
Monitoring Concurrency Errors:
Detection of Deadlocks,

Atomicity Violations,
and Data Races (3)

Concurrency and Parallelism — 2017-17
Master in Computer Science

(Mestrado Integrado em Eng. Informática)

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Joao Lourenço <joao.lourenco@fct.unl.pt>

Agenda

• Why are we here?
• Concurrency Anomalies
• Assigning Semantics to Concurrent Programs
• Concurrency Errors

– Detection of data races
– Detection of high-level data races and stale value errors
– Detection of deadlocks

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 2

Deadlocks

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 3

Deadlock

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 4

Permanent blocking of a set of processes that either compete for
system resources or communicate with each other.

System Model

• Finite number of resources
• Resources are organized into classes

– Each class only contain identical resource instances

• Processes compete for accessing resources
• If a process request an instance of a resource

class, any instance of that class must satisfy the
process

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 5

Protocol to Use a Resource

• Request — The process either gets an instance of
the resource immediately; or waits until one is
available (and gets it)
• Use — The process can operate on its resource

instance
• Release — The process releases its resource

instance

• Examples: malloc() & free() — open() & close()

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 6

Deadlock

A set of two or more processes are deadlocked if:

1. They are blocked (i.e., in the waiting state)

2. Each is holding a resource

3. Each is waiting to acquire a resource held by
another process in the set

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 7

P1 P2

R1 R2

Deadlock

• Deadlock depends on the dynamics of the
execution

• Is difficult to identify and test for deadlocks,
which may occur only under certain
circumstances

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 8

P1 P2

R1 R2

Conditions Necessary for
Deadlock
• mutual exclusion: only one process can use a

resource at a time
• hold and wait: a process holding at least one

resource is waiting to acquire additional
resources which are currently held by other
processes
• no preemption: a resource can only be released

voluntarily by the process holding it
• circular wait: a cycle of process requests exists

(i.e., P0 ⤏ P1 ⤏ P2 ⤏ … ⤏ Pn-1 ⤏ P0).

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 9

Example

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 10

Thread 1

void *do_work_one(void *param) {
pthread_mutex_lock(&m1);
pthread_mutex_lock(&m2);
/**
* Do some work
*/
pthread_mutex_unlock(&m2);
pthread_mutex_unlock(&m1);
pthread_exit(0);

}

Thread 2

void *do_work_two(void *param) {
pthread_mutex_lock(&m2);
pthread_mutex_lock(&m1);
/**
* Do some work
*/
pthread_mutex_unlock(&m1);
pthread_mutex_unlock(&m2);
pthread_exit(0);

}

Example

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 11

Thread 1

void *do_work_one(void *param) {
pthread_mutex_lock(&m1);
pthread_mutex_lock(&m2);
/**
* Do some work
*/
pthread_mutex_unlock(&m2);
pthread_mutex_unlock(&m1);
pthread_exit(0);

}

Thread 2

void *do_work_two(void *param) {
pthread_mutex_lock(&m2);
pthread_mutex_lock(&m1);
/**
* Do some work
*/
pthread_mutex_unlock(&m1);
pthread_mutex_unlock(&m2);
pthread_exit(0);

}

Will deadlock
happen?

Example

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 12

Thread 1

void *do_work_one(void *param) {
pthread_mutex_lock(&m1);
pthread_mutex_lock(&m2);
/**
* Do some work
*/
pthread_mutex_unlock(&m2);
pthread_mutex_unlock(&m1);
pthread_exit(0);

}

Thread 2

void *do_work_two(void *param) {
pthread_mutex_lock(&m2);
pthread_mutex_lock(&m1);
/**
* Do some work
*/
pthread_mutex_unlock(&m1);
pthread_mutex_unlock(&m2);
pthread_exit(0);

}

Only if executed in order:
— 1, 3, 2, 4; or
— 1, 3, 4, 2; or
— 3, 1, 2, 4; or
— 3, 1, 4, 2 .

1

2

3

4

These orderings are ok:
— 1, 2, 3, 4; and
— 3, 4, 1, 2 .

