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MapReduce



MAPREDUCE IS AN ALGORITHMIC FRAMEWORK, LIKE DIVIDE-AND-CONQUER or backtracking,
rather than a specific algorithm. The pair of operations, map and reduce, is found in LISP and
other functional languages. MapReduce has been getting a lot of buzz as an algorithmic
framework that can be executed concurrently. Google has made its fortune on the application
of MapReduce within a distributed network of thousands of servers (see “MapReduce:
Simplified Data Processing on Large Clusters” in Communications of the ACM [2008] by Jeffrey
Dean and Sanjay Ghemawat), which has only served to heighten awareness and exploration
of this method.

The idea behind map is to take a collection of data items and associate a value with each item
in the collection. That is, to match up the elements of the input data with some relevant value
to produce a collection of key-value pairs. The number of results from a map operation should
be equal to the number of input data items within the original collection. In terms of
concurrency, the operation of pairing up keys and values should be completely independent
for each element in the collection.

The reduce operation takes all the pairs resulting from the map operation and does a reduction
computation on the collection. As I’ve said before, the purpose of a reduction is to take in a
collection of data items and return a value derived from those items. Parallel sum (from
Chapter 6) is an example of a reduction computation. In more general terms, we can allow the
reduce operation to return with zero, one, or any number of results. This will all depend on
what the reduction operation is computing and the input data from the map operation.

Before looking at the implementation and other details, let’s look at an example of MapReduce
in action. Consider the task of counting the number of vowels and consonants in the following
sentence:

The quick brown fox jumps over the lazy dog.

In my head, I run through the sentence, character by character, once to count the consonants
and then again to count the vowels. The results would then be two integers: the number of
vowels (12) and the number of consonants (23). Did you only count 11 vowels? Since “lazy”
has two syllables, which requires two vowel sounds, there must be at least two vowels. Thus,
“y” is doing duty as a vowel in this sentence. Example 7-1 has pseudocode of the MapReduce
operation that would compute these values. For this example, S is the string of characters
(array) holding the sentence.

EXAMPLE 7-1. MapReduce pseudocode example

// Map
  for i = 1 to length(S) {
    if (S[i] is a consonant)
      generate_pair(key[i]=S[i], value[i]=1);
    else
      generate_pair(key[i]=S[i], value[i]=-1);
  }
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// Reduce
  cCount = 0; vCount = 0;
  for i = 1 to length(S) {
    if (value[i] > 0) cCount += value[i];
    else              vCount += abs(value[i]);
  }

For the given data set, S, the MapReduce solution first maps a value to each letter in order to
create 35 key-value (letter-integer) pairs. The choice of values depends on whether the letter
is a consonant (1) or a vowel (−1). The reduction operation will take each key-value pair and
add the value into one of two counters based on the type of letter contained in the key.

N O T E
We will need some way to identify “y” as a vowel. This identification will need to influence

the key-value pair created in the map phase so that the reduce computation can add the

associated value to the correct counter.

If we wrote code for this letter-counting operation in serial, we could have simply examined
each letter in turn and incremented the proper counter. In the (serial) MapReduce variation
(Example 7-1), we’re required by the framework to use the values associated with the keys in
the reduction computation. While it may seem to be more work, this difference creates the
situation where the data is divorced from the algorithm and makes the reduction computations
more independent.

Map As a Concurrent Operation
Look back at the pseudocode of the vowel/consonant counting algorithm in Example 7-1. Can
you see that the creation of each key-value pair in the map phase would be independent of
every other pair creation? Simply divide the letters among threads and create key-value pairs
for each letter. One goal I would urge you to keep in mind when using MapReduce is to make
the reduction computation as simple as possible. This is why the algorithm in Example 7-1
decided the category of each letter in the map phase.

An alternate mapping would assign a value of 1 to each key (character) and let the reduce
phase decide whether the key is a vowel or consonant. The context of the keys that exists in
the map phase may not be available when the reduction computation is executed. Or, if not
unavailable, it may require extra data to preserve the context and correctly process values in
the reduction. Determining whether to label “y” as a consonant or a vowel requires the context
of the word itself. If the map and reduce operations were in different functions and we used
the alternate mapping of 1 for all keys, we would need to send the reduce function the context
(the sentence) in order to classify the “y” properly.
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Just to hammer one more nail into this idea, consider the classic MapReduce example of finding
pages from a document (or set of documents) that contain a key phrase or word of interest.
Since we might not be able to find the exact phrase on any pages that we want to search, we
can devise a search-rating scheme that could rank pages that might have some subset of words
in our phrase. For example, pages containing the exact phrase will be given the highest rating,
pages that contain a subphrase (subset of words from the original phrase in the same order and
next to each other) will be given slightly lower ratings, and pages that have disjointed words
from the phrase will be given even lower ratings. For the final results of this example, we could
specify the output as a list of the 20 pages with the highest scores.

