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Outline

• Map pattern
– Optimizations

• sequences of Maps
• code Fusion
• cache Fusion

– Related Patterns
– Example: Scaled Vector Addition (SAXPY)

• Reduce
– Example: Dot Product
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Mapping

• “Do the same thing many times”
foreach i in foo:

do something

• Well-known higher order function in languages 
like ML, Haskell, Scala

map: 

applies a function to each element in a list
and returns a list of results

4

∀ab.(a→ b)List a → List b
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Example Maps

Add 1 to every item in an array

5

Double every item in an array

Key Point: An operation is a map if it can be applied to 
each element without knowledge of its neighbors.

0 4 5 3 1 0

0 1 2 3 4 5

1 5 6 4 2 1

3 7 0 1 4 0

6 14 0 2 8 0

0 1 2 3 4 5
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Key Idea

• Map is a “foreach loop” where each iteration is 
independent

6

Embarrassingly Parallel

Independence is a big win. We can run map completely in parallel.  
Significant speedups!  More precisely:             is O(1) plus implementation 
overhead that is O(log n)…so                                .

T (∞)
T (∞)∈O(logn)
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Simple example: Word count
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Mapper
(1-2)

Mapper
(3-4)

Mapper
(5-6)

Mapper
(7-8)

Reducer
(A-G)

Reducer
(H-N)

Reducer
(O-U)

Reducer
(V-Z)

(1,	the	apple)

(2,	is	an	apple)

(3,	not	an	orange)
(4,	because	the)
(5,	orange)

(6,	unlike	the	apple)

(7,	is	orange)
(8,	not	green)

(the,	1)

(apple,	1)

(is,	1)

(apple,	1)
(an,	1)

(not,	1)

(orange,	1)

(an,	1)
(because,	1)

(the,	1)
(orange,	1)

(unlike,	1)

(apple,	1)

(the,	1)

(is,	1)

(orange,	1)

(not,	1)

(green,	1)

(apple,	3)
(an,	2)

(because,	1)
(green,	1)

(is,	2)
(not,	2)

(orange,	3)
(the,	3)

(unlike,	1)

(apple,	{1,	1,	1})
(an,	{1,	1})

(because,	{1})
(green,	{1})
(is,	{1,	1})

(not,	{1,	1})

(orange,	{1,	1,	1})
(the,	{1,	1,	1})
(unlike,	{1})

Each	mapper	
receives	some	
of	the	KV-pairs	
as	input

The	mappers
process	the	
KV-pairs	
one	by	one

Each	KV-pair	output
by	the	mapper	is	sent	to	
the	reducer	that	is	
responsible	for	it

The	reducers	
sort	their	input	
by	key	
and	group	it

The	reducers	
process	their
input	one	group
at	a	time

1 2 3 4 5

Key	range	the	node	
is	responsible	for
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Sequential Map

for(int n=0;
n< array.length;
++n){

process(array[n]);

}

8

Ti
m

e
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Parallel Map

parallel_for_each(
x in array){

process(x);

}

9

Ti
m

e
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Comparing Maps

10

Serial Map Parallel Map
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Comparing Maps

11

Speedup
The space here is speedup. With the 
parallel map, our program finished 
execution early, while the serial map is 
still running. 

Serial Map Parallel Map
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Independence

• The key to (embarrasing) parallelism is independence

• Modifying shared state breaks perfect independence

• Results of accidentally violating independence:
– non-determinism
– data-races
– undefined behavior
– segfaults

12

Map function should be “pure” (or “pure-ish”) and 
should not modify shared states

Warning: No shared state!
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Implementation and API

• OpenMP and CilkPlus contain a parallel for
language construct
• Map is a mode of use of parallel for
• TBB uses higher order functions with lambda 

expressions/“functors”
• Some languages (CilkPlus, Matlab, Fortran) provide 

array notation which makes some maps more 
concise

13

A[:] = A[:]*5;
is CilkPlus array notation for “multiply every element in A by 5”

Array Notation
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Unary Maps

14

So far we have only dealt with mapping over a single collection…

Unary Maps
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Map with 1 Input, 1 Output

15

x 3 7 0 1 4 0 0 4 5 3 1 0

0 1 2 3 4 5 6 7 8 9 10 11

6 14 0 2 8 0 0 8 10 6 2 0result

int oneToOne (	int x[11]	)	{
return	x*2;	

}
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N-ary Maps

16

But, sometimes it makes sense to map over multiple collections 
at once…

N-ary Maps
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Map with 2 Inputs, 1 Output

17

x 3 7 0 1 4 0 0 4 5 3 1 0

0 1 2 3 4 5 6 7 8 9 10 11

5 11 2 2 12 3 9 9 10 4 3 1result

y 2 4 2 1 8 3 9 5 5 1 2 1

int twoToOne (	int x[11],	int y[11]	)	{
return	x+y;	

}
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Optimization – Sequences of 
Maps

• Often several map 
operations occur in 
sequence

– Vector math consists of many 
small operations such as 
additions and multiplications 
applied as maps

• A naïve implementation 
may write each 
intermediate result to 
memory, wasting memory 
BW and likely overwhelming 
the cache

18
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4.4 Sequence of Maps versus Map of Sequence 139

particular interface (using a numerical value to select the index component desired) was chosen because
it provides a straightforward extension to higher dimensionalities.

