
receive a message from task A, after which B will send a message to A. Because each task is waiting 
for the other to send it a message first, both tasks will be blocked forever. Fortunately, deadlocks are 
not difficult to discover, as the tasks will stop at the point of the deadlock.

2.5. A QUANTITATIVE LOOK AT PARALLEL COMPUTATION

The two main reasons for implementing a parallel program are to obtain better performance and to 
solve larger problems. Performance can be both modeled and measured, so in this section we will take 
a another look at parallel computations by giving some simple analytical models that illustrate some 
of the factors that influence the performance of a parallel program.

Consider a computation consisting of three parts: a setup section, a computation section, and a 
finalization section. The total running time of this program on one PE is then given as the sum of the 
times for the three parts.

Equation 2.1 

What happens when we run this computation on a parallel computer with multiple PEs? Suppose that 
the setup and finalization sections cannot be carried out concurrently with any other activities, but 
that the computation section could be divided into tasks that would run independently on as many PEs 
as are available, with the same total number of computation steps as in the original computation. The 
time for the full computation on P PEs can therefore be given by Of course, Eq. 2.2 describes a very 
idealized situation. However, the idea that computations have a serial part (for which additional PEs 
are useless) and a parallelizable part (for which more PEs decrease the running time) is realistic. Thus, 
this simple model captures an important relationship.

Equation 2.2 

An important measure of how much additional PEs help is the relative speedup S, which describes 
how much faster a problem runs in a way that normalizes away the actual running time.

Equation 2.3 

A related measure is the efficiency E, which is the speedup normalized by the number of PEs.

Equation 2.4 



Equation 2.5 

Ideally, we would want the speedup to be equal to P, the number of PEs. This is sometimes called 
perfect linear speedup. Unfortunately, this is an ideal that can rarely be achieved because times for 
setup and finalization are not improved by adding more PEs, limiting the speedup. The terms that 
cannot be run concurrently are called the serial terms. Their running times represent some fraction of 
the total, called the serial fraction, denoted .γ

Equation 2.6 

The fraction of time spent in the parallelizable part of the program is then (1 — ). We can thusγ  
rewrite the expression for total computation time with P PEs as

Equation 2.7 

Now, rewriting S in terms of the new expression for Ttotal(P), we obtain the famous Amdahl's law:

Equation 2.8 

Equation 2.9 

Thus, in an ideal parallel algorithm with no overhead in the parallel part, the speedup should follow 
Eq. 2.9. What happens to the speedup if we take our ideal parallel algorithm and use a very large 
number of processors? Taking the limit as P goes to infinity in our expression for S yields



Equation 2.10 

Eq. 2.10 thus gives an upper bound on the speedup obtainable in an algorithm whose serial part 
represents  of the total computation.γ

These concepts are vital to the parallel algorithm designer. In designing a parallel algorithm, it is 
important to understand the value of the serial fraction so that realistic expectations can be set for 
performance. It may not make sense to implement a complex, arbitrarily scalable parallel algorithm if 
10% or more of the algorithm is serial—and 10% is fairly common.

Of course, Amdahl's law is based on assumptions that may or may not be true in practice. In real life, 
a number of factors may make the actual running time longer than this formula implies. For example, 
creating additional parallel tasks may increase overhead and the chances of contention for shared 
resources. On the other hand, if the original serial computation is limited by resources other than the 
availability of CPU cycles, the actual performance could be much better than Amdahl's law would 
predict. For example, a large parallel machine may allow bigger problems to be held in memory, thus 
reducing virtual memory paging, or multiple processors each with its own cache may allow much 
more of the problem to remain in the cache. Amdahl's law also rests on the assumption that for any 
given input, the parallel and serial implementations perform exactly the same number of 
computational steps. If the serial algorithm being used in the formula is not the best possible 
algorithm for the problem, then a clever parallel algorithm that structures the computation differently 
can reduce the total number of computational steps.

It has also been observed [Gus88] that the exercise underlying Amdahl's law, namely running exactly 
the same problem with varying numbers of processors, is artificial in some circumstances. If, say, the 
parallel application were a weather simulation, then when new processors were added, one would 
most likely increase the problem size by adding more details to the model while keeping the total 
execution time constant. If this is the case, then Amdahl's law, or fixed-size speedup, gives a 
pessimistic view of the benefits of additional processors.

To see this, we can reformulate the equation to give the speedup in terms of performance on a P-
processor system. Earlier in Eq. 2.2, we obtained the execution time for T processors, Ttotal(P), from 

the execution time of the serial terms and the execution time of the parallelizable part when executed 
on one processor. Here, we do the opposite and obtain Ttotal(1) from the serial and parallel terms 

when executed on P processors.

Equation 2.11 

Now, we define the so-called scaled serial fraction, denoted γscaled, as



Equation 2.12 

and then

Equation 2.13 

Rewriting the equation for speedup (Eq. 2.3) and simplifying, we obtain the scaled (or fixed-time) 
speedup.[1]

[1] This equation, sometimes known as Gustafson's law, was attributed in [Gus88] to E. 
Barsis.

Equation 2.14 

This gives exactly the same speedup as Amdahl's law, but allows a different question to be asked when 
the number of processors is increased. Since γscaled depends on P, the result of taking the limit isn't 

immediately obvious, but would give the same result as the limit in Amdahl's law. However, suppose 
we take the limit in P while holding Tcompute and thus γscaled constant. The interpretation is that we 

are increasing the size of the problem so that the total running time remains constant when more 
processors are added. (This contains the implicit assumption that the execution time of the serial 
terms does not change as the problem size grows.) In this case, the speedup is linear in P. Thus, while 
adding more processors to solve a fixed problem may hit the speedup limits of Amdahl's law with a 
relatively small number of processors, if the problem grows as more processors are added, Amdahl's 
law will be pessimistic. These two models of speedup, along with a fixed-memory version of speedup, 
are discussed in [SN90].

2.6. COMMUNICATION

2.6.1. Latency and Bandwidth

A simple but useful model characterizes the total time for message transfer as the sum of a fixed cost 
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