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Transaction

• Programming abstraction

• Implement real-world transactions
– Banking transaction
– Airline reservation
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Transaction: Programmer’s Role

• Consistency
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Consistent	StateConsistent	State
Transaction



Transaction: System’s Role

• Atomicity 
– All changes of the transaction take effect or none at all

• Durability
– All future transactions see the changes made by this 

transaction if it completes

• Isolation
– Same effect as if the transaction executed in isolation
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Transaction: States
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Begin Run

Abort

Commit

No	effect	in	the	system

Preserve	ACID	properties



Transactions

• Historical note: 
– Turing Award for Transaction concept
– Jim Gray (1998)

• Interesting reading:
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Transaction	Concept:	Virtues	and	Limitations
by	Jim	Gray

http://www.hpl.hp.com/techreports/tandem/TR-81.3.pdf



Issues with Concurrency: Example
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A  = 500

B  = 500

C  = 500

Account
Balances

Bank database: 3 Accounts

Property:  A + B + C = 1500

Money does not enter the system

Money does not leave the system



Issues with Concurrency: Example

• Transaction T1: Transfer 100 from A to B
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Read (A, t)

t = t - 100

Write (A, t) 

Read (B, t)

t = t + 100

Write (B, t)
A = 400, B = 600, C = 500

A = 500, B = 500, C = 500



Issues with Concurrency: Example

• Transaction T2: Transfer 100 from A to C
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Read (A, s)

s = s - 100

Write (A, s) 

Read (C, s)

s = s + 100

Write (C, s)



Read (A, t)
t = t - 100
Write (A, t) 

Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s) 

Read (C, s)
s = s + 100
Write (C, s)

Transaction T1 Transaction T2 A B C

300 600600

500 500500

400 500500

300 500500

300 500600

300 + 600 + 600 = 1500



Read (A, t)
t = t - 100

Write (A, t) 
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s) 

Read (C, s)
s = s + 100
Write (C, s)

Transaction T1 Transaction T2 A B C

400 600600

500 500500

400 500500

400 500500

400 500600

400 + 600 + 600 = 1600



Terminology

• Schedule: 
– The exact sequence of (relevant) actions of one or more 

transactions 
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Problems

• Which schedules are “correct”?
– Mathematical characterization

• How to build a system that allows only “correct” 
schedules?
– Efficient procedure to enforce correctness
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Correct Schedules: Serializability

• Initial database state is consistent

• Transaction: 
– consistent state ® consistent state

• Serial execution of transactions:
– Initial state ® consistent state

• Serializable schedule:
– A schedule equivalent to a serial schedule
– Always “correct”
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Read (A, t)
t = t - 100
Write (A, t) 
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s) 
Read (C, s)
s = s + 100
Write (C, s)

A B C

300 600600

500 500500

400 500600

300 + 600 + 600 = 1500

Serial Schedule

T1

T2



Read (A, t)
t = t - 100
Write (A, t) 
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s) 
Read (C, s)
s = s + 100
Write (C, s)

A B C

300 600600

500 500500

400 600500

300 + 600 + 600 = 1500

Serial Schedule

T2

T1



Serial Schedule
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SnS0 S1 S2

T1 T2 Tn

Consistent States



Read (A, t)
t = t - 100
Write (A, t) 

Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s) 

Read (C, s)
s = s + 100
Write (C, s)

Transaction T2Transaction T1

Is this Serializable?



Read (A, t)
t = t - 100
Write (A, t) 
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s) 
Read (C, s)
s = s + 100
Write (C, s)

Equivalent Serial Schedule

Transaction T2Transaction T1



Read (A, t)
t = t - 100

Write (A, t) 
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s) 

Read (C, s)
s = s + 100
Write (C, s)

Is this Serializable?

Transaction T2Transaction T1

No.  In fact, it leads
to inconsistent state



Read (A, t)
t = t - 100

Write (A, t) 
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s) 

Read (C, s)
s = s + 100
Write (C, s)

Is this Serializable?