Resource Allocation Graph

• A set of vertices V and a set of edges E

• V is partitioned into two types:
– P = {P1, P2, …, Pn}, the set of all the processes in the system
– R = {R1, R2, …, Rm}, the set of all resource types in the system

• E is partitioned into two types:
– Request edge – directed edge Pi ® Rj
– Assignment edge – directed edge Rj ® Pi

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 13

Resource Allocation Graph

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 14

Pi
Rj

Pi
Rj

Example of
Resource Allocation Graphs

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 15

Ddeadlock

Example of
Resource Allocation Graphs

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 16

Ddeadlock Safe

Example of
Resource Allocation Graphs

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 17

Ddeadlock

Example of
Resource Allocation Graphs

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 18

Safe

Basic Facts

• If graph contains no cycles Þ no deadlock

• If graph contains a cycle Þ
– if only one instance per resource type, then deadlock
– if several instances per resource type, possibility of

deadlock

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 19

How to Deal with Deadlocks?

• Deadlock prevention

• Deadlock avoidance

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 20

The system never enters
a deadlock state

How to Deal with Deadlocks?

• Deadlock prevention

• Deadlock avoidance

• Deadlock detection and recovery

• Ignore the issue! ;)

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 21

The system never enters
a deadlock state

The system
may enter a
deadlock state

Deadlocks
Deadlock prevention

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 22

Deadlock Prevention

• Provides a set of methods to ensure that at least

one of the necessary conditions cannot hold

• These methods prevent deadlocks by

constraining how requests for resources can be

made

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 23

Conditions Necessary for
Deadlock
• mutual exclusion: only one process can use a

resource at a time
• hold and wait: a process holding at least one

resource is waiting to acquire additional
resources which are currently held by other
processes
• no preemption: a resource can only be released

voluntarily by the process holding it
• circular wait: a cycle of process requests exists

(i.e., P0 ⤏ P1 ⤏ P2 ⤏ … ⤏ Pn-1 ⤏ P0).

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 24

Deadlock Prevention

• Restrict the way requests can be made…
• Mutual Exclusion

– not required for sharable resources (e.g., read-only files);
must hold for non-sharable resources

• Hold and Wait
– must guarantee that whenever a process requests a

resource, it does not hold any other resources
– require process to request and allocate all its resources

before it begins execution
– low resource utilization; starvation possible

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 25

Deadlock Prevention

• Restrict the way requests can be made…
• No Preemption

– if a process that is holding some resources requests another
resource that cannot be immediately allocated to it, then
all resources currently being held are released

– preempted resources are added to the list of resources for
which the process is waiting

– process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting

• Circular Wait
– impose a total ordering of all resource types, and require

that each process requests resources in an increasing
order of enumeration

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 26

Example of Deadlock
with Lock Ordering

void transaction(Account from, Account to, double amount) {
mutex lock1, lock2;
lock1 = get_lock(from);
lock2 = get_lock(to);
acquire(lock1);

acquire(lock2);
withdraw(from, amount);
deposit(to, amount);

release(lock2);
release(lock1);

}
2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 27

Thread 1

transaction (A, B, 25);

Thread 2

transaction (B, A, 50);

Deadlocks
Deadlock avoidance

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 28

Deadlock Avoidance

• Requires that the system has some additional
a priori information available
– Requires that each process declare the maximum number

of resources of each type that it may need

– The deadlock-avoidance algorithm dynamically examines
the resource-allocation state to ensure that there can
never be a circular-wait condition

– Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 29

Safe State

• When a process requests an available resource, system
must decide if immediate allocation leaves the system in
a safe state

• System is in safe state if there exists a sequence <P1, P2,
…, Pn> of ALL the processes in the system such that for
each Pi, the resources that Pi can still request can be
satisfied by currently available resources + resources held
by all the Pj, with j < i

• That is:
– If Pi resource needs are not immediately available, then Pi can wait until

all Pj have finished
– When Pj is finished, Pi can obtain needed resources, execute, return

allocated resources, and terminate
– When Pi terminates, Pi +1 can obtain its needed resources, and so on

