
receive a message from task A, after which B will send a message to A. Because each task is waiting
for the other to send it a message first, both tasks will be blocked forever. Fortunately, deadlocks are
not difficult to discover, as the tasks will stop at the point of the deadlock.

2.5. A QUANTITATIVE LOOK AT PARALLEL COMPUTATION

The two main reasons for implementing a parallel program are to obtain better performance and to
solve larger problems. Performance can be both modeled and measured, so in this section we will take
a another look at parallel computations by giving some simple analytical models that illustrate some
of the factors that influence the performance of a parallel program.

Consider a computation consisting of three parts: a setup section, a computation section, and a
finalization section. The total running time of this program on one PE is then given as the sum of the
times for the three parts.

Equation 2.1

What happens when we run this computation on a parallel computer with multiple PEs? Suppose that
the setup and finalization sections cannot be carried out concurrently with any other activities, but
that the computation section could be divided into tasks that would run independently on as many PEs
as are available, with the same total number of computation steps as in the original computation. The
time for the full computation on P PEs can therefore be given by Of course, Eq. 2.2 describes a very
idealized situation. However, the idea that computations have a serial part (for which additional PEs
are useless) and a parallelizable part (for which more PEs decrease the running time) is realistic. Thus,
this simple model captures an important relationship.

Equation 2.2

An important measure of how much additional PEs help is the relative speedup S, which describes
how much faster a problem runs in a way that normalizes away the actual running time.

Equation 2.3

A related measure is the efficiency E, which is the speedup normalized by the number of PEs.

Equation 2.4

Equation 2.5

Ideally, we would want the speedup to be equal to P, the number of PEs. This is sometimes called
perfect linear speedup. Unfortunately, this is an ideal that can rarely be achieved because times for
setup and finalization are not improved by adding more PEs, limiting the speedup. The terms that
cannot be run concurrently are called the serial terms. Their running times represent some fraction of
the total, called the serial fraction, denoted .γ

Equation 2.6

The fraction of time spent in the parallelizable part of the program is then (1 —). We can thusγ
rewrite the expression for total computation time with P PEs as

Equation 2.7

Now, rewriting S in terms of the new expression for Ttotal(P), we obtain the famous Amdahl's law:

Equation 2.8

Equation 2.9

Thus, in an ideal parallel algorithm with no overhead in the parallel part, the speedup should follow
Eq. 2.9. What happens to the speedup if we take our ideal parallel algorithm and use a very large
number of processors? Taking the limit as P goes to infinity in our expression for S yields

Equation 2.10

Eq. 2.10 thus gives an upper bound on the speedup obtainable in an algorithm whose serial part
represents of the total computation.γ

These concepts are vital to the parallel algorithm designer. In designing a parallel algorithm, it is
important to understand the value of the serial fraction so that realistic expectations can be set for
performance. It may not make sense to implement a complex, arbitrarily scalable parallel algorithm if
10% or more of the algorithm is serial—and 10% is fairly common.

Of course, Amdahl's law is based on assumptions that may or may not be true in practice. In real life,
a number of factors may make the actual running time longer than this formula implies. For example,
creating additional parallel tasks may increase overhead and the chances of contention for shared
resources. On the other hand, if the original serial computation is limited by resources other than the
availability of CPU cycles, the actual performance could be much better than Amdahl's law would
predict. For example, a large parallel machine may allow bigger problems to be held in memory, thus
reducing virtual memory paging, or multiple processors each with its own cache may allow much
more of the problem to remain in the cache. Amdahl's law also rests on the assumption that for any
given input, the parallel and serial implementations perform exactly the same number of
computational steps. If the serial algorithm being used in the formula is not the best possible
algorithm for the problem, then a clever parallel algorithm that structures the computation differently
can reduce the total number of computational steps.

It has also been observed [Gus88] that the exercise underlying Amdahl's law, namely running exactly
the same problem with varying numbers of processors, is artificial in some circumstances. If, say, the
parallel application were a weather simulation, then when new processors were added, one would
most likely increase the problem size by adding more details to the model while keeping the total
execution time constant. If this is the case, then Amdahl's law, or fixed-size speedup, gives a
pessimistic view of the benefits of additional processors.

To see this, we can reformulate the equation to give the speedup in terms of performance on a P-
processor system. Earlier in Eq. 2.2, we obtained the execution time for T processors, Ttotal(P), from

the execution time of the serial terms and the execution time of the parallelizable part when executed
on one processor. Here, we do the opposite and obtain Ttotal(1) from the serial and parallel terms

when executed on P processors.

