
Concurrency Control (1)

Concurrency and Parallelism — 2017-18
Masters in Computer Science

(Mestrado Integrado em Eng. Informática)

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Joao Lourenço <joao.lourenco@fct.unl.pt>

Base on slides from: https://users.cs.duke.edu/~shivnath/courses/fall06/Lectures/11_serial.ppt

Concurrency Control

• Contents:
– Transactional model
– Serializability
– Conflicting operations

• Reading list:
– Chap 17 of Database management systems (3rd Ed.)

McGraw-Hill Education
Raghu Ramakrishnan, Johannes Gehrke
ISBN: 0-07-123151-X

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço ©	FCT-UNL	2017-18 2

Transaction

• Programming abstraction

• Implement real-world transactions
– Banking transaction
– Airline reservation

3

Transaction: Programmer’s Role

• Consistency

4

Consistent	StateConsistent	State
Transaction

Transaction: System’s Role

• Atomicity
– All changes of the transaction take effect or none at all

• Durability
– All future transactions see the changes made by this

transaction if it completes

• Isolation
– Same effect as if the transaction executed in isolation

5

Transaction: States

6

Begin Run

Abort

Commit

No	effect	in	the	system

Preserve	ACID	properties

Transactions

• Historical note:
– Turing Award for Transaction concept
– Jim Gray (1998)

• Interesting reading:

7

Transaction	Concept:	Virtues	and	Limitations
by	Jim	Gray

http://www.hpl.hp.com/techreports/tandem/TR-81.3.pdf

Issues with Concurrency: Example

8

A = 500

B = 500

C = 500

Account
Balances

Bank database: 3 Accounts

Property: A + B + C = 1500

Money does not enter the system

Money does not leave the system

Issues with Concurrency: Example

• Transaction T1: Transfer 100 from A to B

9

Read (A, t)

t = t - 100

Write (A, t)

Read (B, t)

t = t + 100

Write (B, t)
A = 400, B = 600, C = 500

A = 500, B = 500, C = 500

Issues with Concurrency: Example

• Transaction T2: Transfer 100 from A to C

10

Read (A, s)

s = s - 100

Write (A, s)

Read (C, s)

s = s + 100

Write (C, s)

Read (A, t)
t = t - 100
Write (A, t)

Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s)

Read (C, s)
s = s + 100
Write (C, s)

Transaction T1 Transaction T2 A B C

300 600600

500 500500

400 500500

300 500500

300 500600

300 + 600 + 600 = 1500

Read (A, t)
t = t - 100

Write (A, t)
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s)

Read (C, s)
s = s + 100
Write (C, s)

Transaction T1 Transaction T2 A B C

400 600600

500 500500

400 500500

400 500500

400 500600

400 + 600 + 600 = 1600

Terminology

• Schedule:
– The exact sequence of (relevant) actions of one or more

transactions

13

Problems

• Which schedules are “correct”?
– Mathematical characterization

• How to build a system that allows only “correct”
schedules?
– Efficient procedure to enforce correctness

14

Correct Schedules: Serializability

• Initial database state is consistent

• Transaction:
– consistent state ® consistent state

• Serial execution of transactions:
– Initial state ® consistent state

• Serializable schedule:
– A schedule equivalent to a serial schedule
– Always “correct”

15

Read (A, t)
t = t - 100
Write (A, t)
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s)
Read (C, s)
s = s + 100
Write (C, s)

A B C

300 600600

500 500500

400 500600

300 + 600 + 600 = 1500

Serial Schedule

T1

T2

Read (A, t)
t = t - 100
Write (A, t)
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s)
Read (C, s)
s = s + 100
Write (C, s)

A B C

300 600600

500 500500

400 600500

300 + 600 + 600 = 1500

Serial Schedule

T2

T1

Serial Schedule

18

SnS0 S1 S2

T1 T2 Tn

Consistent States

Read (A, t)
t = t - 100
Write (A, t)

Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s)

Read (C, s)
s = s + 100
Write (C, s)

Transaction T2Transaction T1

Is this Serializable?

