
www.it-ebooks.info

http://www.it-ebooks.info/

Spring Security 3.1

Secure your web applications from hackers with this
step-by-step guide

Robert Winch

Peter Mularien

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Security 3.1

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2010

Second published: December 2012

Production Reference: 1191212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-826-0

www.packtpub.com

Cover Image by Asher Wishkerman (wishkerman@hotmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Authors
Robert Winch

Peter Mularien

Reviewers
Marten Deinum

Brian Relph

Bryan Kelly

Acquisition Editor
Usha Iyer

Lead Technical Editor
Susmita Panda

Technical Editors
Lubna Shaikh

Worrell Lewis

Copy Editors
Brandt D'mello

Insiya Morbiwala

Alfida Paiva

Laxmi Subramanian

Project Coordinator
Michelle Quadros

Proofreader
Mario Cecere

Indexers
Monica Ajmera

Rekha Nair

Graphics
Aditi Gajjar

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Robert Winch is currently a Senior Software Engineer at VMware and is the
project lead of the Spring Security framework. In the past, he has worked as a
Software Architect at Cerner, the largest provider of electronic medical systems in
the U.S., securing health care applications. Throughout his career, he has developed
hands on experience integrating Spring Security with an array of security standards
(that is, LDAP, SAML, CAS, OAuth, and so on). Before he was employed at Cerner,
he worked as an independent web contractor, in proteomics research at Loyola
University Chicago, and on the Globus Toolkit at Argonne National Laboratory.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgement

Before we get started, I would like to extend my thanks to those who helped
me make this book possible. First, I would like to thank Peter Mularien, for
recommending me to Packt Publishing to write the second edition of his book
Spring Security 3, Packt Publishing. It was very useful to have such a sound
foundation to start Spring Security 3.1.

Writing a book is a very involved process and there were many that played a key
part in the book's success. I would like to thank all the members of the team at
Packt Publishing for making this possible. To Usha Iyer, for guiding me through the
process; to Theresa Chettiar, for ensuring that I stayed focused and on time; and to
Susmita Panda, for her diligence in reviewing the book. Thank you to my technical
reviewers Peter Mularien, Marten Deinum, Brian Relph, and Bryan Kelly. Your
feedback was critical in ensuring this book's success.

This book, the Spring Security Framework, and the Spring Framework are all made
possible by the large and active community. Thank you to all of those who contribute
to the Spring Framework through patches, JIRA submissions, and answering other
user's questions. Thanks to Ben Alex for creating Spring Security. I'd like to extend my
special thanks to Luke Taylor for his leadership of Spring Security. It was through his
mentoring that I have grown into a leader in the Spring Security community.

Thank you to my friends and family for your continued support. Last, but certainly
not least, I would like to thank my wife, Amanda. Without your love, patience, and
encouragement, I would have never been able to finish this book. Thank you for
taking such good care of me and reminding me to eat.

www.it-ebooks.info

http://www.it-ebooks.info/

Peter Mularien is an experienced software architect and engineer, and the
author of the book Spring Security 3, Packt Publishing. Peter currently works for a
large financial services company and has over 12 years consulting and product
experience in Java, Spring, Oracle, and many other enterprise technologies.
He is also the reviewer of this book.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Marten Deinum is a Java/software consultant working for Conspect. He
has developed and architected software, primarily in Java, for small and large
companies. He is an enthusiastic open source user and longtime fan, user, and
advocate of the Spring Framework. He has held a number of positions including
Software Engineer, Development Lead, Coach, and also as a Java and Spring Trainer.
When not working or answering questions on the Spring Framework forums, he can
be found in the water training for the triathlon or under the water diving or guiding
other people around.

Brian Relph is currently a Software Engineer at Google, with a focus on web
application development. In the past, he has worked as a Software Architect at
Cerner, the largest provider of electronic medical systems in the U.S. Throughout
his career, he has developed hands on experience in integrating Spring and Spring
Security with an array of Java standards (that is, LDAP, CAS, OAuth, and so on), and
other open source frameworks (Hibernate, Struts, and so on). He has also worked as
an independent Web Contractor.

www.it-ebooks.info

http://www.it-ebooks.info/

Bryan Kelly is currently a Software Architect at Cerner Corporation,
the largest provider of electronic medical systems in the U.S. At Cerner, his
primary responsibility is designing and implementing solutions that use the
Spring Framework, Spring Security, and Hibernate for Web Applications and
RESTful Web Services. Previously, he has worked as a Software Developer for
CJK Software Consultants. Throughout his career, he has developed hands on
experience in integrating Spring Security with an array of security standards
(that is, LDAP, SAML v1 and v2, CAS, OAuth, OpenID, and so on).

I would like to personally thank Rob Winch for the opportunity to
be a technical reviewer of this book. I would like to thank my wife
Melinda Kelly for her unwavering support while I used my personal
time to review this book. I would also like to thank John Krzysztow
of CJK Software Consultants for giving a high schooler a chance at
professional software development.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

To my wife for your love, patience, and support throughout this endeavor.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: Anatomy of an Unsafe Application	 7

Security audit	 8
About the sample application	 8
The JBCP calendar application architecture	 10
Application technology	 11
Reviewing the audit results	 12
Authentication	 14
Authorization	 16
Database credential security	 18
Sensitive information	 19
Transport-level protection	 19
Using Spring Security 3.1 to address security concerns	 19
Why Spring Security	 20
Summary	 20

Chapter 2: Getting Started with Spring Security	 21
Hello Spring Security	 22

Importing the sample application	 22
Updating your dependencies	 22

Using Spring 3.1 and Spring Security 3.1	 23
Implementing a Spring Security XML configuration file	 24
Updating your web.xml file	 27

ContextLoaderListener	 27
ContextLoaderListener versus DispatcherServlet	 28
springSecurityFilterChain	 29
DelegatingFilterProxy	 30
FilterChainProxy	 30

Running a secured application	 31
Common problems	 31

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

A little bit of polish	 32
Customizing login	 33

Configuring logout	 36
The page isn't redirecting properly	 38
Basic role-based authorization	 39
Expression-based authorization	 43
Conditionally displaying authentication information	 44
Customizing the behavior after login	 46

Summary	 48
Chapter 3: Custom Authentication	 49

JBCP Calendar architecture	 49
CalendarUser	 50
Event	 50
CalendarService	 50
UserContext	 51
SpringSecurityUserContext	 52

Logging in new users using SecurityContextHolder	 54
Managing users in Spring Security	 55
Logging in a new user to an application	 56
Updating SignupController	 57

Creating a custom UserDetailsService object	 58
CalendarUserDetailsService	 58
Configuring UserDetailsService	 60
Removing references to UserDetailsManager	 60
CalendarUserDetails	 61
SpringSecurityUserContext simplifications	 62

Displaying custom user attributes	 63
Creating a custom AuthenticationProvider object	 63

CalendarUserAuthenticationProvider	 64
Configuring CalendarUserAuthenticationProvider	 66
Authenticating with different parameters	 66

DomainUsernamePasswordAuthenticationToken	 67
Updating CalendarUserAuthenticationProvider	 67
Adding domain to the login page	 68
DomainUsernamePasswordAuthenticationFilter	 69
Updating our configuration	 70

Which authentication method to use	 73
Summary	 74

Chapter 4: JDBC-based Authentication	 75
Using Spring Security's default JDBC authentication	 75

Required dependencies	 76
Using the H2 database	 77

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Provided JDBC scripts	 77
Configuring the H2-embedded database	 77
Configuring JDBC UserDetailsManager	 79
Spring Security's default user schema	 79
Defining users	 80
Defining user authorities	 80

UserDetailsManager	 81
What other features does UserDetailsManager provide out of the box	 81

Group-based access control	 82
Configuring group-based access control	 83
Configuring JdbcUserDetailsManager to use groups	 83
Utilize the GBAC JDBC scripts	 84

Group-based schema	 85
Group authority mappings	 85

Support for a custom schema	 86
Determining the correct JDBC SQL queries	 87
Updating the SQL scripts that are loaded	 87
CalendarUser authority SQL	 88
Insert custom authorities	 88
Configuring the JdbcUserDetailsManager to use custom SQL queries 	 89

Configuring secure passwords	 91
PasswordEncoder	 92
Configuring password encoding	 94

Configuring the PasswordEncoder	 94
Making Spring Security aware of the PasswordEncoder	 94
Hashing the stored passwords	 95
Hashing a new user's passwords	 96

Not quite secure	 97
Would you like some salt with that password	 97

Using salt in Spring Security	 98
Summary	 102

Chapter 5: LDAP Directory Services	 103
Understanding LDAP	 104
LDAP	 104
Common LDAP attribute names	 105
Updating our dependencies	 107
Configuring embedded LDAP integration	 108
Configuring an LDAP server reference	 109

Enabling the LDAP AuthenticationProviderNext interface	 110
Troubleshooting embedded LDAP	 110
Understanding how Spring LDAP authentication works	 111

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Authenticating user credentials	 112
Demonstrating authentication with Apache Directory Studio	 113

Binding anonymously to LDAP	 113
Searching for the user	 114
Binding as a user to LDAP	 115
Determining user role membership	 116

Determining roles with Apache Directory Studio	 117
Mapping additional attributes of UserDetails	 119
Advanced LDAP configuration	 120
Sample JBCP LDAP users	 120

Password comparison versus bind authentication	 120
Configuring basic password comparison	 121
LDAP password encoding and storage	 122

The drawbacks of a password comparison authenticator	 123
Configuring UserDetailsContextMapper	 124

Implicit configuration of UserDetailsContextMapper	 124
Viewing additional user details	 125
Using an alternate password attribute	 127
Using LDAP as UserDetailsService	 128
Configuring LdapUserDetailsService	 129

Updating AccountController to use LdapUserDetailsService	 130
Integrating with an external LDAP server	 131
Explicit LDAP bean configuration	 132