The mapping computation should create key-value pairs with a pointer to one page of the
document(s) as the key and the search rating of that page as the value. The rating of each page
with regard to the search phrase is completely independent of rating any other page. The reduce
phase now simply selects the 20 pages with the highest scores.

Implementing a Concurrent Map

How do you implement the map phase for concurrent execution? I’m sorry to say that I can’t
tell you, because each application that uses MapReduce will likely be different. So, the details
are going to be up to you and will be based on the computational needs of the code. However,
I can give you some general guidelines.

Whenever you find MapReduce applicable, the mapping operation will always be a data
decomposition algorithm. You will have to turn a collection of data into key-value pairs. The
items from the collection of data may require some “massaging” to determine the consequent
key value. Or the map might simply attach a key to the value, or vice versa if the data is to be
used as a key.

Whatever processing needs to be done in the map phase, you must design it with the reduce
phase in mind. By doing more work in the map phase, you lessen the amount of work needed
in the reduction operation and make it easier overall to write and maintain the MapReduce
algorithm. The best reduce is going to be a single operation that you can apply to both individual
elements and partial reduction results (if the reduce algorithm uses them). Writing a two-stage
reduction (e.g., deciding on the type of a letter and adding a value to the right counter) can
needlessly complicate your concurrent implementation.

Since the mapping operation on individual elements is independent of the computation on
any other data item (Simple Rule 1), there won’t be any data races or other conflicts. Of course,
there will always be the exception that will prove me wrong on this. If you find that
synchronization is necessary to avoid a data race, reexamine the mapping computation to see
whether you should handle that data race in the reduce phase. Also, you may find that
MapReduce is not the best algorithm for the problem you are trying to parallelize.

Finally, be aware of load balancing issues in the map computations. If you have something as
simple as attaching a count value to a data item key (e.g., the letter counting example), then
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all of the individual map operations will take about the same amount of time, and you can
easily divide them up with a static schedule. If you have a case where the computation time
on individual elements will vary (e.g., finding key words and phrases within documents of
different sizes), a more dynamic schedule of work to threads will be best.

Reduce As a Concurrent Operation
As I recommended in the previous chapter, if you have the chance, use either OpenMP or Intel
TBB to do reduction computations. All of the grunt work and coordination of threads and
partial values goes on “behind the scenes.” Why would you want to do any heavy lifting if you
don’t have to? Plus, making use of code that is already written and debugged will give you
more of a warm fuzzy feeling about your concurrent application.

If you don’t have the option of using the reduction algorithms built into TBB or OpenMP, you
will need an explicit threads solution. Example 6-4 includes a handcoded reduction for
summing up all the items within an integer array. You can use this as a model for implementing
reduce when there are few threads.

For this chapter, though, I want to present an alternative that doesn’t use the serial processing
at the final step to combine the partial results from the previous independent computations.
Let’s again take the summing of all elements from an array as the specific problem to be solved.
As with the code in Example 6-4, we’ll use Pthreads as the explicit threading library for
implementation.

Handcoded Reduction

To get started, each thread working on the reduction is assigned a nonoverlapping chunk of
the overall data set. Any of the previously discussed methods that ensures all of the data are
assigned will work. A static division of data is best. Next, each thread calculates the sum of all
the items assigned. This will yield a number of partial sums equal to the number of threads.
At this point, we can use the PRAM version of the parallel sum algorithm presented in
Example 6-2 (one thread per data item to be summed). However, since we probably don’t have
lockstep execution of threads built into the hardware, we will need to coordinate the threads’
executions on the data and with each other.

As in Example 6-4, we will store the partial sums in separate elements of a global array. Threads
use the assigned ID for the index into the global array gSum. We will compute the final sum
concurrently using the global array data. The first element within the gSum array (index 0) will
hold the computed total for the elements of the original array. Figure 7-1 shows a
representation of the concurrent computations that we will need to take the partial sums and
add them together for the final answer.
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FIGURE 7-1. Reduction computation

Each array displayed in Figure 7-1 represents the contents of the gSum array after a round of
computation. The arrows indicate where data is read from and where the results are stored in
each round. The plus sign (+) within the circle is the combining operation (addition for this
example) used in the reduction. The grayed numbers simply indicate that the data within that
element of the array is no longer needed in further rounds of computation. For brevity, I’ve
limited the example to eight threads. I think that once you’ve seen how two or three rounds
are computed, you’ll easily be able to extrapolate this algorithm to any number of threads.

