
FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Concurrency and Parallelism
(Concorrência e Paralelismo – CP 11158)

Lecture 11
— Map-Reduce —

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Amdahl's Law

•  Amdahl's Law states that
potential program speedup
is defined by the fraction of
code (P) that can be
parallelized:

•  If none of the code can be parallelized, P = 0 and the
speedup = 1 (no speedup). If all of the code is parallelized,
P = 1 and the speedup is infinite (in theory).

•  If 50% of the code can be parallelized, maximum speedup
= 2, meaning the code will run twice as fast.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 1	
speedup	 	 	 =	 	 	 -‐-‐-‐-‐-‐-‐-‐-‐	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 1	 	 -‐	 P	

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Amdahl's Law

•  Introducing the number of processors
performing the parallel fraction of work, the
relationship can be modelled by

•  where P = parallel fraction, N = number of
processors and S = serial fraction

 1
speedup = ------------
 P + S

 N

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Amdahl's Law

•  It soon becomes obvious that there are limits
to the scalability of parallelism. For example,
at P = .50, .90 and .99 (50%, 90% and 99% of
the code is parallelizable)

 speedup

 N P = .50 P = .90 P = .99
----- ------- ------- -------
 10 1.82 5.26 9.17
 100 1.98 9.17 50.25
 1000 1.99 9.91 90.99
10000 1.99 9.91 99.02

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Amdahl's Law

•  However, certain problems demonstrate increased performance
by increasing the problem size. For example:
–  2D Grid Calculations 85 seconds 85%
–  Serial fraction 15 seconds 15%

•  We can increase the problem size by doubling the grid
dimensions and halving the time step. This results in four times the
number of grid points and twice the number of time steps. The
timings then look like:
–  2D Grid Calculations 680 seconds 97.84%
–  Serial fraction 15 seconds 2.16%

•  Problems that increase the percentage of parallel time with their
size are more scalable than problems with a fixed percentage of
parallel time.

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

•  Amdahl’s Law provides a theoretical upper
limit on parallel speedup assuming that there
are no costs for communications.
–  In reality, communications will result in a further degradation

of performance.

0	

10	

20	

30	

40	

50	

60	

70	

80	

0	
 50	
 100	
 150	
 200	
 250	

Number	 of	 processors	

Amdahl's Law	

Reality	

fp	 =	 0.99	

Amdahl’s Law Vs. Reality

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Test the
 “Preconditions for Parallelism”

•  According to experienced parallel programmers:
–  no green - Don’t even consider it
–  one or more red - Parallelism may cost you more than you gain
–  all green - You need the power of parallelism (but there are no guarantees)

Fre que ncy o f Us e Exe c ut io n Tim e Re s o lut io n Ne e d s

t hous ands o f t ime s
be t we e n chang e s

doz e ns of t ime s
be t we e n chang e s

only a fe w t ime s
be t we e n chang e s

da y s

4 -8 ho urs

m in u t e s

m us t s ig nif ic ant ly
inc re as e re s o lut io n
o r c o mple xit y

want t o inc re ase
t o s ome e xt e nt

c urre nt re s o lut io n/
c o mple xit y a lre ady
more than ne e de d

p o s i t iv e
p re - c o n d it io n

p o s s ib le
p re - c o n d it io n

n e g a t iv e
p r e - c o n d it io n

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Parallelism —
 — A simplistic understanding

•  Multiple tasks at once.

•  Distribute work into multiple execution units.

•  A classification of parallelism:
–  Data Parallelism

–  Functional or Control Parallelism

•  Data Parallelism
–  Divide the dataset and solve each sector

“similarly” on a separate execution unit.

•  Functional Parallelism
–  Divide the 'problem' into different tasks and

execute the tasks on different units.

–  What would func. parallelism look like for the
example on the right?

20
13
-‐1
1-‐
20

	
Co

nc
ur
re
nc
y	
an

d	
Pa

ra
lle
lis
m
	 —

	 J.
	 L
ou

re
nç
o	
©
	 F
CT

-‐U
N
L	
20
13
-‐1
4	

8	

S
eq

ue
nt

ia
l

D
at

a
P

ar
al

le
lis

m

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Partitioning

•  One of the first steps in designing a parallel
program is to break the problem into discrete
"chunks" of work that can be distributed to
multiple tasks. This is known as decomposition
or partitioning.

•  There are two basic ways to partition
computational work among parallel tasks:
–  Domain decomposition

 and

–  Functional decomposition

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Domain Decomposition

•  In this type of partitioning, the data associated
with a problem is decomposed.

•  Each parallel task then works on a portion of
of the data.

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Partitioning Data

•  There are different ways to partition data

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Functional Decomposition

•  The focus is on the computation rather than on the data
manipulated by the computation.

•  The problem is decomposed according to the work that must be
done. Each task then performs a portion of the overall work.

•  Functional decomposition lends
itself well to problems that can
be split into different tasks.

•  For example
–  Ecosystem Modeling
–  Signal Processing
–  Climate Modeling

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Ecosystem Modeling

•  Each program calculates the population of a
given group, where each group's growth
depends on that of its neighbours.
–  As time progresses, each process calculates its current state

–  Then exchanges information with the neighbour populations

–  All tasks then progress to calculate the state at the next time
step.