Configuring an external LDAP server reference	 132
Configuring LdapAuthenticationProvider	 133

Delegating role discovery to UserDetailsService	 135
Integrating with Microsoft Active Directory via LDAP	 137

Built-In Active Directory support in Spring Security 3.1	 140
Summary	 141

Chapter 6: Remember-me Services	 143
What is remember-me	 143
Dependencies	 144
The token-based remember-me feature	 145

Configuring the token-based remember-me feature	 145
How the token-based remember-me feature works	 146

MD5	 147
Remember-me signature	 148

Token-based remember-me configuration directives	 149
Is remember-me secure	 150

Authorization rules for remember-me	 151

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Persistent remember-me	 152
Using the persistent-based remember-me feature	 153

Adding SQL to create the remember-me schema	 153
Initializing the data source with the remember-me schema	 153
Configuring the persistent-based remember-me feature	 154

How does the persistent-based remember-me feature work	 154
Are database-backed persistent tokens more secure	 155
Cleaning up the expired remember-me sessions	 156

Remember-me architecture	 158
Remember-me and the user lifecycle	 159

Restricting the remember-me feature to an IP address	 160
Custom cookie and HTTP parameter names	 163

Summary	 164
Chapter 7: Client Certificate Authentication	 165

How client certificate authentication works	 166
Setting up client certificate authentication infrastructure	 168

Understanding the purpose of a public key infrastructure	 168
Creating a client certificate key pair	 169
Configuring the Tomcat trust store	 170
Importing the certificate key pair into a browser	 172

Using Firefox	 172
Using Chrome	 173
Using Internet Explorer	 173

Wrapping up testing	 174
Troubleshooting client certificate authentication	 175

Configuring client certificate authentication in Spring Security	 176
Configuring client certificate authentication
using the security namespace	 177
How Spring Security uses certificate information	 178
How Spring Security certificate authentication works	 178

Handling unauthenticated requests with AuthenticationEntryPoint	 181
Supporting dual-mode authentication	 182

Configuring client certificate authentication using Spring Beans	 184
Additional capabilities of bean-based configuration	 185

Considerations when implementing Client Certificate authentication	 187
Summary	 188

Chapter 8: Opening up to OpenID	 189
The promising world of OpenID	 189
Signing up for an OpenID	 191
Enabling OpenID authentication with Spring Security	 191
Additional required dependencies	 192

Configuring OpenID support in Spring Security	 193

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vi]

Adding OpenID users	 195
CalendarUserDetailsService lookup by OpenID	 195

The OpenID user registration problem	 196
How are OpenID identifiers resolved	 197

Implementing user registration with OpenID	 200
Registering OpenIDAuthenticationUserDetailsService	 200

Attribute Exchange	 203
Enabling AX in Spring Security OpenID	 204
Configuring different attributes for each OpenID Provider	 207

Usability enhancements	 208
Automatic redirection to the OpenID Provider	 210

Conditional automatic redirection	 211
Is OpenID Secure	 212
Summary	 213

Chapter 9: Single Sign-on with Central Authentication Service	 215
Introducing Central Authentication Service	 216

High-level CAS authentication flow	 216
Spring Security and CAS	 218
Required dependencies	 219
CAS installation and configuration	 220

Configuring basic CAS integration	 220
Creating the CAS ServiceProperties object	 222
Adding the CasAuthenticationEntryPoint	 223
Enabling CAS ticket verification	 224
Proving authenticity with the CasAuthenticationProvider	 226

Single logout	 230
Configuring single logout	 231
Clustered environments	 233

Proxy ticket authentication for stateless services	 234
Configuring proxy ticket authentication	 235
Using proxy tickets	 237
Authenticating proxy tickets	 238

Customizing the CAS Server	 240
CAS Maven WAR Overlay	 240
How CAS internal authentication works	 241
Configuring CAS to connect to our embedded LDAP server	 242

Getting UserDetails from a CAS assertion	 245
Returning LDAP attributes in the CAS Response	 246

Mapping LDAP attributes to CAS attributes	 246
Authorizing CAS Services to access custom attributes	 247

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vii]

Getting UserDetails from a CAS assertion	 248
GrantedAuthorityFromAssertionAttributesUser Details Service	 248
Alternative ticket authentication using SAML 1.1	 249

How is attribute retrieval useful	 250
Additional CAS capabilities	 250
Summary	 251

Chapter 10: Fine-grained Access Control	 253
Maven dependencies	 254
Spring Expression Language (SpEL) integration	 254

WebSecurityExpressionRoot	 256
Using the request attribute	 256
Using hasIpAddress	 257

MethodSecurityExpressionRoot	 258
Page-level authorization	 258

Conditional rendering with Spring Security tag library	 259
Conditional rendering based on URL access rules	 259
Conditional rendering using SpEL	 261

Using controller logic to conditionally render content	 261
WebInvocationPrivilegeEvaluator	 263

What is the best way to configure in-page authorization	 264
Method-level security	 265

Why we secure in layers	 266
Securing the business tier	 266

Adding @PreAuthorize method annotation	 267
Instructing Spring Security to use method annotations	 268
Validating method security	 268
Interface-based proxies	 269
JSR-250 compliant standardized rules	 270
Method security using Spring's @Secured annotation	 271
Method security rules using aspect-oriented programming	 271
Method security rules using bean decorators	 273
Method security rules incorporating method parameters	 275
Method security rules incorporating returned values	 277
Securing method data through role-based filtering	 277
Pre-filtering collections with @PreFilter	 279
Comparing method authorization types	 279

Practical considerations for annotation-based security	 280
Method security on Spring MVC controllers	 280

Class-based proxies	 282
Class-based proxy limitations	 282

Summary	 284
Chapter 11: Access Control Lists	 285

Using access control lists for business object security	 285
Access control lists in Spring Security	 287

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[viii]

Basic configuration of Spring Security ACL support	 289
Maven dependencies	 289
Defining a simple target scenario	 289
Adding ACL tables to the H2 database	 290
Configuring SecurityExpressionHandler	 293

AclPermissionCacheOptimizer	 294
PermissionEvaluator	 295
JdbcMutableAclService	 295
BasicLookupStrategy	 296
EhCacheBasedAclCache	 297
ConsoleAuditLogger	 298
AclAuthorizationStrategyImpl	 298

Creating a simple ACL entry	 299
Advanced ACL topics	 302

How permissions work	 302
Custom ACL permission declaration	 305

Enabling your JSPs with the Spring Security JSP tag library
through ACL	 307

Mutable ACLs and authorization	 310
Adding ACLs to newly created Events	 311

Considerations for a typical ACL deployment	 312
About ACL scalability and performance modelling	 313
Do not discount custom development costs	 315

Should I use Spring Security ACL	 316
Summary	 317

Chapter 12: Custom Authorization	 319
How requests are authorized 	 319

Configuration of access decision aggregation	 323
Configuring to use a UnanimousBased access decision manager	 323

Expression-based request authorization	 325
Customizing request authorization	 326

Dynamically defining access control to URLs	 326
JdbcRequestConfigMappingService	 326
FilterInvocationServiceSecurityMetadataSource	 328
BeanPostProcessor to extend namespace configuration	 330
Removing our <intercept-url> elements	 331

Creating a custom expression	 331
CustomWebSecurityExpressionRoot	 331
CustomWebSecurityExpressionHandler	 333
Configuring and using CustomWebSecurityExpressionHandler	 334

How does method security work	 334

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ix]

Creating a custom PermissionEvaluator	 338
CalendarPermissionEvaluator	 338
Configuring CalendarPermissionEvaluator	 340
Securing our CalendarService	 340
Benefits of a custom PermissionEvaluator	 341

Summary	 342
Chapter 13: Session Management	 343

Configuring session fixation protection 	 343
Understanding session fixation attacks	 344
Preventing session fixation attacks with Spring Security	 345
Simulating a session fixation attack	 346
Comparing session-fixation-protection options	 349

Restricting the number of concurrent sessions per user	 349
Configuring concurrent session control	 350
Understanding concurrent session control	 351
Testing concurrent session control	 352
Configuring expired session redirect	 352
Common problems with concurrency control	 353
Preventing authentication instead of forcing logout	 354
Other benefits of concurrent session control	 355

Displaying active sessions for a user	 357
How Spring Security uses the HttpSession	 359

HttpSessionSecurityContextRepository	 360
Configuring how Spring Security uses HttpSession	 360
Debugging with Spring Security's DebugFilter	 361

Summary	 363
Chapter 14: Integrating with Other Frameworks	 365

Integrating with Java Server Faces (JSF)	 366
Customizations to support AJAX	 366

DelegatingAuthenticationEntryPoint	 366
AjaxRequestMatcher	 367
Http401EntryPoint	 368
Configuration updates	 368
JavaScript updates	 370

Proxy-based authorization with JSF	 371
Custom login page in JSF	 371
Spring Security Facelets tag library	 374

Google Web Toolkit (GWT) integration	 377
Spring Roo and GWT	 377
Spring Security setup	 378
GwtAuthenticationEntryPoint	 378

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[x]

GWT client updates	 379
AuthRequestTransport	 379
AuthRequiredEvent	 380
LoginOnAuthRequired	 381

Configuring GWT	 382
Spring Security configuration	 383
Method security	 384

Method security with Spring Roo	 386
Authorization with AspectJ	 386

Summary	 388
Chapter 15: Migration to Spring Security 3.1	 389

Migrating from Spring Security 2	 390
Enhancements in Spring Security 3	 390
Changes to configuration in Spring Security 3	 391

Rearranged AuthenticationManager configuration	 391
New configuration syntax for session management options	 393
Changes to custom filter configuration	 393

Changes to CustomAfterInvocationProvider	 395
Minor configuration changes	 395

Changes to packages and classes	 396
Updates in Spring Security 3.1	 398
Summary	 399

Appendix: Additional Reference Material	 401
Getting started with the JBCP Calendar sample code	 401

Creating a new workspace	 402
Sample code structure	 402
Importing the samples	 403
Running the samples in Spring Tool Suite	 405

Creating a Tomcat v7.0 server	 405
Starting the samples within Spring Tool Suite	 407
Shutting down the samples within Spring Tool Suite	 408
Removing previous versions of the samples	 408
Using HTTPS within Spring Tool Suite	 409

Default URLs processed by Spring Security	 411
Logical filter names migration reference 	 412
HTTPS setup in Tomcat	 413

Generating a server certificate	 413
Configuring Tomcat Connector to use SSL	 415

Basic Tomcat SSL termination guide	 416
Supplimentary materials	 417

Index	 419

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
Welcome to the world of Spring Security 3.1! We're certainly pleased that you have
acquired the only published book, fully devoted to Spring Security 3.1. Before we
get started with the book, we would like to give an overview of how the book is
organized and how you can get the most out of it.

