of a set of replicas of the application will see the same in-
puts. The wrapper also plays a role in collating the outputs, so that a replicated
application will appear to produce a single output, albeit more reliably than if it
were not replicated. To the author’s knowledge, the first such use was in a proto-
col proposed by Anita Borg as part of a system called Aurogen (see Borg et al.
1983, 1985), and the approach was later generalized by Eric Cooper in his work
at Berkeley on a system called Circus (see Cooper 1985), and in the Isis system,
which I developed at Cornell University (see Birman and Joseph 1987a). Gener-
ally, these techniques assume that the wrapped application is completely deter-
ministic, although later we will see an example in which a wrapper can deal with
nondeterminism by carefully tracing the non-deterministic actions of a primary
process and then replaying those actions in a replica. Obviously, our wrapped
database example from Chap. 14 falls squarely intro this category.

• Caching: Many applications use remote services in a client/server pattern,
through some form of RPC interface. Such interfaces can potentially be wrapped
to extend their functionality—for example, a database system might evolve over
time to support caching of data within its clients in order to take advantage of
patterns of repeated access to the same data items, which are common in most
distributed applications. To avoid changing the client programs, the database sys-
tem could wrap an existing interface with a wrapper that manages the cached data,
satisfying requests out of the cache when possible and otherwise forwarding them
to the server. Notice that the set of clients managing the same cached data item
represents a form of process group, within which the cached data can be viewed
as a form of replicated data. Indeed, the Java Jini architecture allows a server stub
to specify its own transport protocol for talking to the server, in effect, “wrap-
ping” the notion of communication from client to server. On the other hand, this
option has not been used very actively, and Jini itself seems to have never gained
the degree of acceptance of J2EE, in which such wrapping is impractical.

• Security and authentication: A wrapper that intercepts incoming and outgoing
messages can secure communication by, for example, encrypting those messages
or adding a signature field as they depart and decrypting incoming messages or
validating the signature field. Invalid messages can either be discarded silently,
or some form of I/O failure can be reported to the application program. This type
of wrapper needs access to a cryptographic subsystem for performing encryption
or generating signatures. Notice that in this case, a single application may con-
stitute a form of security enclave, having the property that all components of the
application share certain classes of cryptographic secrets. It follows that the set of
wrappers associated with the application can be considered as a form of process
group, despite the fact that it may not be necessary to explicitly represent that
group at run time or communicate to it as a group.

• Firewall protection: A wrapper can perform the same sort of actions as a firewall,
intercepting incoming or outgoing messages and applying some form of filtering
to them—passing only those messages that satisfy the filtering criteria. Such a
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wrapper would be placed at each of the I/O boundaries between the application
and its external environment. As in the case of the security enclave just men-
tioned, a firewall can be viewed as a set of processes surrounding a protected
application or encircling an application to protect the remainder of the system
from its potentially unauthorized behavior. If the ring contains multiple members
(multiple firewall processes) the structure of a process group is again present,
even if the group is not explicitly represented by the system—for example, all
firewall processes need to use consistent filtering policies if a firewall is to be-
have correctly in a distributed setting.

• Monitoring and tracing or logging: A wrapper can monitor the use of a specific
interface or set of interfaces and can trigger certain actions under conditions that
depend on the flow of data through those interfaces. A wrapper could be used,
for example, to log the actions of an application for purposes of tracing the over-
all performance and efficiency of a system, or, in a more active role, it could be
used to enforce a security policy under which an application has an associated
behavioral profile and in which deviation from that profile of expected behav-
ior potentially triggers interventions by an oversight mechanism. Such a security
policy would be called an in-depth security mechanism, meaning that, unlike a se-
curity policy applied merely at the perimeter of the system, it would continue to
be applied in an active way throughout the lifetime of an application or its access
to the system.

• Quality-of-service negotiation: A wrapper could be placed around a communica-
tion connection for which the application has implicit behavioral requirements,
such as minimum performance, throughput, loss rate requirements, or maximum
latency limits. The wrapper could then play a role either in negotiation with the
underlying network infrastructure to ensure that the required quality of service is
provided or in triggering reconfiguration of an application if the necessary qual-
ity of service cannot be obtained. Since many applications are built with implicit
requirements of this sort, such a wrapper would really play the role of making
explicit an existing (but not expressed) aspect of the application. One reason such
a wrapper might make sense would be that future networks may be able to offer
guarantees of quality of service even when current networks do not. Thus, an ex-
isting application might in the future be wrapped to take advantage of those new
properties with little or no change to the underlying application software itself.

• Language-level wrappers: Wrappers can also operate at the level of a program-
ming language or an interpreted run-time environment. Fault tolerance and load-
balancing can often be introduced into object-oriented programming languages,
such as C++, C#, Java, or SmallTalk, by introducing new object classes that are
transparently replicated or that use other transparent extensions of their normal
functionality. An existing application can then benefit from replication by simply
using these objects in place of the ones previously used.
The above list is at best very partial. What it illustrates is that given the idea of

using wrappers to reach into a system and manage or modify it, one can imagine
a great variety of possible interventions that would have the effect of introducing
fault tolerance or other forms of robustness, such as security, system management,
or explicit declaration of requirements that the application places on its environment.
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Wrappers do not always require process group support, but the two technologies
are well matched to one another. Where a process group technology is available,
the developer of a wrapper can potentially benefit from it to provide sophisticated
functionality, which would otherwise be difficult to implement. Moreover, some
types of wrapper are only meaningful if process group communication is available.

16.1.3 Toolkit Technologies

In the introduction to this chapter, we noted that wrappers will often have
limitations—for example, although it is fairly easy to use wrappers to replicate a
completely deterministic application to make it fault tolerant, it is much harder to
do so if an application is not deterministic. And, unfortunately, many applications
are nondeterministic for obvious reasons—for example, an application that is sen-
sitive to time (e.g., timestamps on files or messages, clock values, timeouts) will be
nondeterministic to the degree that it is difficult to guarantee that the behavior of a
replica will be the same without ensuring that the replica sees the same time values
and receives timer interrupts at the same point in its execution. The UNIX select sys-
tem call is a source of nondeterminism, since even identically replicated programs
presented with identical inputs might detect the availability of data at different times
in their execution and thus follow differing execution paths. Interactions with de-
vices are notorious sources of nondeterminism. Any time an application uses ftell
to measure the amount of data available in an incoming communication connection,
this introduces a form of nondeterminism. Asynchronous I/O mechanisms, com-
mon in many systems, are also potentially nondeterministic. Parallel or preemptive
multithreaded applications are potentially the most nondeterministic of all.

More than twenty years ago, researchers confronted by this problem began to ex-
plore mechanisms that would transform nondeterministic inputs into events fielded
by one copy of a replicated program, which could then record enough information
to allow other replicas to reproduce its actions accurately. For example, suppose that
process p issues a select system call and discovers that I/O is ready on channel 6. It
can record this in a message and send it to process q . If q has the same data avail-
able on its 6th channel, and knows when the select call returned this value, it can
wait until its own code issues that same call and then return the same result that p

saw, without even needing to ask the operating system to actually perform the select
operation. By carrying this concept further, to include thread scheduling, and having
q lag the execution of p so that these messages always warn it of future events, q

should be in a position to take precisely the same actions that p took. There will
still be some cases such an approach cannot cover—for example, if p and q try to
replicate the behavior of a UDP socket on which incoming packets are received, it
can be tricky to deal with cases where a packet is dropped by one but not the other,
or where the order of the packets differs. But the vast majority of applications could
certainly be replicated in this manner.

Today, as communication systems continue to improve in performance, it may
make sense to adopt such an approach. However, the general sense at the time of
these early studies was that this form of intervention is simply too costly, in which
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Table 16.2 Typical interfaces in toolkits for process group computinga

Tool Description

Load-balancing Provides mechanisms for building a load-balanced server, which can
handle more work as the number of group members increases.

Guaranteed execution Provides fault tolerance in RPC-style request execution, normally in a
manner that is transparent to the client.

Locking Provides synchronization or some form of token passing.

Replicated data Provides for data replication, with interfaces to read and write data, as
well as selectable properties, such as data persistence, strong durability,
and the type of data integrity guarantees supported.

Logging Maintains logs and checkpoints and provides playback.

Wide area spooling Provides tools for integrating LAN systems into a WAN solution.

Membership ranking Within a process group, provides a ranking on the members that can be
used to subdivide tasks or load-balance work.

Monitoring and control Provides interfaces for instrumenting communication into and out of a
group and for controlling some aspects of communication.

State transfer Supports the transfer of group state to a joining process.

Bulk transfer Supports out-of-band transfer of very large blocks of data.

Shared memory Tools for managing shared memory regions within a process group. The
members can then use these tools for communication that is difficult or
expensive to represent in terms of message passing.

aIn typical practice, a set of toolkits is sometimes be needed, each aimed at a different class of
problems. The components listed above would be typical for a server replication toolkit, but might
not be appropriate for building a cluster-style multimedia video server or a caching Web proxy
with dynamic update and document consistency guarantees

case there may be no obvious way that a wrapper could be introduced to transpar-
ently confer the desired reliability property. Alternatively, it may be possible to do
so but impractical in terms of cost or complexity. In such cases, it is sometimes hard
to avoid building a new version of the application in question, in which explicit use
is made of the desired reliability technology. Generally, such approaches involve
what is called a toolkit methodology. The Isis2 system is a library, but not a toolkit
in this sense. Readers who skim Appendix B will see that although the system does
include some functionality that would fit the notion of toolkit as described below,
mostly the Isis2 system limits itself to the formation of groups and their use for
high-speed communication with various reliability properties. The few exceptions
(the built-in shared DHT, for example) are few, and are really just presentations of
communication functionality through other APIs.

A toolkit typically tries to go further, building a wider range of sophisticated,
prepackaged technology that one accesses through some form of procedure calls
(Table 16.2). These provide the functionality needed by the application, but without
requiring that the user understand the reasoning that lead the toolkit developer to
decide that in one situation CausalSend was a good choice of communication prim-
itive, but that in another OrderedSend was a better option, or that SafeSend can be
used to update a durable database, but that φ should be set to 3 and the DiskLog-
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ging durability method selected: choices that require some deeper understanding
of the model. A toolkit for managing replicated data might offer an abstract data
type called a replicated data item, perhaps with some form of name and some sort
of representation, such as a vector or an n-dimensional array. Operations appropri-
ate to the data type would then be offered: UPDATE, READ, and LOCK being the
obvious ones for a replicated data item (in addition to such additional operations
that might be needed to initialize the object, detach from it when no longer using
it, etc.). Other examples of typical toolkit functionality might include transactional
interfaces, mechanisms for performing distributed load-balancing or fault-tolerant
request execution, tools for publish/subscribe styles of communication, tuple-space
tools implementing an abstraction similar to the one in the Linda tuple-oriented par-
allel programming environment, and so forth. The potential list of tools is really
unlimited, particularly if such issues as distributed system security are also consid-
ered.

Toolkits often include other elements of a distributed environment, such as a
name space for managing names of objects, a concept of a communication end
point object, process group communication support, message data structures and
message manipulation functionality, lightweight threads or other event notification
interfaces, and so forth. Alternatively, a toolkit may assume that the user is already
working with a distributed computing environment, such as the DCE environment
or Sun Microsystem’s ONC environment. The advantage of such an assumption is
that it reduces the scope of the toolkit itself to those issues explicitly associated with
its model; the disadvantage being that it compels the toolkit user to also use the
environment in question, thus reducing portability.

16.1.4 Distributed Programming Languages

Agent programming languages and other fourth-generation languages (4GLs) pack-
age powerful computing tools in the form of special-purpose programming environ-
ments. Unlike general purpose programming languages such as C# or Java, these
languages play specific roles. For example, Java Script is a well known language
intended for use in building sophisticated Web Pages. The language (related to Java
but quite different in the details) is intended for a setting in which reliability is taken
primarily to mean security of the user’s system against viruses, worms, and other
forms of intrusion. Web Browsers support Java Script because the browser develop-
ment community has satisfied itself that there are few security issues created by such
scripts. Other types of agent-oriented programming language include TCL/TK (see
Ousterhout 1994) and TACOMA (see Johansen et al. 1995a). Very good examples
of cloud-computing 4GLs include the Dryad/Linq language created by Yuan Yu and
Mike Isard at Microsoft Research (Yu et al. 2008) and the Singularity and Orleans
languages created by that company’s extreme computing group under the leadership
of Jim Larus (Bykov et al. 2011).

Although most existing distributed programming languages lack group commu-
nication features and few make provisions for reliability or fault tolerance, one can
extend many such languages without difficulty, Dryad/Linq and Orleans both do so.
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The resulting enhanced language can be viewed as a form of distributed computing
toolkit in which the tools are tightly integrated with the language. However, nei-
ther of these has the degree of uptake (as of now) seen for tools like MapReduce
(the main competitor for Dryad/Linq) or C# 5.0 in Azure, the competition for Or-
leans. If we focus on very widely used technologies, one sees that Java users are
fond of a communications package called JBOSS, within which JavaGroups pro-
vides group communication functionality that seems natural and quite easy to use in
a Java Enterprise context. Of course, JBOSS is more of a package than a language,
but it represents a major step in the direction of embedding group communication
functionality into a Java context—and this is, after all, the way that one “extends”
the Java platform. Indeed there have been programming languages in which group
communication was offered as a basic language primitive. If language extension
can solve the problem, designing a language around a computational abstraction is
perhaps overkill. On the other side of the coin, by extending a language, one can
incorporate such ideas as “location” and “replication” into the underlying type sys-
tem, a fascinating opportunity. As networks continue to spread and non-distributed
computing eventually becomes the exception rather than the norm, it is entirely pos-
sible that both approaches will become common: in object oriented languages like
C# and Java, these sorts of technologies will be available as class libraries (so that
the developer who wants to replicate information will simply use a replication class
and extend it with the specific methods and data appropriate to the need), while the
type theory community slowly presses forward on logical foundations of replication
and the mathematics of correctness for highly available applications.

16.2 Wrapping a Simple RPC Server

To illustrate the idea of wrapping for reliability, consider a simple RPC server de-
signed for a financial setting. A common problem that occurs in banking is to com-
pute the theoretical price for a bond; this involves a calculation that potentially re-
flects current and projected interest rates, market conditions and volatility (expected
price fluctuations), dependency of the priced bond on other securities, and myriad
other factors. Typically, the necessary model and input data is tracked by a server,
which clients access using RPC. Note that RPC underlies the Web Services remote
method invocation model, hence what follows is also relevant to Web Services de-
sign. However, notice also that in a bond pricing setting, each request—each RPC—
can be reissued as often as necessary: The results may not be identical (because the
server is continuously updating the parameters to its model), but any particular re-
sult should be valid for at least a brief period of time. We will exploit that property
below.

To start, suppose that we have developed a bond pricing server using standard
out of the box technologies such as the TAO CORBA package or one of the Web
Services platforms. Only after putting it into operation do we begin to be concerned
about its availability. A typical scenario might be that the server has evolved over
time, so that although it was really quite simple and easy to restart after crashes
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Fig. 16.5 A client/server
application can be wrapped to
introduce fault tolerance and
load-balancing with few or no
changes to the existing code

when first introduced, it now uses a large database and restarting after failures it can
take twenty minutes or longer. The server does not fail often, but when it does, the
disruption could be extremely costly.

An analysis of the causes of failure is likely to reveal that the server itself is
fairly stable, although a low residual rate of crashes is observed. Perhaps there is a
lingering suspicion that some changes introduced to handle the unification of Euro-
pean currencies into the euro are buggy and are causing crashes. The development
team is rewriting the entire euro package, and expects to have a new version in a
few months, but management, being pragmatic, doubts that this will be the end of
the software-reliability issues for this server. Meanwhile, however, routine mainte-
nance and communication link problems are known to be at least as serious a source
of downtime. Finally, although the server hardware is relatively robust, it has def-
initely caused at least two major outages during the past year, and loss of power
associated with a minor electrical problem triggered additional downtime recently.

In such a situation, it may be extremely important to take steps to improve server
reliability. But rebuilding a server from scratch is often impractical, particularly in
light of the evolutionary nature of such software. The rebuilding effort could take
months or years, and when traders perceive a problem, they are rarely prepared to
wait years for a solution. Management is now demanding that something be done.
(If you have not been in this situation, you have not worked in the industry!)

The introduction of reliable hardware and networks could improve matters sub-
stantially. A dual network connection to the server, for example, would permit mes-
sages to route around problematic network components such as faulty routers or
damaged bridges. One can purchase off-the-shelf routers with this capability, and
they are known to achieve extremely high levels of network robustness. But the soft-
ware and management failures would remain an issue. Upgrading to a fault-tolerant
hardware platform on which to run the server would clearly improve reliability, but
only to a degree. If the software is in fact responsible for many of the failures that are
being observed, all of these steps will only eliminate some fraction of the outages.

An approach that replicates the server using wrappers might be very appealing
in this setting. As stated, the server state seems to be dependent on pricing inputs
to it, but not on queries. Thus, a solution such as the one illustrated in Fig. 16.5
can be considered. Here, the inputs that determine server behavior are replicated
using broadcasts to a process group. The queries are load-balanced by directing the
queries for any given client to one or another member of the server process group.
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The architecture has substantial design flexibility in this regard: The clients can be
managed as a group, with their queries carefully programmed to match each client
to a different, optimally selected server. Alternatively, the clients can use a random
policy to issue requests to the servers. If a server is unreasonably slow to respond,
or has obviously failed, the same request could be reissued to some other server
(or, if the request itself may have caused the failure, a slightly modified version of
the request could be issued to some other server). Moreover, the use of wrappers
makes it easy to see how such an approach can be introduced transparently (without
changing existing server or client code). Perhaps the only really difficult problem
would be to restart a server while the system is already active.

In fact, even this problem may not be so difficult to solve. The same wrappers
that are used to replace the connection from the data sources to the server with a
broadcast to the replicated server group can potentially be set up to log input to the
server group members in the order that they are delivered. To start a new server,
this information can be transferred to it using a state transfer from the old members,
after which any new inputs can be delivered. After the new server is fully initialized,
a message can be sent to the client wrappers informing them that the new server
is able to accept requests. To optimize this process, it may be possible to launch
the server using a checkpoint, replaying only those logged events that changed the
server state after the checkpoint was created. If updates are not all that common
and the associated log files can be kept small, these steps would have the effect of
minimizing the impact of the slow server restart on perceived system performance.

This discussion is not entirely hypothetical. The author is aware of a number
of settings in which problems such as this were solved precisely in this manner.
The use of wrappers is clearly an effective way to introduce reliability or other
properties (such as load-balancing) transparently, or nearly so, in complex settings
characterized by substantial preexisting applications.

16.3 Wrapping a Web Site

The techniques of the preceding section could also be used to develop a fault-
tolerant version of a Web server (the kind that serves requests for documents). How-
ever, whereas the example presented above concerned a database server used only
for queries, many Web servers also offer applications that become active in response
to data submitted by the user through a form-fill, a “cgi” script, or some similar inter-
face. To wrap such a server for fault tolerance, one would need to first confirm that
its implementation is deterministic. That is, if these operations are invoked in the
same order at the replicas, one would need to know that the resulting states would
be identical. Given such information, the OrderedSend protocol could be used to
ensure that the replicas all see the same inputs in the same order. Since the replicas
would now take the same actions against the same state, the first response received
could be passed back to the user; subsequent duplicate responses can be ignored.

A slightly more elaborate approach is commonly used to introduce load-
balancing within a set of replicated Web servers for query accesses, while fully
replicating update accesses to keep the copies in consistent states. The HTTP pro-
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tocol is sufficiently sophisticated to make this an easy task: For each retrieval (get)
request received, a front-end Web server simply returns a different server’s address
from which that retrieval request should be satisfied, using a temporary redirection
error code. This requires no changes to the HTTP protocol, Web browsers, or Web
servers, and although purists might consider it to be a form of hack, the benefits of
introducing load-balancing without having to redesign HTTP are so substantial that
within the Web development community, the approach is viewed as an important
design paradigm. In the terminology of this chapter, the front-end server wraps the
cluster of back-end machines.

16.4 Hardening Other Aspects of the Web

A wrapped Web server just hints at the potential that group communication tools
may have in future enterprise uses of the Web. As seen in Table 16.3 and Figs. 16.6
and 16.7, the expansion of the Web into groupware applications and environments,
computer-supported cooperative work (CSCW), and dynamic information publica-
tion applications create challenges that the tools we developed in previous chapters
could be used to solve. Web Services bring new requirements and new challenges,
and indeed represent a fascinating potential area for research.

Today, a typical enterprise that makes use of a number of Web servers treats each
server as an independently managed platform and has little control over the cache
coherency policies of the Web proxy servers residing between the end user and the
Web servers; those policies depend on a mixture of parameter settings that the en-
terprise does control and document properties, which are controlled by the servers
that produced the documents. With group replication and load-balancing, we could
transform these Web servers into fault-tolerant, parallel processing systems. Such
a step would bring benefits such as high availability and scalable performance, en-
abling the enterprise to reduce the risk of server overload when a popular document
is under heavy demand. Web servers will increasingly be used as video servers, cap-
turing video input (such as conferences and short presentation by company experts
on topics of near-term interest, news stories off the wire, etc.), in which case such
scalable parallelism may be critical to both data archiving (which often involves
computationally costly techniques such as compression) and playback.

Wide area group tools could also be used to integrate these servers into a wide
area architecture that would be seamless, presenting users with the abstraction
of a single, highly consistent, high-availability Web service—yet internally self-
managed and structured. Such a multi-server system might implement data migra-
tion policies, moving data to keep them close to the users who demand data most
often, and wide area replication of frequently requested critical information, while
also providing guarantees of rapid update and consistency. Later, we will be look-
ing at security technologies that could also be provided through such an enterprise
architecture, permitting a company to limit access to its critical data to just those
users who have been authorized.
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Table 16.3 Potential uses of groups in Internet systems

Application domain Uses of process groups

Server replication • High availability, fault-tolerance

• State transfer to restarted process

• Scalable parallelism and automatic load-balancing

• Coherent caching for local data access

• Database replication for high availability

Data dissemination • Dynamic update of documents in the Web or of fields in documents

• Video data transmission to group conference browsers with video
viewers

• Updates to parameters of a parallel program

• Updates to spreadsheet values displayed to browsers showing financial
data

• Database updates to database GUI viewers

• Publish/subscribe applications

System management • Propagate management information base (MIB) updates to
visualization systems

• Propagate knowledge of the set of servers that compose a service

• Rank the members of a server set for subdividing the work

• Detect failures and recoveries and trigger consistent, coordinated action

• Coordinate actions when multiple processes can all handle some event

• Rebalance of load when a server becomes overloaded, fails, or recovers

Security applications • Dynamically updating firewall profiles

• Updating security keys and authorization information

• Replicating authorization servers or directories for high availability

• Splitting secrets to raise the barrier faced by potential intruders

• Wrapping components to enforce behavior limitations (a form of
firewall that is placed close to the component and monitors the behavior
of the application as a whole)

Turning to the caching Web proxies, group communication tools would permit us
to replace the standard caching policy with a stateful coherent caching mechanism.
In contrast with the typical situation today, where a Web page may be stale, such an
approach would allow a server to reliably send out a message that would invalidate
or refresh any cached data that has changed since the data was copied. Moreover, by
drawing on CORBA functionality, one could begin to deal with document groups
(sets of documents with hyperlinks to one another) and over multidocument struc-
tures in a more sophisticated manner. Earlier, we mentioned that one study by IBM
researchers C. Mohan and G. Cuomo revealed that Web Services systems are likely
to exploit caching in dozens of ways. One common property of all of these mecha-
nisms is that they replicate information, hence group communication tools could be
valuable in implementing such structures.
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Fig. 16.6 Web server transmits continuous updates to documents or video feeds to a group of
users. Depending upon the properties of the group-communication technology employed, the users
may be guaranteed seeing identical sequences of input, seeing data synchronously, security from
external intrusion or interference, and so forth. Such a capability is most conveniently packaged
by integrating group communication directly into a Web agent language such as Java or Visual
BASIC-for example, by extending the browser with group communication protocols that could
then be used through a groupware API

Fig. 16.7 Potential group communication uses in Web applications occur at several levels. Web
servers can be replicated for fault tolerance and load-balancing or integrated into wide-area struc-
tures, which might span large corporations with many sites. Caching Web proxies could be fixed
to provide guarantees of data consistency, and digital encryption or signatures could be used to
protect the overall enterprise against intrusion or attack. Moreover, one can foresee integrating
group communication directly into agent languages such as Java, thereby creating a natural tool
for building cooperative groupware applications. A key to successfully realizing this vision will be
to design wrappers or toolkit APIs that are both natural and easy to use for the different levels of
abstraction and purposes seen here: Clearly, the tools one would want to use in building an inter-
active multimedia groupware object would be very different from those one would use to replicate
a Web server
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In fact there has been research on “cooperative caching,” with very promising
initial results. A system called Squirrel, developed using the Pastry platform (a peer-
to-peer file sharing service developed at Rice University and Microsoft Research in
Cambridge, England) tracks information within client caches and allows one client
system to look up objects in the caches of other clients. At Cornell University, the
Kelips peer-to-peer indexing technology has been applied to the same problem,
again with very encouraging results. However (we will see this in the chapter on
peer-to-peer technologies) neither system implements a true coherent cache, since
neither maintains an accurate list of which objects are in which cache—both track
this information with a kind of loose consistency guarantee, stemming from the lack
of any sort of interlock between the update stream as objects move around and the
query stream of requests to find copies of objects. Thus, there is considerable poten-
tial to apply group communication mechanisms having stronger guarantees to the
problem. Success would enable a style of Web server that deliberately “manages”
the caches of its clients, just as the distributed file systems we looked at early in the
book manage file caches and buffer pools of their clients to ensure consistency.

Web Services applications using event notification products conforming to the
new WS_Eventing specification (basically, a publish-subscribe specification com-
patible with most publish-subscribe products) can be understood as exploiting a
form of group multicast to stream updates to groups of clients who share an inter-
est in some form of dynamically updated data. This raises the question of whether
one might build a single basic technology layer offering primitive services such as
groups, group communication, overlay routing infrastructures, and event logging,
and then employ that single layer to offer a range of technical mechanisms aimed at
server availability, system monitoring, event notification, publish-subscribe, system
monitoring and management, and so forth. By standardizing the basic layers, the
Web Services community could encourage the emergence of a variety of platforms
all sharing the same APIs and yet implemented in different ways. The resulting
mechanisms could be valuable in a tremendous number of settings. Web Services
implementations of financial systems could use them to notify client systems as
stock prices change, triggers are reached, or when important news is released. E-
commerce systems could use them to notify customers of pricing or availability
changes. Large data centers could use these technologies to adjust parameters that
client systems employ when talking to the center: the rate at which data should be
polled, for example, or security settings, or even security keys.

The same platform might also open the door to new kinds of application. For
example, suppose that a group of soldiers is operating in a dangerous environment.
Streams of updates could be used to keep their maps updated about enemy troop
movements and activities, or to keep the soldiers current as their orders and mission
status evolves. But the same style of system could also be used to inform real-time
routing software in our cars as congestion occurs and then clears during rush hour,
opening the door to much smarter choices of routes during rush hour. A person
shopping in a big city could be sent advertising reporting sales of interesting items
in stores within a few blocks walking distance.
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We may not perceive these as group communication tools: their presentation will
cover a spectrum ranging from monitoring and system management interfaces, to
replication for mission-critical components, to publish-subscribe notification archi-
tectures. And yet group communication is there, just below the service. These com-
munication patterns will be common in Web Services systems, even if the Web
Services architecture lacks explicit support for such patterns.

Obviously, our wrapped Web server represents just the tip of a potentially large
application domain. While it is difficult to say with any certainty that this type of
system will ever be of commercial importance, or to predict the timeframe in which
it might become operational, it seems plausible that the pressures that today are
pushing more and more organizations and corporations onto the Web will tomorrow
translate into pressure for consistent, predictable, and rapidly updated groupware
tools and objects. The match of the technologies we have presented with this likely
need is good, although the packaging of group communication tools to work natu-
rally and easily within such applications will certainly demand additional research
and development. In particular, notice that the tools and APIs one might desire at
the level of a replicated Web server will look completely different from those that
would make sense in a multimedia groupware conferencing system. This is one rea-
son that systems such as Horus need flexibility, both at the level of how they behave
and how they look. Nonetheless, the development of appropriate APIs ultimately
seems like a small obstacle.

16.5 Unbreakable Stream Connections

The surging interest in high availability Web platforms justifies revisiting of mate-
rial we covered covered briefly in Chap. 4. Recall that most applications that use the
Web connect to the services on which they depend using TCP connections. Those
terminate in tier-one cloud service entities that are prone to sudden redeployments
due to elasticity decisions by the framework: they may be replicated to larger num-
bers of nodes, or removed from current nodes, with no warning at all. Thus the
application using the service may experience connectivity disruptions and be forced
to reconnect.

For many uses this is just not a problem. For example, a video streaming system
will often have a built-in reconnection layer that just re-requests the identical movie
from a few seconds before the point where the playback suddenly stopped. Whatever
server gets this new request tracks down the identical movie, seeks to the appropriate
spot, and then starts playing. The end user experiences an annoying but hopefully
brief disruption.

But there are cases where the disruption is more costly. In Chap. 4 the problem
we looked at closely involved BGP on a cluster-style router running in the core of the
Internet, where even brief protocol disruptions can trigger waves of routing issues:
black holes, incorrect or slow routes, route flaps, routing loops. However the same
issues arise in situations where a web-hosted service monitors a sensor or actuator
and needs to provide some form of continuous, high-integrity control. Applications
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of this kind will be common in cloud-hosted health-care systems, the future smart
electric power grid, transportation control systems (e.g. the ones that operate traffic
lights), etc.

The common feature of these examples is that there is a form of mutual state
present: the cloud-hosted services have a notion of state that matches with the state
of the remote client system, which is often quite simple and best seen as a worker
controlled by the cloud server that operates it. This use of cloud systems is somewhat
at odds with the requirement that the first tier of the cloud be stateless, but perhaps
less so with soft-state replication: we can adopt the view that whereas some uses of
the cloud require strong forms of durability and hard state (see Fig. 2.1) others can
get by with replicated soft state (see Fig. 2.2) provided that the soft-state service
maintains at least some live members to continue to play the required role. This
makes good sense: a cloud might elastically vary the number of members of some
service so that sometimes, it has 10,000 representatives and at other times, 100,000
of them, yet without ever dropping below 10,000. Such a service has a form of
durability and for a task such as monitoring a device, stronger durability might not
matter (who would ever want to know why a traffic-light controlling program used
a 30 second cycle instead of a 45 second cycle last week on Wednesday last week?)

These kinds of application need a form of durability that really adds up to state
replication of a current state in combination with the assurance that connections
will not break unless something goes very wrong, like the loss of regional power
and networking support because of a major weather event. We know how to do
replicated data in the soft-state tier of the cloud: the match is with the amnesia-
freedom properties obtained by using virtually synchronous protocols such as Send
in conjunction with a Flush prior to sending data to the external client. But how
can we avoid connectivity disruptions if a server shuts down while handling a TCP
endpoint?

For this, the same “reliable TCP connections” approach discussed in Chap. 4 is
really an ideal fit. As we saw there, Robert Surton and others have looked at ways to
build a form of network address translator that also can update the TCP byte counts
(the technical term is frame counters) in the messages that travel between a client
and a server, in a way that is completely transparent to both ends. By interposing
TCPR between client and server when a connection is first made, it becomes pos-
sible to seamlessly graft a new endpoint to the existing, open, channel, provided
that the application that will host the new endpoint is in the identical state to the
application that previously played that role. Soft-state replication with strong con-
sistency properties offers us precisely this mix of guarantees! In fact, as this chapter
was being revised in 2011, work was underway to integrate TCPR with Isis2 so that
this kind of continuous availability for stream connections would become a standard
tool within the Isis2 options.

TCPR failover is extremely lightweight: a few milliseconds. The overhead is es-
sentially neglible, and comparable to that of any network address translation device.
In fact there have been other solutions to the same problem; notable is the work of
Bressoud and Schneider (1995), which uses state machine replication to replicate the
entire TCP state machine between a primary and backup. But TCPR is much sim-
pler and for that reason, quite a bit faster. Moreover, unlike prior solutions, TCPR
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requires no changes to the actual TCP implementation or operating system; it op-
erates purely as a kind of network appliance and merely needs to be interposed on
the path between the client and the server as a kind of application-provided router.
Note that the server here must use a kind of virtual IP address that can be shifted
from node to node; a system call for doing this exists in Windows or Linux today,
and there is nothing especially difficult or constraining about the use of the method.

16.5.1 Discussion

Although we presented the unbreakable stream problem as a concrete example of
how a service might offer continuous availability a remote client, it is important to
realize that TCP is not the only protocol used in the Internet, and that streams of
videos or data between a web client and a web service are not the only cases in
which such issues arise. One of the main challenges is that some of these services
are not easily able to satisfy the determinism rules outlined above: we need the new
service instance that takes over to do so from the identical state that the failed one
was in immediately before it terminated. In the use case presented in Chap. 4, where
TCPR was used to replicate a BGP session, this was solved by having BGP check-
point every incoming BGP update received into the replicated (soft) state shared by
primary and backup before processing the BGP update, and then replicating the re-
sponse before sending any form of data to the remote client; Flush is used to ensure
that these updates have become durable. TCPR itself cooperates by blocking TCP-
level acknowledgments for bytes that have not yet been securely checkpointed, so
that if a failure occurs, we can be certain that every single byte is either still in the
sender’s TCP stack, or safely duplicated. This made it possible for the BGP shim
to literally resume where the BGP that failed was interrupted, byte for byte. More-
over, it does not really require BGP determinism, per-se: only that the new BGP be
willing to pick up from the same state that the previous BGP instance was in.

One can use similar tricks in many kinds of service. For example, Cho focused
on the case of TCP channels to mobile users, whose handheld computers might
need to connect to a succession of base stations as the computer was moved around
(see Cho and Birman 1994). Cited earlier, Alvisi et al. (2001a) and Ekwall et al.
(2002) explore related solutions to the basic unbreakable stream problem. All find
that performance is quite good.

16.6 Reliable Distributed Shared Memory

During much of the 1990s, distributed shared memories were a “hot topic” in the
distributed system research community. Although the enthusiasm ultimately ebbed
as the Internet boom gained momentum, the subject remains interesting. Accord-
ingly, in this section we will look at the idea of implementing a wrapper for the
UNIX mmap (or shrmem) functions, which are used to map files and memory re-
gions into the address space of user applications and shared between concurrently
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executing processes. The extension we consider here provides for the sharing of
memory-mapped objects over a virtually synchronous communication architecture
running on a high-speed communication network. One might use such a system as
a repository for rapidly changing visual information in the form of Web pages: The
provider of the information would update a local mapped copy directly in memory,
while the subscribers could map the region directly into the memory of a display
device and in this way obtain a direct I/O path between the data source and the re-
mote display. Other uses might include parallel scientific computations, in which
the shared memory represents the shared state of the parallel computation; a collab-
orative workplace or virtual reality environment shared between a number of users;
a simulation of a conference or meeting room populated by the participants in a
teleconference; or some other abstraction.

As noted, this topic emerges from an area of research in which many operat-
ing systems groups worldwide participated (see Ahamad et al. 1991; Carter 1993;
Feeley et al. 1995; Felton and Zahorjan 1991; Gharachorloo et al. 1990; Johnson
et al. 1995; Li and Hudak 1989). Our goals here are simply to look at how a DSM
might be implemented in a highly assured manner using process group technology.
The resulting solution is interesting for pedagogical reasons, but would certainly not
offer performance and latency properties comparable to hardware solutions.

16.6.1 The Shared Memory Wrapper Abstraction

As with the unbreakable TCP connection, our solution will start with an appropri-
ate wrapper technology. In many UNIX-like operating systems (including Linux
and Microsoft Windows) there is a mechanism available for mapping a file into the
memory of a process, sharing memory between concurrently executing processes or
doing both at the same time. The UNIX system calls supporting this functionality
are called shrmem or mmap, depending on the version of UNIX one is using; a re-
lated interface called semctl provides access to a semaphore-based mutual-exclusion
mechanism. By wrapping these interfaces (e.g., by intercepting calls to them, check-
ing the arguments and special-casing certain calls using new code, and passing other
calls to the operating system itself), the functionality of the shared memory subsys-
tem can potentially be extended. Our design makes use of such a wrapper.

In particular, if we assume that there will be a distributed shared memory daemon
process (DSMD) running on each node where our extended memory-mapping func-
tionality will be used, we can adopt an approach whereby certain mapped-memory
operations are recognized as being operations on the DSM and are handled through
cooperation with the DSMD. The recognition that an operation is remote can be
supported in either of two ways. One simple option is to introduce a new file system
object called a DSM object, which is recognizable through a special file type, file-
name extension (such as .dsm), or some other attribute. The file contents can then
be treated as a handle on the DSM object itself by the DSM subsystem. A second
option is to extend the options field supported by the existing shared memory system
calls with extra bits, one of which could indicate that the request refers to a region
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Fig. 16.8 Two machines share memory through the intermediary of a distributed shared mem-
ory daemon that runs on each. On the left we see that more than one process might employ the
same DSMD and might even share memory with one-another (and with remote processes) through
it. A wrapper (shown as small boxes) intercepts memory mapping and semaphore system calls,
redirecting DSM operations to the DSMD. The DMSD processes sharing a given region of mem-
ory belong to a process group and cooperate to provide coherent, fault-tolerant behavior. The best
implementation of the abstraction depends upon the expected pattern of sharing and the origin of
updates

of the DSM. In a similar manner, we can extend the concept of semaphore names
(which are normally positive integers in UNIX) to include a DSM semaphore name
space for which operations are recognizable as being distributed synchronization
requests.

Having identified a DSM request, that request can then be handled through a pro-
tocol with the DSMD process. In particular, we can adopt the rule that all distributed
shared memory is implemented as locally shared memory between the application
process and the DSMD process, which the DSMD process arranges to maintain
in a coherent manner with regard to other processes mapping the same region of
memory. The DSMD process thus functions as a type of server, handling requests
associated with semaphore operations or events that involve the mapped memory
and managing the mapped regions themselves as parts of its own address space.
It will be the role of the DSMD servers as a group to cooperate to implement the
DSM abstractions in a correct manner; the system call wrappers are thereby kept
extremely small and simple, functioning mainly by passing requests through to the
DSMD or to the local copy of the operating system, depending on the nature of the
system call that was intercepted. This is illustrated in Fig. 16.8.

It would be inefficient to require that our wrapper see every memory reference to
the mapped region. Accordingly, the architecture we favor operates at the granularity
of pages and makes use of memory protection features of the hardware, as explained
below, to trap operations on pages. The basic idea is to map the full set of pages
desired by a process into memory, but to disable access (perhaps just write access,
or perhaps both read and write access). If a process does not actually access the
pages in question, nothing happens. But on its “first” access after a page is locked, a
trap will occur. The application catches these events through the wrapper interface.
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The wrapper can now forward information to the DSMD, for example asking it
to make sure the page is current. Once the DSMD indicates that it is safe to do so,
the wrapper unlocks the page and permits the application to resume execution. The
sequence of events is exactly the same as when a page fault occurs for a virtual
memory region, except that we are handling the fault ourselves in the wrapper and
the DSMD, rather than asking the kernel to do it for us.

The sequence of events just described can be implemented more easily on some
operating systems than on others. Thus the form of distributed shared memory we
will describe might require kernel changes in some settings, while it could be im-
plemented entirely in the user’s address space in others. However, let us view this
as an implementation detail. It will not really change the distributed communica-
tion issues seen in implementing the DSMD, which is the focus of attention in this
book. Indeed, a kernel implementation of a DSM would surely yield material for a
fascinating research paper. A paper design, such as the one in this chapter, is mostly
interesting as an academic exercise!

For design simplicity, it will be helpful to consider the DSM architecture as being
volatile: DSM regions exist only while one or more processes are mapping them, and
there is no persistent disk storage associated with them, except perhaps for purposes
of paging if the region is too large to maintain in memory. We can view the DSM as a
whole as being a collection of objects or regions, each having a base address within
the DSM, a size, and perhaps access restrictions and security properties. A region
might be associated with a file system name, or could be allocated using some form
of DSM region manager server; we will not address this issue here.

Our design reduces the issue to one of maintaining replicated data and perform-
ing synchronization with a collection of superimposed process groups (one on be-
half of each shared memory region). The DMSD processes that map a given region
would also belong to the corresponding process group. The properties of that pro-
cess group and the algorithms used to maintain the data in it can now be tuned to
match the patterns of access expected from the application processes using it.

16.6.2 Memory Coherency Options for Distributed Shared Memory

In any distributed memory architecture, memory coherence is one of the hardest
issues to address. Abstractly, the coherence properties of memory characterize the
degree to which that memory is guaranteed to behave like a single, nonshared mem-
ory that handles every memory access directly. Because our memory is not resident
at any single location, but is shared among the processes that happen to be mapping
it at a given time, there are a number of options in regard to the degree to which
these copies should be coherent. The choices correspond to the options for shared
memory on parallel processors, and consist of the following:
• Strong consistency: In this model, the DSM is expected to behave precisely as

a single nonreplicated memory might have behaved. In effect, there is a single
global serialization order for all read and write operations.
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• Weak consistency: In this model, the DSM can be highly inconsistent. Updates
propagate after an unspecified and possibly long delay, and copies of the mapped
region may differ significantly for this reason.

• Release consistency (DASH project): This model assumes that conflicting read
or update accesses to memory are always serialized (protected) using mutual-
exclusion locks, such as the semaphore system calls intercepted by our wrapper.
The model requires that if process p obtains a lock associated with a region from
process q , then p will also observe the results of any update that q has performed.
However, if p tries to access the DSM without properly locking the memory, the
outcome can be unpredictable.

• Causal consistency (Neiger and Hutto): In this model, the causal relationship
between reads and updates is tracked; the memory must provide the property that
if access b occurs after access a in a causal sense, then b will observe the results
of access a.
The developer who implements an application (or a parallel computing platform,

like PVM or MPI) needs to be aware of the consistency properties of the shared
memory, and to code accordingly. Strongly consistent memory can be accessed very
much in the same way that memory is shared by concurrent threads running in a sin-
gle address space on a multiprocessor system. This turns out to be an unrealistically
expensive “positioning” in the technology stack because strong consistency is hard
to implement efficiently, whether in hardware or, as in our case, in software. Weak
consistency suffers from the opposite problem. Here, applications just cannot trust
the data they read from the shared memory: someone wrote the values, but there is
no way to be certain that they are at all consistent from copy to copy. Of course,
weak consistency is easy to implement, but it is not very useful. Release consis-
tency turns out to be the most popular option: it fits well with a style of program-
ming in which the application knows about page boundaries and locks each page
before modifying the data within it (some models use read and write locks; others
only have write locks). Finally, causal consistency offers an interesting extension to
the release consistency model, but has not been adopted by developers; apparently,
release consistency is “good enough.”

This list is not comprehensive, but these four options already represent a suffi-
cient variety of options to present us with some reasonable design choices. To imple-
ment strong consistency, it will be necessary to order all update operations, raising
the question of how this can be accomplished. The memory protection mechanisms
of a virtual memory system offer the needed flexibility: by write-protecting pages
managed by the DSMD, we can force an interrupt when those pages are updated
and the DSMD can then take any needed action to gain exclusive access. Similarly,
by read-protecting a page, we can give the DSMD an opportunity to fetch a current
copy if that page might be stale.

For example, to implement strong consistency, we can just protect all the mapped
pages against both read and write access. Each time a read or write occurs, we
intercept the resulting page fault. The DSMD can then use the replication protocol
developed in Sect. 14.3 to manage the pages, obtaining read and write locks and
unprotecting pages at a process during periods of time when that process holds the
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lock on that page. In effect, we have “wrapped” the mapped file and turned it into a
shared memory. However, the solution could be costly. (Without locks, the solution
gets much cheaper. . . but only provides weak consistency.)

The release consistency model can be implemented in a similar manner, except
that in this case, we only need to protect pages against writes. We use CausalSend
to implement semaphore operations in the manner of Sect. 14.3, and also to send
updated copies of pages. Notice that there is no need to communicate changes to a
page until the corresponding semaphore is released, hence those update messages
can be delayed, and only one will need to be sent even if many writes are done
on a page (keep in mind that we have one semaphore for each page). Of course,
there may be performance considerations that favor transmitting updates before the
semaphore is released, but the release consistency model itself does not require us
to do so.

Asynchronous CausalSend is a fast protocol: very efficient, suitable for imple-
mentations that stream messages without delaying the sender, and yet delaying a
process precisely when needed to prevent violations of causal order. Thus we end
up with quite an efficient DSMD in this case. Moreover, if the application obtains
read as well as write locks, this implementation will satisfy the causal consistency
properties!

Consider now the degree of match between these design options and the expected
patterns of use for a DSM. It is likely that a DSM will either be updated primarily
from one source at a time or in a random way by the processes that use it, sim-
ply because this is the pattern seen for other types of distributed application that
maintain replicated data. For the case where there is a primary data source, both the
strong and release consistency models will work equally well: The update lock will
tend to remain at the site where the updates are done, and other copies of the DSM
will passively receive incoming updates. If the update source moves around, how-
ever, there may be advantages to the release consistency implementation: Although
the programmer is compelled to include extra code (to lock objects in a way that
guarantees determinism), these locks may be obtained more efficiently than in the
case of strong consistency, where the implementation we proposed might move the
update lock around more frequently than necessary, incurring a high overhead in
the process. Further, the release consistency implementation avoids the need to trap
page faults in the application, and in this manner avoids a potentially high overhead
for updates. (See Fig. 16.9.)

These considerations make release consistency an appealing model for our DSM,
despite its dependence on the use of semaphore-style locking. Of course, should an
application desire a weak consistency model or need strong consistency, we now
know how both models can be implemented.

However, there are also issues that the consistency model overlooks and that
could be quite important in a practical DSM. Many applications that operate on
shared memory will be sensitive to the latency with which updates are propagated,
and there will be a subset in which other communication patterns and properties
are needed—for example, video algorithms will want to send a full frame at a time
and will need guarantees of throughput and latency from the underlying communi-
cation architecture. Accordingly, our design should include one additional interface
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Fig. 16.9 The proposed solution maps the DSM problem to a more familiar one: replicated data
with locking within a virtually synchronous process group. Only one of several overlapped groups
is shown; another group would be used for the dark gray memory region, another for the white
one, and so forth. Virtual synchrony provides us with simple solutions for what would otherwise
be tricky problems, such as ensuring the coherence of the distributed memory, handling failures
and dynamic join events, and dealing with protection

by which a knowledgeable application can specify the desired update properties to
the DSM. This dsmctl system call would be used to specify both the pattern of up-
dates that the application will generate (random, page based, isochronous) and also
the maximum latency and other special requirements for acceptable performance.
The DSMD can then use this information to schedule its communication appropri-
ately. If available, the page dirty bit provided by the virtual memory hardware can be
checked periodically by the DSMD; if not available, shared regions that are mapped
for update can be transmitted in their entirety at the frequency requested by the user.

16.6.3 False Sharing

False sharing is a phenomenon seen on parallel shared memory machines that trig-
gers a form of thrashing, similar to the kind of thrashing sometimes seen in a virtual
memory architecture. False sharing arises when multiple logically unrelated objects
are mapped to the same shared memory region or page by an accident of storage
allocation. When these objects are updated in parallel, the memory subsystem is
unable to detect that the updates are independent ones and treats the situation as
one in which the processes doing the updates are contending for the same object. In
our implementation of strong consistency, the update token would bounce around in
this case, resulting in a huge overhead for token passing and page fault handing on
the client systems. Yet the problem also points to an issue in our proposed release
consistency scheme—the granularity of locking. In particular, it becomes clear that
the semaphores used for locking must have the same granularity as the objects the
DSMD transmits for updates—most likely a page. Otherwise, because the DSMD
lacks a fine-grained concept of data access, when an object is updated on a page and
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the semaphore locking that object is released, the entire page will be transmitted to
other processes mapping the page, potentially overwriting parts of the page that the
semaphore was not considered to lock and which are in fact not even up-to-date on
the node that held the lock.

Our DSM architecture can only work if the granularity of locking is at the page
level or region level, and, in either case, false sharing could now occur as a visible
problem for the developer. Rather than trying to overcome this problem, it may be
best to simply caution the user: The DSM architecture we have proposed here will
perform poorly if an application is subject to false sharing; hence, such applications
may need to be redesigned to arrange for concurrently updated but logically unre-
lated objects to reside in different regions or at least on different pages, and in the
case of release consistency, must be locked by separate semaphores.

16.6.4 Demand Paging and Intelligent Prefetching

We cited the case of frequent and time-critical updates, but there is another style
of DSM use that will require more or less the opposite treatment. Suppose that the
DSM region is extremely large and most applications access it in a sparse manner.
Then, even if a region is mapped by some process, it may not be necessary or even
desirable to actively update that region each time some process updates some part of
the data area. In such cases, a demand paging model, whereby a portion of the DSM
is maintained as current only if the process holding that region is actually accessing
it, makes more sense.

Although we will not tackle the problem here, for reasons of brevity, it would
be desirable for large regions to be managed as multiple subregions, shrinking the
process group for a given subregion to include only those processes that are actively
updating it or reading it. With such an approach, one arrives at a form of demand
paging, in which a process, upon attempting to access a subregion not currently
mapped into its address space, experiences a page fault. To resolve the fault the
DSMD would join the process group for that subregion, transferring the current
state of the subregion (or just those updates that have occurred since the process
was last a memory) and then enabling read or update access to the subregion and
resuming local computation.

Notice that the virtual synchrony properties of the state transfer make it easy to
describe a solution to what would otherwise be a tricky synchronization problem!
Lacking the virtual synchrony model, it would not be at all simple to coordinate the
addition of a new memory to a subregion group and to integrate the state transfer
operation with updates that may be occurring dynamically. The virtual synchrony
model makes it easy to do so and still be able to guarantee that release consistency or
strong consistency will be observed by the DSM user. On the other hand, recall that
virtual synchrony comes with no guarantees of real-time performance, and hence
support for dynamically adjusting the members of a process group that maps a given
region or subregion may be incompatible with providing real-time performance and
latency guarantees. For situations in which such guarantees are desired, it may be
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wise to disable this form of dynamicism unless the requirements are fairly weak
ones.

Demand paging systems perform best if the relatively costly operations involved
in fetching a page are performed shortly before the page fault actually takes place,
so as to overlap useful computation with the paging-in activity and to minimize the
delay associated with actually servicing the page fault when it occurs. Accordingly,
it would be advisable to implement some form of prefetching policy, whereby the
DSMD, recognizing a pattern of access (such as sequential access to a series of
subregions), would assume that this pattern will continue into the future and would
join subregion groups in anticipation of the future need. For example, the DSMD
could include one or more “prefetchers”: threads that wait for a pattern of accesses to
occur that seems to predict some future access, and then acquire the corresponding
semaphore in anticipation that it may soon be needed. Our architecture creates a
convenient context within which to implement such a policy.

16.6.5 Fault Tolerance Issues

A DSM implemented by a process group has a natural form of fault tolerance, aris-
ing directly from the fault tolerance of the virtual synchrony model used by the
DSMD processes to form process groups and propagate updates. The issues that
arise are primarily ones associated with the possibility of a failure by a process
while it is doing an update. Such an event might leave the DSM corrupted and a
semaphore in the locked state (the token for the group would be at the process that
failed).

A good way to solve this problem would be to introduce a new kind of page fault
exception into the DSM model; this could be called a page corruption exception. In
such an approach, when a process holding an update lock or semaphore for a page
or region fails, any subsequent access by some other process mapping that region
would result in a corruption trap. The handler for such a trap would be granted the
update lock or semaphore and would be required to restore the page to a consistent
state. The next update would be understood to clear the corruption bit, so that pro-
cesses not attempting to access the page during the period of corruption would be
completely unaware that a problem had occurred.

16.6.6 Security and Protection Considerations

The reliability of a DSM should extend beyond issues of fault tolerance and de-
tecting potential corruption to also include guarantees of protection and security or
privacy if desired. We have not yet treated security issues in this book and defer dis-
cussion of the options until later. In brief, one could arrange for the data on the wire
to be encrypted so that eavesdroppers lacking an appropriate key would be unable
to map a protected segment and unable to make sense of any intercepted updates.
Depending on the degree to which the system implementing virtual synchrony is
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trusted, weaker security options might include some form of user-ID-based access
control in which unauthorized users are prevented from joining the group. Because
the DSMD must join a process group to gain access to a DSM segment, the group
join operation can include authorization keys for use in determining whether or not
access should be granted. Alternatively, if the DSMD process itself can be trusted,
it can perform a mapping from local user-IDs on the host machine where it is run-
ning to global user-IDs in a protection domain associated with the DSM, permitting
access under UNIX-style restrictions.

To some extent, communication tools like Isis2 address this issue: in the Isis2

approach, one simply uses g.SetSecure(key) to associate an AES cryptographic key
with a group, and then the system will encrypt all data sent within it. Yet this may
not be as strong a guarantee as one would desire, since those AES keys themselves
can potentially be stolen. Far preferable would be an approach in which the keys
used for this purpose are somehow integrated with hardware-managed keys, using a
Hardware Root of Trust module. Moreover, in cloud settings, where virtualization is
common, there are several studies pointing to new kinds of risk that involve cohosted
platforms that share a single hardware system with one or more untrusted virtual
machines; the upshot is that there are many ways that information can potentially
leak from VMM to VMM in such settings and little is known about providing very
strong security guarantees, at least for standard operating systems such as Windows
or Linux. Thus, this form of sharing is powerful, but one would want to think about
who might be using the same hardware, and what they might be up to.

16.6.7 Summary and Discussion

The previous examples in this chapter illustrated some of the challenges that can
be encountered when using group structures in implementing a distributed system.
We have seen that not all problems lend themselves to elegant solutions: nonde-
terminism, for example, seems to create a great deal of complexity in replication
algorithms. In contrast, replicating a deterministic state machine can be child’s play.
We saw that where there is a close match between the application programming
model and our primitives, as in the case of “release consistency” and CausalSend,
one can sometimes map even a fairly elaborate programming model into a simple
and elegant solution. Moreover, these solutions turn out to be easy to understand
when the match of problem and tool is close, although they become complex when
that is not the case.

With respect to the DSM architecture, it seems clear that the practicality of the
proposed solution depends upon having a suitable shared memory subsystem avail-
able for use between the DSMD and its clients. The scheme discussed above would
be easy to implement on Unix or Linux but less so on Windows, where access to
the memory protection mechanisms is not as simple in the case of shared memory
regions. Perhaps this explains why distributed shared memory is such an uncommon
computing tool; after all, one would expect the simplicity of the abstraction to carry
tremendous end-user appeal. The area certainly seems ripe for further research.
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16.7 Related Reading

On wrappers and technologies that can support them (see Jones 1993; Rozier et al.
1988a, 1988b; Wahbe et al. 1993).

On wrapping TCP (see Birman and van Renesse 1996; Alvisi et al. 2001a; Ekwall
et al. 2002).

On the Isis Toolkit (see Birman and Joseph 1987a; Birman and van Renesse
1994). (Information on the most current APIs should be obtained directly from the
company that markets the Isis product line; their Web page is http://www.isis.com.)

On agents (see Gosling and McGilton 1995a, 1995b; Johansen et al. 1995a;
Ousterhout 1994).

On virtual fault tolerance (see Bressoud and Schneider 1995).
On shared memory (see Ahamad et al. 1991; Carter 1993; Feeley et al. 1995;

Felton and Zahorjan 1991; Gharachorloo et al. 1990; Johnson et al. 1995; Li and
Hudak 1989). Tanenbaum also discusses shared memory (see Tanenbaum 1988),
and Coulouris treats the topic as well (see Coulouris et al. 1994).



17Software Architectures for Group
Communication

The purpose of this chapter is to shift our attention away from protocol issues to
architectural considerations associated with the implementation of process group
computing solutions. Although there has been a great deal of work in this area, we
focus on the Horus system, because that system is well matched to the presentation
of this book.

The Isis2 system borrows many of these ideas; we will not discuss it in detail
here, for reasons of brevity and because it does not really break new ground on
the topics outlined below. Robbert van Renesse has recently created a new very
minimal group communication solution coded in about 100 lines of Erlang; for some
purposes, this is ideal since “real systems” like Isis2 are enormous and complex
(roughly 25,000 lines of C# at last count), dealing with all sorts of practical issues,
but with the core protocols buried in masses of code. Thus, a researcher hoping
to use a theorem prover to prove that a particular varient of these ideas is correct
would be far wiser to start with this small Erlang implementation (it does not even
have a name) than to try and work with Isis2. In contrast, a developer hoping to
build something real would be much more likely to succeed by using Isis2 as their
platform of choice.

It should be stressed that Isis2 is just one of many systems a developer
might consider working with. At Cornell, the Ensemble system was developed
as a successor to Horus and is available for free download too; unlike Ho-
rus, Ensemble had an active user community for many years, and while it
is no longer supported, was quite stable and mature when work on it ended
(http://www.cs.cornell.edu/Info/Projects/Ensemble). Indeed, one developer (Mark
Hayden) created a series of commercial follow-on products for the system. En-
semble became more widely used than Horus, despite being coded in the O’CaML
language, a variant of ML which is widely praised for its elegant handling of math-
ematical constructs and its powerful type system. Users, of course, should not be
aware of the underlying language—they can work in C, C++, C#, or whatever. Our
focus on Isis2 in prior chapters is a reflection of the current options at the time this
text was being revised in 2011. This said, we are currently supporting Isis2 and are
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hoping that it will have a long lifetime and enter wide use. We also see it as an active
research vehicle for cloud consistency for at least a few years into the future.

Mentioned earlier, the Spread Toolkit, built by a great team at John Hopkins Uni-
versity (http://www.spread.org/), is another good option for those who seek to build
real systems, particularly if support is required. Spread is simpler than Ensemble,
is supported commercially and offers many advantages, notably exceptional effi-
ciency and simplicity of the user interface. Users concerned about the complexity
of group communication will find a happy option in Spread, which was deliberately
designed to be as foolproof as possible. Still other options include Eternal, a tech-
nology developed at UCSB in support of the CORBA fault-tolerance architecture
and JavaGroups (JGroups), a part of the JBOSS communications platform.

Our decision to drill down on Horus, then, is not a judgment about the rela-
tive merits of the various options available to the developer. We do so simply be-
cause Horus was a real system, remains available for users willing to invest the time
needed to recompile it, was rather elegantly structured, and widely known as the
first system to offer a valuable form of design flexibility, on which the remainder of
this chapter will be focused.

17.1 Architectural Considerations in Reliable Systems

The reader may feel that Part II of this book and the first chapters of Part III have
lost one of the important themes of Part I—namely, the growing importance of ar-
chitectural structure and modularity in reliable distributed systems and, indeed, in
structuring distributed systems of all types. Our goal in this chapter, in part, is to
reestablish some of these principles in the context of the group computing con-
structs introduced in Part III. Specifically, we will explore the embedding of group
communication support into a modular systems architecture.

Historically, group computing and data replication tools have tended to overlook
the importance of architectural structure. These technologies have traditionally been
presented in what might be called a flat architecture: one in which the APIs pro-
vided by the system are fixed, correspond closely to the group construct and associ-
ated communication primitives, and less uniformly accessible from any application
making use of the group communication environment anywhere in the system.

In practice the use of group communication will vary considerably depending
upon what one is attempting to do. Consider the examples that arose in Chap. 16,
when we discussed group computing in the context of enterprise Web applications:
• Groups used to replicate a Web server for load-balancing, fault tolerance, or scal-

able performance through parallelism.
• Groups used to interconnect a set of Web servers, giving the illusion of a sin-

gle, corporate-wide server within which objects might migrate or be replicated to
varying degrees, depending on usage patterns.

• Groups corresponding to the set of Web proxy servers that cache a given data
item and are used to invalidate those cached copies or to refresh them when they
change.
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• Groups used to distribute Java applets to users cooperating in conferencing ap-
plications or other groupware applications (we gave a number of examples in
Chap. 16 and will not repeat them here).

