
Map and Reduce Patterns

Concurrency and Parallelism — 2017-18
Master in Computer Science

(Mestrado Integrado em Eng. Informática)

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Joao Lourenço <joao.lourenco@fct.unl.pt>

Source:	Parallel	Computing,	CIS	410/510,	Department	of	Computer	and	Information	Science

Outline

• Structured programming patterns overview
– Concept of programming patterns
– Serial and parallel control flow patterns
– Serial and parallel data management patterns

– Bibliography:
• Chapters 4 and 5 of book

McCool M., Arch M., Reinders J.;
Structured Parallel Programming: Patterns for
Efficient Computation;
Morgan Kaufmann (2012);
ISBN: 978-0-12-415993-8

Sep	22,	2017 2Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Outline

• Map pattern
– Optimizations

• sequences of Maps
• code Fusion
• cache Fusion

– Related Patterns
– Example: Scaled Vector Addition (SAXPY)

• Reduce
– Example: Dot Product

Sep	22,	2017 3Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Mapping

• “Do the same thing many times”
foreach i in foo:

do something

• Well-known higher order function in languages
like ML, Haskell, Scala

map:

applies a function to each element in a list
and returns a list of results

4

∀ab.(a→ b)List a → List b

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Example Maps

Add 1 to every item in an array

5

Double every item in an array

Key Point: An operation is a map if it can be applied to
each element without knowledge of its neighbors.

0 4 5 3 1 0

0 1 2 3 4 5

1 5 6 4 2 1

3 7 0 1 4 0

6 14 0 2 8 0

0 1 2 3 4 5

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Key Idea

• Map is a “foreach loop” where each iteration is
independent

6

Embarrassingly Parallel

Independence is a big win. We can run map completely in parallel.
Significant speedups! More precisely: is O(1) plus implementation
overhead that is O(log n)…so .

T (∞)
T (∞)∈O(logn)

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Simple example: Word count

Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 7

Mapper
(1-2)

Mapper
(3-4)

Mapper
(5-6)

Mapper
(7-8)

Reducer
(A-G)

Reducer
(H-N)

Reducer
(O-U)

Reducer
(V-Z)

(1,	the	apple)

(2,	is	an	apple)

(3,	not	an	orange)
(4,	because	the)
(5,	orange)

(6,	unlike	the	apple)

(7,	is	orange)
(8,	not	green)

(the,	1)

(apple,	1)

(is,	1)

(apple,	1)
(an,	1)

(not,	1)

(orange,	1)

(an,	1)
(because,	1)

(the,	1)
(orange,	1)

(unlike,	1)

(apple,	1)

(the,	1)

(is,	1)

(orange,	1)

(not,	1)

(green,	1)

(apple,	3)
(an,	2)

(because,	1)
(green,	1)

(is,	2)
(not,	2)

(orange,	3)
(the,	3)

(unlike,	1)

(apple,	{1,	1,	1})
(an,	{1,	1})

(because,	{1})
(green,	{1})
(is,	{1,	1})

(not,	{1,	1})

(orange,	{1,	1,	1})
(the,	{1,	1,	1})
(unlike,	{1})

Each	mapper	
receives	some	
of	the	KV-pairs	
as	input

The	mappers
process	the	
KV-pairs	
one	by	one

Each	KV-pair	output
by	the	mapper	is	sent	to	
the	reducer	that	is	
responsible	for	it

The	reducers	
sort	their	input	
by	key	
and	group	it

The	reducers	
process	their
input	one	group
at	a	time

1 2 3 4 5

Key	range	the	node	
is	responsible	for

Sep	22,	2017

Sequential Map

for(int n=0;
n< array.length;
++n){

process(array[n]);

}

8

Ti
m

e

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Parallel Map

parallel_for_each(
x in array){

process(x);

}

9

Ti
m

e

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Comparing Maps

10

Serial Map Parallel Map

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Comparing Maps

11

Speedup
The space here is speedup. With the
parallel map, our program finished
execution early, while the serial map is
still running.

Serial Map Parallel Map

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Independence

• The key to (embarrasing) parallelism is independence

• Modifying shared state breaks perfect independence

• Results of accidentally violating independence:
– non-determinism
– data-races
– undefined behavior
– segfaults

12

Map function should be “pure” (or “pure-ish”) and
should not modify shared states

Warning: No shared state!

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Implementation and API

• OpenMP and CilkPlus contain a parallel for
language construct
• Map is a mode of use of parallel for
• TBB uses higher order functions with lambda

expressions/“functors”
• Some languages (CilkPlus, Matlab, Fortran) provide

array notation which makes some maps more
concise

13

A[:] = A[:]*5;
is CilkPlus array notation for “multiply every element in A by 5”

Array Notation

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Unary Maps

14

So far we have only dealt with mapping over a single collection…

Unary Maps

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Map with 1 Input, 1 Output

15

x 3 7 0 1 4 0 0 4 5 3 1 0

0 1 2 3 4 5 6 7 8 9 10 11

6 14 0 2 8 0 0 8 10 6 2 0result

int oneToOne (int x[11])	{
return	x*2;	