In the first round (Add consecutive 20 element pairs), each thread whose ID is a multiple of 2
(21) reads the value stored in the element indexed by [thread ID] + 1 (20)—if such an element
is part of the array—and adds this value to the value stored in the element indexed with the
thread’s ID. In the second round (Add consecutive 21 element pairs), each thread whose ID is
a multiple of 4 (22) reads the value stored in the element indexed by [thread ID] + 2 (21)—if
such an element is part of the array—and adds this value to the value stored in the element
indexed with the thread’s ID. In the third round (Add consecutive 22 element pairs), each
thread whose ID is a multiple of 8 (23) reads the value stored in the element indexed by [thread
ID] + 4 (22)—if such an element is part of the array—and adds this value to the value stored
in the element indexed with the thread’s ID, und so veiter (or “and so on” for my English
readers). The pattern for each successive round simply repeats with the indexes involved
growing by a factor of two.

The code to implement a reduction summation on an array of integers is given in
Example 7-2. This code is modified from the code given in Example 6-4 with the differences
highlighted in bold text.
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EXAMPLE 7-2. Reduction code to sum elements of an array

#include <pthread.h>
#include <stdio.h>
#include "pth_barrier.h"

#define NUM_THREADS 128

int N;  // number of elements in array A
int *A;
int gSum[NUM_THREADS];  // global storage for partial results
pth_barrier_t B;

void *SumByReduction (void *pArg)
{
  int tNum = *((int *) pArg);
  int lSum = 0;
  int start, end, i;

  start = ((float)N/NUM_THREADS) * tNum;
  end =   ((float)N/NUM_THREADS) *(tNum+1);
  if (tNum == (NUM_THREADS-1)) end = N;
  for (i = start; i < end; i++)
    lSum += A[i];
  gSum[tNum] = lSum;

  pth_barrier(&B);
  int p2 = 2;
  for (i = 1; i <= NUM_THREADS; i *= 2) {
    if ((tNum % p2) == 0)
      if (tNum+i < NUM_THREADS) gSum[tNum] += gSum[tNum+i];
    p2 *= 2;
    pth_barrier(&B);
  }
  free(pArg);
}

int main(int argc, char* argv[])
{
  int j, sum = 0;
  pthread_t tHandles[NUM_THREADS];

  InitializeArray(A,&N);  // get values into A array; not shown
  pth_barrier_init(&B, NUM_THREADS);
  for (j = 0; j < NUM_THREADS; j++) {
    int *threadNum = new(int);
    *threadNum = j;
    pthread_create(&tHandles[j], NULL, SumByReduction, (void *)threadNum);
  }
// just wait for thread  with id=0 to terminate; others will follow
  pthread_join(&tHandles[0], NULL);
  printf("The sum of array elements is %d\n", gSum[0]);
  return 0;
}
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The first thing to notice about the code in this example is the inclusion of another header file,
pth_barrier.h, and a barrier object globally declared by pth_barrier_t B. A barrier is a
synchronization that will pause threads at the barrier point in the code until all threads working
in the computation have reached that same point. Once all threads have arrived, the barrier
releases the threads to begin execution of the succeeding code. This is like a starting line at a
race that doesn’t allow the competitors to start until all racers have reached the start line; once
all the racers are ready, they are allowed to begin the event. See “A Barrier Object
Implementation” on page 134 for details about implementing such a barrier object with the
POSIX threads library.

If you look at the main() function, you will see the initialization of the array, the initialization
of the barrier object, and the creation of threads to execute the SumByReduction() function. The
main thread then waits for only the first thread created. This thread will have an ID
(threadNum) of 0, and the pthread_t value returned from pthread_create() is stored in the index
0 element of the tHandles array. Since the final result will be in the gSum[0] location, and this
“0” thread computes that final value and stores it in the location, once the 0 thread has
terminated, the final sum has been stored and is ready to be used.

The first half of the SumByReduction() function code is taken verbatim from the corresponding
function found in Example 6-4. The second half (in the bold text) is the reduction of the partial
sums generated by the threads into a single summation value. Before reduction of the partial
sums can begin, all of the partial sums must be computed. Even though we could assume that
an equal distribution of chunks of data array will be assigned to each thread, we cannot assume
(Simple Rule 6) that all threads will finish at the exact same time to store the partial sum result
in the proper gSum slot. While there could be more than enough resources to assign one thread
to a core exclusively, there are myriads of other factors within the operating system or the
processor hardware that can slow down or inhibit the computation of one or more threads.
Thus, we need to place a barrier after the assignment of each thread’s partial sum into the
gSum array. After the last thread has reached the barrier, we know that all the partial sums have
been stored and the computation can safely proceed to the reduction. The whole key to the
reduction algorithm working correctly (and being able to prove that this is a correct algorithm)
is the barrier synchronization.

The reduction computation mimics the combining of data in Figure 7-1. The for loop counts
off the rounds, with the i variable serving as the offset into the gSum array from which a thread
will read data during the current round. The loop variable is multiplied by 2 in each iteration.