• Groups used to distribute updates to documents, or other forms of updates, to Java
applets running close to the client browsers.

• Groups formed among the set of Java applets, running on behalf of clients, for the
purpose of multicasting updates or other changes to the state of the group session
among the participants.

• Groups associated with security keys employed in a virtual private network.
Clearly, these uses correspond to applications that would be implemented at very

different levels of programming abstraction and for which the most appropriate pre-
sentation of the group technology would vary dramatically. Several of these rep-
resent potential uses of wrappers, but others would match better with toolkit in-
terfaces and still others with special-purpose, high-level programming languages.
Even within those subclasses, one would expect considerable variation in terms of
what is wrapped, the context in which those tools or languages are provided, and the
nature of the tools themselves. No single solution could possibly satisfy all of these
potential types of developer and types of use. On the contrary, any system that offers
just a single interface to all of its users is likely to confuse its users and to be per-
ceived as complex and difficult to learn, because that API is unlikely to match with
the other APIs and major programming paradigms used in the parts of the system
where one might want to exploit groups. For example, if one developer is thinking
about publish-subscribe, and another about replicating a server, neither may see a
group join/leave/multicast interface as a “natural” fit to their needs. If one steps back
and looks at the broad history of the field, the tendency to offer group communica-
tion tools through a flat interface (one that looks the same to all applications and
that offers identical capabilities no matter where it is used in the system) has proved
to be an obstacle to the adoption of these technologies, because the resulting tools
tend to be conceptually mismatched with the developer’s goals and mindset.

The insight here recalls the point made by Cheriton and Skeen in their criticism
of “causal and total ordering.” Not all applications need all properties. The list of
properties that a group could offer is almost endless. By picking this one and de-
ciding not to offer that one, the developer of a platform gradually disenfranchises
larger and larger subgroups of the potential user community.

Indeed, the lesson goes further than this. Although we have presented group
communication as a natural and elegant step, the experience of programming with
groups can be more challenging. Obtaining good performance is not always an easy
thing, and the challenge of doing so increases greatly if groups are deployed in
an unstructured way, creating complex patterns of overlap within which the loads
placed on individual group members may vary widely from process to process.
Thus, what may seem elegant to the reader, can start to seem clumsy and complex
to the developer, who is struggling to obtain predictable performance and graceful
scalability.

Cheriton and Skeen concluded from this that one should build systems around
a loosely coupled paradigm such as publish-subscribe, without any built-in consis-
tency (reliability, durability or ordering) guarantees. In keeping with this philosophy,
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their recommended technology does not provide any form of strong guarantee in the
usual case, although a “logged” event stream is available as a more costly option for
those who need absolute reliability. Thus they prefer a positioning in which the basic
primitive offered to the user is rather weak (a best-effort publish-subscribe mecha-
nism), and anything stronger is achieved through end-to-end mechanisms. The Isis
Toolkit went the other way, offering publish-subscribe interfaces to group commu-
nication tools, so that one could exploit the stronger properties of those tools as
needed.

Stepping back, the author’s research group concluded that these observations ar-
gue for a more structured presentation of group computing technologies: one in
which the tools and APIs provided are aimed at a specific class of users and will
guide those users to a harmonious and simple solution to the problems anticipated
for that class of users. If the same technology will also support some other com-
munity of users, a second set of tools and APIs should be offered to them. Thus,
the tools provided for developers of highly assured Web Services might look very
different from those available to the developer of a highly assured database system,
even if both are basically forms of replication similar to the functionally found group
communication subsystems. I believe that far too little attention has been given to
this issue up to the present and that this has emerged as a significant obstacle to the
widespread use of reliability technologies.

At a minimum, focusing only on issues associated with communication (as op-
posed to security, system management, or real time), it would appear that three
layers of APIs are needed (Fig. 17.1). The lowest layer is the one aimed at uses
within servers, the middle layer focuses on interconnection and management of
servers within a WAN setting, and the third layer focuses on client-side issues and
interfaces. Such layers may be further subdivided: Perhaps the client layer offers
a collection of transactional database tools and a collection of C# or Java group-
ware interfaces, while the server layer offers tools for multimedia data transmission,
consistent replication and coordinated control, and fault tolerance through active
replication. This view of the issues now places unusual demands upon the underly-
ing communication system: not only must it potentially look different for different
classes of users, but it may also need to offer very different properties for different
classes of users. Security and management subsystems would introduce additional
APIs, which may well be further structured. Real-time subsystems are likely to re-
quire still further structure and interfaces.

17.2 Horus: A Flexible Group Communication System

The observations in the preceding section may seem to yield an ambiguous situa-
tion. On the one hand, we have seen that process group environments for distributed
computing represent a promising step toward robustness for mission-critical dis-
tributed applications. Process groups have a natural correspondence with data or
services that have been replicated for availability or as part of a coherent cache,
such as might be used to ensure the consistency of documents managed by a set
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Functionality of a client-level API:
Fault-tolerant remote procedure call
Reliable, unbreakable streams to servers
Publish-subscribe interfaces, with the possibility of guaranteed reliability or ordering
Tools for forming groupware sessions involving other client systems

Functionality of a WAN server API:
Tools for consistently replicating data within wide area or corporate networks
Technology for updating global state and for merging after a partitioning failure is cor-

rected
Security tools for creating virtual private networks
Management tools for control and supervision

Functionality of a cluster-server API:
Tools for building fault-tolerant servers (ideally, as transparently as possible)
Load-balancing and scalable parallelism support
Management tools for system servicing and automatic reconfiguration
Facilities for on-line upgrade

Other cases that might require specialized APIs:
Multimedia data transport protocols (special quality-of-service or real-time properties)
Security (key management and authentication APIs)
Debugging and instrumentation
Very large scale data diffusion

Fig. 17.1 Different levels of a system may require different styles of group computing support. A
simple client/server architecture gives rise to three levels of API (levels in the sense that we start
with client issues, then push closer and closer to a server and finally to “platform” uses internal to
the operating system and network). Further structure might be introduced in a multimedia setting
(where special protocols may be needed for video data movement or to provide time-synchronous
functionality), in a transactional database setting (where client’s may expect an SQL-oriented in-
terface), or in a security setting (where APIs will focus on authentication and key management)

of Web proxies. They can been used to support highly available security domains.
Also, group mechanisms fit well with an emerging generation of intelligent network
and collaborative work applications.

Yet we have also seen that there are many options concerning how process groups
should look and behave. The requirements that applications place on a group in-
frastructure vary and there may be fundamental tradeoffs between semantics and
performance. Even the most appropriate way to present the group abstraction to the
application depends on the setting.

The Horus system responds to this observation by providing an unusually flexible
group communication model to application developers. This flexibility extends to
system interfaces; the properties provided by a protocol stack; and even the configu-
ration of Horus itself, which can run in user space, in an operating system kernel or
microkernel, or be split between them. Horus can be used through any of several ap-
plication interfaces. These include toolkit-style interfaces and wrappers, which hide
group functionality behind UNIX communication system calls, the TCL/TK pro-
gramming language, and other distributed computing constructs. The intent is that it
be possible to slide Horus beneath an existing system as transparently as possible—
for example, to introduce fault tolerance or security without requiring substantial
changes to the system being hardened (see Bressoud and Schneider 1995).
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For example, one could slide Horus beneath a publish-subscribe API of the sort
favored by Cheriton and Skeen. To do this, we use a hashing function to map sub-
jects into a smaller set of process groups (the objective being to limit the number
of groups; systems like Horus scale to tens of groups but not tens of thousands). A
publish event becomes a multicast to the appropriate group. A subscriber joins the
group or group to which their subscription hashes (“groups” in the case of wildcard
subscription patterns).

A basic goal of Horus is to provide efficient support for the virtually synchronous
execution model. However, although often desirable, properties such as virtual syn-
chrony may sometimes be unwanted, introduce unnecessary overheads, or conflict
with other objectives such as real-time guarantees. Cheriton and Skeen, for example,
would grimace at the concept of a publish-subscribe system that offers any proper-
ties at all, beyond a best effort delivery guarantee and some end-to-end mechanism
for recovering data if an application really needs to do so. So while we can map
publish-subscribe onto groups, it is not obvious that we would want those groups to
run over the protocols we have developed so painstakingly over the past five chapters
of the book! Yet we would not want to be too quick to dismiss the value of causal
or total order, or virtual synchrony, either: a publish-subscribe system in which pro-
cesses are replicating system state and want strong guarantees would obviously need
stronger group communication properties.

Moreover, the optimal implementation of a desired group communication prop-
erty sometimes depends on the run-time environment. In an insecure environment,
one might accept the overhead of data encryption but wish to avoid this cost when
running inside a firewall. On a platform such as an IBM SP scalable supercom-
puter, which has reliable message transmission, protocols for message retransmis-
sion would be superfluous.

Accordingly, Horus provides an architecture whereby the protocol supporting a
group can be varied, at run time, to match the specific requirements of its application
and environment. Virtual synchrony is only one of the options available, and, even
when it is selected, the specific ordering properties that messages will respect, the
flow-control policies used, and other details can be fine-tuned. Horus obtains this
flexibility by using a structured framework for protocol composition, which incor-
porates ideas from systems such as the UNIX stream framework and the x-Kernel,
but replaces point-to-point communication with group communication as the funda-
mental abstraction. In Horus, group communication support is provided by stacking
protocol modules having a regular architecture, where each module has a separate
responsibility. A process group can be optimized by dynamically including or ex-
cluding particular modules from its protocol stack.

17.2.1 A Layered Process Group Architecture

It is useful to think of Horus’s central protocol abstraction as resembling a Lego
block; the Horus system is thus similar to a box of Lego blocks. Each type of block
implements a microprotocol, which provides a different communication feature. To
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Fig. 17.2 Group protocol layers can be stacked at run time like Lego blocks and support appli-
cations through one of several application programmer interfaces. Shown is an application pro-
gram belonging to a single process group, supported by a Horus protocol stack of four layers:
“fc,” the flow-control layer; “vsync,” the layer implementing virtually synchronous process group
views; “nak,” a layer using negative acknowledgements to overcome communication failures; and
“comm,” which interfaces Horus to a network. The application would often use Horus through a
wrapper, which might conceal this group functionality, but it can also do so using a toolkit. The
layers illustrated here are imaginary; some real layers are shown in Table 17.1. Horus supports
many layers, but not all need be used in any particular stack: Shown here are two security layers
(one for signing messages and one for encrypting their contents), which were not used for this
particular application

promote the combination of these blocks into macroprotocols with desired proper-
ties, the blocks have standardized top and bottom interfaces, which allow them to be
stacked on top of each other at run time in a variety of ways (see Fig. 17.2). Obvi-
ously, not every sort of protocol block makes sense above or below every other sort.
But the conceptual value of the architecture is that where it makes sense to create
a new protocol by restacking existing blocks in a new way, doing so is straightfor-
ward.

Technically, each Horus protocol block is a software module with a set of entry
points for downcall and upcall procedures—for example, there is a downcall to send
a message and an upcall to receive a message. Each layer is identified by an ASCII
name and registers its upcall and downcall-handlers at initialization time. There is
a strong similarity between Horus protocol blocks and object classes in an object-
oriented inheritance scheme, and readers may wish to think of protocol blocks as
members of a class hierarchy.

To see how this works, consider the Horus message_send operation. It looks up
the message send entry in the topmost block and invokes that function. This function
may add a header to the message and will then typically invoke message_send again.
This time, control passes to the message send function in the layer below it. This
repeats itself recursively until the bottommost block is reached and invokes a driver
to actually send the message.

The specific layers currently supported by Horus solve such problems as inter-
facing the system to varied communication transport mechanisms, overcoming lost
packets, encryption and decryption, maintaining group membership, helping a pro-
cess that joins a group obtain the state of the group, merging a group that has parti-
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Table 17.1 Microprotocols available in Horus

Layer Description

COM The COM layer provides the Horus group interface to such low-level
protocols as IP, UDP, and some ATM interfaces

NAK This layer implements a negative acknowledgement-based message re-
transmission protocol

CYCLE Multimedia message dissemination using Smith’s cyclic UDP protocol

PARCLD Hierarchical message dissemination (parent-child layer)

FRAG Fragmentation and reassembly of large messages

MBRSHIP This layer provides each member with a list of end-points believed to be
accessible. It runs a group membership consensus protocol to provide its
users with a virtually synchronous execution model

FC Flow-control layer

TOTAL Totally ordered message delivery

STABLE This layer detects when a message has been delivered to all destination
end-points and can consequently be garbage collected

CRYPT Encryption and decryption of message body

MERGE Location and merging of multiple group instances

tioned, flow control, and so forth. Horus also includes tools to assist in the develop-
ment and debugging of new layers.

Each stack of blocks is carefully shielded from other stacks. It has its own prior-
itized threads and has controlled access to available memory through a mechanism
called memory channels. Horus has a memory scheduler, which dynamically assigns
the rate at which each stack can allocate memory, depending on availability and pri-
ority, so that no stack can monopolize the available memory. This is particularly
important inside a kernel or if one of the stacks has soft real-time requirements.

Besides threads and memory channels, each stack deals with three other types of
objects: end-points, groups, and messages. The end-point object models the com-
municating entity. Depending on the application, it may correspond to a machine,
a process, a thread, a socket, a port, and so forth. An end-point has an address and
can send and receive messages. However, as we will see later, messages are not ad-
dressed to end-points, but to groups. The end-point address is used for membership
purposes.

A group object is used to maintain the local protocol state on an end-point. As-
sociated with each group object is the group address, to which messages are sent,
and a view: a list of destination end-point addresses believed to be accessible group
members. An end-point may have multiple group objects, allowing it to communi-
cate with different groups and views. A user can install new views when processes
crash or recover and can use one of several membership protocols to reach some
form of agreement on views between multiple group objects in the same group.

The message object is a local storage structure. Its interface includes operations
to push and pop protocol headers. Messages are passed from layer to layer by pass-
ing a pointer and never need be copied.
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Fig. 17.3 The Horus stacks are shielded from each other and have their own threads and memory,
each of which is provided through a scheduler. Each stack can be thought of as a small program
executing inside Horus. Although this feature is not shown, a stack can be split between the user’s
address space and the kernel, permitting the user to add customized features to a stack while ben-
efiting from the performance of a kernel-based protocol implementation

A thread at the bottom-most layer waits for messages arriving on the network
interface. When a message arrives, the bottom-most layer (typically COM) pops off
its header and passes the message on to the layer above it. This repeats itself recur-
sively. If necessary, a layer may drop a message or buffer it for delayed delivery.
When multiple messages arrive simultaneously, it may be important to enforce an
order on the delivery of the messages. However, since each message is delivered
using its own thread, this ordering may be lost, depending on the scheduling poli-
cies used by the thread scheduler. Therefore, Horus numbers the messages and uses
event count synchronization variables (see Reed and Kanodia 1979) to reconstruct
the order where necessary.

17.3 Protocol Stacks

The microprotocol architecture of Horus would not be of great value unless the vari-
ous classes of process group protocols we might wish to support could be simplified
by being expressed as stacks of layers perform well and share significant function-
ality. The experience with Horus in this regard has been very positive.

The stacks shown in Fig. 17.3 all implement virtually synchronous process
groups. The left-most stack provides totally ordered, flow-controlled communica-
tion over the group membership abstraction. The layers FRAG, NAK, and COM,
respectively, break large messages into smaller ones, overcome packet loss using
negative acknowledgements, and interface Horus to the underlying transport proto-
cols. The adjacent stack is similar, but provides weaker ordering and includes a layer
supporting state transfer to a process joining a group or when groups merge after a
network partition. To the right is a stack that supports scaling through a hierarchical
structure, in which each parent process is responsible for a set of child processes.



518 17 Software Architectures for Group Communication

The dual stack illustrated in this case represents a feature whereby a message can
be routed down one of several stacks, depending on the type of processing required.
Additional protocol blocks provide functionality such as data encryption, packing
small messages for efficient communication, isochronous communication (useful in
multimedia systems), and so forth.

In order for Horus layers to fit like Lego blocks, they each must provide the same
downcall and upcall interfaces. A lesson learned from the x-Kernel is that if the
interface is not rich enough, extensive use will be made of general-purpose con-
trol operations (similar to ioctl), which reduce configuration flexibility. (Since the
control operations are unique to a layer, the Lego blocks would not fit as easily.)
The Horus Common Protocol Interface (HCPI), therefore supports an extensive in-
terface, which supports all common operations in group communication systems,
going beyond the functionality of earlier layered systems such as the x-Kernel. Fur-
thermore, the HCPI is designed for multiprocessing and is completely asynchronous
and reentrant.

Broadly, the HCPI interfaces fall into two categories. Those in the first group
are concerned with sending and receiving messages and the stability of messages.1

The second category of Horus operations is concerned with membership. In the
down direction, it lets an application or layer control the group membership used
by layers below it. As upcalls, these report membership changes, communication
problems, and other related events to the application.

While supporting the same HCPI, each Horus layer runs a different protocol—
each implementing a different property. Although Horus allows layers to be stacked
in any order (and even multiple times), most layers require certain semantics from
layers below them, imposing a partial order on the stacking. Given information
about the properties of the network transport service, and the properties provided
by the application, it is often possible to automatically generate a minimal protocol
stack to achieve a desired property. Indeed, one of the major reasons that Cornell de-
veloped Ensemble, the successor to Horus, was that by reimplementing the system
in the O’CaML language, it became possible to use a single mathematical formalism
to express constraints, properties, and protocols, enabling the use of mathematical
theorem proving tools to establish the correctness of the system in a formal way (see
Liu et al. 1999).

Layered protocol architectures sometimes perform poorly: the layering limits
opportunities for optimization and imposes excessive overhead. Clark and Ten-
nenhouse have suggested that the key to good performance rests in Integrated
Layer Processing (ILP) (see Abbott and Peterson 1993; Braun and Diot 1995;
Clark and Tennenhouse 1987, 1990; Karamcheti and Chien 1994; Kay and Pasquale
1993). Systems based on the ILP principle avoid interlayer ordering constraints and

1It is common to say that a message is stable when processing has completed and associated
information can be garbage collected. Horus standardizes the handling of stability information, but
leaves the actual semantics of stability to the user. Thus, an application for which stability means
“logged to disk” can share this Horus functionality with an application for which stability means
“displayed on the screen.”
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can perform as well as monolithically structured systems. Horus is consistent with
ILP: There are no intrinsic ordering constraints on processing, so unnecessary syn-
chronization delays are avoided. Moreover, as we will see, Horus supports an op-
tional protocol accelerator, which greatly improves the performance of the layered
protocols making use of it.

17.4 Using Horus to Build a Publish-Subscribe Platform and a
Robust Groupware Application

Earlier, we commented that Horus can be hidden behind standard application pro-
grammer interfaces, giving the example of a publish-subscribe “mapping” of sub-
jects down to groups. Clearly, the core issue in implementing such a publish-
subscribe system involves the mapping itself. If we map each subject to a distinct
group, we get a very natural implementation of publish-subscribe, but run into the
problem that Horus itself was not implemented with membership in large numbers
of groups as one of its primary goals. The software would “bog down” when a pro-
cess joins or leaves the system and triggers membership changes in large numbers
of groups nearly simultaneously.

If we want to pursue such a mapping, the most obvious idea is to just simplify
the job Horus is faced with by applying some sort of a function to reduce the size
of the group space. For example, suppose that each subject is somehow hashed to
a small space of (just for the sake of argument) about 75 groups, e.g., by taking
the first alphanumeric character of the subject name as the group name. Thus “/eq-
uities/nyse/ibm” would be mapped to group “e” while “/bonds/fixed/. . . ” to group
“b”. (Obviously this is not a particularly intelligent mapping since all the equity
symbols end up in one group, but that is a technicality.) A subscription would be
implemented by a join; a subscription to a pattern such as “/equities/nyse/*” by
joining all the groups that the pattern might match.

Now, this subscription scheme is inefficient, since a subscriber might end up re-
ceiving some publications not intended for it. But the data rates would presumably
be 75-times reduced relative to the full flow of data into the system, and the ex-
tra cost of reevaluating the match and tossing out non-matching incoming events
should not be prohibitive. All that remains is to pick an appropriate Horus stack
for these groups, and voila: instant publish-subscribe. In the example given, Horus
could be configured without the virtual synchrony and ordering layers if one ac-
cepts the Cheriton and Skeen argument, or could be set up with stronger ordering
and reliability guarantees if the setting demands them.

A second way of exploiting group communication involves the use of groups as a
more basic distributed computing “architectural element.” Here, the groups become
a structural construct visible in the application itself.

A good illustration of this second idea arose some years ago, when colleagues at
Cornell interfaced the TCL/TK graphical programming language to Horus. A chal-
lenge posed by running systems such as Horus side by side with a package such
as X Windows or TCL/TK is that such packages are rarely designed with threads
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or Horus communication stacks in mind. To avoid a complex integration task, we
therefore chose to run TCL/TK as a separate thread in an address space shared with
Horus. Horus intercepts certain system calls issued by TCL/TK, such as the UNIX
open and socket system calls. We call this resulting mechanism an intercept proxy; it
is a special type of wrapper oriented toward intercepting this type of system call. The
proxy redirects the system calls, invoking Horus functions, which will create Horus
process groups and register appropriate protocol stacks at run time. Subsequent I/O
operations on these group I/O sockets are mapped to Horus communication func-
tions.

To make Horus accessible within TCL applications, two new functions were reg-
istered with the TCL interpreter. One creates end-point objects, and the other creates
group addresses. The end-point object itself can create a group object using a group
address. Group objects are used to send and receive messages. Received messages
result in calls to TCL code that typically interpret the message as a TCL command.
This yields a powerful framework: a distributed, fault-tolerant, whiteboard applica-
tion can be built using only eight short lines of TCL code over a Horus stack of
seven protocols.

To validate the approach, we ported a sophisticated TCL/TK application to Ho-
rus. The Continuous Media Toolkit (CMT) (see Rowe and Smith 1992) is a TCL/TK
extension providing objects that read or output audio and video data. These objects
can be linked together in pipelines and are synchronized by a logical timestamp
object. This object may be set to run slower or faster than the real clock or even
backwards. This allows stop, slow motion, fast forward, and rewind functions to be
implemented.

Architecturally, CMT consists of a multimedia server process, which multicasts
video and audio to a set of clients. We decided to replicate the server using a
primary-backup approach, where the backup servers stand by to back up failed or
slow primaries.

The original CMT implementation depends on extensions to TCL/TK. These
implement a master-slave relationship between the machines, provide for a form of
logical timestamp synchronization between them, and support a real-time commu-
nication protocol called Cyclic UDP. The Cyclic UDP implementation consists of
two halves: a sink object, which accepts multimedia data from another CMT object,
and a source object, which produces multimedia data and passes it on to another
CMT object (see Fig. 17.4a). The resulting system is distributed but intolerant of
failures and does not allow for multicast.

By using Horus, it was straightforward to extend CMT with fault tolerance and
multicast capabilities. Five Horus stacks were required. One of these is hidden
from the application and implements a clock synchronization protocol (see Cristian
1989). It uses a Horus layer called MERGE to ensure that the different machines
will find each other automatically (even after network partitions), and it employs
the virtual synchrony property to rank the processes, assigning the lowest-ranked
machine to maintain a master clock on behalf of the others. The second stack syn-
chronizes the speeds and offsets with respect to real time of the logical timestamp
objects. To keep these values consistent, it is necessary that they be updated in the
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Fig. 17.4 This illustrates an example of a video service implemented using the Continuous Me-
dia Toolkit. MPEG is a video compression standard. In (a), a standard, fault-intolerant set-up is
depicted. In (b), Horus was used to implement a fault-tolerant version that is also able to multicast
to a set of clients

same order. Therefore, this stack is similar to the previous one, but includes a Horus
protocol block, which places a total order on multicast messages delivered within
the group.2 The third stack tracks the list of servers and clients. Using a determinis-
tic rule based on the process ranking maintained by the virtual synchrony layer, one
server is selected to multicast the video, and one server, usually the same, is picked
to multicast the audio. This setup is shown in Fig. 17.4b.

To disseminate the multimedia data, we used two identical stacks—one for audio
and one for video. The key component in these is a protocol block, which imple-
ments a multimedia generalization of the cyclic UDP protocol. The algorithm is

2This protocol differs from the Total protocol in the Trans/Total (see Moser et al. 1996) project
in that the Horus protocol only rotates the token among the current set of senders, while the
Trans/Total protocol rotates the token among all members.
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similar to FRAG, but it will reassemble messages arriving out of order and drop
messages with missing fragments.

One might expect that a huge amount of recoding would have been required to
accomplish these changes. However, all of the necessary work was completed using
42 lines of TCL code. An additional 160 lines of C code support the CMT frame
buffers in Horus. Two new Horus layers were needed, but were developed by adapt-
ing existing layers; they consist of 1,800 lines of C code and 300 lines of TCL code,
respectively (ignoring the comments and lines common to all layers). Moreover,
performance of the resulting system was quite good; the primary bottleneck at the
time was associated with the Internet itself, not the protocols, and a substantial user
community emerged over a period of a few years before the developers moved on to
other challenges and the software fell into disrepair. Thus, with relatively little effort
and little code, a complex application written with no expectation that process group
computing might later be valuable was modified to exploit Horus functionality.

17.5 Using Electra to Harden CORBA Applications

The introduction of process groups into CMT required sophistication with Horus
and its intercept proxies. Many potential users would lack the sophistication and
knowledge of Horus required to do this; hence, we recognized a need for a way to
introduce Horus functionality in a more transparent way. This goal evokes an image
of plug-and-play robustness; it leads one to think in terms of an object-oriented
approach to group computing.

Early in this book, we looked at CORBA, noting that object-oriented distributed
applications that comply with the CORBA RB specification and support the IOP
protocol can invoke one another’s methods with relative ease. This work resulted in
a CORBA-compliant interface to Horus, which we call Electra (see Maffeis 1995).
Electra can be used without Horus, and vice versa, but the combination represents a
more complete system. This work preceded the development of the CORBA Fault
Tolerance architecture, and differs from what the CORBA community ultimately
opted to do in many details—the Eternal ORB is a much more “faithful” implemen-
tation of the CORBA specification. However, Electra is interesting in part because
it has more flexibility than the CORBA specification allows, and we will present it
here in that spirit. (Readers who might consider working with CORBA and using
Eternal should keep in mind that the standard is quite a bit more restrictive, and that
this code long ago ceased to be supported.)

In Electra, applications are provided with ways to build Horus process groups
and to directly exploit the virtual synchrony model. Moreover, Electra objects can
be aggregated to form object groups, and object references can be bound to both sin-
gleton objects and object groups. An implication of the interoperability of CORBA
implementations is that Electra object groups can be invoked from any CORBA-
compliant distributed application, regardless of the CORBA platform on which it
is running, without special provisions for group communication. This means that a
service can be made fault tolerant without changing its clients.
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Fig. 17.5 Object-group communication in Electra, a CORBA-compliant ORB, which uses Horus
to implement group multicast. The invocation method can be changed depending on the intended
use. Orbix+Isis and the COOL-ORB are examples of commercial products that support object
groups

When a method invocation occurs within Electra, object-group references are
detected and transformed into multicasts to the member objects (see Fig. 17.5). Re-
quests can be issued either in transparent mode, where only the first arriving member
reply is returned to the client application, or in non-transparent mode, permitting the
client to access the full set of responses from individual group members. The trans-
parent mode is used by clients to communicate with replicated CORBA objects,
while the nontransparent mode is employed with object groups whose members per-
form different tasks. Clients submit a request either in a synchronous, asynchronous,
or deferred-synchronous way.

The integration of Horus into Electra shows that group programming can be pro-
vided in a natural, transparent way with popular programming methodologies. The
resulting technology permits the user to plug in group communication tools any-
where that a CORBA application has a suitable interface. To the degree that pro-
cess group computing interfaces and abstractions represent an impediment to their
use in commercial software, technologies such as Electra suggest a possible middle
ground, in which fault tolerance, security, and other group-based mechanisms can
be introduced late in the design cycle of a sophisticated distributed application.

17.6 Basic Performance of Horus

A major concern of the Horus architecture is the overhead of layering. Layering was
the key to most of the applications described above, and the essence of our response
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to the Cheriton and Skeen criticism. To paraphrase them, the criticism is that no
matter what standard properties a system elects to offer, individual developers may
object to some of those properties (and hence will pay an undesired cost) while
needing others (and hence need an end-to-end mechanism of their own, anyhow).
Horus responds by offering a framework for building the software implementing
properties (layers) and allowing the user to mix and match so that the application
runs over precisely the protocol stack it prefers. Most developers should agree that
in doing so, Horus offers a good response to the criticism. But this flexibility would
be far less interesting if it brings excessive costs.

This section presents the overall performance of Horus on a system of Sun
SPARC10 workstations running SunOS 4.1.3, communicating through a loaded Eth-
ernet. We used two network transport protocols: normal UDP and UDP with the
Deering IP multicast extensions (see Deering 1988) (shown as “Deering”). These
performance figures are fairly old, and were one to re-run the same experiments
today, hardware advances would certainly result in better raw numbers—a Sparc
10 was a 100MIP processor, and the Ethernet on which Horus was tested ran at
10 Mbits/second (the ATM was about ten times faster). Thus, a ten-fold perfor-
mance increase should be possible today. Yet these figures also represent a kind of
“speed record,” in the sense that Horus was (and perhaps still is) the fastest of the
group communication systems. Subsequent to the development of this technology,
the academic research community moved on to other topics, and there has been lit-
tle attention to multicast performance over the ensuing five years—perhaps because
there are not any obvious ways to take dramatic steps beyond the performance levels
achieved in the work described below.

To highlight some of the performance numbers: Horus achieves a one-way la-
tency of 1.2 ms over an unordered virtual synchrony stack (over ATM, this dropped
to 0.7 ms) and, using a totally ordered layer over the same stack, 7,500 one-byte
messages per second. Given an application that can accept lists of messages in a
single receive operation, we can drive up the total number of messages per sec-
ond to over 75,000 using the FC flow-control layer, which buffers heavily using the
message list capabilities of Horus (see Friedman and van Renesse 1995b). Horus
easily reached the Ethernet 1,007 KB/sec maximum bandwidth with a message size
smaller than 1 KB.

The performance test program has each member do exactly the same thing: Send
k messages and wait for k ∗ (n − 1) messages of size s, where s is the number
of members. This way we simulate an application that imposes a high load on the
system while occasionally synchronizing on intermediate results.

Figure 17.6 depicts the one-way communication latency of one-byte Horus mes-
sages. As can be seen, hardware multicast is a big win, especially when the message
size goes up. In this figure, we compare Send to OrderedSend. For small messages
we get a FIFO one-way latency of about 1.5 ms and a totally ordered one-way la-
tency of about 6.7 ms. A problem with the totally ordered layer is that it can be
inefficient when senders send single messages at random, and with a high degree of
concurrent sending by different group members. With just one sender, the one-way
latency drops to 1.6 ms. Of course, as noted earlier, computers are much faster than
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Fig. 17.6 Performance of the Horus system, with/without IP multicast

when these experiments were performed in 1996; today, a ten-fold or better speedup
would be likely, simply because the hardware has become faster.

Figures 17.7 and 17.8 show the number of one-byte messages per second that
can be achieved for three cases. For normal UDP and Deering UDP the through-
put is fairly constant. For totally ordered communication we see that the throughput
becomes better if we send more messages per round (because of increased concur-
rency). Perhaps surprisingly, the throughput also becomes better as the number of
members in the group goes up. The reason for this is threefold. First, with more
members there are more senders. Second, with more members it takes longer to or-
der messages, and thus more messages can be packed together and sent out in single
network packets. Third, the ordering protocol allows only one sender on the network
at a time, thus introducing flow control and reducing collisions.

In the text, we noted several times that Horus has been “clocked” at 80,000 small
multicasts per second in a four-process group. Here we can see how that figure came
about. With each packet carrying a separate multicast, Horus is already running at
approximately 1,000 multicasts per second. But when Horus has an opportunity
to pack multiple small messages into a single packet, it will do so. A stream of
asynchronous multicasts can easily achieve a packing ratio of 30 or 40 multicasts
per packet, and when conditions are optimal (very small messages, sent with almost
no delay at all) the ratio can reach 250 to one. Again, the numbers are bit old, and
merely by moving to modern hardware we could easily obtain a ten-fold speedup.
Thus, at least for small asynchronous messages, we may be entering an era in which
data rates of 1,000,000 messages per second will be achievable. It is not obvious
what applications can be expected to generate small messages at these data rates,
but the capability is there.
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Fig. 17.7 Figure 17.6 compares the one-way latency of one-byte FIFO Horus messages over
straight UDP and IP multicast. This figure compares the performance of OrderedSend and Send in
Horus, both over IP multicast. Technology has advanced since this experiment was run; on modern
machines a ten-fold (or more) speedup would be expected

In contrast, protocols seeking “safe” (strong durability) guarantees will not ben-
efit as much from the technology advances of the past decade, which have yielded
much higher bandwidths and processor speed, but not reduced latency all that much.
These protocols are limited by worst-case latency and worst-case processing delay,
and while their first phase can exploit IP multicast, the acknowledgement phase will
still be a many-to-one protocol using point-to-point messages. Thus while our “hun-
dred events a second” estimate for such protocols may be conservative on modern
hardware, it is not excessively so.

17.7 Masking the Overhead of Protocol Layering

Although layering of protocols can be advocated as a way of dealing with the com-
plexity of computer communication, it is also criticized for its performance over-
head. Work by van Renesse yielded considerable insight regarding best way to mask
the overhead of layering in Horus. The fundamental idea is very similar to client
caching in a file system. With these new techniques, he achieves an order of mag-
nitude improvement in end-to-end message latency in the Horus communication
framework, compared to the best latency possible using Horus without these opti-
mizations. Over an ATM network, the approach permits applications to send and
deliver messages with varied properties in about 85 µs, using a protocol stack writ-
ten in ML, an interpreted functional language. In contrast, the performance figures
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Fig. 17.8 This graph depicts the message throughput for virtually synchronous, FIFO-ordered
communication (Send) over normal UDP and IP multicast, as well as for totally ordered communi-
cation (OrderedSend) over IP multicast. The number of application messages packed into each net-
work message is shown on the “z” axis. If very small multicasts are sent in an asynchronous stream,
Horus can pack as many as 250 multicasts into each message and hence can achieve throughputs
as much as ten times that seen in the single message case. Today one might anticipate throughputs
approaching 1,000,000 small, asynchronous messages per second

given in the previous section were for a version of Horus coded in C—carefully
optimized by hand but without use of the protocol accelerator.3

Having presented this material in seminars, the author has noticed that the sys-
tems community seems to respond to the very mention of the ML language with
skepticism, and it is perhaps appropriate to comment on this before continuing. First,
the reader should keep in mind that a technology such as Horus is simply a tool used
to harden a system. It makes little difference whether such a tool is internally coded
in C, assembly language, LISP, or ML if it works well for the desired purpose. The
decision to work with a version of Horus coded in ML is not one that would impact
the use of Horus in applications that work with the technology through wrappers or
toolkit interfaces. However, as we will see here, it does bring some important ben-
efits to Horus itself, notably the potential for us to harden the system using formal
software analysis tools. Moreover, although ML is often viewed as obscure and of
academic interest only, the version of ML used in our work on Horus is not really
so different from LISP or C++ once one becomes accustomed to the syntax. Finally,
as we will see here, the performance of Horus coded in ML is actually better than

3This version of Horus ultimately evolved into the Ensemble system, but the two are not identical.
Ensemble was a complete rewrite by Mark Hayden and Ohad Rodeh.
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that of Horus coded in C, at least for certain patterns of communication. Thus, we
would hope that the reader will recognize that the work reported here is in fact very
practical.

As we saw in earlier chapters, modern network technology allows for very low
latency communication—for example, the U-Net (see von Eicken et al. 1995) in-
terface to ATM achieves 75 µs round-trip communication as long as the message is
40 bytes or smaller. Technologies such as Infiniband, switched fiber-optic Ethernet,
and other ultra-high speed communication devices have pushed well beyond these
limits. On the other hand, focusing just on ATM, if a message is larger, it will not fit
in a single ATM cell, significantly increasing the latency. This points to two basic
concerns: first, that if you really want to squeeze overhead to a minimum, systems
such as Horus need to be designed to take full advantage of the potential perfor-
mance of the communication technology on which they run, and, second, that to do
so, it may be important to use small headers and introduce minimal processing over-
head. Perhaps these observations are less important in a world of faster and faster
processors and communications devices. Yet for those concerned with performance,
dismissing the issue makes little sense: new generations of technology should open
the door to new applications, not simply serve to paper over the costs and overheads
of inefficient software!

Unfortunately, these properties are not typical of the protocol layers needed to
implement virtual synchrony. Many of these protocols are complex, and layering
introduces additional overhead of its own. One source of overhead is interfacing:
crossing a layer costs some CPU cycles. The other is header overhead. Each layer
uses its own header, which is prepended to every message and usually padded so
that each header is aligned on a four- or eight-byte boundary. Combining this with
a trend to very large addresses (of which at least two per message are needed), it is
impossible to have the total amount of header space be less than 40 bytes.

The Horus Protocol Accelerator (Horus PA) eliminates these overheads al-
most entirely and offers the potential of one to three orders of magnitude of la-
tency improvement over the protocol implementations described in the previous
subsection—for example, we looked at the impact of the Horus PA on an ML (see
Milner et al. 1990) implementation of a protocol stack with five layers. The ML code
is interpreted (Ensemble, its successor, is compiled) and is therefore relatively slow
compared to compiled C code. Nevertheless, between two SunOS user processes on
two SPARC20s connected by a 155 MB/sec ATM network, the Horus PA permits
these layers to achieve a roundtrip latency of 175 µs, down from about 1.5 ms in the
original Horus system (written in C).

The Horus PA achieves its results using three techniques. First, message header
fields that never change are only sent once. Second, the rest of the header informa-
tion is carefully packed, ignoring layer boundaries, typically leading to headers that
are much smaller than 40 bytes and thus leaving room to fit a small message within
a single U-Net packet. Third, a semiautomatic transformation is done on the send
and delivery operations, splitting them into two parts: one that updates or checks the
header but not the protocol state, and the other vice versa. The first part is then exe-
cuted by a special packet filter (both in the send and the delivery path) to circumvent
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the actual protocol layers whenever possible. The second part is executed, as much
as possible, when the application is idle or blocked.

17.7.1 Reducing Header Overhead

In traditional layered protocol systems, each protocol layer designs its own header
data structure. The headers are concatenated and prepended to each user message.
For convenience, each header is aligned to a four- or eight-byte boundary to al-
low easy access. In systems such as the x-Kernel or Horus, where many simple
protocols may be stacked on top of each other, this may lead to extensive padding
overhead.

Some fields in the headers, such as the source and destination addresses, never
change from message to message. Yet, instead of agreeing on these values, they
are frequently included in every message and used as the identifier of the connec-
tion to the peer. Since addresses tend to be large (and they are getting larger to
deal with the rapid growth the Internet), this results in significant use of space for
what are essentially constants of the connection. Moreover, notice that the connec-
tion itself may already be identifiable from other information. On an ATM network,
connections are named by a small four-byte VPI/VCI pair, and every packet car-
ries this information. Thus, constants such as sender and destination addresses are
implied by the connection identifier, and including them in the header is superflu-
ous.

The Horus PA exploits these observations to reduce header sizes to a bare mini-
mum. The approach starts by dividing header fields into four classes:
• Connection identification: Fields that never change during the period of a con-

nection, such as sender and destination.
• Protocol-specific information: Fields that are important for the correct delivery of

the particular message frame. Examples are the sequence number of a message, or
the message type (Horus messages have types, such as “data,” “ack,” or “nack”).
These fields must be deterministically implied by the protocol state—not on the
message contents or the time at which it was sent.

• Message-specific information: Fields that need to accompany the message, such
as the message length and checksum or a timestamp. Typically, such information
depends only on the message—not on the protocol state.

• Gossip: Fields that technically do not need to accompany the message but are
included for efficiency.
Each layer is expected to declare the header fields that it will use during initial-

ization, and it subsequently accesses fields using a collection of highly optimized
functions implemented by the Horus PA. These functions extract values directly
from headers, if they are present, or otherwise compute the appropriate field value
and return that instead. This permits the Horus PA to precompute header templates
that have optimized layouts, with a minimum of wasted space.



530 17 Software Architectures for Group Communication

Horus includes the protocol-specific and message-specific information in every
message. Currently, although not technically necessary, gossip information is also
included, since it is usually small. However, since the connection identification fields
never change, they are only included occasionally, since they tend to be large.

A 64-bit miniheader is placed on each message to indicate which headers it ac-
tually includes. Two bits of this are used to indicate whether or not the connection
identification is present in the message and to destinate the byte ordering for bytes
in the message. The remaining 62 bits are a connection cookie, which is a magic
number established in the connection identification header, selected randomly, to
identify the connection.

The idea is that the first message sent over a connection will be a connection
identifier, specifying the cookie to use and providing an initial copy of the connec-
tion identification fields. Subsequent messages need only contain the identification
field if it has changed. Since the connection identification fields tend to include very
large identifiers, this mechanism reduces the amount of header space in the normal
case significantly—for example, in the version of Horus that van Renesse used in his
tests, the connection identification typically occupies about 76 bytes. It is interesting
to note that a similar style of header compression has become common in adapting
the IP protocol stack for communication over slow wireless links (see RFC 2507 for
details).

17.7.2 Eliminating Layered Protocol Processing Overhead

In most protocol implementations, layered or not, a great deal of processing must be
done between the application’s send operation and the time that the message is actu-
ally sent out onto the network. The same is true between the arrival of a message and
the delivery to the application. The Horus PA reduces the length of the critical path
by updating the protocol state only after a message has been sent or delivered and by
precomputing any statically predictable protocol-specific header fields, so that the
necessary values will be known before the application generates the next message
(Fig. 17.9). These methods work because the protocol-specific information for most
messages can be predicted (calculated) before the message is sent or delivered. (Re-
call that, as noted above, such information must not depend on the message contents
or the time on which it was sent.) Each connection maintains a predicted protocol-
specific header for the next send operation and another for the next delivery (much
like a read-ahead strategy in a file system). For sending, the gossip information can
be predicted as well, since this does not depend on the message contents. The idea
is a bit like that of prefetching in a file system.

Thus, when a message is actually sent, only the message-specific header will
need to be generated. This is done using a packet filter (see Mogul et al. 1987), which
is constructed at the time of layer initialization. Packet filters are programmed using
a simple programming language (a dialect of ML), and they operate by extract-
ing information from the message information needed to form the message-specific
header. A filter can also hand-off a message to the associated layer for special
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Fig. 17.9 Restructuring a protocol layer to reduce the critical path. By moving data-dependent
code to the front, delays for sending the next message are minimized. Post-processing of the current
multicast and preprocessing of the next multicast (all computation that can be done before seeing
the actual contents of the message) are shifted to occur after the current multicast has been sent
and hence concurrently with application-level computing

handling—for example, if a message fails to satisfy some assumption that was used
in predicting the protocol-specific header. In the usual case, the message-specific
header will be computed, other headers are prepended from the precomputed ver-
sions, and the message transmitted with no additional delay. Because the header
fields have fixed and precomputed sizes, a header template can be filled in with no
copying, and scatter-send/scatter-gather hardware used to transmit the header and
message as a single packet without copying them first to a single place. This reduces
the computational cost of sending or delivering a message to a bare minimum, al-
though it leaves some background costs in the form of prediction code, which must
be executed before the next message is sent or delivered.

17.7.3 Message Packing

The Horus PA as described so far will reduce the latency of individual messages
significantly, but only if they are spaced out far enough to allow time for postpro-
cessing. If not, messages will have to wait until the postprocessing of every previous
message completes (somewhat like a process that reads file system records faster
than they can be prefetched). To reduce this overhead, the Horus PA uses message
packing (see Friedman and van Renesse 1995b) to deal with backlogs. The idea
is a very simple one. After the postprocessing of a send operation completes, the
PA checks to see if there are messages waiting. If there are more than one, the PA
will pack these messages together into a single message. The single message is now
processed in the usual way, which takes only one preprocessing and postprocess-
ing phase. When the packed message is ready for delivery, it is unpacked and the
messages are individually delivered to the application.

Returning to our file system analogy, the approach is similar to one in which the
application could indicate that it plans to read three 1 KB data blocks. Rather than
fetching them one by one, the file system can now fetch them all at the same time.
Doing so amortizes the overhead associated with fetching the blocks, permitting
better utilization of network bandwidth.
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17.7.4 Performance of Horus with the Protocol Accelerator

The Horus PA dramatically improved the performance of the system over the base
figures described earlier (which were themselves comparable to the best perfor-
mance figures cited for other systems). With the accelerator, one-way latencies
dropped to as little as 85 µs (compared to 35 µs for the U-Net implementation over
which the accelerator was tested). As many as 85,000 one-byte messages could be
sent and delivered per second over a protocol stack of five layers implementing the
virtual synchrony model within a group of two members. For RPC-style interac-
tions, 2,600 round-trips per second were achieved. These latency figures, however,
represent a best-case scenario in which the frequency of messages was low enough
to permit the predictive mechanisms to operate; when they become overloaded, la-
tency increases to about 425 µs for the same test pattern. This points to a strong
dependency of the method on the speed of the code used to implement layers.

The Horus PA does suffer from some limitations. Message fragmentation and
reassembly is not supported by the PA—hence, the preprocessing of large messages
must be handled explicitly by the protocol stack. Some technical complications re-
sult from this design decision, but it reduces the complexity of the PA and improves
the maximum performance achievable using it. A second limitation is that the PA
must be used by all parties to a communication stack. However, this is not an un-
reasonable restriction, since Horus has the same sort of limitation with regard to the
stacks themselves (all members of a group must use identical or at least compatible
protocol stacks).

17.8 Scalability

Up to the present, this book has largely overlooked issues associated with protocol
scalability. Although a serious treatment of scalability in the general sense might
require a whole book in itself, the purpose of this section is to set out some general
remarks on the subject, as we have approached it in the Horus project. It is per-
haps worthwhile to comment that, overall, surprisingly little is known about scaling
reliable distributed systems.

For example, we commented earlier that Horus does not scale well if a system
uses large numbers of overlapping process groups (e.g., a typical process might join
ten or even a hundred groups, and the system as a whole might include tens of thou-
sands of them). The Isis Toolkit was an even worse choice for such configurations;
indeed, both systems offer a mechanism in which a large group can be presented
to users as a collection of smaller ones (multicasts are sent in the large group and
then filtered prior to delivery—a simple hack that works, but imposes high over-
head). The problem with this approach, needless to say, is that group overlap will
not always yield a simple containment pattern, and the overhead of receiving and
discarding unwanted multicasts could become prohibitive.

It is not just Horus and Isis that work this way. Ensemble and Spread also address
the multiple group scalability problem in the same manner. Thus there are dimen-
sions in which Isis, Horus, Ensemble and Spread do not scale—not because the
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problem cannot be solved, but because we simply have not explored the dimension
carefully yet!

But what of scalability in a single group? If one looks at the scalability of Horus
protocols, as we did earlier in presenting some basic Horus performance figures, it
is clear that Horus performs well for groups with small numbers of members and
for moderately large groups when IP multicast is available as a hardware tool to
reduce the cost of moving large volumes of data to large numbers of destinations.
Yet although these graphs are correct, they may be misleading. In fact, as systems
like Horus are scaled to larger and larger numbers of participating processes, they
experience steadily growing overheads in the form of acknowledgements and nega-
tive acknowledgements from the recipient processes to the senders. A consequence
is that if these systems are used with very large numbers of participating processes,
the backflow associated with these types of messages and with flow control becomes
a serious problem.

A simple thought experiment suffices to illustrate that there are probably funda-
mental limits on reliability in very large networks. Suppose that a communication
network is extremely reliable, but that the processes using it are designed to distrust
that network and to assume that it may actually malfunction by losing messages.
Moreover, assume that these processes are in fact closely rate-matched (the con-
sumers of data keep up with the producers), but again that the system is designed to
deal with individual processes that lag far behind. Now, were it not for the backflow
of messages to the senders, this hypothetical system might perform very well near
the limits of the hardware. It could potentially be scaled just by adding new recipient
processes and, with no changes at all, continue to provide a high level of reliability.

However, the backflow messages will substantially impact this simple and rosy
scenario. They represent a source of overhead, and, in the case of flow-control mes-
sages, if they are not received, the sender may be forced to stop and wait for them.
Now, the performance of the sender side is coupled to the timely and reliable re-
ception of backflow messages, and, as we scale the number of recipients connected
to the system, we can anticipate a traffic jam phenomenon at the sender’s interface
(protocol designers call this an acknowledgement “implosion”), which will cause
traffic to get increasingly bursty and performance to drop. In effect, the attempt to
protect against the mere risk of data loss or flow-control mismatches is likely to
slash the maximum achievable performance of the system. Now, obtaining a stable
delivery of data near the limits of our technology will become a tremendously diffi-
cult juggling problem, in which the protocol developer must trade the transmission
of backflow messages against their performance impact.

Graduate students Guerney Hunt and Michael Kalantar have studied aspects of
this problem in their Ph.D. dissertations at Cornell University—both using special-
purpose experimental tools (i.e., neither actually experimented on Horus or a similar
system; Kalantar, in fact, worked mostly with a simulator). Hunt’s work was on flow
control in very large scale system. He concluded that most forms of backflow were
unworkable on a large scale, and he ultimately proposed a rate-based flow-control
scheme in which the sender limits the transmission rate for data to match what
the receivers can accommodate (see Hunt 1995). Kalantar looked at the impact of
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multicast ordering on latency, asking how frequently an ordering property such as
causal or total ordering would significantly impact the latency of message delivery
(see Kalantar 1995). He found that although ordering had a fairly small impact on
latency, there were other, much more important, phenomena that represented serious
potential concerns.

In particular, Kalantar discovered that as he scaled the size of his simulation, mes-
sage latencies tended to become unstable and bursty. He hypothesized that in large-
scale protocols, the domain of stable performance becomes smaller and smaller. In
such situations, a slight perturbation of the overall system—for example, because of
a lost message—could cause much of the remainder of the system to block due to
reliability or ordering constraints. Now, the system would shift into what is some-
times called a convoy behavior, in which long message backlogs build up and are
never really eliminated; they may shift from place to place, but stable, smooth de-
livery is generally not restored. In effect, a bursty scheduling behavior represents a
more stable configuration of the overall system than one in which message delivery
is extremely regular and smooth, at least if the number of recipients is large and
the presented load is a substantial percentage of the maximum achievable (so that
there is little slack bandwidth with which the system can catch up after an overload
develops).

Hunt and Kalantar’s observations are not really surprising ones. It makes sense
that it should be easy to provide reliability or ordering when far from the saturation
point of the hardware and much harder to do so as the communication or processor
speed limits are approached.

Over many years of working with Isis and Horus, the author has gained consider-
able experience with these sorts of scaling and flow-control problems. Realistically,
the conclusion can only be called a mixed one. On the positive side, it seems that
one can fairly easily build a reliable system if the communication load is not ex-
pected to exceed, say, 20 percent of the capacity of the hardware. With a little luck,
one can even push this to as high as perhaps 40 percent of the hardware. However,
as the load presented to the system rises beyond this threshold, or if the number of
destinations for a typical message becomes very large (hundreds), it becomes in-
creasingly difficult to guarantee reliability and flow control. The good news is that
in most settings, a shared switched Ethernet is so much faster than any computer’s
interface that these properties are easily achievable. The bad news, however, is that
even in such configurations one observers infrequent conditions under which a few
machines essentially jam the medium and disrupt performance to such a degree that
only the epidemic protocols we will discuss in Chap. 17 have any hope of overcom-
ing the problem.

A fundamental tradeoff seems to be present: One can send data and hope that
these data will arrive, and, by doing so, one may be able to operate quite reliably
near the limits of the hardware. But, of course, if a process falls behind, it may lose
large numbers of messages before it recovers, and no mechanism is provided to let it
recover these messages from any form of backup storage. On the other hand, one can
operate in a less demanding performance range and in this case provide reliability,
ordering, and performance guarantees. In between the two, however, lies a domain
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Fig. 17.10 The Spread
client-daemon architecture

that is extremely difficult in an engineering sense and often requires a very high
level of software complexity, which will necessarily reduce reliability. Moreover,
one can raise serious questions about the stability of message-passing systems that
operate in this intermediate domain, where the load presented is near the limits of
what can be accomplished. The typical experience with such systems is that they
perform well, most of the time, but that once something fails, the system falls so far
behind that it can never again catch up—in effect, any perturbation can shift such a
system into the domain of overloads and hopeless backlogs.

17.9 Performance and Scalability of the Spread Toolkit

The Spread toolkit is a group communication system available from www.spread.org.
Spread provides a range of reliability, ordering and stability guarantees for message
delivery. Spread supports a rich fault model that includes process crashes and re-
coveries and network partitions and merges under the extended virtual synchrony
semantics. The standard virtual synchrony semantics are also supported.

Spread is highly configurable, allowing the user to tailor it to their needs. Spread
can be configured to use a single daemon in the network or to use one daemon in
every computer running group communication applications. Figure 17.10 illustrates
a case where each computer executes one Spread daemon. As can be seen in the
figure, all the physical communication is handled by the daemon. The Spread dae-
mons keep track of the computers’ heavyweight membership. Each daemon keeps
track of processes residing on its machine and participating in group communi-
cation. This information is shared between the daemons, creating the lightweight
process group membership. The benefits of this client-daemon architecture are sig-
nificant:
• The membership algorithm is invoked only if there is a change in the daemons’

membership. Otherwise, when a process joins or leaves a group, the Spread dae-
mon sends a notification message to the other daemons. When this message is
ordered, the daemons deliver a membership notification containing the new group
membership to the members of the group.
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Fig. 17.11 Throughput (large messages)

• Order is maintained at the daemons’ level and not on a group basis. Therefore, for
multi-group systems, message ordering is more efficient in terms of latency and
excessive messages. Moreover, message ordering across groups is trivial since
only one global order at the daemons’ level is maintained.

• Implementing open groups, where processes that are not members of a group can
multicast messages to the group is easily supported.

• Flow control is maintained at the daemons’ level rather than at the level of the
individual process group. This leads to better overall performance in multi-group
systems.
Several performance and scalability evaluations of the Spread toolkit are included

below. The tests were conducted by the developers of the system (Yair Amir and
his team) on 20 Pentium III 850 MHz Linux computers connected by a 100 Mbps
Fast Ethernet network. Figure 17.11 presents the total order throughput achieved
by Spread as a function of the size of the network (number of daemons, each run-
ning on a separate computer) and the size of the multicast messages. Note that in
all of these graphs, the curves “stack” quite nicely and the key is ordered to cor-
respond to the curves: the top-most curve matches the top-most key entry, etc. In
this experiment, half of the participating daemons serve a single local process each
that multicasts to a specific group. Each of the other daemons serves a single local
process that is a member of that group. For configurations ranging from 2 to 20 com-
puters and message size above 1 Kbytes a throughput of 60–80 Mbits is achieved
with a slight degradation as the number of participating computers is increased. Fig-
ure 17.12 presents the same experiment focusing on small messages. It is interesting
to note the performance dip for messages around 700 Bytes that happens when mes-
sages can no longer be packed into one network packet. Similar but less pronounced
fragmentation effects can also be noticed in Fig. 17.12 for larger message sizes.

In a different experiment, Spread was run on 20 computers. On each computer a
receiving application joins a certain number of groups, from 1 to 10,000. All the re-
ceiving applications on the different computers join the same set of groups. On one
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Fig. 17.12 Throughput (small messages)

Fig. 17.13 Message latency

of the computers, a test application sends messages at a constant rate of 500 Kbps,
each message to a different group joined by the receiving applications. The one-
way latency of each message received is recorded by the receiving applications. The
clocks of the computers are accurately synchronized through a separate process sim-
ilar to NTP. Figure 17.13 presents the message latency as a function of the number
of groups joined by the receiving applications, the size of the multicast messages,
and the type of the service (Agreed delivery for total order, or Safe delivery for sta-
bility). The latency of Agreed delivery (total order) ranges between 1.7 ms to 2.8 ms
depending on the size of the message (1000, 5000 and 10000 bytes). The latency
for Safe delivery (stability) ranges between 4.7 ms to 6.4 ms. The higher latency
incurred by larger messages is mostly attributed to the time it takes to send them
on a 100 Mbits network. The figure shows that the number of groups in the system
does not affect the message latency much. This is achieved thanks to a skip list data
structure that provides log(n) access to the lightweight group structures in Spread.
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Fig. 17.14 Lightweight membership latency

In the last experiment, Spread runs on 20 computers. Each computer runs be-
tween 1 and 50 instances of a test application, each joining the same group. There-
fore, in the group communication system as a whole there are between 20 to 1000
participating processes. A separate application joins and leaves the same group 100
times and the latency of each join and leave operation is measured. Figure 17.14
presents the average latency of the join and leave operations as a function of the
group size. This experiment shows that joining a group that has 1000 members takes
less than 40 ms (including membership notifications to all 1000 members). As the
number of members in the group increases, the size of the membership notification
increases linearly (each member contributes about 32 bytes to the size of the noti-
fication), and the number of notifications per daemon also increases linearly. This
explains the quadratic shape of the graph. The scalability with the number of groups
and number of group participants in the system is attributed to the client-daemon
architecture of Spread.

Note: In all of the above figures, the ordering of items in the key matches the
ordering of the curves. For example, in Fig. 17.14 the top curve corresponds to
“Join” and the one below it to “Leave”.

17.10 Related Reading

Chapter 23 includes a review of related research activities, which we will not dupli-
cate here.

On the Horus system: (see Birman and van Renesse 1996; Friedman and van
Renesse 1995b; van Renesse et al. 1995, 1996). Rodrigues et al. (2000) tackled the
overlapping groups problem in Horus, but Glade et al. (1993) was probably the first
to propose the “lightweight” group mechanism described here.

On Horus used in a real-time telephone switching application (see Friedman and
Birman 1996).

On virtual fault tolerance (see Bressoud and Schneider 1995).
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On layered protocols (see Abbott and Peterson 1993; Braun and Diot 1995;
Clark and Tennenhouse 1987, 1990; Karamcheti and Chien 1994; Kay and Pasquale
1993).

On event counters (see Reed and Kanodia 1979).
On the Continuous Media Toolkit (see Rowe and Smith 1992).
On U-Net (see von Eicken et al. 1995).





Part IV
Related Technologies

In this fifth and final part of the book, we review additional technologies relevant
to our broad reliability theme: security mechanisms, transactions, and real-time sys-
tems. This part of the book also surveys some of the research under way in academic
and commercial laboratories world-wide.
There is a tremendous degree of interest in peer-to-peer computing today, and we
treat the topic in Chap. 20. However, our review is tempered by some skepticism
about the field. Much of the work being done related to file sharing of the type
done in Gnutella and Napster, an application that violates intellectual property laws
and hence is illegal. On the other hand, there are some exciting non-filesharing ap-
plications for these kinds of protocols; these are of interest because peer-to-peer
technologies permit a degree of scalability never previously available and also offer
reliability guarantees that can help the developer ensure that solutions will be stable
even under stress and may actually be able to self-reorganize and self-repair (“re-
generate”) if a disruption occurs. Accordingly, our emphasis in the chapter will be
on the power of peer-to-peer protocols in these kinds of unconventional setting.
With one eye on length, we will draw the line at the network layer, although one
can make a very strong argument that developers who seek to build secure, reliable
applications over the current Internet will ultimately be frustrated by the experience.
The author has been promoting a type of overlay network architecture recently, in
which the Internet is more or less partitioned into multiple side-by-side networks,
only one of which would actually run the Internet protocols. Other networks could
run different routing and security protocols, dedicate resources for specific needs,
and even implement different queuing policies in the router layer.
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18.1 Security Options for Distributed Settings

The use of distributed computing systems for storage of sensitive data and in com-
mercial applications has created significant pressure to improve the security options
available to software developers. Yet distributed system security has many possible
interpretations, corresponding to very different forms of guarantees, and even the
contemporary distributed systems that claim to be secure often suffer from basic se-
curity weaknesses. In Chap. 3, we pointed to some of these limitations. The current
chapter looks at the available security technologies, the nature of their guarantees
and their limitations and discusses some of the issues raised when we require that a
security system also guarantee high availability.

