
Parallel Programming Models
and Dependencies

Concurrency and Parallelism — 2016-17
Master in Computer Science

(Mestrado Integrado em Eng. Informática)

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Joao Lourenço <joao.lourenco@fct.unl.pt>

Source:	Parallel	Computing,	CIS	410/510,	Department	of	Computer	and	Information	Science

Outline

• Parallel programming models

• Dependencies

Sep	30,	2016 2Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

Parallel Models

• Sequential models
– von Neumann (RAM) model

• Parallel model
– A parallel computer is simple a collection

of processors interconnected in some manner to
coordinate activities and exchange data

– Models that can be used as general frameworks for
describing and analyzing parallel algorithms
• Simplicity: description, analysis, architecture independency
• Implementability: able to be realized, reflect performance

• Three common parallel models
– Directed acyclic graphs, shared-memory, network

Memory
(RAM)

processor

3Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

Directed Acyclic Graphs (DAG)

• Captures data flow parallelism
• Nodes represent operations to be performed

– Inputs are nodes with no incoming arcs
– Output are nodes with no outgoing arcs
– Think of nodes as tasks

• Arcs are paths for flow of data results
• DAG represents the operations of the algorithm

and implies precedent constraints on their order

a[0] a[1] a[99]…

4Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

for (i=1; i<100; i++)
a[i] = a[i-1] + 100;

Input	
node

Output
node

Standard	
node

Shared Memory Model

• Parallel extension of RAM model (PRAM)
– Memory size is infinite
– Number of processors in unbounded
– Processors communicate via the memory
– Every processor accesses any memory

location in the same number of cycles
– Synchronous

• All processors execute same algorithm synchronously
– READ phase
– COMPUTE phase
– WRITE phase

• Some subset of the processors can stay idle
– Asynchronous

5

Shared
Memory

P3

PN

P1

P2

.

.

.

Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

Network Model

• G = (N,E)
– N are processing nodes
– E are bidirectional communication links

• Each processor has its own memory

• No shared memory is available

• Network operation may be synchronous or asynchronous

• Requires communication primitives
– Send (X, i)
– Receive (Y, j)

• Captures message passing model for algorithm design

P31

PN1

P11

P21

.

.

.

P32

PN2

P12

P22

.

.

.

P3N

PNN

P1N

P2N

.

.

.

6Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

Parallelism

• Ability to execute different parts of a computation
concurrently on different computing elements
• Why do you want parallelism?

– Shorter running time or handling more work

• What is being parallelized?
– Task: instruction, statement, procedure, …
– Data: data flow, size, replication
– Parallelism granularity

• Coarse-grain versus fine-grained

• Evaluation
– Was the parallelization successful?

7Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

Why is parallel programming
important?
• Parallel programming has matured

– Standard programming models
– Common machine architectures
– Programmer can focus on computation and use suitable

programming model for implementation

• Increase portability between models and
architectures
• Reasonable hope of portability across platforms
• Problem

– Performance optimization is still platform-dependent
– Performance portability is a problem
– Parallel programming methods are still evolving

8Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

Parallel Algorithm

• Recipe to solve a problem “in parallel” on
multiple processing elements

• Standard steps for constructing a parallel
algorithm
– Identify work that can be performed concurrently
– Partition the concurrent work on separate processors
– Properly manage input, output, and intermediate data
– Coordinate data accesses and work to satisfy

dependencies

• Which steps are hard to do?

9Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

Parallelism Views

• Where can we find parallelism?
• Program (task) view

– Statement level
• Between program statements
• Which statements can be executed at the same time?

– Block level / Loop level / Routine level / Process level
• Larger-grained program statements

• Data view
– How is data operated on?
– Where does data reside?

• Resource view
– When to access and use a shared resource?

10Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

Parallelism, Correctness, and
Dependencies
• Parallel execution shall always be constrained by

the sequence of operations needed to be
performed for a correct result
• Parallel execution must address control, data, and

system dependencies
• A dependency arises when one operation depends

on an earlier operation to complete and produce a
result before this later operation can be performed
• We extend this notion of dependency to resources

since some operations may depend on certain
resources
– For example, due to where data is located

11Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

Executing Two Statements in
Parallel
• Want to execute two statements in parallel
• On one processor:

Processor 1:
Statement 1;
Statement 2;

• On two processors:
Processor 1: Processor 2:

Statement 1; Statement 2;

• Fundamental (concurrent) execution assumption
– Processors execute independent of each other
– No assumptions made about speed of processor execution

12Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

Sequential Consistency in
Parallel Execution
• Case 1:

Processor 1: Processor 2:
statement 1;

statement 2;

• Case 2:
Processor 1: Processor 2:

statement 2;
statement 1;

• Sequential consistency
– Statements execution does not interfere with each other
– Computation results are the same (independent of order)

time

time

13Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

Independent versus Dependent

• In other words the execution of
statement1;
statement2;

must be equivalent to
statement2;
statement1;

• Their order of execution must not matter!
• If true, the statements are independent of each

other
• Two statements are dependent when the order of

their execution affects the computation outcome

14Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

Examples
• Example 1

S1: a=1;
S2: b=1;

• Example 2
S1: a=1;
S2: b=a;

• Example 3
S1: a=f(x);
S2: a=b;

• Example 4
S1: a=b;
S2: b=1;

r Statements are independent

r Dependent (true (flow) dependency)
¦ Second is dependent on first
¦ Can you remove dependency?

r Dependent (output dependency)
¦ Second is dependent on first
¦ Can you remove dependency? How?

r Dependent (anti-dependency)
¦ First is dependent on second
¦ Can you remove dependency? How?

15Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

True Dependency
and Anti-Dependency

• Given statements S1 and S2,
S1;
S2;

• S2 has a true (flow) dependency on S1
if and only if S2 reads a value written by S1
(RAW – Read After Write)

• S2 has a anti-dependency on S1
if and only if S2 writes a value read by S1
(WAR – Write After Read)

X	=

=	X

... d

=	X

X	=

... d-1

16Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

Output Dependency

• Given statements S1 and S2,
S1;
S2;

• S2 has an output dependency on S1
if and only if S2 writes a variable written by S1

(WAW – Write After Write)

• Anti- and output dependencies are “name”
dependencies
– Are they “true” dependencies?

• How can you get rid of output dependencies?

X	=

X	=	

... d0

17Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

Statement Dependency
Graphs
• Can use graphs to show dependency relationships
• Example

S1: a=1;
S2: b=a;
S3: a=b+1;
S4: c=a;

• S1 d S2 : S2 is flow-dependent on S1

• S1 d0 S3 : S3 is output-dependent on S1

• S2 d-1 S3 : S3 is anti-dependent on S2

S1

S2

S3

S4

flow

anti
output

18Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

When can two statements
execute in parallel?
• Statements S1 and S2 can execute in parallel if

and only if there are no dependencies between
them, i.e., no
– True dependencies; nor
– Anti-dependencies; nor
– Output dependencies.

• Some dependencies can be removed by
modifying the program
– Rearranging statements
– Eliminating statements

19Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

How do you compute
dependencies?
• Data dependency relations can be found by

comparing the IN and OUT sets of each node
• The IN and OUT sets of a statement S are defined

as:
– IN(S) : set of memory locations (variables) that may be

used in S
– OUT(S) : set of memory locations (variables) that may be

modified by S

• Note that these sets include all memory
locations that may be fetched or modified
• As such, the sets can be conservatively large

20Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

IN / OUT Sets and Computing
Dependencies
• Assuming that there is a path from S1 to S2 , the

following shows how to intersect the IN and OUT
sets to test for data dependency

21

() ()

dependenceoutput)()(

dependence-anti)()(

dependence flow

2
0

121

2
1

121

2121

SSSoutSout

SSSoutSin

SSSinSout

δ

δ

δ

∅≠∩

∅≠∩

∅≠∩
−

Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

Example

Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17 22

S1: B=A
S2: C=C+B
S3: B=D
S4: E=B

S1

S4

S2 S3

∂ ∂O

∂

∂∂-1

∂-1

Loop-Level Parallelism
• Significant parallelism can be identified within loops

for (i=0; i<100; i++)
S1: a[i] = i;

• Dependencies? What about i, the loop index?
• DOALL loop (a.k.a. foreach loop)

– All iterations are independent of each other
– All statements will be executed in parallel at the same time

• Is this really true?

parallel_for (i=0; i<100; i++)
{

S1: a[i] = i;
S2: b[i] = 2*a[i];

}

23Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

?

