
High-Level Data Races

Cyrille Artho1, Klaus Havelund2, and Armin Biere1

1 Computer Systems Institute, ETH Zurich, Switzerland
2 Kestrel Technology, NASA Ames Research Center, Moffett Field, California USA

Abstract. Data races are a common problem in concurrent programming. Ex-
perience shows that the notion of data race is not powerful enough to capture
certain types of inconsistencies occurring in practice. In this paper we investigate
data races on a higher abstraction layer. This enables us to detect inconsistent
uses of shared variables, even if no classical race condition occurs. For example,
a data structure representing a coordinate pair may have to be treated atomically.
By lifting the meaning of a data race to a higher level, such problems can now
be covered. The paper defines the conceptsview andview consistencyto give a
notation for this novel kind of property. It describes what kinds of errors can be
detected with this new definition, and where its limitations are. It also gives a
formal guideline for using data structures in a multi-threaded environment.

1 Introduction

Multi-threaded, or concurrent, programming is becoming increasingly popular in enter-
prise applications and information systems [3, 26]. The Java programming language [2]
explicitly supports this paradigm [17]. Multi-threaded programming, however, provides
a potential for introducing intermittent concurrency errors that are hard to find using
traditional testing. The main source of the problem is that a multi-threaded program
may execute differently from one run to another due to the apparent randomness in the
way threads are scheduled. Since testing typically cannot explore all schedules, some
bad schedules may never be discovered. One kind of error that often occurs in multi-
threaded programs is adata race. In this paper we shall go beyond the traditional notion
of what we shall refer to as low-level data races, and introduce high-level data races, to-
gether with an algorithm for detecting them. The algorithm has been implemented in the
Java PathExplorer (JPaX) tool [13, 5], which provides a general framework for instru-
menting Java programs, and for monitoring and analyzing execution traces. In particular
JPaX contains algorithms for detecting problems in multi-threaded programs, such as
data races and deadlocks [5]. Although JPaX analyzes Java programs, the principles and
theory presented here are universal and apply in full to concurrent programs written in
languages like C and C++ as well [20].

1.1 Low-level Data Races

The traditional definition of a data race is as follows [23]:

A data race occurs when two concurrent threads access a shared variable and
when at least one access is a write, and the threads use no explicit mechanism
to prevent the accesses from being simultaneous.

Consider for example two threads, that both access a shared object containing a counter
variablex, and assume that both threads call anincrease()method on the object, which
increasesx by 1. Theincrease()method is compiled into a sequence of bytecode in-
structions (loadx to the operand stack, add 1, write back the result). The Java Virtual
Machine (JVM) executes this sequence non-atomically. Suppose the two threads call
increase()at nearly the same time and that each of the threads execute theload instruc-
tion first, which loads the value ofx to the thread-local operand stack. Then they will
both add 1 to the original value, which results in a combined increment of 1 instead of
2. We shall refer to this traditional notion of data race as alow-level data race, since it
focuses on a single variable.

The standard way to avoid low-level data races on a variable is to protect the variable
with a lock: all accessing threads must acquire this lock before accessing the variable,
and release it again after. In Java, methods can be defined assynchronized which
causes such a method to execute while locking the current object instance. Java also
provides an explicit statementsynchronized(obj) {block}, for taking a lock on the
objectobj, and executing blockblockprotected under that lock. If the above mentioned
increase()method is declaredsynchronized , the low-level data race cannot occur.

Several algorithms and tools have been developed for analyzing multi-threaded pro-
grams for low-level data races. The Eraser algorithm [23], which has been implemented
in the Visual Threads tool [11] to analyze C and C++ programs, is an example of a such
an algorithm that examines a program execution trace for locking patterns and variable
accesses in order to predict potential data races.