Transaction T2Transaction T1

0

0



Read (A, t)
t = t - 100

Write (A, t) 
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 0
Write (A, s) 

Read (C, s)
s = s + 0
Write (C, s)

Is this Serializable?

Transaction T2Transaction T1

Yes, T2 is no-op



Read (A, t)
t = t - 100

Write (A, t) 
Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 0
Write (A, s) 

Read (C, s)
s = s + 0
Write (C, s)

Serializable Schedule

Transaction T2Transaction T1

Serializability depends 
on code details



Read (A, t)
t = t - 100
Write (A, t) 

Read (B, t)
t = t + 100
Write (B, t)

Read (A, s)
s = s - 100
Write (A, s) 

Read (C, s)
s = s + 100
Write (C, s)

Transaction T2Transaction T1

Serializable Schedule

Still Serializable!



Serializability

• General Serializability:
– Hard to determine

• Goal: weaker serializability
– Determined from database operations alone

• Database Operations:
– Reads, Writes, Inserts, …

26



Simpler Notation
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r  (X)
T Transaction T reads X

w  (X)T Transaction T writes X



What is X in r (X)?

• X could be any component of a database:
– Attribute of a tuple
– Tuple
– Block in which a tuple resides
– A relation
– …

28



New Notation: Example Schedule
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r1(A) w1(A) r2(A) w2(A) r1(B) w1(B) r2(B) w2(B)

time



Conflict Serializability

• Weaker notion of serializability

• Depends only on reads and writes
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Conflict Serializability

31

Serializable Schedules

Conflict
Serializable
Schedules



Conflict Serializable Schedule
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S S1 S2 Sn

Serial ScheduleConflict Serializable
Schedule

Transformations: swap non-conflicting actions



Transformation: Example
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r1(A) w1(A) r2(A) w2(A) r1(B) w1(B) r2(B) w2(B)

r1(A) w1(A) r2(A) r1(B) w2(A) w1(B) r2(B) w2(B)



Non-Conflicting Actions

34

Two actions are non-conflicting if whenever they

occur consecutively in a schedule, swapping them

does not affect the final state produced by the

schedule.  Otherwise, they are conflicting.



Conflicting Actions: General Rules

• Two actions of the same transaction conflict:
– r1(A) w1(B)
– r1(A) r1(B)

• Two actions over the same database element 
conflict, if one of them is a write
– r1(A) w2(A)
– w1(A) w2(A) 
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Testing Conflict Serializability

• Construct precedence graph G for given 
schedule S

• S is conflict-serializable iff G is acyclic
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View Serializability

• A schedule S is view serializable if there exists a 
serial schedule S’, such that the source of all 
reads in S and S’ are the same.
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View Serializability Example
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r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B)

View Serializable Schedule



View Serializability Example
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r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B)

View Serializable Schedule



View Serializability Example
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r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B)

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B) 

View Serializable Schedule

Serial Schedule



View Serializability Example
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r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B)

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B) 

View Serializable Schedule

Serial Schedule



View Serializability Example
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r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B)

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B) 

View Serializable Schedule

Serial Schedule



View Serializability Example

43

r2(B) w2(A) r1(A) r3(A) w1(B) w2(B) w3(B)

r2(B) w2(A) w2(B) r1(A) w1(B) r3(A) w3(B) 

View Serializable Schedule

Serial Schedule



View Serializability
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Serializable Schedules

Conflict
Serializable
Schedules

View Serializable
Schedules



Problems

• Which schedules are “correct”?
– Serializability theory

• How to build a system that allows only “correct” 
schedules?
– Efficient procedure to enforce correctness

serializable schedules
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Enforcing Serializability
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Scheduler

DB

T1 T2 Tn

reads/writes
Strategy:
Prevent precedence
graph cycles?



Next class

• Enforcing serializability
– Locking-based techniques
– Timestamp-based techniques
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The END
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