4.4 SEQUENCE OF MAPS VERSUS MAP OF SEQUENCE
A sequence of map operations over collections of the same shape should be combined whenever
possible into a single larger operation. In particular, vector operations are really map operations using
very simple operations like addition and multiplication. Implementing these one by one, writing to and
from memory, would be inefficient, since it would have low arithmetic intensity. If this organization
was implemented literally, data would have to be read and written for each operation, and we would
consume memory bandwidth unnecessarily for intermediate results. Even worse, if the maps were big
enough, we might exceed the size of the cache and so each map operation would go directly to and
from main memory.

If we fuse the operations used in a sequence of maps into a sequence inside a single map, we can
load only the input data at the start of the map and keep intermediate results in registers rather than
wasting memory bandwidth on them. We will call this approach code fusion, and it can be applied to
other patterns as well. Code fusion is demonstrated in Figure 4.2.

FIGURE 4.2

Code fusion optimization: Convert a sequence of maps into a map of sequences, avoiding the need to write
intermediate results to memory. This can be done automatically by ArBB and explicitly in other programming
models.
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Optimization – Code Fusion

• Can sometimes “fuse” 
together the 
operations to perform 
them at once
• Adds arithmetic 

intensity, reduces 
memory/cache 
usage
• Ideally, operations 

can be performed 
using registers alone

19
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4.4 Sequence of Maps versus Map of Sequence 139

particular interface (using a numerical value to select the index component desired) was chosen because
it provides a straightforward extension to higher dimensionalities.

4.4 SEQUENCE OF MAPS VERSUS MAP OF SEQUENCE
A sequence of map operations over collections of the same shape should be combined whenever
possible into a single larger operation. In particular, vector operations are really map operations using
very simple operations like addition and multiplication. Implementing these one by one, writing to and
from memory, would be inefficient, since it would have low arithmetic intensity. If this organization
was implemented literally, data would have to be read and written for each operation, and we would
consume memory bandwidth unnecessarily for intermediate results. Even worse, if the maps were big
enough, we might exceed the size of the cache and so each map operation would go directly to and
from main memory.

If we fuse the operations used in a sequence of maps into a sequence inside a single map, we can
load only the input data at the start of the map and keep intermediate results in registers rather than
wasting memory bandwidth on them. We will call this approach code fusion, and it can be applied to
other patterns as well. Code fusion is demonstrated in Figure 4.2.

FIGURE 4.2

Code fusion optimization: Convert a sequence of maps into a map of sequences, avoiding the need to write
intermediate results to memory. This can be done automatically by ArBB and explicitly in other programming
models.
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Optimization – Cache Fusion

• Sometimes 
impractical to fuse 
together the map 
operations
• Can instead break 

the work into blocks, 
giving each CPU 
one block at a time
• Hopefully, operations 

use cache alone

20
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140 CHAPTER 4 Map

FIGURE 4.3

Cache fusion optimization: Process sequences of maps in small tiles sequentially. When code fusion is not
possible, a sequence of maps can be broken into small tiles and each tile processed sequentially. This avoids
the need for synchronization between each individual map, and, if the tiles are small enough, intermediate
data can be held in cache.

Another approach that is often almost as effective as code fusion is cache fusion, shown in
Figure 4.3. If the maps are broken into tiles and the entire sequence of smaller maps for one tile is
executed sequentially on one core, then if the aggregate size of the tiles is small enough interme-
diate data will be resident in cache. In this case at least it will be possible to avoid going to main
memory.

Both kinds of fusion also reduce the cost of synchronization, since when multiple maps are fused
only one synchronization is needed after all the tiles are processed, instead of after every map. How-
ever, code fusion is preferred when it is possible since registers are still faster than cache, and with
cache fusion there is still the “interpreter” overhead of managing the multiple passes. However, cache
fusion is useful when there is no access to the code inside the individual maps—for example, if they
are provided as precompiled user-defined functions without source access by the compiler. This is a
common pattern in, for example, image processing plugins.