Equation 2.11

Now, we define the so-called scaled serial fraction, denoted γscaled, as

Equation 2.12

and then

Equation 2.13

Rewriting the equation for speedup (Eq. 2.3) and simplifying, we obtain the scaled (or fixed-time)
speedup.[1]

[1] This equation, sometimes known as Gustafson's law, was attributed in [Gus88] to E.
Barsis.

Equation 2.14

This gives exactly the same speedup as Amdahl's law, but allows a different question to be asked when
the number of processors is increased. Since γscaled depends on P, the result of taking the limit isn't

immediately obvious, but would give the same result as the limit in Amdahl's law. However, suppose
we take the limit in P while holding Tcompute and thus γscaled constant. The interpretation is that we

are increasing the size of the problem so that the total running time remains constant when more
processors are added. (This contains the implicit assumption that the execution time of the serial
terms does not change as the problem size grows.) In this case, the speedup is linear in P. Thus, while
adding more processors to solve a fixed problem may hit the speedup limits of Amdahl's law with a
relatively small number of processors, if the problem grows as more processors are added, Amdahl's
law will be pessimistic. These two models of speedup, along with a fixed-memory version of speedup,
are discussed in [SN90].

2.6. COMMUNICATION

2.6.1. Latency and Bandwidth

A simple but useful model characterizes the total time for message transfer as the sum of a fixed cost

	Chapter 1. A Pattern Language for Parallel Programming
	1.1. INTRODUCTION
	1.2. PARALLEL PROGRAMMING
	1.3. DESIGN PATTERNS AND PATTERN LANGUAGES
	1.4. A PATTERN LANGUAGE FOR PARALLEL PROGRAMMING
	Figure 1.1. Overview of the pattern language

	Chapter 2. Background and Jargon of Parallel Computing
	2.1. CONCURRENCY IN PARALLEL PROGRAMS VERSUS OPERATING SYSTEMS
	2.2. PARALLEL ARCHITECTURES: A BRIEF INTRODUCTION
	2.2.1. Flynn's Taxonomy
	Figure 2.1. The Single Instruction, Single Data (SISD) architecture
	Figure 2.2. The Single Instruction, Multiple Data (SIMD) architecture
	Figure 2.3. The Multiple Instruction, Multiple Data (MIMD) architecture

	2.2.2. A Further Breakdown of MIMD
	Figure 2.4. The Symmetric Multiprocessor (SMP) architecture
	Figure 2.5. An example of the nonuniform memory access (NUMA) architecture
	Figure 2.6. The distributed-memory architecture

	2.2.3. Summary

	2.3. PARALLEL PROGRAMMING ENVIRONMENTS
	Table 2.1. Some Parallel Programming Environments from the Mid-1990s

	2.4. THE JARGON OF PARALLEL COMPUTING
	2.5. A QUANTITATIVE LOOK AT PARALLEL COMPUTATION
	2.6. COMMUNICATION
	2.6.1. Latency and Bandwidth
	2.6.2. Overlapping Communication and Computation and Latency Hiding
	Figure 2.7. Communication without (left) and with (right) support for overlapping communication and computation. Although UE 0 in the computation on the right still has some idle time waiting for the reply from UE 1, the idle time is reduced and the computation requires less total time because of UE 1 's earlier start.

	2.7. SUMMARY

	Chapter 3. The Finding Concurrency Design Space
	3.1. ABOUT THE DESIGN SPACE
	Figure 3.1. Overview of the Finding Concurrency design space and its place in the pattern language
	3.1.1. Overview
	3.1.2. Using the Decomposition Patterns
	3.1.3. Background for Examples
	Medical imaging
	Linear algebra
	Molecular dynamics
	Figure 3.2. Pseudocode for the molecular dynamics example

	3.2. THE TASK DECOMPOSITION PATTERN
	Problem
	Context
	Forces
	Solution
	Examples
	Medical imaging
	Matrix multiplication
	Molecular dynamics
	Figure 3.3. Pseudocode for the molecular dynamics example
	Known uses

	3.3. THE DATA DECOMPOSITION PATTERN
	Problem
	Context
	Forces
	Solution
	Examples
	Medical imaging
	Matrix multiplication
	Molecular dynamics
	Known uses

	3.4. THE GROUP TASKS PATTERN
	Problem
	Context
	Solution
	Examples
	Molecular dynamics
	Matrix multiplication

	3.5. THE ORDER TASKS PATTERN
	Problem
	Context
	Solution
	Examples
	Molecular dynamics
	Figure 3.4. Ordering of tasks in molecular dynamics problem

	3.6. THE DATA SHARING PATTERN
	Problem
	Context
	Forces
	Solution
	Examples
	Molecular dynamics
	Figure 3.5. Data sharing in molecular dynamics. We distinguish between sharing for reads, read-writes, and accumulations.