1.2 High-level Data Races

A program may be inconsistent even when it is free of low-level data races, where we
consider the set of locks protecting a single variable. In this paper we shall turn this
around and study thevariable setassociated to alock. This notion makes it possible to
detect what we shall refer to ashigh-level data races. The inspiration for this problem
was originally due to a small example provided by Doug Lea [18]. It is presented in
modified form in Sec. 2. It defines a simple class representing a coordinate pair with
two componentsx andy. All accesses are protected by synchronization onthis , using
synchronized methods. Therefore, data race conditions on a low level are not pos-
sible. As this example will illustrate, there can still be data races on a higher level, and
this can be detected as inconsistencies in the granularity ofvariable setsassociated to
locks in different threads. The algorithm for detecting high-level data races is a dynamic
execution trace analysis algorithm like the Eraser algorithm [23].

As a realistic example of a high-level data race situation, we shall illustrate a prob-
lem that was detected in NASA’sRemote Agentspacecraft controller [22]. The problem
was originally detected using model checking [12]. The error was very subtle, and was
originally regarded hard to find without actually exploring all execution traces as done
by a model checker. As it turns out, it is an example of a high-level data race, and can
therefore be detected with the low-complexity algorithm presented in this paper.

The Remote Agent is an artificial-intelligence-based software system for generating
and executing plans on board a spacecraft. A plan essentially specifies a set of tasks
to be executed within certain time constraints. The plan execution is performed by the

Executive. A sub-component of the Executive is responsible for managing the execution
of tasks, once the tasks have been activated. The data structures needed for managing
task execution are illustrated in Fig. 1.

Control
commands

Lock
property

State
change

Task
interrupt

false

false

true

true

Lock
event

System
state

.

.

.

.

.

Spacecraft

Property lock table
Monitors

Daemon

Tasks
A

B

C

Z OFF

0

ON

10

Fig. 1. The Remote Agent Executive

The state of the spacecraft (at any
particular point) can be considered as
an assignment of values to a fixed set
of variables, each corresponding to a
component sensor on board the space-
craft. The spacecraft maintains a cur-
rentsystem state. The termproperty is
used to refer to a particular assignment
for a particular variable. Tasks may re-
quire that specific properties hold dur-
ing their execution. Upon the start of a
task, it first tries to lock those properties
it requires in alock table. For example,
a task may requireB to be ON. Now
other threads cannot requestB to be
OFF as long as the property is locked
in the lock table. Next, the task tries to achieve this property (changing the state of the
spacecraft, and thereby the system state), and when it is achieved, the task sets a flag
achievedto true in the lock table, which has beenfalseuntil then.

A Daemonconstantly monitors the lock table, and checks:if a property’s flag
achievedis true, then it must be a true property of the spacecraft, and hence true in
the system state. Violations of this property may occur by unexpected events on board
the spacecraft. The daemon wakes up whenever events occur, such as when the lock
table or the system state are modified. If an inconsistency is detected, the involved tasks
are interrupted.

The task contains two separate accesses to the lock table, one where it updates the
value and one where it updates flagachieved. The daemon on the other hand accesses
all these fields in one atomic block. This can be described as an inconsistency in lock
views, as described below, and actually presents an error potential.

The error scenario is as follows: suppose the task has just achieved the property, and
is about to execute the second synchronized block, setting flagachievedto true. Suppose
now however, that suddenly, due to unpredicted events, the property is destroyed on
board the spacecraft, and hence in the system state, and that the daemon wakes up, and
performs all checks. Since flagachievedis false, the daemon reasons incorrectly that
the property is not supposed to hold in the system state, and hence it does not detect
any inconsistency with the lock table (although conceptually now there is one). Only
then the task continues, and sets flagachievedto true. The result is that the violation
has been missed by the daemon.

Detecting this error using normal testing is very hard since it requires not only
to execute the just described interleaving (or a similar one), but it also requires the
formulation of a correctness property that can be tested for, and which is violated in
the above scenario. However, regarding this as a view inconsistency problem allows

class Coord {
 double x, y;
 public Coord(double px, double py) { x = px; y = py; }

 synchronized double getX() { return x; }

 synchronized double getY() { return y; }
 synchronized Coord getXY() { return new Coord(x, y); }
 synchronized void setX(double px) { x = px; }

 synchronized void setY(double py) { y = py; }

 synchronized void setXY(Coord c) { x = c.x; y = c.y; }
}

Fig. 2. TheCoord class encapsulating points with x and y coordinates.

us to find the error without actually executing this particular interleaving, and it does
not require a requirement specification. The view inconsistency in this example can be
described as follows:

The daemon accesses the value and flagachievedin one atomic block, while
the task accesses them in two different blocks. Hence, the daemon has view
v1 = {value, flag} while the task has viewsv2 = {value}, v3 = {flag}. This is
view-inconsistent: the task views form disjoint subsets of the daemon view.