The constraints of brevity make it difficult to do justice to security in a setting
such as ours; the topic is deserving of entire textbooks in its own right. Yet it is
also difficult to treat security as a problem orthogonal to reliability: if a system is
designed to withstand failures, one must anticipate the possibility that those failures
will be provoked by an attacker, or by a software bug or operator error that can seem
like an attack from within the system. Similarly, while there is a long tradition of
tackling security and ignoring reliability, it makes little sense to talk about securing
a system if reliability is not addressed. Is a system “secure” if the attacker can shut
it down by crashing a component? Accordingly, the text adopts a middle ground: we
have treated reliability in detail, and now offer a very skimpy review of security, not
so much with the intent that a reader could learn the area from this single chapter,
but just to expose the reader to some of the major options and issues.

We should perhaps comment here on the linkage between the kind of security
available in a system like Isis2 (via the g.SetSecure(key) API) and the issues treated
below. When a user of Isis2 puts a group into secure mode, that user either asks
the system to create a group key (in which case the key ends up stored in a file
accessible only under the user’s login credentials), or supplies a key obtained from
some form of credential source. Only processes with a valid key can make sense of
traffic within the group (see Reiter and Birman 1994; Rodeh et al. 2002).

K.P. Birman, Guide to Reliable Distributed Systems, Texts in Computer Science,
DOI 10.1007/978-1-4471-2416-0_18, © Springer-Verlag London Limited 2012
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Now this is a perfectly reasonable security options, and they certainly protect
against certain kinds of threat, such as spies capable of monitoring network traffic.
Yet there are many reasons to object that this sort of scheme might be breakable in
today’s cloud platforms, particularly in a cloud owned by a less trusted entity. For
example, trusting file system security is risky if the file system is actually owned
and operated by a cloud provider. And while it may seem secure to store credentials
in a certificate repository, on a cloud system that virtualizes applications, anything
in main memory can potentially be accessed by administrators. They would simply
freeze or copy the virtual machine, attach a debugger, and then hunt around until
they find the key. Thus real security raises deeper issues.

The technologies we consider here span a range of approaches. At the low end
of the spectrum are firewall technologies (often with an integrated network address
translation capability, which will block access to machines behind the wall unless
a mapping is established first) and other perimeter defense mechanisms, which op-
erate by restricting access or communication across specified system boundaries.
These technologies are extremely popular and clearly necessary, but very limited in
their capabilities. Once an intruder has found a way to work around the firewall or
to log into the system, the protection benefit is lost. For example, a common kind
of computer virus operates by relaying messages received on a non-traditional path
into the local area network behind a firewall. Once a machine becomes infected,
such a virus permits intruders to tunnel through the firewall, opening the door to
unrestricted access to data within the local area network and permitting the intruder
to work on breaking into machines on that network. Worse still, machines behind a
firewall are sometimes poorly protected; presumably, the administrators reason that
since the firewall deals with security issues, within the firewalled environment there
is no need to fuss over it!

Internal to a distributed system one typically finds access control mechanisms,
which are often based on user and group IDs employed to limit access to shared
resources such as file systems. When these are used in stateless settings, serious
problems occur, and we will touch upon several of them here. Access control mech-
anisms rarely extend to communication, and this is perhaps their most serious secu-
rity exposure. In fact, many communication systems are open to attack by a clever
intruder able to guess what port numbers will be used by the protocols within
the system: Secrecy of port numbers is a common security dependency in mod-
ern distributed software. Security by secrecy is always a poor idea: far preferable
are schemes that can be openly described, and yet retain their security because the
mechanism is simply very difficult to break. As we will see, Unix and Linux sys-
tems are particularly vulnerable in this regard because of their continued use of a
stateless file system technology, NFS.

Stateful protection mechanisms operate by maintaining strong concepts of ses-
sion and channel state and authenticating use at the time that communication ses-
sions are established. These schemes adopt the approach that after a user has been
validated, the difficulty of breaking into the user’s session will represent an obstacle
to intrusion. Microsoft’s Windows systems are an example of an architecture based
on a form of stateful protection. (As often happens, Windows remains vulnerable in
other ways, even if the Windows file system is relatively more secure than NFS.)
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Fig. 18.1 MIT’s Project Athena developed the Kerberos security architecture. Kerberos or a sim-
ilar mechanism is found at the core of many distributed system security technologies today. In
this approach, an authentication service is used as a trusted intermediary to create secure channels,
using DES or public key encryption for security. During step 1, the user employs a password or
a secret key to sign a request that a connection be established to the remote server. The authen-
tication server, which knows the user’s password or key, constructs a session key, which is sent
back in duplicated form—one copy by the user and one encrypted with the server’s secret key
(step 2). The session key is now used between the user and server (step 3), providing the server
with trusted information about user identification. In practice, Kerberos avoids the need to keep
user passwords around by trading the user’s password for a session to the “ticket granting service,”
which then acts as the user’s proxy in establishing connections to necessary servers, but the idea
is unchanged. Kerberos session keys expire and must be periodically renewed—hence, even if an
intruder gains physical access to the user’s machine, the period during which illicit actions are
possible is limited. Kerberos originally used DES throughout, but later was extended to exploit
public-key cryptography

Authentication-based security systems employ some scheme to authenticate the
user running each application; the method may be highly reliable or less so, de-
pending on the setting (see Denning 1984; Needham and Schroeder 1988). Indi-
vidual communication sessions are protected using a key, which is negotiated us-
ing a trusted agent. Messages may be encrypted or signed in this key, resulting in
very strong security guarantees. However, the costs of the overall approach can also
be high, because of the intrinsically high costs of data encryption and signature
schemes. Moreover, such methods may involve nontrivial modifications of the ap-
plication programs being used, and they may be unsuitable for embedded settings in
which no user would be available to periodically enter passwords or other authen-
tication data. The best-known system of this sort is Kerberos, developed by MIT’s
Project Athena, and our review will focus on the approaches used in that system (see
Schiller 1994; Steiner et al. 1988). (See Fig. 18.1.) Initially Kerberos was based on
shared secrets (DES keys), but it evolved over time to exploit public keys where
those were available.

Today, echoes of this second-generation Kerberos architecture can be seen in
many settings: In the Internet’s SSL security architecture, a system can use built-
in keys to request help in establishing a secured connection to a target platform.
The basic idea is that the pre-installed key allows the system to talk to a directory
server and to establish a trust relationship with it, and the server then generates a
certificate containing the information the client needs to create a secure channel. In
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a modern elaboration of the ideas seen in Kerberos, authentication servers can also
vouch for one-another. Thus the user purchasing cheese from www.Fromages.com
places trust in Microsoft, which vouches for Verisign’s certificate directory, which
has a representative at such and such a machine operated by Verisign, from which
the user’s computer obtained a certificate giving a public key for Fromages.com.
We call this a “chain of trust.” In the Internet, such chains usually are one-way
structures: I can trust Fromages.com to a sufficient degree to convince me that it is
safe to provide my credit card information (after all, I can always contest any false
charges). Fromages.com, however, is not given any sort of strong information about
my identity, although for practical reasons it may require that I provide a user-name
and password. But the possession of a password is not proof that the customer is me.
Indeed, the company cannot even trust data it generated previously and left on my
computer: the cookies on my hard drive might have been moved there from some
other machine! Even my IP address may change from time to time.

The broad picture is evolving, particular because of wider availability of hard-
ware security modules that encapsulate security keys and can do simple security
operations without leaking those keys, yet not much use has been made of these
options in commercial platforms, and it is not clear that major changes are in store
anytime soon. For example, if we focus on hardware roots of trust, these define an
architecture in which keys can be sealed into the hardware and used to countersign
messages or to unseal sensitive data, a step that would let a site produce an object
that can only be accessed on a specified platform, and perhaps only by a specified
application. Such an architecture can help a media company enforce copyrights on
digital content, at least to a degree, and this has been a main use of the technology.
Yet even with keys in the hardware, it is not hard to imagine counterattacks whereby
a determined user might steal protected information; short of securing the TV mon-
itor and the speakers, there is always a boundary to the protected realm. Moreover,
because hardware trust modules are fairly slow, the operating system must use them
with great care to maintain good performance. A great example of how one can walk
this fine line arises in the Nexus system, created by Sirer and Schneider (see Schnei-
der et al. 2011); it leverages hardware security to secure higher level abstractions,
including a simple BGP routing service. Yet there is a great deal left to be done, and
Nexus is at best a first step in the right direction.

One of the challenges for any form of security system is that once the user’s iden-
tity is known, a scheme is needed for determining the appropriate set of policies to
enforce. Should “Ken Birman” be permitted to order raw-milk Brie for shipment
into the United States? Should FBI agent “Bob Anthony” be permitted to review the
hospital records for patient Jane Jones? Notice that many factors enter into answer-
ing such policy questions: policies associated with the user, with the parties to the
transaction, and with their respective countries. In a microcosm, this points to one
of the more difficult issues seen even in mundane business-to-business transactions:
corporation A has one set of policies, corporation B a second set, and now users a

and b wish to share information. Should this be allowed? How can we write down
the rules and verify that the desired transaction is safe under both sets? Best known
among the security policy languages is a logic-based language called SPKI/SDSI,
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which uses a kind of deductive reasoning to manage trust and permission relation-
ships. However, for practical reasons, SPKI/SDSI is not nearly elaborate enough to
solve the full range of problems seen in real settings. We will touch on these issues
below; they point to an exciting research opportunity.

Multilevel distributed system security architectures are based on a government
security standard developed in the mid-1980s. The basic idea is to emulate the way
that secrets are handled in the military and in other government settings. This se-
curity model is very strong, but it has proven to be difficult to implement and it
requires extensive effort on the part of application developers. Perhaps for these
reasons, the approach has not been widely successful. Moreover, the pressure to use
off-the-shelf technologies made it difficult for the government to build systems that
enforce multilevel security. Accordingly, we will not discuss this issue here.

Traditional security technologies have not considered availability when failures
occur, creating exposure to attacks whereby critical system components are shut
down, overloaded, or partitioned away from application programs that depend upon
them. However, when one considers failures in the context of a security subsystem,
the benign failure models of earlier chapters must be called into question. Thus,
work in this area has included a reexamination of Byzantine failure models, ques-
tioning whether extremely robust authentication servers can be built that will remain
available even if Byzantine failures occur. Researchers are actively working to over-
come these concerns, and one can now see the first signs of a new generation of
highly available security technologies (the BASE system, which employs a “prac-
tical” form of Byzantine replication (see Castro and Liskov 2002) is most often
cited in this context, but the Byzantine Quorum approach of Malkhi and Reiter is
also noteworthy). Interestingly, these projects use process groups, although do not
employ the virtual synchrony model.

In the future, technologies supporting digital cash and digital commerce are
likely to be of increasing importance and will often depend upon the use of trusted
banking agents and strong forms of encryption, such as the RSA or DES standards
(see Desmedt 1988; Diffie and Hellman 1979; Rivest et al. 1978). Progress in this
area has been very rapid and we will review some of the major approaches. Another
area in which there has been a great deal of progress recently involves secured peer-
to-peer file sharing mechanisms, used in settings ranging from storage and sharing
of music (often illegally) to long-term archival preservation in digital library sys-
tems. Here, security involves such topics as hiding the identity of the individual
who stored or who retrieves a file, hiding the contents of the file, or overcoming “bit
rot” that might occur over long periods of time in library settings where files could
be preserved for decades.

Yet, if the progress in distributed system security has been impressive, the lim-
itations on such systems remain quite serious. We saw this in Chap. 3, when first
reviewing security requirements for future Web sites and Web Services systems.
We identified a wide range of problems that fall outside of the prevailing security
model for existing distributed systems, and as a result, are in essence not solvable
today. Many of these related to representation of security policy or associating other
kinds of “meaning” with security mechanisms; other limitations stem from such is-
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sues as security rules that depend upon the roles an individual is playing, or that
arise when corporations collaborate in some ways while competing in others. Yet as
noted above, policy languages are a weak point of modern security architectures.

On the whole, it remains difficult to secure a distributed system and very hard
to add security to a technology that already exists and must be treated as a form
of black box. The best-known technologies, such as Kerberos, are still used only
sporadically. SSL security will let user a make a secure connection to company
b, but really does not tackle problems outside of that narrow domain. This makes
it hard to implement customized security mechanisms, very difficult to deal with
issues of policy representation and enforcement, and leaves the average distributed
system quite open to attack.

Break-ins and security violations are extremely common in the most standard
distributed computing environments and if anything, each new wave of advances
in operating systems and environments has made the security situation worse than
in the previous generation of systems: Clearly, the very mechanisms that make it
possible for systems to cooperate and interoperate also expose them to attack. Until
distributed system security is difficult to disable, as opposed to being difficult to
enable, we may continue to read about intrusions of increasingly serious nature, and
will continue to be at risk for serious intrusions into our personal medical records,
banking and financial systems, and personal computing environments.

18.2 Perimeter Defense Technologies

It is common to protect a distributed system by erecting barriers around it. Examples
include the password control associated with dial-in ports; dial-back mechanisms,
which some systems use to restrict access to a set of predesignated telephone num-
bers; and firewalls through which incoming and outgoing messages must pass. Each
of these technologies has important limitations.

Password control systems are subject to attack by password-guessing mecha-
nisms and by intruders who find ways to capture packets containing passwords as
they are transmitted over the Internet or some other external networking technol-
ogy. So-called password “sniffers” became a serious threat to system security in the
mid-1990s and illustrate that the general Internet is not the benign environment it
was in the early days of distributed computing, when most Internet users knew each
other by name. Typical sniffers operate by exhibiting an IP address for some other
legitimate machine on the network or by placing their network interfaces into a spe-
cial mode, in which all passing packets will be accepted. They then scan the traffic
captured for packets that might have originated in a log-in sequence. With a bit of
knowledge about how such packets normally look, it is not hard to reliably capture
passwords as they are routed through the Internet. Sniffers have also been used to
capture credit card information and to break into e-mail correspondence.

In a world that makes increasing use of wireless connectivity and broad-band
technologies, it may seem strange to talk about dial-up connections. Yet dial-up
systems are often perceived as being more secure than direct network connections,
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presumably because the user cannot establish the connection without authenticat-
ing him or herself at the time it is established. For many reasons, dial-up security
is ultimately illusory. The major problem is that many systems use their dial-up
connections for data and file transfer and as a sending and receiving point for fax
communications—hence, the corresponding telephone numbers are stored in vari-
ous standard data files, often with connection information. An intruder who breaks
into one system may in this manner learn dial-up numbers for other systems and
may even find log-ins and passwords, which will make it easy to break in to them,
as well. Moreover, the telephone system itself is increasingly complex and, as an un-
avoidable side-effect, increasingly vulnerable to intrusions. There have been many
break-ins in which intruders started by wiretapping a dialup communications link,
then dialed in and established a connection by replaying pre-recorded authentication
information. The telephone system itself is wide-open to clever hackers, and treat-
ing the telephone network as a form of secure perimeter can be dangerously naïve if
enough is at stake. Worst of all, even a system in which high speed network access
has long been the norm may still have a bank of old dialup modems connected to it
somewhere down in the basement. The best firewall in the world will not help if a
hacker stumbles on a telephone number and password combination that will permit
him to dial in.

Dial-back mechanisms, whereby the system calls the user back, clearly increase
the hurdle an intruder must cross to penetrate a system relative to one in which the
caller is assumed to be a potentially legitimate user. However, such systems also de-
pend for their security upon the integrity of the telephone system, which, as we have
noted, can be subverted. In particular, the emergence of mobile telephones and the
introduction of mobility mechanisms into telephone switching systems create a path
by which an intruder can potentially redirect a telephone dial-back to a telephone
number other than the intended one. Such a mechanism is a good example of a se-
curity technology that can protect against benign attacks but would be considerably
more exposed to well-organized malicious ones.

Firewalls (often integrated with network address translators) have become popu-
lar as a form of protection against communication-level attacks on distributed sys-
tems. This technology operates using packet filters and must be instantiated at all the
access points to a distributed network. Each copy of the firewall will have a filtering
control policy in the form of a set of rules for deciding which packets to reject and
which to pass through; although firewalls that can check packet content have been
proposed, typical filtering is on the basis of protocol type, sender and destination
addresses, and port numbers. Thus, for example, packets can be allowed through if
they are addressed to the e-mail or FTP server on a particular node; otherwise they
are rejected. Often, firewalls are combined with proxy mechanisms, which permit
file transfer and remote log in through an intermediary system enforcing further re-
strictions. The use of proxies for the transfer of public Web pages and FTP areas has
also become common: In these cases, the proxy is configured as a mirror of some
protected internal file system area, copying changed files to the less-secure external
area periodically.
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Other technologies commonly used to implement firewalls include application-
level proxies and routers. With these approaches, small fragments of user-supplied
code (or programs obtained from the firewall vendor) are permitted to examine the
incoming and outgoing packet streams. These programs run in a loop, waiting for the
next incoming or outgoing message, performing an acceptance test upon it, and then
either discarding the message or permitting it to continue. The possibility of logging
the message and maintaining additional statistics on traffic, or routing certain mes-
sages to specialized systems designed to diagnose and protect against intrusions, are
also commonly supported.

Yet this cuts both ways. Network address translation is sometimes claimed to
increase security, because NATs make it physically hard for an intruder to access
machines behind the NAT interface. However, once an intruder breaks into a system
through a NAT, that security evaporates: it then suffices to introduce an application-
level “router” and, in effect, tunnel messages through the NAT and then retransmit
them from behind it. Thus, while a NAT does secure a system in some ways, once
a chink in the security architecture has been identified, the NAT protection may
collapse.

For example, a common pattern of intrusion starts when the user downloads some
form of application. This happens all the time: we extend our web browser with a
codec, or download a file decompression utility, or a child who shares the computer
downloads a game. Suppose that in additional to doing the tasks that program was
designed to do, it also makes a connection out through the network filewall. That
connection can now function as a tunnel by which an intruder can gain access to
the local network and subvert the system. Yet as long as the downloaded code func-
tions normally, the user may be completely unaware that his or her system has been
compromised! This type of “Trojan horse” technique has become very common.

The major problem associated with firewall technologies is that they represent
a single point of compromise: If the firewall is breached, the intruder essentially
could gain free run of the enclosed system. And yet there are a tremendous number
of ways to break through even the best firewall. Firewalls are thus central to modern
distributed systems security architectures, and yet are simultaneously the weakest
point in many systems.

The need to support remote connectivity through firewalls is leading many corpo-
rations to implement what are called virtual private networks (see Fig. 18.2). In the
most general case, a VPN is a kind of network in which communication is authen-
ticated (typically using a digital signature scheme) so that all messages originating
outside of the legitimately accepted sources will be rejected. The idea is that one
can run a VPN on top of a public network without fear; intruders will not be able to
compromise packets and may not even be able to read them.

More often, VPN security is used to create a secure tunnel through a firewall, as
a way to allow a mobile user to connect to his home network. In this common use,
the VPN becomes a surprisingly serious security risk, because it makes it so easy
for a machine that often lives outside the corporate firewall to tunnel through from
time to time. Suppose that Dr. Welby is given a PC for home use by the hospital at
which he works. At home, his son sometimes uses it to connect to the Internet, and
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Fig. 18.2 A long-haul connection internal to a distributed system (gray) represents a potential
point of attack. Developers often protect systems with firewalls on the periphery but overlook
the risk that the communication infrastructure itself may be compromised, offering the intruder
a backdoor approach into the protected environment. Although some corporations are protecting
themselves against such threats by using encryption techniques to create virtual private networks,
most mundane communication systems are increasingly at risk

the machine becomes infected with a virus. Dr. Welby may be completely unaware
that his computer is compromised, but the next time he uses his machine at work,
or connects to the hospital with a VPN connection, any viruses on his machine can
gain access to the internal LAN.

Thus, while the prospects for strong security may be promising in certain set-
tings, such as military systems or electronic banking systems, the more routine
computing environments, on which the great majority of sensitive applications run,
remain open to a great variety of attacks and are likely to continue to have such
exposure well into the next decade, if not indefinitely. The core problem is really a
social one: the ways we use computers are at odds with strong security.

This situation may seem pessimistic; however, in many respects, the other shoe
has not even fallen. Although it may seem extremely negative to think in such terms,
it is probable that future information terrorists and warfare tactics will include some
of these forms of attack and perhaps others that are hard to anticipate until they
have first been experienced. One day, terrorist hackers may manage to do significant
damage through a coordinated cyber-attack, for example using a virus that spreads
rapidly and also wipes disks. Up to the time of this writing, we have seen nasty
viruses and we have seen viruses that spread quickly, but not both at once. Perhaps
for this reason, our exposure to such risks is only increasing.

Although we will now move on to other topics in security, we note that defensive
management techniques can be coupled with security-oriented wrappers to raise the
barriers in systems that use firewall technologies for protection.

18.3 Access Control Technologies

Access control techniques operate by restricting use of system resources on the basis
of user or group identifiers, which are typically fixed at log-in time—for example,
by validation of a password. It is typical that these policies trust the operating sys-
tem, its key services, and the network. In particular, the log-in program is trusted
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to obtain the password and correctly check it against the database of system pass-
words, granting the user permission to work under the user-ID or group-ID only if
a match is detected. The log-in system trusts the file server or Network Information
Server to respond correctly with database entries that can be used safely in this au-
thentication process, and the resource manager (typically, an NFS server or database
server) trusts the ensemble, believing that all packets presented to it as “valid NFS
packets” or “valid XYZbase requests” originated at a trusted source.1 (Microsoft’s
PC File System uses a stronger model and is not quite as “trusting” in this respect.)

These dependencies are only rarely enforced rigorously. Thus, one could poten-
tially attack an access control system by taking over a computer, rebooting it as the
root or superuser, directing the system to change the user-ID to any desired value,
and then starting work as the specified user. An intruder could replace the standard
log-in program with a modified one—introducing a false NIS, which would emulate
the NIS protocol but substitute invalid password records. One could even code one’s
own version of the NFS client protocol, which, operating from user space as a nor-
mal RPC application, could misrepresent itself as a trusted source of NFS requests.
All these attacks on the NFS have been used successfully at one time or another, and
many of the loopholes have been closed by one or more of the major vendors. Yet
the fact remains that file and database servers continue to be largely trusting of the
major operating system components on the nodes where they run and where their
clients run.

Perhaps the most serious limitation associated with access control mechanisms
is that they generally do not extend to the communication subsystem: typically, any
process can issue an RPC message to any address it wishes to place in a message and
can attempt to connect to any stream end point for which it possesses an address.
In practice, these exposures are hard to exploit, because a process that undertakes
to do so will need to guess the addresses and ports being used by the applications it
attacks. Precisely to reduce this risk, many applications exploit randomly generated
end-point addresses, so that an intruder would be forced to guess a pseudorandom
number to break into a critical server. However, pseudorandom numbers may be less
random than intended. Moreover, an intruder with a packet sniffer may be able to
pull all sorts of “secrets” off the wire: MAC addresses of trusted computers, port
numbers, etc.

Such break-ins are more common than one might expect—for example, in 1994
an attack on X11 servers was discovered in which an intruder found a way to deduce
the connection port number that would be used. Sending a message that would cause
the X11 server to prepare to accept a new connection to a shell command window,
the intruder managed to connect to the server and to send a few commands to it. Not
surprisingly, this proved sufficient to open the door to a full-fledged penetration.
Moreover, the attack was orchestrated in such a manner as to trick typical firewalls

1Not all file systems are exposed to such problems—for example, the AFS file system has a so-
phisticated stateful client/server architecture, which is also much more robust to attack. AFS has
become popular, but it is less widely used than NFS.
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Table 18.1 NFS security assumptions

NFS assumption Dependent on. . .

O/S integrity NFS protocol messages originate only in trusted subsystems or the kernel

Attacks: Introduce a computer running an open operating system; modify
the NFS subsystem. Develop a user-level program to implement the NFS
client protocol; use it to emulate a legitimate NFS client issuing requests
under any desired user-ID.

Authentication Assumes that user- and group-ID information is valid

Attacks: Spoof the Network Information Server or NFS response packets so
that authentication will be done against a falsified password database.
Compromise the log-in program. Reboot the system or log-in using the root
or superuser account; then change the user-ID or group-ID to the desired
one and issue NFS requests.

Network integrity Assumes that communication over the network is secure

Attacks: Intercept network packets, reading file system data and modifying
data written. Replay NFS commands, perhaps with modifications.

into forwarding these poisoned messages, even though the normal firewall protec-
tion policy should have required that they be rejected. Until the nature of the attack
was understood, the approach permitted intrusion into a wide variety of firewall-
protected systems. In 2003, a rather similar attack occurred, but this time involved
the Microsoft remote procedure call mechanism at the center of the Windows imple-
mentation of distributed object invocations. In both cases, the core problem is that
it is difficult to inexpensively validate a packet as it arrives on a machine, hence a
faked packet may sometimes slip through.

To give a sense of how exposed typical distributed systems currently are, Ta-
ble 18.1 presents some of the assumptions made by the NFS file server technology
when it is run without the security technology available from some vendors (in prac-
tice, NFS security is rarely enabled in systems that are protected by firewalls; the
security mechanisms are hard to administer in heterogeneous environments and can
slow down the NFS system significantly). We have listed typical assumptions of the
NFS, the normal reason that this assumption holds, and one or more attacks that
operate by emulation of the normal NFS environment in a way that the server is
unable to detect. The statelessness of the NFS server makes it particularly easy to
attack, but most client/server systems have similar dependencies and are similarly
exposed.

One can only feel serious concern when these security exposures are con-
templated against the backdrop of increasingly critical applications that trust
client/server technologies such as NFS—for example, it is very common to store
sensitive files on unprotected NFS servers. As we noted, there is an NFS security
standard, but it is vendor-specific and may be impractical to use in heterogeneous
environments. A hospital system, for example, is necessarily heterogeneous: The
workstations used in such systems must interoperate with a great variety of special-
purpose devices and peripherals, produced by many vendors. Thus, in precisely the
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setting one might hope would use strong data protection, one typically finds propri-
etary solutions or unprotected use of standard file servers! Indeed, many hospitals
might be prevented from using a strong security policy, because, since so many in-
dividuals need access to a patient’s record, any form of restriction would effectively
be nullified.

Thus, in a setting where protection of data is not just important but is actually
legally mandated, it may be very easy for an intruder to break in. While such an
individual might find it hard to walk up to a typical hospital computing station and
break through its password protection, by connecting a portable laptop computer
to the hospital Ethernet (potentially a much easier task), it would be easy to gain
access to the protected files stored on the hospital’s servers. Such security exposures
are already a potentially serious issue, and the problem will only grow more serious
with time.

When we first discussed the NFS security issues, we pointed out that there are
other file systems that do quite a bit better in this regard. The Microsoft NT File Sys-
tem protocol is far more secure than NFS. The AFS system, developed originally
at Carnegie Mellon University and then commercialized by Transarc (an IBM divi-
sion) has been widely adopted. But most systems combine these kinds of secured
technology with other less secure ones. Attackers simply focus on the weakest link
that they can find, and since few system operators can even account for the majority
of programs running in the background on the typical computer in their installation,
the intruder will often have many options to pick from!

18.4 Authentication Schemes, Kerberos, and SSL

The weak points of typical computing environments are readily seen to be their
authentication mechanisms and their blind trust in the security of the communica-
tion subsystem. Best known among the technologies that respond to these issues is
MIT’s Kerberos system, developed as part of Project Athena, and SSL security, the
standard used in the Internet.

Both schemes make use of encryption, albeit in slightly different ways, hence
we start by reviewing the existing encryption technologies and their limitations.
Although a number of encryption schemes have been proposed, the most popular
ones at the time of this writing are the RSA public key algorithms and a version of
the DES encryption standard in which one creates 3 DES keys and then encrypts
information three times (called triple DES, the effect is comparable to DES with a
single triple-length key). Kerberos was originally designed to use (single) DES, then
extended to use triple-DES and finally “ported” to run on RSA. SSL, in contrast, was
designed to use RSA but with provisions for the use of other non-RSA schemes; to
the author’s knowledge, SSL over RSA is far more prevalent than any other mix.

The cryptographic community has generated far more “tools” than these basic
schemes, including message digest and signature algorithms, ways of splitting se-
crets into n portions so that any k out the n can be used to reconstruct the secret
(but fewer “shares” are inadequate to do so), techniques for hiding information so
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that a third-party can counter-sign it without actually seeing it, etc. However, none
of these are widely used in the Internet today, and hence they are beyond the limited
scope of the present chapter.

18.4.1 RSA and DES

RSA (see Rivest et al. 1978) is an implementation of a public key cryptosystem (see
Diffie and Hellman 1979), which exploits properties of modular exponentiation. In
practice, the method operates by generating pairs of keys, which are distributed to
the users and programs within a distributed system. One key within each pair is the
private key and is kept secret. The other key is public, as is an encryption function,
crypt(key,object). The encryption function has a number of useful properties. Sup-
pose that we denote the public key of some user as K and the private key of that
user as K−1. Then crypt(K, crypt(K−1,M)) = crypt(K−1, crypt(K,M)) = M—that
is, encryption by the public key will decrypt an object encrypted previously with the
private key and vice versa. Moreover, even if keys A and B are unrelated, encryption
is commutative: crypt(A, crypt(B,M)) = crypt(B, crypt(A,M)).

Although a number of mechanisms can be used to implement RSA, the scheme
actually used is based on modular exponentiation and is secure under the assumption
that very large composite integers are computationally hard to factor. In the scheme,
if one knows the factors of a large integer, it is easy to decode messages. The public
key is the large integer itself, and the private key is its factorization. RSA keys
are typically very large, indeed—512 or 1024 bits are common at the time of this
writing. With the best known factoring algorithms, a 512-bit key would still require
some six months of computer time on a grid of processors to factor, and a 1024-bit
key is effectively impossible to factor. However, a 512 bit key seemed absurdly long
even a few years ago, hence one must wonder if this implementation of RSA has a
limited lifetime and, if so, it is not at all clear what might replace it!

At any rate, in typical use, public keys are published in some form of trusted
directory service (see Birrell 1985). If process A wants to send a secure message
to process B (this message could only have originated in process A and can only
be read by process B), A sends crypt(A−1, crypt(B,M)) to B, and B computes
crypt(B−1, crypt(A,M)) to extract the message. Here, we have used A and A−1 as
shorthand for the public and private keys of processes A and B. A can send a mes-
sage that only B can read by computing the simpler crypt(B,M) and can sign a mes-
sage to prove that the message was seen by A by attaching crypt(A−1,digest(M))

to the message, where digest(M) is a function that computes some sort of small
number reflecting the contents of M, perhaps using an error-correcting code for this
purpose. Upon reception, process B can compute the digest of the received message
and compare this with the result of decrypting the signature sent by A using A’s
public key. This message can be validated by verifying that these values match (see
Denning 1984).

A process can also be asked to encrypt or sign a blinded message when using
the RSA scheme. To solve the former problem, process A is presented with M′ =
crypt(B,M). If A computes M′′ = crypt(A−1,M′), then crypt(B−1,M′′) will yield
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crypt(A−1,M) without A having ever seen M. Given an appropriate message digest
function, the same approach also allows a process to sign a message without being
able to read that message.

In contrast, the DES standard (see Data Encryption Standard 1977; Diffie and
Hellman 1979) is based on shared secret keys, in which two users or process ex-
changing a message will both have a copy of the key for the messages sent between
them. Separate functions are provided for encryption and decryption of a message.
Similar to the RSA scheme, DES can also be used to encrypt a digest of a message
as proof that the message has not been tampered with. However, there is no standard
blinding mechanism for DES.

DES is the basis of a government standard, which specifies a standard key size
and can be implemented in hardware. Although the standard key size is large enough
to provide security for most applications, the key is still small enough to permit it to
be broken using a supercomputing system or a large number of powerful worksta-
tions in a distributed environment. This is viewed by the government as a virtue of
the scheme, because it provides the possibility of decrypting messages for purposes
of criminal investigation or national security. When using DES, it is possible to con-
vert plain text (such as a password) into a DES key; in effect, a password can be used
to encrypt information so that it can only be decrypted by a process that also has a
copy of that password. As will be seen, this is the central feature that makes pos-
sible DES-based authentication architectures such as Kerberos (see Schiller 1994;
Steiner et al. 1988).

One way to work within the DES standard and yet avoid the weakness of the
48-bit key standard is to apply DES three times to each message, using different
keys. This approach, called “triple DES,” is believed to offer roughly the same cryp-
tographic security as would DES with a single triple-length key.

During the early 1990s, a security standard was proposed for use in telecommuni-
cation environments. This standard, Capstone, was designed for telephone commu-
nication but is not specific to telephony; it involves a form of key for each user and
supports what is called key escrow, whereby the government is able to reconstruct
the key by combining two portions of it, which are stored in secure and indepen-
dent locations (see Denning and Branstad 1996). The objective of this work was to
permit secure and private use of telephones while preserving the government’s right
to wiretap with appropriate court orders. A product called the Clipper chip, which
implements Capstone in hardware, was eventually produced, and incorporated into
some secure telephones. The same mechanism was also adapted for use in com-
puter networks and implemented in a PCMCIA card called Fortezza. However, after
a brief period of experimentation with the card, the commercial sector lost interest
in it, making it harder and harder for the government to procure Capstone-based
solutions. The stunning advances in wireless communication and telephony created
a tough choice for the government: either to go it alone, at great cost, or to ac-
cept defeat and simply work with commercially available off-the-shelf technologies,
layering mechanisms “over” the COTS base to harden it. Faced with a mixture of
budget stress and the impossibility of competing for “lowest cost bidder” contracts,
both Clipper and Fortezza vanished from the market. At the time of this writing, a
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number of mobile telephone security products can be found, but there seem to be
no generally accepted security standards. On the other hand, a new computer secu-
rity architecture called Palladium, based on the idea of hard-wiring a security key
into a protected read-only register internal to an Intel CPU, is gaining considerable
attention, and may eventually offer some of the same opportunities.

Setting aside their limited commercial impact, both DES and Capstone security
standard remain the subjects of vigorous debate. On the one hand, such methods
limit privacy and personal security, because the government is able to break both
schemes and indeed may have taken steps to make them easier to break than is
widely known. On the other hand, the growing use of information systems by crim-
inal organizations clearly poses a serious threat to security and privacy as well, and
it is obviously desirable for the government to be able to combat such organiza-
tions. Meanwhile, the fundamental security of methods such as RSA and DES is
not known—for example, although it is conjectured that RSA is very difficult to
break, in 1995 it was shown that in some cases, information about the amount of
time needed to compute the crypt function could provide data that substantially re-
duce the difficulty of breaking the encryption scheme. Moreover, clever uses of large
numbers of computers have made it possible to break DES encryption. For example,
when the first version of this textbook came out in 1997, a “state of the art” DES
key seemed fairly secure. Today, most DES systems use triple DES.

Thus we face many kinds of challenge. Should systems be “genuinely” secure,
or should they have weaknesses that would allow intelligence agencies to crack
messages? Is security even possible? And to the extent that it is, will the commercial
sector embrace the needed technologies? Up to the present, we lack a compelling
story that addresses all of these issues at the same time.

18.4.2 Kerberos

The Kerberos system is a widely used implementation of secure communication
channels, based on the DES encryption scheme (see Schiller 1994; Steiner et al.
1988). Integrated into the DCE environment, Kerberos is quite popular in the UNIX
community. The approach genuinely offers a major improvement in security over
that which is traditionally available within UNIX. Its primary limitations are, first,
that SSL security dominates in the Internet and Web, making Kerberos increasingly
“non-standard.” Secondly, applications using Kerberos must be modified to create
communication channels using the Kerberos secure channel facilities. Although this
may seem to be a minor point, it represents a surprisingly serious one for poten-
tial Kerberos users, since application software using Kerberos is not yet common.
Nonetheless, Kerberos has had some important successes.

In what follows, we will discuss the original DES-based Kerberos protocol, al-
though an RSA version of Kerberos was introduced many years ago. Kerberos per-se
is perhaps less important than the basic ideas it illustrates. The basic Kerberos proto-
cols revolve around the use of a trusted authentication server, which creates session
keys between clients and servers upon demand. The basic scheme is as follows. At
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the time the user logs in, he or she presents a name and password to a log-in agent,
which runs in a trusted mode on the user’s machine, and establishes a secured chan-
nel to the Kerberos authentication server at boot time. Having logged in, the user
is able to connect securely to various applications using Kerberos as an intermedi-
ary. The role of Kerberos is to mediate during connection setup, helping the client
and server to authenticate one-another and to agree on a key for use to protect their
shared communication channel.

Suppose that a user wants to connect to Fromages.com to purchase a wheel of
finest French brie cheese. The first step is to request help from Kerberos. The agent
on the user’s machine creates a “connection request” message (it says, more or less,
that “Ken Birman wishes to connect to Fromages.com”), signs this message using
the user’s password, encrypts it using the authentication server’s key, and sends it
to the server. (A few extra pieces of information are used to avoid “replay” attacks,
such as the time of the request and a randomly generated number—a “nonce” in the
parlance of the cryptographic community).

The Kerberos authentication server keeps a database of user names and pass-
words, and of course also remembers the key it negotiated with the log-in agent
at boot time. It decrypts the request, verifies that Ken Birman’s password was re-
ally used to sign it, and then creates a “certificate” containing information by which
each end-point can validate the other, encrypting the piece destinated for use by Fro-
mages.com with a secret key known only to Fromages.com, and the piece destinated
for the user’s computer with the session key employed by the log-in agent. It sends
this back to the log-in agent, which decrypts it and extracts the two pieces of the
certificate.

Now the user’s computer presents the remote half of the certificate to Fro-
mages.com. The Fromages.com server can easily validate the request, since it has
been encrypted with its own secret key, which could only have been done by the
authentication server. The session key also contains trustworthy information con-
cerning the identification of the person who is making the request (in our example,
me), the workstation-ID, and the expiration time of the key itself. Thus, the server
knows that it is being used by someone with my password, knows which machine
I’m on, and knows how long the session can remain open without a refreshed session
key.

In UNIX, a “super user” with access to the debugger can potentially read in-
formation out of memory, including the memory of the log-in agent. Thus a risk
associated with this method is that it needs the user’s password as an encryption key
and hence must keep it in the memory of the agent for a long period of time. Ker-
beros tries to minimize this threat by exchanging the user’s password for a type of
one-time password, which has a limited lifetime and is stored only at a ticket grant-
ing service with which a session is established as soon as the user logs in. In effect,
the user’s password is only employed very briefly, to obtain a temporary “one-time”
password that will be employed on the user’s behalf for a little while. The human
user will be prompted to re-enter his or her password if the session lasts very long,
or if the machine goes idle for more than a few minutes.
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Once a session exists, communication to and from the file server can be done in
the clear, in which case the file server can use the user-ID information established
during the connection setup to authenticate file access, or it can be signed, giving a
somewhat stronger guarantee that the channel protocol has not been compromised
in any way, or even encrypted, in which case data exchange are only accessible by
the user and the server. In practice, the initial channel authentication, which also
provides strong authentication guarantees for the user-ID and group-ID information
to be employed in restricting file access, suffices for most purposes. An overview of
the protocol is seen in Fig. 18.1 on p. 545.

The Kerberos protocol has been proven secure against most forms of attack (see
Lampson et al. 1992); one of its few dependencies is its trust in the system time
servers, which are used to detect expiration of session keys (see Gong 1989). More-
over, the technology has been shown to scale to large installations using an approach
whereby authentication servers for multiple protection domains can be linked to
create session keys spanning wide areas. Perhaps the most serious exposure of the
technology is that associated with partitioned operation. If a portion of the network
is cut off from the authentication server for its part of the network, Kerberos session
keys will begin to expire, and it will be impossible to refresh them with new keys.
Gradually, such a component of the network will lose the ability to operate, even be-
tween applications and servers residing entirely within the partitioned component.
In applications requiring support for mobility, with links forming and being cut very
dynamically, the Kerberos design would require additional development.

A less obvious exposure to the Kerberos approach is that associated with active
attacks on its authentication and ticket granting server. The server is a software
system operating on standard computing platforms, and those platforms are often
subject to attack over the network. A knowledgeable user might be able to concoct
a poison pill by building a message, which will look sufficiently legitimate, to be
passed to a standard service on the node; this message will then provoke the node
into crashing by exploiting some known intolerance to incorrect input. The fragility
of contemporary systems to this sort of attack is well known to protocol developers,
many of whom have the experience of repeatedly crashing the machines with which
they work during the debugging stages of a development effort. Thus, one could
imagine an attack on Kerberos or a similar system aimed not at breaking through
its security architecture, but rather at repeatedly crashing the authentication server,
with the effect of denying service to legitimate users.

Kerberos supports the ability to prefabricate and cache session keys (tickets) for
current users, and this mechanism would offer a period of respite to a system sub-
jected to a denial of service attack. However, after a sufficient period of time, such
an attack would effectively shut down the system.

Within military circles, there is an old story (perhaps not true) about an admiral
who used a new generation of information-based battle management system in a
training exercise. Unfortunately, the story goes, the system had an absolute require-
ment that all accesses to sensitive data be logged on an audit trail, which for that
system was printed on a protected line printer. At some point during the exercise
the line printer jammed or ran low on paper, and the audit capability shut down.
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The admiral’s command was crippled by shutdown of the computer system, and the
admiral himself developed such a dislike for computers that henceforth, he decreed,
no computing system could be installed in his unit without first having its security
subsystem disabled. Basically, he felt that having access to data when he needed
them was a far higher priority than ensuring that bad guys would be kept away from
those data.

And this illustrates an important point. The developer of a secure system often
thinks of his or her task as being that of protecting critical data from the “bad guys.”
But any distributed system has a more immediate obligation, which is to make data
and critical services available to the “good guys.” Denial of service in the name of
security may be far worse than providing service to an unauthorized user!

As noted earlier, Kerberos has been extended to also run over RSA. In this ap-
proach, the server becomes a directory managing public keys for applications in
the system. Knowing a public key, it is possible to make a secure connection to
that server. Of course, one can argue that such a system is no longer Kerberos, but
we will leave semantics to the experts and simply observe that Kerberos, and its
progeny, have been hugely important systems.

18.4.3 ONC Security and NFS

Sun Microsystems, Inc., has developed an RPC standard, which it calls Open Net-
work Computing (ONC), around the protocols used to communicate with NFS
servers and similar systems. ONC includes an authentication technology, which
can protect against most of the spoofing attacks previously described. Similar to
a Kerberos system, this technology operates by obtaining unforgeable authorization
information at the time a user logs into a network. The NFS is able to use this infor-
mation to validate accesses as being from legitimate workstations and to strengthen
its access control policies. If desired, the technology can also encrypt data to protect
against network intruders who monitor passing messages.

ONC security shares the strengths and weaknesses of Kerberos, but is also con-
sidered to have suffer from some important practical limitations. For example, a
set of restrictions limits export of strong cryptographic-based security. As a result,
it is impractical for Sun to enable the NFS protection mechanisms by default or
to envision an open standard, allowing complete interoperability between client and
server systems from multiple vendors (the major benefit of NFS), which, at the same
time, would be secure. A second worry related to heterogeneity: Sun systems need
to “play” in settings where hardware and software from other vendors will also be
used. Security can be a barrier to setting up such configurations, and when this hap-
pens, the user often disables security. He or she may never get around to figuring
out how to re-enable it.

Beyond the heterogeneity issue is the problem of management of a security tech-
nology in complex settings. Although ONC security works well for NFS systems
in fairly simple systems based entirely on Sun products, serious management chal-
lenges occur in complex system configurations, where users are spread over a large
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physical area, or in systems using heterogeneous hardware and software sources.
With security disabled, these problems vanish. Finally, the same availability issues
raised in our discussion of Kerberos pose a potential problem for ONC security.
Thus, it is perhaps not surprising that these technologies have not been adopted on
a widespread basis. Such considerations raise the question of how one might wrap
a technology such as NFS, which was not developed with security in mind, so that
security can be superimposed without changing the underlying software. One can
also ask about monitoring a system to detect intrusions as a proactive alternative to
hardening a system against intrusions and then betting that the security scheme will
in fact provide the desired protection. We discuss these issues further in Chap. 22.

18.4.4 SSL Security

The Secure Sockets Layer (SSL) standard defines a scheme for obtaining security
over a TCP channel, typically between a Web browser and a secure Web server to
which it connects. SSL consists of two elements: a chain of trust model used to find
a trustworthy authentication server, and a protocol by which a client system can
obtain security certificates containing a security key (normally, an RSA public key)
from that authentication server and then use it to create a secured TCP connection to
the target platform. In the SSL model, unlike Kerberos, the focus is on establishing
trust in the client that it is talking to the correct server; the server is expected to
authenticate the client using some other end-to-end mechanism (a password, or a
visa card, etc.).

The chain of trust model works as follows. A client system is pre-loaded with a
security key and network address for an initial directory server. For example, the
Microsoft Windows platform has a preinstalled public key and network address
by which it can contact a Microsoft security directory service, and the Netscape
browser has a preinstalled key and address for a Netscape directory service. This
information is maintained using a mechanism designed to be as tamper-proof as
possible.

Microsoft (and Netscape) maintains a directory of trusted authentication servers:
Verisign, for example. And Verisign can maintain a directory of its own—perhaps,
machines within its data center. Thus through a chain of authorizations, we can work
our way down from Microsoft to a company that makes part of its money by main-
taining a database of certificates on behalf of corporate clients. Our client system,
seeking a secured connection to Fromages.com, determines from Fromages.com
that it uses Verisign as a directory server, then traverses the chain to establish con-
tact with a Verisign authentication server, and then retrieves a trusted certificate for
Fromages.com from that server.

The certificate, as might be expected, includes identification information for the
issuer of the certificate and for the target server, expiration time, a public key for
the target, and perhaps additional information concerning the possible uses of the
key. In effect, the client system learns that “Microsoft trusts Verisign, and Verisign



562 18 Security Options for Distributed Settings

vouches for this certificate for the Fromages.com secure transactional server.” Un-
like a Kerberos certificate, the SSL one does not include information about the spe-
cific client; this is either a strength of the scheme or a weakness, depending upon
one’s priorities.

Given the public key of the target server, the client system can now create a secure
connection to the target system. It does this by creating a TCP connection but then
exchanging a series of messages over that connection, using the public key of the
server to ensure that the endpoint of the channel is in possession of the same private
key that it held when the certificate for the server was first registered. In principle,
SSL can use RSA keys, DES keys, or other cryptographic systems, and can sign or
encrypt messages. The “mode” of connection is negotiated by the client and server
in the first messages of the authentication handshake.

Why do we need to exchange messages at all, given the certificate? It turns out
there even with keying information for the target system, a bit more work must be
done. To illustrate both the protocol and these additional issues, we will imagine a
dialog between two people, Alice and Bob, who wish to create a connection. Bob
has a pair of keys, one public and one private. Bob’s public key has been obtained
by Alice from a trustworthy third party. Suppose that Alice tackles this problem by
first generating a random message and sending it to Bob:

A->B random-message

In an SSL-like protocol, Bob could use his private key to encrypt Alice’s message
and return the encrypted result:

B->A {random-message}bobs-private-key

Alice receives this message and decrypts it by using Bob’s previously published
public key. She compares the decrypted message with the one she originally sent to
Bob; if they match, she knows she’s talking to Bob. As long as Alice does not reuse
the same random message, an imposter lacking Bob’s private key would be unable
to properly encrypt the random message for Alice to check.

There is a problem with the above protocol. Bob may not be comfortable simply
signing an unknown message with his key, because keys are often used for many
purposes and Alice may be trying to trick Bob into signing something he did not
intend to sign, like a loan guarantee. Thus we need to enhance this simple proto-
col to offer Bob a bit more protection. Here is a modified protocol in which Bob
generates the messages he signs (hence he does not need to trust Alice), and uses
digital signatures instead of outright encryption. (We will represent a signature as
an encrypted message digest):

A->B ‘‘Hello, are you Bob?’’
B->A ‘‘Alice, This Is Bob’’ {digest[Alice, This Is Bob]}
bobs-private-key

When he uses this protocol, Bob knows what message he is sending to Alice, and
he does not mind signing it. He sends the unencrypted version of the message first,
“Alice, This Is Bob.” Then he sends a signature: a digest of the string, encrypted
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with his private key. Alice can easily verify that Bob is Bob, and Bob has not signed
anything he does not want to. Recall that in the certificate for Bob, Alice has a secure
version of Bob’s name, and she can check this against the name in the message to
make sure everything matches up. She needs to trust the source of the certificate, of
course, but if that source hands out legitimate certificates, Alice has a secure way to
convince herself she is talking to Bob.

Once Alice has authenticated Bob, she can send Bob a message that only Bob
can decode:

A->B {secret}bobs-public-key

The only way to find the secret is by decrypting the above message with Bob’s
private key. Exchanging a secret is another powerful way of using public key cryp-
tography. Even if the communication between Alice and Bob is being observed,
nobody but Bob can get the secret.

When working with SSL, the secret is typically a freshly generated key that will
now be used between Alice and Bob to sign or encrypt subsequent data on their
shared connection. This technique strengthens Internet security by allowing Alice
and Bob to switch from RSA to a symmetric cryptographic algorithm (such as triple-
DES, RC4, or IDEA). The advantage here is that symmetric cryptography is much
faster than public-key cryptography. Alice knows the secret because she generated
it before sending it to Bob. Bob knows the secret because Bob has the private key
and can decrypt Alice’s message. Because they both know the secret, they can both
initialize a symmetric cipher algorithm and then start sending messages encrypted
with it.

SSL includes one extra mechanism, intended to prevent an intruder from inter-
posing himself between Alice and Bob and interfering with their connection. This
is done by introducing what is called a message authentication code (MAC) into the
protocol. A MAC is a piece of data that is computed by using a secret and some
transmitted data. The digest algorithm described earlier has just the right properties
for building a MAC function that can defend against an intruder:

MAC := Digest[some message, secret]

Because the intruder does not know the secret, he cannot compute the right value
for the digest. Even if the intruder randomly garbles messages, his chance of suc-
cess is small if the digest data are large. For example, by using MD5 (a good cryp-
tographic digest algorithm invented by RSA), Alice and Bob can send 128-bit MAC
values with their messages. No intruder could guess such a large, essentially ran-
dom, number.

Here is the SSL protocol as Netscape implements it, with all of these refinements:

A->B hello
B->A Hi, I’m Bob, bobs-certificate (the certificate

contains bob’s key, and is signed by a CA
that Alice trusts)

A->B Prove it
B->A Alice, This Is Bob {digest[Alice, This Is Bob]}
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bobs-private-key
A->B Bob, here is a secret {secret} bobs-public-key

{some message}secret-key

Finally, SSL protects against “playback” attacks, in which an intruder does not
try to understand messages or to modify them, but just passively replays them in
the hope of getting something to happen. For example, if the intruder can capture a
sequence by which Alice asks Bob to unlock a door, the intruder might replay the
sequence later without needing to understand the details, in the hope that Bob will
unlock the door again. The solution is to introduce random elements, called “nonce”
values, from both sides of the conversation. Thus, each interaction between Alice
and Bob will be different from any previous one, and any replay attack will fail
almost immediately.

If the SSL protocol is placed side-by-side with the Kerberos protocol, one can
see that the SSL approach is simultaneously similar and different from the Kerberos
one. Both rely upon a trusted certificate authority, which provides certificates that
can be used to establish connections to a server whose identity can be trusted, to the
extent that the CA itself can be trusted. In Kerberos, the client authenticates itself
to the CA, and the resulting certificate allows the server to authenticate the client
as well as vice versa. SSL does not worry about this, and in fact does not bother to
authenticate the client at all: the goal is to convince a human client that it is safe
to give his or her credit card information to Fromages.com. If we are in a situation
where the identity of the client is also an issue, the server might require a login prior
to permitting transactions, so we can enhance the basic SSL guarantees fairly easily.

One interesting question concerns the way that hardware like the Intel Palladium
architecture, in which the processor itself possesses a secret key, could integrate
with SSL security. With this type of hardware, it becomes feasible for the client to
“prove” to the server that he or she is using such-and-such a platform. The server
could then use this information as part of its policies, for example by granting ac-
cess to certain media files and denying access to others, on the basis of the client’s
previously negotiated access permissions and the rules applicable to that particular
platform. Exploiting this option opens all sorts of avenues for the research commu-
nity, and one can anticipate a flurry of results over the next few years.

18.5 Security Policy Languages

An important and active research topic concerns the challenge of representing a non-
trivial security policy and using it to determine whether or to authorize an action
at runtime. To understand this issue, consider the way that security works in the
real world, say in a hospital. Certain people are authorized to access the pharmacy
stockroom, for example. These people were first cleared by the hospital security
manager, who issued them with an appropriate badge. The manager reports to the
Vice President for Operations, and this person reports to the CEO and Board of
Directors. They, in turn, have legal responsibilities defined under the state charter
that incorporated the hospital as a non-profit health center.
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This example traces just one chain of authority within the organization – from
the top down, we could say that the state gave the hospital certain rights, such as the
right to stockpile medications, and the right to authorize individuals to access that
stockpile. The hospital delegated rights in a chain that ultimately authorizes such
and such a pharmacist to enter that room to retrieve a needed medication.

Complex organizations have many forms of trust. In addition to the hierarchical
trust delegation example we have just seen, many organizations have an internal
structure in which divisions have distinct roles. Perhaps, the consulting division is
allowed to make stock evaluations, but must be kept completely independent of the
investment division, which invests in stocks. In our hospital, the records-keeping
division should not be accessible to the computer systems used by patients, visitors
and volunteers for routine tasks such as finding out what room a patient is in and
when she can be visited.

When organizations compete in some spheres of activity while cooperating on
others, we get even more complex kinds of rule. IBM competes with SAP in some
respects, but perhaps SAP runs IBM computers internally and needs to allow IBM
service representatives in to service those systems, run diagnostic tests on them,
etc. Chapter 3 illustrated some of the subtle issues raised by such situations. Is this
service representative here for a legitimate reason? Did IBM really designate him to
repair the problem? Is he doing the appropriate thing and nothing else?

Existing security policy languages are far more useful for representing and deal-
ing with chains of authorization than with these complex security scenarios. To rep-
resent a chain of authority or a delegation of rights we can use what are called “au-
thentication logics.” A well-known example is Rivest’s SPKI/SDSI language (pro-
nounced “spooky and sudsy”). The language allows one to write down simple rules
such as “John is authorized to open the safe,” or “John trusts Sally to operate the
cash register.” SPKI/SDSI also allows inference—given an elaborate rules database,
one can ask a question such as “Should John open the safe for Sally to deposit the
cash receipts for the evening?” and arrive at a sensible answer (hopefully, “yes”).
However, SPKI/SDSI has limitations (for example, it does not deal all that well
with situations involving mutually distrustful organizations that must cooperate for
a specific task without revealing more about their security policy than desired or
authorizing one-another to have broader rights than intended), and in any case has
not been accepted by any very large community as a standard.

Making matters far more complex, many organizations are reluctant to share their
security policies except on a need to know basis. Suppose that John presents himself
at the FBI and states that he works for the CIA and has been asked to review the
FBI’s records associated with a terrorism investigation. Not only do we see all the
issues just mentioned, but this “disclosure” question now also arises. The CIA will
have a mechanism by which the FBI can confirm that John is a legitimate CIA
representative and has been tasked to perform the study in question, but will not
want to disclose other “unrelated” information, such as John’s roles within the CIA,
or those of other CIA agents unrelated to John. SPKI/SDSI, however, and other
security languages too, assumes that the policy “database” will be placed into the
public. Applied to our situation, the CIA would need to publish a complete list of
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all its agents and all their security permissions. Clearly, such an approach will not
fly—yet we do not have any real alternatives today.

We run into the problem that unless a technology is very powerful, very sensitive
to the possible concerns of its users, and also widely used as a standard, it will not
be all that useful. After all, any one developer, say of a Web Services application,
deals with just a tiny corner of the system. Unless everyone uses the same security
language and standards, nobody will have the ability to even express their little
corner of the security requirements and policies. At the time of this writing, any
comprehensive security policy language seems remote.

Readers interested in learning more about SPKI/SDSI should consult the Web
Site maintained by the MIT group that developed the system: http://theory.lcs.mit.
edu/~cis/sdsi.html.

18.6 On-The-Fly Security

A rather popular style of security applies some form of security policy on the fly.
We see this in a firewall, where as messages travel in or out of a system, the firewall
checks them against a database of security rules and decides, on-the-fly, whether to
allow the message through or to block it. Similarly, languages such as Java and C#
enforce security rules at runtime, limiting the active program to only access objects
for which it has valid handles. These mechanisms can be quite effective in dealing
with what might be called low-level security considerations. They are less useful in
dealing with complex requirements arising from the security needs of the applica-
tion itself. For example, if an application is allowed to create files, one could run
into a security issue if some kinds of file, such as files with an extension named
“.lock,” have a special meaning for some programs. Particularly if the security con-
cern arises from an application that was developed by a third party, one runs into
problems using vendor-supplied security mechanisms to enforce the special rules
associated with the application’s security needs.

Some researchers have begun to experiment with tackling this problem by ex-
tending the mechanisms seen in firewalls for use in running programs. The idea can
be traced to work by Steve Lucco and Brian Bershad. Lucco’s work was concerned
with editing already compiled programs at the object code layer to insert behavioral
checks, for example to prevent a piece of code from accessing objects outside its
legitimate address space. Brian Bershad’s project, SPIN, was concerned with pro-
tecting the operating system from malicious (or buggy) behavior by applications that
need to be downloaded into the kernel, such as a device driver. Both systems aim at
allowing the user to benefit from high performance by loading untrusted code right
into the address space of some sort of sensitive system service and yet protecting
themselves against undesired behavior.

Fred Schneider has taken this idea even further in work underway at Cornell.
Schneider’s approach is to represent security policy in a simple database that can
be used to insert protective mechanisms (firewall style) right into applications, in-
tervening at the layer where the application interacts with the network or the sur-
rounding environment. If the policy says, for example, that users lacking security
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clearance must not access classified documents, Schneider would modify the pro-
gram itself, at runtime, to ensure that each operation that accesses any kind of object
is filtered to ensure that if the actor lacks a clearance, the object is not a classified
one. Since the program was built without knowledge of the security policy and pro-
tective mechanisms, the belief is that this sort of fine-grained firewall can give a
degree of customized protection not otherwise feasible.

Combined with work on security policy languages and inference systems, like
SPKI/SDSI, one can see hope for a truly comprehensive approach to security pol-
icy management and enforcement at some point in the future. We are beginning
to understand the mechanisms and beginning to sort out the complexity of simply
representing security policy and desires. Yet we are also very far from having the
whole story in hand. Developer’s of Web Services systems will find themselves in
the thick of it: They will often need to enforce corporate security policies, but will
lack the kind of standardized, powerful, and widely used mechanisms that might
make this straightforward. As a result the developer will be on his or her toes, and
in fact is likely to overlook important issues. Even if not, security is an evolving
concept: the security policy for a small company doing military development under
a classified contract may change drastically when that company is acquired by Boe-
ing, a large company doing many kinds of work. An application built by the small
company may not be so easily extended to cover the complex scenarios that can
arise at the large one later. Thus, new exposures can creep in, even when a system is
initially extremely secure. Schneider’s approach, in some future mature and widely
used form, could address such a need—but again, we are probably decades from
that point today.

18.7 Availability and Security

Research on the introduction of availability guarantees into Kerberos-based (or SSL-
based) architectures has revealed considerable potential for overcoming the avail-
ability limitations of the basic Kerberos approach. As we have seen, Kerberos and
SSL are both dependent on the availability of their authentication servers for the
generation of new protection keys. Should a server fail or become partitioned away
from the applications depending on it, the establishment of new channels and the
renewal of keys for old channels will cease to be possible, eventually shutting down
the system.