	3.7. THE DESIGN EVALUATION PATTERN
	Problem
	Context
	Forces
	Solution
	Suitability for target platform
	Design quality
	Preparation for next phase

	3.8. SUMMARY

	Chapter 4. The Algorithm Structure Design Space
	4.1. INTRODUCTION
	Figure 4.1. Overview of the Algorithm Structure design space and its place in the pattern language

	4.2. CHOOSING AN ALGORITHM STRUCTURE PATTERN
	4.2.1. Target Platform
	4.2.2. Major Organizing Principle
	4.2.3. The Algorithm Structure Decision Tree
	Figure 4.2. Decision tree for the Algorithm Structure design space
	Organize By Tasks
	Organize By Data Decomposition
	Organize By Flow of Data

	4.2.4. Re-evaluation

	4.3. EXAMPLES
	4.3.1. Medical Imaging
	4.3.2. Molecular Dynamics

	4.4. THE TASK PARALLELISM PATTERN
	Problem
	Context
	Forces
	Solution
	Tasks
	Dependencies
	Schedule
	Figure 4.3. Good versus poor load balance
	Program structure
	Common idioms

	Examples
	Image construction
	Molecular dynamics
	Figure 4.4. Pseudocode for the nonbonded computation in a typical molecular dynamics code
	Known uses

	4.5. THE DIVIDE AND CONQUER PATTERN
	Problem
	Context
	Figure 4.5. The divide-and-conquer strategy

	Forces
	Figure 4.6. Sequential pseudocode for the divide-and-conquer algorithm

	Solution
	Figure 4.7. Parallelizing the divide-and-conquer strategy. Each dashed-line box represents a task.
	Mapping tasks to UEs and PEs
	Communication costs
	Dealing with dependencies
	Other optimizations

	Examples
	Mergesort
	Matrix diagonalization
	Known uses

	Related Patterns

	4.6. THE GEOMETRIC DECOMPOSITION PATTERN
	Problem
	Context
	Example: mesh-computation program
	Figure 4.8. Data dependencies in the heat-equation problem. Solid boxes indicate the element being updated; shaded boxes the elements containing needed data.
	Example: matrix-multiplication program
	Figure 4.9. Data dependencies in the matrix-multiplication problem. Solid boxes indicate the "chunk" being updated (C); shaded boxes indicate the chunks of A (row) and B (column) required to update C at each of the two steps.

	Solution
	Data decomposition
	Figure 4.10. A data distribution with ghost boundaries. Shaded cells are ghost copies; arrows point from primary copies to corresponding secondary copies.
	The exchange operation
	The update operation
	Data distribution and task scheduling
	Program structure

	Examples
	Mesh computation
	Figure 4.11. Sequential heat-diffusion program
	OpenMP solution
	Figure 4.12. Parallel heat-diffusion program using OpenMP
	MPI solution
	Figure 4.13. Parallel heat-diffusion program using OpenMP. This version has less thread-management overhead.
	Figure 4.14. Parallel heat-diffusion program using MPI (continued in Fig. 4.15)
	Figure 4.15. Parallel heat-diffusion program using MPI (continued from Fig. 4.14)
	Figure 4.16. Parallel heat-diffusion program using MPI with overlapping communication/ computation (continued from Fig. 4.14)
	Figure 4.17. Sequential matrix multiplication
	Matrix multiplication
	Figure 4.18. Sequential matrix multiplication, revised. We do not show the parts of the program that are not changed from the program in Fig. 4.17.
	OpenMP solution
	MPI solution
	Figure 4.19. Parallel matrix multiplication with message passing (continued in Fig. 4.20)
	Figure 4.20. Parallel matrix multiplication with message-passing (continued from Fig. 4.19)
	Known uses

	Related Patterns

	4.7. THE RECURSIVE DATA PATTERN
	Problem
	Context
	Figure 4.21. Finding roots in a forest. Solid lines represent the original parent-child relationships among nodes; dashed lines point from nodes to their successors.