View inconsistency is in itself not an error. However, in the above example it is a symp-
tom that if pointed out may direct the programmer’s attention to the real problem, that
property achievement and setting flagachievedare not done in one atomic block3. More
formal and generic definitions of view inconsistency are presented in Sec. 2 and 3.

1.3 Outline

The paper is organized as follows. Sec. 2 introduces high-level data races. Sec. 3 presents
our concepts for detecting them. Sec. 4 describes experiments carried out. Sec. 5 gives
an overview of related work. Sec. 6 outlines future work and Sec. 7 concludes the paper.

2 Intuition

Consistent lock protection for a shared field ensures that no concurrent modification
is possible. However, this only refers to low-level access to the fields, not their entire
use or their use in conjunction with other fields. The remainder of this paper assumes
detection of low-level data races is covered by the Eraser algorithm [23], which can be
applied in conjunction with our analysis.

Fig. 2 shows a class implementing a two-dimensional coordinate pair with two fields
x, y, which are guarded by a single lock. If onlygetXY , setXY , and the constructor
are used by any thread, the pair is treated atomically. However, the versatility offered by
the other accessor (get /set) methods is dangerous: if a thread only usesgetXY and

3 Note that repairing the situation is non-trivial since achieving properties may take several clock
cycles, and it is therefore not desirable to hold the lock on the table during this process.

Threadt1 Threadt2 Threadt3 Threadt4

synchronized(c) {
 access(x);
 access(y);

}

synchronized(c) {
 access(x);
}

synchronized(c) {

 access(x);
}
synchronized(c) {

 access(y);

}

synchronized(c) {

 access(x);
}
synchronized(c) {

 access(x);

 access(y);
}

Fig. 3. One thread using a pair of fields and three threads accessing components individually.

setXY and relies on complete atomicity of these operations, threads using the other
accessor methods may falsify this assumption.

Imagine a case where one thread reads both coordinates while another one sets them
to zero. If the write operation occurs in two phases,setX andsetY , the other thread
may read anintermediate resultwhich contains the value ofx already set to zero but
still the originaly value. This is clearly an undesired and often unexpected behavior.
We will use the termhigh-level data raceto describe this kind of scenario.

Nevertheless, there exist scenarios where some of the other access methods are al-
lowed and pair-wise consistency is still maintained. The novel concept ofview consis-
tencycaptures this notion of consistency while allowing partial accesses. In previous
work [23], only the use oflocks for each variablehas been considered. The opposite
perspective, the use ofvariables under each lock,is the core of our new idea.

Fig. 3 shows another example with four threads, which is abbreviated for better
readability. Control structures within threads are hidden as well. Furthermore, it is as-
sumed that each field accessed by a thread is a reference to a shared object, visible to
all threads. Reading and writing are abstracted asaccess(f) , wheref is a shared
field. Calls of synchronized methods accessingf under lock protection are represented
usingsynchronized(lock) {access(f); }. Thread creation is not shown. Ini-
tially, we only consider the first two threadst1 andt2. It is not trivial to see whether an
access conflict occurs or not. As long ast2 does not usey as well, it does not violate
the first thread’s assumption that the coordinates are treated atomically. Even thought1
accesses the entire pair{x, y} atomically andt2 does not, the access tox alone can be
seen as a partial read or partial write. A read access tox may be interpreted as reading
{x, y} and discardingy; a write access may be seen as writing tox while leavingy
unchanged. So both threadst1 andt2 behave in a consistent manner.