Once you have completed reading this book, you should be familiar with key
security concepts and understand how to solve the majority of the real-world
problems that you will need to solve with Spring Security. Through this discovery,
you will gain an in-depth understanding of the Spring Security architecture, which
will allow you to handle any unexpected use cases the book does not cover.

The book is divided into four main sections. The first section (Chapters 1 and 2)
provides an introduction to Spring Security and allows you to get started with
Spring Security quickly. The second section (Chapters 3 to 9) provides in-depth
instructions for integrating with a number of different authentication technologies.
The next section (Chapters 10 to 12) explains how Spring Security's authorization
support works. Finally, the last section (Chapters 13 to 15) provides specialized
topics and guides that help you perform very specific tasks.

Security is a very interwoven concept and as such so are many of the topics in the
book. However, once you have read through Chapters 1 to 3, each chapter in the
book is fairly independent of another. This means that you can easily skip from
chapter to chapter and still understand what is happening. The goal was to provide a
cookbook style guide that when read in its entirety still gave a clear understanding of
Spring Security.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

The book uses a simple Spring Web MVC-based application to illustrate how to
solve real-world problems. The application is intended to be very simple and
straightforward, and purposely contains very little functionality—the goal of this
application is to encourage you to focus on the Spring Security concepts, and not
get tied up in the complexities of application development. You will have a much
easier time following the book if you take the time to review the sample application
source code, and try to follow along with the exercises. Some tips on getting started
are found in the Getting started with the JBCP Calendar sample code section in Appendix,
Additional Reference Material.

What this book covers
Chapter 1, Anatomy of an Unsafe Application, covers a hypothetical security audit of
our Calendar application, illustrating common issues that can be resolved through
proper application of Spring Security. You will learn about some basic security
terminology and review some prerequisites for getting the sample application up
and running.

Chapter 2, Getting Started with Spring Security, demonstrates the "Hello World"
installation of Spring Security. Afterwards, this chapter walks the reader through
some of the most common customizations of Spring Security.

Chapter 3, Custom Authentication, incrementally explains the Spring Security
authentication architecture by customizing key pieces of the authentication
infrastructure to address real-world problems. Through these customizations you
will gain an understanding of how Spring Security authentication works and how
you can integrate with existing and new authentication mechanisms.

Chapter 4, JDBC-based Authentication, covers authenticating against a database using
Spring Security's built-in JDBC support. We then discuss how we can secure our
passwords using Spring Security's new cryptography module.

Chapter 5, LDAP Directory Services, provides a guide to application integration with
an LDAP directory server.

Chapter 6, Remember-me Authentication, discusses several built-in strategies for how to
securely allow a user to select to be remembered after the browser has been closed.
Then, the chapter compares each of the approaches and demonstrates how to create
your own custom implementation.

Chapter 7, Client Certificate Authentication, makes X.509 certificate-based authentication
a clear alternative for certain business scenarios where managed certificates can add an
additional layer of security to our application.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

Chapter 8, Opening up To OpenID, covers OpenID-enabled login and user attribute
exchange, as well as a high-level overview of the logical flow of the OpenID protocol.

Chapter 9, Single Sign-on with Central Authentication Service, shows how integrating
with Central Authentication Service (CAS) can provide single sign-on and single
logout support to your Spring Security-enabled applications. It also demonstrates
how you can use CAS proxy ticket support for use with stateless services.

Chapter 10, Fine-grained Access Control, covers in-page authorization checking
(partial page rendering), and business-layer security using Spring Security's
method security capabilities.

Chapter 11, Access Control Lists, teaches you the concepts and basic implementation
of business object-level security using the Spring Security Access Control Lists
module—a powerful module with very flexible applicability to challenging business
security problems.

Chapter 12, Custom Authorization, explains how Spring Security's authorization
works by writing custom implementations of key parts of Spring Security's
authorization infrastructure.

Chapter 13, Session Management, discusses how Spring Security manages and secures
user sessions. The chapter starts by explaining session fixation attacks and how
Spring Security defends against them. It then discusses how you can manage the
logged-in users and restrict the number of concurrent sessions a single user has.
Finally, we describe how Spring Security associates a user to HttpSession and how
to customize this behavior.

Chapter 14, Integrating with other Frameworks, is a reference for how to integrate Spring
Security with a number of other technologies including Java Server Faces (JSF),
AJAX, Google Widget Toolkit (GTW), Spring Roo, and AspectJ.

Chapter 15, Migration to Spring Security 3.1, provides a migration path from Spring
Security 2 and Spring Security 3, including notable configuration changes, class and
package migrations, and important new features. It also highlights the new features
that can be found in Spring Security 3.1 and provides references to examples of the
features in the book.

Appendix, Additional Reference Material, contains some reference material that is not
directly related to Spring Security, but is still relevant to the topics covered in the
book. Most importantly, it contains a section that assists in running the sample code
included with the book.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

What you need for this book
The following list provides the required software in order to run the sample
applications included with the book. Some chapters have additional requirements
that are outlined within the chapter itself.

•	 Java Development Kit 1.6+ can be downloaded from Oracle's website
http://www.oracle.com/technetwork/java/javase/downloads/index.
html

•	 Spring Tool Suite 3.1.0.RELEASE+ can be downloaded from
http://www.springsource.org/sts

•	 Apache Tomcat 7 can be downloaded from
http://tomcat.apache.org/download-70.cgi

Who this book is for
This book is intended for Java web developers and assumes a basic understanding
of creating Java web applications, XML, and the Spring Framework. You are not
expected to have any previous experience with Spring Security.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: " We encourage you to import the
chapter02.00-calendar project into your IDE."

A block of code is set as follows:

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-config</artifactId>
 <version>3.1.0.RELEASE</version>
</dependency>

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.springsource.org/sts
http://www.it-ebooks.info/

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

</listener>

<filter>
 <filter-name>springSecurityFilterChain</filter-name>
 <filter-class>
 org.springframework.web.filter.DelegatingFilterProxy
 </filter-class>
</filter>
<filter-mapping>
 <filter-name>springSecurityFilterChain</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

<servlet>

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"It would be nice to display a greeting similar to Welcome user1@example.com".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.it-ebooks.info

mailto:user1@example.com
http://www.it-ebooks.info/

Preface

[6]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com
http://www.it-ebooks.info/

Anatomy of an
Unsafe Application

Security is arguably one of the most critical architectural components of any
web-based application written in the 21st century. In an era where malware,
criminals, and rogue employees are always present and actively testing software
for exploits, smart and comprehensive use of security is a key element to any project
for which you'll be responsible.

This book is written to follow a pattern of development that, we feel, provides a
useful premise for tackling a complex subject—taking a web-based application with
a Spring 3.1 foundation, and understanding the core concepts and strategies for
securing it with Spring Security 3.1. We compliment this approach by providing
sample code for each chapter in the form of complete web applications.

Whether you're already using Spring Security or are interested in taking your basic
use of the software to the next level of complexity, you'll find something to help you
in this book.

During the course of this chapter, we will:

•	 Review the results of a fictional security audit
•	 Discuss some common security problems of web-based applications
•	 Learn several core software security terms and concepts

If you are already familiar with basic security terminology, you may skip to
Chapter 2, Getting Started with Spring Security, where we start using the basic
functionality of the framework.

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of an Unsafe Application

[8]

Security audit
It's early in the morning at your job as a software developer for the Jim Bob Circle
Pants Online Calendar (JBCPCalendar.com), and you're halfway through your first
cup of coffee when you get the following e-mail from your supervisor:

What? You didn't think a lot about security when you designed the application? In
fact, at this point, you are not even sure what a security audit is. Sounds like you'll
have a lot to learn from the security auditors! Later in this chapter, we will review
what an audit is, along with the results of the audit. First, let's spend a bit of time
examining the application that's under review.

About the sample application
Although we'll be working through a contrived scenario, as we progress through this
book, the design of the application and the changes that we'll make to it are drawn
from real-world usage of Spring-based applications. The Calendar application
allows users to create and view events.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

After entering the details for a new event, you will be presented with the
following screenshot:

The application is designed to be simplistic, to allow us to focus on the important
aspects of security and not get tied up in the details of Object Relational Mapping
(ORM) and complex UI techniques. We expect you to refer to other supplementary
material in the Supplementary Materials section in Appendix, Additional Reference
Material of this book to cover some of the baseline functionality that is provided as
part of the sample code.

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of an Unsafe Application

[10]

The code is written in Spring and Spring Security 3.1, but it would be relatively
easy to adapt many of the examples to other versions of Spring Security. Refer
to the discussion about the detailed changes between Spring Security 2 and 3.1 in
Chapter 15, Migration to Spring Security 3.1, for assistance in translating the examples
to the Spring Security 2 syntax. There should be no effort in translating the examples
from Spring Security 3.1 to 3.0 since, other than the new features we leverage; the
transition should be completely passive.