}
Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

N-ary Maps

16

But, sometimes it makes sense to map over multiple collections
at once…

N-ary Maps

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Map with 2 Inputs, 1 Output

17

x 3 7 0 1 4 0 0 4 5 3 1 0

0 1 2 3 4 5 6 7 8 9 10 11

5 11 2 2 12 3 9 9 10 4 3 1result

y 2 4 2 1 8 3 9 5 5 1 2 1

int twoToOne (int x[11],	int y[11])	{
return	x+y;	

}
Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Optimization – Sequences of
Maps

• Often several map
operations occur in
sequence

– Vector math consists of many
small operations such as
additions and multiplications
applied as maps

• A naïve implementation
may write each
intermediate result to
memory, wasting memory
BW and likely overwhelming
the cache

18

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 139 — #139

4.4 Sequence of Maps versus Map of Sequence 139

particular interface (using a numerical value to select the index component desired) was chosen because
it provides a straightforward extension to higher dimensionalities.

4.4 SEQUENCE OF MAPS VERSUS MAP OF SEQUENCE
A sequence of map operations over collections of the same shape should be combined whenever
possible into a single larger operation. In particular, vector operations are really map operations using
very simple operations like addition and multiplication. Implementing these one by one, writing to and
from memory, would be inefficient, since it would have low arithmetic intensity. If this organization
was implemented literally, data would have to be read and written for each operation, and we would
consume memory bandwidth unnecessarily for intermediate results. Even worse, if the maps were big
enough, we might exceed the size of the cache and so each map operation would go directly to and
from main memory.

If we fuse the operations used in a sequence of maps into a sequence inside a single map, we can
load only the input data at the start of the map and keep intermediate results in registers rather than
wasting memory bandwidth on them. We will call this approach code fusion, and it can be applied to
other patterns as well. Code fusion is demonstrated in Figure 4.2.

FIGURE 4.2

Code fusion optimization: Convert a sequence of maps into a map of sequences, avoiding the need to write
intermediate results to memory. This can be done automatically by ArBB and explicitly in other programming
models.

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Optimization – Code Fusion

• Can sometimes “fuse”
together the
operations to perform
them at once
• Adds arithmetic

intensity, reduces
memory/cache
usage
• Ideally, operations

can be performed
using registers alone

19

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 139 — #139

4.4 Sequence of Maps versus Map of Sequence 139

particular interface (using a numerical value to select the index component desired) was chosen because
it provides a straightforward extension to higher dimensionalities.

4.4 SEQUENCE OF MAPS VERSUS MAP OF SEQUENCE
A sequence of map operations over collections of the same shape should be combined whenever
possible into a single larger operation. In particular, vector operations are really map operations using
very simple operations like addition and multiplication. Implementing these one by one, writing to and
from memory, would be inefficient, since it would have low arithmetic intensity. If this organization
was implemented literally, data would have to be read and written for each operation, and we would
consume memory bandwidth unnecessarily for intermediate results. Even worse, if the maps were big
enough, we might exceed the size of the cache and so each map operation would go directly to and
from main memory.

If we fuse the operations used in a sequence of maps into a sequence inside a single map, we can
load only the input data at the start of the map and keep intermediate results in registers rather than
wasting memory bandwidth on them. We will call this approach code fusion, and it can be applied to
other patterns as well. Code fusion is demonstrated in Figure 4.2.

FIGURE 4.2

Code fusion optimization: Convert a sequence of maps into a map of sequences, avoiding the need to write
intermediate results to memory. This can be done automatically by ArBB and explicitly in other programming
models.

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Optimization – Cache Fusion

• Sometimes
impractical to fuse
together the map
operations
• Can instead break

the work into blocks,
giving each CPU
one block at a time
• Hopefully, operations

use cache alone

20

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 140 — #140

140 CHAPTER 4 Map

FIGURE 4.3

Cache fusion optimization: Process sequences of maps in small tiles sequentially. When code fusion is not
possible, a sequence of maps can be broken into small tiles and each tile processed sequentially. This avoids
the need for synchronization between each individual map, and, if the tiles are small enough, intermediate
data can be held in cache.

Another approach that is often almost as effective as code fusion is cache fusion, shown in
Figure 4.3. If the maps are broken into tiles and the entire sequence of smaller maps for one tile is
executed sequentially on one core, then if the aggregate size of the tiles is small enough interme-
diate data will be resident in cache. In this case at least it will be possible to avoid going to main
memory.

Both kinds of fusion also reduce the cost of synchronization, since when multiple maps are fused
only one synchronization is needed after all the tiles are processed, instead of after every map. How-
ever, code fusion is preferred when it is possible since registers are still faster than cache, and with
cache fusion there is still the “interpreter” overhead of managing the multiple passes. However, cache
fusion is useful when there is no access to the code inside the individual maps—for example, if they
are provided as precompiled user-defined functions without source access by the compiler. This is a
common pattern in, for example, image processing plugins.