In Cilk Plus, TBB, OpenMP, and OpenCL the reorganization needed for either kind of fusion must
generally be done by the programmer, with the following notable exceptions:

OpenMP: Cache fusion occurs when all of the following are true:

• A single parallel region executes all of the maps to be fused.
• The loop for each map has the same bounds and chunk size.
• Each loop uses the static scheduling mode, either as implied by the environment or explicitly

specified.
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Related Patterns

• Three patterns related to map are now discussed 
here:

– Stencil
– Workpile
– Divide-and-Conquer
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Stencil

• Each instance of the map function accesses 
neighbors of its input, offset from its usual input

• Common in imaging and PDE solvers

22
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7.2 Implementing Stencil with Shift 201

FIGURE 7.1

Stencil pattern. The stencil pattern combines a local, structured gather with a function to combine the results
into a single output for each input neighborhood.

Stencils also arise in solvers for partial differential equations (PDEs) over regular grids. PDE solvers
are important in many scientific simulations, in computer-aided engineering, and in imaging. Imag-
ing applications include photography, satellite imaging, medical imaging, and seismic reconstruction.
Seismic reconstruction is one of the major workloads in oil and gas exploration.

Stencils can be one dimensional, as shown in Figure 7.1, or multidimensional. Stencils also have
different kinds of neighborhoods from square compact neighborhoods to sparse neighborhoods. The
special case of a convolution using a square compact neighborhood with constant weights is known
as a box filter and there are specific optimizations for it similar to that for the scan pattern. However,
these optimizations do not apply to the general case. Stencils reuse samples required for neighbor-
ing elements, so stencils, especially multidimensional stencils, can be further optimized by taking
cache behavior into account as discussed in Section 7.3. Stencils, like shifts, also require considera-
tion of boundary conditions. When subdivided using the partition pattern, presented in Section 6.6,
boundary conditions can result in additional communication between cores, either implicit or
explicit.

7.2 IMPLEMENTING STENCIL WITH SHIFT
The regular data access pattern used by stencils can be implemented using shifts. For a group of ele-
mental functions, a vector of inputs for each offset in the stencil can be collected by shifting the input
by the amount of the offset. This is diagrammed in Figure 7.2.

Implementing a stencil in this way is really only beneficial for one-dimensional stencils or the
memory-contiguous dimension of a multidimensional stencil. Also, it does not reduce total memory
traffic to external memory since, if random scalar reads are used, data movement from external memory
will still be combined into block reads by the cache. Shifts, however, allow vectorization of the data
reads, and this can reduce the total number of instructions used. They may also place data in vector
registers ready for use by vectorized elemental functions.
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Workpile

• Work items can be added to the map while it is 
in progress, from inside map function instances

• Work grows and is consumed by the map

• Workpile pattern terminates when no more work 
is available
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Divide-and-Conquer

• Applies if a problem 
can be divided into 
smaller subproblems
recursively until a base 
case is reached that 
can be solved serially

24
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192 CHAPTER 6 Data Reorganization

FIGURE 6.17

Partitioning in 2D. The partition pattern can be extended to multiple dimensions.

These diagrams show only the simplest case, where the sections of the partition fit exactly into the
domain. In practice, there may be boundary conditions where partial sections are required along the
edges. These may need to be treated with special-purpose code, but even in this case the majority of
the sections will be regular, which lends itself to vectorization. Ideally, to get good memory behavior
and to allow efficient vectorization, we also normally want to partition data, especially for writes, so
that it aligns with cache line and vectorization boundaries. You should be aware of how data is actually
laid out in memory when partitioning data. For example, in a multidimensional partitioning, typically
only one dimension of an array is contiguous in memory, so only this one benefits directly from spatial
locality. This is also the only dimension that benefits from alignment with cache lines and vectorization
unless the data will be transposed as part of the computation. Partitioning is related to strip-mining the
stencil pattern, which is discussed in Section 7.3.

Partitioning can be generalized to another pattern that we will call segmentation. Segmentation still
requires non-overlapping sections, but now the sections can vary in size. This is shown in Figure 6.18.
Various algorithms have been designed to operate on segmented data, including segmented versions
of scan and reduce that can operate on each segment of the array but in a perfectly load-balanced
fashion, regardless of the irregularities in the lengths of the segments [BHC+93]. These segmented
algorithms can actually be implemented in terms of the normal scan and reduce algorithms by using
a suitable combiner function and some auxiliary data. Other algorithms, such as quicksort [Ble90,
Ble96], can in turn be implemented in a vectorized fashion with a segmented data structure using these
primitives.

In order to represent a segmented collection, additional data is required to keep track of the bound-
aries between sections. The two most common representations are shown in Figure 6.19. Using an array
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Example: Scaled Vector 
Addition (SAXPY)
•

– Scales vector x by a and adds it to vector y
– Result is stored in input vector y

• Comes from the BLAS (Basic Linear Algebra 
Subprograms) library

• Every element in vector x and vector y are 
independent

25

y← ax + y
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What does                    look like?