Please don't use this application as a baseline to build a real online calendar
application. It has been purposely structured to be simple and to focus on the
concepts and configuration that we illustrate in the book.

The JBCP calendar application
architecture
The web application follows a standard three-tier architecture, consisting of a web,
service, and data access layer, as indicated in the following diagram:

You can find additional material about MVC architectures in the Appendix, Additional
Reference Material.

The web layer encapsulates MVC code and functionality. In this sample application,
we use the Spring MVC framework, but we could just as easily use Spring Web
Flow, Struts, or even a Spring-friendly web stack, such as Apache Wicket.

In a typical web application leveraging Spring Security, the web layer is where
much of the configuration and augmentation of code takes place. For example, the
EventsController is used to transform an HTTP request into persisting an event
into the database. If you haven't had a lot of experience with web applications and
Spring MVC specifically, it would be wise to review the baseline code closely and
make sure you understand it before we move on to more complex subjects. Again,
we've tried to make the website as simple as possible, and the construct of a calendar
application is used just to give a sensible title and light structure to the site.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

You can find detailed instructions on setting up the
sample application within the Appendix, Additional
Reference Material.

The service layer encapsulates the business logic for the application. In our
sample application, we use DefaultCalendarService as a very light facade over
the data access layer, to illustrate particular points around securing application
service methods. The service layer is also used to operate on both Spring Security
APIs and our Calendar APIs within a single method call. We will discuss this in
greater detail in Chapter 3, Custom Authentication.

In a typical web application, this layer would incorporate business rules validation,
composition and decomposition of business objects, and cross-cutting concerns,
such as auditing.

The data access layer encapsulates the code responsible for manipulating contents
of database tables. In many Spring applications, this is where you would see the use
of an Object Relational Mapping (ORM), such as Hibernate or JPA. It exposes an
object-based API to the service layer. In our sample application, we use a basic JDBC
functionality to achieve persistence to the in-memory H2 database. For example, our
JdbcEventDao is used to save Event objects to the database.

In a typical web application, a more comprehensive data access solution would be
utilized. As ORM, and more generally data access, tends to be confusing for some
developers, this is an area we have chosen to simplify, as much as possible, for the
purposes of clarity.

Application technology
We have endeavored to make the application as easy to run as possible, by focusing
on some basic tools and technologies that almost every Spring developer would
have on their development machine. Nevertheless, we provide the supplementary
"getting started" information in Getting started with JBCP Calendar sample code section
in Appendix, Additional Reference Material.

The primary method for integrating with the sample code is by providing Maven 3
compatible projects. Since many IDEs have rich integration with Maven, users should
be able to import the code into any IDE that supports Maven. As many developers
use Maven, we felt this was the most straightforward method of packaging the
examples. Whatever development environment you are familiar with, hopefully
you will find a way to work through the examples while you read the book.

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of an Unsafe Application

[12]

Many IDEs provide Maven tooling that can automatically download the Spring and
Spring Security 3.1 Javadoc and source code for you. However, there may be times
when this is not possible. In such cases, you'll want to download the full releases of
both Spring 3.1 and Spring Security 3.1. The Javadoc and source code are at the top
notch, if you get confused or want more information, and the samples can provide
an additional level of support or reassurance in your learning. Visit the Appendix,
Additional Reference Material, to find additional information about Maven, which
gives information about running the samples, obtaining the source code and
Javadoc, and alternatives to building your projects without Maven.

Reviewing the audit results
Let's return to our e-mail and see how the audit is progressing. Uh-oh, the results
don't look good:

APPLICATION AUDIT RESULTS

This application exhibits the following insecure behavior:

•	 Inadvertent privilege escalation due to lack of URL protection and
general authentication

•	 Inappropriate or non-existent use of authorization
•	 Missing database credential security
•	 Personally-identifiable or sensitive information is easily accessible

or unencrypted
•	 Insecure transport-level protection due to lack of SSL encryption
•	 Risk level is high

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

We recommend that this application be taken offline until these issues can
be resolved.

Ouch! This result looks bad for our company. We'd better work to resolve these
issues as quickly as possible.

Third-party security specialists are often hired by companies (or their partners
or customers) to audit the effectiveness of their software security, through a
combination of white hat hacking, source code review, and formal or informal
conversations with application developers and architects.

White hat hacking or ethical hacking is done by professionals who are hired to
instruct companies on how to protect themselves better rather than with the intent
to be malicious.

Typically, the goal of security audits is to provide management or clients with an
assurance that basic secure development practices have been followed to ensure
integrity and safety of the customer's data and system function. Depending on the
industry the software is targeted for, the auditor may also test using industry-specific
standards or compliance metrics.

Two specific security standards that you're likely to run into at
some point in your career are the Payment Card Industry Data
Security Standard (PCI DSS) and the Health Insurance Privacy and
Accountability Act (HIPAA) privacy rules. Both the standards are
intended to ensure safety of specific sensitive information (credit card
and medical information, respectively) through a combination of
process and software controls. Many other industries and countries have
similar rules around sensitive or Personally Identifiable Information
(PII). Failure to follow these standards is not only a bad practice, but
something that could expose you or your company to significant liability
(not to mention bad press) in the event of a security breach.

Receiving the results of a security audit can be an eye-opening experience.
However, following through with the required software improvements can be
a perfect opportunity for self-education and software improvement, and can
allow you to implement practices and policies that lead to a secure software.

Let's review the auditor's findings, and come up with a plan to address them
in detail.

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of an Unsafe Application

[14]

Authentication
Inadvertent privilege escalation due to lack of URL protection and general
authentication.

Authentication is one of the two key security concepts that you must internalize
when developing secure applications (the other being authorization). Authentication
identifies who is attempting to request a resource. You may be familiar with
authentication in your daily online and offline life, in very different contexts:

•	 Credential-based authentication: When you log in to your web-based
e-mail account, you most likely provide your username and password. The
e-mail provider matches your username with a known user in its database,
and verifies that your password matches with what they have on record.
These credentials are what the e-mail system uses to validate that you are a
valid user of the system. First, we'll use this type of authentication to secure
sensitive areas of the JBCP calendar application. Technically speaking, the
e-mail system can check credentials not only in the database but anywhere,
for example, a corporate directory server, such as Microsoft Active Directory.
A number of these types of integrations are covered throughout this book.

•	 Two-factor authentication: When you withdraw money from your bank's
automated teller machine, you swipe your ID card and enter your personal
identification number before you are allowed to retrieve cash or conduct
other transactions. This type of authentication is similar to the username and
password authentication, except that the username is encoded on the card's
magnetic strip. The combination of the physical card and user-entered PIN
allows the bank to ensure that you should have access to the account. The
combination of a password and a physical device (your plastic ATM card) is
an ubiquitous form of two-factor authentication. In a professional, security-
conscious environment, it's common to see these types of devices in regular
use for access to highly secure systems, especially dealing with finance or
personally identifiable information. A hardware device, such as RSA's SecurID,
combines a time-based hardware device with server-based authentication
software, making the environment extremely difficult to compromise.

•	 Hardware authentication: When you start your car in the morning, you slip
your metal key into the ignition and turn it to get the car started. Although
it may not feel similar to the other two examples, the correct match of the
bumps on the key and the tumblers in the ignition switch function as a form
of hardware authentication.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

There are literally dozens of forms of authentication that can be applied to the
problem of software and hardware security, each with their own pros and cons.
We'll review some of these methods as they apply to Spring Security throughout
the first half of this book. Our application lacks any type of authentication, which
is why the audit included the risk of inadvertent privilege escalation.

Typically, a software system will be divided into two high-level realms,
such as unauthenticated (or anonymous) and authenticated, as shown
in the following screenshot:

Application functionality in the anonymous realm is the functionality that is
independent of a user's identity (think of a welcome page for an online application).

Anonymous areas do not:

•	 Require a user to log into the system or otherwise identify themselves
to be usable

•	 Display sensitive information, such as names, addresses, credit cards,
and orders

•	 Provide functionality to manipulate the overall state of the system or its data

Unauthenticated areas of the system are intended for use by everyone, even by
users who we haven't specifically identified yet. However, it may be that, additional
functionality appears to identified users in these areas (for example, the ubiquitous
Welcome {First Name} text). Selective display of content to authenticated users
is fully supported through use of the Spring Security tag library, and is covered in
Chapter 10, Fine-grained Access Control.

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of an Unsafe Application

[16]

We'll resolve this finding and implement form-based authentication using Spring
Security's automatic configuration capability in Chapter 2, Getting Started with
Spring Security. Afterwards, we will explore various other means of performing
authentication (which usually revolve around systems integration with enterprise
or other external authentication stores).

Authorization
Inappropriate or non-existent use of authorization.

Authorization is the second of two core security concepts that is crucial in
implementing and understanding application security. Authorization uses the
information that was validated during authentication to determine if access should
be granted to a particular resource. Built around the authorization model for the
application, authorization partitions the application functionality and data, such
that availability of these items can be controlled by matching the combination of
privileges, functionality, and data with users. Our application's failure at this point
of the audit indicates that the application's functionality isn't restricted by the user
role. Imagine if you were running an e-commerce site and the ability to view, cancel,
or modify order and customer information was available to any user of the site!

Authorization typically involves two separate aspects that combine to describe the
accessibility of the secured system.

The first is the mapping of an authenticated principal to one or more authorities
(often called roles). For example, a casual user of your website might be viewed
as having visitor authority, while a site administrator might be assigned
administrative authority.

The second is the assignment of authority checks to secured resources of the system.
This is typically done at the time a system is developed, either through an explicit
declaration in code or through configuration parameters. For example, the screen
that allows viewing of other users' events should be made available only to those
users having administrative authority.

A secured resource may be any aspect of the system that should
be conditionally available based on the authority of the user.