In a Ph.D. dissertation based on an early version of the Horus system, Reiter
showed that process groups could be used to build highly available authentication
servers (see Reiter 1993, 1994a, 1994b; Reiter et al. 1992, 1994). His work in-
cluded a secure join protocol for adding new processes to such a group; methods for
securely replicating data and for securing the ordering properties of a group com-
munication primitive (including the causal property); and an analysis of availability
issues, which occur in key distribution when such a server is employed. Interest-
ingly, Reiter’s approach does not require that the time service used in a system such
as Kerberos be replicated: His techniques have a very weak dependency on time.
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Process group technologies permitted Reiter to propose a number of exotic new
security options as well. Still working with Horus, he explored the use of split secret
mechanisms to ensure that in a group of n processes (see Desmedt 1988; Desmedt et
al. 1992; Frankel 1989; Frankel and Desmedt 1992; Herlihy and Tygar 1987; Laih
and Harn 1991), the availability of any n − k members would suffice to maintain
secure and available access to that group. In this work, Reiter uses a state machine
approach: The individual members have identical states and respond to incoming
requests in an identical manner. Accordingly, his focus was on implementing state
machines in environments with intruders and on signing responses in such a way that
n − k signatures by members would be recognizable as a group signature carrying
the authority of the group as a whole.

A related approach can be developed in which the servers split a secret in such
a manner that none of the servers in the group has access to the full data, and yet
clients can reconstruct these data provided that n − k or more of the servers are
correct. Such a split secret scheme might be useful if the group needs to maintain a
secret that none of its individual members can be trusted to manage appropriately.

Techniques such as these can be carried in many directions. Reiter, after leaving
the Horus project, started work on a system called Rampart at AT&T (see Reiter
1996). Rampart provides secure group functionality under assumptions of Byzan-
tine failures and is used to build extremely secure group-based mechanisms for use
by less stringently secured applications in a more general setting—for example,
Rampart could be the basis of an authentication service, a service used to maintain
billing information in a shared environment, a digital cash technology, or a strongly
secured firewall technology.

More recently, Reiter and Malkhi have worked with Byzantine Quorum meth-
ods. These approaches form a group of N processes in such a way that data can
be read or updated using just O(sqrt(N)) members, and are also able to tolerate
Byzantine failures. Authentication services stand out as one of the first settings that
could benefit from such a technology.

Cooper, also working with Horus, has explored the use of process groups as
a blinding mechanism. The concept here originated with work by Chaum, who
showed how privacy can be enforced in distributed systems by mixing informa-
tion from many sources in a manner that prevents an intruder from matching an
individual data item to its source or tracing a data item from source to destination
(see Chaum 1981). Cooper’s work shows how a replicated service can actually mix
up the contents of messages from multiple sources to create a private and secure
e-mail repository (see Cooper 1994). In his approach, the process group-based mail
repository service stores mail on behalf of many users. A protocol is given for plac-
ing mail into the service, retrieving mail from it, and for dealing with vacations; the
scheme offers privacy (intruders cannot determine sources and destinations of mes-
sages) and security (intruders cannot see the contents of messages) under a variety
of attacks and can also be made fault tolerant through replication. More recently,
Mazieres developed a peer-to-peer system using similar ideas. His Tangler system
mixes data together in ways that maintain privacy of the publisher, privacy of access
and security of the data itself.
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Intended for large-scale mobile applications, Cooper’s work would permit ex-
changing messages between processes in a large office complex or a city without
revealing the physical location of the principals—however, this type of communica-
tion is notoriously insecure. Maziere’s Tangler system aims at individuals concerned
about their right to free speech (and also at individuals hoping to share files in ways
that the government might find very hard to regulate). And these are hardly the only
such efforts. The emergence of digital commerce may expose technology users to
very serious intrusions on their privacy and finances. Work such as that done by
Reiter, Chaum, Mazieres and Cooper suggests that security and privacy should be
possible even with the levels of availability that will be needed when initiating com-
mercial transactions from mobile devices.

Later in this book we will discuss some recent work on using Byzantine Agree-
ment protocols to achieve security in certain types of replicated service, and also
work on security in peer-to-peer systems. To avoid repetition, we defer these topics
until later sections.

18.8 Related Reading

Chapter 3 reviewed limitations of existing security models. See also Trust in Cy-
berspace, a National Academy of Sciences report edited by F. Schneider, which
discusses capabilities and limitations of modern security architectures.

On Kerberos (see Schiller 1994; Steiner et al. 1988).
On authorization, we highly recommend reading the paper by Mitchell et al. (Li

et al. 2002) in which John Mitchell (Stanford) and two colleagues create and then
demonstrate a very simple and elegant credentials-based authorizaton logic.

On associated theory (see Bellovin and Merritt 1990; Lampson et al. 1992).
On RSA and DES (see Denning 1984; Desmedt 1988; Diffie and Hellman 1979;

Rivest et al. 1978).
On Rampart (see Reiter 1993, 1994a; Reiter et al. 1992, 1994).
On split-key cryptographic techniques and associated theory (see Desmedt 1988;

Desmedt et al. 1992; Frankel 1989; Frankel and Desmedt 1992; Herlihy and Tygar
1987; Laih and Harn 1991).

On mixing techniques (see Chaum 1981; Cho and Birman 1994; Cooper 1994).
On the Secure Socket Layer protocol: Netscape originally developed this proto-

col and maintains very clear materials online. The protocol itself is defined by RFC
2246 (Transport Layer Security) and RFC 2818 (HTTPS over TLS).

Interested readers should also revisit Chap. 10, where we discussed Castro and
Liskov’s recent work on introducing Byzantine fault tolerance in data replication
systems. (See Castro and Liskov 2002.)





19Clock Synchronization and Synchronous
Systems

Previous chapters of this book have made a number of uses of clocks or time in
distributed protocols. In this chapter, we look more closely at the underlying is-
sues. Our focus is on aspects of real-time computing that are specific to distributed
protocols and systems.

19.1 Clock Synchronization

Clock synchronization is an example of a topic that until the recent past represented
an important area for distributed system research (see Clegg and Marzullo 1996;
Cristian 1989; Cristian and Fetzer 1994; Kopetz and Ochsenreiter 1987; Lamport
1984; Lamport and Melliar-Smith 1985; Marzullo 1984; Srikanth and Toueg 1987;
Verissimo 2003); overviews of the field can be found in Liskov (1993), Simons et al.
(1990). The introduction of the global positioning system, in the early 1990s, greatly
changed the situation. As recently as five years ago, a book such as this would have
treated the problem in considerable detail, to the benefit of the reader, because the
topic is an elegant one and the clock-based protocols that have been proposed are
interesting to read and analyze. Today, however, it seems more appropriate to touch
only briefly on the subject.

The general problem of clock synchronization occurs because the computers in
a distributed system typically use internal clocks as their primary time source. On
most systems, these clocks are accurate to within a few seconds per day, but there
can be surprising exceptions to the rule. PCs, for example, may operate in power-
saving modes, in which even the clock is slowed down or stopped, making it im-
possible for the system to gauge real time reliably. At the other end of the spectrum,
the global positioning system (GPS) has introduced an inexpensive way to obtain
accurate timing information using a radio receiver; time obtained in this manner
is accurate to within a few milliseconds unless the GPS signal itself is distorted
by unusual atmospheric conditions or problems with the antenna used to receive
the signal. Many systems connect to some source of accurate time on the Internet,
then use a protocol such as NNTP (an Internet standard for time synchronization)
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Fig. 19.1 The global
positioning system is a
satellite network that
broadcasts highly accurate
time values worldwide.
Although intended for
accurate position location,
GPS systems are also making
accurate real-time
information available at low
cost

to obtain further accuracy, yielding synchronization to within a few tens of millisec-
onds. This level of synchronization is adequate for a great many embedded systems
uses. For example, Break-out 19.1 discusses the MARS system, which uses clock
synchronization for real-time control. We cite MARS because the work focused on
distributed coordination with time-based protocols, but there is a huge body of re-
search around the broader issues associated with time-driven computing; indeed, far
more than we can really cover in the space available in this text.

Traditionally, clock synchronization was treated in the context of a group of
peers, each possessing an equivalent local clock, with known accuracy and drift
properties. The goal in such a system was typically to design an agreement protocol
by which the clocks could be kept as close as possible to real time and with which
the tendency of individual clocks to drift (either from one another and/or relative
to real time) could be controlled. To accomplish this, processes would periodically
exchange time readings, running a protocol by which a software clock could be
constructed having substantially better properties than that of any of the individual
participating programs—with the potential to overcome outright failures whereby a
clock might drift at an excessive rate or return completely erroneous values.

Key parameters to such a protocol are the expected and maximum communi-
cation latencies of the system. It can be shown that these values limit the quality
of clock synchronization achievable in a system by introducing uncertainty in the
values exchanged between processes—for example, if the latency of the commu-
nication system between p and q is known to vary in the range [0, ε], any clock
reading that p sends to q will potentially be aged by ε time units by the time q

receives it. When latency is also bounded below, a method developed by Verissimo
(briefly presented here) can achieve clock precisions bounded by the variation in
latency. In light of the high speed of modern communication systems, these limits
represent a remarkably high degree of synchronization: It is rarely necessary to time
events to within accuracies of a millisecond or less, but these limits tell us that it
would be possible to synchronize clocks to that degree if desired. Indeed, we will
see precisely how it could be done shortly.
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19.1 MARS: A Distributed System for Real-Time Control
The MARS system uses clock synchronization as the basis of an efficient
fault tolerance method, implemented using pairs of processing components
interconnected by redundant communication links. The basic approach is as
follows (see Damm et al. 1989; Kopetz and Ochsenreiter 1987; Kopetz and
Verissimo 1993).
A very high quality of clock synchronization is achieved using a synchro-
nization method that resides close to the hardware (a broadcast-style bus).
Implemented in part using a special-purpose device controller, clocks can be
synchronized to well under a millisecond and, if a source of accurate timing
information is available, can be both precise and accurate to within this degree
of precision.
Applications of MARS consist of directly controlled hardware, such as
robotic units or components of a vehicle. Each processor is duplicated, as
is the program that runs on it, and each action is taken redundantly. Normally,
every message will be sent four times: once by each processor on each mes-
sage bus. The architecture is completely deterministic in the sense that all
processes see the same events in the same order and base actions on synchro-
nized temporal information in such a way that even clock readings will be
identical when identical tasks are performed. Software tools for scheduling
periodic actions and for performing actions after a timer expires are provided
by the MARS operating system, which is a very simple execution environ-
ment concerned primarily with scheduling and message passing.
MARS is designed for very simple control programs and assumes that these
programs fail by halting (the programs are expected to self-check their actions
for sanity and shut down if an error is detected). In the event that a component
does fail, this can be detected by the absence of messages from it or by their
late arrival. Such a failed component is taken off-line for replacement and
reintegrated into the system the next time it is restarted from scratch. These
assumptions are typical of in-flight systems for aircraft and factory-floor pro-
cess control systems.
Although MARS is not a particularly elaborate or general technology, it is
extremely effective within its domain of intended use. The assumptions made
are felt to be reasonable ones for this class of application, and although there
are limitations on the classes of failures that MARS can tolerate, the system
is also remarkably simple and modular, benefiting from precisely those lim-
itations and assumptions. The performance of the system is extremely good
for the same reasons.

Modern computing systems face a form of clock synchronization problem that
is easier to solve than the most general version of the problem. If such systems
make use of time at all, it is common to introduce two or more GPS receivers—
in this manner creating a number of system time sources. Devices consisting of
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Accuracy is a characterization of the degree to which a correct clock can differ from an exter-
nal clock that gives the true time. A clock synchronization protocol guaranteeing highly ac-
curate clocks thus provides the assurance that a correct clock will return a value within some
known maximum error of the value that the external clock would return. In some settings,
accuracy is expressed as an absolute bound; in others, accuracy is expressed as a maximum
rate of drift-in this case, the accuracy of the clock at a given time is a function of how long
the clock has been free-running since the last round of the synchronization protocol.
Skew is a measure of the difference between clock readings for a pair of processes whose
clocks have been sampled at the same instant in real time.
Precision is a characterization of the degree to which any pair of correct clocks can differ
over time. As with accuracy, a precision may be given as a constant upper bound on the skew
or as a maximum rate of drift of the skews for pairs of correct clocks.

Fig. 19.2 Definitions of accuracy, skew, and precision for synchronized clocks in distributed set-
tings

nothing more than a GPS receiver and a network interface can, for example, be
placed directly on a shared communication bus. The machines sharing that bus will
now receive time packets at some frequency, observing identical values at nearly
identical time. (See Fig. 19.1.)

If the device driver associated with the network device is able to identify these
incoming time packets, it can be used to set the local clock of the host machine to
extremely high precision; if not, an application should be able to do so with reason-
able accuracy. Given data for the average access and propagation delays for packets
sent over the communication hardware, the associated latency can be added to the
incoming time value, producing an even more accurate result. In such a manner,
systems in which real time is important can synchronize processor clocks to within
fractions of a millisecond, obviating the need for any sophisticated application-level
synchronization algorithm. After all, the delays associated with passing a message
through an operating system up to the application, scheduling the application pro-
cess if it were in a blocked state, and paging in the event of a possible page fault
are substantial compared with the clock accuracy achievable in this manner. More-
over, it is very unlikely that a GPS time source would fail other than by crashing. If
noncrash failures are a concern, a simple solution is to collect sets of readings from
three GPS sources, exclude the outlying values, and take the remaining value as the
correct one. (See Fig. 19.2 for definitions of some useful terms.)

In light of this development, it has become desirable to consider distributed com-
puting systems as falling into two classes. Systems in which time is important for
reliability can readily include accurate time sources and should do so. Systems in
which time is not important for reliability should be designed to avoid all use of
workstation clock values, using elapsed time on a local clock to trigger timer-based
events such as retransmission of messages or timeout, but not exchanging time val-
ues between processes or making spurious use of time. For the purposes of such
elapsed timers, the clocks on typical processors are more than adequate: A clock
that is accurate to a few seconds per day will measure a 100 ms timeout with im-
pressive accuracy.
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Where clocks are known to drift, Verissimo and Rodrigues have suggested an
elegant method for maintaining very precise clocks (see Verissimo and Rodrigues
1992); see also Clegg and Marzullo (1996). This protocol, call a-posteriori clock
synchronization, operates roughly as follows. A process other than the GPS receiver
initiates clock synchronization periodically (for fault tolerance, two or more pro-
cesses can run the algorithm concurrently). Upon deciding to synchronize clocks,
this process sends out a resynchronize message, including its own clock value in the
message and setting this value as close as possible to when the message is transmit-
ted on the wire—for example, the device driver can set the clock field in the header
of an outgoing message just before setting up the DMA transfer to the network.

Upon arrival in destination machines, each recipient notes its local clock value,
again doing this as close as possible to the wire. The recipients send back messages
containing their clock values at the time of the receipt. The difference between these
measured clock values and that of the initiator will be latency from the initiator to
the receivers plus the drift of the recipient’s clock relative to the clock of the initiator.
For example, suppose the initiator believes it to be three o’clock. It sends out this
value over the LAN to a nearby machine. After a latency (communication delay)
of 1 ms, that machine receives the clock value and compares it with its own clock,
discovering its clock to be smaller by 31 ms. If we “knew” the latency (and we do
not), we could now deduce that the recipients clock is running 30 ms slower than
that of the initiator. Similarly, a computed difference of 121 ms would correspond to
a recipient running 120 ms “ahead” of the initiator, assuming that the latency from
initiator to recipient was still 1 ms. Of course in a real LAN, communication latency
is somewhat variable. Thus successive runs of the protocol might result in computed
“clock skews” varying slightly from these nominal values: perhaps −31.050 ms, or
120.980 ms. And making matters worse, clocks may be drifting as our protocol
executes.

In the protocol proposed by Verissimo and Rodriguez, the synchronization al-
gorithm selects one of the participants as the official clock of the system. It does
so either by selecting a value returned from a process with a GPS receiver, if one
is included, or by sorting the returned differences and selecting the median. It sub-
tracts this value from the other differences. The vector will now have small numbers
in it if, as assumed, the latency from initiator to participants if fairly constant over
the set. The values in the vector will represent the distance that the corresponding
participant’s clock has drifted with respect to the reference clock. Given an estimate
of the message latency between the reference process and the initiator, the initiator
can also compute the drift of its own clock—for example, a process may learn that
its clock has drifted by −32 ms since the last synchronization event. Any sort of
reliable multicast protocol can be used to return the correction factors to the partic-
ipants.

To actually correct a clock that has drifted, it is common to use an idea intro-
duced by Srikanth and Toueg. The approach involves gradually compensating for
the drift under the assumption that the rate of drift is constant. Thus, if a process has
drifted 120 ms over a one-minute period, the clock might be modified in software to
introduce a compensating drift rate of −240 ms over the next minute, in this man-
ner correcting the original 120 ms and overcoming the continuing 120 ms drift of its
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clock during the period. Such an adjustment occurs gradually, avoiding noticeable
jumps in the clock value that might confuse an application program.

The above discussion has oversimplified the protocol: The method is actually
more complicated because it needs to account for a variety of possible failure modes;
this is done by running several rounds of the protocol and selecting, from among the
candidate clocks appearing best in each round, that round and clock for which the
overall expected precision and accuracy is likely to be best.

Verissimo and Rodrigues’s algorithm is optimally precise but not necessarily the
best for obtaining optimal accuracy: The best-known solution to that problem is the
protocol of Srikanth and Toueg mentioned above. However, when a GPS receiver is
present in a distributed system having a standard broadcast-style LAN architecture,
the a-posteriori method will be optimal in both respects—accuracy and precision—
with clock accuracies comparable in magnitude to the variation in message latencies
from initiator to recipients. These variations can be extremely small: Numbers in
the tens of microseconds are typical. Thus, in a worldwide environment with GPS
receivers, one can imagine an inexpensive software and hardware combination per-
mitting processes anywhere in the world to measure time accurately to a few tens
of microseconds. Accuracies such as this are adequate for even very demanding
real-time uses.

Unfortunately, neither of these methods is actually employed by typical com-
mercial computing systems. At the time of this writing, the situation is best char-
acterized as a transitional one. There are well-known and relatively standard soft-
ware clock synchronization solutions available for most networks, but the standards
rarely span multiple vendor systems. Heterogeneous networks are thus likely to ex-
hibit considerable time drift from processor to processor. Moreover, the clock syn-
chronization mechanisms built into standard operating systems often run over the
Internet, where latencies between the user’s computer and a trusted clock can range
from tens to hundreds of milliseconds. A result is that the average PC or workstation
has a clock that can be trusted at a resolution of seconds or tens of seconds, but not to
a higher resolution. This turns out to be fine for such uses as remembering to renew
a lease on a network resource or a lock on a file, or timestamping a file when it is
accessed or modified; developers tackling problems in which finer-grained temporal
information is needed should consider adding GPS units to their machines.

19.2 Timed-Asynchronous Protocols

Given a network of computers that share an accurate time source, it is possible
to design broadcast protocols to simultaneously guarantee real-time properties as
well as other properties, such as failure-atomicity or totally ordered delivery. The
best-known work in this area is that of Cristian, Aghili, Strong, and Dolev and is
widely cited as the CASD protocol suite or the �-T atomic broadcast protocols (see
Cristian et al. 1985, 1990). These protocols are designed for a static membership
model, although Cristian later extended the network model to dynamically track the
formation and merging of components in the event of network partitioning failures,
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again with real-time guarantees on the resulting protocols. In the remainder of this
section, we present these protocols in the simple case where processes fail only by
crashing or by having clocks that lie outside of the acceptable range for correct
clocks—where messages are lost but not corrupted. The protocols have often been
called synchronous, but Cristian currently favors the term “timed asynchronous”
(see Cristian and Schmuck 1995), and this is the one we use here.

The CASD protocols seek to guarantee that in a time period during which a set of
processes is continuously operational and connected, this set will deliver the same
messages at the same time and in the same order. Two caveats apply. First, “same
time” must be understood to be limited by the clock skew: Because processor clocks
may differ by as much as ε, two correct processors undertaking to perform the same
action at the same time may in fact do so as much as ε time units apart. Additionally,
and this may seem a bit confusing on first reading, a process may not be able to
detect that its own clock is incorrect. In effect, a process may be considered “faulty”
by the system and yet has no way to know that this is the case (in contrast, if a
virtual synchrony system considers a process faulty, that process is excluded from
the system and will certainly find out). The importance of this is that when a process
is faulty, the guarantees of the protocol no longer apply to it. So, if process a receives
a message m we know that if the system considers a to be healthy, m was delivered
to a at the same time that it was delivered to any other healthy process. But if a is
considered unhealthy (and as noted before, a has no way to detect this), all bets are
off. We will see how this can complicate the job of the developer who works with
CASD shortly.

We start by considering the simple scenario of a network consisting of a collec-
tion of n processes, k of which may be faulty. The CASD protocol is designed for
a network in which packets must be routed; the network diameter, d , is the maxi-
mum number of hops a packet may have to take to reach a destination node from
a source node. It is understood that failures will not cause the network to become
disconnected. Although individual packets can be lost in the network, it is assumed
that there is a known limit on the number of packets that will actually be lost in any
single run of the protocol. Finally, multicast networks are not modeled as such: An
Ethernet or FDDI is treated as a set of point-to-point links.

The CASD protocol operates as follows. A process (which may itself be faulty)
creates a message and labels it with a timestamp, t (from its local clock), and its pro-
cess identifier. It then forwards the message to all processors reachable over commu-
nication links directly connected to it. These processes accept incoming messages.
A message is discarded if it is a duplicate of a message that has been seen previously
or if the timestamp on the message falls outside a range of currently feasible valid
timestamps. Otherwise, the incoming message is relayed over all communication
links except the one on which it was received. This results in the exchange of O(n2)

messages, as illustrated in Fig. 19.3.
A process holding a message waits until time t + � on its local clock (here, t is

the time when the message was sent) and then delivers it in the order determined
by the sender’s timestamp, breaking ties using the processor ID of the sender. For
suitable validity limits and �, this protocol can be shown to overcome crash failures,
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Fig. 19.3 In the CASD protocol, messages are delivered with real-time guarantees despite a va-
riety of possible failures. In this example for a fully connected network (d = 1), processes p0 and
p1 are faulty and send the message only to one destination each. p2 and p3 are correct but expe-
rience communication failures, which prevent the message from being forwarded to the full set of
correct processors. Eventually, however, the full set of possible failures has been exhausted and the
message reaches all correct destinations even if the execution is a worst-case one. In this example,
the message finally reaches its last destination at time t + a. The processors now delay delivery
of the message under a best-case/worst-case analysis, whereby each process reasons that it may
have received the message in the minimum possible time but that others may receive it after the
maximum possible time and yet assume that they too had received the message after a minimal
delay. When this delay has elapsed, all correct processes know that all other correct processes have
the message and are prepared to deliver it; delivery then takes place during a period bounded above
and below by the clock synchronization constant e (shown as [t + b, t + c] in the figure). Incorrect
processes may fail to deliver the message, as in the case of p1; may deliver outside of the window,
as does p0; or may deliver messages rejected by all correct processes

limited numbers of communication failures, and incorrect clock values on the part
of the sender or intermediary relay processes.

The calculation of the parameter � is based on the following reasoning: For the
range of behaviors possible in the system, there is a corresponding maximum la-
tency after which a message that originates at a faulty process and that has been
forwarded only by faulty processes finally reaches a correct process and is accepted
as valid. From this point forward, there is an additional maximum latency before
the message has reached all correct processes, limited by the maximum number of
network packet losses that can occur. Finally, any specific recipient may consider
itself to be the earliest of the correct processes to have received the message and
will assume that other correct processes will be the last to receive a copy. From this
analysis, a value can be assigned to � such that at time t +�, every correct process
will have a copy of the message and will know that all other correct processes also
have a copy. It is therefore safe to deliver the message at time t + �: The other
processes will do so as well, within a time skew of ε, corresponding to the maxi-
mum difference in clock values for any two correct processes. This is illustrated in
Fig. 19.3, where time t + b corresponds to t + � − ε/2 and t + c to t + � + ε/2.

Although we will not develop the actual formulas here, because the analysis
would be fairly long, it is not hard to develop a basic intuition into the reasoning
behind this protocol. If we are safe in assuming that there are at most f faulty pro-
cesses in the network and that the network itself loses no more than k packets during
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Fig. 19.4 A run of the CASD protocol in which no failures occur. After a flurry of message
exchanges during which O(n2) messages are sent and received, the protocol lies quiescent until
delivery occurs. The delay to delivery is unaffected by the good fortune of the protocol in having
reached all the participants so rapidly. Notice that as normally presented, the protocol makes no
use of broadcast hardware

Fig. 19.5 More aggressive
parameter settings and
assumptions can substantially
reduce the delay before
delivery occurs

a run of the protocol, it must follow that a broadcast will reach at least one opera-
tional process, which will forward it successfully to every other operational process
within f + k rounds. A process using the protocol simply waits long enough to be
able to deduce that every other process must have a copy of the message, after which
it delivers the message in timestamp order.

Because all the operational processes will have received the same messages and
use the same timestamp values when ordering them for delivery, the delivered mes-
sages are the same and in the same order at all correct processes. However, this may
not be the case at incorrect processes—namely, those for which the various tempo-
ral limits and constants of the analysis do not hold or those that failed to send or
receive messages the protocol requires them to send or receive. (We will say more
about this in a moment, but an illustration of the problem can be seen in Fig. 19.4.)

Clearly, when a protocol such as this one is used in a practical setting, it will be
advantageous to reduce the value of � as much as possible, since � is essentially
a minimum latency for the protocol. For this reason, the CASD protocol is usually
considered in a broadcast network for which the network diameter, d , is 1; processes
and communication are assumed to be quite reliable (hence, these failure limits are
reduced to numbers such as 1); and clocks are assumed to be very closely synchro-
nized for the operational processes in the network. With these sorts of assumptions,
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Fig. 19.6 In this case, overly aggressive parameter settings have caused many processes to be
incorrect in the eyes of the protocol, illustrated by bold intervals on the process timelines (each
process is considered incorrect during a bold interval-for example, because its clock has drifted
too far from the global mean). The real-time and atomicity properties are considerably weakened;
moreover, participating processes have no way to determine if they were correct or incorrect on a
given run of the protocol. Here, the messages that arrive prior to time t + c are considered as valid
by the protocol; the others arrive too late and are ignored by correct processes

�, which would have a value of about three seconds in the local area network used
by the Computer Science Department at Cornell, can be reduced into the range of
100–150 ms. Such a squeezing of the protocol leads to runs such as the one shown
in Fig. 19.5.

We noted that there is a subtle issue associated with the definition of “opera-
tional” in the goals of the CASD protocol. The problem occurs when we consider
a process that is technically faulty because its clock has drifted outside the lim-
its assumed for a correct process; with the clock synchronization methods reviewed
above, this is an unavoidable risk, which grows as the assumed limits become tighter.
This is also true when using Cristian’s recommended clock synchronization proto-
col (see Cristian 1989)—that is, the same actions that we took to reduce � also have
the side-effect of making it more likely that a process will be considered faulty.

Such a process is only faulty in a technical sense. Viewed from above, we can see
that its clock is slightly too fast or too slow, perhaps only five or ten milliseconds
from the admissible range. Internally, the process considers itself quite operational
and would be unable to detect this type of fault even if it tried to do so. Yet, because
it is faulty in the formal sense of violating our conditions on correct processes, the
guarantees of the protocol may no longer hold for such a process: It may deliver
messages that no other process delivered, fail to deliver messages that every other
process delivered successfully, or deliver messages outside the normal time range
within which delivery should have occurred. Even worse, the process may then drift
back into the range considered normal and hence recover to an operational state
immediately after this condition occurs. The outcome might be a run more like the
one shown in Fig. 19.6.

Thus, although the CASD protocol offers strong temporal and fault-tolerant prop-
erties to correct processes, the guarantees of these protocols may appear weaker to a
process using them, because such a process has no way to know, or to learn, whether
or not it is one of the correct ones. In some sense, the protocol has a concept of sys-
tem membership built into it, but this information is not available to the processes
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Fig. 19.7 In the NavTech protocol suite developed by Almeida and Verissimo, periodic back-
ground exchanges of state (dark intervals) cut through the normal message traffic, permitting such
optimizations as early message delivery and offering information for use in overcoming inconsis-
tency. However, short of running a group membership protocol in the background communication
channel, there are limits to the forms of inconsistency that this method can actually detect and
correct

in the system. The effect is to relax all the properties of the protocol suite, which is
perhaps best understood as being probabilistically reliable for this reason.

A stronger statement could be made if failures were detectable so that such a
process could later learn that its state was potentially inconsistent with that of other
processes. There has been some encouraging work on strengthening the properties
of this protocol by layering additional mechanisms over it. Gopal et al., for example,
have shown how the CASD protocols can be extended to guarantee causal ordering
and to overcome some forms of inconsistency (see Gopal et al. 1990). This, however,
slows the protocol down so drastically as to be useless. Another option, explored in
Chap. 21, simply embraces the idea of a protocol that gives probabilistic guarantees
to its users.

In the Portuguese NavTech project, Almeida and Verissimo have explored a class
of protocols that superimpose a background state exchange mechanism on a CASD-
like protocol structure (see Fig. 19.7). In this approach, processes within the system
periodically send snapshots of aspects of their state to one another using unreliable
all-to-all message exchanges over dedicated but low bandwidth links. The resulting
n2 message exchange leaves the correct processes with accurate information about
one another’s states prior to the last message exchange and with partially accurate
information as of the current exchange (the limitation is due to the possibility that
messages may be lost by the communication subsystem). In particular, the sender
of a CASD-style broadcast may now learn that it has reached all its destinations.
During the subsequent exchange of messages, information gained in the previous
exchange can be exploited—for example, to initiate an early delivery of a timed
broadcast protocol. Unfortunately, however, the mechanism does not offer an obvi-
ous way to assist the correct processes in maintaining mutually consistent knowl-
edge concerning which processes are correct and which are not: To accomplish that
goal, one would need to go further by implementing a process group membership
service superimposed on the real-time processes in the system. This limitation is ap-
parent when one looks at possible uses for information that can be gathered through
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such a message exchange: It can be used to adjust protocol parameters in limited
ways, but generally cannot be used to solve problems in which the correct processes
must have mutually consistent views of shared parameters or other forms of repli-
cated state.

It would be interesting to explore an architecture in which real-time protocols
are knowingly superimposed on virtually synchronous process groups, using a high-
priority background channel such as the one introduced in Almeida’s work to sup-
port the virtually synchronous group. With such a hybrid approach, it would be
possible to exclude faulty processes from a system within a known delay after the
fault occurs; adjust protocol parameters such as the delay to delivery by correct
processes, so that the system will adaptively seek out the best possible delay for a
given configuration; or combine the use of coherently replicated data and state with
real-time updates to other forms of data and state. An approach that uses reserved-
capacity, high-priority channels, such as the ones introduced by Almeida, could be
used to support such a solution. At the time of this writing, however the author is
not aware of any project that has implemented such an architecture.

This brings us back to the normal implementation of the CASD protocol suite.
The user of such a protocol must expect that the distributed system as a whole con-
tains processes that have become contaminated—they did not realize it, but their
clocks had drifted outside of the legal bounds, and as a result messages were deliv-
ered differently than at the correct processes. Such a process may have missed some
updates to a replicated object, or seen updates out of order.

Now, keep in mind that nobody “knows” which processes are suffering from such
problems. CASD does not exclude a faulty process from the system in the manner
of the virtual synchrony protocols. Accordingly, a process in an incorrect state can
still initiate new messages, and those will be delivered just like any other multicasts
would be. Indeed, over time, almost any process may be viewed as incorrect for one
or another run of the protocol; hence, contamination is likely to be pervasive and
is capable of spreading. Mechanisms for ensuring that such a system will converge
back into a mutually consistent state should a divergence of states occur are needed
when these protocols are used. However, this problem has never received careful
study. The most common approach is to simply restrict the use of CASD protocols
to forms of information that need not be absolutely correct, or as input to algorithms
that are tolerant of some degree of inconsistency. One should never use them as
the basis of a safety critical decision that must be made consistently at multiple
locations in a system.

The CASD protocols represent an interesting contrast with the virtual synchrony
protocols we discussed earlier in this book. The virtual synchrony protocols tolerate
similar types of failure, but lack any concept of time and offer no temporal delivery
guarantees. On the other hand, they do offer strong logical guarantees. CASD, as
we have now seen, lacks this concept of consistency, but has a very strong temporal
guarantee when used by processes that are operational within its model. Thus, we
have what appears to be a basic tradeoff between logical guarantees and temporal
ones. It is intriguing to speculate that such tradeoffs may be fundamental ones.
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The tradeoff is also noticeable in the delay of the protocol. For large values of �

the CASD protocol provides very strong guarantees, but also has a very large latency
to delivery. This is the converse of the situation for the virtually synchronous Send or
OrderedSend protocol, which does provide very strong guarantees and yet has very
low latency to delivery in the usual case. On the other hand, OrderedSend does not
offer any kind of rigorously specified real-time guarantees, and can sometimes be
slow (e.g., if a view change is occurring when the protocol runs, or if some process is
very slow to acknowledge receipt of messages). CASD, in contrast, is normally slow
to deliver messages but one can formalize its real-time properties. The only way to
guarantee that OrderedSend runs quickly involves classifying many processes as
faulty—a high cost. Similarly, if we try to force CASD to deliver messages rapidly
by using a small value of �, many processes end up inconsistent—also a high cost.

One might characterize the basic difference here as one of pessimism versus opti-
mism. The OrderedSend style of protocols is generally optimistic in its expectations
from the system: It is expected that failures will be relatively uncommon events and
will be optimized for the earliest possible delivery if a failure does occur. These
protocols can give extremely low latency (two or more orders of magnitude better
than the CASD style of protocol) and can be extremely predictable in their behavior
provided that the network load is light, paging and other delays do not occur, and
failures are genuinely infrequent. Indeed, if one could be certain that these condi-
tions held, a protocol such as OrderedSend could be the basis of a real-time system,
and it would perform perhaps thousands of times better than the timed-asynchronous
style of system. But hoping that a condition holds and proving that it holds are two
different matters.

The CASD suite of protocols and other work by Cristian’s group on the timed-
asynchronous model can be viewed as relatively pessimistic, in the sense that for a
given set of assumptions, these protocols are designed to expect and to overcome a
worst-case execution. If CASD is used in a setting where it is known that the number
of failures will be low, the protocol can be optimized to benefit from this. As we have
seen, however, the protocol will only work to the degree that the assumptions are
valid and that most operational processes will be considered as correct. When this
ceases to be the case, the CASD protocols break down and will appear to behave
incorrectly from the point of view of processes that, in the eyes of the system model,
are now considered to flicker in and out of the zone of correct behavior. But the
merit of this protocol suite is that if the assumptions are valid ones, the protocols
are guaranteed to satisfy their real-time properties.

As noted above, Cristian has also worked on group membership in the timed-
asynchronous model. Researchers in the Delta-4 project in Europe have also pro-
posed integrated models in which temporal guarantees and logical guarantees were
integrated into a single protocol suite (see Powell 1991; Rodrigues and Verissimo
1989; Rodrigues et al. 1993, 2000; Verissimo 1993, 1994). For brevity, however, we
will not present these protocols here.
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19.3 Adapting Virtual Synchrony for Real-Time Settings

Friedman has developed a real-time protocol suite for Horus, which works by try-
ing to improve the expected behavior of the virtually synchronous group protocols
rather than by starting with temporal assumptions and deriving provable protocol be-
haviors as in the case of CASD (see Friedman and van Renesse 1995a). Friedman’s
approach yielded a novel extension to the view installation and message-delivery
architecture for Horus, loosely motivated by the Transis idea of distinguishing safe
from unsafe message delivery states. In Friedman’s protocols, “safe” states are those
for which the virtual synchrony properties hold, while “unsafe” ones are states for
which real-time guarantees can be offered but in which weaker properties than the
usual virtual synchrony properties hold.

One way to understand Friedman’s approach is to think of a system in which
each message and view is delivered twice (the data in a message are only copied
to the user’s address space a single time). The initial delivery occurs with real-
time guarantees of bounded latency from sending to reception or bounded delay
from when an event that will change the group view occurs to when that view is
delivered. However, the initial delivery may occur before the virtually synchronous
one. The second delivery has the virtual synchrony properties and may report a
group view different from the initial one, albeit in limited ways (specifically, such
a view can be smaller than the original one but never larger—processes can fail but
not join). The idea is that the application can now select between virtual synchrony
properties and real-time ones, using the real-time delivery event for time-critical
tasks and the virtually synchronous event for tasks in which logical consistency of
the actions by group members are critical. Notice that a similar behavior could be
had by placing a Horus protocol stack running a real-time protocol side by side
in the same processes with a Horus protocol stack supporting virtual synchrony
and sending all events through both stacks. Friedman’s scheme also guarantees that
event orderings in the two stacks will be the same, unless the time constraints make
this impossible; two side-by-side stacks might differ in their event orderings or other
aspects of the execution.

In support of the effort to introduce real-time protocols into Horus, Vogels and
Mosse have investigated the addition of real-time scheduling features to Horus, mes-
sage and thread priorities, and preallocation mechanisms whereby resources needed
for a computation can be pinned down in advance to avoid risk of delay if a needed
resource is not available during a time-critical task.

One possible application of this real-time, fault-tolerant technology addresses
the problem of building a telecommunication switch in which a cluster of comput-
ers control the actions taken as telephone calls are received (Fig. 19.8). Such an
application has a very simple architecture: The switch itself (based on the SS7 ar-
chitecture) sees the incoming call and recognizes the class of telephone numbers as
one requiring special treatment, as in the case of an 800 or 900 number in the United
States. The switch creates a small descriptive message, giving the caller’s telephone
number, the destination, billing information, and a call identification number, and
forwards this to a what is called an intelligent network coprocessor, or IN copro-
cessor. The coprocessor (traditionally implemented using a fault-tolerant computer
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Fig. 19.8 Friedman has experimented with the use of a cluster of computing systems in support
of a demanding real-time telecommunication application. On the left is a single switch, which han-
dles telephone calls in the SS7 switching architecture. Somewhat simplifying the actual setup, we
see local telephones connected to the switch from below and lines connecting to other switches
above. SS7-compatible switches can be connected to adjunct processors, called IN coprocessors,
which provide intelligent routing functionality and implement advanced services on behalf of the
switch—for example, if an 800-number call is received, the coprocessor would determine which
line to rout the call on, and, if call forwarding were in use, the coprocessor would reroute for-
warded calls. Friedman’s architecture uses Horus to support a cluster configuration within the IN
coprocessor, an approach that provides very large scalable memory for the query elements (which
would typically map a telephone directory into memory), load-balancing, and fault tolerance

system) is expected to perform a database query based on the telephone numbers
and to determine the appropriate routing for the call, responding within a limited
amount of time (typically, 100 ms). Typically, the switch will need to handle as
many as 10,000 to 20,000 calls per second, dropping no more than some small per-
centage, and do this randomly even during periods when a failure is being serviced.
The switch must never be down for more than a few seconds per year, although an
individual call may sometimes have a small chance of not going through and may
need to be redialed.

The argument in favor of using a cluster of computers for this purpose is that such
a system potentially has greater computing power (and much more aggregate main
memory) than any single processor could have. This may translate to the ability to
keep a very large database in memory for rapid access (spread among the nodes) or
of executing a more sophisticated query strategy. Moreover, whereas the upgrading
of a fault-tolerant coprocessor may require that the switch be shut down, one can
potentially upgrade a cluster-style computer one node or one program at a time.

Without getting into the details, Friedman has demonstrated that systems such
as Horus can indeed be used to support such a model. He reports on a system
emulating this configuration of telephone switch, servicing 22,000 calls per sec-
ond while dropping no more than 1 to 3 percent even when a failure or recovery
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is actually being serviced (and this was back in 1988—today’s hardware is more
than ten times faster). Friedman’s design involves a pair of external adapter nodes
(EAs), which sense incoming calls and dispatch the corresponding query onto pairs
of query-processing nodes (QEs). Friedman batches requests and uses an innova-
tive real-time, fault-tolerant protocol to optimize for the very high processing loads
characterizing the application (see Friedman and Birman 1996).

To solve this problem, Friedman’s work combines the real-time mechanisms
cited above with a number of other innovations, and it is fair to say that the ap-
plication is not a straightforward one. However, the benefits of being able to use a
cluster-style computing system in this manner could be dramatic: Such systems are
quite inexpensive, and yet they may bring a great deal of performance and flexibil-
ity to the application, which would otherwise be very constrained by the physical
limitations typical of any single-processor solution.

Although cast in the context of a telephone switching application, it should be
noted that the type of real-time, client/server architecture being studied in Fried-
man’s work is much more general. We have seen in earlier chapters of this book that
the great majority of distributed systems have a client/server architecture, and this
is also true for real-time systems, which typically look like client/server systems
with time-critical response deadlines superimposed upon an otherwise conventional
architecture. Thus, Friedman’s work on telephone switching could also be appli-
cable to process control systems, air traffic control systems, and other demanding
applications that combine fault tolerance and real-time constraints.

Other work in this area includes Marzullo’s research on the CORTO system,
which includes such features as periodic process groups. These are process groups
whose members periodically and within a bounded period of real time initiate syn-
chronized actions. Marzullo has studied minimizing the communication overhead
required in support of this periodic model, integrating real-time communication
with other periodic or real-time actions, priority inversion in communication en-
vironments, and other topics in the area.

19.4 Related Reading

On clock synchronization, see the review in Simons et al. (1990); other references
include Cristian (1989), Kopetz and Ochsenreiter (1987), Lamport (1984), Lamport
and Melliar-Smith (1985), Marzullo (1984), Srikanth and Toueg (1987).

On the a-posteriori method (see Clegg and Marzullo 1996; Verissimo and Ro-
drigues 1992).

On the CASD protocol (see Cristian 1996; Cristian and Schmuck 1995; Cristian
et al. 1985, 1990, Gopal et al. 1990).

On the MARS system (see Damm et al. 1989; Kopetz and Ochsenreiter 1987;
Kopetz and Verissimo 1993).

On Delta-4 (see Powell 1991, 1994; Rodrigues and Verissimo 1989; Rodrigues
et al. 1993, 2000; Verissimo 1993, 1994).

On real-time work with Horus (see Friedman and Birman 1996; Friedman and
van Renesse 1995a).
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20.1 Review of the Transactional Model

We first encountered the transactional execution model in Chap. 7, in conjunction
with client/server architectures. As noted at that time, the model draws on a series of
assumptions to arrive at a style of computing that is especially well matched to the
needs of applications operating on databases. In this chapter we consider some of
the details that Chap. 7 did not cover: notably the issues involved in implementing
transactional storage mechanisms and the problems that occur when transactional
architectures are extended to encompass transactional access to distributed objects
in a reliable distributed system.

Without repeating the material covered earlier, it may be useful to start by re-
viewing the transactional model in light of what we have subsequently learned about
other styles of distributed computing and distributed state. Notice first that the as-
sumptions underlying the transactional approach are quite different from those un-
derlying the virtual synchrony model. Transactional applications are expected to
be structured in terms of the basic transactional constructs: begin, read, update, and
commit or abort. They are assumed to have been written in isolation, so that they will
operate correctly when applied to an idle database system in an initially consistent
state. Each transaction, in effect, is a function transforming the database from a con-
sistent state into a new consistent state. The database, for its part, is a well-defined
entity: It manages data objects, has a limited interface by which transactions operate
on it, and manages information using operations with well-understood semantics.

General-purpose distributed systems, and many client/server applications, match
such a model only to a limited degree. The computations performed may or may
not act upon saved data in a database, and even when they do, it will be difficult
to isolate data access operations from other types of message-based interaction and
other types of operation.

The basic reliability goals of the transactional model are tied closely to its pro-
gramming model. The transactional reliability guarantees are basically this: If a
server or client crashes, prior to the commit point of a transaction, a complete roll-
back of the server state will occur—it is as if the transaction had never been exe-
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cuted. There is a strong emphasis on recoverability of the database contents after
a crash: Any committed transaction will have effects that survive repeated server
crashes and restarts. This strong separation of computation from data, coupled with
an emphasis on recoverability (as opposed, for example, to continuous availability),
distinguishes the transactional approach from the process group replication schemes
we have studied in the preceding chapters of this book.

One could ask whether general-purpose distributed programs could not be con-
sidered as transactional programs, in this manner mapping the general case to the
transactional one. This turns out to be very hard to do. General purpose distributed
programs lack a well-defined begin or commit point, and it would not always be
practical to introduce such a structure—sometimes one could do so, but often it
would be difficult. These programs lack a well-defined separation of program (trans-
actional client) from persistent state (database); again, some applications could be
represented this way, but many could not. Indeed, it is not unreasonable to remark
that because of the powerful support that exists for database programming on mod-
ern computer systems, most database applications are, in fact, implemented using
database systems. The applications that are left over are the ones where a database
model either seems unnatural, fails to match some sort of external constraint, or
would lead to extremely inefficient execution. This perspective agues that the dis-
tributed applications of interest to us will probably split into the transactional ones
and others, which are unlikely to match the transactional model even if one tries to
force them into it.

Nonetheless, the virtual synchrony model shares some elements of the transac-
tional one: The serialization ordering of the transactional model is similar to the
view-synchronous addressing and ordered delivery properties of a multicast to a
process group.1 Virtual synchrony can be considered as having substituted the con-
cept of a multicast for the concept of the transaction itself: In virtual synchrony one
talks about a single operation that affects multiple processes, while in transaction
systems one talks about a sequence of read and update operations that are treated as
a single atomic unit. The big difference is that whereas explicit data semantics are
natural in the context of a database, they are absent in the communication-oriented
world we considered when studying the virtual synchrony protocols.

As we examine the transactional approach in more detail, it is important to keep
these similarities and differences in mind. One could imagine using process groups
and group multicast to implement replicated databases, and there have been several

1One can imagine doing a multicast by reading the view of the group and then writing to the
group members and updating the view of the group by writing to the group view. Such a trans-
actional implementation of virtual synchrony would address some aspects of the model, such as
view synchronous addressing, although it would not deal with others, such as the ordered gap-
freedom requirement (Chap. 12). More to the point, it would result in an extremely inefficient style
of distributed computing, because every multicast to a process group would now require a database
update. The analogy, then, is useful because it suggests that the fundamental approaches are closely
related and differ more at the level of how one engineers such systems to maximize performance
than in any more basic way. However, it is not an architecture one would want to implement!
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research projects that have done just this. A great many distributed systems com-
bine transactional aspects with nontransactional ones, using transactions where a
database or persistent data structure is present and using virtual synchrony to main-
tain consistently replicated in-memory structures to coordinate the actions of groups
of processes and so forth. The models are different in their assumptions and goals,
but are not incompatible. Indeed, there has been work on merging the execution
models themselves, although we will not discuss this here.

Perhaps the most important point is the one stated at the start of this chapter:
Transactions focus primarily on recoverability and serializability, while virtual syn-
chrony focuses primarily on order-based consistency guarantees. This shift in em-
phasis has pervasive implications, and even if one could somehow merge the mod-
els, it is likely that they would still be used in different ways. Indeed, it is not un-
common for distributed system engineers to try to simplify their lives, by using
transactions throughout a complex distributed system as its sole source of reliabil-
ity, or by using virtual synchrony throughout, exploiting strongly durable protocols
as the sole source of external consistency. Such approaches are rarely successful.

20.2 Implementation of a Transactional Storage System

In this section we briefly review some of the more important techniques used in
implementing transactional storage systems. Our purpose is not to be exhaustive
or even try to present the best techniques known; there are several excellent books
dedicated to the subject (see Bernstein et al. 1987; Gray 1978; Gray and Reuter
1993). Rather, we focus on basic techniques with the purpose of building insight
into the reliability mechanisms needed when implementing transactional systems.

20.2.1 Write-Ahead Logging

A write-ahead log is a data structure used by a transactional system as a form of
backup for the basic data structures that compose the database itself. Transactional
systems append to the log by writing log records to it. These records can record the
operations that were performed on the database, their outcome (commit or abort),
and can include before or after images of data updated by an operation. The specific
content of the log will depend upon the transactional system itself.

We say that a log satisfies a write-ahead property if there is a mechanism by
which records associated with a particular transaction can be safely and persistently
flushed to disk before (ahead of) updates to data records being done by that transac-
tion. In a typical use of this property, the log will record before images (old values)
before a transaction updates and commits records for that transaction. When the
transaction does an update, the database system will first log the old value of the
record being updated and then update the database record itself on disk. Provided
that the write-ahead property is respected, the actual order of I/O operations done
can potentially be changed to optimize use of the disk. Should the server crash, it
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Fig. 20.1 Overview of a transactional database server. Volatile data are used to maintain a
high-speed cache of database records and for storage of lock records for uncommitted transac-
tions. An updates list and the database itself store the data, while a write-ahead log is used to
enable transactional rollback if an abort occurs and to ensure that updates done by committed
transactions will be atomic and persistent. The log saves before or after images of updated data
and lock records associated with a transaction running its commit protocol. Log records can be
garbage collected after a transaction commits or aborts and the necessary updates to the database
have been applied or rolled out

can recover by reviewing the uncommitted transactions in the log and reinstalling
the original values of any data records these had modified. The transactions them-
selves will now be forced to abort, if they have not already done so. Such an event
rolls back the transactions that have not committed, leaving the committed ones in
place. Later, the log can be garbage collected by cleaning out records for committed
transactions (which will never need to be rolled back) and those for uncommitted
transactions that have been successfully aborted (and hence need not be rolled back
again). (See Fig. 20.1.)

Although a write-ahead log is traditionally managed on the disk itself, there has
been recent research on the use of nonvolatile RAM memory or active replication
techniques to replace the log with some form of less-expensive structure (see Liskov
et al. 1991). Such trends are likely to continue as the relative performance gap be-
tween disks (which seems to have reached a performance limit of approximately
10 ms per disk access for a fast disk and as much as 40 to 50 ms per access for a
slow one) and communication continue to grow.

20.2.2 Persistent Data Seen Through an Updates List

Not all transactional systems perform updates to the persistent database at the time
they are first issued. The decision to do updates directly depends on several fac-
tors; among these are the frequency with which transactions are expected to abort
and the likelihood that the transaction will rewrite the same record repeatedly. The



20.2 Implementation of a Transactional Storage System 591

major alternative to performing direct updates on the database itself is to maintain
some form of updates list in which database records that have been updated are
saved. Each access to the database is first filtered through this updates storage ob-
ject, and if the record being accessed has changed, the changed version is returned.
The database itself is only accessed if the updates list does not contain the desired
item, and any update made to the database is instead applied to this updates list.

The advantage of such a structure is that the database itself can be maintained in a
very efficient search and access structure without requiring costly structural updates
as each operation occurs. Periodically, the database can be updated to merge the
committed updates from the updates list into the persistent part of the database, but
this does not need to be done until there is a convenient time, perhaps while the
database as a whole is under very light load. Moreover, as we will see shortly, the
updates list can be generalized to deal with the nested transactions that occur when
transactional databases are constructed using abstract data types.

The updates list data structure, if present, should not be confused with a cache or
buffer pool. A database cache is a volatile data structure used to accelerate access to
frequently used data items by maintaining them in high-speed memory. The updates
list is a persistent data structure, which is logically part of the database itself. Its role
is to provide the database system with a way of doing database updates without re-
organizing the secondary index and other access structures needed to rapidly access
items in the main portion of the database.

20.2.3 Nondistributed Commit Actions

To commit a transaction, it is necessary to ensure that its effects will be atomic
even if the database server or client program fails during the commit procedure. In
the nondistributed case, the required actions are as follows. First, all log records
associated with updates done by the transaction are forced to the disk, as are lock
records recording the locks currently held by the transaction. Once these actions are
taken, the transaction is prepared to commit. A log record containing the commit
bit is now written to disk; once it is recorded in a persistent manner in the log, the
transaction is said to have committed.

Next, updates done by the transaction are applied to the updates list or database.
In many transactional systems, this updating is done while the transaction is running,
in which case this step (and the forcing of log records to disk) may have already
occurred before the transaction reached the commit point.

Finally, when the updates have all been performed, the locks associated with the
transaction are released and any log records associated with the transaction are freed
for reuse by other transactions. The transaction is now said to be stable.

To abort a transaction, the log records associated with it are scanned and used to
roll back any updates that may have been performed. All locks associated with the
transaction are released, and the log records for the transaction are freed.

In the event that the client process should crash before requesting that the trans-
action commit or abort, the database server may unilaterally abort the transaction.
This is done by executing the abort algorithm and later, if the client ever presents
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additional requests to the server, refusing them and returning an already aborted
exception code.

Finally, in the event that the database server should crash, when it recovers it
must execute a log-recovery procedure before reenabling access to the database.
During this process, any transactions that are not shown as committed are aborted,
and any updates that may have been done are backed out. Notice that if the log
stored before images, backing out updates can be done by simply reinstalling the
previous values of any records that were written by the transaction; this operation
can be done as many times as necessary if the database server crashes repeatedly
before recovering (i.e., the recovery operation is idempotent, meaning that it can be
performed repeatedly with the same effect as if it had been performed only once).

For transactions shown as committed in the log, the database server recovers
by completing the commit procedure and then freeing the log records. Abstractly,
the database server can be thought of as recovering in a state where the committed
transactions continue to hold any locks that they held at the time of the commit; this
will be useful in the case of a distributed transaction on multiple databases.

20.3 Distributed Transactions and Multiphase Commit

When a transaction operates on multiple databases, it is said to be a distributed
transaction. The commit problem now becomes the multiphase commit problem
we discussed in Sect. 10.3. To commit, each participating database server is first
asked to prepare to commit. If the server is unable to enter this state, it votes for
abort; otherwise, it flushes log records and agrees that it is prepared. The transaction
commits only if all the participating servers are prepared to commit; otherwise, it
aborts. For this purpose, the transactional commit protocols presented earlier can be
used without any modifications at all.

In the case of a database server recovery to the prepared state of a transaction, it
is important for the server to act as if that transaction continues to hold any locks
it held at the time it first became prepared to commit (including read locks, even
if the transaction were a read-only one from the perspective of the database server
in question). These locks should continue to be held until the outcome of the com-
mit protocol is known and the transaction can complete by committing or aborting.
When a transaction has read data at a server that subsequently crashed, upon re-
covery any read locks it held at that server will be lost. This means the server might
grant read or update lock requests that it should have delayed pending the commit or
abort of the earlier transaction, a situation easily seen to result in nonserializable ex-
ecutions. Accordingly, the transaction that lost its locks would need to abort. From
this we can see that a distributed transaction must include all database servers it has
accessed in its commit protocol, not just the ones at which it performed updates, and
must verify that locks are still intact at the time of commit, even read locks.
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20.4 Transactions on Replicated Data

A transactional system can replicate data by applying updates to all copies of a
database, while load-balancing queries across the available copies (in a way that
will not change the update serialization order being used). In the most standard
approach, each database server is treated as a separate database, and each update is
performed by updating at least a quorum of replicas. The transaction aborts if fewer
than a quorum of replicas are operational. It should be noted, however, that this
method of replication, although much better known than other methods, performs
poorly in comparison with the more-sophisticated method described in Sect. 20.7.

The reality is that few existing database servers make use of replication for high
availability; therefore, the topic is primarily of academic interest. Transactional sys-
tems that are concerned with availability more often use primary-backup schemes in
which a backup server periodically is passed a log of committed action performed
on a primary server. Such a scheme is faster (because the backup is not included
in the commit protocol), but it also has a window during which updates by com-
mitted transactions can be temporarily lost (e.g., if the log records for a committed
transaction have not yet reached the backup when the primary crashes). When this
occurs, the lost updates are rediscovered later, after the primary recovers, and are
either merged into the database or, if this would be inconsistent with the database
state, user intervention is requested.

Another popular option is to use a spare computer connected by a dual-ported
disk controller to a highly reliable RAID-style disk subsystem. If the primary com-
puter on which the database is running fails, it can be restarted on the backup com-
puter with little delay. The RAID disk system provides a degree of protection against
hardware failures of the stored database in this case.

Although database replication for availability remains uncommon, there is a
small but growing commercial market for systems that support distributed transac-
tions on data spread over multiple sites within an enterprise. The limiting factor for
widespread acceptance of these technologies remains performance. Whereas a non-
replicated, nondistributed transactional system may be able to achieve thousands
or tens of thousands of short update and read transactions per second, distributed
transactional protocols and replication slow such systems to perhaps hundreds of
updates per second. Although the resulting performance is adequate to sustain a
moderately large market of customers, provided that they value high availability or
distributed consistency more than performance, the majority of the database market-
place remains focused on scalable, high-performance systems. Such customers are
apparently prepared to accept the risk of downtime because of hardware or software
crashes to gain an extra factor of 10 to 100 in performance. However, it should again
be noted that process group technology may offer a compromise: combining high
performance with replication for increased availability or scalable parallelism. We
will return to this issue in Sect. 20.7.
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20.5 Nested Transactions

Recall that at the beginning of this book, we suggested that object-oriented dis-
tributed system architectures are a natural match with client/server distributed sys-
tem structures. This raises the question of how transactional reliability can be
adapted to object-oriented distributed systems.

As we saw in Chap. 7, object-oriented distributed systems are typically treated
as being composed of active objects, which invoke operations on passive objects.
To some degree, of course, the distinction is an artificial one, because some passive
objects have active computations associated with them—for example, to rearrange
a data structure for better access behavior. However, to keep this section simple, we
will accept the division. We can now ask if the active objects should be treated as
transactional processes and the passive objects as small database servers.

This perspective leads to what are called nested transactions (see Moss 1982).
The sense in which the transactions are nested is that when an active object invokes
an operation on an abstract object stored within an object-oriented database, that
object may implement the operation by performing a series of operations on some
other, more primitive, database object. An operation that inserts a name into a list
of names maintained in a name server, for example, may be implemented by per-
forming a series of updates on a file server in which the name list and associated
values are actually stored. One now will have a tree-structured perspective on the
transactions themselves, in which each level of object performs a transaction on the
objects below it.

In this a tree, the topmost level corresponds to an active object or program in
the conventional sense. The intermediate levels of code correspond to the execution
of methods (procedures) defined by the passive objects in the database. For these
passive objects, transactions begin with the operation invocation by the invoking
object and end when a result is returned—that is, procedure executions (operation
invocations) are treated as starting with an implicit begin and ending with an im-
plicit commit in the normal return case. Error conditions can be mapped to an abort
outcome. The active object at the very top of the tree, in contrast, is said to begin a
top-level transaction when it is started and to commit when it terminates normally.
A nested transaction is shown in Fig. 20.2.

The nested transaction model can be used for objects that are colocated on a
single object repository or for objects distributed among multiple repositories. In
both cases, the basic elements of the resulting system architecture resemble that of
a single-level transaction system. The details differ, however, because of the need to
extend the concurrency control mechanisms to deal with nesting.

The easiest way to understand nested transactions is to view each subtransac-
tion as a transaction that runs in a context created by its parent transaction and any
committed sibling subtransactions the parent executed prior to it. Thus, operation
op21 in Fig. 20.2 should see a database state that corresponds to having executed
the subtransaction below op1 and committing it, even though the effects of that sub-
transaction will not become permanent and globally visible until the main transac-
tion commits. This approach can be extended to deal with internal concurrency—for
example, if op1 were executed in parallel with op2.
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Fig. 20.2 Nested transaction. The operations are numbered hierarchically: opijk thus represents
the kth suboperation initiated by the j th suboperation initiated by operation i at the top level.
Commit and abort becomes relative in this model, which is the result of work done by Moss and
Liskov

Moss proposed a concept of lock and data version inheritance to accomplish this
goal. In his approach, each subtransaction operates by creating new versions of data
items and acquiring locks, which are inherited by the subtransaction’s immediate
parent when the subtransaction commits or which return to the state prior to when
the subtransaction began if it aborts. These inherited locks and data values are ac-
cessible to other subtransactions of the parent that now retains them, but they remain
inaccessible to transactions outside of its scope. Moss’s Ph.D. dissertation includes
proof that this approach yields a nested version of two-phase locking, which guar-
antees serializable executions.

To implement a nested transaction system, it is usual to start by extending the
updates list and locking subsystems of the database so that it will know about trans-
actional nesting. Abstracting, the resulting architecture is one in which each lock
and each data item are represented as a stack of locks or data items. When a new
subtransaction is spawned, the abstract effect is to push a new copy of each lock
or data item onto the top of the stack. Later, as the subtransaction acquires locks or
updates these data items, the copy at the top of the stack is changed. Finally, when
the subtransaction aborts, the topmost stack element is discarded; if it commits, the
topmost stack item is popped, as well as the one below it, and then the topmost item
is pushed back onto the stack. In a similar manner, the stack of lock records is main-
tained; the one difference is that if a subtransaction obtains a different class of lock
than that held by the parent transaction, the lock is left in the more restrictive of the
lock modes.