Partial use of the coordinates is allowed, as long as that use is consistent. Inconsis-
tencies arise with threadt3, which usesx in one operation andy in another operation,
releasing the lock in between. If, for example, threadt3 readsits data in two parts, with
another thread liket1 writing to it in between,t3 may obtain partial values correspond-
ing to twodifferentglobal states. If, on the other hand, threadt3 writes its data in two
parts, other threads, liket1, may read data corresponding to anintermediatestate.

Since both read and write accesses result in an error, we do not have to distinguish
between the two kinds of access operations, assuming that shared values are not read-
only. The difficulty in analyzing such inconsistencies lies in the wish to still allow partial
accesses to sets of fields, like the access tox of threadt2.

As an example of a situation which at first sight appears to provide a conflict, but
which we shall regard as safe, consider the situation betweent1 and t4. This could
potentially be regarded as a conflict sincet4 contains two different synchronization
statements. However, observingt4, the second synchronization statement is completely
self-contained. It accesses in addition toy everything the first synchronization statement
accesses, which isx. Consequently, the first synchronization statement int4 likely rep-
resents an operation that does not needy (whether read or write). Therefore, the two
synchronization operations are unrelated and can be interleaved with the atomic syn-
chronization statement int1.

On a more formal basis,t4 is safe because the set of variables accessed in the first
synchronization statement oft4 is a subset of the set of variables accessed in its second
synchronization statement. Put differently, the variable sets form achain. Generally, a
setF of fields of a threadt is atomic if they are accessed in a synchronization statement
in t. A high-level data race occurs when a thread has an atomic set of fieldsF and
another thread has atomic setsG1 andG2 such their overlaps withF do not form a
chain. This will be formalized in the next section.

3 View Consistency

This section definesview consistency.It lifts the common notion of a data race on a
single shared variable to a higher level, covering sets of shared variables and their uses.

3.1 Views

A lock guardsa shared field if it is held during an access to that field. The same lock
may guard several shared fields. Views express what fields are guarded by a lock. LetI
be the set of object instances generated by a particular run of a Java program. ThenF
is the set of all fields of all instances inI.

A viewv ∈ P(F) is a subset ofF . Let l be a lock,t a thread, andB(t, l) the set of
all synchronized blocks using lockl executed by threadt. For b ∈ B(t, l), a view
generated byt with respect tol, is defined as the set of fields accessed inb by t. Theset
of generated viewsV (t) ⊆ P(F) of a threadt is the set of all viewsv generated byt.
In the previous example in Fig. 3, threadt1 using both coordinates atomically generates
view v1 = {x, y} under lockl = c. Threadt2 only accessesx alone underl, having
view v2 = {x}. Threadt3 generates two views:V (t3) = {{x}, {y}}. Threadt4 also
generates two views:V (t4) = {{x}, {x, y}}.

3.2 Views in Different Threads

A view vm generated by a threadt is amaximal view, iff it is maximal with respect to
set inclusion inV (t):

∀v ∈ V (t) [(vm ⊆ v) → (vm = v)]

Let M(t) denote the set of all maximal views of threadt. Only two views which have
fields in common can be responsible for a conflict. This observation is the motivation

for the following definition. Given a set of viewsV (t) generated byt and a viewv′

generated by another thread, theoverlapping viewsof t with v′ are all non-empty inter-
sections of views inV (t) with v′:

overlap(t, v′) ≡ {v′ ∩ v | (v ∈ V (t)) ∧ (v ∩ v′ 6= ∅)}

A set of viewsV (t) is compatiblewith the maximal viewvm of another thread iff all
overlapping views oft with vm form a chain:

compatible(t, vm) iff ∀v1, v2 ∈ overlap(t, vm) [(v1 ⊆ v2) ∨ (v2 ⊆ v1)]

View consistencyis the mutual compatibility between all threads: A thread is only al-
lowed to use views that are compatible with the maximal views of all other threads.