Secured resources of a web-based application could be individual web pages,
entire portions of the website, or portions of individual pages. Conversely, secured
business resources might be method calls on classes or individual business objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

You might imagine an authority check that would examine the principal, look up
its user account, and determine if the principal is in fact an administrator. If this
authority check determines that the principal who is attempting to access the secured
area is, in fact, an administrator, then the request will succeed. If, however, the
principal does not have sufficient authority, the request should be denied.

Let's take a closer look at the example of a particular secured resource, the All Events
page. The All Events page requires administrative access (after all, we don't want
regular users viewing other users' events), and, as such, looks for a certain level of
authority in the principal accessing it.

If we think about how a decision might be made when a site administrator
attempts to access the protected resource, we'd imagine that the examination of
actual authority versus required authority might be expressed concisely in terms
of the set theory. We might then choose to represent this decision as a Venn diagram
for the administrative user:

There is an intersection between User Authorities (User and Administrator)
and Required Authorities (Administrator) for the page, so the user is provided
with access.

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of an Unsafe Application

[18]

Contrast this with an unauthorized user:

The sets of authorities are disjoint, and have no common elements. So, the user
is denied access to the page. Thus, we have demonstrated the basic principle of
authorization of access to resources.

In reality, there's real code making this decision with the consequence of the user being
granted or denied access to the requested protected resource. We'll address the basic
authorization problem with Spring Security's authorization infrastructure in Chapter 2,
Getting Started with Spring Security followed by more advanced authorization in
Chapter 10, Fine-grained Access Control and Chapter 11, Access Control Lists.

Database credential security
Database credentials not secured and easily accessible.

Through the examination of the application source code and configuration files,
the auditors noted that user passwords were stored in plain text in the configuration
files, making it very easy for a malicious user with access to the server to gain access
to the application.

As the application contains personal and financial data, a rogue user being able to
access any data could expose the company to identity theft or tampering. Protecting
access to the credentials used to access the application should be a top priority for us,
and an important first step is ensuring that one point of failure in security does not
compromise the entire system.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

We'll examine the configuration of Spring Security's database access layer for
credential storage, which uses JDBC connectivity, in Chapter 4, JDBC-based
Authentication. In the same chapter, we'll also look at built-in techniques to
increase the security of passwords stored in the database.

Sensitive information
Personally identifiable or sensitive information is easily accessible or unencrypted.

The auditors noted that some significant and sensitive pieces of data were completely
unencrypted or masked anywhere in the system. Fortunately, there are some simple
design patterns and tools that allow us to protect this information securely with
Spring Security's annotation-based AOP support.

Transport-level protection
Insecure transport-level protection due to lack of SSL encryption.

While in the real world, it's unthinkable that an online application containing private
information would operate without SSL protection; unfortunately JBCP calendar is in
just this situation. SSL protection ensures that communication between the browser
client and the web application server are secure against many kinds of tampering
and snooping.

In the HTTPS setup in Tomcat section in Appendix, Additional Reference Material, we'll
review the basic options for using transport-level security as part of the definition of
the secured structure of the application.

Using Spring Security 3.1 to address
security concerns
Spring Security 3.1 provides a wealth of resources that allow for many common
security practices to be declared or configured in a straightforward manner. In
the coming chapters, we'll apply a combination of source code and application
configuration changes to address all of the concerns raised by the security auditors
(and more), and give ourselves the confidence that our calendar application is secure.

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of an Unsafe Application

[20]

With Spring Security 3.1, we'll be able to make the following changes to increase our
application security:

•	 Segment users of the system into user classes
•	 Assign levels of authorization to user roles
•	 Assign user roles to user classes
•	 Apply authentication rules globally across application resources
•	 Apply authorization rules at all levels of the application architecture
•	 Prevent common types of attacks intended to manipulate or steal a

user's session

Why Spring Security
Spring Security exists to fill a gap in the universe of Java third-party libraries, much
as the Spring Framework originally did when it was first introduced. Standards such
as Java Authentication and Authorization Service (JAAS) or Java EE Security do
offer some ways of performing some of the same authentication and authorization
functions, but Spring Security is a winner because it packages up everything you
need to implement a top-to-bottom application security solution in a concise and
sensible way.

Additionally, Spring Security appeals to many, because it offers out-of-the-box
integration with many common enterprise authentication systems; so it's adaptable to
most situations with little effort (beyond configuration) on the part of the developer.

It's in wide use, because there's really no other mainstream framework quite like it!

Summary
In this chapter, we have:

•	 Reviewed common points of risk in an unsecured web application
•	 Reviewed the basic architecture of the sample application
•	 Discussed the strategies for securing the application

In the next chapter, we'll explore how to get Spring Security set up quickly and get a
basic understanding of how it works.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with
Spring Security

In this chapter, we'll apply a minimal Spring Security configuration to start
addressing our first finding—inadvertent privilege escalation due to lack of
URL protection and general authentication—from the security audit discussed
in Chapter 1, Anatomy of an Unsafe Application. We will then build on the basic
configuration to provide a customized experience for our users. This chapter
is intended to get you up and running with Spring Security and to provide a
foundation for any other security-related tasks you will need to perform.

During the course of this chapter, we will:

•	 Implement a basic level of security on the JBCP Calendar application, using
Spring Security's automatic configuration option

•	 Learn how to customize both the login and logout experience
•	 Configure Spring Security to restrict access differently, depending

upon the URL
•	 Leverage Spring Security's expression-based access control
•	 Conditionally display basic information about the logged-in user using

Spring Security's JSP library
•	 Determine the user's default location after login, based upon role

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Spring Security

[22]

Hello Spring Security
Although Spring Security can be extremely difficult to configure, the creators of the
product have been thoughtful and have provided us with a very simple mechanism
to enable much of the software's functionality with a strong baseline. From this
baseline, additional configuration will allow a fine level of detailed control over the
security behavior of our application.

We'll start with our unsecured calendar application from Chapter 1, Anatomy of an
Unsafe Application, and turn it into a site that's secured with rudimentary username
and password authentication. This authentication serves merely to illustrate the
steps involved in enabling Spring Security for our web application; you'll see that
there are some obvious flaws in this approach that will lead us to make further
configuration refinements.

Importing the sample application
We encourage you to import the chapter02.00-calendar project into your IDE,
and follow along by obtaining the source code for Chapter 2, as described in the
Getting started with JBCP Calendar sample code section in Appendix, Additional
Reference Material.

For each chapter, you will find multiple revisions of the code that represent
checkpoints within the book. This makes it easy to compare your work with the
"correct answers" as you go. At the beginning of each chapter, we will import the
first revision of that chapter as a starting point. For example, in this chapter, we start
with chapter02.00-calendar, and the first checkpoint will be chapter02.01-
calendar. In Chapter 3, Custom Authentication, we will start with chapter03.00-
calendar, and the first checkpoint will be chapter03.01-calendar. There are
additional details in Appendix, Getting started with JBCP Calendar sample code, so be
sure to refer to it for details.

Updating your dependencies
The first step is to update the project's dependencies to include the necessary Spring
Security .jar files. Update the Maven pom.xml file from the sample application you
imported previously, to include the Spring Security .jar files that we will use in the
following few sections.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

Throughout the book, we will be demonstrating how to provide the
required dependencies using Maven. The pom.xml file is located in the
root of the project and represents all that is needed to build the project
(including the project's dependencies). Remember that Maven will
download the transitive dependencies for each listed dependency. So,
if you are using another mechanism to manage dependencies, ensure
that you also include the transitive dependencies. When managing the
dependencies manually, it is useful to know that the Spring Security
reference includes a list of its transitive dependencies. A link to the Spring
Security reference can be found in Appendix, Additional Reference Material.

pom.xml

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-config</artifactId>
 <version>3.1.0.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-core</artifactId>
 <version>3.1.0.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-web</artifactId>
 <version>3.1.0.RELEASE</version>
</dependency>

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com . If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Using Spring 3.1 and Spring Security 3.1
It is important to ensure that all of the Spring dependency versions match and all the
Spring Security versions match; this includes transitive versions. Since Spring Security
3.1 builds with Spring 3.0, Maven will attempt to bring in Spring 3.0 dependencies.
This means, in order to use Spring 3.1, you must ensure to explicitly list the Spring
3.1 dependencies or use Maven's dependency management features, to ensure that
Spring 3.1 is used consistently. Our sample applications provide an example of the
former option, which means that no additional work is required by you.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Spring Security

[24]

In the following code, we present an example fragment of what is added to the
Maven pom.xml file to utilize Maven's dependency management feature, to ensure
that Spring 3.1 is used throughout the entire application:

<project ...>

 ...
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-aop</artifactId>
 <version>3.1.0.RELEASE</version>
 </dependency>
 … list all Spring dependencies (a list can be found in our
 sample application's pom.xml ...
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-web</artifactId>
 <version>3.1.0.RELEASE</version>
 </dependency>
 </dependencies>
 </dependencyManagement>
</project>

If you are using Spring Tool Suite, any time you update the pom.xml file,
ensure you right-click on the project and navigate to Maven | Update
Project…, and select OK, to update all the dependencies.

For more information about how Maven handles transitive dependencies, refer to the
Maven documentation, which is listed in Appendix, Additional Reference Material.