In practice, nested transactional systems are designed to be lazy, so the creation of
new versions of data items or new lock records is delayed until absolutely necessary.
Thus, the stack of data items and lock records is not actually generated unless it is
needed to perform operations.

A similar abstraction is used to handle the commit and abort mechanisms. Ab-
stractly, as a nested transaction executes, each level of the transaction tracks the
data servers it visits, maintaining a list of commit participants. In order to commit
or abort, the transaction will interact with the servers on this list. In practice, how-
ever, such an approach would require repeated execution of the multiphase commit
protocols, which will have to run once for each internal node in the transaction tree
and one more time for the root! Clearly, this would be prohibitively expensive.
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To avoid this problem, Liskov’s Argus group proposed an approach in which
commit decisions are deferred, so that only the top-level commit protocol is actu-
ally executed as a multiphase protocol (see Ladin et al. 1990; Liskov and Scheifler
1983; Liskov et al. 1987). Intermediate commits are optimistically assumed suc-
cessful, while aborts are executed directly by informing the commit participants of
the outcome. Now, the issue arises of how to handle an access by a subtransaction to
a lock held by a sibling subtransaction or to a data item updated by a sibling. When
this occurs, a protocol is executed by which the server tracks down a mutual par-
ent and interrogates it about the outcomes, commit or abort, of the full transaction
stack separating the two subtransactions. It then updates the stacks of data items and
locks accordingly and allows the operation to proceed. In the case where a transac-
tion rarely revisits data items, the strategy reduces the cost of the nest transactional
abstraction to the cost of a flat one-level transaction; the benefit is smaller as the
degree of interference increases.

The reader may recall that Liskov’s group also pioneered in the use of optimistic
(or lazy) concurrency control schemes. These approaches, which are analogous to
the use of asynchronous communication in a process group environment, allow a
system to achieve high levels of internal concurrency, improving performance and
processor utilization time by eliminating unneeded wait states—much as an asyn-
chronous multicast eliminates delay when a multicast is sent in favor of later delays
if a message arrives out of order at some destination. At the limit, they converge to-
wards an implementation in which transactions on nonreplicated objects incur little
overhead beyond that of the commit protocol run at the end of the top level trans-
action, while transactions on replicated objects can be done largely asynchronously
but with a similar overhead when the commit point is reached. These costs are low
enough to be tolerable in many distributed settings, and it is likely that at some
future time, a commercially viable, high-performance, object-oriented transaction
technology will emerge as a serious design option for reliable data storage in dis-
tributed computing systems.

20.5.1 Comments on the Nested Transaction Model

Nested transactions were first introduced in the Argus project at MIT (see Moss
1982) and were rapidly adopted by several other research projects, such as Clouds
at the Georgia Institute of Technology and CMU’s TABS and Camelot systems
(see Spector 1985) (predecessors of Encina, a commercial product marketed by
Transarc). The model proved elegant but also difficult to implement efficiently and
sometimes quirky. The current view of this technology is that it works best on
object-oriented databases, which reside mostly on a single-storage server, but that it
is less effective for general-purpose computing in which objects may be widely dis-
tributed and in which the distinction between active and passing objects can become
blurred.

It is worthy of note that the same conclusions have been reached about database
systems. During the mid-1980s, there was a push to develop database operating
systems in which the database would take responsibility for more and more of the
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Fig. 20.3 While a directory is being updated (in this case, the entry corresponding to “Daniel”),
other transactions may be prevented from scanning the associated directory node by locks upon
it, even if they are searching for some other record, such as the one corresponding to “Sarah” or
“Adrian.” Although a number of schemes can be used to work around such problems, they require
sophistication by the developer, who must consider cases that can occur because of concurrency
and arrange for concurrent transactions to cooperate implicitly to avoid inefficient patterns of ex-
ecution. Such metadesign considerations run counter to the principle of independent design on
which transactions are based and make the overall approach hard to use in general-purpose oper-
ating system settings

tasks traditionally handled by a general-purpose operating system. This trend cul-
minated in systems such as IBM’s AS/400 database server products, which achieve
an extremely high level of integration between database and operation system func-
tionality. Yet there are many communication applications that suffer a heavy perfor-
mance penalty in these architectures, because direct point-to-point messages must
be largely replaced by database updates followed by a read. While commercial
products that take this approach offer optimizations capable of achieving the per-
formance of general-purpose operating systems, users may require special training
to understand how and when to exploit them. The trend at the time of this writing
seems to be to integrate database servers into general-purpose distributed systems
by including them on the network, but running nondatabase operating systems on
the general-purpose computing nodes that support application programs.

The following example illustrates the sort of problems that can occur when trans-
actions are applied to objects that fit poorly with the database computing model.
Consider a file system directory service implemented as an object-oriented data
structure: In such an approach, the directory would be a linked list of named objects,
associating a name with some sort of abstract object corresponding to what would
be a file in a conventional file system. Operations on a directory include searching
it, scanning it sequentially, deleting and inserting entries, and updating the object
nodes. Such a structure is illustrated in Fig. 20.3.

A typical transaction in such a system might be a program that displays a graph-
ical interface by which the user enters a name and then looks up the corresponding
object. The contents of the object could then be displayed for the user to edit, and
the changes, if any, saved into the object when the user finishes. Interfaces such
as this are common in modern operating systems, such as Microsoft’s Windows or
some of the more advanced versions of UNIX.
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Viewed as an instance of a nested transaction, this program begins a transaction
and then reads a series of directory records looking for the one that matches the
name the user entered. The corresponding node would then be locked for update
while the user scrutinizes its contents and updates it. The transaction commit would
occur when the record is saved in its changed state. An example of such a locked
record is highlighted in gray in Fig. 20.3.

But now consider the situation if the system has any concurrency at all. While
this process is occurring, the entire data structure may potentially be locked against
operations by other transactions, even if they are not interested in the same record
as the user is preparing to update! The problem is that any simplistic application
of the nested transaction concurrency control rules will leave the top-level records
that bind names to objects locked for either read or update and will leave all the
directory records scanned while searching for the name entered by the user locked
for reads. Other transactions will be unable to acquire conflicting forms of locks on
these records and may thus be delayed until the user (who is perhaps heading down
the hall for a cup of coffee!) terminates the interaction.

Many extensions to the nested transaction model have been proposed to cope
with this sort of problem. Argus, for example, offers a way to perform operations
outside the scope of a transaction and includes a way for a transaction to spawn
new top-level transactions from deep within a nested execution. Weihl argues for a
relaxation of the semantics of objects such as directory servers: In his view, over-
specification of the interface of the directory service is the cause of this sort of
problem, and he suggests extensions, such as unordered queues and nondetermin-
istic interfaces, which correspond to implementations that give better performance.
In this approach one would declare the directory to be an unordered semiqueue (an
unordered set) and would implement a nontransactional search mechanism in which
the search order is nondeterministic and does not need to involve an access to the
locked record until all other records have been scanned. Shasha has developed fam-
ilies of concurrent data structures, in which semantic information is exploited to
obtain highly concurrent transactional implementations of operations specific to the
data type. Still other researchers have proposed that such problems be addressed by
mixing transactional and nontransactional objects and have offered various rules to
adapt the ACID properties to such an environment.

The example we gave above occurs in a data structure of unsurpassed simplicity.
Similar issues would also be encountered in other data structures, such as doubly
linked lists where order does matter, trees, hash tables, stacks, and so forth. In each
case, a separate set of optimizations is needed to achieve optimal levels of concur-
rency.

Those who have worked with transactions have concluded that although the
model works very well for databases, there are problems for which the transac-
tional model is poorly matched. The argument is basically this: Although the vari-
ous solutions suggested in the literature do work, they have complicated side-effects
(interested readers may want to track down the literature concerned with terminat-
ing what are called “orphans of an aborted nested transaction,” a problem that oc-
curs when a nested transaction having active subtransactions aborts, eliminating the
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database state in which those subtransactions were spawned and exposing them to
various forms of inconsistency). The resulting mechanisms are complex to work
with, and many users might have problems using them correctly; some developers
of nested transaction systems have suggested that only experts would be likely to
actually build transactional objects, while most real users would work with libraries
of preconstructed objects. Thus, even if mechanisms for overcoming these issues do
exist, it seems clear that nested transactions do not represent an appropriate general-
purpose reliability solution for nondatabase applications.

The commercial marketplace seems to have reached a similar decision. Transac-
tional systems consist largely of relational databases (which may be used to store
abstract data types, but in which the relationships between the objects are repre-
sented in the transactional tables) or transactional file-structured systems. Although
many distributed, object-oriented, transactional systems have been developed, few
seem to have made the transition from research prototype to commercial use.

Intriguingly, many of the problems that are most easily solved using process
groups are quite hard to solve using transactional solutions. The isolation property
of transactions runs counter to the idea of load-balancing in a service replicated
at several nodes or of passing a token within a group of cooperating processes.
Conversely, however, transactional mechanisms bring a considerable infrastructure
to the problem of implementing the ACID properties for applications that act upon
persistent data stored in complex data structures, and this infrastructure is utterly
lacking in the virtual synchrony model.

The implication is that while both models introduce reliability into distributed
systems, they deal with very different reliability goals: recoverability on the one
hand and availability on the other. While the models can be integrated so that one
could use transactions within a virtual synchrony context and vice versa, there seems
to be little hope that they could be merged into a single model that would provide
all forms of reliability in a single, highly transparent environment. Integration and
coexistence are, therefore, a more promising goal, which seems to be the one favored
by industry and research groups.

20.6 Weak Consistency Models

There are some applications in which one requires most aspects of the transactional
model, but where serializability in the strict sense is not practical to implement. Im-
portant among these are distributed systems in which a database must be accessed
from a remote node, which is sometimes partitioned away from the system. In this
situation, even if the remote node has a full copy of the database, it is potentially
limited to read-only access. Even worse, the impossibility of building a nonblocking
commit protocol for partitioned settings potentially prevents these read-only trans-
actions from executing on the most current state of the database, since a network par-
titioning failure can leave a commit protocol in the prepared state at the remote site.

In practice, many distributed systems treat remote copies of databases as a form
of second-class citizen. Such databases are often updated by periodic transfer of
the log of recently committed transactions and are used only for read-only queries.
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Update transactions execute on a primary copy of the database. This approach avoids
the need for a multiphase commit but has limited opportunity to benefit from the
parallelism inherent in a distributed architecture. Moreover, the delay before updates
reach the remote copies may be substantial, so that remote transactions will often
execute against a stale copy of the database, with outcomes that may be inconsistent
with the external environment—for example, a remote banking system may fail to
reflect a recent deposit for hours or days.

In the following text, we briefly present some of the mechanisms that have been
proposed as extensions to the transactional model to improve its usefulness in set-
tings such as these.

20.6.1 Epsilon Serializability

Originally proposed by Pu, epsilon serializability is a model in which a preagreed
strategy is used to limit the possible divergence between a primary database and
its remote replicas (see Pu 1993). The epsilon is supposed to represent the degree
to which reported data may depart from the “actual” result, and is best understood
where the database contains numeric data. In this case, the model guarantees that
any value read by a transaction will be within ε of the exact answer.

Suppose, for example, that a remote transaction is executed to determine the
current value of a bank balance, and the result obtained is $500. If ε = $100, the
model allows us to conclude that the exact balance in the database (in the primary
database server for the bank) is no less than $400 and no more than $600. The
benefit of this approach is that it relaxes the need to run costly synchronization
protocols between remote copies of a database and the primary: Such protocols are
only needed if an update might violate the constraint.

Continuing with our example, suppose we know that there are two replicas and
one primary copy of the database. We can now allocate ranges within which these
copies can independently perform update operations without interacting with one
another to confirm that it is safe to do so. Thus, the primary copy and each replica
might be limited to a maximum cumulative update of $50 (larger updates would re-
quire a standard locking protocol). Even if the primary and one replica perform max-
imum increments to the balance of $50, respectively, the remaining replica would
still see a value within $100 of the true value, and this remains true for any update
that the third replica might undertake. In general, the minimum and maximum cu-
mulative updates done by other copies must be bounded by ε, to ensure that a given
copy will see a value within ε of the exact answer.

20.6.2 Weak and Strong Consistency in Partitioned Database
Systems

During periods when a database system may be completely disconnected from other
replicas of the same database, we will in general be unable to determine a safe
serialization order for transactions originating at that disconnected copy.
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Suppose that we want to implement a database system for use by soldiers in the
field, where communication may be severely disrupted. The database could be a map
showing troop positions, depots, the state of roads and bridges, and major targets. In
such a situation, one can imagine transactions of varying degrees of urgency. A fairly
routine transaction might be to update the record showing where an enemy outpost
is located, indicating that there has been no change in the status of the outpost. At
the other extreme would be an emergency query seeking to locate the closest medic
or supply depot capable of servicing a given vehicle.

Serializability considerations underlie the consistency and correctness of the real
database, but one would not necessarily want to wait for serializability to be guaran-
teed before making an informed guess about the location of a medical team. Thus,
even if a transactional system requires time to achieve a completely stable ordering
on transactions, there may be cases in which one would want it to process at least
certain classes of transactions against the information presently available to it.

In his Ph.D. dissertation, Amir addressed this problem using the Transis system
as a framework within which he constructed a working solution (see Amir 1995);
see also Amir et al. (1992b, 1994), Davidson et al. (1985), Terry et al. (1995). His
basic approach was to consider only transactions that can be represented as a single
multicast to the database, which is understood to be managed by a process group of
servers. (This is a fairly common assumption in transactional systems, and in fact
most transactional applications indeed originate with a single database operation,
which can be represented in a multicast or remote procedure call.) Amir’s approach
was to use OrderedSend (the strongly durable or safe form) to distribute update
transactions among the servers, which were designed to use a serialization order
deterministically related to the incoming OrderedSend order. Queries were imple-
mented as local transactions requiring no interaction with remote database servers.

As we saw earlier, strongly durable OrderedSend protocols must wait during par-
titioning failures in all but the primary component of the partitioned system. Thus,
Amir’s approach is subject to blocking in a process that has become partitioned away
from the main system. Such a process may, in the general case, have a queue of un-
deliverable and partially ordered OrderedSends, which are waiting either for a final
determination of their relative ordering or for a guarantee that dynamic uniformity
will be achieved. Each of these OrderedSends corresponds to an update transaction,
which could change the database state, perhaps in an order-sensitive way, and which
cannot be safely applied until this information is known.

What Amir does next depends on the type of request presented to the system.
If a request is urgent, it can be executed either against the last known completely
safe state (ignoring these incomplete transactions) or against an approximation to
the correct and current state (by applying these transactions, evaluating the database
query, and then aborting the entire transaction). A non-urgent update, on the other
hand, can simply wait until the safe and global ordering for the corresponding trans-
action is known, which may not occur until communication has been reestablished
with remote sites. As mentioned when we discussed the commit problem, Keidar
and Dolev later showed that it is not necessary to achieve simultaneously connec-
tivity in order to push such a protocol forward; it suffices that over a period of time,
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a majority of processes in the system manage to exchange enough messages to dis-
cover a safe event ordering.

Amir’s work is not the only effort to have arrived at this solution to the prob-
lem. Working independently, a group at Xerox PARC developed a very similar ap-
proach to disconnected availability in the Bayou system (see Petersen et al. 1997).
Their work is not expressed in terms of process groups and totally ordered, strongly
durable, multicast, but the key ideas are the same. In other ways, the Bayou system
is more sophisticated than the Transis-based one: It includes a substantial amount of
constraint checking and automatic correction of inconsistencies that can creep into a
database if urgent updates are permitted in a disconnected mode. Bayou is designed
to support distributed management of calendars and scheduling of meetings in large
organizations: a time-consuming activity, which often requires approximate deci-
sion making because some participants may be on the road or otherwise unavailable
at the time a meeting must be scheduled.

20.6.3 Transactions on Multidatabase Systems

The Phoenix system (see Malloth 1996), developed by Malloth, Guerraoui, Raynal,
Schiper, and Wilhelm, adopts a similar philosophy but considers a different aspect
of the problem. Starting with the same model used in Amir’s work and in Bayou,
where each transaction is initiated from a single multicast to the database servers,
which form a process group, this effort asked how transactions operating upon mul-
tiple objects could be accommodated. Such considerations led them to propose a
generalized multigroup atomic broadcast, which is totally ordered, strongly durable,
and failure-atomic over multiple process groups to which it is sent (see Schiper and
Raynal 1996). The point of using this approach is that if a database is represented
in fragments managed by separate servers, each of which is implemented in a pro-
cess group, a single multicast would not otherwise suffice to do the desired updates.
The Phoenix protocol used for this purpose is similar to the extended three-phase
commit developed by Keidar for the Transis system and is considerably more effi-
cient than sending multiple concurrent and asynchronous multicasts to the process
groups and then running a multiphase commit on the full set of participants. More-
over, whereas such as multistep protocols would leave serious unresolved questions
insofar as the view-synchronous addressing aspects of the virtual synchrony model
are considered, the Phoenix protocol can be proved to guarantee this property within
all of the destination groups.

20.6.4 Linearizability

Herlihy and Wing studied consistency issues from a more theoretical perspective
(see Herlihy and Wing 1990). In a paper on the linearizability model of database
consistency, they suggested that object-oriented systems may find the full nested
serializability model overly constraining, and yet could still benefit from some forms
of ordering guarantees. A nested execution is linearizable if the invocations of each
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object, considered independently of other objects, leave that object in a state that
could have been reached by some sequential execution of the same operations, in
an order consistent with the causal ordering on the original invocation sequence. In
other words, this model says that an object may reorder the operations upon it and
interleave their execution provided that it behaves as if it had executed operations
one by one, in an order consistent with the (causal) order in which the invocations
were presented to it.

Linearizability is thus a sort of stripped down transactional property. In fact,
once one gets used to the definition, the property is rather simple and almost ob-
vious. Nonetheless, there are many distributed systems in which servers might not
be guaranteed to respect this property. Such servers can allow concurrent transac-
tions to interfere with one another or may reorder operations in ways that violate
intuition (e.g., by executing a read-only operation on a state that is sufficiently old
to be lacking some updates issued before the read by the same source). At the same
time, notice that traditional serializability can be viewed as an extension of lineariz-
ability (although serializability does not require that the causal order of invocations
be respected, few database systems intentionally violate this property). Herlihy and
Wing argue that if designers of concurrent objects at least prove them to achieve
linearizability, the objects will behave in an intuitive and consistent way when used
in a complex distributed system; should one then wish to go further and superim-
pose a transactional structure over such a system, doing so simply requires stronger
concurrency control.

20.6.5 Transactions in Real-Time Systems

The option of using transactional reliability in real-time systems has been consid-
ered by a number of researchers, but the resulting techniques have apparently seen
relatively little use in commercial products. There are a number of approaches that
can be taken to this problem. Davidson is known for work on transactional concur-
rency control subject to real-time constraints; her approach involves extending the
scheduling mechanisms used in transactional systems (notably, timestamped trans-
actional systems) to seek to satisfy the additional constraints associated with the
need to perform operations before a deadline expires.

Broadly, the complexity of the transactional model makes it ill-suited for use in
settings where the temporal constraints have fine granularity with regard to the time
needed to execute a typical transaction. In environments where there is substantial
breathing room, transactions may be a useful technique even if there are real-time
constraints to take into account, but as the temporal demands on the system rise,
more and more deviation from the pure serializability model is typically needed in
order to continue to guarantee timely response.

20.7 Advanced Replication Techniques
Although the need for brevity precludes a detailed treatment of the topic, readers
of this text may be interested to know that there has been a flurry of research on
combining various group replication techniques with transactional database systems
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to obtain scalable high performance database servers (see Holliday et al. 1999, 2002;
Pedone et al. 1998). To the author’s taste, the most interesting work in the area
uses an idea originating in what has come to be known as “optimistic” concurrency
control, an approach in which a transaction is permitted to execute without locks or
with only some of the locks it needs, and then subjected to a “validation” test before
being permitted to commit.

In this approach, a database is replicated at multiple servers, each of which has
a full copy. Each server is willing to perform transactions against its local replica,
with locking performed locally and reads and writes served entirely from the local
replica. Later, as each transaction reaches its commit point, any updates performed
by the transaction are propagated to other copies. Prior to letting the transaction
commit, a test is performed to validate that transactions can commit in the order of
delivery of the first-phase commit message, which is transmitted using a totally or-
dered multicast. This validation test involves applying the same updates and check-
ing to make sure that the reads would be valid against the local committed replica.
Agarwal has explored this technique in some detail and his results suggest that it
could be quite effective. The commercial community is only beginning to take a
serious look at the approach.

For example, suppose that the transactional server manages two variables, x and
y and supports transactions that read and write these variables. Now suppose that
we replicate the server on nodes a and b so that each has a full copy of the database.

When a read request is received, say at server a, it can be processed in the same
manner as if a was the sole server in the system. The transaction obtains local read
locks on the variables it accesses (waiting, if necessary, for write locks to be released
if a desired data object is locally write-locked), then computes the desired result and
returns.

An update transaction, however, is handled in a slightly more elaborate manner.
Suppose that at server a an update transaction reads y and then modifies x and at
server b a concurrent transaction reads x and then modifies y. Each is executed
locally at the corresponding server. That is, write locks are acquired at that server,
and a log is maintained of the changes made by the transaction (the new value of
x in the case of the transaction on a, and of y in the case of the transaction on b).
When the two transactions are preparing to commit, the system can be understood
as including the locking information and the update logs in the commit messages
and using OrderedSend to transmit them. Thus, both servers will see these commit
requests in an identical order and will process them, one by one, in that order.

Notice that if nothing else is happening in the system, these transactions will be
mutually exclusive. They need to be serialized, and because we have allowed them
to run concurrently against different copies of the database, one or the other will
now need to be aborted.

The commit requests are evaluated relative to the committed system state to de-
termine whether or not any committed transaction may have “invalidated” the read
or write set of the transaction under consideration. The issue is as follows. While
the transaction that updated x was running on server a some other transaction could
have been running at server b and performing an action that would invalidate the
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transactional serialization order presumed at a. For example, perhaps the update
transaction reads y. Recall that at server b we assumed a transaction was updat-
ing y, and its commit request may have been ordered by OrderedSend ahead of that
of the update to x. If that transaction committed successfully, all servers will now
have updated y in their committed database. When validating the update to x we
now discover that subsequent to the “time” when the x transaction was executed
at a, an update to y was committed, and that the x update read the old copy of y.
Agarwal suggests a very simple way to test for validity based on a notion of virtual
time and an inexpensive mechanism that tracks read and write sets for transactions.
At any rate, the update to x is thus discovered to have been invalidated by the con-
current update of y which already committed, and the x update is therefore aborted
and forced to re-execute.

Had the OrderedSend delivered the commit requests in the opposite order, the
converse outcome would have occurred. Notice that because the servers ignore the
currently active transactions and use only the committed database state to make
decisions, and because the OrderedSend ordering is the same at all replicas, all
servers reach the same decision when validating each transaction. At server a we
discover that the transaction to update x has aborted, roll it back, and restart it. At
server b the cost is lower: upon receiving the OrderedSend, that server just tests for
validity, discovers that the transaction is invalid, and ignores it. Had the transaction
committed, we would have applied its updates to the committed database state. Any
transaction running locally that read one of these updated variables will later abort,
when its own commit request is multicast to the server group.

The costs of this basic scheme, then, are rather low: we need to track the lock
set (both read and write), maintain an update log, and transmit copies of this infor-
mation in the commit request. And, of course, we do need to roll back and restart
transactions invalidated by concurrent activity at some other server.

How well would the basic scheme scale? Here, the answer depends entirely on
the mix of updates and read-only transactions, and on the amount of data each up-
date produces. If the system sees rather few updates, and they do not touch a tremen-
dous amount of data, Agarwal’s replication algorithm will scale almost linearly in
the number of servers. The cost of the commit requests would, in this case, be neg-
ligible.

On the other hand, if a large amount of data are modified by the update, trans-
mitting the log could be a problem; in such cases, executing the same transaction in
parallel on the various servers would be a much more efficient strategy. Worse still,
if transactions often conflict and aborts become common, the scheme would face
a high overhead—and in such a scenario, it seems likely that the rate of conflicts
would rise roughly linearly in the number of servers. This is because one would
normally assume that each server sees essentially the identical workload; thus, the
more servers we add, the more transactions will be at risk of conflict.

Beyond Agarwal’s basic idea one could do more. For example, a smart load-
balancing system might try to partition update transactions, so that transactions
likely to experience concurrency control conflicts go to the same server, and only
transactions likely to be independent are dispatched to different servers. Although
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such a load-balancing agent would need to look “inside” each request to make an
appropriate guess, for many applications it should be possible to do this. The fre-
quency of update conflicts would drop accordingly.

We could do still better. Suppose that while transactions run, we use an asyn-
chronous multicast to lazily inform replicas of locks held locally and to pretransmit
update logs. For example, long before the transaction to update x tries to commit,
we might already have informed the other servers that the transaction has a read
lock on y and a write-lock on x, and has modified x to new value 24. When this
information arrives, the server receiving it can stash the log of updates for later use
at commit time, but can also try and obtain the identical locks locally. If no other
transaction holds locks on x and y this will register the corresponding locks, with
the effect that when the transaction finally tries to commit, it is far more likely to
succeed. Moreover, having pretransmitted its updates, the commit message itself
will be far smaller, hence faster to send. (One could even go further and pre-apply
the log of updates.)

In this modified scheme, we reduce the window during which a conflict can arise.
However, we do not close it, since server b may learn of the activity at server a only
to find that a conflicting activity has already started locally; server a will, symmet-
rically, discover this shortly after. But keep in mind that not all transactions commit
in any case, and of course we can ultimately trust the OrderedSend ordering to pick
a winner if a true conflict arises and persists to commit time.

With such extensions, it seems possible that at least for databases with a mostly
read workload, a replicated system could perform read-only transactions at close
to the speed of a non-replicated database, while performing updates only slightly
slower. This holds the promise of near linear speedup in the sustainable read load as
the database is run on more and more compute nodes, with relatively minor degra-
dation as a function of scale (since multicast performance for small process groups
of the size this might yield tends to be relatively independent of group size—up
to a group of perhaps 32 members, that is). Of course, once the server pool gets
large enough, the costs of transmitting update logs and handling aborts become to
dominate, but this would already represent a substantial opportunity for speedup!

20.8 Snapshot Isolation

Although the need for brevity makes it difficult to do justice to every important topic,
the use of snapshot isolation has become so important in cloud systems and other
scalable database settings that we really must at least touch upon the technique.

Snapshot isolation was first proposed in connection with multiversion database
systems, where instead of overwriting one value with a subsequent value, the
database system keeps old values, tracking the period of time during which each
value was active. This enables modern databases to use a form of timestamped con-
currency control for read-only applications: rather than force a read to wait until a
current write finishes, or allow a read to delay a write, as a transaction executes the
system defines a window of validity, so that reads often execute in the recent past,
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but against a consistent “snapshot” of the database or transactional application. Up-
date transactions are serialized with respect to one another in a normal ACID-style,
but by removing reads from the mix, performance is hugely enhanced.

Modern cloud computing systems tend to use snapshot isolation for transactions
that run on hard-state services in the inner tiers of the cloud. First-tier systems gen-
erally shard data and use some form of mostly consistent caching scheme, detecting
and resolving errors (if any) using background mechanisms that run periodically
and try to clean up any noticeable inconsistencies. Thus one has an outer tier that
offers either inconsistency or at best a form of snapshot-isolation for reads, and then
as we push deeper into the cloud, we find applications that offer stronger properties
and assurance guarantees.

20.9 Related Reading

Chapter 23 includes a review of some of the major research projects in this area,
which we will not attempt to duplicate here. For a general treatment of transactions
(see Bartlett et al. 1987; Gray and Reuter 1993).

On the nested transaction model (see Moss 1982).
On disconnected operation in transactional systems (see Amir 1995; Amir et al.

1992a, 1992b, 1994, 1995, 2000; Davidson et al. 1985; Terry et al. 1995).
On log-based transactional architectures (see Birman and van Renesse 1994;

Joseph 1986; Liskov et al. 1991; Seltzer 1993).
As part of Cornell’s course on “Advanced Replication Techniques”, CS734, of-

fered in Fall of 2001, Alan Demers assembled an outstanding bibliography of tech-
niques for replicating database systems (www.cs.cornell.edu/courses/cs734/2001fa).





21Peer-to-Peer Systems and Probabilistic
Protocols

In this chapter, we consider a number of protocols representative of a wave of re-
search and commercial activity in distributed computing. The protocols in question
share two characteristics. First, they exploit what are called peer-to-peer communi-
cation patterns. Peer-to-peer computing is in some ways a confusing categorization,
since all of the protocols we have discussed in this book involve direct exchanges
of messages between “peers.” A better term might be “client to client” protocols,
because most peer-to-peer systems emerge from a world of client/server computing,
but replace some or all functions of the servers by functionality hosted on the clients
themselves. For example, in what has become the most standard example of peer-to-
peer computing, individuals willing to share music might copy MP3 files onto their
machines, then advertise their availability in some form of directory that others can
query. To obtain a song, one would look for someone with a copy, then download
the file from that machine. Space permitting, the user who downloads a song would
then become an alternative source for the file, so that over time, a great many copies
would become available. The benefit is that the workload of serving files will be
spread over a number of machines proportional to the popularity of each file, so that
the system should scale well (although we will soon need to qualify this statement
with all sorts of caveats!).

P2P communication arises in many settings other than this canonical file-sharing
one. In Chap. 4 we discussed some examples of this class of system, including
peer-to-peer file sharing technologies and peer-to-peer indexing. Here we look at
additional peer-to-peer use cases, focusing on peer-to-peer multicast and data min-
ing.

21.1 Bimodal Multicast Protocol

In this section, we shift our focus and look at a class of multicast protocols that
use P2P techniques to achieve a high degree of scalability. They are also proba-
bilistically reliable. Unlike the protocols presented previously, they are based on a
probabilistic system model somewhat similar to the synchronous model, which we
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Fig. 21.1 Throughput of a virtually synchronous process group suffers when even a single mem-
ber is perturbed, and the problem gets worse as the group size increases. This suggests that tradi-
tional ways of implementing virtual synchrony scale poorly

considered in our discussion of real-time protocols. In contrast to the asynchronous
model, no mechanism for detecting failure is required. Virtual synchrony is not sup-
ported “directly” on this model, but we do note that Gupta has shown how to im-
plement a scalable virtual synchrony protocol over the Bimodal Multicast (Birman
1999), obtaining a solution that is always safe, but may report new views after a
delay that rises slowly in group size.

Figure 21.1 illustrates the type of scalability problem we are trying to overcome.
In this figure, we have graphed the “steady state” throughput of the basic Ordered-
Send protocol implemented in the Ensemble system. Each line on the graph corre-
sponds to a different group size: 32, 64, and 96 members. The x axis shows how
performance is impacted by a “perturbation” at a single member within the overall
group, where we stole cycles by forcing the process to sleep for brief intervals of
time, thus mimicking the behavior one might see if the process shared the computer
with some other workload. With x = 0, the process was unperturbed, with x = 0.3,
30% of the time it was sleeping, and so forth.

As can be seen in the figure, this rather minor intervention causes the sustainable
throughput to collapse. We should note that the actual throughput numbers are not
very important here—the experiment was performed more than a decade ago, ran
on an IBM SP2 cluster and used rather large messages, but similar graphs can be
obtained for almost any size of message and on any platform.

The problem may at first glance seem specific to the implementation of the pro-
tocol: it turns out that when this experiment is running, the sender is forced to choke
back (to perform flow control) because messages are piling up in the buffer it uses
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Fig. 21.2 A push gossip multicast protocol. Multicast uses a flooding-style of distribution mech-
anism, with no effort to achieve reliability (perhaps, IP multicast, perhaps some other scheme).
Periodically, each process shares state information with a randomly selected peer, allowing each
to catch up with any missed messages that the other received, and within a few rounds, the gaps
are filled. Bimodal Multicast will reissue an (unreliable) multicast within a region where it seems
likely that several receivers are missing copies, so this gap fill mechanism is used to clean up just
the last few gaps in the message sequence

to retransmit lost messages in the event of a communication problem. As the group
gets bigger the percentage of messages for which an acknowledgement arrives only
after a long delay seems to grow, hence the sender exhausts its buffering space.
Studies have shown, however, that this kind of problem is anything but unique to
the virtual synchrony reliability model or its implementation in Ensemble. In fact,
the great majority of “reliable” multicast protocols share such behavior—regardless
of their particular reliability goals. The reasons for the collapse vary from proto-
col to protocol, but the collapse of achievable throughput seems to be a common
phenomenon.

In contrast, the P2P multicast protocols we will now discuss are scalable in two
senses. First, message costs and latencies grow slowly with system size. Second,
reliability (the probability of non-atomic delivery of a multicast) falls to 0 exponen-
tially as group size increases. This scalable reliability is achieved through a form of
“gossip” protocol, which is strongly self-stabilizing. By this we mean that if the sys-
tem is disrupted, it will repair itself given a sufficient period of time without failures.
Our protocols (particularly for handling replicated data) also have this property.

The basic idea we will work with is illustrated in Fig. 21.2, which shows a possi-
ble execution for a protocol we call Bimodal Multicast, but also known by the names
ProbabilisticSend and pbcast. Bimodal multicast combines a message distribution
phase with a gossip repair phase, and we see both types of event in the figure (the
figure makes it look as if the system runs in synchronous rounds, but that is just to
make it clear how things work; the actual protocol is not at all synchronous and both
kinds of round are superimposed). The basic idea is as follows. To send a multicast,
a process transmits it with some form of quick but not necessarily reliable transport
layer, like IP multicast. (If IP multicast is not available, as is the case in the modern
Internet, we can use Scribe trees—a type of overlay built on the Pastry system, or
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some similar hand-built multicast layer, with no particular reliability guarantees.)
So this is shown in the unshaded portions of Fig. 21.2.

Next, we introduce a form of gossip protocol motivated by work originally done
by Demers and others at Xerox PARC (see Demers et al. 1987). After a process
receives a message, it begins to “gossip” about the message to a set of peers (in
Fig. 21.2 this occurs during the shaded periods). The number to which it gossips is
said to be the fanout of the protocol. Gossip occurs at regular intervals, and offers
the members a chance to compare their states and fill any gaps in the message se-
quence. As mentioned in the caption of the figure, the actual protocol runs gossip
continuously and is unsynchronized.

Even if the initial multicast was a complete failure (and this can happen, although
it is unlikely), gossip protocols will typically flood the network within a logarithmic
number of rounds. This behavior is very similar to that of a biological epidemic;
hence, such protocols are also known as epidemic ones (see Bailey 1975). Notice
that although each process may hear about a message many times, it does not need to
receive multiple copies of the message: the gossip messages typically are very com-
pact lists of messages available at the sender, and the actual copies must be retrieved
in a separate RPC-style interaction. In fact, the cost of gossip is basically constant.
The randomness of the protocols has the benefit of overcoming failures of individ-
ual processes, in contrast with protocols where each process has a specific role to
play and must play it correctly, or fail detectably, for the protocol itself to terminate
correctly. We say that a gossip push occurs if a process, picking some peer, sends in-
formation to it, and a gossip pull occurs if the peer sends information back. Bimodal
Multicast uses a push-pull epidemic, in which both forms of exchange occur.

Demers and his colleagues have provided an analysis of the convergence and
scaling properties of gossip protocols based on pushing, pulling, and combined
mechanisms and have shown how these can overcome failures. They prove that both
classes of protocols converge toward flooding at an exponential rate and demonstrate
that they can be applied to real problems. The motivation for their work was a scal-
ing problem, which occurred in the wide area mail system developed at PARC in
the 1980s. As this system was used on a larger and larger scale, it began to exhibit
consistency problems and had difficulties in accommodating mobile users. Demers
and his colleagues showed that by reimplementing the e-mail system to use a gossip
broadcast protocol they could overcome these problems, helping ensure timely and
consistent e-mail services that were location independent and inexpensive. Thus, in
their system, the “multicast” is a very slow action—a replicated database update
that occurs rarely. We will focus on the use of gossip in systems running at much
higher speeds here, where multicast runs at network speeds and gossip may occur
many times per second.

21.1.1 Bimodal Multicast

In the style of protocol explored at Xerox, the actual rate with which messages
will flood the network is not guaranteed, because of the risk of failures. Instead,
these protocols guarantee that, given enough time, eventually either all or no correct
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processes will deliver a message. This property is called eventual convergence. Al-
though eventual convergence is sufficient for many uses, the property is weaker than
the guarantees of the protocols we used earlier to replicate data and perform syn-
chronization, because eventual convergence does not provide bounds on message
latency or ordering properties. Hayden was the first to suggest that gossip protocols
can be extended to have these properties (see Birman et al. 1999), and in this section
we present the protocol he developed for this purpose. As mentioned above, Hayden
calls this protocol Bimodal Multicast and uses pbcast as a shorthand for it, but for
similarity to the protocol names we have used elsewhere in this book, we will call it
ProbabilisticSend.

Specifically, ProbabilisticSend is designed for a static set of processes, which
communicate synchronously over a fully connected, point-to-point network. The
processes have unique, totally ordered identifiers and can toss weighted, indepen-
dent random coins. Runs of the system proceed in a sequence of rounds in which
messages sent in the current round are delivered in the next round. The protocol is
basically the same as the one shown in Fig. 21.2, but it incorporates a number of op-
timizations intended to retransmit a multicast quickly using IP multicast if several
processes may have dropped their copies, and also to deal with a peculiarity of link
load seen in wide-area settings. We will discuss these optimizations below.

Hayden was able to analyze the behavior of his solution, and this is part of what
makes it such an interesting protocol. His model assumes that there are two types
of failure. The first is process failure. Hayden assumes an independent, per-process
probability of at most fp that a process has a crash failure during the finite duration
of a protocol. Such processes are called faulty. The second type of failure is mes-
sage omission failure. There is an independent, per-message probability of at most
fm that a message between nonfaulty processes experiences a send omission failure.
The union of all message omission failure events and process failure events is mutu-
ally independent. In this model, there are no malicious faults, spurious messages, or
corruption of messages. We expect that both fp and fm are small probabilities (e.g.,
unless otherwise stated, the values used in the graphs in this chapter are fm = 0.05
and fp = 0.001).

The impact of the failure model can be visualized by thinking of the power that
would be available to an adversary seeking to cause a run of the protocol to fail
by manipulating the system within the bounds of the model. Such an adversary has
these capabilities and restrictions:
• An adversary cannot use knowledge of future probabilistic outcomes, interfere

with random coin tosses made by processes, cause correlated (nonindependent)
failures to occur, or do anything not enumerated below.

• An adversary has complete knowledge of the history of the current run of the
protocol.

• At the beginning of a run of the protocol, the adversary has the ability to individ-
ually set process failure rates, within the bounds [0 . . . fp].

• For faulty processes, the adversary can choose an arbitrary point of failure.
• For messages, the adversary has the ability to individually set send omission fail-

ure probabilities within the bounds of [0 . . . fm].
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Note that although probabilities can be manipulated by the adversary, doing so can
only make the system more reliable than the bounds, fp and fm.

Using this model, Hayden developed recurrence relations and solved them to
derive predictions of how ProbabilisticSend would behave with various parameter
settings. We will review some of his findings momentarily.

Hayden’s probabilistic analysis of the properties of the ProbabilisticSend proto-
col is only valid in runs of the protocol in which the system obeys the model. In
particular, the independence properties of the system model are quite strong and are
not likely to be continuously realizable in an actual system—for example, partition
failures in the sense of correlated communication failures do not occur in this model.
Partitions can be simulated by the independent failures of several processes, but they
are of low probability. However, the protocols we develop using ProbabilisticSend,
such as our replicated data protocol, remain safe even when the system degrades
from the model. In addition, ProbabilisticSend-based algorithms can be made self-
healing—for instance, our replicated data protocol has guaranteed eventual conver-
gence properties similar to normal gossip protocols: If the system recovers into a
state that respects the model and remains in that state for sufficiently long, the pro-
tocol will eventually recover from the failure and reconverge to a consistent state.

At the same time, Hayden’s analysis is in some ways very pessimistic. For ex-
ample, he found that ProbabilisticSend is so reliable if IP multicast succeeds that
he ended up focused on the case where IP multicast is sometimes a complete failure
and nobody receives the initial multicast. This leads to a sort of extreme scenario
in which some messages are essentially delivered reliably system-wide in the first
phase, while others are not delivered at all until the gossip mechanism kicks in. Re-
alistic runs of ProbabilisticSend live somewhere in between these extremes, but are
hard to analyze using the style of closed form recurrence relations Hayden employed
in his investigation. As a result, in what follows we will use Hayden’s analysis to
derive worst case bounds, and experimental studies to understand the normal case
that might be seen in real deployments of ProbabilisticSend.

21.1.2 Unordered ProbabilisticSend Protocol

We begin with an unordered version of ProbabilisticSend with static membership
(the protocol shown in Fig. 21.3). The protocol consists of a fixed number of rounds,
in which each process participates in at most one round. A process initiates a Prob-
abilisticSend by sending a message to a random subset of other processes using
an unreliable multicast primitive such as IP multicast, or a flooding scheme imple-
mented over UDP. No effort is made to detect packet loss or repair missing packets,
but obviously, one would hope that many of the packets get through. Notice, though,
that the cost of initially disseminating the packet is unrelated to network load or con-
gestion, since the protocol starts with just a single attempt to send each message and
never sends extra messages no matter what fate befalls that first attempt.

When other processes receive a message, they begin to gossip about it to their
peers for a period of time called the “fanout” of the protocol. Gossip occurs at a
constant frequency in this system: each process maintains a timer and at some rate
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Fig. 21.3 Unordered ProbabilisticSend protocol. The function time() returns the current time ex-
pressed in rounds since the first round. Message receipt and ProbabilisticSend are executed as
atomic actions

(say, ten times per second), picks a peer and sends it a gossip message. There is no
need to synchronize gossip or synchronize clocks, and gossip messages are treated
as unreliable, asynchronous packets. Presumably, many will get through, but no
attempt is made to detect loss or retransmit a lost packet.

The content of a gossip packet is a digest of the state of the sender. This typically
includes membership information (thus, as nodes join or leave, information about
those events will spread through the system) and also a summary of multicasts that
the sender of the gossip message has received. The receiver of a gossip message
can react in two ways: it can request a copy of a message it lacks, pulling it from
the sender of the gossip message, or can send a copy of a message it received that
the sender seems to be missing. (In practice, it can react in a third way, too: by re-
multicasting a message, unreliably, if there is evidence that a few processes in the
region are missing it; this is done cautiously, but with the goal of ensuring that most
processes receive each message in an unreliable multicast, and gossip is used just to
plug the last few gaps.)

For purposes of analysis, the parameters of the protocol are as follows:
• P : the set of processes in the system: n = |P |
• k: the number of rounds of gossip to run
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• r : the probability that a process gossips to each other process (the weighting of
the coin mentioned earlier)
The behavior of the gossip protocol mirrors a class of disease epidemics, which

nearly always infects either almost all of a population or almost none of it. In the
following text, we will show that ProbabilisticSend has a bimodal delivery distri-
bution, which stems from the epidemic behavior of the gossip protocol. The normal
behavior of the protocol is for the gossip to flood the network in a random but ex-
ponential fashion. If r is sufficiently large, most processes will usually receive the
gossip within a logarithmic number of rounds.

21.1.3 Weaking the Membership Tracking Rule

One objection that some researchers raised about the original Bimodal Multicast
protocol centered on selection of peers for the gossip step of the protocol. The is-
sue here is that Hayden’s analysis assumes that each group member knows the full
membership of the group, and can exchange messages with every other member.
In many systems these assumptions would not hold: tracking the full membership
might be very costly in a large system where membership evolves steadily, and in
many settings, firewalls and network address translation components create barriers
that prevent certain group members from communication with one-another. In fact,
the Bimodal Multicast paper does touch upon this issue, suggesting that Bimodal
Multicast can run on subsets of the membership that satisfy certain mathematical
properties (the requirement is that the communication graph satisfy a mathematical
property called expansion), but the paper did not explore the best solutions to actu-
ally implement this approach. This problem was addressed by Guerraoui, Kermarrec
and a group of their students in a protocol they called the Lightweight Probabilistic
Broadcast protocol (often shortened to lbpbcast; similarly, Hayden uses pbcast as a
shorthand name for the Bimodal Multicast) (Eugster et al. 2003).

The basic idea in this variation on the protocol is to allow each member to track
just a subset of the other members of the system, but to do so in a way designed
to be safe. For example, a developer might want group members to only peer with
other members that are close in terms of network latency, or those with which it can
communicate without needing to tunnel through firewalls; Lightweight Probabilistic
Broadcast allows this sort of subset selection provided, however, that enough long-
distance links remain to ensure the connectivity of the resulting communication
graph, which obviously must have adequate ways of reaching all members of the
system. Thus, while process p might not know about process s in a direct sense, p

should know q which knows of r which knows of s, etc. One then runs the basic
Bimodal Multicast algorithm but with gossip occurring only between neighbors in
which one knows the other: p gossips with its neighbors (including q), q gossips
with r , etc. The research team showed that the resulting solution converges just as
rapidly as Hayden’s more costly full-membership solution, and offers equally good
robustness.
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Hayden had previously pointed to the mathematical property called graph expan-
sion, but this research showed precisely how one can achieve that goal. First, they
observed that in the ideal case one wants the communication graph to have the prop-
erties of what are called Small Worlds Graphs, meaning that the overall graph di-
ameter is logarithmic in the system size, but in practice most random peer selection
schemes are adequate. Although a highly biased peer selection scheme can reduce
the speed of convergence or reliability of the protocol, it turns out to be relatively
easy to avoid this risk, a topic the same team explored in Jelasity et al. (2007). In-
deed, this latter paper shows that the same idea can be applied in very general ways,
yielding a general methodology for designing gossip protocols in which one starts
by assuming a uniform and random peer selection scheme over the full membership
of the system, and then plugs in a lightweight peer selection algorithm. Most gossip
research uses this approach today.

21.1.4 Adding CASD-Style Temporal Properties and Total Ordering

In the protocol shown in Fig. 21.3, the ProbabilisticSend messages are unordered.
However, because the protocol runs in a fixed number of rounds of fixed length, it
is trivial to extend it using the same method as was proposed in the CASD proto-
cols (see Fig. 21.4). By delaying the delivery of a message until it is known that all
correct processes have a copy of that message, totally ordered delivery can be guar-
anteed. This yields a protocol similar to OrderedSend in that it has totally ordered
message delivery and probabilistically good reliability within the fixed membership
of the process group invoking the primitive. It would not be difficult to introduce a
further extension of the protocol for use in dynamic process groups, but we will not
address that issue here.

21.1.5 Scalable Virtual Synchrony Layered over ProbabilisticSend

Indranil Gupta has shown that virtual synchrony can be layered over the Probabilis-
ticSend protocol. Without getting into the details, he does this using a scheme that
probabilistically selects a small set of leader processes, which are responsible for
deciding on the ordering of messages relative to view changes. Multicasts are sent
to the full group “directly,” but membership events vector through these processes,
which then use the ProbabilisticSend protocol to report each new view and its se-
quencing relative to the message stream. This permits him to support a token-based
OrderedSend protocol: total ordering, but not the CASD-style temporal properties
of Hayden’s method.

Gupta shows that he can preserve the scalability of ProbabilisticSend and yet get
the strong guarantees of virtual synchrony in this manner, at the cost of some delay
before messages can be delivered. His experiments showed that at least in the range
of group sizes seen earlier in Fig. 21.1, where virtual synchrony “melted down”
under stress, virtual synchrony over ProbabilisticSend should continue to perform
quite well.
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Fig. 21.4 Ordered ProbabilisticSend protocol, using the method of CASD

21.1.6 Probabilistic Reliability and the Bimodal Delivery
Distribution

Hayden has demonstrated that when the system respects the model, a Probabilis-
ticSend is almost always delivered to most or to few processes and almost never to
some processes. Such a delivery distribution is called a “bimodal” one and is de-
picted in Fig. 21.5. The graphs show that varying numbers of processes will deliver
ProbabilisticSend—for instance, the probability that 26 out of the 50 processes will
deliver a ProbabilisticSend is around 10−28. Such a probabilistic guarantee is, for
most practical purposes, a guarantee that the outcome cannot occur. The bimodal
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Fig. 21.5 A set of graphs illustrating the manner in which the analysis of ProbabilisticSend can
be used to predict its reliability and to select parameter settings matched to desired behavior. The
graph is drawn from Birman and van Renesse (1996)

distribution property is presented here informally, but later we discuss the method
used by Hayden to calculate the actual probability distributions for a particular con-
figuration of ProbabilisticSend.

The ProbabilisticSend protocol also has a second bimodal characteristic: delivery
delays (latency) tends to be bimodal, with one distribution of very low latencies for
messages that arrive without packet loss using the basic IP multicast, and a second
distribution with higher latencies for messages that had to be remulticast or repaired
using the gossip-driven gap-filling mechanism. Hayden’s analysis does not focus on
this aspect and in fact had he done so, his model would do a poor job of predicting
the observed behavior. However, the actual implementation of ProbabilisticSend
reported by Hayden et al. did explore this question (see Birman et al. 1999). One
finds that the degree to which ProbabilisticSend latencies are bimodal is very much
a function of parameter settings; with aggressive settings the protocol overhead is
still rather low, and latencies can be squeezed down to within a small constant factor
of the average network latency. This is quite an encouraging result.

Most important of all, ProbabilisticSend overcomes the scalability problems we
saw in Fig. 21.1, where virtual synchrony seemed to melt down. Under precisely
the same experimental conditions, ProbabilisticSend is known to continue to de-
liver messages at a steady rate even while as many as 25% of the participants are
intermittently perturbed. Indeed, a tremendously disruptive scenario is required to
overload the protocol, and even then, it has been shown to degrade rather gracefully.
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The basic reliability of ProbabilisticSend is often all that one needs in an ap-
plication, in which case it offers a uniquely scalable and stable way to disseminate
information. Indeed, studies have shown that ProbabilisticSend will scale essen-
tially without limit, imposing constant cost on the participants (here we assume a
constant rate of new multicasts), and with essentially identical latency distributions
throughout the system if we factor out the delay of the initial unreliable multicast
itself. Indeed, in a healthy network, ProbabilisticSend is so reliable that it can of-
ten be substituted for Send or, when totally ordered, for OrderedSend. Nonetheless,
there are circumstances under which gaps will not be repaired, and Probabilistic-
Send does not support virtually synchronous group membership reporting unless
Gupta’s extensions are employed.

In practice, one finds that most systems that include a version of Probabilistic-
Send integrate the protocol with a form of logging service that captures messages
and archives them. Such a service can be used by ProbabilisticSend to overcome
failures but can also be used by the application itself, to fill gaps in the delivery
sequence not repaired by the protocol itself. For example, at Cornell there has been
some recent work on implementing a publish-subscribe system over Probabilistic-
Send. In this system, the logging servers are also used by applications that join the
system: they can check for “back postings” on subjects of interest, and then are
given a stream of updates. The guarantees of this publish-subscribe implementation
approximate those of virtual synchrony: the application will see every posting on
the subjects of interest to it, both archived and new, will not see any duplicates, and
will see events in the same order as everyone else did. QuickSilver, a new multi-
cast platform including this functionality (unrelated to the file system with the same
name), should be available for download from Cornell in 2005.

Gupta’s work, and Hayden’s prior work, point to the other major way of using
these protocols. A bimodal distribution is particularly useful for voting-style proto-
cols where, as an example, updates must be made at a majority of the processes to be
valid; we saw examples of such protocols when we discussed quorum replication.
Problems do occur in these sorts of protocols when failures cause a large number of
processes, but not a majority, to carry out an update. ProbabilisticSend overcomes
this difficulty through its bimodal delivery distribution by ensuring that votes will
almost always be weighted strongly for or against an update, and will very rarely
be evenly divided. By counting votes, it can almost always be determined whether
an update was valid or not, even in the presence of some failed processes. Gupta
carries this quite far, developing an entire methodology for building solutions to
“classical” distributed computing problems over ProbabilisticSend and a few other
probabilistic peer-to-peer protocols of his own design.

With ProbabilisticSend, the bad cases are when “some” processes deliver the
ProbabilisticSend; these are the cases that ProbabilisticSend makes unlikely to oc-
cur. We will call ProbabilisticSends that are delivered to “some” processes failed
ProbabilisticSends and ProbabilisticSends delivered to “few” processes invalid
ProbabilisticSends. The distinction anticipates the replicated data protocol pre-
sented in the following text, in which invalid ProbabilisticSends are inexpensive
events and failed ProbabilisticSends are potentially costly.
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To establish that ProbabilisticSend does indeed have a bimodal delivery distri-
bution, Hayden used a mixture of symbolic and computational methods. First, he
computed a recurrence relation, which expresses the probability that a Probabilis-
ticSend will be received by a processes at the end of round j , given that the message
had been received by b processes at the end of round j − 1, c of these for the first
time. In the terminology of a biological infection, b denotes the number of processes
that were infected during round j − 1 and hence are infectious; the difference be-
tween a and b thus represents the number of susceptible processes that had not yet
received a gossip message and that are successfully infected during round j .

The challenge aspect of this analysis is to deal with the impact of failures, which
has the effect of making the variables in the recurrence relation random ones with
binomial distributions. Hayden arrives at a recursive formula but not a closed form
solution. However, such a formula is amenable to computational solutions and, by
writing a program to calculate the various probabilities involved, he is able to arrive
at the delivery distributions shown in Fig. 21.2.

A potential risk in the analysis of ProbabilisticSend is to assume, as may be
done for many other protocols, that the worst case occurs when message loss is
maximized. ProbabilisticSend’s failure mode occurs when there is a partial delivery
of a ProbabilisticSend. A pessimistic analysis must consider the case where local
increases in the message-delivery probability decrease the reliability of the overall
ProbabilisticSend protocol. This makes the analysis quite a bit more difficult than
the style of worst-case analysis used in protocols such as the CASD one, where the
worst case is the one in which the maximum number of failures occurs.

21.1.7 Evaluation and Scalability

The evaluation of ProbabilisticSend is framed in the context of its scalability. As the
number of processes increases, ProbabilisticSend scales according to several met-
rics. First, the reliability of ProbabilisticSend grows with system size. Second, the
cost per participant, measured by number of messages sent or received, remains at
or near constant as the system grows. Having made these claims, it must be said
that the version of ProbabilisticSend presented and analyzed for a network makes
assumptions that become less and less realizable for large systems. In practice, this
issue could be addressed with a more hierarchically structured protocol, but Hay-
den’s analysis has not been extended to such a protocol. In this section, we will
address the scaling characteristics according to the metrics previously listed and
then discuss informally how ProbabilisticSend can be adapted for large systems.

Reliability
ProbabilisticSend has the following property: As the number of processes partici-
pating in a ProbabilisticSend grows, the protocol becomes more reliable. In order to
demonstrate this, we present a graph, Fig. 21.5(b), of ProbabilisticSend reliability
as the number of processes is varied between 10 and 60, fixing fanout and failure
rates—for instance, the graph shows that with 20 processes the reliability is about
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10−13. The graph almost fits a straight line with slope = −0.45, thus the reliability
of ProbabilisticSend increases almost tenfold with every two processes added to the
system.

Message Cost and Fanout
Although not immediately clear from the protocol, the message cost of the Proba-
bilisticSend protocol is roughly a constant multiple of the number of processes in
the system. In the worst case, all processes can gossip to all other processes, caus-
ing O(n2) messages per ProbabilisticSend. r will be set to cause some expected
fanout of messages, so that on average a process should gossip to about fanout other
processes, where fanout is some constant, in practice at most 10 (unless otherwise
stated, fanout = 7 in the graphs presented in Fig. 21.5). Figure 21.5(c) shows a graph
of reliability versus fanout when the number of processes and other parameters held
is constant—for instance, the graph shows that with a fanout of 7.0, Probabilistic-
Send’s reliability is about 10−13. In general, the graph shows that the fanout can be
increased to increase reliability, but eventually there are diminishing returns for the
increased message cost.

On the other hand, fanout (and hence cost) can be decreased as the system grows,
keeping the reliability at a fixed level. In Fig. 21.5(d), reliability of at least “twelve
nines” (i.e., the probability of a failed ProbabilisticSend is less than or equal to
10−12) is maintained, while the number of processes is increased. The graph shows
that with 20 processes a fanout of 6.63 achieves “twelve nines” reliability, while
with 50 processes a fanout of 4.32 is sufficient.

21.1.8 Experimental Results

For reasons of brevity we omit detailed experimental data from the evaluation of
ProbabilisticSend reported in Birman et al. (1999). To summarize quickly, this
work showed that with appropriate parameter settings ProbabilisticSend was able
to achieve a message throughput similar to that of the Horus or Ensemble Ordered-
Send protocol in cases where the sender of the message does not hold the group’s
ordering token. However, ProbabilisticSend is much slower than OrderedSend in
small configurations where the application exploits OrderedSend in a near-optimal
manner. Thus in situations where OrderedSend can achieve thousands or tens of
thousands of multicasts per second to a group of perhaps 8 to 10 members, Prob-
abilisticSend rates of one tenth those figures are probably the best that can be ex-
pected (both kinds of protocol can benefit from message packing, so we will set the
associated “speedup” to the side here).

The experimental work showed that ProbabilisticSend delivery latency is compa-
rable to that of the Horus OrderedSend protocol; both need to repair lost messages,
and the bottom line is that both do so with comparable mechanisms. Finally, as
noted earlier, under large-scale networking conditions where OrderedSend perfor-
mance collapses, ProbabilisticSend performance remains quite stable.
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These findings suggest that production-quality systems may need to implement
a protocol like ProbabilisticSend side by side with a more traditional virtual syn-
chrony stack, switching from the traditional stack to the bimodal one when the sys-
tem size exceeds about 32 members, a point at which OrderedSend starts to exhibit
pronounced instability. Such an approach should give almost unlimited scalability,
stability under all sorts of stresses, and bounded overhead even when the network
is exhibiting extreme problems. As mentioned before, Cornell is employing Proba-
bilisticSend in a new publish-subscribe platform called QuickSilver. The approach
just outlined is likely to be the one implemented in the system. The need for Gupta’s
probabilistic virtual synchrony mechanisms is still being evaluated; it is unclear at
the time of this writing that virtual synchrony is really needed on a very large scale,
although total ordering and the ability to find missing messages in a logging server
does appear to be quite useful.

21.2 Astrolabe

We conclude this chapter with a brief look at a system called Astrolabe (van Renesse
et al. 2003), a system that uses P2P protocols to build a scalable system monitoring,
management, control and data-mining framework that has strong probabilistic con-
vergence guarantees. Astrolabe builds a form of virtual database—one that does
not really exist on a physical server, and yet can be accessed by an application in
a manner not unlike a normal database on a real server. This database is structured
hierarchically and can be queried using SQL. Astrolabe automatically populates the
database with data drawn from the nodes in a distributed system and will automati-
cally update the database as conditions change. The peer-to-peer protocols used by
the system scale extremely well and are stable under conditions that would cripple
systems built in other ways. Astrolabe is intended for use in monitoring, manag-
ing or controlling a system that could have hundreds, thousands or even millions of
nodes. Moreover, Astrolabe is well matched to the needs of “data mining” applica-
tions, in which a large system is searched for desired data or for the resources best
matched to some requirement.

