

The Panorama of Parallel and High Performance Computing

Concurrency and Parallelism — 2017-18 Master in Computer Science (Mestrado Integrado em Eng. Informática)

Joao Lourenço <joao.lourenco@fct.unl.pt>

Slides based in: https://computing.llnl.gov/tutorials/parallel_comp/

Bibliograpy

Chapter 1 of book

McCool M., Arch M., Reinders J.; Structured Parallel Programming: Patterns for Efficient Computation; Morgan Kaufmann (2012); ISBN: 978-0-12-415993-8

- Traditionally, software has been written for serial computation:
 - To be run on a single computer having a single Central Processing Unit (CPU)
 - A problem is broken into a discrete series of instructions
 - Instructions are executed one after another (sequentially)
 - Only one instruction may execute at any moment in time

- Is the simultaneous use of multiple compute resources to solve a computational problem:
 - To be executed using multiple processors

- Is the simultaneous use of multiple compute resources to solve a computational problem:
 - To be executed using multiple processors
 - A problem is broken into discrete parts that can be solved concurrently

- Is the simultaneous use of multiple compute resources to solve a computational problem:
 - To be executed using multiple processors
 - A problem is broken into discrete parts that can be solved concurrently
 - Each part is further broken own to a series of instructions

- Is the simultaneous use of multiple compute resources to solve a computational problem:
 - To be executed using multiple processors
 - A problem is broken into discrete parts that can be solved concurrently
 - Each part is further broken own to a series of instructions
 - Instructions from each part execute simultaneously on different processors

- Is the simultaneous use of multiple compute resources to solve a computational problem:
 - To be executed using multiple processors
 - A problem is broken into discrete parts that can be solved concurrently
 - Each part is further broken own to a series of instructions
 - Instructions from each part execute simultaneously on different processors
 - An overall control/coordination mechanism is employed

- Is the simultaneous use of multiple compute resources to solve a computational problem:
 - To be executed using multiple processors
 - A problem is broken into discrete parts that can be solved concurrently
 - Each part is further broken own to a series of instructions
 - Instructions from each part execute simultaneously on different processors
 - An overall control/coordination mechanism is employed

- The computational problem should be able to:
 - Be broken apart into discrete pieces of work that can be solved simultaneously
 - Execute multiple program instructions at any moment in time
 - Be solved in less time with multiple compute resources than with a single compute resource
- The computing resources might be:
 - A single computer with multiple processors
 - An arbitrary number of computers connected by a network (real or virtual systems)
 - A combination of both

login / remote partition server node

gateway node

The Real World is Massively Parallel

- In the natural world, many complex, interrelated events are happening at the same time, yet within a temporal sequence.
- Compared to serial computing, parallel computing is much better suited for modeling, simulating and understanding complex, real world phenomena.
- For example, imagine modeling serially the following systems.

The Real World is Massively Parallel

Galaxy Formation

Planetary Movments

Climate Change

Rush Hour Traffic

Plate Tectonics

Weather

Auto Assembly

Jet Construction

Uses for Parallel Computing

 Modeling difficult problems in many areas of science and engineering

Uses for Parallel Computing

Industrial and Commercial

- Oil exploration
- Web search engines, web based business services
- Medical imaging and diagnosis
- Pharmaceutical design
 - Financial and economic modeling
- Management of national and multi-national corporations
- Advanced graphics and virtual reality, particularly in the entertainment industry
- Networked video and multi-media technologies
- Collaborative work environments

Why Use Parallel Computing?

- Save time and/or money
 - In theory, throwing more resources at a task will shorten its time to completion, with potential cost savings. Parallel computers can be built from cheap, commodity components.

Why Use Parallel Computing?

- Solve larger problems
 - Many problems are so large and/or complex that it is impractical or impossible to solve them on a single computer. For example:
 - "Grand Challenge" (en.wikipedia.org/wiki/Grand_Challenge) problems requiring PetaFLOPS and PetaBytes of computing resources.
 - Web search engines/databases processing millions of transactions per second.

Why Use Parallel Computing?

- Use of non-local resources
 - Using compute resources on a wide area network, or even the Internet when local compute resources are scarce. For example:
 - SETI@home (setiathome.berkeley.edu) over 1.6 million users, 4 million computers, in nearly every country in the world. Source: https://setiathome.berkeley.edu/stats.php (Sep, 2016).
 - Folding@home (folding.stanford.edu) uses over 320,000 computers globally (Sep, 2016)

Limits to serial computing

- Both physical and practical reasons pose significant constraints to simply building ever faster serial computers:
 - Transmission speeds
 - the speed of a serial computer is directly dependent upon how fast data can move through hardware. Absolute limits are the speed of light (30 cm/nanosecond) and the transmission limit of copper wire (9 cm/nanosecond). Increasing speeds requires increasing proximity of processing elements.
 - Limits to miniaturization
 - processor technology is allowing an increasing number of transistors to be placed on a chip. However, even with molecular or atomic-level components, a limit will be reached on how small components can be.

Limits to serial computing

Limits to serial computing

- Both physical and practical reasons pose significant constraints to simply building ever faster serial computers:
 - Economic limitations
 - it is increasingly expensive to make a single processor faster.
 Using a larger number of moderately fast commodity processors to achieve the same (or better) performance is less expensive.
 - Current computer architectures are increasingly relying upon hardware level parallelism to improve performance:
 - Multiple execution units
 - Pipelined instructions
 - Multi-core

The Future

- During the past 20+ years, the trends indicated by ever faster networks, distributed systems, and multi-processor computer architectures (even at the desktop level) clearly show that parallelism is the future of computing.
- In this same time period, there has been a greater than 1000x increase in supercomputer performance, with no end currently in sight.
- The race is already on for Exascale Computing! (10¹⁸ FLOPS)

Performance development

Top500.org

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway , NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
2	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P, NUDT National Super Computer Center in Guangzhou China	3,120,000	33,862.7	54,902.4	17,808
3	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect , NVIDIA Tesla P100 , Cray Inc . Swiss National Supercomputing Centre (CSCS) Switzerland	361,760	19,590.0	25,326.3	2,272
4	Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x , Cray Inc. DOE/SC/Oak Ridge National Laboratory United States	560,640	17,590.0	27,112.5	8,209
5	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom , IBM DOE/NNSA/LLNL United States	1,572,864	17,173.2	20,132.7	7,890

Sunway TaihuLight System

Figure 4: Overview of the Sunway TaihuLight System

Cores per socket

Accelerators

The Future

The END