In Cilk Plus, TBB, OpenMP, and OpenCL the reorganization needed for either kind of fusion must
generally be done by the programmer, with the following notable exceptions:

OpenMP: Cache fusion occurs when all of the following are true:

• A single parallel region executes all of the maps to be fused.
• The loop for each map has the same bounds and chunk size.
• Each loop uses the static scheduling mode, either as implied by the environment or explicitly

specified.

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Related Patterns

• Three patterns related to map are now discussed
here:

– Stencil
– Workpile
– Divide-and-Conquer

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 21

Stencil

• Each instance of the map function accesses
neighbors of its input, offset from its usual input

• Common in imaging and PDE solvers

22

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 201 — #201

7.2 Implementing Stencil with Shift 201

FIGURE 7.1

Stencil pattern. The stencil pattern combines a local, structured gather with a function to combine the results
into a single output for each input neighborhood.

Stencils also arise in solvers for partial differential equations (PDEs) over regular grids. PDE solvers
are important in many scientific simulations, in computer-aided engineering, and in imaging. Imag-
ing applications include photography, satellite imaging, medical imaging, and seismic reconstruction.
Seismic reconstruction is one of the major workloads in oil and gas exploration.

Stencils can be one dimensional, as shown in Figure 7.1, or multidimensional. Stencils also have
different kinds of neighborhoods from square compact neighborhoods to sparse neighborhoods. The
special case of a convolution using a square compact neighborhood with constant weights is known
as a box filter and there are specific optimizations for it similar to that for the scan pattern. However,
these optimizations do not apply to the general case. Stencils reuse samples required for neighbor-
ing elements, so stencils, especially multidimensional stencils, can be further optimized by taking
cache behavior into account as discussed in Section 7.3. Stencils, like shifts, also require considera-
tion of boundary conditions. When subdivided using the partition pattern, presented in Section 6.6,
boundary conditions can result in additional communication between cores, either implicit or
explicit.

7.2 IMPLEMENTING STENCIL WITH SHIFT
The regular data access pattern used by stencils can be implemented using shifts. For a group of ele-
mental functions, a vector of inputs for each offset in the stencil can be collected by shifting the input
by the amount of the offset. This is diagrammed in Figure 7.2.

Implementing a stencil in this way is really only beneficial for one-dimensional stencils or the
memory-contiguous dimension of a multidimensional stencil. Also, it does not reduce total memory
traffic to external memory since, if random scalar reads are used, data movement from external memory
will still be combined into block reads by the cache. Shifts, however, allow vectorization of the data
reads, and this can reduce the total number of instructions used. They may also place data in vector
registers ready for use by vectorized elemental functions.

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Workpile

• Work items can be added to the map while it is
in progress, from inside map function instances

• Work grows and is consumed by the map

• Workpile pattern terminates when no more work
is available

23Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Divide-and-Conquer

• Applies if a problem
can be divided into
smaller subproblems
recursively until a base
case is reached that
can be solved serially

24

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 192 — #192

192 CHAPTER 6 Data Reorganization

FIGURE 6.17

Partitioning in 2D. The partition pattern can be extended to multiple dimensions.

These diagrams show only the simplest case, where the sections of the partition fit exactly into the
domain. In practice, there may be boundary conditions where partial sections are required along the
edges. These may need to be treated with special-purpose code, but even in this case the majority of
the sections will be regular, which lends itself to vectorization. Ideally, to get good memory behavior
and to allow efficient vectorization, we also normally want to partition data, especially for writes, so
that it aligns with cache line and vectorization boundaries. You should be aware of how data is actually
laid out in memory when partitioning data. For example, in a multidimensional partitioning, typically
only one dimension of an array is contiguous in memory, so only this one benefits directly from spatial
locality. This is also the only dimension that benefits from alignment with cache lines and vectorization
unless the data will be transposed as part of the computation. Partitioning is related to strip-mining the
stencil pattern, which is discussed in Section 7.3.

Partitioning can be generalized to another pattern that we will call segmentation. Segmentation still
requires non-overlapping sections, but now the sections can vary in size. This is shown in Figure 6.18.
Various algorithms have been designed to operate on segmented data, including segmented versions
of scan and reduce that can operate on each segment of the array but in a perfectly load-balanced
fashion, regardless of the irregularities in the lengths of the segments [BHC+93]. These segmented
algorithms can actually be implemented in terms of the normal scan and reduce algorithms by using
a suitable combiner function and some auxiliary data. Other algorithms, such as quicksort [Ble90,
Ble96], can in turn be implemented in a vectorized fashion with a segmented data structure using these
primitives.

In order to represent a segmented collection, additional data is required to keep track of the bound-
aries between sections. The two most common representations are shown in Figure 6.19. Using an array

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Example: Scaled Vector
Addition (SAXPY)
•

– Scales vector x by a and adds it to vector y
– Result is stored in input vector y

• Comes from the BLAS (Basic Linear Algebra
Subprograms) library

• Every element in vector x and vector y are
independent

25

y← ax + y

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

What does look like?