	Forces
	Solution
	Data decomposition
	Structure
	Synchronization

	Examples
	Partial sums of a linked list
	Figure 4.23. Steps in finding partial sums of a list. Straight arrows represent links between elements; curved arrows indicate additions.
	Known uses
	Figure 4.22. Pseudocode for finding partial sums of a list

	Related Patterns

	4.8. THE PIPELINE PATTERN
	Problem
	Context
	Forces
	Solution
	Figure 4.24. Operation of a pipeline. Each pipeline stage i computes the i-th step of the computation.
	Figure 4.25. Example pipelines
	Defining the stages of the pipeline
	Figure 4.26. Basic structure of a pipeline stage
	Structuring the computation
	Representing the dataflow among pipeline elements
	Handling errors
	Processor allocation and task scheduling
	Throughput and latency

	Examples
	Fourier-transform computations
	Java pipeline framework
	Known uses
	Figure 4.27. Base class for pipeline stages
	Figure 4.28. Base class for linear pipeline

	Related Patterns
	Figure 4.29. Pipelined sort (main class)
	Figure 4.30. Pipelined sort (sorting stage)

	4.9. THE EVENT-BASED COORDINATION PATTERN
	Problem
	Context
	Figure 4.31. Discrete-event simulation of a car-wash facility. Arrows indicate the flow of events.

	Forces
	Solution
	Defining the tasks
	Figure 4.32. Basic structure of a task in the Event-Based Coordination pattern
	Representing event flow
	Enforcing event ordering
	Figure 4.33. Event-based communication among three tasks. Task 2 generates its event in response to the event received from task 1. The two events sent to task 3 can arrive in either order.
	Avoiding deadlocks
	Scheduling and processor allocation
	Efficient communication of events

	Examples
	Known uses

	Related Patterns

	Chapter 5. The Supporting Structures Design Space
	5.1. INTRODUCTION
	Figure 5.1. Overview of the Supporting Structures design space and its place in the pattern language
	5.1.1. Program Structuring Patterns
	5.1.2. Patterns Representing Data Structures

	5.2. FORCES
	5.3. CHOOSING THE PATTERNS
	Table 5.1. Relationship between Supporting Structures patterns and Algorithm Structure patterns. The number of stars (ranging from zero to four) is an indication of the likelihood that the given Supporting Structures pattern is useful in the implementation of the Algorithm Structure pattern.
	Table 5.2. Relationship between Supporting Structures patterns and programming environments. The number of stars (ranging from zero to four) is an indication of the likelihood that the given Supporting Structures pattern is useful in the programming environment.

	5.4. THE SPMD PATTERN
	Problem
	Context
	Forces
	Solution
	Discussion

	Examples
	Numerical integration
	Figure 5.2. Sequential program to carry out a trapezoid rule integration to compute
	Figure 5.3. MPI program to carry out a trapezoid rule integration in parallel by assigning one block of loop iterations to each UE and performing a reduction
	Figure 5.4. Index calculation that more evenly distributes the work when the number of steps is not evenly divided by the number of UEs. The idea is to split up the remaining tasks (rem) among the first rem UEs.
	Figure 5.5. MPI program to carry out a trapezoid rule integration in parallel using a simple loop-splitting algorithm with cyclic distribution of iterations and a reduction
	Figure 5.6. OpenMP program to carry out a trapezoid rule integration in parallel using the same SPMD algorithm used in Fig. 5.5
	Molecular dynamics
	Figure 5.7. Pseudocode for molecular dynamics example. This code is very similar to the version discussed earlier, but a few extra details have been included. To support more detailed pseudocode examples, the call to the function that initializes the force arrays has been made explicit. Also, the fact that the neighbor list is only occasionally updated is made explicit.
	Figure 5.8. Pseudocode for an SPMD molecular dynamics program using MPI
	Figure 5.9. Pseudocode for the nonbonded computation in a typical parallel molecular dynamics code. This code is almost identical to the sequential version of the function shown in Fig. 4.4. The only major change is a new array of integers holding the indices for the atoms assigned to this UE, local_atoms. We've also assumed that the neighbor list has been generated to hold only those atoms assigned to this UE. For the sake of allocating space for these arrays, we have added a parameter LN which is the largest number of atoms that can be assigned to a single UE.
	Figure 5.10. Pseudocode for the neighbor list computation. For each atom i, the indices for atoms within a sphere of radius cutoff are added to the neighbor list for atom i. Notice that the second loop (over j) only considers atoms with indices greater than i. This accounts for the symmetry in the force computation due to Newton's third law of motion, that is, that the force between atom i and atom j is just the negative of the force between atom j and atom i.
	Figure 5.11. Pseudocode for a parallel molecular dynamics program using OpenMP
	Mandelbrot set computation
	Figure 5.12. Pseudocode for a sequential version of the Mandelbrot set generation program
	Known uses
	Figure 5.13. Pseudocode for a parallel MPI version of the Mandelbrot set generation program