The p2 variable will be powers of 2 that are used to determine which threads need to read data
from the gSum array and add that value to the value found in that thread’s assigned gSum element.
The outer if-then statement in the body of the loop makes this determination by dividing a
thread’s ID number by p2 and allowing those threads that are evenly divisible by the current

132  C H A P T E R  7 : ಗM A P R E D U C E



p2 to proceed to the inner if-then statement. The inner conditional expression (tNum+i <
NUM_THREADS) will ensure that the proposed element of the gSum array to be read actually exists
within the array bounds and, if so, increments the value of the thread’s gSum slot with the value
accessed.

Regardless of whether or not a thread was allowed to participate in the addition operation,
every thread multiplies the local copy of p2 by 2 and then waits at a barrier until all threads
have completed whatever computation was allowed within the current round of the reduction.
All threads will execute something within each round of the reduction, even though half as
many are doing useful work in a given round than in the previous round. This may seem like
a waste of resources. However, since all threads must meet up at the barrier, we keep each
thread running and doing a minimal amount of work (doubling the value of p2 in each round)
to keep in sync with those threads that are still doing constructive work.

N O T E
While I’ve never written one or seen an implementation of one, creating a barrier that could

work with a different number of threads each time it was used sounds like such a complex

and daunting task. I’m afraid that the execution of such a beast would have massive amounts

of overhead—certainly much more than keeping some threads alive for a few microseconds

past the time they are doing anything practical.

Once you’ve had a chance to digest the code in Example 7-2 and probably traced the concurrent
execution of the code using the example given in Figure 7-1, you may be asking yourself if
this will work with a number of threads that is not a power of 2. All the instructions seem to
be predicated on powers of 2, but there may come a time when you can only use 14 or 57
threads for a reduction operation. Rest assured, the code does work for a number of threads
that is not a power of 2.

To prove this to yourself, try tracing the algorithm with nine threads (#define NUM_THREADS 9).
The gSum array will be indexed from [0] to [8] (visualize another element attached to the right
of the gSum array shown in Figure 7-1). There will be four rounds to the reduction algorithm,
where i will be assigned values 1, 2, 4, and 8. The first eight elements of the gSum array will be
processed as shown in Figure 7-1 during the first three rounds of the algorithm. The ninth
element (index [8]) will be unchanged, since all potential elements of gSum that would be read
and used to add into the contents of that slot are not within the bounds of the array. At the
fourth round, the 0 thread will read the contents of gSum[8] (0 + i = 8) and add that value to
the contents of gSum[0]. You can reproduce this idea to any number of threads between 9 and
16 (or any other nonpower of 2) where the upper slots of gSum will be summed (via reduction)
into the index [8] element during the first three rounds, and the fourth will bring the final
total into gSum[0].

Speaking of odd numbers of threads, did you notice the use of the (float) cast in the
computation of start and end in Example 7-2? Rather than hoping for a number of iterations

R e d u c e  A s  a  C o n c u r r e n t  O p e r a t i o n  133



that will be evenly divisible by the number of threads, you can use this method to divide
iterations more evenly than integer division. For example, suppose that you have a loop with
122,429 iterations to be divided among 16 threads. If you use integer division and an
assignment statement for the last thread to use 122,429 for its end value, each thread would
be assigned 7,651 iterations, except the last one, which would get 7,664 (if you don’t have a
calculator handy, just trust me on the arithmetic). When using floating-point division that
truncates fractional parts when recast back to (int), 13 of the threads will be assigned 7,652
iterations and the other 3 get 7,651. If the time to compute one iteration is short, 13 extra
iterations assigned to the last thread might not have much impact. If an iteration takes 30
seconds to compute, waiting six and a half minutes for one thread to finish is a serious load
balance issue. Regardless of the time per iteration, for static scheduling of loop iterations, using
(float) when computing the start and end bounds will always generate a better load balance
between threads.

A Barrier Object Implementation

A barrier object can synchronize thread execution at a specific point within the code. Threads
are blocked at a barrier until all threads have reached the barrier point, and then all threads
are released. With this description, we can develop the code to implement a barrier object to
be used in Pthreads codes.

A Pthreads condition variable will hold threads until they can be released. So, we need a
condition variable and the associated mutex object. In addition, the barrier must know the
total number of threads that are participating in the barrier and how many threads have arrived
at the barrier. When the final thread has come to the barrier, use that thread to release all the
other waiting threads and to reset the counters of the barrier for the next use.

In my initial implementations of the barrier object, since I was using the count of threads that
have arrived as the condition to keep threads waiting, I had thought to have the last thread
exiting the barrier do the reset of all the counters. By keeping the count of threads at the barrier
equal to 0 until the last thread was ready to exit, I didn’t take into account the chance of another
thread reentering the barrier, acquiring the mutex, checking the conditional expression, and
passing over the pthread_cond_wait(). When a thread external to the while loop usurps the
mutex and isn’t forced to wait as it should be, it is known as an intercepted wait. In this case,
the intercepted wait of an external thread entering the barrier before all threads previously
waiting on the barrier had left can lead to a deadlock.