26

y← ax + y

a 4 4 4 4 4 4 4 4 4 4 4 4

0 1 2 3 4 5 6 7 8 9 10 11

11 23 8 5 36 12 36 49 50 7 9 4y

y 3 7 0 1 4 0 0 4 5 3 1 0

x 2 4 2 1 8 3 9 5 5 1 2 1
*

+
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Visual:  

27

a 4 4 4 4 4 4 4 4 4 4 4 4

0 1 2 3 4 5 6 7 8 9 10 11

11 23 8 5 36 12 36 49 50 7 9 4y

y 3 7 0 1 4 0 0 4 5 3 1 0

x 2 4 2 1 8 3 9 5 5 1 2 1
*

+

Twelve processors used à one for each 
element in the vector

y← ax + y
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Visual:  

28

a 4 4 4 4 4 4 4 4 4 4 4 4

0 1 2 3 4 5 6 7 8 9 10 11

11 23 8 5 36 12 36 49 50 7 9 4y

y 3 7 0 1 4 0 0 4 5 3 1 0

x 2 4 2 1 8 3 9 5 5 1 2 1
*

+

Six processors used à one for every two 
elements in the vector

y← ax + y
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Visual:  

29

a 4 4 4 4 4 4 4 4 4 4 4 4

0 1 2 3 4 5 6 7 8 9 10 11

11 23 8 5 36 12 36 49 50 7 9 4y

y 3 7 0 1 4 0 0 4 5 3 1 0

x 2 4 2 1 8 3 9 5 5 1 2 1
*

+

Two processors used à one for every six 
elements in the vector

y← ax + y
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Serial SAXPY Implementation

30
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126 CHAPTER 4 Map

1 void saxpy_serial(
2 size_t n, // the number of elements in the vectors
3 float a, // scale factor
4 const float x[], // the first input vector
5 float y[] // the output vector and second input vector
6 ) {
7 for (size_t i = 0; i < n; ++i)
8 y[i] = a * x[i] + y[i];
9 }

LISTING 4.1

Serial implementation of SAXPY in C.

1 void saxpy_tbb(
2 int n, // the number of elements in the vectors
3 float a, // scale factor
4 float x[], // the first input vector
5 float y[] // the output vector and second input vector
6 ) {
7 tbb::parallel_for(
8 tbb::blocked_range<int>(0, n),
9 [&](tbb::blocked_range<int> r) {

10 for (size_t i = r.begin(); i != r.end(); ++i)
11 y[i] = a * x[i] + y[i];
12 }
13 );
14 }

LISTING 4.2

Tiled implementation of SAXPY in TBB. Tiling not only leads to better spatial locality but also exposes
opportunities for vectorization by the host compiler.

functions for brevity throughout the book, though they are not required for using TBB. Appendix D.2
discusses lambda functions and how to write the equivalent code by hand if you need to use an old
C++ compiler.

The TBB code exploits tiling. The parallel_for breaks the half-open range [0,n) into subranges
and processes each subrange r with a separate task. Hence, each subrange r acts as a tile, which
is processed by the serial for loop in the code. Here the range and subrange are implemented as
blocked_range objects. Appendix C.3 says more about the mechanics of parallel_for.

TBB uses thread parallelism but does not, by itself, vectorize the code. It depends on the underlying
C++ compiler to do that. On the other hand, tiling does expose opportunities for vectorization, so if
the basic serial algorithm can be vectorized then typically the TBB code can be, too. Generally, the
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TBB SAXPY Implementation
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126 CHAPTER 4 Map

1 void saxpy_serial(
2 size_t n, // the number of elements in the vectors
3 float a, // scale factor
4 const float x[], // the first input vector
5 float y[] // the output vector and second input vector
6 ) {
7 for (size_t i = 0; i < n; ++i)
8 y[i] = a * x[i] + y[i];
9 }

LISTING 4.1

Serial implementation of SAXPY in C.

1 void saxpy_tbb(
2 int n, // the number of elements in the vectors
3 float a, // scale factor
4 float x[], // the first input vector
5 float y[] // the output vector and second input vector
6 ) {
7 tbb::parallel_for(
8 tbb::blocked_range<int>(0, n),
9 [&](tbb::blocked_range<int> r) {

10 for (size_t i = r.begin(); i != r.end(); ++i)
11 y[i] = a * x[i] + y[i];
12 }
13 );
14 }

LISTING 4.2

Tiled implementation of SAXPY in TBB. Tiling not only leads to better spatial locality but also exposes
opportunities for vectorization by the host compiler.

functions for brevity throughout the book, though they are not required for using TBB. Appendix D.2
discusses lambda functions and how to write the equivalent code by hand if you need to use an old
C++ compiler.