Implementing a Spring Security XML
configuration file
The next step in the configuration process is to create an XML configuration file,
representing all Spring Security components required to cover standard web requests.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

Create a new XML file in the src/main/webapp/WEB-INF/spring/ directory with
the name security.xml and the following contents. Among other things, the
following file demonstrates how to require a user to log in for every page in our
application, provide a login page, authenticate the user, and require the logged-in
user to be associated to ROLE_USER for every URL:URL element:

src/main/webapp/WEB-INF/spring/security.xml

<?xml version="1.0" encoding="UTF-8"?>
<bean:beans
 xmlns:bean="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.springframework.org/schema/security"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/spring-security-
 3.1.xsd">
 <http auto-config="true">
 <intercept-url pattern="/**" access="ROLE_USER"/>
 </http>
 <authentication-manager>
 <authentication-provider>
 <user-service>
 <user name="user1@example.com"
 password="user1"
 authorities="ROLE_USER"/>
 </user-service>
 </authentication-provider>
 </authentication-manager>
</bean:beans>

If you are using Spring Tool Suite, you can easily create Spring
configuration files by using File | New Spring Bean Configuration
File. This wizard allows you to select the XML namespaces you wish
to use, making configuration easier by not requiring the developer
to remember the namespace locations and helping prevent
typographical errors. You will need to manually change the schema
definitions as illustrated in the preceding code. Remember that
the next checkpoint (chapter02.01-calendar) has a working
solution, so the file can be copied from there as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Spring Security

[26]

This is the only Spring Security configuration required to get our web application
secured with a minimal standard configuration. This style of configuration, using
a Spring Security-specific XML dialect, is known as the security namespace style,
named after the XML namespace (http://www.springframework.org/schema/
security) associated with the XML configuration elements.

Let's take a minute to break this configuration apart, so we can get a high-level idea
of what is happening. The <http> element creates a servlet filter, which ensures that
the currently logged-in user is associated to the appropriate role. In this instance,
the filter will ensure that the user is associated with ROLE_USER. It is important to
understand that the name of the role is arbitrary. Later, we will create a user with
ROLE_ADMIN and will allow this user to have access to additional URLs that our
current user does not have access to.

The <authentication-manager> element is how Spring Security authenticates
the user. In this instance, we utilize an in-memory data store to compare a username
and password.

Our example and explanation of what is happening are a bit contrived. An in-
memory authentication store would not work for a production environment.
However, it allows us to get up and running quickly. We will incrementally improve
our understanding of Spring Security as we update our application to use production
quality security throughout the book.

Users who dislike Spring's XML configuration will be disappointed
to learn that there isn't an alternative annotation-based or Java-based
configuration mechanism for Spring Security, as there is with Spring
Framework.
There is an experimental approach that uses Scala to configure Spring
Security, but at the time of this writing, there are no known plans to
release it. If you like, you can learn more about it at https://github.
com/tekul/scalasec/. Still, perhaps in the future, we'll see the
ability to easily configure Spring Security in other ways.

Although annotations are not prevalent in Spring Security, certain aspects of Spring
Security that apply security elements to classes or methods are, as you'd expect,
available via annotations. We'll cover these in Chapter 10, Fine-grained Access Control.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

Updating your web.xml file
The next steps involve a series of updates to the web.xml file. Some of the steps have
already been performed because the application was already using Spring MVC.
However, we will go over these requirements to ensure that these more fundamental
Spring requirements are understood, in the event that you are using Spring Security
in an application that is not Spring-enabled.

ContextLoaderListener
The first step of updating the web.xml file is to ensure that it contains the
o.s.w.context.ContextLoaderListener listener, which is in charge of starting and
stopping the Spring root ApplicationContext interface. ContextLoaderListener
determines which configurations are to be used, by looking at the <context-param>
tag for contextConfigLocation. It is also important to specify where to read the
Spring configurations from. Our application already has ContextLoaderListener
added, so we only need to add the newly created security.xml configuration file, as
shown in the following code snippet:

src/main/webapp/WEB-INF/web.xml

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 /WEB-INF/spring/services.xml
 /WEB-INF/spring/i18n.xml
 /WEB-INF/spring/security.xml
 </param-value>
</context-param>
<listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
</listener>

The updated configuration will now load the security.xml file from the /WEB-INF/
spring/ directory of the WAR. As an alternative, we could have used /WEB-INF/
spring/*.xml to load all the XML files found in /WEB-INF/spring/. We choose not
to use the *.xml notation to have more control over which files are loaded. This is
necessary, since in subsequent chapters, we provide additional files that will not be
used until later in the chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Spring Security

[28]

ContextLoaderListener versus DispatcherServlet
You may have noticed that o.s.web.servlet.DispatcherServlet specifies a
contextConfigLocation component of its own.

src/main/webapp/WEB-INF/web.xml

<servlet>
 <servlet-name>Spring MVC Dispatcher Servlet</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 /WEB-INF/mvc-config.xml
 </param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>

DispatcherServlet creates o.s.context.ApplicationContext, which is a child of
the root ApplicationContext interface. Typically, Spring MVC-specific components
are initialized in the ApplicationContext interface of DispatcherServlet, while
the rest are loaded by ContextLoaderListener. It is important to know that beans
in a child ApplicationContext (such as those created by DispatcherServlet)
can reference beans of its parent ApplicationContext (such as those created by
ContextLoaderListener). However, the parent ApplicationContext cannot refer to
beans of the child ApplicationContext. This is illustrated in the following diagram
where childBean can refer to rootBean, but rootBean cannot refer to childBean.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

As with most usage of Spring Security, we do not need Spring Security to
refer to any of the MVC-declared beans. Therefore, we have decided to have
ContextLoaderListener initialize all of Spring Security's configuration.

springSecurityFilterChain
The next step is to configure springSecurityFilterChain to intercept all requests
by updating web.xml. Servlet <filter-mapping> elements are considered in the
order that they are declared. Therefore, it is critical for springSecurityFilterChain
to be declared first, to ensure the request is secured prior to any other logic being
invoked. Update your web.xml file with the following configuration:

src/main/webapp/WEB-INF/web.xml

</listener>

<filter>
 <filter-name>springSecurityFilterChain</filter-name>
 <filter-class>
 org.springframework.web.filter.DelegatingFilterProxy
 </filter-class>
</filter>
<filter-mapping>
 <filter-name>springSecurityFilterChain</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

<servlet>

Not only is it important for Spring Security to be declared as the first
<filter-mapping> element, but we should also be aware that, with the example
configuration, Spring Security will not intercept forwards, includes, or errors.
Often, it is not necessary to intercept other types of requests, but if you need to
do this, the dispatcher element for each type of request should be included in
<filter-mapping>. We will not perform these steps for our application, but
you can see an example, as shown in the following code snippet:

src/main/webapp/WEB-INF/web.xml

<filter-mapping>
 <filter-name>springSecurityFilterChain</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>ERROR</dispatcher>
 ...
</filter-mapping>

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Spring Security

[30]

DelegatingFilterProxy
The o.s.web.filter.DelegatingFilterProxy class is a servlet filter
provided by Spring Web that will delegate all work to a Spring bean from the
root ApplicationContext that must implement javax.servlet.Filter. Since,
by default, the bean is looked up by name, using the value of <filter-name>, we
must ensure we use springSecurityFilterChain as the value of <filter-name>.
Pseudo-code for how o.s.web.filter.DelegatingFilterProxy works for our
web.xml file can be found in the following code snippet:

public class DelegatingFilterProxy implements Filter {
 void doFilter(request, response, filterChain) {
 Filter delegate =
 applicationContet.getBean("springSecurityFilterChain")
 delegate.doFilter(request,response,filterChain);
 }
}

FilterChainProxy
When working in conjunction with Spring Security, o.s.web.filter.
DelegatingFilterProxy will delegate to Spring Security's o.s.s.web.
FilterChainProxy, which was created in our minimal security.xml file.
FilterChainProxy allows Spring Security to conditionally apply any number of
servlet filters to the servlet request. We will learn more about each of the Spring
Security filters and their role in ensuring that our application is properly secured,
throughout the rest of the book. The pseudo-code for how FilterChainProxy works
is as follows:

public class FilterChainProxy implements Filter {
 void doFilter(request, response, filterChain) {
 // lookup all the Filters for this request
 List<Filter> delegates =
 lookupDelegates(request,response)
 // invoke each filter unless the delegate decided to stop
 for delegate in delegates {
 if continue processing
 delegate.doFilter(request,response,filterChain)
 }
 // if all the filters decide it is ok allow the
 // rest of the application to run
 if continue processing
 filterChain.doFilter(request,response)
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

Due to the fact that both DelegatingFilterProxy and
FilterChainProxy are the front door to Spring Security,
when used in a web application, it is here that you would add a
debug point when trying to figure out what is happening.

Running a secured application
If you have not already done so, restart the application and visit
http://localhost:8080/calendar/, and you will be presented
with the following screen:

Great job! We've implemented a basic layer of security in our application, using Spring
Security. At this point, you should be able to log in using user1@example.com as the
User and user1 as the Password (user1@example.com/user1). You'll see the calendar
welcome page, which describes at a high level what to expect from the application in
terms of security.

Your code should now look like chapter02.01-calendar.

Common problems
Many users have trouble with the initial implementation of Spring Security in their
application. A few common issues and suggestions are listed next. We want to
ensure that you can run the example application and follow along!

•	 Make sure you can build and deploy the application before putting Spring
Security in place.

•	 Review some introductory samples and documentation on your servlet
container if needed.

www.it-ebooks.info

http://localhost:8080/calendar/
mailto:user1@example.com
mailto:user1@example.com
http://www.it-ebooks.info/

Getting Started with Spring Security

[32]

•	 It's usually easiest to use an IDE, such as Eclipse, to run your servlet
container. Not only is deployment typically seamless, but the console log is
also readily available to review for errors. You can also set breakpoints at
strategic locations, to be triggered on exceptions to better diagnose errors.

•	 If your XML configuration file is incorrect, you will get this (or something
similar to this): org.xml.sax.SAXParseException: cvc-elt.1: Cannot
find the declaration of element 'beans'. It's quite common for
users to get confused with the various XML namespace references required
to properly configure Spring Security. Review the samples again, paying
attention to avoid line wrapping in the schema declarations, and use an
XML validator to verify that you don't have any malformed XML. Better yet,
use Spring Tool Suite to create your bean definitions and XML namespace
declarations as we discussed earlier in this chapter.