∀t1 6= t2, vm ∈ M(t1) [compatible(t2, vm)]

In the example in Fig. 3, we hadV (t1) = M(t1) = {{x, y}}, V (t2) = M(t2) =
{{x}}, V (t3) = M(t3) = {{x}, {y}}, and finallyV (t4) = {{x}, {x, y}} andM(t4) =
{{x, y}}. There is a conflict betweent1andt3 as stated, since{x, y} ∈ M(t1) inter-
sects with the elements inV (t3) to {x} and{y}, which do not form a chain. A similar
conflict exists betweent3 andt4.

The above definition ofview consistencyuses three concepts: the notion ofmaximal
views, the notion ofoverlaps, and finally thecompatiblenotion, also referred to as the
chain property. The chain property is the core concept. Maximal views do not really
contribute to the solution other than to make it more efficient to calculate and reduce
the number of warnings if a violation is found. The notion of overlaps is used to filter
out irrelevant variables.

3.3 Soundness and Completeness

Essentially, this approach tries to infer what the developer intended when writing the
multi-threaded code, by discovering view inconsistencies. However, an inconsistency
may not automatically imply a fault in the software. An inconsistency that does not
correspond to a fault is referred to as afalse positive(spurious warning). Similarly, lack
of a reported inconsistency does not automatically imply lack of a fault. Such a missing
inconsistency report for an existing fault is referred to as afalse negative(missed fault).

False positives are possible if a thread uses a coarser locking than actually required
by operation semantics. This may be used to make the code shorter or faster, since
locking and unlocking can be expensive. Releasing the lock between two independent
operations requires splitting onesynchronized block into two blocks.

False negatives are possible if all views are consistent, but locking is still insuffi-
cient. Assume a set of fields that must be accessed atomically, but is only accessed one
element at a time by every thread. Then no view of any thread includes all variables as
one set, and the view consistency approach cannot find the problem. Another source of
false negatives is the fact that a particular (random) run through the program may not
reveal the inconsistent views.

Application Size Run time [s],Run time [s],Log sizeWarnings
[LOC] uninstrumentedinstrumented [MB] issued

Elevator 500 16.7 17.5 1.9 2
SOR 250 0.8 343.2 123.5 0
TSP, very small run (4 cities) 700 0.6 1.8 0.2 0
TSP, larger run (10 cities) 700 0.6 28.1 2.3 0
NASA’s K9 Rover controller 7000 − − − 1

Table 1.Analysis results for the given example applications.

The fact that false positives are possible means that the solution is not sound. Simi-
larly, the possibility of false negatives means that the solution neither is complete. This
may seem surprising, but actually also characterizes the Eraser low-level data race de-
tection algorithm [23] implemented in the commercial Visual Threads tool [11], as well
as the deadlock detection algorithm implemented in the same tool. The same holds for
the similar algorithms implemented in JPaX. The reason for the usefulness of such algo-
rithms is that they still have a much higher chance of detecting an error than if one relies
on actually executing the particular interleaving that leads to an error, without requir-
ing much computational resources. These algorithms are essentially based on turning
the property to be verified (in this case: no high-level data races) into a more testable
property (view consistency). This aspect is discussed in more detail in [5] in relation to
deadlock detection.

4 Experiments

The experiments were all made with the run-time verification tool JPaX [13]. It consists
of two parts: an instrumentation module and an observer module. The instrumentation
module produces an instrumented version of the program, which when executed gen-
erates an event log with the information required for the observer to determine the cor-
rectness of the examined properties. The observer of the events used here only checks
for high-level data races. For these experiments, a new and yet totally un-optimized
version of JPaX was used. It instruments every field access, regardless of whether it can
be statically proven to be thread-safe. Because of this, some data-intensive applications
created log files which grew prohibitively large (> 0.5 GB) and could not be analyzed.

Four applications were analyzed. Those applications include a discrete-event ele-
vator simulator, and two task-parallel applications: SOR (Successive Over-Relaxation
over a 2D grid), and a Travelling Salesman Problem (TSP) application. The latter two
use worker threads [17] to solve the global problem. Many thanks go to Christoph von
Praun for kindly providing these examples, which were referred to in [28]. In addition,
a Java model of a NASA planetary rover controller, named K9, was analyzed. The orig-
inal code is written in C++ and contains about 35,000 lines of code, while the Java
model is a heavily abstracted version with 7,000 lines. Nevertheless, it still includes the
original, very complex, synchronization patterns.