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Signal Processing (pipelining)

•  An audio signal data set is passed through four
distinct computational filters.
–  Each filter is a separate process.
–  The first segment of data must pass through the first filter before

progressing to the second.
–  When it does, the second segment of data passes through the

first filter.
–  By the time the fourth segment of data is in the first filter, all four

tasks are busy.

20
13
-‐1
1-‐
20

	
Co

nc
ur
re
nc
y	
an

d	
Pa

ra
lle
lis
m
	 —

	 J.
	 L
ou

re
nç
o	
©
	 F
CT

-‐U
N
L	
20
13
-‐1
4	

14	

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Climate Modeling

•  Each model component can be thought of as a separate task.

•  Arrows represent exchanges of data between components
during computation: the
atmosphere model generates
wind velocity data that are
used by the ocean model, the
ocean model generates sea
surface temperature data that
are used by the atmosphere
model, and so on.

•  Combining these two types of problem decomposition is
common and natural.

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Superlinear Speedup

•  S(n) > n, may be seen on occasion
–  due to using a suboptimal sequential algorithm; or

–  some unique feature of the architecture that favors the
parallel formation, e.g.

•  extra memory in the multiprocessor system which can hold more
of the problem data at any instant.

•  Improved cache locality effect.

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Efficiency	

Efficiency = Execution time using one processor "
 Execution time using a number of processors"

Its just the speedup divided by the number of processors"

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Cost

The processor-time product or cost (or work) of a computation defined as"
Cost = (execution time) x (total number of processors used)"
"
The cost of a sequential computation is simply its execution time, t s . The cost of a"
parallel computation is t p x n. The parallel execution time, t p , is given by ts/S(n)"
"
"
Hence, the cost of a parallel computation is given by"
"
"
"
"
"
Cost-Optimal Parallel Algorithm"
One in which the cost to solve a problem on a multiprocessor is proportional to the
cost"
"

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Scalability!

•  Used to indicate a hardware design that
allows the system to be increased in size and
in doing so to obtain increased performance
–  Could be described as architecture or hardware scalability.

•  Scalability is also used to indicate that a
parallel algorithm can accommodate
increased data items with a low and bounded
increase in computational steps
–  could be described as algorithmic scalability.

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Problem size

Intuitively, we would think of the number of data elements being
processed in the algorithm as a measure of size."
"
However, doubling the date set size would not necessarily double the
number of computational steps. It will depend upon the problem."
"
For example, adding two matrices has this effect, but multiplying
matrices quadruples operations."

Problem size: the number of basic steps in the best sequential
algorithm for a given problem and data set size"

Note: Bad sequential algorithms tend to scale well"

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Gustafson’s law!

Rather than assume that the problem size is fixed, assume that the parallel
execution time is fixed. In increasing the problem size, Gustafson also makes
the case that the serial section of the code does not increase as the problem
size."
"

Scaled Speedup Factor"
"
The scaled speedup factor becomes"

"
called Gustafson’s law."
"
Example"
Suppose a serial section of 5% and 20 processors; the speedup according to
the formula is 0.05 + 0.95(20) = 19.05 instead of 10.26 according to Amdahl’s
law. (Note, however, the different assumptions.)"

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Parallel Programming Issues

•  The main goal of writing a parallel program is
to get better performance over the serial
version. Several issues that you need to
consider:
–  Load balancing

–  Minimizing communication

–  Overlapping communication and computation

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Load Balancing

•  Load balancing is the task of equally dividing
work among the available processes.

•  This can be easy to do when the same
operations are being performed by all the
processes (on different pieces of data).

•  When there are large variations in processing
time, you may be required to adopt a
different method for solving the problem.

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Minimizing Communication

•  Total execution time is a major concern in
parallel programming because it is an
essential component for comparing and
improving all programs.

•  Three components make up execution time:
–  Computation time

–  Idle time

–  Communication time

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Minimizing Communication

•  Computation time is the time spent performing
computations on the data.

•  Idle time is the time a process spends waiting for
data from other processors.

•  Finally, communication time is the time it takes for
processes to send and receive messages.
–  The cost of communication in the execution time can be

measured in terms of latency and bandwidth.
–  Latency is the time it takes to set up the envelope for

communication, where bandwidth is the actual speed of
transmission, or bits per unit time.

–  Serial programs do not use inter-process communication.
Therefore, you must minimize this use of time to get the
best performance improvements.

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Overlapping Communication and
Computation

•  There are several ways to minimize idle time
within processes, and one example is
overlapping communication and
computation. This involves occupying a
process with one or more new tasks while it
waits for communication to finish so it can
proceed on another task.

•  Careful use of nonblocking communication
and data unspecific computation make this
possible. It is very difficult in practice to
interleave communication with computation.

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

The	 End	
Co

nc
ur
re
nc
y	
an

d	
Pa

ra
lle
lis
m
	 —

	 J.
	 L
ou

re
nç
o	
©
	 F
CT

-‐U
N
L	
20
13
-‐1
4	

20
13
-‐1
1-‐
20

	

27	