We will focus on a data mining scenario later in this section as a way to illustrate
the power of the system. The basic idea involves configuring Astrolabe to continu-
ously track information of interest to the data miner (perhaps, the team responsible
for managing a data center or a set of them, or even the client systems connected
to a Web Services platform). The collection of data will occur on the end-nodes,
and might even involve asking those nodes to check for something—files matching
a search criteria, for example. However, this work is spread over vast numbers of
machines, and hence is extremely decentralized and parallel. Astrolabe then com-
bines the information discovered out at the “edges” by continuously computing sum-
maries using on-the-fly aggregation. Aggregation is similar to performing a query
on a large database, and yields a smaller result that the user can see (or monitor,
because the aggregate will be updated regularly as changes occur in the underly-
ing data). The entire protocol has a very light, near-constant, communication and
computational overhead on the nodes in the system.
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For example, suppose that the manager of a large network notices that perfor-
mance for a major application has begun to degrade, but has no idea why. Tradi-
tionally, she would have little recourse except to run whatever monitoring tools are
available in the application. With Astrolabe, as we will see, she can dynamically
change the way the system is instrumented and the way the findings are reported,
thus forming a theory, evaluating it (the system can be reconfigured in a few tens of
seconds, even on a massive scale), and then perhaps setting that idea to the side and
pursuing some other angle. Moreover, rather than being limited to whatever instru-
mentation was provided by the vendor, she can pursue all sorts of possibilities, even
including contents of configuration files, page fault rates, or other kinds of indirect
indicator.

To take another example, consider an intelligence analyst working for a govern-
ment who becomes suspicious that a group of terrorists may be trying to infiltrate
chemical or fertilizer supply depots somewhere in Iraq. If monitoring systems have
been put in place, he can rapidly configure Astrolabe to look for unusual patterns of
activity, then zero in to try and find out who is responsible and precisely what they
are up to. Astrolabe offers the analyst a way to search data residing on thousands
of computer without downloading all of that data (potentially, terabytes) to a central
location. Moreover, the massive parallelism of the network of machines permits him
to perform queries that, on any single machine, might take hours to complete. By
doing the work out at the edges, the same tasks are finished in seconds.

The need for this type of data mining seems to be increasing rapidly. Corpora-
tions and other enterprises cannot avoid having large numbers of data centers scat-
tered throughout their organizations: such an approach puts computing where it is
needed and administers data close to where it was gathered. Making a centralized
copy for purposes of data mining can be very inefficient, and may simply create an
overloaded central resource.

Moreover, as the Web Services architecture rolls out, we are starting to see com-
panies that hope to use Web Services to open up their data centers for use in a
new kind of 4-tier architecture. Suppose that Amazon.com were to hand out small
“serverlets” to assist application developers in embedding point-and-click purchase
functionality into their applications. For example, a hospital computing system de-
veloper could use these serverlets to integrate the medical system with Amazon’s
purchasing and delivery mechanisms, so that when the hospital orders supplies,
Amazon fills the order. It is not hard to see why both Amazon.com and the de-
veloper might view this as an advantageous arrangement: the developer does not
need to duplicate Amazon’s computing systems (or their network of warehouses
and supplier relationships), and Amazon itself gains increased sales volumes. The
hospital benefits too, since they are using a widely used supply intermediary that
may be able to negotiate volume discounts and other special deals.

But now if a problem occurs—say that hospitals in Pennsylvania suddenly are
unable to connect to Amazon’s data center in Chicago, we will need ways to diag-
nose the problem, to get those serverlets to “fail over” to a different center (maybe
New York) in a coordinated way, and to orchestrate the repair. The more one studies
such a scenario the more it looks like a decentralized data mining problem. Client
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systems (serverlets) want to share their current status, diagnose and react in a con-
sistent way, etc. Administrators want to pin down the origin of the problem; perhaps,
a problem in the Internet, or in the firewall configuration at the hospital, or at the
Amazon data center.

Underlying Astrolabe’s powerful data mining and monitoring mechanisms is a
principle called peer-to-peer aggregation. Aggregation is analogous to computing
a dependent cell in a spreadsheet. When the underlying information changes, Astro-
labe will automatically and rapidly recompute the associated aggregates and report
the changes to applications that have registered their interest. What makes this an ag-
gregation problem is that the underlying data was gathered from many machines in
a large networked setting. Astrolabe’s protocols ensure that even in huge networks,
any change is soon visible everywhere. For example, Astrolabe aggregation can be
used to identify sets of sensors which have made related observations—biothreat
sensors reading low levels of toxins, coastal traffic sensors reporting vessels match-
ing an Interpol profile of potential concern, and so forth. As a user’s needs evolve,
Astrolabe can be reconfigured on the fly by changing the set of aggregation queries.
Astrolabe uses peer-to-peer protocols to implement aggregation, and this is the “se-
cret” of its power, flexibility and robustness.

21.2.1 How It Works

Astrolabe is best understood as a relational database built through a peer-to-peer
protocol running between the applications or computers on which Astrolabe is in-
stalled. Like any relational database, the fundamental building block employed by
Astrolabe is a tuple (a row of data items) into which values can be stored. For sim-
plicity in this paper, we will focus on the case where each tuple contains information
associated with some computer. The technology is quite general, however, and can
be configured with a tuple per application, or even with a tuple for each instance of
some type of file or database.

Modern computing platforms, such as Microsoft’s .NET and J2EE, provide a
wealth of instrumentation options. Astrolabe is designed to tap into these. Basically,
there are two forms of data available, although both are presented to the user through
a single API.

One option is to extract information from the management information base
(MIB) of a computer. A MIB is a standardized database maintained by the com-
puter itself, containing such information as load, currently active processes, machine
name and IP address, etc. The MIB is an extremely powerful and general source of
information, and for a user with appropriate permissions, gives access to almost
anything the operating system “knows.” On systems such as Linux and Microsoft
.NET, the MIB is provided by a server object that can be accessed using an RPC
protocol, and Astrolabe taps into this interface to extract data of the type desired by
the user, then to monitor that data for changes at a frequency the user controls.

The second major source of data for Astrolabe consists of information that the
system extracts directly from a file, database, spreadsheet, or application program.
Astrolabe is able to perform this operation by exploiting a recent set of standards
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Fig. 21.6 Three Astrolabe
domains

(ODBC, JDBC) whereby an application with appropriate permissions can treat the
objects on a computer much like databases. For example, Astrolabe could be asked
to count the number of image files containing possible matches with a picture of
a wanted criminal, or even to report the name of the file having the best match
(the image itself would be too large to export into Astrolabe, which limits the data
extracted to a few k-bytes per computer). The match with databases or spreadsheets
is especially good; in such cases, Astrolabe can perform a “query” on the underlying
object and report the result through its own tuple data structure (assuming, that is,
that the result can be represented as a single tuple).

Like most modern systems, Astrolabe is flexible about data types, supporting the
usual basic types but also allowing the application to supply arbitrary information
encoded with XML. The only requirement is that the total size of the tuple be no
more than a few k-bytes; much larger objects can be identified by some form of
URL or other reference but the data would not reside directly in Astrolabe itself.

The specific data to be pulled into Astrolabe is specified in a configuration cer-
tificate. Should the needs of the user change, the configuration certificate can be
modified and, within a few seconds, Astrolabe will reconfigure itself accordingly.
This action is, however, restricted by a security policy.

Astrolabe groups small sets of tuples into relational tables. Each such table con-
sists of perhaps 30 to 60 tuples containing data from sources physically close to
one-another in the network; we call this a “zone.” This grouping (a database admin-
istrator would recognize it as a form of schema) can often be created automatically,
using latency and network addresses to identify nearby machines. However, the sys-
tem administrator can also specify a desired layout explicitly.

Where firewalls are present, Astrolabe employs a tunneling method to send mes-
sages to machines residing behind the firewall and hence not directly addressable.
This approach also allows Astrolabe to overcome most restrictions associated with
network address translation (NAT) filters.

The data collected by Astrolabe evolves as the underlying information sources
report updates, hence the system constructs a continuously changing database using
information that actually resides on the participating computers. Figure 21.6 illus-
trates this: we see a collection of small database relations, each tuple correspond-
ing to one machine, and each relation collecting tuples associated with some set of
nearby machines. In this figure, the data stored within the tuple includes the name
of the machine, its current load, an indication of whether or not various servers are
running on it, and the “version” for some application. Keep in mind that this selec-
tion of data is completely determined by the configuration certificate. In principle,
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Fig. 21.7 Hierarchy formed when data-mining with an aggregation query fuses data from many
sources

any data available on the machine or in any application running on the machine can
be exported. In particular, spreadsheets and databases can easily be configured to
export data to Astrolabe.

An application using Astrolabe can access this local data (that is, data associated
with machines in its own zone) just as it might access any other table, database or
spreadsheet. As updates are reported through Astrolabe, the application receives a
form of event notifying it that the table should be rescanned. For example, Astrolabe
data can be dragged into a local database, spreadsheet, or even onto a web page. As
the data changes, the application will receive refresh events.

Astrolabe is intended for use in very large networks, hence this form of direct
access to local data cannot be used for the full dataset: while the system does capture
data throughout the network, the amount of information would be unwieldy and
the frequency of updates excessive. Accordingly, although Astrolabe does provide
an interface with which a remote zone’s data can be accessed, the normal way of
monitoring remote data is through aggregation queries.

As the name suggests, an aggregation query is just an SQL query that operates
on these leaf relations, extracting a single summary tuple from each which reflects
the globally significant information within the zone. Sets of summary tuples are
concatenated by Astrolabe to form summary relations (again, the size is typically
30 to 60 tuples each), and if the size of the system is large enough so that there will
be several summary relations, this process is repeated at the next level up, and so
forth. Astrolabe is thus a hierarchical relational database. Each of the summaries is
updated, in real-time, as the leaf data from which it was formed changes. Even in
networks with thousands or millions of computers, updates are visible system-wide
within a few tens of seconds (Fig. 21.7).

A computer using Astrolabe will, in general, have a local copy of the data for
its own zone and for aggregation (summary) data for zones above it on the path to
the root of this hierarchy. As just explained, the system maintains the abstraction of
a hierarchical relational database. Notice that in a physical sense, this hierarchy is
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an illusion, constructed using a peer-to-peer protocol of our own design, somewhat
like a jig-saw puzzle in which each computer has copies of some of the pieces. The
protocols permit the system to assemble the puzzle as a whole when needed. Thus,
while the user thinks of Astrolabe as a somewhat constrained but rather general
database residing on a conventional server, accessed using conventional programmer
APIs and development tools, and updated as information changes, in reality there is
no server. The user abstraction is created on the fly.

The peer-to-peer protocol used for this purpose is, to first approximation, easily
described. We consider first the case of a single zone. Each Astrolabe system keeps
track of the other machines in its zone, and of a subset of contact machines in other
zones. This subset is selected in a pseudo-random manner from the full membership
of the system (a peer-to-peer gossip protocol is used to track approximate member-
ship). At some fixed frequency, typically every 2 to 5 seconds, each participating
machine sends a concise state description to a randomly selected destination within
this set of neighbors and remote contacts. The state description is very compact and
consists of identification of objects available on the system and their timestamps.
We call such a message a gossip event, because it behaves much like the gossip
exchanges described in connection with the ProbabilisticSend protocol. Unless an
object is very small, the gossip event contains version information, not actual data.

Upon receiving such a gossip message, an Astrolabe system is in a position to
identify information which may be stale at the sender’s machine (because times-
tamps are out of date) or that may be more current at the sender than on its own
system. We say may because time elapses while messages traverse the network,
hence no machine actually has current information about any other. Our protocols
are purely asynchronous: when sending a message, the sender does not pause to wait
for it to be received and, indeed, the protocol makes no effort to ensure that gossip
gets to its destinations.

Through exchanges of gossip messages and data, information should propagate
within a network over an exponentially increasing number of randomly selected
paths among the participants. That is, if a machine updates its own row, after one
round of gossip, the update will probably be found at two machines. After two
rounds, the update will probably be at four machines, etc. In general, updates prop-
agate in log of the system size—seconds or tens of seconds in our implementation.
In practice, we configure Astrolabe to gossip rapidly within each zone (to take ad-
vantage of the presumably low latency) and less frequently between zones (to avoid
overloading bottlenecks such as firewalls or shared network links). The effect of
these steps is to ensure that the communication load on each machine using As-
trolabe and also each communication link involved is bounded and independent of
network size.

We have said that Astrolabe gossips about objects. In our work, a tuple is an
object, but because of the hierarchy used by Astrolabe, a tuple would only be of
interest to a receiver in the same region as the sender. In general, Astrolabe gossips
about information of shared interest to the sender and receiver. This could include
tuples in the regional database, but also membership data, and aggregation results
for aggregation zones which are common ancestors to the sender and receiver.
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So far we have discussed the behavior of Astrolabe within a single zone. To
compute the contents of internal zones containing aggregation results, each zone
“elects” (using an aggregation query) a small number of representatives to run the
Astrolabe gossip protocol on its behalf in the next higher-level zone within the zone
hierarchy. These spawn an additional instance of the gossip protocol and, before
gossiping, recomputed the zone’s contribution to the aggregate. Thus, the average
machine within a zone will gossip only with other machines in the same zone, not
with representatives of remote zones. Thus, a computer may run gossip on behalf of
1, 2, or as many as logzone-size(N) simultaneous gossip protocols. The zone size in
Astrolabe is large (often 64 or 100) hence this will be a small number, rarely more
than 3 or 4.

After a round of gossip or an update to its own tuple, Astrolabe informs any lo-
cal readers of the Astrolabe database that its value has changed, and the associated
application rereads the object and refreshes its state accordingly. For example, if an
Astrolabe aggregation output is pulled from Astrolabe into a web page, that web
server would refresh that page each time it changes. The change would be expected
to reach the server within a delay logarithmic in the size of the network, and propor-
tional to the gossip rate. Using a 2-second gossip rate, an update would thus reach
all members in a system of 10,000 computers in roughly 25 seconds. Of course,
the gossip rate can be tuned to make the system run faster, or slower, depending on
the importance of rapid responses and the amount of bandwidth available for our
protocols.

Additional details of how Astrolabe is implemented and how it performs can be
found in van Renesse et al. (2003).

21.2.2 Peer-to-Peer Data Fusion and Data Mining

Astrolabe is a powerful, flexible technology for data fusion and data mining. The
system can be understood as performing data fusion in a continuous manner, since
the basic Astrolabe data structure fuses designated data into a virtual database for
use by the application. The SQL aggregation mechanism permits additional data
fusion, and also permits the user to perform a wide variety of data mining actions.

The power of these mechanisms is, however, limited by the physical layout of the
Astrolabe database and by our need, as builders of the system, to provide a solution
which is secure and scalable. The focus of this section is not so much on the basic
ideas but on these limitations and their implications for the Astrolabe user.

Consistency
Although Astrolabe is best understood as a form of hierarchical database, the sys-
tem does not support the transactional consistency model employed by databases.
Astrolabe is accessible by read-only operations on the local zone and aggregation
zones on the path to the root. Update operations can only be performed by a machine
on the data stored in its own tuple. Moreover, the ACID properties do not apply; for
example, two different observers will often see updates in different orders and may
not even see the identical updates.
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If Astrolabe is imagined as a kind of replicated database, a further distinction
arises. In a replicated database each update will be reflected at each replica. As-
trolabe offers a weaker guarantee: if a participating computer updates its tuple and
then leaves the tuple unchanged for a sufficiently long period of time, there is a very
high probability that the update will become visible to all non-faulty computers.
Indeed, this probability converges to 1.0 in the absence of network partitioning fail-
ures. Astrolabe gains a great deal by accepting this weaker probabilistic property:
the system is able to scale with constant loads on computers and links, and is not
forced to stop and wait if some machine fails to receive an update. In contrast, there
is a well-known impossibility result that implies that a database system using the
serializability model may need to pause and wait for updates to reach participat-
ing nodes, and indeed that a single failure could prevent a replicated database from
making progress. Jointly, these results limit the performance and availability of a
replicated database. Astrolabe, then, offers a weaker consistency property but gains
availability and very stable, predictable performance by so doing.

Aggregation raises a different kind of consistency issue. Suppose that an aggre-
gation query reports some property of a zone, such as the least loaded machine, the
average humidity in a region, etc. Recall that aggregates are recomputed each time
the Astrolabe gossip protocol runs. One could imagine a situation in which machine
A and machine B concurrently update their own states; perhaps, their loads change.
Now suppose that an aggregation query computes the average load. A and B will
both compute new averages, but the values are in some sense unordered in time: A’s
value presumably reflects a stale version of B’s load, and vice versa. Not only does
this imply that the average computed might not be the one expected, it also points
to a risk: Astrolabe (as described so far) might report aggregates that bounce back
and forth in time, first reflecting A’s update (but lacking B’s more current data),
then changing to reflect B’s update but “forgetting” A’s change. The fundamental
problem is that even if B has an aggregation result with a recent timestamp, the ag-
gregate could have been computed from data which was, in part, more stale than
was the data used to compute the value it replaces.

To avoid this phenomenon, Astrolabe tracks minimum and maximum timestamp
information for the inputs to each aggregation function. A new aggregate value re-
places an older one only if the minimum timestamp for any input to that new result
is at least as large as the maximum timestamp for the one it replaces. It can be seen
that this will slow the propagation of updates but will also ensure that aggregates
advance monotonically in time. Yet this stronger consistency property also brings a
curious side-effect: if two different Astrolabe users write down the series of aggre-
gate results reported to them, those sequences of values could advance very differ-
ently; perhaps, A sees its own update reflected first, then later sees both its own and
B’s; B might see its update first, then later both, and some third site, C, could see
the system jump to a state in which both updates are reflected. Time moves forward,
but different users see events in different order and may not even see the identical
events! This tradeoff seems to be fundamental to our style of distributed data fusion.
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Security Model and Mechanisms
A related set of issues surround the security of the Astrolabe technology. We noted
earlier that many peer-to-peer systems suffer from insecurity and are easily inca-
pacitated or attacked by malfunctioning or malicious users. Astrolabe is intended to
run on very large numbers of machines, hence the system itself could represent a
large-scale security exposure.

To mitigate such concerns, we have taken several steps. First, Astrolabe reads
but does not write data on the machines using it. Thus, while Astrolabe can pull a
great variety of data into its hierarchy, the system does not take the converse action
of reaching back onto the participating machines and changing values within them,
except to the extent that applications explicitly read data from Astrolabe.

The issue thus becomes one of trustworthiness: can the data stored in Astrolabe
be trusted? In what follows, we assume that Astrolabe is correctly implemented,
but that the computers on which it runs could fail, and software bugs (hopefully,
rare) could corrupt individual Astrolabe instances. To overcome such problems, As-
trolabe includes a public-key infrastructure (PKI) which is built into the code. We
employ digital signatures to authenticate data. Although machine B may learn of
machine A’s updates through a third party, unless A’s tuple is correctly signed by A’s
private-key, B will reject it. Astrolabe also limits the introduction of configuration
certificates and aggregation queries by requiring keys for the parent zones within
which these will have effect; by controlling access to those keys, it is possible to
prevent unauthorized users from introducing expensive computations or configuring
Astrolabe to pull in data from participating hosts without appropriate permissions.
Moreover, the ODBC and JDBC interfaces by means of which Astrolabe interfaces
itself to other components offer additional security policy options.

A limitation on the Astrolabe security mechanism is evident when one consid-
ers the way that aggregates are computed. As noted earlier, each zone elects some
representatives to run the gossip protocol for the next higher level zone, and this
continues up to the layer below the root. Those representatives compute the zone’s
aggregate function and then gossip about this value, and other cached values from
other sibling zones, and in this manner the value of an aggregate zone is assembled.

Now suppose that some node aggregates incorrectly, or even maliciously. For ex-
ample, it could proclaim itself to have the lowest load in the region and thereby elect
itself as the regional aggregation contact, and then incorrectly claim that the region
is not reporting and denial of service problems, when in fact many machines are
complaining about overloads. The “false” aggregation information might be trusted
by other nodes and this can cause problems system-wide. At the time of this writ-
ing, work was underway on a type of attestation scheme similar to the one we dis-
cussed in conjunction with Byzantine Agreement. The idea (being developed by
Kevin Walsh and others) is to require that aggregations be countersigned by multi-
ple nodes; with k counter-signatures, up to k failures can be tolerated.

In fact this idea is harder to put into practice than to describe. For example,
Astrolabe’s consistency model is not strong enough to ensure that a node selected
to countersign a value can actually do so. To address this, Walsh was forced to add
a history mechanism to Astrolabe, whereby each participant would accumulate a
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history of values for each row. An aggregate can then be pinned down by specifying
the row versions used to compute it.

Query Limitations
A final set of limitations arises from the lack of a join feature in the aggregation
query mechanism. As seen above, Astrolabe performs data mining by computing
summaries of the data in each zone, then gluing these together to create higher level
zones on which further summaries can be computed. The approach lacks a way to
compute results for queries that require cross-zone joins.

For example, suppose that Astrolabe were used as the basis for a sensor net-
work in a military targeting setting. One might want to express a data fusion query
along the following lines: “for each incoming threat, report the weapons system
best positioned to respond to that threat.” The natural way to express this as a query
in a standard database would involve a join. In Astrolabe, one would need to ex-
press this as two aggregation queries, one to compute a summary of threats and the
other, using output from the first as an input, tracking down the response options.
In general, this points to a methodology for dealing with joins by “compiling” them
into multiple current aggregation queries. However, at present, we have not devel-
oped this insight into a general mechanism; users who wish to perform joins would
need to break them up in this manner, by hand. Moreover, it can be seen that while
this approach allows a class of join queries to compile into Astrolabe’s aggregation
mechanism, not all joins can be so treated: the method only works if the size of the
dataset needed from the first step of the join, and indeed the size of the final output,
will be sufficiently small.

Configuring Astrolabe so that one query will use the output of another as part of
its input raises a further question: given that these queries are typically introduced
into the system while it is running, how does the user know when the result is “fin-
ished”? We have a simple answer to this problem, based on a scheme of counting
the number of sub-zones reflected in an aggregation result. The idea is that as a
new aggregate value is computed, a period passes during which only some of the
leaf zones have reported values. At this stage the parent aggregation zone is not yet
fully populated with data. However, by comparing a count of the number of report-
ing child zones with a separately maintained count of the total number of children,
applications can be shielded from seeing the results of an aggregation computation
until the output is stable. By generalizing this approach, we are also able to han-
dle failures or the introduction of new machines; in both cases, the user is able to
identify and disregard outputs representing transitional states. The rapid propaga-
tion time for updates ensures that such transitional conditions last for no more than
a few seconds.

21.3 Other Applications of Peer-to-Peer Protocols

This chapter has limited itself to scraping the surface of a thriving area. Recent
work suggests that peer-to-peer protocols may also be useful in building scalable
publish-subscribe systems, improving the reliability of very large “chat” systems, in
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managing caches for large Web sites and Web Service applications, and in increas-
ing the robustness of mobile, wireless computing platforms, which often suffer from
brief disconnections and other disruptive outages. One very exciting piece of work,
by Ion Stoica at Berkeley, proposes to replace the entire Internet with an architec-
ture (called the Internet Indirection Infrastructure, or I3) in which a DHT is used
to deliver packets, substituting this for the traditional Internet routing mechanism.
Stoica shows that his scheme is able to accommodate such functions as multicast
and anycast efficiently, can implement various kinds of packet transformation and
pipeline processing, and is even able to provide mobile packet routing under condi-
tions where the standard Internet incurs high overhead.

The author’s recent work in this area included a collaborative effort to build an
efficient distributed slicing protocol (called Sliver, this protocol organizes the data
in a large P2P system into k sets, or slices, so that after O(log(N)) delay each node
learns the slice to which it belongs. Thus for k = 2 we divide the nodes into two
sets: those with big values and those with small ones, of roughly the same size; for
k = 4 we generate quartiles, k = 10 yields deciles, etc. This notion of slicing was
pioneered by Kermarrec, and in fact the Sliver protocol uses elements of protocols
she developed previously, but that had cases in which convergence might be slow.
Sliver is quite simple, and has been shown to outperform even highly efficient par-
allel sorting algorithms, which also have complexity O(N): parallel sort has large
constants in front of the N that O(N) brushes to the side; for Sliver, the relevant
constant is very small.

A second collaboration between the author’s group and Kermarrec’s group re-
sulted in a small operating system for supporting gossip and P2P applications, called
Gossip Objects or GO. Here, the key idea is that if an operating system sends the
actual gossip messages on behalf of a set of objects that are hosted on it and all
use gossip communication patterns, there might be opportunities to combine multi-
ple gossip messages into a single larger one that can carry data on behalf of many
applications. Ymir Vigfusson showed that this formulation leads to a very practi-
cal optimization challenge, which he solves using a greedy algorithm that performs
well and even manages to route gossip traffic opportunistically along indirect paths.
For example, a node gossiping from p to q might carry a gossip message actually
intended for r in the hope that q will get a chance to pass it along to r soon. Exper-
iments with GO confirm that there can be substantial opportunity for benefit with
this approach in applications where there are multiple, heavily overlapping, gossip
objects. In his Ph.D. thesis, Vigfusson shows that if overlap arises at all, that pattern
of extensive overlap should be common.

While it does seem safe to say that peer-to-peer computing is solidly established
as an important technology area, it is also important to realize that like most tech-
nologies in this third part of the book, peer-to-peer applications remain a somewhat
marginalized technology. Only Napster, Gnutella and Kazaa have achieved much
success, and of course that was in support of what turns out to have been an illegal
application. Whether peer-to-peer solutions ever gain a “first class” role in modern
operating systems platforms remains to be determined.
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21.4 Related Reading

Peer-to-peer computing is a new and very active area. By far the best way to get
the sense of the scope of activities and to learn about some of the very best work
is to consult the proceedings of the Workshop on Future Directions in Distributed
Computing (see Schiper et al. 2003), the International Workshop on Peer-to-Peer
Computing, which was held at MIT in 2002 and at Berkeley in 2003. Other major
outlets for peer-to-peer research include the SIGCOM conference, INFOCOM, and
OSDI. Some notable recent papers include (see Andersen et al. 2001a, 2001b; Bal-
akrishnan et al. 2003; Bhagwan et al. 2003; Castro et al. 2003a; Gribble et al. 2001;
Iyer et al. 2002; Kermarrec et al. 2001; Kubiatowicz et al. 2000a, 2000b; Kubiatow-
icz 2003; Muthitacharoen et al. 2002; Weatherspoon and Kubiatowicz 2002; Zhao
et al. 2002a, 2002b).

One important problem in P2P systems is that poor choice of peers can warp the
otherwise clean convergence behavior of these protocols in ways that cause sharp
degradation in performance, loss of connectivity, or similar issues. Moreover, be-
cause of network address translation and firewalls, situations can arise in which pro-
cess p learns of some peer q and yet is unable to communicate directly with q . Even
worse, churn can contaminate membership lists with stale entries corresponding to
dead processes. As a result, one can build a high-quality P2P routing overlay only to
discover that it malfunctions badly by becoming disconnected, has connectivity to
all members but with inadequate bandwidth for some, etc. Quite a bit of theoretical
work has been done on this topic; one sees that the real need is for a so-called ex-
pander graph (see Hoory et al. 2006) (one in which, with probability 1, all members
have paths to all other members) and that the optimal expander graph is what we
call a Small Worlds Graph (see Kleinberg 2000b), exhibiting a specific rather sim-
ple connectivity pattern. and logarithmic diameter. Peer selection algorithms and the
effects of bias has been explored in Kermarrec et al. (2009) and Guerraoui (1995).
Qi Huang has developed a number of tools for automatically sensing the state of a
graph such as this (see Huang et al. 2010), and Vivien Quema has shown how one
can work around obstacles using indirection (see Kermarrec et al. 2009).

On gossip protocols (see Alon et al. 1987; Demers et al. 1987; Golding 1991;
Golding and Taylor 1992). For Sliver, see Gramoli et al. (2009). For Gossip Objects
(GO), see Vigfusson et al. (2009). For Vigfusson’s thesis, see Vigfusson (2009).

On the underlying theory (see Bailey 1975).
Hayden’s work (see Birman 1999), draws on Chandra and Toueg (1990) and

Cristian et al. (1985).
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Reliable Services

Ken Birman, Dahlia Malkhi, and Robbert Van Renesse

The general style of this text has been, up to now, fairly informal by the standards of
the distributed computing community, which has a substantial and very active the-
oretical arm (the author of this text, in contrast, is more typical of the engineering
side of the community). Yet for readers or instructors who cross over by teaching a
distributed engineering course from time to time while doing their own research pri-
marily on theoretical topics, this style can be frustrating because of its imprecision.

The motivation for creating a more formal model of dynamic membership in
a fault-prone distributed setting is as follows. In designing and building distributed
systems, it is common engineering practice to separate steady-state (“normal”) oper-
ation from abnormal events such as recovery from failure. This way the normal case
can be optimized extensively while recovery can be amortized. However, integrating
the recovery procedure with the steady-state protocol is often far from obvious, and
can present subtle difficulties. This issue comes to the forefront in modern data cen-
ters, where applications are often implemented as elastic sets of replicas that must
reconfigure while continuing to provide service, and where it may be necessary to
install new versions of active services as bugs are fixed or new functionality is intro-
duced. This appendix explores the question in the context of a dynamic reconfigu-
ration model of our own design that unifies two widely popular prior approaches to
the problem: virtual synchrony, a model and associated protocols for reliable group
communication, and state machine replication (Lamport 1978a, 1978b; Schneider
1990) (in particular, Paxos (Lamport 1998)), a model and protocol for replicating
some form of deterministic functionality specified as an event-driven state machine.

K. Birman · R. Van Renesse
Cornell University, Ithaca, USA

D. Malkhi
Microsoft Research Silicon Valley, Mountain View, USA

K.P. Birman, Guide to Reliable Distributed Systems, Texts in Computer Science,
DOI 10.1007/978-1-4471-2416-0_22, © Springer-Verlag London Limited 2012

635



636 22 Appendix A

22.1 Introduction

Our work deals with a style of distributed services that uses elastic sets of replicas
to achieve availability, scalability, and long term durability. These replica sets can
vary widely over time: expanding as the service confronts load surges or replaces
failed server instances, and contracting as load drops or members crash. Thus, the
contemporary distributed systems developer, or service developer, is unavoidably
faced with issues of dynamic service replication.

Service replication and reconfiguration confront the developer with a series of
tough choices. One can evade these choices by abandoning consistency, but there
are many kinds of service for which consistency guarantees are important and must
not be violated simply because the service replica set is elastic. For services of this
type, reconfiguration remains a murky black art, error prone and associated with
complex, subtle bugs. Moreover, among the correct, rigorously analyzed solutions
there are all sorts of hidden tradeoffs, representing deliberate compromises between
performance and complexity during steady-state operation of the service (when re-
configuration is not happening) and the complexity of the reconfiguration event it-
self, which may also entail some period of service unavailability.

Our treatment of this problem is tutorial in style, but aimed at a sophisticated
audience. We suspect that any developer confronting this topic will have had a con-
siderable amount of experience with distributed systems. Accordingly, we target a
reader who knows how one creates distributed services, has some familiarity with
the classical papers on asynchronous consensus and communication protocols and
impossibility results such as the FLP theorem, and who may even have worked with
the virtual synchrony (Birman and Joseph 1987a) or the state machine replication
methodologies (Lamport 1978a, 1998; Schneider 1990). Our premise is that even
knowledgeable readers be surprised to learn of some of the pitfalls, anomalies and
tradeoffs that the prevailing methodologies tacitly accept. Our work unifies what
had previously been different models using a single overarching methodology and
formalism which we name Dynamic Service Replication (DSR).

Our goal will be to design services that can be reconfigured without disrupting
correctness, up to some maximum tolerable rate of service membership changes,
beyond which it becomes unavailable. We assume that reconfiguration is triggered
by a reconfiguration command, issued by the system management layer, and either
removing some members from a service, or adding some, or perhaps doing both at
once. Reconfiguration could also change application parameters, or even be used to
upgrade to a new version of an application or a protocol while keeping the service
as available as possible.

Building a reliable service using the DSR approach entails three fundamental
steps.

Safety The first is to provide a service-oriented safety definition. A good spec-
ification must abstract away from implementation details, and describe the service
using the methods clients can access, and expressing properties in terms of guaran-
tees that those methods will offer. Two example services are interwoven throughout
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the body of this chapter. The first example is a Reliable Multicast service, for which
we give a service-oriented description. Our definition exposes a Get() API call that
provide clients with a full, consistent history of messages that clients Add(). This
definition lets us focus on the matter of preserving service state consistently while
transitioning through configuration changes. Conversely, it is stripped of internal
details such as clients joining and departing the service, delivery duplication, etc.;
those can be added as various filters and add-ons, as discussed below. We use the
well known State Machine Replication (SMR) problem (Lamport 1978a, 1978b;
Schneider 1990) as our second primary example. For completeness, in Sect. 22.8
we also briefly flesh out an Atomic Read/Write Storage service.

Liveness The second ingredient of our treatment is an appropriate failure model.
In the distributed computing arena, reliability is often expressed as the requirement
to tolerate a threshold t failures out of an initial system of n processes. This classical
fault model ignores the ability of a dynamic system to out-live such an initial setting
via administrative decrees, e.g., to deploy new processes, or to remove faulty ones
from consideration. For example, an initial system configuration of four processes,
{A,B,C,D}, may tolerate a single failure. However, through an administrative de-
cree to reconfigure, say removing A after a failure, the remaining set {B,C,D} can
tolerate an additional single failure. But as this example suggests, although we have
increased the overall fault tolerance through dynamism, we cannot simply say that
we have a system of four processes, any two of which may crash at any time. We
need a more subtle condition that gives the system “sufficient time” to reconfigure.
In our example, two crashes can be tolerated over the total period the system is run-
ning, but during the early part, before the system had been reconfigured, only one
of {A,B,C,D} may fail. This notion of a dynamically defined majority appeared
implicitly in various prior works, including Ricciardi and Birman (1991), Ricciardi
(1993), Yeger-Lotem et al. (1997), Lamport (1998), Lynch and Shvartsman (2002),
Martin and Alvisi (2004), but the conditions always involved solution-specific de-
tails. Here, we adopt the principles of the DynaStore liveness model (Aguilera et al.
2009a), which gives an opaque Reconfig() handle for (administrative) clients. We
then enhance this model to suit our more general framework.

Reconfiguration Recipe The third component is an algorithmic foundation for
our solution. Briefly, a DSR epoch-by-epoch reconfiguration starts with a consen-
sus decision by the current configuration (say, C1) on a new configuration (C2). The
reconfiguration procedure proceeds with a transfer of control from C1 to C2, which
entails (a) a decision to suspend C1; (b) a snapshot of completed and potentially
completed operations in C1; (c) a state transfer of the snapshot to C2. The reconfig-
uration completes with a decision to enable C2 for processing new operations, with
the initial state of C2 determined by step b.

In our methodology, the developer deals with one epoch at a time. An epoch
terminates with a configuration change decision. The next configuration is uniquely
determined in the current epoch, and transition to it is irreversible. When an epoch
ends, a new epoch starts a new incarnation of the same algorithm (albeit with a non-
empty initial service state), whose participants and messages do not mix with the
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current epoch. If an epoch starts in a configuration that already includes some failed
nodes, it might make progress in that state, or it might initiate a further round of
reconfiguration to remove those nodes; indeed, it can initiate reconfiguration as its
first action. The new configuration operates completely separately from the current
one; the messages in it are not confused with messages in the current configuration;
and it can consist of an entirely new set of machine. Any number of reconfigurations
can be chained in this manner.

Solutions While the general framework—decide, suspend, state transfer, resume
—may appear obvious, there are numerous design choices and potential pitfalls
when realizing any specific service. Underlying any choice of reconfiguration so-
lution are inherent tradeoffs. One wants to maximize availability and performance,
but without violating safety, and it is not easy to accomplish all of these simulta-
neously. This does not mean that protocols need to be overly cumbersome. To the
contrary, in six figures, Figs. 22.3–22.9, we give succinct pseudo-code solutions for
six service variants, each frame containing a entire solution including precise safety
and liveness definitions.

We’ll see that we can trade steady-state simplicity with continuous availabil-
ity: A fault-recovery approach utilizes servers in steady-state in an uncomplicated
manner, disregarding the possibility of failure. It can be highly optimized, but re-
quires reconfiguration to unblock the service in case of a failure. Figure 22.3 illus-
trates this methodology within the context of Reliable Multicast and Fig. 22.7 does
so for SMR. The alternative is a fault-masking methodology, which crafts steady-
state protocols with built-in redundancy for high availability; it adds reconfiguration
functionality for even greater agility in a long-lived system. Figures 22.4, 22.5, 22.8
and 22.9 demonstrate fault-masking for multicast, SMR and read/write storage, re-
spectively.

Reconfiguration itself presents another interesting design tradeoff. The reconfig-
uration procedure entails forming two consensus decisions—one on the next con-
figuration and another on the closing state of the current. These may be obtained
either among the group of servers themselves, or using a separate consensus engine.
Even the latter case requires careful integration with the steady-state protocol, and
we give the recipes for doing so in Figs. 22.3 and 22.7. Fully distributed reconfigu-
ration protocols are detailed in Figs. 22.5, 22.9 and 22.8.

In general, any new members will need to catch up: for this we use the term state
transfer; it entails packaging the state of the service into some sort of external repre-
sentation, copying that data to the new member(s), and them loading the state before
starting to process new requests. The benefit of forming agreement on a closing state
is explained below in Sect. 22.6, using a novel formulation of an old idea, virtual
synchrony. Without agreement, we’ll see that a service might exhibit various forms
of unexpected behavior. For example, one standard approach leads to services that
are correct, but in which unfinished operations can linger in a concealed form, sud-
denly becoming complete “retroactively” arbitrarily far in the future, as discussed
in Sect. 22.9. An alternative approach to this problem was explored in systems like
RAMBO (Lynch and Shvartsman 2002) which seek to offer continuous availability,
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to do so they must keep both the old and the new configurations active for a poten-
tially extended period until the new one can take over entirely. Our methodology
explains such behaviors, clarifies the associated design choices, and offers simple
tradeoffs that let the developer select the properties needed, and to understand the
associated costs and implementation issues.

We also explore a number of misconceptions regarding reconfigurable SMR. For
example, when using the reconfigurable Paxos protocol, developers find themselves
forced to choose between a simple solution with poor performance and a far more
complex one that runs at higher speed (corresponding to the choice of value for
the Paxos concurrency window parameter). However, a higher concurrency window
may result in undesirable behavior where the sequence of state machine commands
contains a mix of decisions out of their intended order. In fact, the treatment pre-
sented here grew out of a project to create a new “Virtually Synchronous Paxos”
protocol, and our dynamically reconfigurable version of state machine replication
in Sect. 22.7.2 achieves this objective (in particular, Fig. 22.8 can be recognized as
a virtually synchronous version of the Paxos protocol).

More pitfalls and anomalies of existing approaches are discussed in Sect. 22.9.
This section contrasts our DSR method with respect to the three most relevant
methodologies, namely, implementations of virtually synchronous protocols, imple-
mentations of the Paxos protocol for state machine replication, and dynamic atomic
storage protocols.

Finally, we briefly sketch a correctness argument for a sample of our solutions in
the Appendix.

Contribution While some methodologies lead the developer to some single best
solution, that will not be the case here; not only will the solutions we develop be
incomparable in some ways, they even include application-specific considerations:
the best protocols for implementing a reconfigurable reliable multicast turn out not
to be directly mappable to state machine replication solution, and this illustrates
just one of many such examples. Thus, readers of this appendix will draw differ-
ent conclusions based on the utility they individually assign to the various tradeoffs
involved. Our contribution is not some single answer, but rather a more principled
treatment of the question. The methodology we offer here offers confidence in cor-
rectness, and for any given set of application-specific goals, enables steady-state
performance similar to the best known hand-crafted solutions to the same problems.
Also, our solution assumes less than is assumed when creating state machine solu-
tions, and for this reason may be applicable to problems for which state machine
replication is inappropriate.

In summary, this appendix offers an overarching and unified reconfiguration
framework, which reveals relationships between a number of prior works that led to
correct and yet seemingly incomparable reconfigurable solutions in this space. Do-
ing so helps the developer understand reconfiguration against a broad spectrum of
choices, to understand the implications of those choices, and also makes it possible
to see protocols that might previously have been portrayed as competing options as
different realizations of a single overall goal.
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22.2 Liveness Model

Our aim is to provide services in asynchronous systems whose set of servers is
changed through explicit reconfigurations. We assume an additional set, potentially
overlapping, of clients. We do not assume any bounds on message latencies or mes-
sage processing times (i.e., the execution environment is asynchronous), and mes-
sages may get lost, re-ordered, or duplicated on the network. However, we assume
that a message that is delivered was previously sent by some live member and that
correct members can eventually communicate any message.

In order to capture a formal execution model with changing memberships, we
borrow concepts which express explicit dynamism from Aguilera et al. (2009a), but
modify the treatment for weaker requirements. We proceed with a formal definition,
and follow with examples.

A fixed system membership consists of some set of servers and liveness condi-
tions. As usual, our goal is to build systems that are guaranteed to make progress
as long as the conditions on the servers hold. If too many servers fail (violating
the conditions for liveness), safety will not be impaired, but the system might need
to stop responding to client requests until reconfiguration occurs. We further refine
our liveness conditions by breaking them into two parts, one for performing read
requests, and one for performing updates; by doing so, we can sometimes continue
to support one kind of operation even if the other kind is temporarily unavailable.
Example memberships are ‘f + 1 servers, f may crash on any read, no crash tol-
erance on update’, and ‘n servers, any minority of which may fail for either read or
write tolerance’.

We assume an initial membership M0. Clients are provided with a membership-
changing API function Reconfig(M), where M is a new membership. A call to
Reconfig(M) must eventually complete, and returns an ACK response some time af-
ter its invocation. Clients might issue concurrent Reconfig(M) calls, and when this
occurs, the protocol orders the reconfigurations through the sequence of ACK re-
sponses. Thus, a system might perform M0,M1,M2, . . . even though Reconfig(M2)

was invoked before Reconfig(M1). We will view issues such as pre-conditions for
invoking Reconfig, and any access restrictions (e.g., to designated administrative
users) on using the Reconfig API as falling outside of the scope of our treatment.

In our model, two execution events are associated with each Reconfig call, mark-
ing its invocation and its completion. Both events change the liveness conditions, so
they could be thought of as ‘model-changing’ events in that they transform a fixed
liveness-condition into another liveness-condition. For clarity, we will continue re-
ferring to them as Reconfig invocation and response events. The first event occurs
upon invocation of Reconfig. It changes the current liveness condition to incorpo-
rate the requested new membership, including its set of servers and its corresponding
liveness conditions. The second event in our model marks a completion of a Recon-
fig call. This event signifies that the system has re-organized to switch the service to
the new set of servers and transferred all necessary information to it, so that the old
membership may be garbage collected.

We define the startup of a membership Mk to begin with the Reconfig(Mk) invo-
cation and end with its response event (for M0, this is defined as the point the system
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starts). We define the lifetime of a membership Mk to begin with the Reconfig(Mk)

invocation (or with the start time of the system, for M0) and end when the succeed-
ing reconfiguration Reconfig(Mk+1) startup is completed.

Liveness We use the notation X-resilience condition (where X is read or update)
to refer to the liveness condition that must hold for operations of type X to complete.
For every membership Mk in the sequence of Reconfig calls, the following holds:
1. Throughout the lifetime of Mk , its read-resilience is not violated.
2. There exists a future membership M�, where � > k, such that the update-

resilience condition of M� holds throughout the startup of Reconfig(M�).
Note that it follows inductively from the definitions above that memberships

Mk+1, . . . ,M�−1 maintain their read-resilience condition until the response event
of Reconfig(M�).

To illustrate the features of our liveness model, let us apply it in three simple
scenarios. In the first, we have a system implemented by a single server which may
be replaced as needed. Each membership consists of a singleton set. The read and
update resilience conditions are identical here: Zero failures. Plugging these bounds
into our liveness condition implies that, not surprisingly, a server must remain alive
until a new one is installed. Moreover, the new server must be alive during its startup
procedure. For example, say that initially we have M0, which contains a singleton
set of servers {q0}. A client wishes to replace q0 with an upgraded server q1 by
invoking Reconfig(M1), with M1 containing the set of servers {q1}. Internally, the
startup procedure of Reconfig(M1) suspends q0, copies data from q0 to q1, and
redirects clients to q1. Note that this startup procedure will be successful under
the assumptions of our liveness model, because both q0 and q1 remain alive while
Reconfig(M1) is in progress. Once q1 stores the system state, the Reconfig(M1)

procedure completes and we model this as an abstract response event. From here
on, q0 may safely shut down.

The second example is a service implemented by N = F + 1 servers for F -
tolerance, such as a primary-backup setup. Here, the read and the update thresholds
are substantially different. The update-threshold is F + 1. That is, in order for the
service to store updates durably, it requires participation of all servers. In case of
a failure, updates become stalled, and we use the reconfiguration manager to fa-
cilitate progress. Such a service must include another system component in charge
of reconfiguration, because it impossible to form a consensus decision on the next
membership among the F + 1 processes alone. To reconfigure, we need both one
server to be available, in order to persist the service state; and the reconfiguration
manager must be available in order to initiate the Reconfig procedure.

For example, say that M0 has a set of servers S0 and M1 has S1, each consist-
ing of F + 1 servers. Upon invocation of Reconfig(M1), our liveness requires read
availability in both S0 and S1 and that some later membership has update availabil-
ity. More specifically, our model says that at most F out of each of the sets S0,
S1 fail. This suffices to suspend M0 and transfer the closing state of M0 to at least
one server in S1. When the closing state of M0 has been transferred to all F + 1
servers of M1 our model schedules the Reconfig(M1) response event. At that time,
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our liveness model changes: it drops any resilience assumption on M0. Indeed, it
would be safe for all servers of S0 (that are not in S1) to shut down.

To re-iterate a point made above, Reconfig calls may overlap. Hence, this sce-
nario could develop quite differently. Say that there is a failure in S1 before we
complete the state transfer to it. Hence, a client may issue Reconfig(M2) to remedy
this, before Reconfig(M1) completes. In our formal model, another event occurs,
marking the invocation of Reconfig(M2) and changing the liveness assumption to
‘F out of each of the sets S0, S1 and S2 may fail’. Now servers in S2 suspend M1
and obtain its state. Note that our read-resilience assumption implies that this is
possible, despite having failures in M1 already. When all F + 1 servers in S2 ob-
tained their state, Reconfig(M2) becomes completed. In this case, the completion
of Reconfig(M2) also pertinently marks the completion of Reconfig(M1). Conse-
quently, both M0 and M1 will be retired by this completion.

In our last example, a membership consists of a set of N = 2F + 1 servers, F

of which may crash for either read or update. Here, the read and update resilience
thresholds are identical. The liveness condition is simple here: During the lifetime
of a membership, at most F of its servers may crash. A membership Mk ends with
the completion of Reconfig(Mk+1), when the closing state of Mk is stored on F + 1
members of Mk+1. At that time, Mk may be retired.

Finally, we note that in order to reach a unique Reconfig decision, we are obvi-
ously bound by the impossibility of consensus: in order to guarantee termination for
Reconfig decisions, we require an eventual leader with timely communication to a
majority of the membership.

22.3 The Dynamic Reliable Multicast Problem

Let us jump in by exploring the reconfiguration question in the context of a sim-
ple but general form of reliable multicast. A reliable multicast protocol is simply
a service (perhaps implemented by a library that its clients employ), which allows
clients to send new multicast messages to groups of receivers, and to receive mes-
sages within groups. Multicast is a popular technology, both in the explicit form just
described, and also in implicit forms, such as publish-subscribe or content-based
communication infrastructures, so called enterprise message bus technologies, and
many kinds of data replication and caching technology. In accompanying break-out
boxes (Figs. 22.1 and 22.2) we discuss the possible mappings of our simple multi-
cast API to more standard ones that might be used in such services.

Reliable multicast is a good place to start because many distributed systems rely
on some form of multicast-like mechanism at a basic level, perhaps presenting it as a
multicast, or perhaps hiding it in a data or file replication mechanism. But whatever
form the end-user functionality takes, the multicast communication pattern arises.
If we can understand reconfiguration in a multicast protocol, we will have taken a
big step towards understanding reconfiguration as a general computing paradigm.

The Multicast API Our proposed service offers two interfaces to its clients,
Add() and Get(). The Add() primitive sends a new message and returns an ACK.
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How can our service model be made available through a more standard multi-
cast package? Our multicast API is pull-based, but one could change it into a
notification API by supporting an explicit group join operation. The join itself
would change the group membership using a reconfiguration command, and
we will discuss these below. The Send operation maps directly to our Add()
interface. Receive would then be supported as a callback from the multicast
library into the application. When a process joins a multicast group for the
first time, our durability rule requires it to learn the state of the group. Thus
the first event that occurs upon joining would be a Get() of the sort we have
included in our model: the Get(), in effect, embodies the state transfer. Sub-
sequent receive operations, in contrast, would be modeled as Get() operations
that omit messages that were previously delivered to the caller. View notifi-
cation, if desired, would be implemented as an upcall that occurs when a new
membership is initiated.
A real implementation would also garbage collect durable multicast messages
once they are processed by the group members and reflected into the group
state. The needed mechanisms complicate the protocol, but have no funda-
mental bearing on the reconfiguration problem, hence we omit discussion of
them here.

Fig. 22.1 Our simple multicast service abstracts classical ones

A Get() call returns a set of messages. A message m of a completed Add() or Get()
operation becomes durable. The main requirement we have of a Get() call is:

Definition (Multicast Durability) A Get() call returns a set of messages that con-
tains all messages which have become durable when the call was invoked.

In practice, Get() returns all durable messages of completed Add() operations
and possibly also some additional messages associated with concurrently executing
Add() operations. If a message m is returned by Get, it becomes durable; hence
every subsequent call to Get will also return m.

We do not require any particular order on operations; in particular, two con-
current calls to Get() may return disjoint sets of durable messages, and might or-
der messages differently. Thus, the model could be used with Send, OrderedSend,
CausalSend, etc. However, notice that because of the emphasis on durability, our
treatment in this Appendix really applies only to the safe versions of those proto-
cols, which do provide strong durability. The model can be extended to deal with
amnesia-freedom of the kind needed in the first tier of the cloud, but doing so is
beyond the scope of our treatment here.

Epoch-by-Epoch Solution Our approach for dynamically reconfigurable reliable
multicast has two parts: A steady-state protocol for sending and delivering messages
during normal, stable periods; and a reconfiguration protocol. Each of these proto-
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Readers familiar with protocols such as IP multicast, or gossip-based multi-
cast, might be surprised to see durability even considered as a property that a
multicast protocol should offer. In many settings, durability is viewed strictly
as an end-to-end question, not something that belongs in a multicast layer.
Moreover, there are many ways for an application to satisfy objectives such
as durability. For example, while our discussion looks at multicasts that only
deliver messages when they are safe in the sense of durable, there are some
kinds of application that operate optimistically, accepting messages instantly
upon reception, but then rolling back if necessary to back out of unsafe states
(Patino-Martinez et al. 2005). Why, then, are we treating durability as a mul-
ticast property?
Recall, however, that our overarching goal is to drill down on the question of
reconfiguring a durable service, with the hope of teasing out essential aspects
of the required solution. We are looking at multicast simply because multicast
is the communication pattern underlying data replication, hence applications
that perform durable data replication can be understood as if they were using
a multicast for the data updates. By modeling the multicast protocol as the
source of durability, we avoid needing to explicitly model the application,
and can isolate the interplay between durability within the multicast protocol
and reconfiguration of the multicast group membership.

Fig. 22.2 Durablity can be defined in application-specific terms (for example, by requiring that
a database retain an update), or in protocol specific terms (for example, by requiring that if any
multicast delivery occurs, every member learns the multicast). As discussed in connection with the
SafeSend logging problem in Sect. 15.2, the definition one selects has important implications. In
this Appendix, we’ve adopted a definition that focuses purely on the multicast protocol itself, for
clarity of the presentation

cols is defined relative to a single epoch, which begins when a configuration of the
system becomes live and ends by running the epoch termination protocol given be-
low. After the current epoch ends, a new epoch starts, and we can understand it as
hosting a completely new incarnation of this algorithm, whose newly added mes-
sages do not mix with the previous epoch. Indeed, when changing epochs a system
could modify protocol parameters or even switch to a new protocol stack entirely
incompatible with the prior one, reinitialize data, agree upon new security keys (in
a secured group (Reiter 1994a, 1994b)), and so forth.

A Single Server Solution It may be helpful to begin with a degenerate solution
that employs just a single server, because by doing so, we create a form of reference
implementation. Later when we explore distributed solutions, we can reason about
their correctness by asking ourselves what properties it shares with the single server
solution.

To implement Add(), the client in the single-server case locates the server and
sends it a store request for whatever message m is being sent. The server adds m to
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the message history and acknowledges, and the client considers the Add() complete
when the acknowledgment is received.

To implement Get(), the client contacts the server and the server sends back the
entire current message history. Notice that this history will contain every completed
Add(), and perhaps also a few more messages that were recently stored but for
which the corresponding client has not yet received the acknowledgment. These
requests are, in a technical sense, incomplete, although the associated messages will
in fact be durable. In particular, notice that once a Get() includes m into a response,
every future Get() will also include m.

Finally, how might we reconfigure the single-server implementation? The sim-
plest solution would be as follows. A membership tracking module would receive a
reconfigure command, specifying that henceforth, server s′ will run the service. The
membership service determines that s is currently running the service, and sends a
message to s that causes it to enter what we will call a wedged state, meaning that no
further operations will be accepted. Server s now transmits its final state to the mem-
bership service, which now sends s′ a message that includes the final state. Having
initialized itself from this transferred state, s′ becomes operational, accepting new
store operations. Meanwhile, s can terminate, discarding its state. The protocol, of
course, is not tolerant of failures: if s fails before the state is transferred, s ′ will be
unable to enter the normal operational state.

Notice that we passed the new epoch state via the membership service. If this
state is large, doing so might be undesirable, because during the period between
when s transmits the state and when s′ loads it, the service will be unavailable.
However, there are ways to reduce this gap. For example, we might have s ′ spec-
ulatively copy the state from s using Get() operations, before the reconfiguration
is even initiated. Now only the recent delta of messages that reached s subsequent
to that preliminary transfer will be needed to bring s ′ into sync with s. Indeed, one
could iterate, such that the membership service forms the new epoch, in which s′ is
the new server, only when the remaining delta is small enough; this way, if s′ tries to
join during a burst of activity, it is delayed slightly (during which it will continue to
transfer chunks of state), until finally a brief moment of reduced load occurs, when
s′ can finally catch up relatively rapidly.

To use the terminology introduced above, we now have a fault-intolerant solution
in which each epoch is associated with some single server, begins with the initial-
ization of that server, runs in a steady state by storing messages, and ends when the
next server takes over, wedging the previous one. The previous server can shut down
entirely once the state transfer has been carried out.

Fault-Recovery Versus Fault-Masking Steady State We are now in a position
to replicate our service to achieve such benefits as higher availability, load balancing
of Get() operations over its members, etc. In what follows, we start by designing the
steady-state protocols and only then consider the protocol needed to reconfigure.
Two principal strategies suggest themselves:
1. The first is a fault-recovery approach, in which we store messages at all of the

servers. If some server is unresponsive, this version will become blocked until a
reconfiguration occurs.
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2. The second is a fault-masking algorithm, in which we store messages at a major-
ity of the servers. We deliver messages by reading from a majority and storing
back messages at a majority. This version can continue to complete operations of
both types as long as no more than a minority of servers become unresponsive.
We need a majority of servers to remain available in order to transfer the state
of the current configuration to any future one, but after reconfiguration, the old
configuration may be retired completely.
In the coming two sections, we first flesh out a fault-recovery solution (Sect. 22.4),

then a fault-masking one (Sect. 22.5).

22.4 Fault-Recovery Multicast

We start with the fault-recovery solution. The advantage of the a fault-recovery ap-
proach to the reliable multicast problem is that it requires just N = F + 1 servers
and maintains data durability in the face of up to F failures. In case of a failure, we
employ an auxiliary consensus engine to facilitate reconfiguration.

Figure 22.3 gives a succinct summary of the entire problem definition and its
fault-recovery solutions. We elaborate further on them below.

22.4.1 Fault-Recovery Add/Get Implementation

Add A client that wants to send a message m sends a store message containing
m to all servers in a configuration. A server that receives the update inserts m to its
local messages set (unless the server is wedged—see Reconfiguration below). Each
server acknowledges the store message to the client, and the Add call completes
when acknowledgments have been received from all servers.

Get When a client invokes Get(), it sends a collect message to all servers in a
configuration. A server that receives a collect command returns its locally stored
messages to the client (again, unless it is wedged). The client waits to receive re-
sponses from all servers, and computes an intersection set S of message which ap-
pear in all of these histories (message order is unimportant). The Get call returns
the set S.

22.4.2 Reconfiguration Protocol

Recall that participants initiate reconfiguration by issuing a Reconfig command.
Reconfiguration entails these steps:
1. The issuing client sends a wedge request to servers in the current epoch. As in

our single-server solution, such a request causes a receiving server to become
wedged (it may already be wedged from another Reconfig command), and to
return a representation of its state.

2. Since as many as F servers could be faulty, the client waits for just one response,
but this response will contain all durable messages (and possibly more). These
messages are used for the initial state of each server in the next epoch.



22.4 Fault-Recovery Multicast 647

API:
Add(m): return(ACK)
Get(): return(S), such that:

if Add(m) completed before Get() was invoked, m ∈ S

if S ′ = Get() completed before invocation, S′ ⊆ S

Reconfig(M): return(ACK)

Liveness condition:
throughout the lifetime of M , at least one server is correct; and
there exists a future membership M ′ in which all servers are correct throughout the startup

of Reconfig(M ′)

Operation Add(m) at client:
send(〈store,m〉) to servers
wait for replies from all servers
return(ACK)

Upon 〈store,m〉 request at server and not
wedged:

save m to local store and return ACK

Operation Get() at client:
send(〈collect〉) to servers
wait for reply Sq from each server q

return(∩qSq )

Upon 〈collect〉 request at server and not wedged:
return all locally stored messages

Operation Reconfig(M):
Send(〈wedge〉) request to servers
Wait for reply 〈suspended, Sq 〉q

from any server q

Invoke consensus engine decide(M,Sq)

When all servers of new epoch have
started

return(ACK)

Upon 〈wedge〉 request at server q:
stop serving store/collect commands
return 〈suspended, Sq 〉 where

Sq contains all locally stored messages

At any server of new membership M ′
Upon learning (M ′, S) ← decide():

store S locally and start service

Fig. 22.3 Single epoch fault-recovery reliable multicast solution

3. Reconfig employs some kind of a consensus engine to form a decision both on
the next membership M and on the set S of durable messages. For example,
the consensus engine could be implemented by a centralized authority, which
itself could be made reliable by running Paxos among replicated state machines
(Lamport 1998).

4. Servers s ′ in a new membership M ′ learn the reconfiguration decision either
directly from the auxiliary authority, or indirectly from other members. Either
way, they learn both the membership M ′ of the new configuration and its initial
message store S ′. The initial state could also include application-specific infor-
mation, or even specify an upgrade to a new version of the application or the
protocols it uses. As in the single-server case, note that there are many ways to
optimize state transfer so that the amount of information actually passed through
the membership service could be quite small. What matters here is that a server
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s′ in the new epoch should only process new requests after it has initialized itself
appropriately.

After completing state transfer, the server enables itself for handling normal
client requests in the new epoch. Of course, if the server was also present in an
earlier epoch, it remains wedged with respect to that epoch.

5. The Reconfig command is considered completed when all servers in the new
configuration have enabled themselves. Note that Reconfig may never complete.
In that case, yet a further reconfiguration command would be needed before sys-
tem availability is restored.
The reader may wonder about reconfigurations that occur in response to a fail-

ure. In such cases, one or more servers in the current epoch will be unresponsive.
However, any durable message will have been stored in all histories, and hence will
be included in the initial state of all servers in the new epoch. On the other hand,
consider an uncompleted operation, corresponding to a message stored in just a sub-
set of the histories. At this stage, depending on the pattern of failures, that message
could be missing from some of the surviving histories and dropped. But it could also
turn out to be included in the history of the server whose state is used for the next
configuration, in which case it would become durable even though the associated
Add() operation may not have completed.

It is not difficult to see that such problems are unavoidable. In effect, the outcome
of a Add() that was pending at the time of a reconfiguration is determined by the
membership service: if the message is included into the new epoch state, the Add()
should be construed as successful, and if the message is not included, the Add() has
failed and should be reissued in the new epoch. The client can learn this outcome
from any server in the new epoch, or from the membership service itself. We leave
the details of returning these out-of-band responses to clients out of the discussion
here.

