
Concurrency and Parallelism
(Concorrência e Paralelismo – CP

11158)

Lecture 4
— Cache Coherence—

● Most programs have a high degree of locality in their accesses
– Spatial locality: accessing things nearby previous accesses
– Temporal locality: accessing an item that was previously accessed

● Memory Hierarchy tries to exploit locality

L1
cache

registers

datapath

Operation Units

processor

Third
level

cache
(SRAM)

Main
memory

(DRAM)

Secondary
storage
(Disk)

Tertiary
storage

(Disk/Tape)

L2
cache

Memory Hierarchy

2

Shared Memory Organizations

• P• 1

• $

• Interconnection network

• $

• P• n

• Mem • Mem

• Dance Hall (UMA)

• P• 1

• $

• Interconnection network

• $

• P• n

• Mem • Mem

• Distributed Shared Memory (NUMA)

• P• 1

• $ • $

• P• n

• Mem • I/O devices

• Bus-based Shared Memory

3

Bus-Based Symmetric Multiprocessors

I/O systemMain memory

Bus

P1

Multilevel
Cache

Pn

Multilevel
Cache

● Symmetric access to main memory from any processor
● An important architecture until very recently

– Building blocks for larger systems; arriving to desktop
● Attractive as throughput servers and for parallel programs

● Uniform access via loads/stores
● Automatic data movement and

coherent replication in caches
● Cheap and powerful extension to

uniprocessors

4

● Normal uniprocessor mechanisms to access data
● Key is extension of memory hierarchy to support multiple processors

Caches are Critical for Performance

 P P P

● Reduce average latency
– Main memory access costs from 100 to 1000 cycles
– Caches can reduce latency to few cycles

● Reduce average bandwidth and demand to access main
memory
– Reduce access to shared bus or interconnect

●Automatic migration of data
●Data is moved closer to processor

●Automatic replication of data
●Shared data is replicated upon need
●Processors can share data efficiently

●But private caches create a problem
5

Example on Cache Coherence Problem

● Processors see different values for u after event 3
● With write back caches …

– Processes accessing main memory may see stale (old
incorrect) value

– Value written back to memory depends on sequence of
cache flushes

● Unacceptable to programs, and frequent!

I/O devicesMemory

P1

cache

P2 P3

5

u = ?

4

u = ?

u :5 2

u :5

3

u = 7

1

u :5
cache cache

6

● Private processor caches create a problem
– Copies of a variable can be present in multiple caches
– A write by one processor may not become visible to others

» They’ll keep accessing stale value in their caches
-> Cache coherence problem

● What do we do about it?
– Organize the memory hierarchy to make it go away
– Detect and take actions to eliminate the problem

Caches and Cache Coherence

7

What to do about Cache Coherence?

● Organize the memory hierarchy to make it go away
– Remove private caches and use a shared cache

● A switch is needed ⇒ added cost and latency
● Not practical for a large number of processors

● Mark segments of memory as uncacheable
– Shared data or segments used for I/O are not cached
– Private data is cached only
– We loose performance

● Detect and take actions to eliminate the problem
– Can be addressed as a basic hardware design issue
– Techniques solve both multiprocessor as well as I/O cache

coherence
88

Intuitive Coherent Memory Model

● Caches are supposed to be transparent

● What would happen if there were no caches?
– All reads and writes would go to main memory
– Reading a location should return last value written by any processor

● What does last value written mean in a multiprocessor?
– All operations on a particular location would be serialized
– All processors would see the same access order to a particular location

● If they bother to read that location
● Interleaving among memory accesses from different processors

– Within a processor ⇒ program order on a given memory location
– Across processors ⇒ only constrained by explicit synchronization

9

Formal Definition of Memory Coherence

! A memory system is coherent if there exists a serial order of memory
operations on each memory location X, such that …

1. A read by any processor P to location X that follows a write by
processor Q (or P) to X returns the last written value if no other
writes to X occur between the two accesses

2. Writes to the same location X are serialized; two writes to same
location X by any two processors are seen in the same order by
all processors

! Two properties

" Write propagation: writes become visible to other processors

! Write serialization: writes are seen in the same order by all
processors

10

Hardware Coherency Solutions

● Bus Snooping Solution
– Send all requests for data to all processors
– Processors snoop to see if they have a copy and respond

accordingly
– Requires broadcast, since caching information is in processors
– Works well with bus (natural broadcast medium)
– Dominates for small scale multiprocessors (most of the market)

● Directory-Based Schemes
– Keep track of what is being shared in one logical place
– Distributed memory ⇒ distributed directory
– Send point-to-point requests to processors via network
– Scales better than Snooping and avoids bottlenecks

11

12

● Write-through: the data is written both into the cache and passed on to the
next lower level in the memory hierarchy

● Write-back: the data is written only into the first level cache. Only when the
line is replaced, the data is transferred to the next level in memory hierarchy

Hardware Coherency Solutions

● Write-through protocol is simple
– Every write is observable

● However, every write goes on the bus
– Only one write can take place at a time in any processor

● Uses a lot of bandwidth!
● Write-back caches absorb most writes as cache hits

– But write hits don’t go on bus – need more sophisticated
protocols

Write-through VS Write-back

● Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies

● Write-update: when a processor writes, it updates
other shared copies of that block

Hardware Coherency Solutions

13

Invalidate VS Update
● Basic question of program behavior:

– Is a block written by one processor later read by others before it is
overwritten?