26

y← ax + y

a 4 4 4 4 4 4 4 4 4 4 4 4

0 1 2 3 4 5 6 7 8 9 10 11

11 23 8 5 36 12 36 49 50 7 9 4y

y 3 7 0 1 4 0 0 4 5 3 1 0

x 2 4 2 1 8 3 9 5 5 1 2 1
*

+

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Visual:

27

a 4 4 4 4 4 4 4 4 4 4 4 4

0 1 2 3 4 5 6 7 8 9 10 11

11 23 8 5 36 12 36 49 50 7 9 4y

y 3 7 0 1 4 0 0 4 5 3 1 0

x 2 4 2 1 8 3 9 5 5 1 2 1
*

+

Twelve processors used à one for each
element in the vector

y← ax + y

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Visual:

28

a 4 4 4 4 4 4 4 4 4 4 4 4

0 1 2 3 4 5 6 7 8 9 10 11

11 23 8 5 36 12 36 49 50 7 9 4y

y 3 7 0 1 4 0 0 4 5 3 1 0

x 2 4 2 1 8 3 9 5 5 1 2 1
*

+

Six processors used à one for every two
elements in the vector

y← ax + y

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Visual:

29

a 4 4 4 4 4 4 4 4 4 4 4 4

0 1 2 3 4 5 6 7 8 9 10 11

11 23 8 5 36 12 36 49 50 7 9 4y

y 3 7 0 1 4 0 0 4 5 3 1 0

x 2 4 2 1 8 3 9 5 5 1 2 1
*

+

Two processors used à one for every six
elements in the vector

y← ax + y

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Serial SAXPY Implementation

30

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 126 — #126

126 CHAPTER 4 Map

1 void saxpy_serial(
2 size_t n, // the number of elements in the vectors
3 float a, // scale factor
4 const float x[], // the first input vector
5 float y[] // the output vector and second input vector
6) {
7 for (size_t i = 0; i < n; ++i)
8 y[i] = a * x[i] + y[i];
9 }

LISTING 4.1

Serial implementation of SAXPY in C.

1 void saxpy_tbb(
2 int n, // the number of elements in the vectors
3 float a, // scale factor
4 float x[], // the first input vector
5 float y[] // the output vector and second input vector
6) {
7 tbb::parallel_for(
8 tbb::blocked_range<int>(0, n),
9 [&](tbb::blocked_range<int> r) {

10 for (size_t i = r.begin(); i != r.end(); ++i)
11 y[i] = a * x[i] + y[i];
12 }
13);
14 }

LISTING 4.2

Tiled implementation of SAXPY in TBB. Tiling not only leads to better spatial locality but also exposes
opportunities for vectorization by the host compiler.

functions for brevity throughout the book, though they are not required for using TBB. Appendix D.2
discusses lambda functions and how to write the equivalent code by hand if you need to use an old
C++ compiler.

The TBB code exploits tiling. The parallel_for breaks the half-open range [0,n) into subranges
and processes each subrange r with a separate task. Hence, each subrange r acts as a tile, which
is processed by the serial for loop in the code. Here the range and subrange are implemented as
blocked_range objects. Appendix C.3 says more about the mechanics of parallel_for.

TBB uses thread parallelism but does not, by itself, vectorize the code. It depends on the underlying
C++ compiler to do that. On the other hand, tiling does expose opportunities for vectorization, so if
the basic serial algorithm can be vectorized then typically the TBB code can be, too. Generally, the

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço ©	FCT-UNL	2017-18

TBB SAXPY Implementation

31

The image part with relationship ID rId2 was not found in the file.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 126 — #126

126 CHAPTER 4 Map

1 void saxpy_serial(
2 size_t n, // the number of elements in the vectors
3 float a, // scale factor
4 const float x[], // the first input vector
5 float y[] // the output vector and second input vector
6) {
7 for (size_t i = 0; i < n; ++i)
8 y[i] = a * x[i] + y[i];
9 }

LISTING 4.1

Serial implementation of SAXPY in C.

1 void saxpy_tbb(
2 int n, // the number of elements in the vectors
3 float a, // scale factor
4 float x[], // the first input vector
5 float y[] // the output vector and second input vector
6) {
7 tbb::parallel_for(
8 tbb::blocked_range<int>(0, n),
9 [&](tbb::blocked_range<int> r) {

10 for (size_t i = r.begin(); i != r.end(); ++i)
11 y[i] = a * x[i] + y[i];
12 }
13);
14 }

LISTING 4.2

Tiled implementation of SAXPY in TBB. Tiling not only leads to better spatial locality but also exposes
opportunities for vectorization by the host compiler.

functions for brevity throughout the book, though they are not required for using TBB. Appendix D.2
discusses lambda functions and how to write the equivalent code by hand if you need to use an old
C++ compiler.

The TBB code exploits tiling. The parallel_for breaks the half-open range [0,n) into subranges
and processes each subrange r with a separate task. Hence, each subrange r acts as a tile, which
is processed by the serial for loop in the code. Here the range and subrange are implemented as
blocked_range objects. Appendix C.3 says more about the mechanics of parallel_for.