Thus, I need a conditional expression for the condition variable that doesn’t rely on the count
of threads at the barrier. I’ve chosen to “color” each use of a barrier in a cyclic fashion. When
threads enter a barrier, they must wait for all threads to enter the barrier while the barrier is
the same color. When the final thread shows up, the color of the (future) barrier changes and
the counter resets (for the next use). Threads that are signaled to wake up check the barrier
color. If it is not the same color that they found when they entered, they know that the final
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thread has arrived and they can now exit the barrier. The structure for the pth_barrier_t type
is given here:

typedef struct {
  pthread_mutex_t m;
  pthread_cond_t c;
  int count, color, numThreads;
} pth_barrier_t:

Following the convention of other Pthreads synchronization objects, I have written an
initializing function to set up a barrier. This function simply calls the initialization functions
for the condition variable and mutex. The total number of threads that will always participate
in each use of the barrier is sent as a parameter to the initialization function. This value sets
the two integer counters within the object. The count is decremented as threads come into the
barrier and will reach 0 when the final thread has arrived. The color will actually toggle
between “0” and “not 0,” but I’ve added a definition of RED to be used in the initialization, for
some extra flair. The initialization code is given here:

#define RED 0

pth_barrier_init (pth_barrier_t *b, int numT)
{
  pthread_mutex_init(&b->m, NULL);
  pthread cond_init(&b->c, NULL);
  b->count = b->numThreads = numT;
  b->color = RED;
}

Upon entering the pth_barrier() function, a thread first gains control of the object’s mutex and
notes the current color of the barrier. The color is held in a variable (kolor) local to each thread
entering the barrier function (since kolor is declared in a function called by a thread). The
thread then determines whether it is the last to arrive. If not, it blocks itself on the condition
variable (and releases the mutex). If the thread is the last to arrive, which it will know from
the barrier’s count being decremented to 0, it will reset the color of the barrier, set the count,
and wake up all threads that have been waiting. The code for the pth_barrier() function is
given here:

void pth_barrier (pth_barrier_t *b)
{
  pthread_mutex_lock(&b->m);
  int kolor = b->color;
  if (--(b->count)) {
    while (kolor == b->color) pthread_cond_wait(&b->c, &b->m);
  }
  else {  // last thread
    pthread_cond_broadcast(&b->c);
    b->count = b->numThreads;
    b->color = !b->color;
  }
  pthread_mutex_unlock(&b->m);
}

R e d u c e  A s  a  C o n c u r r e n t  O p e r a t i o n  135



Could we still have a disastrous intercepted wait? Consider two threads running and needing
to wait at the barrier. If T0 is already waiting, T1 will enter and realize it is the final thread.
While still holding the mutex, T1 changes the color of the barrier (to BLUE, say), sets the
count, and broadcasts the wake-up signal before releasing the mutex. If T1 races through the
code following the barrier and encounters the barrier again (perhaps in a loop), it will see that
it is not the last to arrive at a BLUE barrier. T1 decrements the barrier count and will call
pthread_cond_wait(). From the fairness property of the interleaving abstraction, we know that
T0 will eventually acquire the mutex. Upon return from waiting, it evaluates the while
conditional expression. Since T0 was waiting at a RED (kolor) barrier, the expression is false (the
current barrier color is BLUE) and the thread will exit the barrier. After running through the
code following the barrier, the next instance of the same barrier encountered by T0 will be BLUE.

Threads under Windows Vista have added a CONDITION_VARIABLE object that works much like
the Pthreads equivalent. A CRITICAL_SECTION object is associated and released when the thread
waits by calling SleepConditionVariableCS(). Like many other Windows Threads functions that
block threads, this function allows you to set a time limit. To wake threads sleeping on a
CONDITION_VARIABLE, use a call to WakeConditionVariable().

I can’t take too much credit for the barrier implementation here. I had tried using two
decrementing counters, the second of which counted threads leaving the barrier so that the
final thread could reset all the counts. When this method kept deadlocking, I turned to
Programming with POSIX® Threads (Addison-Wesley Professional, 1997) by David R.
Butenhof and got the color inspiration. The barrier implementation given here is a
simplification of the barrier code in Butenhof’s book. Of course, his implementation is much
more detailed and portable than the one I’ve cobbled together. I urge you to go over his codes
and consider using his full implementation if you need to use barriers in more complex
situations.

Design Factor Scorecard

How efficient, simple, portable, and scalable is the reduce code described earlier? Let’s examine
the algorithm with respect to each of these categories.