	Related Patterns

	5.5. THE MASTER/WORKER PATTERN
	Problem
	Context
	Forces
	Solution
	Figure 5.14. The two elements of the Master/Worker pattern are the master and the worker. There is only one master, but there can be one or more workers. Logically, the master sets up the calculation and then manages a bag of tasks. Each worker grabs a task from the bag, carries out the work, and then goes back to the bag, repeating until the termination condition is met.
	Discussion
	Detecting completion
	Variations

	Examples
	Generic solutions
	Figure 5.15. Master process for a master/worker program. This assumes a shared address space so the task and results queues are visible to all UEs. In this simple version, the master initializes the queue, launches the workers, and then waits for the workers to finish (that is, the ForkJoin command launches the workers and then waits for them to finish before returning). At that point, results are consumed and the computation completes.
	Figure 5.16. Worker process for a master/worker program. We assume a shared address space thereby making task_queue and global_results available to the master and all workers. A worker loops over the task_queue and exits when the end of the queue is encountered.
	Figure 5.17. Instantiating and initializing a pooled executor
	Mandelbrot set generation
	Figure 5.18. Pseudocode for a sequential version of the Mandelbrot set generation program
	Figure 5.19. Master process for a master/worker parallel version of the Mandelbrot set generation program
	Figure 5.20. Worker process for a master/worker parallel version of the Mandelbrot set generation program. We assume a shared address space thereby making task_queue, global_results, and ranges available to the master and the workers.
	Known uses

	Related Patterns

	5.6. THE LOOP PARALLELISM PATTERN
	Problem
	Context
	Forces
	Solution
	Figure 5.21. Program fragment showing merging loops to increase the amount of work per iteration
	Figure 5.22. Program fragment showing coalescing nested loops to produce a single loop with a larger number of iterations
	Performance considerations
	Figure 5.23. Program fragment showing an example of false sharing. The small array A is held in one or two cache lines. As the UEs access A inside the innermost loop, they will need to take ownership of the cache line back from the other UEs. This back-and-forth movement of the cache lines destroys performance. The solution is to use a temporary variable inside the innermost loop.

	Examples
	Numerical integration
	Figure 5.24. Sequential program to carry out a trapezoid rule integration to compute
	Molecular dynamics.
	Figure 5.25. Pseudocode for the nonbonded computation in a typical parallel molecular dynamics code. This is code is almost identical to the sequential version of the function shown previously in Fig. 4.4.
	Mandelbrot set computation
	Figure 5.26. Pseudocode for a sequential version of the Mandelbrot set generation program
	Mesh computation
	Figure 5.27. Parallel heat-diffusion program using OpenMP. This program is described in the Examples section of the Geometric Decomposition pattern.
	Figure 5.28. Parallel heat-diffusion program using OpenMP, with reduced thread management overhead and memory management more appropriate for NUMA computers
	Known uses

	Related Patterns

	5.7. THE FORK/JOIN PATTERN
	Problem
	Context
	Forces
	Solution
	Direct task/UE mapping
	Indirect task/UE mapping

	Examples
	Mergesort using direct mapping
	Figure 5.29. Parallel mergesort where each task corresponds to a thread
	Figure 5.30. Instantiating FJTaskRunnerGroup and invoking the master task
	Mergesort using indirect mapping
	Known uses
	Figure 5.31. Mergesort using the FJTask framework

	Related Patterns

	5.8. THE SHARED DATA PATTERN
	Problem
	Context
	Forces
	Solution
	Be sure this pattern is needed
	Define an abstract data type
	Implement an appropriate concurrency-control protocol
	Figure 5.32. Typical use of read/write locks. These locks are defined in the java.util.concurrent.locks package. Putting the unlock in the finally block ensures that the lock will be unlocked regardless of how the try block is exited (normally or with an exception) and is a standard idiom in Java programs that use locks rather than synchronized blocks.
	Figure 5.33. Example of nested locking using synchronized blocks with dummy objects lockA and lockB

	Review other considerations
	Examples
	Shared queues
	Genetic algorithm for nonlinear optimization
	Figure 5.34. Pseudocode for the population shuffle loop from the genetic algorithm program GAFORT
	Figure 5.35. Pseudocode for an ineffective approach to parallelizing the population shuffle in the genetic algorithm program GAFORT
	Known uses
	Figure 5.36. Pseudocode for a parallelized loop to carry out the population shuffle in the genetic algorithm program GAFORT. This version of the loop uses a separate lock for each chromosome and runs effectively in parallel.