The reader may also wonder why a Get() operation collects messages from all
servers instead of just one. It is instructive to see what would go wrong if a Get()
operation reads from a single server. Suppose a client invokes Add(x) to send a mes-
sage. Say that server X has received the message, but server Y hasn’t yet. Now one
client that invokes Get() happens to read from server X and obtains the message.
Later, still before server Y has received the message, another client happens to read
from server Y and does not obtain the message. This scenario violates the durabil-
ity property. This is not possible if clients read from all servers and intersect the
responses. If the first Get() returns a certain message, subsequent Get() operations
would now be certain to return that message as well.

22.5 Fault-Masking Multicast

We continue with a fault-masking, majorities-based solution. The majorities-based
fault-masking approach to the reliable multicast problem deploys N = 2F + 1
servers to maintain both data durability and non-disrupted operation in face of up to
F failures. Figure 22.4 gives a succinct summary.
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API:
Add(m): return(ACK)
Get(): return(S), such that:

if Add(m) completed before Get() was invoked, m ∈ S

if S ′ = Get() completed before invocation, S′ ⊆ S

Reconfig(M): return(ACK)

Liveness condition:
throughout the lifetime of a membership M , a majority of servers are correct

Operation Add(m) at client:
send(〈store,m〉) to servers
wait for replies from a majority servers
return(ACK)

Upon 〈store,m〉 request at server and not
wedged:

save m to local store and return ACK

Operation Get() at client:
send(〈collect〉) to servers
wait for replies Sq from a majority of

servers q

send (〈store,∪qSq 〉) to servers
wait for replies from a majority of

servers
return(∪qSq )

Upon 〈collect〉 request at server and not wedged:
return all locally stored messages

Operation Reconfig(M):
Send(〈wedge〉) request to servers
Wait for reply 〈suspended, Sq 〉q

from a majority of servers q

Invoke consensus engine
decide(M,∪q , Sq)

When a majority of servers in M have
started

return(ACK)

Upon 〈wedge〉 request at server q:
stop serving store/collect commands
return 〈suspended, Sq 〉 where

Sq contains all locally stored messages

At any server of new membership M ′
Upon learning (M ′, S) ← decide():

store S locally and start service

Fig. 22.4 Majority-based reliable multicast solution

22.5.1 Majorities-Based Tolerant Add/Get Implementation

The steady-state fault-masking solution for Reliable Multicast works as follows.

Add A client that wants to send a message m sends a store message containing m

to all servers in a configuration. A server that receives the update and is not wedged
inserts m to its local messages set. Each server acknowledges the store message to
the client, and the Add call completes when a majority of acknowledgments have
been received.

Get When a client invokes Get(), it sends a collect message to all servers in a
configuration. A server that receives a collect command and is not wedged returns
its locally stored messages to the client. The client waits to receive responses from a
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majority, and computes a union set S of messages which appear in any of these his-
tories. The client then stores back the set S at a majority by issuing a store message
and waiting for acknowledgement from a majority.1 The Get call returns the set S.

22.5.2 Reconfiguration Protocol for Majorities-Based Multicast

The same reconfiguration protocol as the fault-recovery one can be used in this case,
but with a minor modification to the rule used to compute the initial state of the new
epoch.

Now, the issuing client must contact a majority of servers to discover all success-
ful multicasts. Such a server enters the wedged state, and then sends the message
history to the client, as above. This was why we required that, for the fault-masking
case, the service include at least 2F + 1 servers: if F fail, F + 1 will still be op-
erational, and for any durable message, at least one of them will know of it. This,
then, permits the client to include all durable messages in the initial state of the new
epoch.

Again, after completing state transfer, a server of the new membership enables
itself for handling normal client requests in the new epoch. However, it suffices for
a majority of servers of the new configuration to become enabled for the Reconfig
operation to be considered completed. And just as we saw above, state transfer can
be optimized to transfer much of the data through an out-of-band channel, directly
from the servers in the current epoch to the ones that will be members of the next
epoch.

22.5.3 Reconfiguration Agreement Protocol

We now “open” the consensus engine and flesh out a procedure that unifies forming
agreement on the next epoch with state transfer. Figure 22.5 summarizes a multicast
solution that uses N = 2F + 1 servers and contains a detailed reconfiguration deci-
sion protocol combined with state transfer. (Only the Reconfig part is changed from
Fig. 22.4, but for completeness, Fig. 22.5 gives a full solution.)

The combined reconfiguration and state transfer protocol is based on the well-
known Synod algorithm (Lamport 1998). It is triggered by a client Reconfig com-
mand and uses a set of N = 2F + 1 servers of the current epoch. The Reconfig
procedure makes use of a uniquely chosen stake (for example, an integer or some
other ordered type). Clients invoking reconfiguration may repeatedly try increas-
ingly higher stakes until a decision is reached. The protocol of a particular stake
has two phases. Although we could wait for the consensus decision and then per-
form state transfer, it turns out that we can make efficient use of message exchanges
inside the protocol to accomplish state transfer at the same time.

1Clearly, we can optimize to store S only at sufficiently many servers to guarantee that S is stored
at a majority.
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API:
Add(m): return(ACK)
Get(): return(S), such that:

if Add(m) completed before Get() was invoked, m ∈ S

if S′ = Get() completed before invocation, S′ ⊆ S

Reconfig(M): return(ACK)

Liveness condition:
throughout the lifetime of a membership M , a majority of servers are correct

Operation Add(m) at client:
send(〈store,m〉) to servers
wait for replies from a majority of

servers
return(ACK)

Upon 〈store,m〉 request at server and not
wedged:

save m to local store and return ACK

Operation Get() at client:
send(〈collect〉) to servers
wait for replies Sq from a majority of

servers q

send(〈store,∪qSq 〉) to servers
wait for replies from a majority of

servers
return(∪qSq )

Upon 〈collect〉 request at server and not
wedged:

return all locally stored messages

Operation Reconfig(M):
Choose unique stake
Send(〈wedge, stake〉) request to

servers
Wait for replies

〈suspended, stake, 〈st,RC〉, Sq〉q
from a majority of servers q

if any (st,RC) is non-empty
choose RC of highest (st,RC)

pair;
else

let RC ← (M,∪qSq)

Send(〈accept, stake,RC〉)
When a majority of servers in RC have

started
return(ACK)

Upon 〈wedge, st〉 request at server q:
stop serving store/collect commands
unless accessed by higher-stake leader

already return
〈suspended, st, 〈highst,highRC〉, Sq〉

Upon 〈accept, st,RC〉) request at server q:
unless accessed by higher-stake leader

already
store highst ← st , highRC ← RC

send 〈start, st,RC〉 to servers in RC

At any server in RC

Upon obtaining 〈start, st,RC = (M,S)〉
from a majority of previous

epoch
store S locally and start service

Fig. 22.5 Majority-based reliable multicast with 2F + 1 servers: full solution

More specifically, in Phase 1, a client performs one exchange with a majority of
servers. When the client hears back from a majority, it learns:
(1) Either a reconfiguration command RC, which might have been chosen. In case

of multiple possibly chosen RC’s, the one whose stake is highest is selected.
(2) Or that no reconfiguration command was chosen.
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This exchange also tells the servers to ignore future proposals from any client
that precedes it in the stake-order.

Coupled into this (standard) Phase 1 of consensus protocol is the collect phase
of our state transfer. Namely, the same exchange marks the servers wedged, which
is done by obtaining a commitment from the servers not to respond to any store or
collect request from processes. In their responses in Phase 1, the client collects from
each server the set of messages it stores.

In Phase 2, the client performs another single exchange with a majority of
servers. If case (1) applies, then it tells servers to choose RC. Otherwise, in case
(2), it proposes a new reconfiguration decision RC. The new RC contains the con-
figuration that the client requested, as well as a union of the messages it collected in
the first phase.

The server’s protocol is to respond to client’s messages, unless it was contacted
by a higher-stake client already:
• In Phase 1, it responds with the value of a reconfiguration proposal RC of the

highest-stake it knows of, or an empty RC. It also incorporates into the re-
sponse the set of messages it stores locally, and commits to ignore future client
store/collect requests.

• In Phase 2, it acknowledges a client’s proposal and stores it.
Each server in the new membership waits to collect start messages with the same

stake from a majority of servers of the previous epoch. In this way, it learns about the
next epoch decision, which includes the new configuration and the set of messages
that are now durable. It stores these messages in its message history and becomes
enabled for serving clients in the new epoch. Once a majority of servers in the new
epoch are enabled, the Reconfig() operation completes.

As an example scenario, consider a system with three servers {1,2,3}. Assume
message a reaches {1,2}, b reaches {2,3} and c reaches server 3. During Phase 1 of
reconfiguration, a client sends wedge messages to the servers. In response, server
2 suspends itself and sends {a, b}, and server 3 sends {b, c}. The client collects
these responses, and enters Phase 2, proposing a new epoch configuration consisting
of server-set {4,5,6} and message set {a, b, c}. Although this set contains more
than the set of completed messages (c’s Add() not having completed), those extra
messages pose no problem; in effect, they complete and become durable as part of
reconfiguration. Again, here we ignore the matter of sending out of band responses
to the client which invoked Add(c).

Servers {4,5} in the new epoch each learns the decision, stores {a, b, c} locally
and become enabled. At this point, it is possible that all the servers in the previous
epoch are shut down. This poses no risk, as no information is lost. In particular,
every Get() request in the new epoch returns {a, b, c}.

Another possibility is that the client collects information from servers {1,2}, and
the reconfiguration decision includes only messages {a, b}. In this case, message c

disappears. This is legitimate, as no Add() or Get() with c ever completes, in the
past or in the future.
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22.6 Coordinated State Transfer: The Virtual Synchrony
Property

Consider what would happen in the Reliable Multicast service if we did not include
in the reconfiguration decision the set S of messages ever completed in the current
configuration. Instead, imagine a protocol in which every server in the new member-
ship independently obtains the state from a read-set of the current configuration. For
those messages M whose Add or Get have completed, there will be no difference.
That is, every server in the new membership will obtain M before starting the new
epoch. However, messages with partially completed Add/Get may or may not be
obtained by the new servers, depending on which member(s) of the current config-
uration they query. Such messages could later become durable, by being transferred
to all servers some epoch. Let us study this case in more detail by revisiting our
fault-recovery approach.

For example, suppose that Add(a) has arrived at both servers {1,2} of some ini-
tial epoch. Say that Add(b) has reached {1} so far, and Add(c) has reached {2}. Let
the reconfiguration manager establish a decision on a new epoch set {3,4,5}. We
may have server 3 suspend and pull messages {a, b} from {1}. Note that message a

was completed, and b may yet complete in the future; however, we cannot distin-
guish between these two situations. If servers 4,5 were to do the same state transfer,
it would then be possible for a client to perform a Get() in the new epoch, and return
{a, b}. This is the only safe response, as Add(b) could complete meanwhile.

Alternatively, servers 4,5 might pull {a, c} from {2}. At this point, because both
1 and 2 are wedged and will not acknowledge further store requests, neither b nor
c may ever complete in the current configuration. However, this situation cannot be
distinguished by the servers. Hence, when a client requests Get() in the new epoch,
server 3 must respond with {a, b}, while 4,5 must respond with {a, c}. This is fine,
since the client will return the intersection {a} in response to Get().

The service remains correct with such ‘uncoordinated state transfer’. However, in
some future epoch, events might transpire in a way that causes all the servers to pull
b and c from the preceding configuration. Suddenly, b and c will become durable,
and all future Get() requests will include them. We believe that this behavior is un-
desirable. Indeed, in DSR we prevented such outcome by including in the consensus
reconfiguration decision a set of messages from the current configuration, such that
no other messages may appear later. The connection of the DRS approach to recon-
figuration with the virtual synchrony approach to group communication may now
become apparent to readers familiar with that literature: DRS guarantees to termi-
nate operations within the lifetime of their invoking configuration. We now give a
new formal definition of this old idea.

We will start by explicitly modeling the configuration visible to a client when it
invokes an operation. Notice that this is a reasonable addition to our model, since
any client-side library must locate and interact with servers of the configuration, and
hence it makes sense to rigorously specify the behavior of the associated interface.
In addition to Reconfig invoke and response events, we model Reconfig notification
events, which arrive at clients individually. Clients may be notified at different times
about the same configuration.
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Definition We say that a client invokes operation o in configuration C if C is the
latest Reconfig-notification event at this client preceding o’s invocation, or, in case
no Reconfig-notification event has occurred, if C is the initial configuration C0.

For example, for some client, we may have the following sequence of events:
invoke Add(m1), response from Add(m1), invoke Add(m2), Reconfig(C1) notifi-
cation, response from Add(m2), invoke Add(m3), response from Add(m3). In this
sequence, the Add() operations of m1 and m2 are invoked in the initial configuration
(C0), and that of m3 is invoked in C1.

Now for Reliable Multicast, virtual synchrony requires the following:

Definition (Virtually Synchronous Multicast) If Add(m) was invoked in configura-
tion Ck , then if ever Get() returns m, then for all configurations C�, where � > k, a
Get() invoked in C� returns m.

It is not hard to see that our Multicast reconfiguration strategy satisfies this con-
dition, because whether or not m is stored in future configuration is determined by
the reconfiguration decision itself.

For arbitrary services, we would consider operations which have an effect on
others. In the Multicast case, Add operations change the behavior of future Get re-
quests: Get() must return all previously sent messages. More generally, an operation
o of type O which has an effect on operations o′ of type O ′ changes the outcome of
o′ if the response event for o occurs before o′ is invoked. Conversely, we say that o′
reflects o.

The Virtual Synchrony guarantee implies the following:

Definition (Virtual Synchrony) Consider an operation o of type O which has an
effect on operations of type O ′. If o was invoked in configuration Ck , then if any
operation o′ of type O ′ reflects o, then for all configurations C�, where � > k, oper-
ations w′ of type O ′ invoked in C� reflect o.

22.7 Dynamic State Machine Replication and Virtually
Synchronous Paxos

In this section, we take our Dynamic Service Replication (DSR) epoch-changing
approach into the generic realm of State Machine Replication (SMR). In the state
machine replication approach, replicas are implemented as deterministic state ma-
chines. The state machines start with a common initial state and apply commands
in some sequential order. This approach yields a protocol we refer to as Virtually
Synchronous Paxos2. Paxos users will recognize the close similarity of the protocol

2This is a good juncture at which to note that Leslie Lamport was involved in an earlier stage of
this research. Although he is not a co-author on this chapter, his help in the initial formulation
of our problem was invaluable, and this choice of protocol name is intended to acknowledge the
strong roots of our protocol in his earlier work.
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to the standard Paxos, yet in contrast with Reconfigurable Paxos and other recon-
figurable SMR implementations, this solution achieves higher steady state perfor-
mance with less complexity around the handling of reconfiguration.

22.7.1 On Paxos Anomalies

Our goal in this section is to highlight some rarely appreciated issues that arise when
working with Paxos. Before doing so, we should remind the reader of an issue we
touched upon in Sect. 15.2, where we explained the role of the Isis2 DiskLogger
durability method. As the reader may recall, the issue concerns the application’s
definition of durability and the possible mismatch between that definition, and the
one used in the multicast protocol (SafeSend, in that case). As we defined this prop-
erty at the outset of Part II, durability was taken to have an inward-looking defini-
tion: a message is durable if delivery to any group member (even one that promptly
crashes) creates an obligation for the protocol to delivery that same multicast, in the
same order (both with respect to other messages and with respect to the delivery of
new view events), to all group members that do not crash first. This is achievable
with an in-memory copy of each message, but in-memory logging is not sufficient
to ensure that after a total failure of a group, durable data managed by the appli-
cation would reflect the updates the protocol “delivered”. Note that, in our model,
delivery occurs in two possible ways: either by a delivery event, or by inclusion of a
message into the initial state used for a new group configuration. This is important;
if the requirement were expressed purely in terms of message delivery events and
new view notification events, durability of this kind would not be achievable.

The extensions associated with the Isis2 durability method, the DiskLogger, elim-
inated most aspects of this issue by ensuring that the state of the group would be
preserved on disk even across a complete failure of its members. With this change,
SafeSend becomes a true implementation of Paxos (most Paxos implementations
would similarly maintain state on a disk). The single caveat is that with Isis2 and
the DiskLogger, some members might deliver a message prior to a complete fail-
ure of the group, while others deliver it after the group restarts from a total failure
of all members. This violates virtual synchrony and occurs because Isis2 lacks di-
rect access to the application state and hence has no way to apply a message to an
application state other than by delivery, and because recovery from a total failure
necessarily defines a new group view (after all, the entire membership of the group
will have changed). We have used the term strong durability earlier in the text to
evoke the disk-storage of the property: a strongly durable multicast protocol is one
that preserves a history of delivered multicasts on disk until the application program
using the protocol has explicitly confirmed successful delivery (with Isis2 and the
DiskLogger, via a call to DiskLogger.Done().

Even with strong durability, Paxos can exhibit other unexpected behaviors. In the
remainder of this section we touch upon those. Our model eliminates these risks, and
we will see how that occurs.
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Fig. 22.6 Anomalous Paxos
behavior

SMR operates on an infinite sequence of commands. Even though the sequence
of commands is logically active all the time, in reality, systems progress in epochs:
During each epoch, a fixed leader chooses a dense sequence of commands. Then, the
leader is replaced, and a new epoch starts. The new leader starts where the previous
leader stopped, and passes another subsequence of commands. And so on. If we
envision the sequence of commands as a horizontal axis, then each leader-epoch
lasts a contiguous segment along the horizontal axis. Nevertheless, abstractly, the
same consensus protocol runs in the entire infinite sequence of commands, ignoring
epoch and leader changes. Each instance vertically runs a succession of leaders,
though each leader takes actual actions only in some instances, and none in others.
The consensus-based point of view makes arguing correctness easy.

Unfortunately, the seemingly obvious intuition about epochs is wrong, and may
lead to undesirable effects. Consider the scenario depicted in Fig. 22.6. We have two
Leaders U and V contending for the same pair of offsets, k and k + 1. U proposes
uk at k and uk+1 at k + 1, intending that uk executes before uk+1. V proposes vk

and vk+1 for these offsets. Consider the case where neither Leader U nor V obtains
acceptance of a majority to their proposals. Hence, a third Leader W , starts after
U and V are both retired. W finds traces of the command uk+1, proposed by U , at
offset k + 1, and of the command vk , proposed by V , at offset k. Paxos mandates W

to re-propose vk and uk+1 at k and k + 1, respectively. If W is a stable leader, then
indeed vk and uk+1 will be chosen. But this violates the intended ordering constraint
of the proposers!

In the above situation, Paxos permits the intended ordering of commands to be
violated. As noted by the engineers who designed and built the Yahoo! ZooKeeper
service (Junqueira et al. 2009), there are real-life situations in which leaders intend
for their proposed k + 1 command to be executed only if their proposed k command
is done first. To achieve high performance many such systems are forced to pipeline
their proposals, so a leader might propose command k + 1 without waiting for a
decision on command k. Paxos is quite capable of choosing k + 1 but not k, and
(as just noted) there are conditions under which it might choose both, but each one
from a different leader. This particular case was sufficiently troublesome to convince
the ZooKeeper engineers to move away from Paxos and to implement a virtually
synchronous, epoch-by-epoch type of leader election in their system.
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So far, we have only discussed simple leader-changes. Our scenario turns out to
have even more serious ramifications for previous reconfigurable SMR solutions.
Recall that vanilla Paxos allows reconfiguration of the system that implements the
state machine by injecting configuration-changing commands into the sequence of
state machine commands. This is a natural use of the power of consensus inherent
in the implementation of SMR. It entails a concurrency barrier on the steady-state
command path: Suppose we form a reconfiguration command, for example, at in-
dex y in the sequence of commands. The command determines how the system will
form the agreement decision on subsequent commands, for example, at index y + 1
and subsequently. More generally, the configuration-changing command at y may
determine the consensus algorithm for commands starting at index y + α, for some
pre-determined concurrency parameter α. We must wait for a reconfiguration deci-
sion at y to complete before we inject additional command requests to the system, at
index y +1 in the case where α = 1 and subsequently (or y +α in the general case).
This barrier effectively reduces the system to one-by-one execution of commands,
hence if reconfigurable Paxos is used, it would normally be deployed with α greater
than 1 (Lorch et al. 2006).

But, now consider the behavior of a Paxos-based SMR solution with α > 1. Re-
call the scenario of contending leaders in Fig. 22.6, and suppose that commands
vk and uk+1 are reconfiguration commands, which are mutually incompatible. This
may cause the current configuration to issue two (or more) Reconfig commands, up
to the maximum of α commands. Suppose that all of these were intended to apply
to the configuration in which they were issued. The first to be chosen will update
the configuration as usual. But what are we to do when a second or subsequent
command is chosen? These commands may no longer make sense. For example, a
pending request to remove a faulty server from the configuration might be chosen
after one that switches to a configuration in which that server is no longer a mem-
ber. Executing these reconfigurations one after another is nonsensical. Likewise, a
command to change a protocol parameter might be executed in a context where the
system has reconfigured and is now using some other protocol within which that
parameter has a different meaning, or no meaning at all.

If we use a window α larger than 1, then such events will be possible. An ap-
proach that seeks to prevent these commands from being chosen once they are no
longer meaningful would require us to implement complex semantic rules. Allow-
ing them to be chosen forces the application designer to understand that a seemingly
“buggy” behavior is actually permitted by the protocol. In practice, many Paxos im-
plementations (indeed, all that we know of) either do not support reconfiguration
at all, or set α to 1, thus serializing command processing: only one command can
be performed at a time. Batching commands can alleviate this cost: rather than one
command at a time, the system might perform β at a time, for some parameter β .
But this can help only to a limited degree: even with batching the protocol has little
opportunity for true parallelism.

Our remarks may come as a surprise to readers familiar with SMR and Paxos,
because many published presentations of the model and protocols omit any dis-
cussion of the complexities introduced by reconfiguration. These remarks are not
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entirely new, and summarize several recent works which allude to these difficulties:
The causality-violating scenario has been pointed out in Junqueira et al. (2009),
and Paxos reconfiguration idiosyncracies were discussed in Lamport et al. (2009a,
2009b).

22.7.2 Virtually Synchronous SMR

We now give a full solution to the dynamic SMR problem which avoids the above
undesired behavior. As for the multicast service, we flesh out two approaches, a
fault-recovery solution and a fault-masking one. The latter we also call “Virtually
Synchronous Paxos” because of its resemblance to the Paxos protocol.

We model an SMR service as providing clients with a Submit(op) API to atom-
ically perform op on a shared object obj. Below, we denote by objk the object state
after k operations. For durability, we store obj at a group of servers: F + 1 in the
fault-recovery approach, and 2F + 1 for fault-masking. We denote by objq the copy
stored by server q . As usual, we provide a Reconfig API in order to reconfigure the
service.

It is worth noting that our model is slightly different from the standard SMR
model, in which there is a distributed engine for forming total order on commands
and a separate one for execution. In most deployments, the same set of servers is
used for both roles, and this simplifies our exposition.

Fault-Recovery Virtually Synchronous SMR
We begin with a fault-recovery approach, which utilizes only F + 1 state machine
servers for F -tolerance. As usual, this means that an auxiliary configuration engine
is responsible for forming a consensus decision on the next configuration. This cap-
tures the classical primary-backup approach for replication, and extends it with a
precise treatment of reconfiguration. Figure 22.8 describes the problem definition
and gives a full solution in pseudo-code. We give one reconfiguration procedure for
all cases, though specific scenarios may be further optimized, e.g., single backup
failure, deploying a new secondary without failures, etc. Our formulation follows
precisely the Vertical Paxos protocol (Lamport et al. 2009b), and we repeat it here
for completeness.

The steady-state solution designates one server as primary. The primary obtains
command requests from clients. For each request, it picks the next unused index k

in the sequence of commands and requests the servers to accept the new command
as the k’th. (If computing an operation is a heavy burden, the primary may opt
to precompute the next state objk and send it to servers for efficiency, instead of
sending the operation itself. This trick may also be used in case non-deterministic
operations are to be supported.) A command is completed when the client received
a (deterministic) response from all servers.

We put our DSR methodology to action in order to reconfigure state machines
by having a reconfiguration decision that stops the sequence of state machine com-
mands. The reconfiguration procedure first wedges (at least) one server. Here, the
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API:
Submit(op): execute op atomically on object and return result r = apply(op,obj)
Reconfig(M): return(ACK)

Liveness condition:
throughout the lifetime of a membership M , one server is correct and
there exists a future membership M ′ in which all servers are correct throughout the startup

of Reconfig(M ′)

Operation Submit(op) at client:
send 〈op〉 to designated primary
wait for responses r from all servers
return(r)

Upon 〈op〉 request at primary:
send 〈submit, k,op〉 to servers
increment k

possibly optimize:
rk ← apply(op,objk−1)

send 〈submit, k,objk, rk〉

Upon 〈submit, k,op〉 request at server and
not wedged:

let rk ← apply(op,objk−1)

store k, objk

send rk to client

Operation Reconfig(M):
Send 〈wedge〉 request to servers
Wait for reply 〈suspended, kq ,objq〉q

from any server q

Invoke consensus engine
decide(M,kq ,objq )

When all servers of new epoch have
started

return(ACK)

Upon 〈wedge〉 request at server q:
stop serving submit commands
return 〈suspended, kq ,objq〉

At any server in M ′
Upon learning (M ′, kq ,objq ) ← decide():

initialize local k,obj from kq ,objq and
start service

Fig. 22.7 Fault-recovery virtually synchronous SMR with F + 1 servers (vertical Paxos)

server’s protocol is to respond to client’s wedge messages with the latest object
state and its index objq , kq . The initiating client then lets the consensus engine form
a decision on the next configuration. Crucially, the consensus decision contains the
new configuration as well as the closing state of the current configuration. The deci-
sion value determines the configuration used in the next SMR instance and its initial
object state. This decision effectively completes operations up to the k’th (and as
usual, results of uncompleted operations are returned to their clients).

Once a decision is formed on both the new configuration and on its closing state,
we can start the new state machine. However, in order for the new configuration
to uphold linearizability (Herlihy and Wing 1990), the sequence of commands in
the new configuration must follow those of the current configuration. We achieve
this by initializing the servers of the new configuration with the closing state of the
object from the current configuration. Any server in the new membership M ′ that
learns the decision (M ′, kq,objq) can start the new configuration by (i) initializing
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its local state to kq,objq and becoming enabled for normal command processing.
Our liveness condition guarantees that the transfer can complete before reconfigu-
ration is done to at least one server in the next configuration, and that some future
configuration can become completely enabled. Accordingly, only upon receiving ac-
knowledgement from all servers of that configuration, the Reconfig response event
occurs.

Fault-Masking Virtually Synchronous SMR
We continue in Fig. 22.8 with a fault-masking virtually synchronous SMR solu-
tion, which we call Virtually Synchronous Paxos. Although we could use the Paxos
Synod protocol even in steady-state mode, we present a simpler version that uses a
fixed primary. When the primary fails, we simply reconfigure to facilitate progress.
Reconfiguring upon primary replacement in this manner alleviates the anoma-
lous behavior related with primary transition in Paxos pointed above in Fig. 22.6.
Leader election of our Virtually Synchronous Paxos within a fixed configuration
is similar to the leader change protocol of ZooKeeper (Junqueira and Reed 2009;
Junqueira et al. 2009).

Steady state operation is done as follows. The primary obtains command requests
from clients. For each request, it picks the next unused index k in the sequence of
commands and requests the servers to accept the new command as the k’th. (The
same optimization of pre-computing the resulting state is possible in case computing
is expensive or non-deterministic, but not shown in the code.) A command is com-
pleted when the client received a (deterministic) response from majority of servers.

Recall that when reconfiguration is desired, we need to form agreement both on
the next configuration and on the closing state of the current configuration. A client
that wishes to reconfigure chooses a unique stake and performs the following two
phases.
Phase 1: The client performs one exchange with a majority of servers. When it

hears back from servers, it learns the latest computed state of the object
objk known to servers. This reflects a prefix of the commands sequence
proposed by the primary, whose tail may not have been completed yet.
It also learns with respect to the configuration-changing decision either:
(1) A reconfiguration command RC that might have been chosen, or (2)
that no command was chosen. In this exchange, the client also obtains a
commitment from the servers to ignore future messages from any lower
stake client.

Phase 2: The client performs another single exchange with a majority of servers.
If case (1) applies, then it tells servers to choose RC. Otherwise, in case
(2), it proposes a new RC which contains the new membership and the
closing state (k,objk). In either case, a client may propose only one re-
configuration for a particular stake.

The server’s protocol is to respond to client’s messages, unless it was instructed
by a higher-stake client to ignore this client: In phase 1, server q responds with the
latest object state objq ; and with the value of a reconfiguration proposal RC of the
highest-ranking client it knows of, or empty if none. In phase 2, it stores a client’s
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API:
Submit(op): execute op atomically on object and return result r = apply(op,obj)
Reconfig(M): return(ACK)

Liveness condition:
throughout the lifetime of a membership M , a majority of servers are correct

Operation Submit(op) at client:
send 〈op〉 to designated primary
wait for responses r from a majority of

servers
return(r)

Upon 〈op〉 request at primary:
send 〈submit, k,op〉 to servers
increment k

Upon 〈submit, k,op〉 request at server and
not wedged:
let rk ← apply(op,objk−1)

store k, objk

send rk to client

Operation Reconfig(M):
choose unique stake
send 〈wedge, stake〉 request to servers
wait for replies
〈wedged, (st,RC), kq ,objq 〉

from each server q in a majority
if any (st,RC) is non-empty

choose RC of highest (st,RC)

pair;
else

let RC ← (M,kq,objq ) of highest
kq

send 〈accept, stake,RC〉

when a majority of servers in RC

have started
return(ACK)

Upon 〈wedge, st〉 request at server q:
stop serving submit commands
unless accessed by higher-stake leader

already
return 〈wedged, stq ,RCq, kq ,objq 〉

Upon 〈accept, st,RC〉 request at server q:
unless accessed by higher-stake leader

already
store st, RC

send 〈start, st,RC〉 to servers in RC

At any server in RC

Upon obtaining 〈start, st,RC =
(M,kq ,objq )〉
from a majority of previous

epoch
initialize obj state from RC and start

service

Fig. 22.8 Fault-masking virtually synchronous SMR with 2F + 1 servers (Virtually Synchronous
Paxos)

proposal and acknowledges it in the form of a start message to the servers of the
new configuration.

Any server in the new membership that learns the decision RC from a major-
ity of servers in the current configuration (directly or indirectly) can start the new
configuration by (i) initializing its local object to RC.obj and becoming enabled
for normal command processing. Our liveness condition guarantees that the trans-
fer can complete before reconfiguration is done. Accordingly, only upon receiving
acknowledgement from a majority of servers in RC.M, the Reconfig response event
occurs.
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22.8 Dynamic Read/Write Storage

In this section, we complement our arsenal of dynamic services with a solution to the
dynamic Read/Write storage problem. A Read/Write Storage service provides two
API methods, Read and Write, which execute atomically. This classical problem
received much attention in the literature, starting with the seminal fault tolerant
solution for static environments by Attiya et al. (1995), and continuing with several
recent storage systems for dynamic settings (Lynch and Shvartsman 2002; Gilbert
et al. 2003; Chockler et al. 2005; Aguilera et al. 2009a, 2009b; Shraer et al. 2010).
The full problem description and pseudo-code solution are given in Fig. 22.9 below.
The solution resembles the RDS protocol of Chockler et al. (2005), but differs in
that it maintains the virtual synchrony property and uses fewer phases. Although the
solution approach is very similar to the Reliable Multicast one, we discuss it here for
completeness. However, we only describe one flavor, a fault-masking protocol; the
reader can complete the other variants based on the Multicast example. The fault-
masking solution employs 2F + 1 servers, each of which stores a copy of a shared
object obj along with a logical update timestamp t . We denote by objq , tq , the local
copies stored at server q .

22.9 DSR in Perspective

Although our development portrays reconfiguration as a relatively linear task that
entails making a series of seemingly straightforward decisions, there exist many
incorrect or inefficient reconfiguration solutions in the published literature. In this
section, we discuss the reasoning that can lead to complexity in dynamic mem-
bership protocols, and because of that complexity, expose the solution to potential
bugs. As a first step it may be helpful to express our solution as a high-level recipe.
Abstractly, the DSR epoch-by-epoch reconfiguration strategy entails the steps listed
below. We have numbered the steps as either A.n or B.n to indicate that steps A/B
may intermix in any order: in effect, the protocol consists of two threads, A and B,
that execute concurrently (below, step A.2/B.4 occurs after the two join).
A.1 In the current configuration, form a consensus decision on the next con-

figuration.
B.1 Suspend the current configuration from serving new requests (in progress

requests may continue to completion, or die).
B.2 Take a snapshot of the current configuration’s closing state. A legitimate

(non-unique) snapshot must contain all operations ever to complete.
B.3 Form consensus on a legitimate closing state. In fault-recovery solutions,

this agreement must be carried by the configuration manger, or in the next
configuration (after the configuration manager has designated one). In a
fault-masking solution, it may be carried by either the current configura-
tion or the next one, but we must a-priori designate which one has the
responsibility.

A.2/B.4 Enable servers in the next configuration initialized with the consensus
snapshot state formed in step B.3.
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API:
Write(v): execute write(v) atomically on obj and return(ACK)
Read(): execute read() atomically on obj and return(u)

Reconfig(M): return(ACK)

Liveness condition:
throughout the lifetime of a membership M , a majority of servers are correct

Operation Write(v) at client:
send(〈writequery〉) to servers
wait for replies 〈tq〉 from a majority of

servers q

choose t greater than all tq
send(〈store, v, t〉) to servers
wait for replies from a majority of

servers
return(ACK)

Upon 〈writequery〉 request at server q and not
wedged:
return 〈tq〉

Upon 〈store, v′, t ′〉 request at server q and
not wedged:
if t ′ > tq save v′, t ′ to objq , tq
return ACK

Operation Read() at client:
send(〈collect〉) to servers
wait for replies 〈vq, tq 〉 from a majority

of servers q

let 〈v, t〉 be the pair of highest
timestamp

send(〈store, v, t〉) to servers
wait for replies from a majority of

servers
return(v)

Upon 〈collect〉 request at server q and not
wedged:
return 〈objq , tq〉

Operation Reconfig(M):
Choose unique stake
Send(〈wedge, stake〉) request to servers
Wait for replies
〈suspended, stake, 〈st,RC〉,objq , tq 〉q

from a majority of servers q

if any (st,RC) is non-empty
choose RC of highest (st,RC)

pair;
else

let RC ← (M,objq , tq) of highest
tq

Send(〈accept, stake,RC〉)
When a majority of servers in RC have

started
return(ACK)

Upon 〈wedge, st〉 request at server q:
stop serving store/collect/writequery

commands
unless accessed by higher-stake leader

already
return 〈suspended, st, 〈highst,

highRC〉,objq, tq〉
Upon 〈accept, st,RC〉 request at server q:

unless accessed by higher-stake leader
already
store highst ← st , highRC ← RC

send 〈start, st,RC〉 to servers in RC

At any server in RC

Upon obtaining 〈start, st,RC =
(M,objq, tq)〉

from a majority of previous
epoch

store v, t, locally and start service

Fig. 22.9 Majority-based atomic read/write storage with 2F + 1 servers: full solution
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With this in mind, we pause to highlight some of the more common pitfalls that
have traditionally led researchers (including the authors of the current chapter to
propose less than ideal solutions.

22.9.1 Speculative-Views

One design decision that we recommend against arises when a service is opti-
mized for high availability by adding a mechanism that will copy state and en-
able activity in a new epoch that has been proposed, but not finalized, for exam-
ple during intermediate steps of the agreement protocol. Much prior work in the
group communication literature falls in this category (Birman 1985; Amir et al.
1992b, 1995; van Renesse et al. 1996, 1998; Babaoglu et al. 1995); a significant
body of PhD dissertations and published papers on transient/ambiguous configu-
rations, extended/weak virtual synchrony, and others, were devoted to this strategy
(Amir 1995; Friedman 1994; Keidar 1998; Montresor 2000). Many other works
in the group-communication area are covered in the survey by Chockler et al.
(2001).

The group communication approach essentially performs the task of steps A.1
and B.1–B.3 inside a speculative next configuration, in an attempt to optimize and
transfer-state while forming agreement on it. This works roughly as follows.
A.1 In the current configuration, form a proposal on the next configuration.
A.2(B.1) Suspend those members of the next configuration which persist from

the current one from serving new requests.
A.3(B.2-3) Among the members of the proposed next configuration, form agree-

ment on both the transition itself, and on a legitimate snapshot of the
current configuration’s closing state. The snapshot decision incorpo-
rates input from those members which persist from the current con-
figuration and from previously attempted proposed configurations.

A.4 If the next configuration fails to reach consensus, go back to step A.1.
A.5(B.4) Enable servers in the next configuration (their state is already initialized

with the consensus snapshot state formed in step A.3).
While the resulting solutions can certainly be implemented and proved correct,

they require protocol steps in which the members of a new epoch collect information
from every view in which operations might have been performed, so that the view
that will ultimately be used has full knowledge of the service state. Such solutions
can embody substantial complexity, and this of course means that implementations
will often be quite hard to debug.

As an example scenario, let us revisit the scenario explored above, with an initial
membership {1,2,3}. During reconfiguration, a client could propose a new epoch
configuration consisting of server-set {2,3,4}. A typical complication here was for
servers {2,3,4} to form a “transient” configuration without waiting for a majority
of the previous epoch to acknowledge it. They perform a state transfer and start
serving client requests immediately. Thus, servers {3,4} might respond to a Get()
request with a message-set containing {b, c}. In the end, we may form consensus
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on a different configuration, say {1,2,5}. If we only collect information from a ma-
jority of the previous epoch, say {1,2}, we might “forget” message c. Note that we
intentionally chose a new server-set that intersects with a majority of the members
of the previous epoch. We did so to illustrate that there are situations in which a set
large enough to reach agreement could nonetheless not suffice if a system needs to
discover every durable message.

We therefore need to collect information from the transient configuration, so as
not to lose message c. This is not only complex, but there is no guarantee that we
will find traces of the transient epoch, unless we enforce additional constraints, the
dynamic-quorum rule, as we now show.

22.9.2 Dynamic-Quorums and Cascading Changes

The above scenario leads us to another common pitfall. In essence, it requires that
cascading epoch changes jointly have a non-empty intersection. This guarantees that
speculative epochs all intersect and become aware of one another. In the example
above, server 2 is in the intersection of all attempted changes, and so we rely on in-
formation collected from it to discover the transient epoch, and collect information
from its majority as well. More generally, a line of related works emanating from
those with speculative configurations was devoted to the issue of handling “cascad-
ing reconfigurations”, and to quorum intersection rules that guarantee to maintain a
unique primary quorum through such cascading changes, e.g., Birman (1985), Ric-
ciardi and Birman (1991), Yeger-Lotem et al. (1997). This constraint is unnecessary.

In our method, consensus is reached by a majority in the current epoch; the next
epoch need not share any servers with the previous one. More generally, our epoch-
by-epoch approach emphasizes that one only needs to deal with one epoch at a
time, and that cascading or chained epochs just are not necessary (nor do they have
any performance or code complexity benefit; indeed, quite the opposite). The cor-
rect algorithmic foundation we establish terminates an epoch with a configuration-
changing decision. It does not matter if we have a centralized configuration manager,
or run a distributed consensus protocol; both are part of the current epoch, and it is
well defined who determines the next configuration. The next epoch is uniquely de-
termined in the current epoch, and transition to it is irreversible. When an epoch
ends, a new epoch starts a new incarnation of the same algorithm (albeit with a
non-empty initial service state), whose participants and messages do not mix with
the current epoch. The new epoch may itself decide to reconfigure, and we iterate
through epoch changes again. Any number of reconfigurations can be chained in
this manner, with no difficulty at all.

In the example above, either we decide to transition to {2,3,4} or not. If a deci-
sion is made, it is irreversible. A future decision to switch to {1,2,5} must be taken
by the new epoch, after it is enabled. It is achieved with the normal decision and
state transfer mechanism. Conversely, if there is no decision on {2,3,4}, then no
client operation executes in that epoch. Later, when a different decision is reached
the new epoch starts with servers {1,2,5}.
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22.9.3 Off-line Versus On-line Reconfiguration

We need to comment briefly on our decision to use an off-line reconfiguration strat-
egy. A recent line of works, pioneered by the RAMBO project (Lynch and Shvarts-
man 2002) and continued in Rambo II (Gilbert et al. 2003), RDS (Chockler et al.
2005), DynaStore (Aguilera et al. 2009a) and DynaDisk (Shraer et al. 2010), empha-
size the importance of non-blocking reconfiguration. These systems tackle dynamic
Read/Write storage services, but the same design issues occur in Reliable Multicast
and other, similar services.

In the “RAMBO” approach, the solution is further optimized by mechanisms that
prevent a client from ever encountering a suspended service. This on-line transition
comes, however, at the cost of greater system complexity. RAMBO clients continue
accessing the Read/Write objects by interacting both with the current and the next
epoch. Every Read operation copies the object it accesses from one epoch to the
next. Every Write operation also accesses a majority in the previous epoch, but
no copying of data is necessary. Even if clients access objects which have already
been copied to the new epoch (which would be the common case for “hot objects”),
they still need to access majorities in all active configurations. The advantage is that
RAMBO never blocks any client request, even momentarily, but the disadvantage
is the complication of sorting through responses from two epochs and figuring out
which one is more current.

Even more importantly, the on-line reconfiguration approach prevents a client
from ever “sealing” partially completed operations which were initiated in the cur-
rent epoch. Traces of those may transfer to later epochs, and become durable arbi-
trarily far in the future. Such behavior may not be desirable for applications engi-
neered with a Reliable Multicast (or Read/Write) infrastructure, as we saw earlier
in our discussion of Virtual Synchrony (Sect. 22.6).

By comparison, the advantage of off-line reconfiguration is simplicity: clients
only deal with a single system view at a time. We therefore see the off-line recon-
figuration strategy above as occupying an attractive sweet-spot, despite the need to
briefly block the service while switching from the old to the new configuration. On
the other hand, off-line reconfiguration comes with its own form of complexity: the
need to think hard about state transfer. If the service state might become large (for
example, if the server is an entire file system or database) state transfer may entail
moving a huge amount of data from the old to the new servers. Blocking the service
while this occurs can be prohibitive, and even doing it rapidly may degrade the re-
sponsiveness of a service to an unacceptable degree. Thus our suggestion that state
be transferred in advance of the reconfiguration, as much as possible, is important
and may be key to using this approach in settings where service unavailability must
be minimized.

By pre-transferring server state, the amount of state actually moved in the last
steps of the procedure can be minimized and clients prevented from seeing much
of a disruption. Moreover, the actual mechanism needed for this sort of anticipatory
state transfer is fairly simple; the new server needs to fetch and load the state, and
also needs some way to compute the delta between the loaded state and the initial
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state assigned to it in the new epoch, which will reflect operations that completed
after it fetched that preloaded state and before the consensus decision was made.

22.9.4 Paxos Anomaly

The anomalous behavior we encountered when discussing Paxos reconfiguration
illustrated a different kind of problem. Recall that vanilla Paxos is quite simple
but runs in a fixed configuration. In contrast, reconfigurable Paxos introduced not
just a leader-changing procedure, but also a set of secondary issues that represent
side-effects of the way in which reconfiguration is supported. Although the per-
command leader transition in Paxos entails a virtually synchronous reconfiguration,
the actions of a new leader are made independently for each command. In this way,
leader W in our example above could not know that leader V ’s proposal to command
k + 1 implies that no command was committed by its predecessor, leader U , at
command k.

Reconfigurable Paxos with α > 1 indeed forms an orderly succession of configu-
rations, but suffers from the same leader-change anomaly above within the window
of α commands.

22.10 Correctness

Our goal in this section is to give a flavor of the correctness argument regarding
our DSR epoch-by-epoch reconfiguration methodology. We view a formal speci-
fication and correctness proofs as being outside the scope of this chapter. In this
section, we provide sketch arguments on two sample solutions, the fault-recovery
Reliable Multicast solution (Fig. 22.3) and the fault-masking Reliable Multicast so-
lution (Fig. 22.5). The proof arguments for our other protocols, for SMR and for
Read/Write storage, are similar in their core arguments concerning reconfiguration.
They differ mostly in details regarding the specific problem models, namely, con-
sensus and atomic Read/Write storage, which are well studied in the literature.

22.10.1 Correctness of Fault-Recovery Reliable Multicast Solution

In this section, we show that our fault-recovery protocol of Fig. 22.3 maintains Mul-
ticast Durability (see Definition 22.3) and Virtual Synchrony (see Definition 22.6).
Our proof shows that these conditions hold from one configuration to the next; prov-
ing that it holds for a sequence of reconfigurations follows by induction.

Refer to a current, initial configuration as C0 and a new configuration as C1. Re-
call that a message is durable if it belongs to a completed Add() or Get() operation.

Claim 1 If a message m ever becomes durable by Add(m) or Get() operations in
C0, and a server q that learns about C1 transfers to C1 a set S0 of messages, then
m ∈ S0.
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Proof This claim is the core of the correctness claim. Although it is simple to
prove given our algorithmic foundation, it is crucial to note that the set of messages
sent/delivered in C0 may continue changing after a decision on C1 was made, and
also subsequent to a state transfer. Nevertheless, the precise statement of this claim
is in fact stable: Any message m which is ever sent/delivered in C0 is included in
S0. We now prove it.

Since m is in a Add(m) or Get() which completes in C0, every process in C0

performs the 〈store,m〉 request and acknowledges it. Since wedged servers do not
respond to store requests, q has responded to the store request before it became
wedged for state transfer. Therefore, at step 2 of the state transfer, q already stores
m, and includes it in the set S0 which it transfers to C1. �

Claim 2 If a message m becomes durable by Add(m) or Get() operations in C0

and a subsequent Get() command completes at some process p, then p’s response
contains m.

Proof A Get() request which is subsequent to the completion of the Add(Get) com-
mand containing m may either occur in C0 or in C1. In C0, every process already
acknowledged 〈store,m〉. Hence, every server contacted by the requesting client
will include m in the delivery response. In C1, by Claim 1 above, every server also
stores m by the time state transfer has completed. Therefore, Get() in C1 also in-
cludes m. �

Claim 3 If a message m becomes durable by Add(m) or Get() operations in C1

and a subsequent Get() command completes at some process p, then p’s delivery
response contains m.

Proof We first note that a Get() request that arrives at C0 after m was sent/delivered
in C1 is not served by any server that participated in reconfiguration, because they
are wedged; hence, the deliver request does not complete in C0, and is deferred
to C1. In C1, every process stores already acknowledged 〈store,m〉. Hence, every
server contacted by the requesting client will include m in the delivery response. �

Claim 4 The fault-recovery protocol maintains Multicast Durability (Defini-
tion 22.3); that is, if a message m becomes durable by Add(m) or Get() operations,
and a subsequent Get() command completes at some process p, then p’s delivery
response contains m.

Proof By Claims 2 and 3, after m is completely sent/delivered, a subsequent Get()
request invoked at any process p includes m in the delivery response. �

Claim 5 The fault-recovery protocol maintains Multicast Virtual Synchrony (Defi-
nition 22.6); that is, If Add(m) was invoked in configuration Ck , then if ever Get()
returns m, then for all configurations C�, where � > k, Get() returns m.
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Proof By Claim 1, if Get() ever returns m in C0, then m is included in the set S0 of
messages transferred to C1. Hence, any Get() request in C1 will return m.

Otherwise, suppose that no Get() in C0 returns m, but there exists a Get() call in
C1 which returns m. Since m was sent to C0, there exists a server q in C1 which ob-
tained m in a state transfer. But since state transfer passes a message-set determined
by a consensus decision, every server in C1 stores m before it becomes enabled for
service in C1. Hence, every Get() call in C1 must return m.

We have shown that the claim holds for C1. Using C1 as the initial view, we
obtain the result by induction for any subsequent view following C1. �

22.10.2 Correctness of Fault-Masking Reliable Multicast Solution

In this section, we show that our fault-masking protocol of Fig. 22.5 maintains Mul-
ticast Durability and Virtual Synchrony. Our proof shows that these conditions hold
from one configuration to the next; proving that it holds for a sequence of reconfig-
urations follows by induction.

Refer to a current, initial configuration as C0 and a new configuration as C1. Re-
call that a message is durable if it belongs to a completed Add() or Get() operation.

Claim 6 If a message m ever becomes durable by Add(m) or Get() operations in
C0, and a client collects suspended responses to a wedge request from a majority
of servers in C0 into a set S0 of messages, then m ∈ S0.

Proof Since m is in a Add(m) or Get() which completes in C0, a majority of servers
in C0 perform the 〈store,m〉 request and acknowledge it. Since wedged servers do
not respond to store requests, every server in this majority has responded to the
store request before it became wedged for state transfer. There exists a server q in
the intersection of this majority and the majority of servers responding to the client
wedge request. Therefore, q already stores m when it sends its suspended response
to the client, and m is included in Sq . Since the client takes a union of the sets Sq

contained in all the server responses, m ∈ S0. �

Claim 7 If a message m ever becomes durable by Add(m) or Get() operations in
C0, then the set S0 of the consensus decision on the next configuration contains m,
i.e., m ∈ S0.

Proof By Claim 6 above, any client which proposes input to the consensus engine
regarding reconfiguration includes m in its proposed message-set. Hence, any deci-
sion S0 contains m. �

Claim 8 If a message m becomes durable by Add(m) or Get() operations in C0

and a subsequent Get() command completes at some process p, then p’s response
contains m.
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Proof A Get() request which is subsequent to the completion of the Add(Get) com-
mand containing m may either occur in C0 or in C1.

In C0, a majority of servers already acknowledged 〈store,m〉. There exists a
server q in the intersection of this majority and the majority of servers responding to
the client’s collect request. Therefore, q already stores m when it sends its response
to the client’s collect request, and m is included in the response Sq . Since the client
takes a union of the sets Sq contained in all the server responses, m is returned in
the return-set of the Get() call.

In C1, by Claim 7 above, a majority of servers also stores m by the time state
transfer has completed. Therefore, Get() in C1 also includes m by the same argu-
ment as in C0. �

Claim 9 If a message m becomes durable by Add(m) or Get() operations in C1

and a subsequent Get() command completes at some process p, then p’s delivery
response contains m.

Proof We first note that a Get() request that arrives at C0 after m was sent/delivered
in C1 is not served by any server that participated in reconfiguration, because they
are wedged; hence, the deliver request does not complete in C0, and is deferred to
C1. In C1, a majority of servers already acknowledged 〈store,m〉. Hence, by the
same argument as in Claim 7 above, a Get() call in C1 returns m. �

Claim 10 If a message m becomes durable by Add(m) or Get() operations, and a
subsequent Get() command completes at some process p, then p’s delivery response
contains m.

Proof By Claims 8 and 9, after m is completely sent/delivered, a subsequent Get()
request invoked at any process p includes m in the delivery response. �

Claim 11 The fault-masking protocol maintains Multicast Virtual Synchrony (Def-
inition 22.6); that is, If Add(m) was invoked in configuration Ck , then if ever Get()
returns m, then for all configurations C�, where � > k, Get() returns m.

Proof By Claim 6, if Get() ever returns m in C0, then m is included in the set S0 of
messages transferred to C1. Hence, any Get() request in C1 will return m.

Otherwise, suppose that no Get() in C0 returns m, but there exists a Get() call in
C1 which returns m. Since m was sent to C0, there exists a server q in C1 which ob-
tained m in a state transfer. But since state transfer passes a message-set determined
by a consensus decision, every server in C1 stores m before it becomes enabled for
service in C1. Hence, every Get() call in C1 must return m.

We have shown that the claim holds for C1. Using C1 as the initial view, we
obtain the result by induction for any subsequent view following C1. �
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22.11 Further Readings

Our primary contribution in this chapter is to offer a unifying framework for the
problem of dynamic service reconfiguration. We are not aware of any prior work on
this question. Closest was the survey of Chockler et al. (2001), which offers a very
interesting review of group communication systems in a single model. However, the
main objective in that work was to contrast the guarantees offered by each category
of solution and to categorize the weakest progress (liveness) assumptions made in
each. In particular, the model used did not formalize the reconfiguration topic as a
separate mechanism, and hence does not get at the kinds of fine-grained choice, and
their consequences, explored here.

Our epoch-by-epoch approach draws heavily on prior work on group communi-
cation. As mentioned, a good survey of group communication specifications appears
in Chockler et al. (2001). The approach resembles virtual synchrony (Birman 1985;
Birman and Joseph 1987a), but unlike our approach these early papers on Virtual
Synchrony did not provide linearizability. The approach also resembles Reconfig-
urable Paxos (as worked out in SMART (Lorch et al. 2006)), but as pointed out
in Sect. 22.7 this approach allows anomalous behavior. Approaches like Boxwood
(MacCormick et al. 2004) and Chain Replication (van Renesse and Schneider 2004)
allow reconfiguration with the help of an external configuration service.

There has also been considerable work on reconfigurable read/write stores, such
as RAMBO (Lynch and Shvartsman 2002) Dynamic Byzantine Storage (Martin and
Alvisi 2004), and DynaStore (Aguilera et al. 2009a). Our approach allows more
general operations. Our liveness model is entirely based on that of DynaStore, how-
ever.

This review of prior work could cite a huge number of papers on specific multi-
cast protocols, message-queuing middleware products, publish-subscribe products,
enterprise service buses and related technologies. However, we concluded that to
do so would be tangential and perhaps even confusing to the reader. First, only
some of these prior technologies offered durability, and among the ones that did
(such as message-queuing middleware), some accomplished that goal using non-
reconfigurable databases or logging servers. Thus, while the area is rich in prior
work, the prior work on durability across reconfigurations is much scantier, and we
believe the key works on that specific topic are precisely the ones we looked at
closely in the body of this chapter.
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Readers of this text will have learned a great deal about Cornell’s Isis2 platform,
available for download from Cornell (under freeBSD licensing) from the web site
http://www.cs.cornell.edu/ken/isis2.

Isis2 is just one of many possible tools to which a practitioner in this area might
turn; we created it at Cornell as a research vehicle to explore scalable consistency
in cloud settings, and are not in any way suggesting that it would be a superior
choice to other options (notably commercially supported solutions such as JGroups,
Spread, C-Ensemble) for those creating real products.

It is important to appreciate that Isis2 is not a product and is better understood as a
research prototype developed almost entirely by the author of this text, Ken Birman,
with help from some of his students. Neither Springer Verlag, the publisher of this
text, and Cornell University, as Professor Birman’s primary employer, participated
in the development of Isis2, and neither has any active role in distributing or sup-
porting the system. Neither company endorses its use, vouches for its correctness,
or recommends it for any particular project. The views and expressions contained
within this text are those of the author, not of Springer Verlag or Cornell.

Users who decide to download and work with Isis2 should understand themselves
to be working with an experimental research prototype. No guarantees of support
are available, and it is very likely that the system includes a large number of bugs
and deficiencies, and has many kinds of problem that might represent serious is-
sues in commercial settings that have genuine high assurance needs and where there
might be liability implications in the event of failure. For these reasons, it is not ap-
propriate to use this free version of Isis2 in production settings. Only a system that
underwent a professional quality-assurance and testing process and that has a pro-
fessional support organization behind it should ever be placed into high-assurance
settings. This public, open source version of Isis2 does not rise to the necessary
standard at the present time.

On the other hand, we do believe the system is a very good platform for creating
research prototypes of distributed system, and we hope to do so ourselves at Cornell
and to continue to enhance and improve the platform itself over an extended period.
To this end, Professor Birman is providing best-effort support for the system and
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hopes to do so in an ongoing basis well into the future. Moreover, as an open source
system, it is hoped that a community of users capable of supporting one-another will
emerge over time. Details of how to access the support forum are available on the
download web site.

In this appendix we provide a very abbreviated summary of the Isis2 API. A full
discussion of the platform and its use model can be found in the user manual on
the download web site, which also will have a growing collection of demonstration
solutions to simple problems over time. The hope is that eventually, most potential
users will find a prebuild demonstration solution that matches their needs fairly
closely. Readers of this textbook who create high quality Isis2 applications and wish
to share them should contact the author about contributing to the public repository,
ideally using the same freeBSD licensing employed for the main system.

For this Appendix we focus on the use of the system from within the C# pro-
gramming language, which evolved from the Java language under the leadership of
researchers and developers at Microsoft Corporation. C# can be cross-compiled us-
ing Mono to run on Linux platforms, and because Isis2 is a library, it can be used
from any of the 40 or so programming languages supported by .NET, including C,
C++, Visual Basic, Python, OĆaML, Fortan, Basic, etc. Users who are working on
Linux platforms in languages like C or C++ may, however, find it awkward to link
directly to Isis2 because the system operates in a managed framework, relying upon
.NET garbage collection. Thus in a language such as C, where memory is not man-
aged automatically, we run into the issue that when an object is passed to a managed
language, the managed library has no standard way to indicate the number of active
references it might have maintained to that object, and similarly when a message
is delivered by Isis2 (by upcall), if the receiving system is unmanaged, it may be
impossible to avoid making a copy of the data. Otherwise, after the upcall returns,
.NET might garbage collect the incoming message without warning.

Thus, to use Isis2 directly, one should either work in one of the managed .NET
languages, or consider building some form of interposition layer that accepts RPC or
web services requests, calls Isis2, then passes back the results. In this way a program
external to the managed framework can access the Isis2 services without needing to
worry about memory management conflicts of these kinds.

There are two main ways to build Isis2 applications. Stand-alone applications
would be launched with command-line arguments on one or more machines and
form groups that cooperate to do whatever the command request (the command, that
is, being designed by the developer as part of the application). Such groups might
also have some members maintain console or GUI APIs that let the end user interact
with the group, or could even be linked to the powerful Live Distributed Objects
framework, also available from Cornell, which makes it easy to create live graphical
applications such as multiuser games that employ Isis2 groups for communication
and state sharing.

The second main option is to build a web service, for example in Azure, and then
have a helper application associated with the server instances, using Isis2 within the
helper program. We have experimented with this option mostly on Azure but it also
works on Amazon’s EC2 and other major cloud platforms. For such uses, the system
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may need to be configured to run over TCP, since Azure and EC2 both disallow UDP
and IP multicast communication. The user’s manual includes an example that shows
exactly how to do this.

23.1 Basic Data Types

Isis2 has the following basic data types:
1. Address. Represents an endpoint address, be that a process or a group.
2. Group. A handle on an object used by the platform to maintain the state of a

group.
3. View. An object that reports on the membership of a group, listing a unique

counter (the view-id), the members, and indicating which members joined or
left the group since the previous view.

4. Msg. Mostly used internally in the Isis2 platform, the Msg object encapsulates
a message containing strongly typed objects. Users would more often deal with
messages indirectly, by invoking the Isis2 multicast or point-to-point send APIs,
and then by receiving upcalls to handlers that have a matching type signature.
We should emphasize that there are many additional data types that might be

visible to more sophisticated users of the platform. Actual use of Isis2 requires con-
sulting the user manual; this summary is intended just to give a sense of the system,
not as substitute for the user’s manual.

23.2 Basic System Calls

The Isis2 system is launched by calling Isis.Start();. Using parameters pulled from
the runtime environment of the process and documented in the user manual, the plat-
form seeks out other applications that are running Isis2 using the same rendezvous
configuration (a mixture of port numbers and some additional information, such as
the name of a rendezvous machine or machines, if IP multicast is not available in
support of the protocol that seeks out peers).

Having started the system, the user can set up one or more process groups:
1. Group g = new Group(“name”); Creates a group object (a local endpoint) and

specifies a name for the group.
2. g.SetSecure([key]); Puts this group into secure mode. An optional AES key can

be provided; if none is supplied, a new 256-bit random AES key is used. All data
will be encrypted prior to transmission.

3. g.ViewHandlers += (ViewHandler)method; Registers a handler that will receive
upcalls notifying it when the view of the group changes.