TBB uses thread parallelism but does not, by itself, vectorize the code. It depends on the underlying
C++ compiler to do that. On the other hand, tiling does expose opportunities for vectorization, so if
the basic serial algorithm can be vectorized then typically the TBB code can be, too. Generally, the

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Cilk Plus SAXPY Implementation

32

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 127 — #127

4.2 Scaled Vector Addition (SAXPY) 127

performance of the serial code inside TBB tasks will depend on the performance of the code generated
by the C++ compiler with which it is used.

4.2.4 Cilk Plus
A basic Cilk Plus implementation of the SAXPY operation is given in Listing 4.3. The “parallel for”
syntax approach is used here, as with TBB, although the syntax is closer to a regular for loop. In fact,
an ordinary for loop can often be converted to a cilk_for construct if all iterations of the loop body
are independent—that is, if it is a map. As with TBB, the cilk_for is not explicitly vectorized but the
compiler may attempt to auto-vectorize. There are restrictions on the form of a cilk_for loop. See
Appendix B.5 for details.

4.2.5 Cilk Plus with Array Notation
It is also possible in Cilk Plus to explicitly specify vector operations using Cilk Plus array notation, as
in Listing 4.4. Here x[0:n] and y[0:n] refer to n consecutive elements of each array, starting with
x[0] and y[0]. A variant syntax allows specification of a stride between elements, using x[start:
length:stride]. Sections of the same length can be combined with operators. Note that there is no
cilk_for in Listing 4.4.

1 void saxpy_cilk(
2 int n, // the number of elements in the vectors
3 float a, // scale factor
4 float x[], // the first input vector
5 float y[] // the output vector and second input vector
6) {
7 cilk_for (int i = 0; i < n; ++i)
8 y[i] = a * x[i] + y[i];
9 }

LISTING 4.3

SAXPY in Cilk Plus using cilk_for.

1 void saxpy_array_notation(
2 int n, // the number of elements in the vectors
3 float a, // scale factor
4 float x[], // the input vector
5 float y[] // the output vector and offset
6) {
7 y[0:n] = a * x[0:n] + y[0:n];
8 }

LISTING 4.4

SAXPY in Cilk Plus using cilk_for and array notation for explicit vectorization.

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

OpenMP SAXPY Implentation

33

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 128 — #128

128 CHAPTER 4 Map

Uniform inputs are handled by scalar promotion: When a scalar and an array are combined with
an operator, the scalar is conceptually “promoted” to an array of the same length by replication.

4.2.6 OpenMP
Like TBB and Cilk Plus, the map pattern is expressed in OpenMP using a “parallel for” construct. This
is done by adding a pragma as in Listing 4.5 just before the loop to be parallelized. OpenMP uses a
“team” of threads and the work of the loop is distributed over the team when such a pragma is used.
How exactly the distribution of work is done is given by the current scheduling option.

The advantage of the OpenMP syntax is that the code inside the loop does not change, and the
annotations can usually be safely ignored and a correct serial program will result. However, as with the
equivalent Cilk Plus construct, the form of the for loop is more restricted than in the serial case. Also,
as with Cilk Plus and TBB, implementations of OpenMP generally do not check for incorrect paral-
lelizations that can arise from dependencies between loop iterations, which can lead to race conditions.
If these exist and are not correctly accounted for in the pragma, an incorrect parallelization will result.

4.2.7 ArBB Using Vector Operations
ArBB operates only over data stored in ArBB containers and requires using ArBB types to represent
elements of those containers. The ArBB dense container represents multidimensional arrays. It is
a template with the first argument being the element type and the second the dimensionality. The
dimensionality default is 1 so the second template argument can be omitted for 1D arrays.

The simplest way to implement SAXPY in ArBB is to use arithmetic operations directly over
dense containers, as in Listing 4.6. Actually, this gives a sequence of maps. However, as will be
explained in Section 4.4, ArBB automatically optimizes this into a map of a sequence.

In ArBB, we have to include some extra code to move data into “ArBB data space” and to invoke
the above function. Moving data into ArBB space is required for two reasons: safety and offload.
Data stored in ArBB containers can be managed in such a way that race conditions are avoided. For
example, if the same container is both an input and an output to a function, ArBB will make sure that

1 void saxpy_openmp(
2 int n, // the number of elements in the vectors
3 float a, // scale factor
4 float x[], // the first input vector
5 float y[] // the output vector and second input vector
6) {
7 #pragma omp parallel for
8 for (int i = 0; i < n; ++i)
9 y[i] = a * x[i] + y[i];

10 }

LISTING 4.5

SAXPY in OpenMP.

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

OpenMP SAXPY Performance

34

Vector	size	=	500,000,000

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Reduce

• Reduce is used to combine a collection of
elements into one summary value
• A combiner function combines elements

pairwise
• A combiner function only needs to be
associative to be parallelizable
• Example combiner functions:

– Addition
– Multiplication
– Maximum / Minimum

Sep	22,	2017 35Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Reduce

Sep	22,	2017 36

Serial	Reduction

Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 147 — #147

5.1 Reduce 147

1 template<typename T>

2 T reduce(
3 T (*f)(T,T), // combiner function
4 size_t n, // number of elements in input array
5 T a[] // input array
6) {
7 assert(n > 0);
8 T accum = a[0];
9 for (size_t i = 1; i < n; i++) {

10 accum = f(accum, a[i]);
11 }
12 return accum;
13 }

LISTING 5.2

Serial reduction in C++ for 1 or more elements.