The TBB code exploits tiling. The parallel_for breaks the half-open range [0,n) into subranges
and processes each subrange r with a separate task. Hence, each subrange r acts as a tile, which
is processed by the serial for loop in the code. Here the range and subrange are implemented as
blocked_range objects. Appendix C.3 says more about the mechanics of parallel_for.

TBB uses thread parallelism but does not, by itself, vectorize the code. It depends on the underlying
C++ compiler to do that. On the other hand, tiling does expose opportunities for vectorization, so if
the basic serial algorithm can be vectorized then typically the TBB code can be, too. Generally, the
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Cilk Plus SAXPY Implementation
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4.2 Scaled Vector Addition (SAXPY) 127

performance of the serial code inside TBB tasks will depend on the performance of the code generated
by the C++ compiler with which it is used.

4.2.4 Cilk Plus
A basic Cilk Plus implementation of the SAXPY operation is given in Listing 4.3. The “parallel for”
syntax approach is used here, as with TBB, although the syntax is closer to a regular for loop. In fact,
an ordinary for loop can often be converted to a cilk_for construct if all iterations of the loop body
are independent—that is, if it is a map. As with TBB, the cilk_for is not explicitly vectorized but the
compiler may attempt to auto-vectorize. There are restrictions on the form of a cilk_for loop. See
Appendix B.5 for details.

4.2.5 Cilk Plus with Array Notation
It is also possible in Cilk Plus to explicitly specify vector operations using Cilk Plus array notation, as
in Listing 4.4. Here x[0:n] and y[0:n] refer to n consecutive elements of each array, starting with
x[0] and y[0]. A variant syntax allows specification of a stride between elements, using x[start:
length:stride]. Sections of the same length can be combined with operators. Note that there is no
cilk_for in Listing 4.4.

1 void saxpy_cilk(
2 int n, // the number of elements in the vectors
3 float a, // scale factor
4 float x[], // the first input vector
5 float y[] // the output vector and second input vector
6 ) {
7 cilk_for (int i = 0; i < n; ++i)
8 y[i] = a * x[i] + y[i];
9 }

LISTING 4.3

SAXPY in Cilk Plus using cilk_for.

1 void saxpy_array_notation(
2 int n, // the number of elements in the vectors
3 float a, // scale factor
4 float x[], // the input vector
5 float y[] // the output vector and offset
6 ) {
7 y[0:n] = a * x[0:n] + y[0:n];
8 }

LISTING 4.4

SAXPY in Cilk Plus using cilk_for and array notation for explicit vectorization.
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Uniform inputs are handled by scalar promotion: When a scalar and an array are combined with
an operator, the scalar is conceptually “promoted” to an array of the same length by replication.

4.2.6 OpenMP
Like TBB and Cilk Plus, the map pattern is expressed in OpenMP using a “parallel for” construct. This
is done by adding a pragma as in Listing 4.5 just before the loop to be parallelized. OpenMP uses a
“team” of threads and the work of the loop is distributed over the team when such a pragma is used.
How exactly the distribution of work is done is given by the current scheduling option.

The advantage of the OpenMP syntax is that the code inside the loop does not change, and the
annotations can usually be safely ignored and a correct serial program will result. However, as with the
equivalent Cilk Plus construct, the form of the for loop is more restricted than in the serial case. Also,
as with Cilk Plus and TBB, implementations of OpenMP generally do not check for incorrect paral-
lelizations that can arise from dependencies between loop iterations, which can lead to race conditions.
If these exist and are not correctly accounted for in the pragma, an incorrect parallelization will result.

4.2.7 ArBB Using Vector Operations
ArBB operates only over data stored in ArBB containers and requires using ArBB types to represent
elements of those containers. The ArBB dense container represents multidimensional arrays. It is
a template with the first argument being the element type and the second the dimensionality. The
dimensionality default is 1 so the second template argument can be omitted for 1D arrays.

The simplest way to implement SAXPY in ArBB is to use arithmetic operations directly over
dense containers, as in Listing 4.6. Actually, this gives a sequence of maps. However, as will be
explained in Section 4.4, ArBB automatically optimizes this into a map of a sequence.