	Related Patterns

	5.9. THE SHARED QUEUE PATTERN
	Problem
	Context
	Forces
	Solution
	The abstract data type (ADT)

	Queue with "one at a time" execution
	Figure 5.37. Queue that ensures that at most one thread can access the data structure at one time. If the queue is empty, null is immediately returned.
	Figure 5.38. Queue that ensures at most one thread can access the data structure at one time. Unlike the first shared queue example, if the queue is empty, the thread waits. When used in a master/worker algorithm, a poison pill would be required to signal termination to a thread.
	Concurrency-control protocols for noninterfering operations
	Figure 5.39. Shared queue that takes advantage of the fact that put and take are noninterfering and uses separate locks so they can proceed concurrently
	Concurrency-control protocols using nested locks
	Figure 5.40. Blocking queue with multiple locks to allow concurrent put and take on a nonempty queue
	Distributed shared queues
	Figure 5.41. Nonblocking shared queue with takeLast operation
	Figure 5.42. Abstract base class for tasks
	Figure 5.43. Class defining behavior of threads in the thread pool (continued in Fig. 5.44 and Fig. 5.45)
	Figure 5.44. Class defining behavior of threads in the thread pool (continued from Fig. 5.43 and continued in Fig. 5.45)

	Examples
	Computing Fibonacci numbers
	Figure 5.45. Class defining behavior of threads in the thread pool (continued from Fig. 5.43 and Fig. 5.44)
	Figure 5.46. The TaskRunnerGroup class. This class initializes and manages the threads in the thread pool.

	Related Patterns
	Figure 5.47. Program to compute Fibonacci numbers (continued in Fig. 5.48)
	Figure 5.48. Program to compute Fibonacci numbers (continued from Fig. 5.47)

	5.10. THE DISTRIBUTED ARRAY PATTERN
	Problem
	Context
	Forces
	Solution
	Overview
	Array distributions
	Figure 5.49. Original square matrix A
	Figure 5.50. 1D distribution of A onto four UEs
	Figure 5.51. 2D distribution of A onto four UEs
	Figure 5.52. 1D block-cyclic distribution of A onto four UEs
	Figure 5.53. 2D block-cyclic distribution of A onto four UEs, part 1: Decomposing A
	Figure 5.54. 2D block-cyclic distribution of A onto four UEs, part 2: Assigning submatrices to UEs
	Figure 5.55. 2D block-cyclic distribution of A onto four UEs: Local view of elements of A assigned to UE(0,0). LAl,m is the block with block indices (l, m). Each element is labeled both with its original global indices (ai,j) and its indices within block LAl,m (lx,y).
	Figure 5.56. 2D block-cyclic distribution of A onto four UEs: Local view of elements of A assigned to UE(0,0). Each element is labeled both with its original global indices ai,j and its local indices [x', y' . Local indices are with respect to the contiguous matrix used to store all blocks assigned to this UE.
	Choosing a distribution
	Mapping indices
	Aligning computation with locality

	Examples
	Transposing a matrix stored as column blocks
	Figure 5.57. Matrix A and its transpose, in terms of submatrices, distributed among four UEs
	Figure 5.58. Code to transpose a matrix (continued in Fig. 5.59)
	Figure 5.59. Code to transpose a matrix (continued from Fig. 5.58)
	Known uses

	Related Patterns

	5.11. OTHER SUPPORTING STRUCTURES
	5.11.1. SIMD
	5.11.2. MPMD
	5.11.3. Client-Server Computing
	5.11.4. Concurrent Programming with Declarative Languages
	5.11.5. Problem-Solving Environments

	Chapter 6. The Implementation Mechanisms Design Space
	Figure 6.1. Overview of the Implementation Mechanisms design space and its place in the pattern language
	6.1. OVERVIEW
	6.2. UE MANAGEMENT
	6.2.1. Thread Creation/Destruction
	OpenMP: thread creation/destruction
	Java: thread creation/destruction
	MPI: thread creation/destruction