•	 If you get an error stating "BeanDefinitionParsingException:
Configuration problem: Unable to locate Spring NamespaceHandler
for XML schema namespace [http://www.springframework.org/
schema/security] ...", ensure that the spring-security-config-
3.1.0.RELEASE.jar file is on your classpath. Also ensure the version
matches the other Spring Security JARs and the XML declaration in your
Spring configuration file.

•	 Make sure the versions of Spring and Spring Security that you're using match
and that there aren't any unexpected Spring JARs remaining as part of your
application. As previously mentioned, when using Maven, it can be a good idea
to declare the Spring dependencies in the dependency management section.

A little bit of polish
Stop at this point and think about what we've just built. You may have noticed some
obvious issues that will require some additional work and knowledge of the Spring
Security product before we are production-ready. Try to make a list of the changes
that you think are required, before this security implementation is ready to roll out
to the public-facing website.

Applying the "Hello World" Spring Security implementation was blindingly fast and
has provided us with a login page, username, and password-based authentication, as
well as automatic interception of URLs in our calendar application. However, there
are gaps between what the automatic configuration setup provides and what our end
goal is, which are listed as follows:

•	 While the login page is helpful, it's completely generic and doesn't look like
the rest of our JBCP Calendar application. We should add a login form that's
integrated with our application's look and feel.

www.it-ebooks.info

http://www.springframework.org/schema/security
http://www.springframework.org/schema/security
http://www.it-ebooks.info/

Chapter 2

[33]

•	 There is no obvious way for a user to log out.
•	 We've locked down all pages in the application, including the Welcome

page, which a potential user may want to browse anonymously. We'll need
to refine the roles required to accommodate anonymous, authenticated, and
administrative users.

•	 We do not display any contextual information to indicate to the user that
they are authenticated. It would be nice to display a greeting similar to
Welcome user1@example.com.

•	 We've had to hardcode the username, password, and role information of the
user in the XML configuration file. Recall this section of XML we added:
<user-service>
 <user name="user1@example.com"
 password="user1"
 authorities="ROLE_USER"/>
</user-service>

You can see that the username and password are right there in the file. It would be
unlikely that we'd want to add a new XML declaration to the file for every user of
the system! To address this, we'll need to update the configuration with another type
of authentication. We'll explore different authentication options throughout the first
half of the book.

Customizing login
We've seen how Spring Security makes it very easy to get started. Now let's see
how we can customize the login experience. In the following code snippet, we
demonstrate the usage of some of the more common ways to customize login,
but we encourage you to refer to Spring Security's reference documentation,
which includes an Appendix with all of the supported attributes. First, update
your security.xml file as follows:

src/main/webapp/WEB-INF/spring/security.xml

<http ...>
 …
 <form-login login-page="/login/form"
 login-processing-url="/login"
 username-parameter="username"
 password-parameter="password"
 authentication-failure-url="/login/form?error"/>
</http>

www.it-ebooks.info

mailto:user1@example.com
http://www.it-ebooks.info/

Getting Started with Spring Security

[34]

The login-page attribute specifies where Spring Security will redirect
the browser if a protected page is accessed and the user is not authenticated.
If a login page is not specified, Spring Security will redirect the user to /
spring_security_login. Then o.s.s.web.filter.FilterChainProxy
will choose o.s.s.web.authentication.ui.DefaultLoginPageGeneratin
gFilter, which renders the default login page, as one of the delegates since
DefaultLoginPageGeneratingFilter is configured to process /spring_security_
login by default. Since we have chosen to override the default URL, we are in
charge of rendering the login page when the URL /login/form is requested.

The login-processing-url attribute defaults to /j_spring_security_check,
and specifies the URL that the login form (which should include the username and
password) should be submitted to, using an HTTP post. When Spring Security
processes this request, it will attempt to authenticate the user.

The username-parameter and the password-parameter attributes default
to j_username and j_password respectively and specify the HTTP parameters
that Spring Security will use to authenticate the user when processing login-
processing-url.

The authentication-failure-url attribute specifies the page that Spring Security
will redirect to if the username and password submitted to login-processing-url
are invalid.

It may be obvious, but if we only wanted to add a custom login page,
we would only need to specify the login-page attribute. We would
then create our login form using the default values for the remaining
attributes. However, it is often a good practice to override the values
of anything visible to users, to prevent exposing that we are using
Spring Security. Revealing what frameworks we are using is a type
of "information leakage", making it easier for attackers to determine
potential holes in our security.

The next step is to create a login page. We can use any technology we want to
render the login page, as long as the login form produces the HTTP request that we
specified with our Spring Security configuration, when submitted. By ensuring the
HTTP request conforms to our configuration, Spring Security can authenticate the
request for us. Create the following login.jsp file:

Remember that if you are having problems typing anything
in the book, you can refer to the solution in the next
checkpoint (chapter02.02-calendar).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

src/main/webapp/WEB-INF/views/login.jsp

<?xml version="1.0" encoding="ISO-8859-1" ?>
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
 pageEncoding="ISO-8859-1"%>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<c:set var="pageTitle" value="Please Login" scope="request"/>
<jsp:include page="./includes/header.jsp"/>

<c:url value="/login" var="loginUrl"/>
<form action="${loginUrl}" method="post">
 <c:if test="${param.error != null}">
 <div class="alert alert-error">
 Failed to login.
 <c:if test="${SPRING_SECURITY_LAST_EXCEPTION != null}">
 Reason: <c:out value="${SPRING_SECURITY_LAST_EXCEPTION.
 message}" />
 </c:if>
 </div>
 </c:if>
 <c:if test="${param.logout != null}">
 <div class="alert alert-success">
 You have been logged out.
 </div>
 </c:if>
 <label for="username">Username</label>
 <input type="text" id="username" name="username"/>
 <label for="password">Password</label>
 <input type="password" id="password" name="password"/>
 <div class="form-actions">
 <input id="submit" class="btn" name="submit" type="submit"
 value="Login"/>
 </div>
</form>
<jsp:include page="./includes/footer.jsp"/>

There are a number of items that are worth highlighting in login.jsp.

•	 The form action should be /login, to match the value provided for the
login-processing-url attribute we specified.

•	 For security reasons, Spring Security only attempts to authenticate when
using post, by default.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Spring Security

[36]

•	 We can use param.error to see if there was a problem logging in, since the
value of our authentication-failure-url attribute, /login/form?error,
contains the HTTP parameter error.

•	 The session attribute, SPRING_SECURITY_LAST_EXCEPTION, contains the last
o.s.s.core.AuthenticationException exception, which can be used to
display the reason for a failed login. The error messages can be customized
by leveraging Spring's internationalization support.

•	 The input names for the username and password inputs are chosen to
correspond to the values we specified for the username-parameter and
password-parameter attributes in our security.xml configuration.

The last step is to make Spring MVC aware of our new URL. This can be done by
adding the following method to WebMvcConfig:

src/main/java/com/packtpub/springsecurity/web/config/WebMvcConfig.
java

import org.springframework.web.servlet.config.annotation.
ViewControllerRegistry;
...
public class WebMvcConfig extends WebMvcConfigurationSupport {
 public void addViewControllers(ViewControllerRegistry registry){
 registry.addViewController("/login/form")
 .setViewName("login");
 }
 ...
}

Configuring logout
Spring Security's <http> configuration automatically adds support for logging the
user out. All that is needed is to create a link that points to /j_spring_security_
logout. However, we will demonstrate how to customize the URL used to log the
user out. The first step is to update the Spring Security configuration.

src/main/webapp/WEB-INF/spring/security.xml

<http ...>
 ...
 <logout logout-url="/logout"
 logout-success-url="/login/form?logout"/>
</http>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

The next step is to provide a link for the user to click that will log them out. We will
update header.jsp, so that the Logout link appears on every page.

src/main/webapp/WEB-INF/views/includes/header.jsp

<div id="nav-account" ..>
 <ul class="nav">
 <c:url var="logoutUrl" value="/logout"/>

 Logout

</div>

The last step is to update login.jsp to display a message indicating logout was
successful when the parameter logout is present.

src/main/webapp/WEB-INF/views/login.jsp

</c:if>
<c:if test="${param.logout != null}">
 <div class="alert alert-success">
 You have been logged out.
 </div>
</c:if>
<p>
 <label for="username">Username</label>
...

Your code should now look like chapter02.02-calendar.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Spring Security

[38]

The page isn't redirecting properly
If you have not already, restart the application and visit http://localhost:8080/
calendar/ in FireFox; you will see an error similar to the following:

What went wrong? The problem is that, since Spring Security is no longer rendering
the login page, we must allow everyone (not just ROLE_USER) access to the login
page. Without granting access to the login page, the following happens:

1.	 We request the Welcome page in the browser.
2.	 Spring Security sees that the Welcome page requires ROLE_USER and that we

are not authenticated, so it redirects the browser to the Login page.
3.	 The browser requests the Login page.
4.	 Spring Security sees that the Login page requires ROLE_USER and that we are

still not authenticated, so it redirects the browser to the Login page again.
5.	 The browser requests the Login page again.
6.	 Spring Security sees that the Login page requires ROLE_USER.

The process could just keep repeating indefinitely. Fortunately for us, Firefox realizes
that there are too many redirects occurring, stops performing the redirect, and
displays a very informative error message. In the next section, we will learn how to fix
this error by configuring URLs differently, depending on the access that they require.

www.it-ebooks.info

http://localhost:8080/calendar/
http://www.it-ebooks.info/

Chapter 2

[39]

Basic role-based authorization
We can expand on the Spring Security configuration from Hello Spring Security to
vary the access control by URL. In this section, you will find a configuration that
allows more granular control over how resources can be accessed. In the following
configuration, Spring Security will:

•	 Completely ignore any request that starts with /resources/. This is
beneficial, since our images, CSS, and JavaScript do not need to use
Spring Security.