In ArBB, we have to include some extra code to move data into “ArBB data space” and to invoke
the above function. Moving data into ArBB space is required for two reasons: safety and offload.
Data stored in ArBB containers can be managed in such a way that race conditions are avoided. For
example, if the same container is both an input and an output to a function, ArBB will make sure that

1 void saxpy_openmp(
2 int n, // the number of elements in the vectors
3 float a, // scale factor
4 float x[], // the first input vector
5 float y[] // the output vector and second input vector
6 ) {
7 #pragma omp parallel for
8 for (int i = 0; i < n; ++i)
9 y[i] = a * x[i] + y[i];

10 }

LISTING 4.5

SAXPY in OpenMP.
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Vector	size	=	500,000,000
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Reduce

• Reduce is used to combine a collection of 
elements into one summary value
• A combiner function combines elements 

pairwise
• A combiner function only needs to be 
associative to be parallelizable
• Example combiner functions:

– Addition
– Multiplication
– Maximum / Minimum
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5.1 Reduce 147

1 template<typename T>

2 T reduce(
3 T (*f)(T,T), // combiner function
4 size_t n, // number of elements in input array
5 T a[] // input array
6 ) {
7 assert(n > 0);
8 T accum = a[0];
9 for (size_t i = 1; i < n; i++) {

10 accum = f(accum, a[i]);
11 }
12 return accum;
13 }

LISTING 5.2

Serial reduction in C++ for 1 or more elements.

Associativity and commutativity are not equivalent. While there are common mathematical operations
that are both associative and commutative, including addition; multiplication; Boolean AND, OR, and
XOR; maximum; and minimum (among others), there are many useful operations that are associative
but not commutative. Examples of operations that are associative but not commutative include matrix
multiplication and quaternion multiplication (used to compose sequences of 3D rotations). There are
also operations that are commutative but not associative, an example being saturating addition on
signed numbers (used in image and signal processing). More seriously, although addition and multipli-
cation of real numbers are both associative and commutative, floating point addition and multiplication
are only approximately associative. Parallelization may require an unavoidable reordering of floating
point computations that will change the result.

To see that only associativity is required for parallelization, consider the following:

s = a0 ⌦ a1 ⌦ a2 ⌦ a3 ⌦ a4 ⌦ a5 ⌦ a6 ⌦ a7

= (((((((a0 ⌦ a1) ⌦ a2) ⌦ a3) ⌦ a4) ⌦ a5) ⌦ a6) ⌦ a7)

= (((a0 ⌦ a1) ⌦ (a2 ⌦ a3)) ⌦ ((a4 ⌦ a5) ⌦ (a6 ⌦ a7))).

The first grouping shown is equivalent to the left half of Figure 5.1, the second grouping to the right
right half of Figure 5.1. Another way to look at this is that associativity allows us to use any order
of pairwise combinations as long as “adjacent” elements are intermediate sequences. However, the
second “tree” grouping allows for parallel scaling, but the first does not.

A good example of a non-associative operation is integer arithmetic with saturation. In saturating
arithmetic, if the result of an operation is outside the representable range, the result is “clamped” to
the closest representable value rather than overflowing. While convenient in some applications, such
as image and signal processing, saturating addition is not associative for signed integers.

The following example shows that saturating addition is not associative for signed bytes. Let �
be the saturating addition operation. A signed byte can represent an integer between �128 and 127

The	input	array	
cannot	be	empty!
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FIGURE 5.1

Serial and tree implementations of the reduce pattern for 8 inputs.

1 template<typename T>

2 T reduce(
3 T (*f)(T,T), // combiner function
4 size_t n, // number of elements in input array
5 T a[], // input array
6 T identity // identity of combiner function
7 ) {
8 T accum = identity;
9 for (size_t i = 0; i < n; ++i) {

10 accum = f(accum, a[i]);
11 }
12 return accum;
13 }

LISTING 5.1

Serial reduction in C++ for 0 or more elements.

5.1.1 Reordering Computations
To parallelize reduction, we have to reorder the operations used in the serial algorithm. There are many
ways to do this but they depend on the combiner function having certain algebraic properties.

To review some basic algebra, a binary operator ⌦ is considered to be associative or commutative
if it satisfies the following equations:

Associative: (a ⌦ b) ⌦ c = a ⌦ (b ⌦ c).
Commutative: a ⌦ b = b ⌦ a.
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Reduce

• Vectorization
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Reduce

• Tiling is used to break chunks of work up for 
workers to reduce serially
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Reduce

• We can “fuse” the map and reduce patterns
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Reduce

• Precision can become a problem with 
reductions on floating point data

• Different orderings of floating point data can 
change the reduction value
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Reduce Example: Dot Product

• 2 vectors of same length

• Map (x) to multiply the components

• Then reduce with (+) to get the final answer
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Dot Product – Example Uses
• Essential operation in physics, graphics, video games,…

• Gaming analogy: in Mario Kart, there are “boost pads” on the ground 
that increase your speed

– red vector is your speed (x and y direction)
– blue vector is the orientation of the boost pad (x and y direction). Larger 

numbers are more power.