Efficiency

The code declares a local sum variable for each thread (lSum) to hold the ongoing computation
of the local partial sum. Even though each thread will update a unique element from the
gSum array, using the local sum variable avoids all the false sharing conflicts that could arise for
each and every item within an assigned chunk of data. By updating a gSum slot once per thread,
you can limit the number of false sharing conflicts to the number of threads, not the number
of items in the original data array.
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The barrier implementation will be an efficiency concern for the reduction algorithm. Besides
getting a thread to wait on a condition variable in Pthreads or in Windows Threads, there is
the overhead that comes from the extra code needed to decide whether a thread entering the
barrier is the final thread and, if so, releasing all other waiting threads. The attendant
bookkeeping that goes along with all of this is just more computation to be synchronized for
correctness and more time spent not actually doing productive work.

Simplicity

With the help of Figure 7-1, the code is pretty simple and straightforward. The use of i and
p2 to determine which threads are allowed to proceed and from where data is gathered would
be the most confusing parts to someone unfamiliar with the algorithm. (While I chose to handle
them separately for the example, the i and p2 variables could be combined into the for loop.)

Portability

OpenMP has an explicit barrier for threads within an OpenMP team. There are also implicit
barriers at the end of OpenMP worksharing constructs that you can use (or turn off with the
nowait clause, if not needed). Instead of using the reduction clause in OpenMP, you could write
the explicit algorithm in OpenMP by attaching thread ID numbers to each thread in the team
and using the explicit barrier. Normally, knowing someone was even contemplating such a
use of OpenMP would elicit howls of derisive laughter, Bruce. But, if I can replace all the code
from “A Barrier Object Implementation” on page 134 with the single line #pragma omp
barrier, I would be willing to swallow my prejudices and take the simpler path.

In a message-passing system, you can write an algorithmic construction for reduction, similar
to the one discussed previously. In this case, each process has a chunk of the data, the reduction
computation on that portion of the data is computed locally, and the process ID numbers are
used to coordinate messages between processes to pass the local partial results to other
processes. There is no need for explicit barrier synchronizations, since the act of passing
messages can guarantee the correct order of data is sent and sent only when it is ready.
Receiving processes need to block until the data is received. These processes can easily compute
from where the data will be sent. Within the MPI message-passing library, there is a reduction
function that will, more often than not, give better performance than a handcoded reduction
algorithm.

Scalability

Is this algorithm, with the barrier and all, the best way to do a reduction when there are a large
number of threads involved? The implementation of the barrier object will be the principal
limit to scalability of this reduction algorithm. The synchronization objects used within the
implementation of a user-coded barrier object can be a bottleneck as the number of threads
increases.
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In cases where a large number of threads are used and are available for the reduction
computation, an alternative implementation would be to divide the elements of the global
array holding the partial results generated by each thread among four or eight threads. These
threads would divide up the partial sum elements, compute a reduction on the assigned chunk,
and then allow one thread to do the final reduction on these results in serial. The code for this
suggested algorithm isn’t as simple as the one using barriers, but it could be more efficient.

Applying MapReduce
I want to give you an idea about how to determine when MapReduce might be a potential
solution to a concurrent programming problem. The task we’re going to carry out here is
finding all pairs of natural numbers that are mutually friendly within the range of positive
integers provided to the program at the start of execution (this computation was part of the
problem posed during the Intel Threading Challenge contest in July 2008). Two numbers are
mutually friendly if the ratio of the sum of all divisors of the number and the number itself is
equal to the corresponding ratio of the other number. This ratio is known as the abundancy
of a number. For example, 30 and 140 are friendly, since the abundancy for these two numbers
is equal (see Figure 7-2).

1+2+3+5+6+10+15+30
30

72
= 30

12
= 5

1+2+4+5+7+10+14+20+28+35+70+140
140

336
= 140

12
= 5

FIGURE 7-2. Friendly numbers

The serial algorithm for solving this problem is readily evident from the calculations shown in
Figure 7-2. For each (positive) integer in the range, find all the divisors of the number, add
them together, and then find the irreducible fractional representation of the ratio of this sum
and the original number. After computing all the ratios, compare all pairs of ratios and print
out a message of the friendly property found between any two numbers with matching ratios.

To decide whether this problem will fit into the MapReduce mold, you can ask yourself a few
questions about the algorithm. Does the algorithm break down into two separate phases? Will
the first phase have a data decomposition computation? Are those first phase computations
independent of each other? Is there some “mapping” of data to keys involved? Can you
“reduce” the results of the first phase to compute the final answer(s)?

This is a two-part computation. We can think of the first phase as a data decomposition of the
range of numbers to be investigated, and there is a natural mapping of each number to its
abundancy ratio. Factoring a number to compute the divisors of that number is independent
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of the factorization of any other number within the range. Thus, this first phase looks like a
good candidate for a map operation.