4. g.Handlers[REQUEST_CODE] += requestHandler; Registers a request han-
dler; messages that have a matching request code (a small integer) and type sig-
nature will be delivered to it.
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5. g.MakeChkpt += (Isis.ChkptMaker)method; Registers a method that will make
a checkpoint or state transfer on behalf of a new member joining the group.
It issues zero or more calls to g.SendChkpt(data); and then a final call to
g.EndOfChkpt();. The data is any list of typed data objects.

6. g.LoadChkpt += loadMethod; Registers a method that can receive a checkpoint
that has a matching type signature and will load (initialize) the group using those
data.

7. g.Persistent(“file name”) Allow a group to retain its state across invocations.
Checkpoint will be stored into the file name. Details on the frequency of check-
pointing and on triggering the creation of a new checkpoint can be found in the
user manual. On restart after all members have been down, the first member to
restart will reload the checkpoint.

8. g.Join(); Connects this local endpoint to the other group members, if any.
9. g.Leave(); Leaves the group (use with care: this member will not be allowed to

rejoin for a few minutes). A flush is issued, then the leave occurs, and then a final
view is delivered in which the member sees itself leaving.

10. g.Terminate(); Issued by some member, this closes the entire group (use with
care: the group cannot be recreated for a few minutes). A flush will occur and
then a final view will be delivered to each member. Caution: If process p issues
a Terminate() just as process q is starting a multicast, the outcome is unpre-
dictable.
Again, these are just a subset of the available options; a more complete list is

available in the user’s manual. In particular, the system has a number of batch start
methods for working with very large groups; these avoid the huge overloads that can
occur if thousands of members try to join one by one and are highly recommended
in groups of more than about 50 members. Type checking will throw exceptions
if an attempt is made to join a group by a process that has configured the group
differently than the existing members did.

Having created a group object, attached the needed handlers, and joined the
group, the application can initiate multicasts to it:
1. g.Send(REQUEST_CODE, arg0, arg1, . . . ); Sends a new message containing the

typed arguments arg0, . . . argn to the group. In this case a virtually synchronous
FIFO send is requested. The matching handler will be invoked in all members
(including the sender, since the sender itself must be a member).

2. g.CausalSend(REQUEST_CODE, arg0, arg1, . . . ); Sends a virtually syn-
chronous and causally ordered multicast to the group.

3. g.OrderedSend(REQUEST_CODE, arg0, arg1, . . . ); Sends a virtually syn-
chronous and totally ordered multicast to the group.

4. g.Flush(); Terminates any unstable (still active) multicasts that have been sent
or received in the group prior to when Flush was invoked. Normally, used after
a burst of amnesia-free but weakly durable Send, CausalSend or OrderedSend
operations before sending data to a client external to the group.

5. g.SafeSend(REQUEST_CODE, arg0, arg1, . . . ); Sends a Paxos-style “safe”
(strongly durable, totally ordered) multicast to the group. The user should also
configure the group by setting the number of acceptors using g.SetSafeSend-
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Threshold(phi); and, if desired, configure the group to use the g.SetDurability-
Method(DiskLogger); durability method (by default, memory logging is em-
ployed; this may not suffice for some uses, as we saw in Chap. 14).
Type checking will throw exceptions if an attempt is made to multicast to a group

using a type signature that does not match some existing type signature for a handler
within the group.

Point to point communication is also possible:
1. g.P2PSend(member, REQUEST_CODE, arg0, arg1, . . . ); Sends a new message

containing the typed arguments arg0, . . . argn to the designated group member
(obtained from the view).
To query a group, a member that receives a request (e.g. from a human user of

a GUI, or from an incoming web services request) can just read the local state,
compute a response, and send it. But if desired, a group member can share a request
out for parallel execution using the following methods:
1. nr = g.Query(ALL, REQUEST_CODE, arg0, arg1, . . . , EOL, res0, res1, . . . );

Sends a new message containing the typed arguments arg0, . . . argn to the group,
but now the recipient is expected to send a typed g.Reply(res0, res1, . . . ); The
results are unpacked into the lists resp0, resp1, . . . The matching handler will be
invoked in all members (including the sender, since the sender itself must be a
member), the replies collected, and then the total number of replies is returned to
the caller, which can iterate over the response lists.

2. nr = g.CausalQuery(ALL, REQUEST_CODE, arg0, arg1, . . . , EOL, res0, res1,
. . . ); Same, but sends the query with CausalSend.

3. nr = g.OrderedQuery(ALL, REQUEST_CODE, arg0, arg1, . . . , EOL, res0, res1,
. . . ); Same, but sends the query with OrderedSend.

4. nr = g.SafeQuery(ALL, REQUEST_CODE, arg0, arg1, . . . , EOL, res0, res1,
. . . ); Same, but sends the query with SafeSend.
Again, there is also a point to point option:

1. g.P2PQuery(member, REQUEST_CODE, arg0, arg1, . . . , EOL, res0, res1, . . . );
Sends a new message containing the typed arguments arg0, . . . argn to the des-
ignated group member (obtained from the view). Unpacks the response into the
result list objects (which obviously will end up with just zero or one replies each:
zero if the destination crashed, one if not).
Notice the code ALL in the multicast queries: this signifies that all current group

members, in the view to which the message was delivered, will reply to the request.
You can also wait for just 1 reply, or any constant number of members. One warning
here: the query may not occur in the same group view in which it was issued, since
membership can change at any time. Thus a group might have five members when
a Query is sent, and yet seven by the time delivery occurs.

Not all systems use quorum methods, but if you do want to implement such a
method, how would majority operations be coded correctly? The simple and correct
solution is to just have the receivers determine how which, and how many, should
reply. At the time a query is delivered, the members will have identical views. Thus
on receipt of a given request every member can check g.GetNMembers() and learn
their individual rank using g.GetMyRank() (or these can be obtained during a new
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view upcall and cached). The seven members can thus compute that a read quorum
should have, perhaps, three members, that a write quorum should have four mem-
bers, and then on that basis can implement some sort of rule for which members will
play each role. Had the sender tried to guess in advance, it might have believed that
a read quorum would be two and a write quorum, three members. This, of course,
would have resulted in errors.

There are actually three ways to send a reply:
1. Reply(res0, res1, . . . ); Send a reply to the current query.
2. AbortReply(“reason”); Abort this query. IsisAbortReply exception will be

thrown in the caller, giving the reason.
3. NullReply(); Indicates that this caller will not be replying to this query. Useful

in the sort of quorum settings mentioned above (otherwise, if one of the selected
respondents crashes the request will time out; with a NullReply(), the system
knows which members are participating and will not wait for the other non-
participants to respond). Note that an actual message is sent from the member
to the query source; it will be small, but it does need to be transmitted.
A non-member of a group can also register as a client of the group g =

Client(“name”);, in which case some existing member will be selected (automat-
ically) and designated as a proxy for the non-member. The non-member can then
send P2P messages (via g.P2PSend) or queries (via g.P2PQuery), but not multi-
casts. If the proxy fails or leaves, the Client layer will automatically select some
other proxy.

23.3 Timeouts

The query calls all have a default timer associated with them, running in the
background, and will time out and give up on a member if it does not re-
spond in a timely manner. The default can be overridden by specifying a new
Isis.Timeout(milliseconds, action) timeout object after the request code giving the
delay before a timeout should go off, and the action desired (ignore this reply, which
is the default, cause the query to throw an exception, or treat the delayed responder
as a faulty process, causing it to be excluded from the system. There are also ways
to explicitly tell Isis2 that some member of some group is faulty.

23.4 Large Groups

We note that for very large groups (more than a hundred or so members), some of
these APIs will start to perform poorly because the recipients of a request, in ef-
fect, begin to “attack” the sender with bursts of huge numbers of acknowledgments
or query replies. (Imagine trying to collect 10,000 20 KB replies that arrive, all at
once, at a single UDP socket). For these larger-scaled groups the Isis2 user should
use g.SetLarge() to place the group into large-group mode, but will then need to
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work with a subset of the normal functionality. In large groups, Isis2 favors an ag-
gregated method for collecting replies, if a query will be processed by all members.
Information on this technique appears in the user manual.

23.5 Threads

Isis2 itself is a highly concurrent system, and each group will typically have 3–5
active threads. When you down call into Isis2, you should expect that the upcalls
triggered by your requests will occur on different threads than on the one that did
the downcall. Thus, even if you are not fond of multithreaded coding styles, Isis2

forces them upon you.
In particular, you should be aware that point to point calls are done on one upcall

thread, in sequential (FIFO) order, and that all multicasts and view notifications
occur on a second thread. Locking must be used if multiple, concurrently active
threads share memory, but notice that you should be able to determine this from the
rules we have summarized.

23.6 Debugging

When using a debugger with an Isis2 application, keep in mind that many calls to
your code occur from within the platform. Thus do not be surprised to see fairly
deep call stacks listing methods with names that may look like gibberish to you.
Those are just our internal method names. Because we make heavy use of a form of
inline method declaration supported by C# called delegate() creation (anonymous
methods) many of our methods have names assigned by the compiler, and hence
that do not print in a very nice format.

If something illegal happens or something goes very wrong, Isis2 throws excep-
tions. These have string values that explain what happened. For example, if using a
configuration of the platform that has only been tested on 100 nodes at a time, and
you try to launch it on 500 nodes, 400 of them will throw an IsisException(“Isis was
launched on too many nodes.). Such an event will come from inside our library, but
it was your mistake that caused the issue, not ours.

When logging is enabled, the Isis2 will create a log file into which it can print
information such as complaints about problems it senses. If you wish to do so, you
may call IsisSystem.WriteLine(something) to add information to the Isis2 log for
your application. A very useful report, at least for us, is produced by running with
logging enabled and calling IsisSystem.WriteLine(IsisSystem.GetState());. This will
dump all of the internal Isis2 data structures in a pretty-printed form and can some-
times help us assist you with bugs or other problems.

Our system does depend upon many timers and real-time features. If you use a
debugger to pause an Isis2 application, it will probably throw an exception if you
then try and restart execution.
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If your application seems to hang, Isis2 will “poison” it and you will see an ex-
ception to this effect. Such events are a very common problem for users just learning
to work with the system, especially if they write code that runs very slowly or that
sometimes pauses, e.g. to wait for user input. If you prevent progress in the threads
that keep Isis2 alive, your application will surely fail.



24Appendix C: Problems

This book is intended for use by professionals or advanced students, and the ma-
terial presented is at a level for which simple problems are not entirely appropri-
ate. Accordingly, most of the problems in this appendix are intended as the basis
for essay-style responses or for programming projects, which might build upon the
technologies we have treated up to now. Some of these projects are best undertaken
as group exercises for a group of three or four students; others could be undertaken
by individuals.

A number of platforms are suitable for the types of programming problem pre-
sented below. At Cornell University, we initially taught this course using Unix or
Linux systems, and the students were encouraged to work in C or C++. However,
with the creation of the Isis2 system, which was built in C# and is very easy to use
on Windows, we are starting to focus on C# as our recommended programming lan-
guage. In fact Isis2 can be used easily from C++ or C, or from Java, but crossing
language barriers does demand a kind of sophistication that one avoids by just work-
ing in the same language we used. On Windows, Visual Studio is probably the best
development environment and debugging tool. For Linux users, we cross-compile
the system with Mono. Our experience with the Mono version is very positive and
we see no downside to that approach at all.

Professionals may find these problems interesting from a different perspective.
Many of them are the sorts of questions that one would want to ask about a proposed
distributed solution and hence could be useful as a tool for individuals responsible
for the development of a complex system. I am sometimes asked to comment on
proposed system designs, and, like many others, have found that it can be difficult
to know where to start when the time for questions finally arrives after a two-hour
technical presentation. A reasonable suggestion is to begin to pose simple questions
aimed at exposing the reliability properties and nonproperties of the proposed sys-
tem, the assumptions it makes, the dependencies embodied in it, and the cost/benefit
tradeoffs reflected in the architecture. Such questions may not lead to a drastically
changed system, but they do represent a path toward understanding the mentality of
the designer and the philosophical structure of the proposed system. Many of the
questions below are of a nature that might be used in such a situation.

K.P. Birman, Guide to Reliable Distributed Systems, Texts in Computer Science,
DOI 10.1007/978-1-4471-2416-0_24, © Springer-Verlag London Limited 2012
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1. Make a list of five cloud-hosted services that support applications running on
your iPhone or Android phone or pad. These can be services that you are sure
exist, or can be services that you believe must exist on the basis of things these
devices allow you to do. Now, for each of these services, ask yourself what the
weakest assurance properties that would completely eliminate any possible risk
of client annoyance would be. Do not be wildly unrealistic: networks will still
fail or have poor connectivity; users will still be mobile, loads are still hard to
predict. But are there assurance properties that would really be desirable for the
services you have listed? Do you see ways that they could be implemented?

2. What sorts of assurance properties would matter most in a system designed to
deliver video content (television shows, for example) over the web?

3. Imagine that a small medical office has purchased a cloud-hosted medical sys-
tem designed to allow them to monitor large numbers of home-care patients.
They keep an eye on their patients and perhaps step in to update prescriptions
or even to adjust devices like insulin pumps, from time to time. What kinds of
assurance property would such an application require?

Sticking with this same example, we clearly will need to ensure that it be-
haves in a fail-safe manner: if something critical goes down (like a network
link), it should sound the alarm in the doctor’s office or perhaps in the man-
ager’s office of the building where the patient lives. Is it possible to solve this
problem? How would you go about it?

4. Suppose that a law was written whereby if a network were to carry illegal con-
tent (such as child pornography), the network operator would be liable for large
fines or other significant legal sanctions. Would it be technically feasible to im-
plement such a policy? What challenges can you identify? (This is not a com-
pletely speculative question; there have been a number of proposals along these
lines in the US Congress.)

5. Write a program to experimentally characterize the packet loss rate, frequency
of out-of-order delivery, send-to-receive latency, and byte throughput of the
UDP and TCP transport protocols available on your computer system. Eval-
uate both the local case (source and destination on the same machine) and the
remote case (source and destination on different machines).

6. In the Introduction, in Fig. 3.1, we saw an illustration of network loads os-
cillating because of a broadcast storm. Compare this with the TCP sawtooth
throughput graph in Fig. 3.1 that we discussed in Chap. 4, stemming from the
TCP flow-control policy (linear increase, multiplicative decrease). Both figures
show a kind of oscillation. Briefly explain why the first kind was considered so
bad that IP multicast is now banned in most data centers, and yet the second
kind is completely acceptable and, in fact, most data centers require that TCP
be used for everything!

7. One of the examples in the Isis2 user’s manual lets you create a very simple
cloud-hosted web service that uses Isis2 to replicate data. Build such a service,
run it on a real cloud platform such as Amazon EC2 or Microsoft Azure (you’ll
need to apply for a free account; you will not need very many nodes or a lot of
computing time). Now use this service to measure simple RPC-style requests
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from your client platform to the service that are load-balanced over its members,
then “relayed” by the service instance that receives the request. Relay the data
using OrderedSend and call Flush before replying to the external client. Now,
measure:
a. The cost of doing a “null” operation on the Web Service (one with no argu-

ments and no return value).
b. The per-byte cost of including a byte-string argument. (Graph the result for

byte strings of length 10 bytes, 100, 1000, 10,000 and 50,000.)
c. The per-byte cost if your procedure returns a byte-string result.
d. The cost of including a vector of n 32-bit integers. (Again, graph results for

various argument lengths.)
e. The cost of including a vector of double-precision floating point numbers in

the argument or result. Does it change the answer if the numbers have simple
integer values like 1.0 or 0.0, relative to random double-precision numbers
over a large range of values? Why?

f. Design your Web Service so that some member, picked at random (perhaps
using the group view) will crash with a zero-divide. Now, have your client
application call the Web Service. How long does it take for the failure to be
detected? What information is available to the client program? Do you get
the same results if the client and Web Service run on different machines?

g. Same as (f), but now have your Web Service application “freeze up” by
calling sleep and never returning a result. What happens?

8. (A substantial O/S level challenge). We discussed the role of the Dr. Multi-
cast algorithm in taming the broadcasts storms that gave rise to Fig. 3.1. Could
Dr. Multicast be implemented within an operating system? Modify the network
device driver for Linux to implement Dr. Multicast directly at that level, main-
taining complete transparency for the end-user applications. Note: If properly
evaluated, a paper on this could certainly be published in a major conference
such as HotOS, HotNets, or even OSDI or NSDI.

9. Devise a method for rapidly detecting the failure of a process on a remote ma-
chine and implement it. How rapidly can your solution detect a failure without
risk of inaccuracy? Your work should consider one or more of the following
cases: a program that runs a protocol you have devised and implemented over
UDP, a program that is monitored by a parent program, and a program on a
machine that fails or becomes partitioned from the network. For each case, you
may use any system calls or standard communication protocols that are avail-
able to you.

10. Suppose that it is your goal to develop a network radio service, which trans-
mits identical data to a large set of listeners, and that you need to pick the best
communication transport protocol for this purpose (there are many products of
this kind in the market, you should browse a few product web pages to see how
such radios look and feel to their users). Evaluate and compare the UDP, TCP,
and IP multicast transport protocols on your computer (you may omit IP multi-
cast if this is not available in your testing environment). Your evaluation should
look at throughput and latency (focusing on variability of these as a function of
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throughput presented to the transport). Can you characterize a range of perfor-
mance within which one protocol is superior to the others in terms of loss rate,
achievable throughput, and consistently low latency? Your results will take the
form of graphs showing how these attributes scale with increasing numbers of
destinations.

11. Develop a simple Isis2 ping-pong program that bounces a small packet back
and forth between a source and destination machine, using the P2PSend or
P2PQuery API. One would expect such a program to give extremely consis-
tent latency measurements when run on idle workstations. In practice, however,
your test is likely to reveal considerable variation in latency. Track down the
causes of these variations and suggest strategies for developing applications
with highly predictable and stable performance properties.

12. One challenge to timing events in a distributed system is that the workstations
in that system may be running some form of clock synchronization algorithm,
which is adjusting clock values even as your test runs—leading to potentially
confusing measurements. From product literature for the computers in your en-
vironment or by running a suitable experiment, determine the extent to which
this phenomenon occurs in your testing environment. Can you propose ways of
measuring performance that are immune to distortions of this nature?

13. Suppose you wish to develop a topology service for a local area network, us-
ing only two kinds of information as input with which to deduce the network
topology: IP addresses for machines and measured point-to-point latency (for
lightly loaded conditions, measured to a high degree of accuracy). How prac-
tical would it be to solve this problem? Ideally, a topology service should be
able to produce a map showing how your local area network is interconnected,
including bridges, individual Ethernet segments, and so forth.

14. (Moderately Difficult.) If you concluded that you should be able to do a good
job on the previous problem, implement such a topology service using your lo-
cal area network. What practical problems limit the accuracy of your solution?
What forms of use could you imagine for your service? Can information avail-
able within the MIBs of the machines of your network be used to improve the
quality of the topological map?

15. (A current topic of research.) In many cloud settings, applications must run on
virtualized machines that could be stacked many-to-one on the same physical
machines. How might this be detected? Could you design an application capable
of sensing collocation rapidly? How might such an application be extended
to sense other properties of the cloud runtime environment, such as the best
options for replicas to talk to one-another (e.g. via shared memory-mapped files,
TCP, UDP, IPMC, and for the latter, with what size packets)?

16. (A current topic of research.) In many applications, it would be helpful to be
able to anticipate the costs of operations so as to make intelligent decisions. For
example, if a data object can be downloaded from multiple places, one would
like to download from the one that will give the fastest transfer, and so forth.
Our goal in this problem is to provide an application with a way to estimate such
costs. Suppose that your software will be installed in a set of agent programs at
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a large number of nodes in a network (namely, the places where the application
in question is running). By looking at IP addresses and measuring round-trip
delays for messages exchanged by these agents, as well as the transfer speeds
for moving larger amounts of data between them, is it possible to arrive at a
reasonably good way to estimate performance for operations that the system
may wish to do in the future? Develop the least costly mechanism you can
(in terms of network load, etc.) for tracking the underlying network so that an
application running from the same end-points can anticipate the costs associated
with its communication events. Since your solution will be used as a kind of
“library” by the application, you should provide access to it from a clean, simple
API that will be easy for application developers to use.

17. Stream protocols like TCP can fail in inconsistent ways. Develop an application
that demonstrates this problem by connecting two programs with multiple TCP
streams, running them on multiple platforms and provoking a failure in which
some of the streams break and some remain connected. To do this test you may
need to briefly disconnect one of the workstations from the network; hence,
you should obtain the permission of your network administration staff. Now,
develop a wrapper for TCP that disables the TCP KEEPALIVE function and
uses your mechanism to break channels. Your wrapper should mimic the API
normally supported by TCP; indeed, you might even consider using the “library
wrapper” methods discussed in Sect. 16.1 if you work on UNIX or Linux.

18. Suppose one were building a cloud-hosted runtime environment for very long-
lived applications. The applications will be ones that need to remain continu-
ously operational for years at a time in support of physics and astronomy exper-
iments. For example, your technology might be used to build a control system
for a satellite. Obviously, some downtime will be inevitable in any solution, but
assume that the price of outages is considered very high and must be driven
absolutely as low as possible. Would Isis2 be a suitable platform for this pur-
pose? Analyze the limitations of the system for uses such as this one, and then
propose a set of extensions that might overcome the problems you identified.
(Hint: Read about the highly available router research discussed in Chap. 4.)

19. (A good project for classes in which a large project is required from each student
or group.) Suppose that a Web Services system is required to cache information
from some underlying database server. Using the Isis2 system, implement a
coherent caching scheme and measure its performance and scalability in a real
cloud setting such as Amazon’s EC2 or Microsoft’s Azure (cloud computing
resources often have programs to allow students to get slices of compute time
to run experiments such as this).

Cloud computing systems would often wish to customize routing in ways
matched to their application needs. Design a possible new Internet routing ser-
vice that could be deployed in today’s real Internet without disrupting or chang-
ing any existing routing technology or hardware, and yet that would give the
cloud companies greatly enhanced control over their own private data streams.

20. (A good project for a class in which a large project is required from each stu-
dent or group.) Develop a small library for use in a Web Services setting that
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provides secure, replicated keys shared between a Web Services platform and
its clients. The package should have a way to authenticate the identity of the
client, and should implement two kinds of key. One form of key would be a
symmetric key shared by the Web Service and exactly one client, and used to
perform encryption or to sign data in messages transmitted between them. The
second form of key, also symmetric, should support a “group” mode in which
all clients running under the same ID share the same key. Can you support key
refresh, whereby the key currently in use is replaced with a new key, in such a
manner that even if the old key is later cracked, and even if the intruder has a
complete record of all messages ever sent on the network, the new key will not
be compromised?

21. This project uses a popular Cornell created package called Live Distributed
Objects with which it is easy to create cloud-hosted visualization applications
such as multiuser games or sharable data “dashboards” that have live content.
Download this freeBSD package and, following the online manual, develop a
game that leverages existing content such as Google’s Maps database to support
a kind of global chase, in which one character flees within a real urban setting
and others chase him or her firing various kinds of weapon. You may want to
consider combining the Live Objects solution with multicast solutions built over
Isis2 to achieve very high data rates for the movement events, weapons firing,
etc.

22. Discuss options for building a kind of software development tool that will help
students transform transactional Web Services applications into a less trans-
actional, weakly consistent versions that can in the first-tier of the cloud. For
example, you could start with an application that books an airline ticket, hotel
room and vehicle for each stage of a multi-country trip. For ideas on how to go
about this task we recommend reading Pritchett’s classic paper on the BASE
methodology (see Pritchett 2008). In effect, your software engineering solution
would automate as much of BASE as possible, and then make it easy for the
end user to take the steps that cannot be fully automated.

23. We discussed the need for a “security rules and policies” management mech-
anism, whereby the security rules and policies enforced by a system might be
stored in a database, then used at runtime to decide whether specific actions
should be authorized. Reach about the DL security policy “delegation” lan-
guage by Feigenbaum (Delegation Logic) or the RT Role-Based Trust Lan-
guage proposed by Stanford’s John Mitchell and his colleagues. You can down-
load implementations of both off the web, for example the RT implementation
available from Berkeley’s DETER laboratory. Now design a mechanism that
uses these sorts of policies for use in Web Services settings that might support
medical records on behalf of a hospital or some other medical practice. The
rules should be of the form “client so-and-so is permitted/not-permitted to per-
form action so-and-so on Web Service such-and-such.” How hard would it be to
implement the solution you have designed? Give some examples of problems
which this mechanism would solve, and some examples of problems it is not
powerful enough to solve.
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24. Suppose that a rebinding mechanism is to be used to automatically rebind a
Web Services or CORBA applications to a working server if the server being
used fails. What constraints on the application would make this a safe thing to
do without notifying the application when rebinding occurs? Would this form
of complete transparency make sense, or are the constraints too severe to use
such an approach in practice?

25. A protocol that introduces tolerance to failures will also make the application
using it more complex than one making no attempt to tolerate failures. Presum-
ably, this complexity carries with it a cost in decreased application reliability.
Discuss the pros and cons of building systems to be robust, in light of the like-
lihood that doing so will increase the cost of developing the application, the
complexity of the resulting system, and the challenge of testing it. Can you
suggest a principled way to reach a decision on the appropriateness of harden-
ing a system to provide a desired property?

26. Consider an air traffic control system in which each flight is under the control
of a specific individual at any given point in time. Suppose the system takes
the form of a collection of client/server distributed networks—one for each of a
number of air traffic control centers. Design a protocol for handing off a flight
from one controller to another, considering first the case of a single center and
then the case of a multicenter system. Now, analyze the possible failure modes
of your protocol under the assumption that client systems, server systems, and
the communication network may be subject to failures. Keep in mind that your
goal is to ensure that the system is fail-safe but not necessarily to accomplish
that goal in a completely automated manner. If the system sometimes needs to
ask for help from the human air-traffic controllers or system operators, doing so
is perfectly appropriate.

27. Suppose that a large city has decided to manage all of its traffic flow on a cloud
platform. Data collected will include estimates for traffic volumes on each road
(obtained from detection devices of various kinds, programs that collect photos
from skyscrapers at a few strategic locations and then use image processing to
determine how many vehicles are on each street and how fast they are moving,
etc.). Actions are to adjust the timing cycles for the traffic lights to optimize
traffic flow. How would you solve this problem? What assurance properties
would it need, if any?

28. Focusing on the case of a medical computing system used to monitor at-home
patients and that can take actions, such as adjusting an insulin pump, make a list
of ten or fifteen distinct tasks (roles) that such a system might play. Now, for
each, develop a breakdown of the associated security and consistency require-
ments, fault-tolerance needs, etc. Given an application of this kind, where one
sees a mix of needs, would you recommend using the worst-case requirements
as an overall goal (e.g. implement everything to satisfy the worst-case assur-
ance needs, even if some subsystem does not need those worst-case guaran-
tees)? From the insights you gain in answering this question, develop an overall
rule of thumb that a developer of a high-assurance system might use in deciding
how to define and implement the various subsystems that arise. (E.g. your goal
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here is to generalize from a specific medical case to the more general world
of high assurance financial systems, traffic control systems, smart power grid
applications, and so forth.)

29. (Term project; team of two or more.) Use Isis2 to build a high-assurance repli-
cated database that can tolerate various patterns of failures include unexpected
sudden outages of the full set of machines on which the application is running.
What limits the performance of your solution?

30. Suppose that you were to use the Isis2 system to implement the CASD protocol
we looked at in the chapter on real-time protocols (e.g. you would implement
CASD over the basic Isis2 Send and P2PSend primitives). Would the analysis
of correctness used in the CASD proofs still apply, or would the layering com-
plicate that analysis in some way? What about the converse question: would the
solution be a virtually synchronous version of the CASD real-time protocols?

31. Suppose that you were to use the Isis2 system to implement the Zyzzva Byzan-
tine Fault Tolerance protocol (Kotla et al. 2009), a fancier and more complete
protocol than the simple BFT protocol we looked at in Sect. 11.2. That is, you
would implement Zyzzva over the basic Isis2 Send and P2PSend primitives.
Would the analysis of correctness used in the Zyzzva proofs still apply, or would
the layering complicate that analysis in some way? What about the converse
question: would the solution be a virtually synchronous Byzantine Agreement
solution? For example, would it be safe to make use of the Isis2 group views
within the services that use this BFT technology? How would it perform relative
to a hand-coded version of Zyzzva?

32. Some authors consider RPC to be an extremely successful protocol, because it
is highly transparent, reasonably robust, and can be optimized to run at very
high speed—so high that if an application wants stronger guarantees, it makes
more sense to layer a protocol over a lower-level RPC facility than to build it
into the operating system at potentially high cost. Discuss the pros and cons
of this point of view. In the best possible world, what primitives do you be-
lieve should be included into the vendor-supplied communication subsystem,
and what primitives should be implemented by the application in an end-to-end
manner?

33. Research the end-to-end argument. Now, suppose that you are working with
mobile computers that use relatively low-reliability wireless links to connect to
the Internet, and then run TCP to download Web pages. Does the end-to-end
argument suggest that the wireless link should be treated just like the wired
part of the Internet? Explain how best to handle such a link, if our goal is rapid
download speeds.

34. Review flow-control options for environments in which a Web Service is send-
ing streams of data to large numbers of receivers. Today, TCP does not coordi-
nate the actions of one stream relative to those of any other. Yet the one Web
Service may be connected to hundreds of clients, and if congestion occurs, there
is a good chance that it will impact sets of clients (all of them if the problem
is close to the server, and if the problem occurs close to a client, it will proba-
bly impact other clients at the same place). Can you suggest ways that a TCP
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protocol might be modified to make use of this kind of information? (If you
are a real hacker, consider using NS/2, which has very accurate TCP simula-
tions built in, to simulate such scenarios and explore the likely impact of your
proposed scheme.)

35. A protocol is said to be “acky” if most packets are acknowledged immediately
upon reception. Discuss some of the pros and cons of this property. Suppose
that a stream protocol could be switched in and out of an acky mode. Under
what conditions would it be advisable to operate that protocol with frequent
acks?

36. Suppose that a streaming style of multidestination information service, such as
the Internet radio service we discussed in an earlier problem, is to be used in a
setting where a small subset of the application programs can be unresponsive for
periods of time. A good example of such a setting would be a network in which
the client systems run on PCs, because the most popular PC operating systems
allow applications to preempt the CPU and inhibit interrupts—a behavior that
can delay the system from responding to incoming messages in a timely manner.
This might also arise if a client is connected over a wireless link that sometimes
“burps.” What options can you propose for ensuring that data delivery will be
reliable and ordered in all cases, but that small numbers of briefly unresponsive
machines will not impact performance for the much larger number of highly
responsive machines?

37. (Term project.) Suppose you were building a large-scale distributed system for
video playback of short video files on demand—for example, such a system
might be used in a large bank to provide brokers and traders with current pro-
jections for the markets and trading instruments tracked by the bank. Assume
that videos are often updated. Design a scheme for getting data to the display
servers so as to avoid overloading servers while also giving the best possible
user experience. Your solution will probably need to track copies of each video,
so that any machine with a copy can be treated as a possible data source (more
or less in the style of Napster and other P2P file sharing protocols). You should
provide for a way to update the database of available videos and to play a video
on an end-user “playback unit”; beyond this, include such additional function-
ality as is needed to achieve a high availability, high performance solution.

38. Consider the Group Membership Protocol discussed in Sect. 11.1. Suppose that
this protocol was implemented in the address space of an application program
and that the application program contained a bug causing it to infrequently but
randomly corrupt a few cells of memory. To what degree would this render the
assumptions underlying the GMS protocol incorrect? What behaviors might
result? Can you suggest practical countermeasures that would overcome such a
problem if it were indeed very infrequent?

39. (Difficult.) Again, consider the Group Membership Protocol discussed in
Sect. 11.1. This protocol has the following property: All participating processes
observe exactly the same sequence of membership views. The coordinator can
add unlimited numbers of processes in each round and can drop any minority of
the members each time it updates the system membership view; in both cases,
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the system is provably immune from partitioning. Would this protocol be sim-
plified by eliminating the property that processes must observe the same view
sequence? (Hint: Try to design a protocol that offers this “weaker” behavior. Do
not worry about network partitioning failures.)

40. (A real problem that has caused outages in several major cloud systems.) Sup-
pose that the processes in a process group are managing replicated data using
some technique (perhaps gossip, perhaps virtually synchronous data replica-
tion) to propagate updates. Due to a lingering bug, it is known that although
the group seems to work well for periods of hours or even days, over very long
periods of time the replicated data can become slightly corrupted so that dif-
ferent group members have different values. For example, perhaps sometimes
the amount of free space for one of the storage servers tends to show a random
number instead of the correct value. Discuss the pros and cons of introducing a
stabilization mechanism, whereby the members would periodically crash them-
selves, then restart and rejoin the system as a “new” member. What issues might
this raise in the application program, and how might they be addressed?

41. Same question, but now assume that your cloud system is having this problem
because it is coming under attack by the competing company that operates the
cloud platform up the block. Apparently they have found a sneaky way to send
data on your corporate network. How would you protect the solution from the
previous question against attack?

42. Implement a very simple Web Services banking application supporting ac-
counts into which money can be deposited and withdrawals can be made. (You
can easily do this using Visual Studio for .NET with the ASP.NET project de-
sign and working in a language such as C# with Isis2 at the backend, or even
with some simple SQL backend.) Have your application support a form of dis-
connected operation based on the two-tiered architecture, in which each branch
system uses its own set of process groups and maintains information for local
accounts. Your application should simulate partitioning failures through a com-
mand interface. If branches cache information about remote accounts, what op-
tions are there for permitting a client to withdraw funds while the local branch
at which the account really resides is unavailable? Consider both the need for
safety by the bank and the need for availability, if possible, for the user—for
example, it would be silly to refuse a user $250 from an account that had thou-
sands of dollars in it moments earlier when connections were still working!
Can you propose a policy that is always safe for the bank and yet also allows
remote withdrawals during partition failures? (Hint: this question is motivated
by research undertaken by Professor Calton Pu on “epsilon serializability.” Al-
though this work was not covered in the textbook in the interest of brevity, you
might find it useful to track down Pu’s publications on the Web.)

43. Design a protocol by which a process group implemented using Isis2 can solve
the asynchronous consensus problem. Assume that the environment is one in
which Isis2 can run correctly, processes only fail by crashing, and the network
only fails by losing messages with some low frequency. Your processes should
be assumed to start with a variable, inputi , which, for each process, pi , is ini-
tially 0 or 1. After deciding, each process should set a variable, outputi , to its
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decision value. The solution should be such that the processes all reach the same
decision value, v, and this value is the same as at least one of the inputs.

44. In regard to your solution to problem 37, discuss the sense in which your so-
lution solves the asynchronous consensus problem. Would any distributed pro-
gramming tool (e.g. Isis2, JGroups, Ensemble or Spread) be guaranteed to make
progress under the stated conditions? Do these conditions correspond to the
conditions of the asynchronous model used in the FLP and Chandra/Toueg re-
sults?

45. Can the virtual synchrony protocols of a system such as Isis2, Horus, Ensemble
or Spread be said to guarantee safety and liveness in the general asynchronous
model of FLP or the Chandra/Toueg results?

46. Group communication systems such as Isis2, JGroups, Ensemble and Spread
are usually designed to operate under the conditions seen in clustered comput-
ing systems on a local area network. That is, the protocols basically assume
low latency, high throughput, and infrequent network disconnections or parti-
tioning events. But cloud systems are so massive that rare things happen all the
time, somewhere in the cloud. Consider the challenges of running a group com-
munication platform in a wireless ad-hoc network, where connectivity is often
disrupted, power considerations may be a factor, and messages need to be re-
layed to reach their destination, introducing significant latency variations. What
sorts of group communication protocols might work best in this setting? If you
find it helpful to imagine an application, assume that your solution is aimed at
supporting rescue workers who are entering a region that recently experienced a
flood or earthquake and need to coordinate their actions, or fire fighters working
in a mountainous forest threatened by a fire.

47. Suppose that a process group is created in which three member processes each
implement different algorithms for performing the same computation (so-called
“implementation redundancy”). You may assume that these processes interact
with the external environment only using message send and receive primitives.
Design a wrapper that compares the actions of the processes, producing a single
output if two of the three or all three processes agree on the action to take for a
given input and signaling an exception if all three processes produce different
outputs for a given input. Implement your solution using Isis2 or some other
technology and demonstrate it for a set of fake processes that usually copy their
input to their output, but that sometimes make a random change to their output
before sending it.

48. A set of processes in a group monitors devices in the external environment, de-
tecting device service requests to which they respond in a load-balanced man-
ner. The best way to handle such requests depends upon the frequency with
which they occur. Consider the following two extremes: requests that require
long computations to handle but that occur relatively infrequently and requests
that require very short computations to handle but that occur frequently on the
time scale with which communication is done in the system. Assuming that the
processes in a process group have identical capabilities (any can respond to any
request), how would you solve this problem in the two cases?
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Fig. 24.1 Overlapping process groups for problem 47. In this example there is only a single pro-
cess in the overlap region; the problem concerns state transfer if we wanted to add another process
to this region. Assume that the state of the processes in the overlap region reflects messages sent
to it by the outer processes, which belong to the “petals” but not the overlap area. Additionally, as-
sume that this state is not cleanly decomposed group by group and that it is necessary to implement
a single state transfer for the entire structure

49. Design a locking protocol for a virtually synchronous process group (read about
the Google Chubby service to better understand the goal: See Burrows 2006).
Your protocol should allow a group member to request a lock, specifying the
name of the object to be locked (the name can be an integer to simplify the
problem), and to release a lock that it holds. What issues occur if a process
holding a lock fails? Recommend a good, general way of dealing with this case
and then give a distributed algorithm by which the group members can imple-
ment the request and release interfaces, as well as your solution to the broken
lock case.

50. (Suggested by Jim Pierce.) Suppose we want to implement a system in which n

process groups will be superimposed—much like the petals of a flower. Some
small set of k processes will belong to all n groups, and each group will have
additional members that belong only to it. The problem now occurs of how to
handle join operations for the processes that belong to the overlapping region
and in particular how to deal with state transfers to such a process. Assume that
the group states are only updated by “petal” processes, which do not belong to
the overlap region. Now, the virtually synchronous state transfer mechanisms
we discussed in Sect. 14.3 would operate on a group-by-group basis, but it
may be that the states of the processes in the overlap region are a mixture of
information arriving from all of the petal processes. For such cases one would
want to do a single state transfer to the joining process, reflecting the joint
state of the overlapped groups. Propose a fault-tolerant protocol for joining the
overlap region and transferring state to a joining process that will satisfy this
objective. (Refer to Fig. 24.1.)

51. Discuss the pros and cons of using an inhibitory protocol to test for a condition
along a consistent cut in a process group. Describe a problem or scenario where
such a solution might be appropriate and one where it would not be.
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52. In Lamport’s Paxos protocol, the number of acceptors plays an important role
in both performance and durability. It can be appealing to use a small number
of acceptors (like 3) because this maximizes performance. But what issues can
arise if a group has a large number of learners and a much smaller number of
acceptors?

Look closely at the Isis2 Send protocol. Describe a sequence of events that
can cause a Send to be delivered to at least one group member, and yet not be
delivered (ever) at other group members. Could an external user of a service
ever glimpse such a situation if Flush is called after the Send, before sending
messages to the external user?

Give an example of a simple data replication protocol that will guarantee
consistency if implemented using CausalSend and yet is incorrect when im-
plemented using Send (recall that the former offers a causal delivery ordering,
while the latter is only FIFO).

Give an example of a data replication approach that behaves identically
whether CausalSend or SafeSend is used. Can you describe a general princi-
ple that would tell a person who is not sure which primitive to use whether they
need CausalSend or not? When working with very large groups that are only
updated rarely, what overheads will result if your system uses CausalSend just
to be on the safe side? How do these overheads scale as a group grows larger?

53. Suppose that the processes in a distributed system share a set of resources,
which they lock prior to using and then unlock when finished. If these pro-
cesses belong to a process group, how could deadlock detection be done within
that group? Design your deadlock detection algorithm to be completely idle
(with no background communication costs) when no deadlocks are suspected;
the algorithm should be one that can be launched when a timeout in a waiting
process suggests that a deadlock may have occurred. For bookkeeping purposes,
you may assume that a process waiting for a resource calls the local procedure
waiting_for(resource), a process holds exclusive access to a resource calls the
procedure holding(resource), and a process releasing a resource calls the pro-
cedure release(resource), where the resources are identified by integers. Each
process thus maintains a local database of its resource status. Notice that you
are not being asked to implement the actual mutual-exclusion algorithm here:
Your goal is to devise a protocol that can interact with the processes in the sys-
tem as needed to accurately detect deadlocks. Prove that your protocol detects
deadlocks if, and only if, they are present.

54. Suppose you wish to monitor a distributed system for an overload condition,
defined as follows. The system state is considered normal if no more than one-
third of the processes signal that they are overloaded, heavily loaded if more
than one-third but less than two-thirds of the processes signal that they are
overloaded, and seriously overloaded if two-thirds or more of the processes are
overloaded. Assume further that the loading condition does not impact com-
munication performance. If the processes belong to a process group, would it
be sufficient to simply send a multicast to all members asking their states and
then to compute the state of the system from the vector of replies so obtained?
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What issues would such an approach raise, and under what conditions would
the result be correct?

55. (Joseph and Schmuck.) What would be the best way to implement a predi-
cate addressing communication primitive for use within virtually synchronous
process groups (assume that the group primitives are already implemented and
available for you). Such a primitive sends a message to all the processes in the
group for which some acceptance criteria hold and does so along a consistent
cut. You may assume that each process contains a predicate, accept(), which,
at the time it is invoked, returns true if the process wishes to accept a copy of
the message and false if not. (Hint: It is useful to consider two separate cases
here—one in which the criteria that determine acceptance change slowly and
one in which they change rapidly, relative to the speed of the multicasting in the
system.)

56. (Term project.) Implement Agarwal’s architecture, and experimentally evaluate
its behavior with a small cluster of side-by-side PC’s on a high speed LAN,
using a simple hand-built database instead of a full-scale transactional database
as the underlying database “system” (for example, you might use a file 100
blocks in length and generate transactions at random to read or write segments
of the file, locking each record as it is first accessed).

57. (Schneider.) We discussed two concepts of clock synchronization: accuracy and
precision. Consider the case of aircraft operating under free-flight rules, where
each pilot makes routing decisions on behalf of his or her plane, using a shared
trajectory mapping system. Suppose that you faced a fundamental tradeoff be-
tween using clocks with high accuracy for such a mapping system or clocks
with high precision. Which would you favor and why? Would it make sense to
implement two such solutions, side by side?

58. Suppose that a-posteriori clock synchronization using GPS receivers becomes a
worldwide standard in the coming decade. The use of temporal information now
represents a form of communication channel that can be used in indirect ways—
for example, process p, executing in Lisbon, can wait until process q performs
a desired operation in New York (or fails) using timer events. Interestingly, such
an approach communicates information faster than messages can. What issues
do these sorts of hidden information channels raise in regard to the protocols
we explored in the book? Could temporal information create hidden causality
relationships?

59. Show how tightly synchronized real-time clocks can be made to reflect causality
in the manner of Lamport’s logical clocks. Would such a clock be preferable
in some ways to a purely logical clock? Explain, giving concrete examples to
illustrate your points.

60. (Difficult.) In discussion of the CASD protocols, we saw that if such protocols
were used to replicate the state of a distributed system, a mechanism would
be needed to overcome inconsistencies occurring when a process is technically
considered incorrect according to the definitions of the protocols and therefore
does not benefit from the normal guarantees of atomicity and ordering seen
by correct processes. In an IBM technical report, Skeen and Cristian once sug-
gested that the CASD protocols could be used in support of an abstraction called
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�-common storage; the basic idea is to implement a distributed shared memory,
which can be read by any process and updated using the CASD style of broad-
cast protocol. Such a distributed shared memory would reflect an update within
� time units after it is initiated, plus or minus a clock skew factor of ε. How
might the inconsistency issue of the CASD protocol be visible in a �-common
storage system? Propose a method for detecting and eliminating such inconsis-
tencies. (Note: This issue was not considered in the technical report.)

61. (Marzullo and Sabel.) Suppose you wish to monitor a distributed system to de-
tect situations in which a logical predicate defined over the states of the member
processes holds. The predicate may state, for example, that process pi holds a
token and that process pj is waiting to obtain the token. Under the assumption
that the states in question change very slowly in comparison to the communica-
tion speeds of the system, design a solution to this problem. You may assume
that there is a function, sample_local_state(), that can be executed in each pro-
cess to sample those aspects of its local state referenced in the query, and when
the local states have been assembled in one place, a function, evaluate, can de-
termine if the predicate holds or not. Now, discuss the modifications needed if
the rate of state changes is increased enough so that the state can change in the
same order of time as your protocol needs to run. How is your solution affected
if you are required to detect every state in which the predicate holds, as opposed
to just detecting states in which the predicate happens to hold when the proto-
col is executed. Demonstrate that your protocol cannot falsely detect satisfying
states.

62. There is increasing interest in building small multiprocessor systems for use
in inexpensive communication satellites. Such systems might look similar to a
rack containing a small number of conventional workstations or PCs, running
software that handles such tasks as maintaining the proper orientation of the
satellite by adjusting its position periodically, turning on and off the control
circuits that relay incoming messages to outgoing channels, and handling other
aspects of satellite function. Now, suppose that it is possible to put highly re-
dundant memory modules on the satellite to protect extremely critical regions
of memory, but that it is costly to do so. However, unprotected memory is likely
to experience a low level of corruption as a result of the harsh conditions in
space, such as cosmic rays and temperature extremes. What sorts of program-
ming considerations would result from using such a model? Propose a software
architecture that minimizes the need for redundant memory, but also minimizes
the risk that a satellite will be completely lost (e.g., a satellite might be lost if
it erroneously fires its positioning rockets and thereby exhausts its supply of
fuel). You may assume that the actual rate of corruption of memory is low, but
not completely insignificant, and that program instructions are as likely as data
to be corrupted. Assume that the extremely reliable memories, however, never
experience corruption.

63. Continuing with the topic of problem 62 there is debate concerning the best
message-routing architecture for these sorts of satellite systems. In one ap-
proach, the satellites maintain a routing network among themselves; a relatively
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small number of ground stations interact with whatever satellite happens to be
over them at a given time, and control and data messages are then forwarded
satellite to satellite until they reach the destination. In a second approach, satel-
lites communicate only with ground stations and mobile transmitter/receiver
units: Such satellites require a larger number of ground systems, but they do
not depend upon a routing transport protocol, which could be a source of un-
reliability. Considering the conditions cited in problem 59 and your responses,
what would be the best design for a satellite-to-satellite routing network? Can
you suggest a scientifically sound way to make the design tradeoff between
this approach and the one using a larger number of potentially costly ground
stations?

64. We noted that the theoretical community considers a problem to be impossible
in a given environment if, for all proposed solutions to the problem, there ex-
ists at least one behavior consistent with the environment that would prevent
the proposed solution from terminating or would lead to an incorrect outcome.
Later we considered probabilistic protocols, which may be able to guarantee be-
haviors to very high levels of reliability—higher, in practice, than the reliability
of the computers on which the solutions run. Suggest a definition of impossible
that might reconcile these two perspectives on computing systems.

65. Suppose that a system is using Chord and has access to the finger tables used
by the Chord technology. Devise an efficient protocol for counting the number
of nodes actually in the system. How costly is your protocol?

66. Suppose that we wanted to enumerate all (key, value) pairs within some range
of keys (here, we mean the actual key, not the hashed key). Is there an efficient
way to do this using Chord? Explain why or why not.

67. Suppose that we want to do an inverted lookup—for a given value, we would
like to find the corresponding key or keys. Can this be done efficiently using
Chord? Can you suggest a way to modify Chord to support such an operation?

68. A stock exchange typically reports two kinds of event: actual trades that are
completed, and bid-offered pricing. The latter is less important, since bid-
offered prices change all the time, whereas information on trades that are con-
summated is of very high value, because applications predicting pricing trends
tend to weight such events very heavily. Which multicast properties would be
most appropriate for reporting each kind of event?

69. Suppose that for reasons of scalability, you are building a stock exchange sys-
tem that will use bimodal multicast (ProbabilisticSend) for all event reporting.
Can you suggest ways to extend the basic protocol so that if a node can tell
whether a missing message is one of the “important” ones mentioned in ques-
tion 64, as opposed to one of the less critical kinds of event?

70. Can Astrolabe aggregators be used to “count” objects in a distributed setting?
a. Show how Astrolabe can be used to count the number of computers running

it (that is, count the number of machines in its own table).
b. How can Astrolabe be used to count the number of machines reporting

load >10.0?
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c. Could Astrolabe be used to count the number of machines having connectiv-
ity problems? What issues arise if we try to base an aggregate on data being
reported by a machine suffering intermittent connectivity failures?

d. Suppose that a virus is actively spreading through a network. It modifies
a file called C:\FooBar.exe on machines running version 2.1 of Microsoft
“Age of Mythology.” Can Astrolabe be used to count the number of infected
machines? To list them? How would Astrolabe behave if these numbers are
changing even as the system operator is looking at the output?

71. Your boss has asked you to estimate the number of downloaded music files on
the computers in your company, a multinational corporation with some 25,000
machines on its corporate network. Astrolabe is running on all of these ma-
chines.
a. Would you use a “configuration certificate” or an “aggregation function” to

ask each machine to count the files in the “myDownloadedMusic” folder and
report the count into Astrolabe?

b. Assume that Astrolabe is structured with 100 machines per zone and that
one gossip message is sent by each participant in a gossip epidemic every 5
seconds. Further, assume that it takes 10 seconds for a machine to count the
number of music files it has, once it has been asked to do so. You initiate the
action you recommended in (a). How long will it take before all the machines
in the network start to report their counts of music files?

c. How would you design an aggregation query to count the number of files
in the system as a whole? Suppose that a time t you ask Astrolabe to begin
to compute this aggregate. What issues arise during the period when the
aggregation query is known at some machines but not all of them? Could
this result in an incorrect reported count? Explain.

d. Is there a way to set this query up so that you will know how long to wait
until the exact count has been computed? Suppose that starting at time t + δ

the correct count is reported by Astrolabe. Why might the count continue to
change long after time t + δ is reached?

e. What if you now want to identify the employee with the largest number of
downloaded music files. How could you solve this problem with Astrolabe?

72. The corporate database center in your company has become overloaded and you
want to improve the use of caching by allowing client systems to share their
cache contents with one-another. This way, if machine a can obtain a database
record from the cache of machine b it will do so, rather than downloading a copy
from the database. Assume that staleness of the cached records is not a concern.
Which is the best technology for solving this problem: a DHT such as Chord
or Pastry, a one-hop DHT such as Kelips, a scalable database-like system such
as Astrolabe, or a scalable event reporting system such as a publish-subscribe
technology or Bimodal Multicast (ProbabilisticSend)?

73. In a caching architecture we may want to maintain coherent caches by hav-
ing the server notify nodes that have cached copies of a given record in the
event that the record changes. They can then discard or refresh the stale copy.
Of course, cache records can also be discarded for other reasons, such as tim-
ing considerations or a need to reuse the space for some other purpose. Which
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would be the best way for the server to track the set of clients that have a given
record in their caches? Your answer should focus on the cost of the mechanism
and also on how well it is likely to work:
a. Maintain a collection of dynamic process groups, one group per record.
b. Use Kelips to advertise copies of the cached record and also to announce

that a cached copy has been discarded.
c. Use some other DHT, such as Pastry, for the same purpose as in (b).
d. Use Astrolabe for this purpose. One column of the Astrolabe data structure

would list the cached records at a given machine, represented as a string of
record identifiers separated by semicolons. (Astrolabe would just think of it
as a fairly long string.)

e. When downloading a record, tell the server if it will be cached. If so, do an
RPC to the server to notify it if and when the cached record is discarded.

f. Do not explicitly track caching. Use Bimodal Multicast (pbcast) to notify
all the client systems when a record changes. If a large number of records
change, the notifications can be packed into very large messages for greater
efficiency.

74. We are building a military system to monitor the health of soldiers on the bat-
tlefield. Each soldier’s equipment includes some number of sensors. Although
the maximum number of sensors is known and is not unreasonably large, the
actual set of active sensors varies from soldier to soldier.
a. We would like to use Astrolabe in such a setting, but we do not want its

aggregation mechanism to be confused by the cases where a given soldier is
not reporting the sensor value that a given aggregate reads. For example, we
might want to list the soldiers who have the lowest reserves of ammunition,
but we do not want our list to include a huge number of individuals who
either do not have an ammunition counting sensor, or for whom that sensor
is not currently working.

b. Suppose that one of the sensors is capable of detecting even traces of VX
nerve gas. How might Astrolabe be used to identify the soldiers whose sen-
sors are detecting more than some specified threshold level of VX?

c. What if we wanted to use ProbabilisticSend to send a message to all soldiers
within 100 meters of any soldier whose VX sensor is reporting an over-
threshold level of the gas, for example to warn those soldiers to immediately
put on a gas mask. How could we solve this problem? Assume that all sol-
diers have a GPS location sensor reporting their current coordinates.

75. OfficeStuff corporation just called to warn that users of OfficeStuff version 2.1
may be at risk of attack by the NimbleFrog virus. Your virus scanning software
is not able to detect this problem, hence you decide to use Astrolabe to do so.
How might you tackle this challenge?

76. Astrolabe can identify machines that match a pattern, as in problem 69, but does
not take actions on those machines. Suppose that you build an “AstroActor” ap-
plication intended to run on the same client nodes that use Astrolabe. Its job is
to take the actions Astrolabe cannot take. For example, in problem 69, AstroAc-
tion might be used to initiate a software upgrade to OfficeStuff version 2.2.
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a. How might you design AstroAction?
b. What security issues are raised by such a capability? Keep in mind that As-

trolabe and AstroAction may be running on all nodes in a corporate network.
c. How might you address these security concerns?

77. The Kelips and Pastry systems both include mechanisms to track and use the
cheapest possible links. For example, Pastry constantly probes the nodes to
which its finger tables point, and will substitute a cheaper and more responsive
node if one turns out to be slow. Kelips similarly changes the affinity group con-
tacts list to try and use inexpensive contacts that are known to be responsive.
What are the pros and cons of such a policy? Think both about the expected
performance of the DHT itself and also about the performance overhead of the
mechanism.

78. Suppose that a very large information management system is being designed
for surveillance of the airports, train stations, bus stations and borders of a large
country. It will have millions of digital camera systems, each associated with a
storage device for archival recording of images captured. Now we would like
to make this information accessible to authorized law enforcement officials.
A small number of locations will be permitted to query the overall system.
A typical query involves providing the system with some number of digital
pictures of individuals suspected of trying to gain entry into the country, and
the goal is to retrieve any possible matches from the archived databases of all
of those computers. You can assume that the picture-matching operation is built
into the image server, and can be accessed via a secured Web Services interface.
a. Would this problem be better matched to a client/server architecture, a peer-

to-peer architecture, or a virtual synchrony process group approach? Why?
b. Suppose that you decide to use a peer-to-peer technology. How could you

chose between Astrolabe, Kelips and Chord for the kind of search operation
just described? Is one of these a much better “match” with the need than the
others? Why?

c. Analyze the ways that a terrorist group might try to compromise the correct
behavior of the solution you advocate in part (b). Assume that the group
has one person working with them who has gained access to the network on
which the system runs, and who is in a position to change the behavior of
a few of the nodes collecting data—but just a few. Could such an intruder
bring the whole system down? Could he cause the system to report a false
result, such as to claim that there have been no sightings of such and such an
individual?

79. If a message must take d hops to reach its destination and the worst-case delay
for a single link is δ, it is common to assume that the worst-case transit time for
the network will be d ∗ δ. However, a real link will typically exhibit a distribu-
tion of latencies, with the vast majority clustered near some minimum latency,
δmin, and only a very small percentage taking as long as δmax to traverse the link.
Under the assumption that the links of a routed network provide statistically in-
dependent and identical behavior, derive the distribution of expected latencies
for a message that must traverse d links of a network. You may assume that the
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distribution of delays has a convenient form for your analysis. (This problem is
hard to solve in closed form, but using MathLab you should be able to define a
regression formula and solve it numerically, then graph the results.)

80. A network address translation box increases the size of the network name space.
Suppose that addresses consist of a 32-bit address and a 16-bit port number and
that network address translation is used as aggressively as possible. Also, as-
sume that on the average, each application has a single open connection to some
remote computer (this is just the average; some may have far more connections
and some might not have any connections at all).
a. Characterize this “extreme translation” scenario. How many computers

could be connected to the network before we run into situations where some
computer. a cannot communicate with some other computer b because we
have exhausted the address space?

b. How is your answer impacted if each application has, on the average, 10
open connections?

c. Network address translation is unidirectional: a client behind a NAT can con-
nect to a server on the public Internet, but the server cannot initiate a con-
nection from outside the NAT back through it. How is this reflected in your
answer to (a)?

d. Does the answer to this problem change if we allow multiple levels of NAT
boxes? E.g., “LayersCorp” might have some application running behind two
NAT boxes, so that connection requests must pass through first one, then the
other.

e. Many people consider NAT boxes as a form of security mechanism. What
kinds of protection can a NAT provide?

81. (Ethical problem.) Suppose that a medical system does something a person
would not be able to do, such as continuously monitoring the vital signs of a
patient and continuously adjusting some form of medication or treatment in re-
sponse to the measured values. Now, imagine that we want to attach this device
to a distributed system so that physicians and nurses elsewhere in the hospi-
tal can remotely monitor the behavior of the medical system and so that they
can change the rules that control its actions if necessary (e.g., by changing the
dosage of a drug). In this book we have encountered many practical limits to
security and reliability. Identify some of the likely limits on the reliability of a
technology such as this. What are the ethical issues that need to be balanced in
deciding whether or not to build such a system?

82. (Ethical problem.) You have been asked to participate on a government panel
evaluating research proposals submitted to a major funding agency. One of the
very strong proposals is focused on a new peer-to-peer file sharing technol-
ogy with the following properties. First, content is completely anonymous: it
is impossible to determine who uploaded a given file into the system. Sec-
ond, downloads are anonymous: you can tell that data are being accessed, but
the underlying system mixes files together in such a way that it is very hard
to tell which data are being accessed. And third, the identity of the individ-
ual downloading the file is also anonymous. (Note: such technologies do exist;
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they have been developed by a number of researchers and tend to be based on
so-called cryptographic “Mixes” (Chaum 1981) and either strong encryption
or some other form of steganographic storage (see Cooper and Birman 1995;
Waldman and Mazières 2001).) The proposal claims that this system is for use
by individuals who wish to exchange e-mail and engage in discussions that
the government might find objectionable or that might result in discrimination
against them by others, and the research group also states that the technology
will be available to pro-democracy dissidents in foreign countries. But such a
technology could also be used for theft of IP, coordination of spying or terrorist
activities, and even for distribution of child pornography. Do you recommend
that this work be funded? How would you convince the remainder of the com-
mittee to accept your position on the matter?

83. (Ethical dilemma.) The home of an individual suspected of involvement in ter-
rorist activities is searched. No clearly compromising materials are found, but
on his laptop computer the investigators discover a program built along the lines
discussed in problem 77. The program has created some large files, but they are
illegible and, as discussed in problem 77, presumably contain a mixture of en-
crypted data from many sources. Without the user’s cooperation, it is impossible
to launch the program or retrieve the files the user himself has stored into the
system, or to make sense of any of these data. Should it be possible to compel
such an individual to reveal his passwords and access codes? Keep in mind that
if such a law were in place and the individual were to refuse, he would be sub-
ject to fines, imprisonment or other penalties. If you find it helpful to do so, you
may assume that it is very likely that this individual is guilty, but not certain.

84. (Ethical problem.) An ethical theory is a set of governing principles or rules
for resolving ethical conflicts such as the one in the previous problem—for
example, an ethical theory might stipulate that decisions should be made to
favor the maximum benefit for the greatest number of individuals. A theory
governing the deployment of technology could stipulate that machines must not
replace people if the resulting system is at risk of making erroneous decisions
that a person would have avoided. Notice that these particular theories could be
in conflict—for example, if a technology that is normally beneficial develops
occasional life-threatening complications. Discuss the issues that might occur
in developing an ethical theory for the introduction of technologies in life- or
safety-critical settings and, if possible, propose such a theory. What tradeoffs
are required, and how would you justify them?
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