Sep	22,	2017 48

Photo	source

How much boost will you get? For the 
analogy, imagine the pad multiplies 
your speed:
• If you come in going 0, you’ll get 

nothing
• If you cross the pad perpendicularly, 

you’ll get 0 [just like the banana 
obliteration, it will give you 0x boost in 
the perpendicular direction]

Ref:	http://betterexplained.com/articles/vector-calculus-understanding-the-dot-product/
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5.3 Dot Product 155

1 float sprod(
2 size_t n,
3 const float a[],
4 const float b[]
5 ) {
6 float res = 0.0f;
7 for (size_t i = 0; i < n; i++) {
8 res += a[i] * b[i];
9 }

10 return res;
11 }

LISTING 5.3

Serial implementation of dot product in C++. The reduction in this example is based on a loop-carried
dependency and is not parallelizable without reordering the computation.

accumulator, the input, and the output has been used in order to simplify the example. In some of the
implementations we will show how to use a different type for performing the accumulations.

5.3.3 SSE Intrinsics
Listing 5.4 gives an explicitly vectorized version of the dot product computation. This example uses
SSE intrinsics. SSE stands for Streaming SIMD Extensions and is an instruction set extension sup-
ported by Intel and AMD processors for explicitly performing multiple operations in one instruction. It
is associated with a set of registers that can hold multiple values. For SSE, these registers are 128 bits
wide and can store two double-precision floating point values or four single-precision floating point
values.

When using SSE intrinsics, special types are used to express pairs or quadruples of values that may
be stored in SSE registers, and then functions are used to express operations performed on those values.
These functions are recognized by the compiler and translated directly into machine language.

Use of intrinsics is not quite as difficult as writing in assembly language since the compiler does
take care of some details like register allocation. However, intrinsics are definitely more complex than
the other programming models we will present and are not as portable to the future. In particular, SIMD
instruction sets are subject to change, and intrinsics are tied to specific instruction sets and machine
parameters such as the width of vector registers.

For (relative) simplicity we left out some complications so this example is not really a full solution.
In particular, this code does not handle input vectors that are not a multiple of four in length.

Some reordering has been done to improve parallelization. In particular, this code really does four
serial reductions at the same time using four SSE register “lanes”, and then combines them in the end.
This uses the implementation pattern for reduce discussed in Section 5.1.2, but with four lanes. Like
the other examples that parallelize reduce, some reordering of operations is required, since the exact
order given in the original serial implementation is not parallelizable. This particular ordering assumes
commutativity as well as associativity.

a · b =
n�1X

i=0

aibi
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1 float sse_sprod(
2 size_t n,
3 const float a[],
4 const float b[]
5 ) {
6 assert(0 == n % 4); // only works for N, a multiple of 4
7 __m128 res, prd, ma, mb;
8 res = _mm_setzero_ps();
9 for (size_t i = 0; i < n; i += 4) {

10 ma = _mm_loadu_ps(&a[i]); // load 4 elements from a
11 mb = _mm_loadu_ps(&b[i]); // load 4 elements from b
12 prd = _mm_mul_ps(ma,mb); // multiple 4 values elementwise
13 res = _mm_add_ps(prd,res); // accumulate partial sums over 4�tuples
14 }
15 prd = _mm_setzero_ps();
16 res = _mm_hadd_ps(res, prd); // horizontal addition
17 res = _mm_hadd_ps(res, prd); // horizontal addition
18 float tmp;
19 _mm_store_ss(&tmp, res);
20 return tmp;
21 }

LISTING 5.4

Vectorized dot product implemented using SSE intrinsics. This code works only if the number of elements in
the input is a multiple of 4 and only on machines that support the SSE extensions. This code is not parallelized
over cores.

Other problems with the SSE code include the fact that it is machine dependent, verbose, hard
to maintain, and it only takes advantage of vector units, not multiple cores. It would be possible to
combine with code with a Cilk Plus or TBB implementation in order to target multiple cores, but that
would not address the other problems. In general, machine dependence is the biggest problem with this
code. In particular, new instruction set extensions such as AVX are being introduced that have wider
vector widths, so it is better to code in a way that avoids dependence on a particular vector width or
instruction set extension.

5.3.4 TBB
Listing 5.5 uses TBB’s algorithm template parallel_reduce. This template recursively decomposes
a reduction into smaller subreductions and reduces each base case using a functor provided by the user.
Here that functor uses std::inner_product to do serial reduction, which the compiler may be able
to automatically vectorize. The base case code can also be used for map–reduce fusion, as done here:
the std::inner_product call in the base case does both the multiplications and a reduction over the
tile it is given. The user must also provide a functor to combine the results of the base cases, which
here is the functor std::plus<float>.
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1 float cilkplus_sprod(
2 size_t n,
3 const float a[],
4 const float b[]
5 ) {
6 return __sec_reduce_add(a[0:n] * b[0:n]);
7 }

LISTING 5.7

Dot product implemented in Cilk Plus using array notation.