As for the reduce phase, each number-abundancy pair generated in the map phase is compared
with all other pairs to find those with matching abundancy values. If a match is found within
the input range of numbers, that match will be noted with an output message. There may be
no matches, there may be only one match, or there may be multiple matches found. While
this computation doesn’t conform to the typical reduction operations where a large number
of values are summarized by a single result, we can still classify this as a reduction operation.
It takes a large collection of data and “reduces” the set by pulling out those elements that
conform to a given property (e.g., the earlier document search application that finds the smaller
set of pages containing keywords or phrases).

Thus, the serial algorithm for identifying mutually friendly pairs of integers within a given
range can be converted to a concurrent solution through a MapReduce transformation. The
code for an OpenMP implementation of this concurrent solution is given in Example 7-3.

EXAMPLE 7-3. MapReduce solution to finding friendly numbers

int gcd(int u, int v)
{
  if (v == 0) return u;
  return gcd(v, u % v);
}

void FriendlyNumbers (int start, int end)
{
  int last = end-start+1;
  int *the_num = new int[last];
  int *num = new int[last];
  int *den = new int[last];

#pragma omp parallel
 {int i, j, factor, ii, sum, done, n;
//  -- MAP --
#pragma omp for schedule (dynamic, 16)
  for (i = start; i <= end; i++) {
    ii = i - start;
    sum = 1 + i;
    the_num[ii] = i;
    done = i;
    factor = 2;
    while (factor < done) {
      if ((i % factor) == 0) {
        sum += (factor + (i/factor));
        if ((done = i/factor) == factor) sum -= factor;
      }
      factor++;
    }
    num[ii] = sum; den[ii] = i;
    n = gcd(num[ii], den[ii]);
    num[ii] /= n;
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    den[ii] /= n;
  }  // end for

//  -- REDUCE --
#pragma omp for schedule (static, 8)
  for (i = 0; i < last; i++) {
    for (j = i+1; j < last; j++) {
      if ((num[i] == num[j]) && (den[i] == den[j]))
        printf ("%d and %d are FRIENDLY \n", the_num[i], the_num[j]);
    }
  }
 }  // end parallel region
}

Ignore the OpenMP pragmas for the moment while I describe the underlying serial code. The
FriendlyNumbers() function takes two integers that define the range to be searched: start and
end. We can assume that error checking before calling this function ensures that start is less
than end and that both are positive numbers. The code first computes the length of the range
(last) and allocates memory to hold the numbers within the range (the_num). It also allocates
memory space for the numerator (num) and denominator (den) of the abundancy ratio for each
number. (We don’t want to use the floating point value of the abundancy since we can’t
guarantee that two ratios, such as 72.0/30.0 and 336.0/140.0, will yield the exact same float
value.)

The first for loop iterates over the numbers in the range of interest. In each iteration, the code
computes the offset into the allocated arrays (ii), saves the number to be factored, and finds
the divisors of that number and adds them together (sum). The internal while loop finds the
divisors of the number by a brute force method. Whenever it finds a factor, it adds that factor
(factor) and the associated multiplicand (i/factor) to the running sum. The conditional test
makes sure that the integral square root factor is not added in twice. The done variable is the
largest value that potential divisors (factor) can be. This value is set to i/factor whenever a
factor is found, since there can be no other divisors greater than the one associated with the
factor value in factor.

After summing all the divisors of a number, the code stores sum in the appropriate numerator
slot (num), and stores the number itself in the corresponding denominator slot (den). The
gcd() function computes the greatest common divisor (GCD) for these two numbers (via the
recursive Euclidean algorithm) and divides each by the GCD (stored in n) to put the ratio of
the two into lowest terms. As noted in the comments, the factoring and ratio computations
will be the map phase.

The nested for loops that follow compare the numerators and denominators between unique
pairs of numbers within the original range. To ensure only unique pairs of ratios are compared,
the inner j loop accesses the numerator and denominator arrays from the i+1 position to the
last.
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If the [i] indexed numerator and denominator values match the [j] indexed numerator and
denominator values, a friendly pair is identified and the two numbers stored in the_num[i] and
the_num[j] are printed with a message about their relationship. This is the reduce phase.

The code in Example 7-3 uses OpenMP pragmas to implement concurrency. The code includes
a parallel region around both the map and reduce portions. Within this region are the
declarations of the local variables i, j, factor, ii, sum, done, and n.