Associativity and commutativity are not equivalent. While there are common mathematical operations
that are both associative and commutative, including addition; multiplication; Boolean AND, OR, and
XOR; maximum; and minimum (among others), there are many useful operations that are associative
but not commutative. Examples of operations that are associative but not commutative include matrix
multiplication and quaternion multiplication (used to compose sequences of 3D rotations). There are
also operations that are commutative but not associative, an example being saturating addition on
signed numbers (used in image and signal processing). More seriously, although addition and multipli-
cation of real numbers are both associative and commutative, floating point addition and multiplication
are only approximately associative. Parallelization may require an unavoidable reordering of floating
point computations that will change the result.

To see that only associativity is required for parallelization, consider the following:

s = a0 ⌦ a1 ⌦ a2 ⌦ a3 ⌦ a4 ⌦ a5 ⌦ a6 ⌦ a7

= (((((((a0 ⌦ a1) ⌦ a2) ⌦ a3) ⌦ a4) ⌦ a5) ⌦ a6) ⌦ a7)

= (((a0 ⌦ a1) ⌦ (a2 ⌦ a3)) ⌦ ((a4 ⌦ a5) ⌦ (a6 ⌦ a7))).

The first grouping shown is equivalent to the left half of Figure 5.1, the second grouping to the right
right half of Figure 5.1. Another way to look at this is that associativity allows us to use any order
of pairwise combinations as long as “adjacent” elements are intermediate sequences. However, the
second “tree” grouping allows for parallel scaling, but the first does not.

A good example of a non-associative operation is integer arithmetic with saturation. In saturating
arithmetic, if the result of an operation is outside the representable range, the result is “clamped” to
the closest representable value rather than overflowing. While convenient in some applications, such
as image and signal processing, saturating addition is not associative for signed integers.

The following example shows that saturating addition is not associative for signed bytes. Let �
be the saturating addition operation. A signed byte can represent an integer between �128 and 127

The	input	array	
cannot	be	empty!

Reduce

Sep	22,	2017 37

Serial	Reduction

Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 146 — #146

146 CHAPTER 5 Collectives

FIGURE 5.1

Serial and tree implementations of the reduce pattern for 8 inputs.

1 template<typename T>

2 T reduce(
3 T (*f)(T,T), // combiner function
4 size_t n, // number of elements in input array
5 T a[], // input array
6 T identity // identity of combiner function
7) {
8 T accum = identity;
9 for (size_t i = 0; i < n; ++i) {

10 accum = f(accum, a[i]);
11 }
12 return accum;
13 }

LISTING 5.1

Serial reduction in C++ for 0 or more elements.

5.1.1 Reordering Computations
To parallelize reduction, we have to reorder the operations used in the serial algorithm. There are many
ways to do this but they depend on the combiner function having certain algebraic properties.

To review some basic algebra, a binary operator ⌦ is considered to be associative or commutative
if it satisfies the following equations:

Associative: (a ⌦ b) ⌦ c = a ⌦ (b ⌦ c).
Commutative: a ⌦ b = b ⌦ a.

Reduce

Sep	22,	2017 38

Parallel	Reduction

Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Serial	Reduction

Implementation	later…

Reduce

• Vectorization

Sep	22,	2017 39Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Reduce

• Tiling is used to break chunks of work up for
workers to reduce serially

Sep	22,	2017 40Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Reduce – Add Example

Sep	22,	2017 41

1 2 45 9 7 0 1

Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Reduce – Add Example

Sep	22,	2017 42

1 2 45 9 7 0 1

28

12

3

8

21

29

28

29
Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Reduce – Add Example

Sep	22,	2017 43

1 2 45 9 7 0 1

Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Reduce – Add Example

Sep	22,	2017 44

1 2 45 9 7 0 1

3 9 116

12 17

29

29

Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Reduce

• We can “fuse” the map and reduce patterns

Sep	22,	2017 45Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Reduce

• Precision can become a problem with
reductions on floating point data

• Different orderings of floating point data can
change the reduction value

Sep	22,	2017 46Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Reduce Example: Dot Product

• 2 vectors of same length

• Map (x) to multiply the components

• Then reduce with (+) to get the final answer

Sep	22,	2017 47

Also:	

Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

a · b =
n�1X

i=0

aibi

Dot Product – Example Uses
• Essential operation in physics, graphics, video games,…

• Gaming analogy: in Mario Kart, there are “boost pads” on the ground
that increase your speed

– red vector is your speed (x and y direction)
– blue vector is the orientation of the boost pad (x and y direction). Larger

numbers are more power.

Sep	22,	2017 48

Photo	source

How much boost will you get? For the
analogy, imagine the pad multiplies
your speed:
• If you come in going 0, you’ll get

nothing
• If you cross the pad perpendicularly,

you’ll get 0 [just like the banana
obliteration, it will give you 0x boost in
the perpendicular direction]

Ref:	http://betterexplained.com/articles/vector-calculus-understanding-the-dot-product/

Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

Dot Product – Serial implem.