Table 1 summarizes the results of the experiments. All experiments were run on a
Pentium III with a clock frequency of 750 MHz using Sun’s Java 1.4 Virtual Machine,

given 1 GB of memory. Only applications which could complete without running out
of memory were considered. It should be noted that the overhead of the built-in Just-In-
Time (JIT) compiler amounts to 0.4 s, so a run time of 0.6 s actually means only about
0.2 s were used for executing the Java application. The Rover application could not be
executed on the same machine where the other tests were run, so no time is given there.

It is obvious that certain applications using large data sets incurred a dispropor-
tionately high overhead in their instrumented version. Most examples passed the view
consistency checks without any warnings reported. For the elevator example, two false
warnings referred to two symmetrical cases. In both cases, three fields were involved
in the conflict. In threadt1, the viewsV (t1) = {{1, 3}, {3}, {2, 3}} were inconsistent
with the maximal viewvm = {1, 2, 3} of t2. While this looks like a simple case, the
interesting aspect is that one method int1 included aconditionalaccess to field1. If that
branch had been executed, the view{2, 3} would actually have been{1, 2, 3}, and there
would have been no inconsistency reported. Since not executing the branch corresponds
to reading data and discarding the result, both warnings are false positives.

One warning was also reported for the NASA K9 rover code. It concerned six fields
which were accessed by two threads. The responsible developer explained the large
scope of the maximal view with six fields as an optimization, and hence it was not
considered an error. The Remote Agent spacecraft controller was only available in Lisp,
so it could not be directly tested. However, we have successfully applied our tool to test
cases reflecting different constellations including that particular high-level data race.

So far, experiments indicate that experienced programmers intuitively adhere to the
principle of view consistency. Violations can be found, but are not very common, as
shown in our experiments. Some optimizations produce warnings that constitute no
error. Finally, the two false positives from the elevator example show that the definition
of view consistency still needs some refinement.

5 Related Work

5.1 Static Analysis and Model Checking

Beyond Eraser, several static analysis tools exist that examine a program for low-level
data races. The Jlint tool [3] is such an example. The ESC [8] tool is also based on static
analysis, or more generally on theorem proving. It, however, requires annotation of the
program, and does not appear to be as efficient as the Eraser algorithm in finding low-
level data races. Dynamic tools have the advantage of having more precise information
available in the execution trace. More heavyweight dynamic approaches include model
checking, which explores all possible schedules in a program. Recently, model checkers
have been developed that apply directly to programs (instead of just on models thereof),
such as the Java PathFinder system (JPF) developed by NASA [27], and similar systems
[10, 9, 15, 4, 25]. Such systems, however, suffer from the state space explosion problem.
A data race, low-level as well as high-level, can be hard to find with model checking
since it typically needs to cause a violation of some explicitly stated property.

5.2 Database Concurrency

In database theory, shared data is stored in a database and accessed by different pro-
cesses. Each process performstransactions, sequences of read and write operations, on
the data. A sequence of these operations corresponding to several transaction is called a
history. Based on this history, it can be inferred whether each transaction isserializable,
i.e., whether its outcome corresponds to having run that transaction in isolation [21, 6].

There are several parallels to multi-threaded programs, which share their data in
memory instead of in a database. Data races on shared fields in a multi-threaded pro-
gram can be be mapped to database access conflicts on shared records. Lock protection
in a multi-threaded program corresponds to an encapsulation of read and write accesses
in a transaction. The key problem addressed by this paper, having intermediate states
accessible when writing non-atomically a set of fields, maps to theinconsistent re-
trieval problem in databases. In such a history, one transaction reads some data items in
between another transaction’s updates on these items. A correcttransaction scheduler
will prevent such an access conflict, as long as the accesses of each process are correctly
encapsulated in transactions.