The for loop of the map phase is located within an OpenMP loop worksharing construct to
divide iterations of the loop among the threads. Notice that I’ve added a schedule clause to the
pragma. I’ve specified a dynamic schedule, since the amount of computation needed to find
divisors of numbers will vary widely, depending on the number itself. Within the inner while
loop, the number of factors that must be considered will be smaller for a composite number
than a prime of similar magnitude (e.g., 30 and 31). Also, larger numbers will take more time
than smaller numbers, since there will be more factors to test and, likely, there will be more
divisors of the larger number (e.g., 30 and 140). Hence, to balance the load assigned to threads,
I’ve elected to use a dynamic schedule with a chunk size. Threads that are assigned subrange
chunks that can be computed quickly will be able to request a new chunk to work on, while
threads needing more time to continue with the assigned subrange chunk will continue
factoring.

For the reduce phase implementation, another loop worksharing construct is placed on the
outer for loop (Simple Rule 2). As with the worksharing construct in the mapping code, a
schedule clause has been added to yield a more load balanced execution. In this case, I’ve used
a static schedule. You should realize that the number of inner loop iterations is different for
every iteration of the outer loop. However, unlike the inner loop (while) within the map phase,
the amount of work per outer loop iteration is monotonically decreasing and predictable. The
typical default for an OpenMP worksharing construct without the schedule clause is to divide
the iterations into a number of similar-sized chunks equal to the number of threads within the
OpenMP team. In this case, such a schedule would assign much more work to the first chunk
than to subsequent chunks.

I visualize such a default static division of iterations like the triangle shown in Figure 7-3, where
the vertical axis is the outer loop iterations, the horizontal axis is the inner loop, and the width
of the triangle represents the number of inner loop iterations executed. The area of the triangle
associated with a thread is in direct proportion to the amount of work that the thread is
assigned. The four different shades of gray represent a different thread to which the chunk of
work has been assigned.
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(a) Divided into 4 static chunks;
assigned to 4 threads

(b) Divided into 16 static chunks;
assigned to 4 threads

FIGURE 7-3. Two static distributions of monotonically decreasing amounts of work among four threads

The more equitable division of area (i.e., work) among threads is shown in Figure 7-3 (b),
which includes smaller and more numerous chunks. Those chunks are assigned to each thread
in a round-robin fashion. The sum of the areas is then much more equal between threads and,
thus, the load will be better balanced. You can accomplish the division of work shown in
Figure 7-3 (b) by using the schedule (static, 8) clause given in Example 7-3. While a dynamic
schedule may give a tighter overall load balance, the overhead associated with distributing
chunks of iterations to threads might be more adverse than simply using the “good enough”
static schedule.

There is no magic reason for using the chunk sizes that we used here. When using an OpenMP
schedule clause (or implementing such behavior using an explicit threading library), test
several different values to see whether there are significant performance differences. Choose
the one that gives the better performance in the majority of potential input data set cases. Keep
in mind the size of a cache line and choose a chunk size that will allow full cache lines to be
used by a single thread whenever possible, especially when updates are required.

Friendly Numbers Example Summary

In this section, I’ve shown how you can apply the MapReduce framework to a serial code in
order to find a concurrent equivalent. While the reduce phase of the friendly numbers problem
might seem atypical, you need to be prepared to see past the standard many-to-one reduction
case in order to be better equipped to translate serial codes to a MapReduce solution.
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MapReduce As Generic Concurrency
I think the biggest reason that the MapReduce framework has gotten such a large amount of
notoriety is that it can be handled in such a way that the programmer need not know much
about concurrent programming. You can write a MapReduce “engine” to execute concurrently
when it is given the specifications on how the mapping operation is applied to individual
elements, how the reduction operation is applied to individual elements, and how the
reduction operation handles pairs of elements. For the programmer, these are simply serial
functions (dealing with one or two objects). The engine would take care of dividing up the
computations among concurrent threads. The TBB parallel_reduce algorithm is an example of
this, where the operator() code would contain the map phase computation over a subrange of
items and the join method would implement the reduce phase.

This is the reason that I recommend structuring your map and reduce phases in such a way
that you can apply the reduction computations to individual items and partial results of
previous reductions. For example, in finding the maximum value from a data set, the definition
of the reduction operation is to simply compare two items and return the value of the largest.
Such code would work whether it was being applied to pairs of elements from the original
collection or from partial results that had used this code to whittle down the original set into
fewer partial results. If the MapReduce engine only has to deal with the details of dividing up
the data and recombining partial results, the programmer simply supplies the comparison
function to the engine. The limitations of a generic MapReduce engine might preclude the use
of such a system if the reduction computation were more complex, such as the reduction
computation used in the friendly numbers problem.

I predict that providing generic concurrency engines and algorithms that allow programmers
to write only serial code or require a minimum of concurrency knowledge will become popular
in the coming years. This will allow programmers who do not have the training or skills in
concurrent programming to take advantage of multicore and manycore processors now and
in the future. Of course, until we get to the point where we can program by describing our
problem or algorithm in English (like in countless episodes of Star Trek ), someone has to
understand concurrent programming to build such engines, which could be you.
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