1 float cilkplus_sprod_tiled(
2 size_t n,
3 const float a[],
4 const float b[]
5 ) {
6 size_t tilesize = 4096;
7 cilk::reducer_opadd<float> res(0);
8 cilk_for (size_t i = 0; i < n; i+=tilesize) {
9 size_t m = std::min(tilesize,n�i);

10 res += __sec_reduce_add(a[i:m] * b[i:m]);
11 }
12 return res.get_value();
13 }

LISTING 5.8

Dot product implementation in Cilk Plus using explicit tiling.

initialized with any value, because this value is not assumed to be the identity. A reducer_opadd<
T> assumes that the identity of + is T(), which by C++ rules constructs a zero for built-in types. The
min expression in the code deals with a possible partial “boundary” tile, so the input does not have to
be a multiple of the tile size.

Listing 5.8 shows how to modify the reduction to do double-precision accumulation. The casts
to double-precision are also placed to result in the use of double-precision multiplication. These
casts, like the multiplication itself, are really examples of the map pattern that are being fused into
the reduction. Of course, if you wanted to do single-precision multiplication, you could move the
cast to after the __sec_reduce_add. Doing the multiplication in double precision may or may
not result in lower performance, however, since a dot product will likely be performance limited
by memory bandwidth, not computation. Likewise, doing the accumulation in double precision will
likely not be a limiting factor on performance. It might increase communication slightly, but for rea-
sonably large tile sizes most of the memory bandwidth used will result from reading the original
input.
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5.3 Dot Product 159

1 float cilkplus_sprod(
2 size_t n,
3 const float a[],
4 const float b[]
5 ) {
6 return __sec_reduce_add(a[0:n] * b[0:n]);
7 }

LISTING 5.7

Dot product implemented in Cilk Plus using array notation.

1 float cilkplus_sprod_tiled(
2 size_t n,
3 const float a[],
4 const float b[]
5 ) {
6 size_t tilesize = 4096;
7 cilk::reducer_opadd<float> res(0);
8 cilk_for (size_t i = 0; i < n; i+=tilesize) {
9 size_t m = std::min(tilesize,n�i);

10 res += __sec_reduce_add(a[i:m] * b[i:m]);
11 }
12 return res.get_value();
13 }

LISTING 5.8

Dot product implementation in Cilk Plus using explicit tiling.

initialized with any value, because this value is not assumed to be the identity. A reducer_opadd<
T> assumes that the identity of + is T(), which by C++ rules constructs a zero for built-in types. The
min expression in the code deals with a possible partial “boundary” tile, so the input does not have to
be a multiple of the tile size.

Listing 5.8 shows how to modify the reduction to do double-precision accumulation. The casts
to double-precision are also placed to result in the use of double-precision multiplication. These
casts, like the multiplication itself, are really examples of the map pattern that are being fused into
the reduction. Of course, if you wanted to do single-precision multiplication, you could move the
cast to after the __sec_reduce_add. Doing the multiplication in double precision may or may
not result in lower performance, however, since a dot product will likely be performance limited
by memory bandwidth, not computation. Likewise, doing the accumulation in double precision will
likely not be a limiting factor on performance. It might increase communication slightly, but for rea-
sonably large tile sizes most of the memory bandwidth used will result from reading the original
input.
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5.3.6 OpenMP
An OpenMP implementation of dot product is shown in Listing 5.10. In OpenMP, parallelization of this
example is accomplished by adding a single line annotation to the serial implementation. However, the
annotation must specify that res is a reduction variable. It is also necessary to specify the combiner
operator, which in this case is (floating point) addition.

What actually happens is that the scope of the loop specifies a parallel region. Within this region
local copies of the reduction variable are made and initialized with the identity associated with the
reduction operator. At the end of the parallel region, which in this case is the end of the loop’s scope, the
various local copies are combined with the specified combiner operator. This code implicitly does map–
reduce fusion since the base case code, included within the loop body, includes the extra computations
from the map.

1 double cilkplus_sprod_tiled2(
2 size_t n,
3 const float a[],
4 const float b[]
5 ) {
6 size_t tilesize = 4096;
7 cilk::reducer_opadd<double> res(0);
8 cilk_for (size_t i = 0; i < n; i+=tilesize) {
9 size_t m = std::min(tilesize,n�i);

10 res += __sec_reduce_add(double(a[i:m]) * double(b[i:m]));
11 }
12 return res.get_value();
13 }

LISTING 5.9

Modification of Listing 5.8 with double-precision operations for multiplication and accumulation.

1 float openmp_sprod(
2 size_t n,
3 const float *a,
4 const float *b
5 ) {
6 float res = 0.0f;
7 #pragma omp parallel for reduction(+:res)
8 for (size_t i = 0; i < n; i++) {
9 res += a[i] * b[i];

10 }
11 return res;
12 }

LISTING 5.10

Dot product implemented in OpenMP.
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The END
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