High-level data races concern accesses to sets of fields, where different accesses
use different sets. Similar problems may be seen in databases, if the programmer incor-
rectly defines transactions which are too fine-grained. For example, assume a system
consists of a global database and an application using reading and writing threads. The
writing threads use two transactions to update the database, the reading threads access
everything in a single transaction. Here, the reader’s view is inconsistent, since it may
read an intermediate state of the system. If the writer uses a single transaction, the fault
is corrected. It is likely that the abstraction provided by database query languages such
as SQL [7] prevents some of these problems occurring.

Furthermore, concurrency theory as used for databases and transaction systems is
moving towards richer semantics and more general operations, calledactivities [24].
Like in classical transactions, low-level access conflicts are prevented by a scheduler
which orders these operations. We are not sure how high-level access conflicts have to
be treated with the richer semantics of activities.

Finally, database theory also uses the termviewunder different meanings. Specif-
ically, the two termsview equivalenceand view serializabilityoccur [6]. These two
terms are independent of view consistency as defined in this paper.

5.3 Hardware Concurrency

In hardware design and compiler construction, Lamport has made a major step towards
correct shared memory architectures for multiprocessors [16]. He usessequential con-
sistencyas a criterion for ensuring correctness of interleaved operations. It requires all
data operations to appear to have executed atomically. The order in which these opera-
tions execute has to be consistent with the order seen by individual processes.

Lamport’s notion of sequential consistency is rather restrictive and can be relaxed
such that processors are allowed to read older copies of data as long as the observed
behavior is indistinguishable from a conventional shared memory system [1]. Mittal and
Garg extended this work and Herlihy’s linearizability [14] to multi-object operations,

such as double-register compare and swap operations [19]. Problems occurring with
such multi-object operations are very much alike to our high-level data races. Unlike
our approach, which deals with access patterns, their approach is concerned with the
interleaving of operations and based on histories as known in database literature.

6 Future Work

Areas for future work can be classified into technical and theoretical problems. On
the technical side, there are still issues with the run-time analysis tool JPaX. The code
instrumentation and event generation does not always provide a reliable identification of
objects. It relies on name, type, and hash code of objects. The latter can change during
execution, which causes difficulties in the observer. Nonetheless, the hash code is the
best identification which can be obtained easily in Java.

Furthermore, the instrumentation has to be optimized with respect to statically prov-
able thread-safety. For instance, read-only or thread-local variables do not have to be
monitored. Another optimization would be to only execute logging instructions a few
times, instead of every time they are reached. A few executions of each instruction
(one by each thread involved) are often enough to detect a problem. Apart from that,
the observer analysis could run on-the-fly without event logging. This would certainly
eliminate most scalability problems. Additionally, the current version reports the same
conflict for different instances of the same object class.

On the theoretical side, it is not yet fully understood how to properly deal with
nested locks. Views of inner locks cause spurious conflicts with the larger views of outer
locks. Moreover, the elevator case study has shown that a slightly different, control-
flow-independent definition of view consistency is needed. Perhaps static analysis may
be better suited to check such a revised definition.

7 Conclusions

Data races denote a concurrent access to shared variables where an insufficient lock
protection can lead to a corrupted program state. Classical, or low-level, data races
concern accesses to single fields. Our new notion of high-level data races deals with
accesses to sets of fields which are related and should be accessed atomically.

View consistency is a novel concept considering the association of variable sets to
locks. This permits detecting high-level data races that can lead to an inconsistent pro-
gram state, similar to classical low-level data races. Experiments on a small set of ap-
plications have shown that developers seem to follow the guideline of view consistency
to a surprisingly large extent. We think this concept, now formally defined, captures an
important idea in multi-threading design.

References

1. Y. Afek, G. Brown, and M. Merritt. Lazy Caching.ACM Transactions on Programming
Languages and Systems, 15(1):182–205, January 1993.