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 30

Deadlock Avoidance

• If a system is in safe state Þ no deadlocks
• If a system is in unsafe state Þ possibility of

deadlock
• Avoidance Þ ensure that

a system will never enter
an unsafe state

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 31

Avoidance Algorithms

• Single instance of a resource type
Use a resource-allocation graph

• Multiple instances of a resource type
Use the banker’s algorithm

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 32

Resource-Allocation Graph
Scheme
• Claim edge Pi ⤏ Rj indicated that process Pj may

request resource Rj; represented by a dashed
line
• Claim edge converts to request edge when a

process requests a resource
• Request edge converted to an assignment edge

when the resource is allocated to the process
• When a resource is released by a process,

assignment edge reconverts to a claim edge
• Resources must be claimed a priori in the system
2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 33

Resource-Allocation Graph

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 34

UnsafeSafe

Banker’s Algorithm

• Resources may have multiple instances

• Each process must a priori claim maximum use

• When a process requests a resource it may have
to wait

• When a process gets all its resources it must
return them in a finite amount of time

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 35

Banker’s Algorithm
https://www.youtube.com/watch?v=w0LwGqffUkg

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 36

A B C

P0 0 1 0

P1 2 0 0

P2 3 0 2

P3 2 1 1

P4 0 0 2

A B C

P0 7 5 3

P1 3 2 2

P2 9 0 2

P3 2 2 2

P4 4 3 3

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

Allocation Max Need	(=	max	– alloc)

A B C

10 5 7

Initial

A B C

3 3 2

Available

7 2 5

P0 — finish[0]	=	F
P1 — finish[1]	=	T
P2 — finish[2]	=	F
P3 — finish[3]	=	T
P4 — finish[4]	=	T

P0 — finish[0]	=	T
P2 — finish[2]	=	T5 3 2

7 4 3

7 4 5

7 5 5

10 5 7

<P1,	P3,	P4,	P0,	P2>

Available
Available

Deadlocks
Deadlock detection

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 37

Deadlock Detection

• If neither avoidance nor prevention is
implemented, deadlocks can (and will) occur.
• Coping with this requires:

– Detection: finding out if deadlock has occurred
• Keep track of resource allocation (who has what)
• Keep track of pending requests (who is waiting for what)

– Recovery: resolve the deadlock

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 38

Single Instance of
Each Resource Type
• Maintain a wait-for graph

– Nodes are processes
– Pi ® Pj if Pi is waiting for a resource held by Pj

• Periodically invoke an algorithm that searches
for a cycle in the graph
– If there is a cycle, there exists a deadlock

• An algorithm to detect a cycle in a graph
requires an order of n2 operations, where n is the
number of vertices in the graph

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 39

Resource-Allocation Graph
and Wait-for Graph

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 40

Resource-Allocation Graph Corresponding wait-for graph

Several Instances
of a Resource Type

• Yes! It is possible!
• Algorithm inspired in the Banker’s algorithm

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 41

Strategies Once
Deadlock Detected

• Abort all deadlocked processes
• Resource preemption
• Roll back each deadlocked process to some

previously defined checkpoint, and restart all
process
– Original deadlock may occur

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 42

Recovery from Deadlock:
Process Termination

• Abort all deadlocked processes
• Abort one process at a time until the deadlock

cycle is eliminated
• In which order should we choose to abort?

– Priority of the process?
– How long process has computed, and how much longer to

completion?
– Resources the process has used?
– Resources process needs to complete?
– How many processes will need to be terminated?
– Is process interactive or batch?

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 43

Recovery from Deadlock:
Resource Preemption

• Selecting a victim – minimize cost

• Rollback – return to some safe state, restart
process for that state

• Starvation – same process may always be
picked as victim, include number of rollback in
cost factor

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 44

Roll Back

• Roll back all the processes
– Possibly to a situation where no locks are being held

• Pray for the deadlock to not happen again

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 45

Acknowledgments

• Some parts of this presentation was based in
publicly available slides and PDFs
– www.cs.cornell.edu/courses/cs4410/2011su/slides/lecture10.pdf
– www.microsoft.com/en-us/research/people/madanm/
– williamstallings.com/OperatingSystems/
– codex.cs.yale.edu/avi/os-book/OS9/slide-dir/

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 46

The END

2017-11-24 Concurrency	and	Parallelism	— J.	Lourenço	@	FCT-UNL	2017-18 47