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 49

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 155 — #155

5.3 Dot Product 155

1 float sprod(
2 size_t n,
3 const float a[],
4 const float b[]
5) {
6 float res = 0.0f;
7 for (size_t i = 0; i < n; i++) {
8 res += a[i] * b[i];
9 }

10 return res;
11 }

LISTING 5.3

Serial implementation of dot product in C++. The reduction in this example is based on a loop-carried
dependency and is not parallelizable without reordering the computation.

accumulator, the input, and the output has been used in order to simplify the example. In some of the
implementations we will show how to use a different type for performing the accumulations.

5.3.3 SSE Intrinsics
Listing 5.4 gives an explicitly vectorized version of the dot product computation. This example uses
SSE intrinsics. SSE stands for Streaming SIMD Extensions and is an instruction set extension sup-
ported by Intel and AMD processors for explicitly performing multiple operations in one instruction. It
is associated with a set of registers that can hold multiple values. For SSE, these registers are 128 bits
wide and can store two double-precision floating point values or four single-precision floating point
values.

When using SSE intrinsics, special types are used to express pairs or quadruples of values that may
be stored in SSE registers, and then functions are used to express operations performed on those values.
These functions are recognized by the compiler and translated directly into machine language.

Use of intrinsics is not quite as difficult as writing in assembly language since the compiler does
take care of some details like register allocation. However, intrinsics are definitely more complex than
the other programming models we will present and are not as portable to the future. In particular, SIMD
instruction sets are subject to change, and intrinsics are tied to specific instruction sets and machine
parameters such as the width of vector registers.

For (relative) simplicity we left out some complications so this example is not really a full solution.
In particular, this code does not handle input vectors that are not a multiple of four in length.

Some reordering has been done to improve parallelization. In particular, this code really does four
serial reductions at the same time using four SSE register “lanes”, and then combines them in the end.
This uses the implementation pattern for reduce discussed in Section 5.1.2, but with four lanes. Like
the other examples that parallelize reduce, some reordering of operations is required, since the exact
order given in the original serial implementation is not parallelizable. This particular ordering assumes
commutativity as well as associativity.

a · b =
n�1X

i=0

aibi

Dot Product – Vectorization
with SSE

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 156 — #156

156 CHAPTER 5 Collectives

1 float sse_sprod(
2 size_t n,
3 const float a[],
4 const float b[]
5) {
6 assert(0 == n % 4); // only works for N, a multiple of 4
7 __m128 res, prd, ma, mb;
8 res = _mm_setzero_ps();
9 for (size_t i = 0; i < n; i += 4) {

10 ma = _mm_loadu_ps(&a[i]); // load 4 elements from a
11 mb = _mm_loadu_ps(&b[i]); // load 4 elements from b
12 prd = _mm_mul_ps(ma,mb); // multiple 4 values elementwise
13 res = _mm_add_ps(prd,res); // accumulate partial sums over 4�tuples
14 }
15 prd = _mm_setzero_ps();
16 res = _mm_hadd_ps(res, prd); // horizontal addition
17 res = _mm_hadd_ps(res, prd); // horizontal addition
18 float tmp;
19 _mm_store_ss(&tmp, res);
20 return tmp;
21 }

LISTING 5.4

Vectorized dot product implemented using SSE intrinsics. This code works only if the number of elements in
the input is a multiple of 4 and only on machines that support the SSE extensions. This code is not parallelized
over cores.

Other problems with the SSE code include the fact that it is machine dependent, verbose, hard
to maintain, and it only takes advantage of vector units, not multiple cores. It would be possible to
combine with code with a Cilk Plus or TBB implementation in order to target multiple cores, but that
would not address the other problems. In general, machine dependence is the biggest problem with this
code. In particular, new instruction set extensions such as AVX are being introduced that have wider
vector widths, so it is better to code in a way that avoids dependence on a particular vector width or
instruction set extension.

5.3.4 TBB
Listing 5.5 uses TBB’s algorithm template parallel_reduce. This template recursively decomposes
a reduction into smaller subreductions and reduces each base case using a functor provided by the user.
Here that functor uses std::inner_product to do serial reduction, which the compiler may be able
to automatically vectorize. The base case code can also be used for map–reduce fusion, as done here:
the std::inner_product call in the base case does both the multiplications and a reduction over the
tile it is given. The user must also provide a functor to combine the results of the base cases, which
here is the functor std::plus<float>.

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 50

a · b =
n�1X

i=0

aibi

Dot Product – Cilk+ with Array
Notation

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 159 — #159

5.3 Dot Product 159

1 float cilkplus_sprod(
2 size_t n,
3 const float a[],
4 const float b[]
5) {
6 return __sec_reduce_add(a[0:n] * b[0:n]);
7 }

LISTING 5.7

Dot product implemented in Cilk Plus using array notation.