	6.2.2. Process Creation/Destruction
	MPI: process creation/destruction
	Java: process creation/destruction
	OpenMP: process creation/destruction

	6.3. SYNCHRONIZATION
	6.3.1. Memory Synchronization and Fences
	OpenMP: fences
	Figure 6.2. Program showing one way to implement pairwise synchronization in OpenMP. The flush construct is vital. It forces the memory to be consistent, thereby making the updates to the flag array visible. For more details about the syntax of OpenMP, see the OpenMP appendix, Appendix A.
	Java: fences
	MPI: fences

	6.3.2. Barriers
	MPI: barriers
	Figure 6.3. MPI program containing a barrier. This program is used to time the execution of function runit().
	OpenMP: barriers
	Figure 6.4. OpenMP program containing a barrier. This program is used to time the execution of function runit().
	Java: barriers

	6.3.3. Mutual Exclusion
	Figure 6.5. Java program containing a CyclicBarrier. This program is used to time the execution of function runit().
	Figure 6.6. Example of an OpenMP program that includes a critical section
	OpenMP: mutual exclusion
	Figure 6.7. Example of using locks in OpenMP
	Java: mutual exclusion
	Figure 6.8. Java version of the OpenMP program in Fig. 6.6
	Figure 6.9. Java program showing how to implement mutual exclusion with a synchronized method
	MPI: mutual exclusion
	Figure 6.10. Example of an MPI program with an update that requires mutual exclusion. A single process is dedicated to the update of this data structure.

	6.4. COMMUNICATION
	6.4.1. Message Passing
	MPI: message passing
	Figure 6.11. MPI program that uses a ring of processors and a communication pattern where information is shifted to the right. The functions to do the computation do not affect the communication itself so they are not shown. (Continued in Fig. 6.12.)
	OpenMP: message passing
	Figure 6.12. MPI program that uses a ring of processors and a communication pattern where information is shifted to the right (continued from Fig. 6.11)
	Figure 6.13. OpenMP program that uses a ring of threads and a communication pattern where information is shifted to the right (continued in Fig. 6.14)
	Java: message passing
	Figure 6.14. OpenMP program that uses a ring of threads and a communication pattern where information is shifted to the right (continued from Fig. 6.13)
	Figure 6.15. The message-passing block from Fig. 6.13 and Fig. 6.14, but with more careful synchronization management (pairwise synchronization)

	6.4.2. Collective Communication
	Reduction
	Figure 6.16. MPI program to time the execution of a function called runit(). We use MPI_Reduce to find minimum, maximum, and average runtimes.
	Implementing reduction operations
	Figure 6.17. OpenMP program to time the execution of a function called runit(). We use a reduction clause to find sum of the runtimes.
	Serial computation
	Figure 6.18. Serial reduction to compute the sum of a(0) through a(3). sum(a(i:j)) denotes the sum of elements i through j of array a.
	Tree-based reduction
	Figure 6.19. Tree-based reduction to compute the sum of a(0) through a(3) on a system with 4 UEs. sum(a(i:j)) denotes the sum of elements i through j of array a.
	Recursive doubling
	Figure 6.20. Recursive-doubling reduction to compute the sum of a(0) through a(3). sum (a(i:j)) denotes the sum of elements i through j of array a.

	6.4.3. Other Communication Constructs

	Endnotes

	Appendix A. A Brief Introduction to OpenMP
	Figure A.1. Fortran and C programs that print a simple string to standard output
	A.1. CORE CONCEPTS
	Figure A.2. Fortran and C programs that print a simple string to standard output
	Figure A.3. Fortran and C programs that print a simple string to standard output
	Figure A.4. Simple program to show the difference between shared and local (or private) data

	A.2. STRUCTURED BLOCKS AND DIRECTIVE FORMATS
	A.3. WORKSHARING
	Figure A.5. Fortran and C examples of a typical loop-oriented program
	Figure A.6. Fortran and C examples of a typical loop-oriented program. In this version of the program, the computationally intensive loop has been isolated and modified so the iterations are independent.
	Figure A.7. Fortran and C examples of a typical loop-oriented program parallelized with OpenMP

	A.4. DATA ENVIRONMENT CLAUSES
	Figure A.8. C program to carry out a trapezoid rule integration to compute (here comes equation)
	Figure A.9. C program showing use of the private, firstprivate, and lastprivate clauses. This program is incorrect in that the variables h and j do not have well-defined values when the printf is called. Notice the use of a backslash to continue the OpenMP pragma onto a second line.