2. K. Arnold and J. Gosling.The Java Programming Language. Addison-Wesley, 1996.
3. C. Artho and A. Biere. Applying Static Analysis to Large-Scale, Multi-threaded Java Pro-

grams. In D. Grant, editor,Proc. 13th ASWEC, pages 68–75. IEEE Computer Society, 2001.
4. T. Ball, A. Podelski, and S. Rajamani. Boolean and Cartesian Abstractions for Model Check-

ing C Programs. InProc. TACAS’01, LNCS, Italy, 2001.
5. S. Bensalem and K. Havelund. Reducing False Positives in Runtime Analysis of Deadlocks.

Submitted for publication, January 2003.
6. P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency Control and Recovery in

Database Systems. Addison-Wesley, 1987.
7. D. Chamberlin and R. Boyce. SEQUEL: A structured English query language. InProc. 1976

ACM SIGFIDET workshop on Data description, access and control, pages 249–264, 1976.
8. D. L. Detlefs, K. Rustan, M. Leino, G. Nelson, and J. B. Saxe. Extended Static Checking.

Technical Report 159, Compaq Systems Research Center, Palo Alto, California, USA, 1998.
9. J. Corbett et al. Bandera: Extracting Finite-state Models from Java Source Code. InProc.

22nd ICSE, Ireland, 2000. ACM Press.
10. P. Godefroid. Model Checking for Programming Languages using VeriSoft. InProc. 24th

ACM Symposium on Principles of Programming Languages, pages 174–186, France, 1997.
11. J. Harrow. Runtime Checking of Multithreaded Applications with Visual Threads. In7th

SPIN Workshop, volume 1885 ofLNCS, pages 331–342. Springer, 2000.
12. K. Havelund, M. R. Lowry, and J. Penix. Formal Analysis of a Space Craft Controller using

SPIN. IEEE Transactions on Software Engineering, 27(8):749–765, August 2001.
13. K. Havelund and G. Roşu. Monitoring Java Programs with Java PathExplorer. InProc.

RV’01, volume 55 ofENTCS, pages 97–114, France, 2001. Elsevier Science.
14. M. Herlihy and J. Wing. Linearizability: A Correctness Condition for Concurrent Objects.

ACM Transactions on Programming Languages and Systems, 12(3):463–492, 1990.
15. G. Holzmann and M. Smith. A Practical Method for Verifying Event-Driven Software. In

Proc. ICSE’99, USA, 1999. IEEE/ACM.
16. L. Lamport. How to Make a Multiprocessor that Correctly Executes Multiprocess Programs.

IEEE Trans. Comput., 9:690–691, September 1979.
17. D. Lea.Concurrent Programming in Java. Addison-Wesley, 1997.
18. D. Lea. Personal e-mail communication, 2000.
19. N. Mittal and V. Garg. Consistency Conditions for Multi-Object Distributed Operations. In

International Conference on Distributed Computing Systems, pages 582–599, 1998.
20. B. Nichols, D. Buttlar, and J. P. Farrell.Pthreads Programming. O’Reilly, 1998.
21. C. Papadimitriou. The Serializability of Concurrent Database Updates.Journal of the ACM,

26(4):631–653, 1979.
22. B. Pell, E. Gat, R. Keesing, N. Muscettola, and B. Smith. Plan Execution for Autonomous

Spacecrafts. InProc. IJCAI’97, pages 1234–1239, August 1997. Japan.
23. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A Dynamic

Data Race Detector for Multithreaded Programs.ACM Transactions on Computer Systems,
15(4):391–411, 1997.

24. H. Schuldt, G. Alonso, C. Beeri, and H.-J. Schek. Atomicity and Isolation for Transactional
Processes.ACM Transactions on Database Systems, 27(1):63–116, 2002.

25. S. D. Stoller. Model-Checking Multi-threaded Distributed Java Programs. In7th SPIN
Workshop, volume 1885 ofLNCS, pages 224–244. Springer, 2000.

26. Sun Microsystems.Java 2 Enterprise Edition, 2002.http://java.sun.com/j2ee .
27. W. Visser, K. Havelund, G. Brat, and S. Park. Model Checking Programs. InProc. ASE’2000.

IEEE CS Press, 2000.
28. C. von Praun and T. Gross. Object-Race Detection. InOOPSLA, pages 70–82. ACM, 2001.

