
Synchronization

Concurrency and Parallelism — 2017-18
Master in Computer Science

(Mestrado Integrado em Eng. Informática)

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Joao Lourenço <joao.lourenco@fct.unl.pt>

Summary

•Synchronization
–Competition and Cooperation
–Properties
–Invariants

• Reading list:
– Chapter 1 of the book

Raynal M.;
Concurrent Programming: Algorithms,
Principles, and Foundations;
Springer-Verlag Berlin Heidelberg (2013);
ISBN: 978-3-642-32026-2

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 2

Algorithms, Programs and
Processes
• A sequential algorithm is a formal description of

the behavior of a sequential state machine
– The text of the algorithm states the transitions that have to

be sequentially executed

• When written in a specific programming
language, an algorithm is called a program
• A process is an instance of an algorithm

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 3

Multiprocess Programs

• A concurrent algorithm (or concurrent program)
is the description of a set of sequential state
machines that cooperate through a
communication medium, e.g., a shared memory

• Concurrent algorithm is a multiprocess program
– Each process corresponding to the sequential execution of

a given state machine

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 4

Process Synchronization

• Process synchronization occurs when the
progress of one or several processes depends on
the behavior of other processes

• Two types of process interaction require
synchronization: competition and cooperation

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 5

Synchronization: Competition

• This kind of interaction occurs when processes
compete to execute some statements and only
one process at a time (or a bounded number of
them) is allowed to execute them
– Example: when processes compete for a shared resource

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 6

Competition: Example

• Consider a disk with random (atomic) access I/O
operations
– seek(p) moves the disk head to location ‘p’
– read() reads the contents of location ‘p’
– write(v) writes ‘v’ in the location ‘p’ (overwriting previous

contents)

• Process operations to be implemented/used:
– disk_read(x) returns the contents of disk location ‘x’
– disk_write(x,v) writes ‘v’ into disk location ‘x’

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 7

Operations on disk ‘D’

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 8

An interleaving of disk
operations

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 9

An interleaving of disk
operations

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 10

An interleaving of disk
operations

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 11

An interleaving of disk
operations

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 12

An interleaving of disk
operations

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 13

Linearization Non-determinism

Synchronization: Cooperation

• Barrier (or rendezvous)
– A set of control points, one per process involved in the

barrier, such that each process is allowed to pass its control
point only when all other processes have attained their
own control points

– From an operational point of view, each process has to
stop until all other processes have arrived at their control
point

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 14

Synchronization: Cooperation

• A producer–consumer problem
– The producer loops forever on producing data items
– The consumer loops forever on consuming data items

• The problem consists in ensuring that
a) only data items that were produced are consumed, and
b) each data item that was produced is consumed exactly

once

• How to solve this problem?

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 15

Solutions to the prod–cons
problem
• Use a synchronization barrier

– Both the producer (when it has produced a new data
item) and the consumer (when it wants to consume a new
data item) invoke the barrier operation

– When, they have both attained their control point, the
producer gives the data item it has just produced to the
consumer

• This coordination pattern works but…
– …it is not very efficient (overly synchronized): for each

data item, the first process that arrives at its control point
has to wait for the other process

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 16

Solutions to the prod–cons
problem
• Use a shared buffer of size k ≥ 1

– I.e., a queue or a circular array
– The producer adds new data items to the end of the

queue
– The consumer withdraws the data item at the head of the

queue

• Properties of a p-c with a buffer of size k:
– A producer has to wait only when the buffer is full

• It contains k data items produced and not yet consumed
– A consumer has to wait only when the buffer is empty

• Occurs each time all data items that have been produced
have been consumed

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 17

Synchronization: Invariants

• The aim of synchronization is to preserve
invariants

• #p = number of data items produced so far

• #c = number of data items consumed so far

• Invariant for a buffer of size k is
(#c ≥ 0)∧(#p ≥ #c)∧(#p ≤ #c+k)

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 18

Synchronization: Invariants

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 19

The Mutual Exclusion Problem

• Critical section
– Part of code A (i.e., an algorithm) or several parts of code

A, B, C, … (i.e., different algorithms) that, for some
consistency reasons, must be executed by a single process
at a time
• E.g., if a process is executing code B, no other process can

be simultaneously executing the codes A or B or C or etc.

• The operations disk_read() and disk_write() from
before were critical sections

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 20

Mutual exclusion

• How to provide the application processes with
an appropriate abstraction level?

• Designing
– an entry algorithm (also called entry protocol); and
– an exit algorithm (also called exit protocol)
– that, when used to delimit a critical section cs_code(in),

ensure that the critical section code is executed by at
most one process at a time

• Operations:
– acquire_mutex() and release_mutex()

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 21

Mutual exclusion:
acquire_mutex
• One of the invocations terminates

– The corresponding process p is called the winner

• The other invocations stay in hold
– The competing processes qi are the losers

• Their invocations remain pending

• A well formed process executes the entry and
exit protocols appropriately

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 22

Mutual exclusion: definition

• The mutual exclusion problem consists in
implementing the operations acquire_mutex()
and release_mutex() in such a way that the
following properties are always satisfied:

• Mutual exclusion, i.e., at most one process at a
time executes the critical section code

• Starvation-freedom, i.e., for any process ‘p’,
each invocation of acquire_mutex() by ‘p’
eventually terminates

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 23

Mutual exclusion: properties

• Safety
– Safety properties state that nothing bad happens
– They can usually be expressed as invariants

• The invariant here is the mutual exclusion property, which
states that at most one process at a time can execute the
critical section code

• Note that a solution in which no process is ever allowed to
execute the critical section code would trivially satisfy the
safety property

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 24

Mutual exclusion: properties

• Liveness
– Liveness properties state that something good eventually

happens

• Examples of liveness properties:
– Starvation freedom

• Means that a process that wants to enter the critical section
can be bypassed an arbitrary but finite number of times by
each other process

– Deadlock-freedom
• Whatever the time τ, if before τ one or several processes have

invoked the operation acquire_mutex() and none of them has
terminated its invocation at time τ, then there is a time τ′> τ at
which a process that has invoked acquire_mutex() terminates its
invocation

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 25

Mutual exclusion: properties

• Starvation-freedom implies deadlock-freedom
– If a process requests access to the critical section it will

eventually get permission
– To get permission the system cannot be deadlocked

• Deadlock-freedom does not imply starvation-
freedom
– The system is operating
– There is a process willing to get access to the critical

section that is always overcome by another later process

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 26

The Lock Object

• A lock is a shared object with two methods:
– LOCK.acquire_lock() and LOCK.release_lock()

• A lock can be in one of two sates:
– free or locked

• And is initialized
– to the value free

• Its behavior is defined by a sequential specification
– from an external observer point of view, all the acquire_lock()

and release_lock() invocations appear as if they have been
invoked one after the other

– Sequence: (LOCK. acquire_lock(); LOCK.release_lock())*
Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 27

The END

Oct	13,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 28