Loop-Level Parallelism

• Significant parallelism can be identified within
loops

for (i=0; i<100; i++)
S1: a[i] = i;

• Dependencies? What about i, the loop index?

parallel_for (i=0; i<100; i++)
{

S1: a[i] = i;
S2: b[i] = 2*i;

}

24Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

?

General Approach for Loop
Parallelism

Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17 25

Find	the	hotspots

Eliminate	loop-carried	
dependencies

Parallelize	the	loops

Optimize	the	loop	
schedule

Find the hotspots
• By code inspection • By using performance

analysis tools

Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17 26

Eliminate loop-carried
dependencies
• Statements dependencies include: true

dependencies, anti-dependencies and output
dependencies.

• Loop dependencies also include those, carried
from one execution of the loop to another.

Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17 27

Loop Dependencies

• A loop-carried dependency is a dependency
between two statements instances in two
different iterations of a loop

28Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

S1: a = 5;
S2: b = a;

True	dependency— the	memory	
location	‘a’	is	written	(in	S1)	before	it	is	
read	(in	S2)

S1		∂		S2

for (i=0; i<n; i++) {
S1: a[i] = a[i-1];

}

True	dependency— a	memory	location	
’a[j]’	is	written	before	it	is	read	in	the	
next	iteration	of	the	loop

S1[j]		∂		S1[j+1]

Loop Dependencies

• A loop-carried dependency is a dependency
between two statements instances in two
different iterations of a loop

29Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

S1: b = a;
S2: a = 5;

Anti-dependency— the	memory	
location	‘a’	is	read	(in	S1)	before	it	is	
written	(in	S2)

S1		∂-1 S2

for (i=0; i<n; i++) {
S1: a[i] = a[i+1];

}

Anti-dependency— a	memory	location	
’a[j]’	is	read	before	it	is	written	in	the	
next	iteration	of	the	loop

S1[j]		∂-1 S1[j+1]

Loop Dependencies

• A loop-carried dependency is a dependency
between two statements instances in two
different iterations of a loop

30Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

S1: c = 8;
S2: c = 15;

Output	dependency— the	same	
memory	location	‘c’	is	written	(in	S1)	
and	then	written	once	again	(in	S2)

S1		∂O S2

for (i=0; i<n; i++) {
S1: c[i] = i;
S2: c[i+1] = 5;

}

Output	dependency— the	same	
memory	location	’a[j]’	is	written	(in	S2)	
and	then	written	again	in	the	next	
iteration	of	the	loop	(in	S1)

S2[j]		∂O S1[j+1]

Loop Dependencies

• A loop-carried dependency is a dependency
between two statements instances in two
different iterations of a loop
• Otherwise, it is loop-independent
• Loop-carried dependencies can prevent loop

iteration parallelization
• The dependency is lexically forward if the source

comes before the target or lexically backward
otherwise
– Unroll the loop to see

31Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

i=1: a[1] = a[1] + a[0];
i=2: a[2] = a[2] + a[1];
i=3: a[3] = a[3] + a[2];
...

Loop dependencies: examples

• The following loop cannot be parallelized
(without rewriting)

Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17 32

a[0] = 1;
for (i=1; i<N; i++) {

a[i] = a[i] + a[i-1];
}

i=1: a[1] = a[1] + a[0];
i=2: a[2] = a[2] + a[1];
i=3: a[3] = a[3] + a[2];
...

Each	iteration	depends	on	
the	result	of	the	preceding	
iteration

Detecting dependencies

• Analyze how each variable is used within a loop
iteration:

• Is the variable read and never written?
=> no dependencies!

• For each written variable: can there be any
accesses in other iterations than the current?

=> there are dependencies!

Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17 33

Simple rule of thumb

• A loop that matches the following criteria has no
dependencies and can be parallelized:

1. All assignments to shared data are to arrays:

2. Each element is assigned by at most one
iteration; and

3. No iteration reads elements assigned by any
other iteration.

Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17 34

Example 1

• Is this loop parallelizable?

Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17 35

for (i=1; i<N; i+=2) {
a[i] = a[i] + a[i-1];

}

i=1: a[1] = a[1] + a[0];
i=3: a[3] = a[3] + a[2];
i=5: a[5] = a[5] + a[4];
...

No	dependencies!
YES!!			It	is	parallelizable!

Example 2

• Is this loop parallelizable?

Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17 36

for (i=0; i<N/2; i++) {
a[i] = a[i] + a[i+N/2];

}

i=0: a[0] = a[0] + a[0+N/2];
i=1: a[1] = a[1] + a[1+N/2];
...
i=N/2-1: a[N/2-1] = a[N/2-1] + a[N-1];

No	dependencies!
YES!!			It	is	parallelizable!

Example 3

• Is this loop parallelizable?

Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17 37

for (i=0; i<=N/2; i++) {
a[i] = a[i] + a[i+N/2];

}

i=0: a[1] = a[1] + a[0+N/2];
i=1: a[2] = a[2] + a[1+N/2];
...
i=N/2: a[N/2] = a[N/2] + a[N];

Loop	carried	lexically	
forward	dependency	
(true	dependency)
It	is	NOT	parallelizable!

Example 4

• Is this loop parallelizable?

Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17 38

for (i=0; i<N; i++) {
a[idx[i]] = a[idx[i]] + b[idx[i]];

}

i=0: a[?1] = a[?1] + b[?1];
i=1: a[?2] = a[?2] + b[?2];
i=3: a[?3] = a[?3] + b[?3];
...

Don’t	know	which	index	is	
accessed	in	each	iteration	
of	the	loop.
It	is	NOT	parallelizable!

Removing dependencies 1

• How to remove this dependency?

Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17 39

for (i=0; i<=N/2; i++) {
a[i] = a[i] + a[i+N/2];

}

for (i=0; i<N/2; i++) {
a[i] = a[i] + a[i+N/2];

}
a[N/2] = a[N/2] + a[N];

Take the
dependent
iteration out
of the loop

Removing dependencies 2

• How to remove this dependency?

Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17 40

for (i=0; i<N; i++) {
x = (b[i] + c[i]) / 2;
a[i] = a[i+1] + x;

}

• To remove the dependencies on ‘x’ privatize it

True dependency inside the loop (x)

Output dependency between iterations (x)

Anti-dependency between iterations (x)

Anti-dependency between iterations (a[i])

for (i=0; i<N; i++) {
x = (b[i] + c[i]) / 2;
a[i] = a[i+1] + x;

}

Removing dependencies 2

• How to remove this dependency?

Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17 41

for (i=0; i<N; i++) {
int x = (b[i] + c[i]) / 2;
a[i] = a[i+1] + x;

} Anti-dependency between iterations (a[i])

• To remove the dependency on ‘a[i]’
make copy of ‘a’

for (i=0; i<N; i++) {
x = (b[i] + c[i]) / 2;
a[i] = a[i+1] + x;

}

Removing dependencies 2

• How to remove this dependency?

Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17 42

for (i=0; i<N; i++) {
a2[i] = a[i+1];

}
for (i=0; i<N; i++) {

int x = (b[i] + c[i]) / 2;
a[i] = a2[i] + x;

}

Anti-dependency between iterations (a[i])

• Both ‘for’ are parallelizable!! Should we do it?

for (i=0; i<N; i++) {
x = (b[i] + c[i]) / 2;
a[i] = a[i+1] + x;

}

Removing dependencies 3

• How to remove this dependency?

Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17 43

for (i=1; i<N; i++) {
b[i] += a[i-1];
a[i] += c[i];

}

i–1 i i+1

i–1 i i+1

i–1 i i+1

b

c

a

Use software pipelining!

i–1 i i+1

i–1 i i+1

i–1 i i+1

Removing dependencies 3

• How to remove this dependency?

Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17 44

b[1] += a[0];
for (i=1; i<N-1; i++) {

a[i] += c[i];
b[i+1] += a[i];

}
a[N] += c[N];

for (i=1; i<N; i++) {
b[i] += a[i-1];
a[i] += c[i];

}

Removing dependencies 4

Sep	30,	2016 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17 45

The END

Sep	30,	2016 46Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2016-17