● Invalidate.
– yes: readers will take a miss
– no: multiple writes without addition traffic

● also clears out copies that will never be used again
● Update.

– yes: avoids misses on later references
– no: multiple useless updates

⇒ Need to look at program reference patterns and hardware complexity

Example of Write-through Invalidate

● At step 4, an attempt to read u by P1 will result in a cache miss
● Correct value of u is fetched from memory

● Similarly, correct value of u is fetched at step 5 by P2

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u :5
1

u :5

2

u :5

3

u = 7

 u = 7

14

MESI (write-invalidate, write-back)

! M: Modified
– Only this cache has copy and is modified
– Main memory copy is stale

! E: Exclusive or exclusive-clean
– Only this cache has copy which is not modified
– Main memory is up-to-date

! S: Shared
– More than one cache may have copies, which are not modified
– Main memory is up-to-date

! I: Invalid
● Know also as Illinois protocol

– First published at University of Illinois at Urbana-Champaign
– Variants of MESI protocol are used in many modern

microprocessors

15

• When%the%mul*processor%is%turned%on,%all%cache%lines%are%
marked%invalid.%

• CPU%1%requests%block%A%from%the%shared%memory.
• It%issues%a%BR%(Bus%Read)%for%the%block%and%gets%its%copy.
• The%cache%line%containing%block%A%is%marked%Exclusive.
• Subsequent%reads%to%this%block%access%the%cached%entry%
and%not%the%shared%memory.

• Neither%CPU%2%nor%CPU%3%respond%to%the%BR.

MESI Illustrated (step 1)

16

• CPU2requeststhesame$block.$$The$snoop$cacheonCPU$
1$notes$the$request$andCPU1$broadcasts$“Shared”,$
announcing$that$ithasa$copy$oftheblock.

• Both$copies$oftheblockaremarkedasshared.
• This$indicates$thattheblockisintwoor$more$cachesfor
readingandthatthecopyinthe$shared$primary$memory$
isupto$date.

• CPU3doesnotrespondtothe$BR.

MESI Illustrated (step 2)

17

• Suppose'that'CPU'2'writes'to'the'cache'line'it'is'holding'in'its'cache.''It'issues'a'BU'(Bus'
Upgrade)'broadcast,'marks'the'cache'line'as'Modified,'and'writes'the'data'to'the'line.

• CPU'1'responds'to'the'BU'by'marking'the'copy'in'its'cache'line'as'Invalid.

• CPU'3'does'not'respond'to'the'BU.
• Informally,'CPU'2'can'be'said'to'“own'the'cache'line”.

MESI Illustrated (step 3)

18

• Now$suppose$thatCPU3$a0empts$to$read$blockA.
• ForCPU1,thecache$line$holding$that$blockismarkedas
Invalid.$ CPU1$does$not$respond$totheBR$(Bus$Read).

• CPU2hasthecache$line$markedasModified.$$It$asserts$the$
signal$“Dirty”$onthebus,$writes$the$data$inthecache$line$back$
totheshared$memory,$and$marks$the$line$“Shared”.

• Informally,CPU2$asks$CPU3to$wait$whileitwrites$back$the$
contentsofits$modified$cache$line$totheshared$primary$
memory.$$CPU3waitsandthen$gets$a$correct$copy.$ Thecache$
lineineachofCPU2andCPU3ismarkedasShared.

MESI Illustrated (step 4)

19

MESI State Transition Diagram

!Processor Read
● Causes a BusRd on a read miss
● BusRd(S) => shared line asserted

● Valid copy in another cache
● Goto state S

● BusRd(~S) => shared line not asserted
● No cache has this block
● Goto state E

● No bus transaction on a read hit
!Processor Write

● Promotes block to state M
● Causes BusRdX / BusUpgr for states I / S

● To invalidate other copies
● No bus transaction for states E and M

PrRd/—

E

M

I

S

PrRd

PrRd/
BusRd(S)

PrWr/
BusUpgr

PrWr/
BusRdX

PrRd/—
BusRd/—

PrRd/
BusRd(~S)

PrWr/—

20

PrWr/—

MESI State Transition Diagram – cont’d

!Observing a BusRd
● Demotes a block from E to S state

● Since another cached copy exists
● Demotes a block from M to S state

● Will cause modified block to be
flushed

● Block is picked up by requesting
cache and main memory

!Observing a BusRdX or BusUpgr
● Will invalidate block
● Will cause a modified block to be flushed

!Cache-to-Cache (C2C) Sharing
● Supported by original Illinois version
● Cache rather than memory supplies data

PrWr/—

PrRd/—

E

M

I

S

PrRd

PrRd/
BusRd(S)

BusRdX/
FlushBusRd/

C2C

PrWr/
BusUpgr

PrWr/
BusRdX

BusRd/
Flush

BusRdX/C2C

PrRd/—
BusRd/C2C

PrRd/
BusRd(~S)

PrWr/—

Replace/
BusWB

BusRdX/—
BusUpgr/—
Replace/—

Replace/—

21