	A.5. THE OpenMP RUNTIME LIBRARY
	Figure A.10. C program showing use of the most common runtime library functions

	A.6. SYNCHRONIZATION
	Figure A.11. Parallel version of the program in Fig. A.5. In this case, however, we assume that the calls to combine() can occur in any order as long as only one thread at a time executes the function. This is enforced with the critical construct.
	Figure A.12. Example showing how the lock functions in OpenMP are used

	A.7. THE SCHEDULE CLAUSE
	Figure A.13. Parallel version of the program in Fig. A.11, modified to show the use of the schedule clause

	A.8. THE REST OF THE LANGUAGE

	Appendix B. A Brief Introduction to MPI
	B.1. CONCEPTS
	B.2. GETTING STARTED
	Figure B.1. Program to print a simple string to standard output
	Figure B.2. Parallel program in which each process prints a simple string to the standard output

	B.3. BASIC POINT-TO-POINT MESSAGE PASSING
	Figure B.3. The standard blocking point-to-point communication routines in the C binding for MPI 1.1
	Figure B.4. MPI program to "bounce" a message between two processes using the standard blocking point-to-point communication routines in the C binding to MPI 1.1

	B.4. COLLECTIVE OPERATIONS
	Figure B.6. Program to time the ring function as it passes messages around a ring of processes (continued in Fig. B.7). The program returns the time from the process that takes the longest elapsed time to complete the communication. The code to the ring function is not relevant for this example, but it is included in Fig. B.8.
	Figure B.7. Program to time the ring function as it passes messages around a ring of processes (continued from Fig. B.6)
	Figure B.5. The major collective communication routines in the C binding to MPI 1.1 (MPI_Barrier, MPI_Bcast, and MPI_Reduce)
	Figure B.8. Function to pass a message around a ring of processes. It is deadlock-free because the sends and receives are split between the even and odd processes.
	Figure B.9. The nonblocking or asynchronous communication functions

	B.5. ADVANCED POINT-TO-POINT MESSAGE PASSING
	Figure B.10. Program using nonblocking communication to iteratively update a field using an algorithm that requires only communication around a ring (shifting messages to the right)
	Figure B.11. Function to pass a message around a ring of processes using persistent communication

	B.6. MPI AND FORTRAN
	Figure B.12. Comparison of the C and Fortran language bindings for the reduction routine in MPI 1.1
	Figure B.13. Simple Fortran MPI program where each process prints its ID and the number of processes in the computation

	B.7. CONCLUSION

	Appendix C. A Brief Introduction to Concurrent Programming in Java
	Figure C.1. A class holding pairs of objects of an arbitrary type. Without generic types, this would have been done by declaring x and y to be of type Object, requiring casting the returned values of getX and getY. In addition to less-verbose programs, this allows type errors to be found by the compiler rather than throwing a ClassCastException at runtime.
	C.1. CREATING THREADS
	Figure C.2. Program to create four threads, passing a Runnable in the Thread constructor. Thread-specific data is held in a field of the Runnable object.
	C.1.1. Anonymous Inner Classes
	C.1.2. Executors and Factories
	Figure C.3. Program similar to the one in Fig. C.2, but using an anonymous class to define the Runnable object
	Figure C.4. Program using a ThreadPoolExecutor instead of creating threads directly
	Figure C.5. Code fragment illustrating use of Callable and Future

	C.2. ATOMICITY, MEMORY SYNCHRONIZATION, AND THE volatile KEYWORD
	C.3. SYNCHRONIZED BLOCKS
	C.4. WAIT AND NOTIFY
	Figure C.6. Basic idiom for using wait. Because wait throws an InterruptedException, it should somehow be enclosed in a try-catch block, omitted here.

	C.5. LOCKS
	Figure C.7. A version of SharedQueue2 (see the Shared Queue pattern) using a Lock and Condition instead of synchronized blocks with wait and notify

	C.6. OTHER SYNCHRONIZATION MECHANISMS AND SHARED DATA STRUCTURES
	Figure C.8. Simple sequential loop-based program similar to the one in Fig. A.5
	Figure C.9. Program showing a parallel version of the sequential program in Fig. C.8 where each iteration of the big_comp loop is a separate task. A thread pool containing ten threads is used to execute the tasks. A CountDownLatch is used to ensure that all of the tasks have completed before executing the (still sequential) loop that combines the results.

	C.7. INTERRUPTS

	Glossary
	About the Authors