1 float cilkplus_sprod_tiled(
2 size_t n,
3 const float a[],
4 const float b[]
5) {
6 size_t tilesize = 4096;
7 cilk::reducer_opadd<float> res(0);
8 cilk_for (size_t i = 0; i < n; i+=tilesize) {
9 size_t m = std::min(tilesize,n�i);

10 res += __sec_reduce_add(a[i:m] * b[i:m]);
11 }
12 return res.get_value();
13 }

LISTING 5.8

Dot product implementation in Cilk Plus using explicit tiling.

initialized with any value, because this value is not assumed to be the identity. A reducer_opadd<
T> assumes that the identity of + is T(), which by C++ rules constructs a zero for built-in types. The
min expression in the code deals with a possible partial “boundary” tile, so the input does not have to
be a multiple of the tile size.

Listing 5.8 shows how to modify the reduction to do double-precision accumulation. The casts
to double-precision are also placed to result in the use of double-precision multiplication. These
casts, like the multiplication itself, are really examples of the map pattern that are being fused into
the reduction. Of course, if you wanted to do single-precision multiplication, you could move the
cast to after the __sec_reduce_add. Doing the multiplication in double precision may or may
not result in lower performance, however, since a dot product will likely be performance limited
by memory bandwidth, not computation. Likewise, doing the accumulation in double precision will
likely not be a limiting factor on performance. It might increase communication slightly, but for rea-
sonably large tile sizes most of the memory bandwidth used will result from reading the original
input.

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 51

a · b =
n�1X

i=0

aibi

Not	implemented	in	gcc

Dot Product – Cilk+ with Explicit
Tiling

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 159 — #159

5.3 Dot Product 159

1 float cilkplus_sprod(
2 size_t n,
3 const float a[],
4 const float b[]
5) {
6 return __sec_reduce_add(a[0:n] * b[0:n]);
7 }

LISTING 5.7

Dot product implemented in Cilk Plus using array notation.

1 float cilkplus_sprod_tiled(
2 size_t n,
3 const float a[],
4 const float b[]
5) {
6 size_t tilesize = 4096;
7 cilk::reducer_opadd<float> res(0);
8 cilk_for (size_t i = 0; i < n; i+=tilesize) {
9 size_t m = std::min(tilesize,n�i);

10 res += __sec_reduce_add(a[i:m] * b[i:m]);
11 }
12 return res.get_value();
13 }

LISTING 5.8

Dot product implementation in Cilk Plus using explicit tiling.

initialized with any value, because this value is not assumed to be the identity. A reducer_opadd<
T> assumes that the identity of + is T(), which by C++ rules constructs a zero for built-in types. The
min expression in the code deals with a possible partial “boundary” tile, so the input does not have to
be a multiple of the tile size.

Listing 5.8 shows how to modify the reduction to do double-precision accumulation. The casts
to double-precision are also placed to result in the use of double-precision multiplication. These
casts, like the multiplication itself, are really examples of the map pattern that are being fused into
the reduction. Of course, if you wanted to do single-precision multiplication, you could move the
cast to after the __sec_reduce_add. Doing the multiplication in double precision may or may
not result in lower performance, however, since a dot product will likely be performance limited
by memory bandwidth, not computation. Likewise, doing the accumulation in double precision will
likely not be a limiting factor on performance. It might increase communication slightly, but for rea-
sonably large tile sizes most of the memory bandwidth used will result from reading the original
input.

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 52

a · b =
n�1X

i=0

aibi

Dot Product – OpenMP

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 160 — #160

160 CHAPTER 5 Collectives

5.3.6 OpenMP
An OpenMP implementation of dot product is shown in Listing 5.10. In OpenMP, parallelization of this
example is accomplished by adding a single line annotation to the serial implementation. However, the
annotation must specify that res is a reduction variable. It is also necessary to specify the combiner
operator, which in this case is (floating point) addition.

What actually happens is that the scope of the loop specifies a parallel region. Within this region
local copies of the reduction variable are made and initialized with the identity associated with the
reduction operator. At the end of the parallel region, which in this case is the end of the loop’s scope, the
various local copies are combined with the specified combiner operator. This code implicitly does map–
reduce fusion since the base case code, included within the loop body, includes the extra computations
from the map.

1 double cilkplus_sprod_tiled2(
2 size_t n,
3 const float a[],
4 const float b[]
5) {
6 size_t tilesize = 4096;
7 cilk::reducer_opadd<double> res(0);
8 cilk_for (size_t i = 0; i < n; i+=tilesize) {
9 size_t m = std::min(tilesize,n�i);

10 res += __sec_reduce_add(double(a[i:m]) * double(b[i:m]));
11 }
12 return res.get_value();
13 }

LISTING 5.9

Modification of Listing 5.8 with double-precision operations for multiplication and accumulation.

1 float openmp_sprod(
2 size_t n,
3 const float *a,
4 const float *b
5) {
6 float res = 0.0f;
7 #pragma omp parallel for reduction(+:res)
8 for (size_t i = 0; i < n; i++) {
9 res += a[i] * b[i];

10 }
11 return res;
12 }

LISTING 5.10

Dot product implemented in OpenMP.

Sep	22,	2017 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 53

a · b =
n�1X

i=0

aibi

The END

Sep	22,	2017 54Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18