Read (A, t)
t = t - 100
Write (A, t)
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s)
Read (C, s)
s = s + 100
Write (C, s)

Equivalent Serial Schedule

Transaction T2Transaction T1

Read (A, t)
t = t - 100

Write (A, t)
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s)

Read (C, s)
s = s + 100
Write (C, s)

Is this Serializable?

Transaction T2Transaction T1

No. In fact, it leads
to inconsistent state

Read (A, t)
t = t - 100

Write (A, t)
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s)

Read (C, s)
s = s + 100
Write (C, s)

Is this Serializable?

Transaction T2Transaction T1

0

0

Read (A, t)
t = t - 100

Write (A, t)
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 0
Write (A, s)

Read (C, s)
s = s + 0
Write (C, s)

Is this Serializable?

Transaction T2Transaction T1

Yes, T2 is no-op

Read (A, t)
t = t - 100

Write (A, t)
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 0
Write (A, s)

Read (C, s)
s = s + 0
Write (C, s)

Serializable Schedule

Transaction T2Transaction T1

Serializability depends
on code details

Read (A, t)
t = t - 100
Write (A, t)

Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s)

Read (C, s)
s = s + 100
Write (C, s)

Transaction T2Transaction T1

Serializable Schedule

Still Serializable!

Serializability

• General Serializability:
– Hard to determine

• Goal: weaker serializability
– Determined from database operations alone

• Database Operations:
– Reads, Writes, Inserts, …

26

Simpler Notation

27

r (X)
T Transaction T reads X

w (X)T Transaction T writes X

What is X in r (X)?

• X could be any component of a database:
– Attribute of a tuple
– Tuple
– Block in which a tuple resides
– A relation
– …

28

New Notation: Example Schedule

29

r1(A) w1(A) r2(A) w2(A) r1(B) w1(B) r2(B) w2(B)

time

Conflict Serializability

• Weaker notion of serializability

• Depends only on reads and writes

30

Conflict Serializability

31

Serializable Schedules

Conflict
Serializable
Schedules

Conflict Serializable Schedule

32

S S1 S2 Sn

Serial ScheduleConflict Serializable
Schedule

Transformations: swap non-conflicting actions

Transformation: Example

33

r1(A) w1(A) r2(A) w2(A) r1(B) w1(B) r2(B) w2(B)

r1(A) w1(A) r2(A) r1(B) w2(A) w1(B) r2(B) w2(B)

Non-Conflicting Actions

34

Two actions are non-conflicting if whenever they

occur consecutively in a schedule, swapping them

does not affect the final state produced by the

schedule. Otherwise, they are conflicting.

Conflicting Actions: General Rules

• Two actions of the same transaction conflict:
– r1(A) w1(B)
– r1(A) r1(B)

• Two actions over the same database element
conflict, if one of them is a write
– r1(A) w2(A)
– w1(A) w2(A)

35

Testing Conflict Serializability

• Construct precedence graph G for given
schedule S

• S is conflict-serializable iff G is acyclic

36

View Serializability

• A schedule S is view serializable if there exists a
serial schedule S’, such that the source of all
reads in S and S’ are the same.

37

View Serializability Example

38

r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B)

View Serializable Schedule

View Serializability Example

39

r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B)

View Serializable Schedule

View Serializability Example

40

r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B)

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B)

View Serializable Schedule

Serial Schedule

View Serializability Example

41

r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B)

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B)

View Serializable Schedule

Serial Schedule

View Serializability Example

42

r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B)

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B)

View Serializable Schedule

Serial Schedule

View Serializability Example

43

r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B)

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B)

View Serializable Schedule

Serial Schedule

View Serializability

44

Serializable Schedules

Conflict
Serializable
Schedules

View Serializable
Schedules

Problems

• Which schedules are “correct”?
– Serializability theory

• How to build a system that allows only “correct”
schedules?
– Efficient procedure to enforce correctness

serializable schedules

45

Enforcing Serializability

46

Scheduler

DB

T1 T2 Tn

reads/writes
Strategy:
Prevent precedence
graph cycles?

Next class

• Enforcing serializability
– Locking-based techniques
– Timestamp-based techniques

47

The END

2017-11-29 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 48