•	 Allow anonymous users to access the Welcome, Login, and Logout pages.
•	 Only allow administrators access to the All Events page.
•	 Add an administrator that can access the All Events page.

src/main/webapp/WEB-INF/spring/security.xml

<http pattern="/resources/**" security="none"/>
<http auto-config="true">
 <intercept-url pattern="/"
 access="ROLE_ANONYMOUS,ROLE_USER"/>
 <intercept-url pattern="/login/*"
 access="ROLE_ANONYMOUS,ROLE_USER"/>
 <intercept-url pattern="/logout"
 access="ROLE_ANONYMOUS,ROLE_USER"/>
 <intercept-url pattern="/events/" access="ROLE_ADMIN"/>
 <intercept-url pattern="/**" access="ROLE_USER"/>
 ...
</http>
<authentication-manager>
 <authentication-provider>
 <user-service>
 <user name="user1@example.com"
 password="user1"
 authorities="ROLE_USER"/>
 <user name="admin1@example.com"
 password="admin1"
 authorities="ROLE_USER,ROLE_ADMIN"/>
 </user-service>
 </authentication-provider>
</authentication-manager>

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Spring Security

[40]

Note that we do not include /calendar, the application's context
root, in the Spring Security configuration, because Spring Security
takes care of the context root transparently for us. In this way, we
will not need to update our configuration if we decide to deploy to
a different context root.

In Spring Security 3.1, you can specify multiple <http> elements that allow you
to have greater control over how security is applied to different portions of your
application. The first <http> element states that Spring Security should ignore any
URL that starts with /resources/, and the second <http> element states that any
other request will be processed by it. There are a few important things to note about
using multiple <http> elements:

•	 If no path attribute is specified, it is the equivalent of using a path of /**,
which matches all requests.

•	 Each <http> element is considered in order, and only the first match is
applied. So, the order in which they appear in your configuration file is
important. The implication is that only the last <http> tag can use a path that
matches every request. If you do not follow this rule, Spring Security will
produce an error. The following example illustrates the error:
<!-- matches every request -->
<http auto-config="true">
 ...
</http>
<!-- never considered since previous http matches everything.
 Spring Security will report an error to prevent this.
 To fix add path attribute to first http element -->
<http auto-config="true">
 ...
</http>

•	 The default pattern is backed by o.s.s.web.util.AntPathRequestMatcher,
which will compare the specified pattern as an Ant pattern to determine wheter
it matches the servletPath and pathInfo of the HttpServletRequest. Note
that query strings are ignored when determining whether a request is a match.
Internally, Spring Security uses o.s.u.AntPathMatcher to do all the work. A
summary of the rules is listed as follows:

°° ? matches a single character.
°° * matches zero or more characters, excluding /.
°° ** matches zero or more directories in a path.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

°° The pattern "/events/**" matches "/events", "/events/", "/
events/1", and "/events/1/form?test=1"; it does not match "/
events123".

°° The pattern "/events*" matches "/events", and "/events123"; it
does not match "/events/" or "/events/1".

°° The pattern "/events*/**" matches "/events", "/events/", "/
events/1","/events123", "/events123/456", and "/events/1/
form?test=1".

•	 A more advanced option is to use the optional request-matcher-ref attribute.
This method provides the ultimate flexibility in how a request maps to an
<http> element by using the o.s.s.web.util.RequestMatcher interface.

The path attribute on the <intercept-url> elements further refines the filtering
on the request and allows access control to be applied. You can see that the updated
configuration allows different types of access, depending on the URL pattern.
ROLE_ANONYMOUS is of particular interest since we have not defined it anywhere in
security.xml. This is the default authority assigned to a user that is not logged
in. The following line from the updates to our security.xml file is what allows
anonymous (unauthenticated) users and users with the ROLE_USER authority to
access the Login page. We will cover more detail about access control options in
the second half of the book.

<intercept-url pattern="/login/*"
 access="ROLE_ANONYMOUS,ROLE_USER"/>

When defining <intercept-url> elements, there are a number of things to keep
in mind:

•	 Just as each <http> element is considered from top to bottom, so are
<intercept-url> elements. This means it is important to specify the most
specific elements first. The following example illustrates a configuration that
does not specify the more specific pattern first, which will result in warnings
from Spring Security at startup:
<http ...>
 <!-- matches every request, so it will not continue -->
 <intercept-url pattern="/**"
 access="ROLE_USER"/>
 <!-- below will never match -->
 <intercept-url pattern="/login/form"
 access="ROLE_ANONYMOUS,ROLE_USER"/>
 ...
</http>

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Spring Security

[42]

•	 It is important to note that if <http> is marked as security="none",
there can be no child <intercept-url> elements defined. This is because
security="none" states that Spring Security should ignore all requests
that match this <http> tag. Defining a child <intercept-url> element
with security="none" contradicts any <intercept-url> declaration.
An example is as follows:
<http pattern="/http/**" security="none">
 <!-- below will produce an error since
 it would never be executed -->
 <intercept-url pattern="/**"
 access="ROLE_USER"/>
 ...
</http>

•	 The path attribute of the <intercept-url> element is independent and
is not aware of the path attribute of the <http> element. For example, the
following would never match a request since a request cannot start with
both /http and /intercept-url at the same time (these two patterns are
mutually exclusive):
<http pattern="/http/**" ...>
 <!-- below will never match -->
 <intercept-url pattern="/intercept-url/**"
 access="ROLE_USER"/>
 ...
</http>

If you have not done so already, restart the application and visit
http://localhost:8080/calendar/. Experiment with the application
to see all the updates you have made.

1.	 Select a link that requires authentication and observe the new login page.
2.	 Try typing an invalid username/password and view the error message.
3.	 Try logging in as an admin (admin1@example.com/admin1), and view all of

the events. Note that we are able to view all the events.
4.	 Try logging out and view our logout success message.
5.	 Try logging in as a regular user (user1@example.com/user1), and view all

of the events. Note that we get an access denied page.

Your code should now look like chapter02.03-calendar.

www.it-ebooks.info

http://localhost:8080/calendar/
http://localhost:8080/calendar/
mailto:admin1@example.com
mailto:user1@example.com
http://www.it-ebooks.info/

Chapter 2

[43]

Expression-based authorization
You may have noticed that granting access to everyone was not nearly as concise
as we may have liked. Fortunately, Spring Security can leverage Spring Expression
Language (SpEL) to determine whether a user has authorization. In the following
code snippet, you can see the updates when using SpEL with Spring Security:

src/main/webapp/WEB-INF/spring/security.xml

<http auto-config="true"
 use-expressions="true">
 <intercept-url pattern="/"
 access="permitAll"/>
 <intercept-url pattern="/login/*"
 access="permitAll"/>
 <intercept-url pattern="/logout"
 access="permitAll"/>
 <intercept-url pattern="/events/"
 access="hasRole('ROLE_ADMIN')"/>
 <intercept-url pattern="/**"
 access="hasRole('ROLE_USER')"/>
 <form-login ../>
 ...
</http>

You may notice that the /events/ security constraint is brittle.
For example, the URL /events is not protected by Spring
Security to restrict ROLE_ADMIN. This demonstrates the need to
ensure that we provide multiple layers of security. We will exploit
this sort of weakness in Chapter 10, Fine-grained Access Control.

Changing the access attribute from ROLE_ANONYMOUS,ROLE_USER to permitAll
might not seem like much, but this only scratches the surface of the power of
Spring Security's expressions. We will go into much greater detail about access
control and Spring Expressions in the second half of the book. Go ahead and
verify that the updates work by running the application.

You code should now look like chapter02.04-calendar.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Spring Security

[44]

Conditionally displaying authentication information
Currently, our application has no indication whether we are logged in or not. In
fact, it appears as though we are always logged in, since the Logout link is always
displayed. In this section, we will demonstrate how to display the authenticated
user's username and conditionally display portions of the page using Spring
Security's JSP tag library.

The first step is to update your dependencies to include the spring-security-
taglibs-3.1.0.RELEASE.jar file. Since we are using Maven, we will add a new
dependency declaration in our pom.xml file, as follows:

pom.xml

<dependencies>
 ...
 <dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-taglibs</artifactId>
 <version>3.1.0.RELEASE</version>
 </dependency>
</dependencies>

The next step is to update header.jsp to leverage the Spring Security tag library.
You can find the updates as follows:

src/main/webapp/WEB-INF/views/includes/header.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="sec" uri="http://www.springframework.org/security/
tags" %>
<!DOCTYPE html>
...
 <div id="nav-account" class="nav-collapse pull-right">
 <ul class="nav">
 <sec:authorize
 access="authenticated"
 var="authenticated"/>
 <c:choose>
 <c:when test="${authenticated}">
 <li id="greeting">
 <div>
 Welcome
 <sec:authentication property="name" />
 </div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

 <c:url var="logoutUrl" value="/logout"/>

 Logout

 </c:when>
 <c:otherwise>
 <c:url var="loginUrl" value="/login/form"/>

 Login

 </c:otherwise>
 </c:choose>

 </div>
...

The <sec:authorize /> tag determines whether the user is authenticated or not
and assigns it to the variable authenticated. The access attribute should be
rather familiar from the <intercept-url /> element. In fact, both components
leverage the same SpEL support. In order for the tag to be able to use SpEL
support, ensure that you specify <http use-expressions="true"> in your
Spring Security configuration as we have already done, otherwise Spring Security
will throw an exception stating it cannot find o.s.s.web.access.expression.
WebSecurityExpressionHandler. If you choose, there are attributes on the JSP tag
libraries that do not use expressions. However, using SpEL is typically the preferred
method since it is more powerful.

The <sec:authentication /> tag will look up the current o.s.s.core.
Authentication object. The property attribute will find the principal attribute
on o.s.s.core.Authentication, which in this case is o.s.s.core.userdetails.
UserDetails. It then obtains the UserDetails username property and renders it to
the page. Don't worry if the details of this are confusing. We are going to go over this
in more detail in Chapter 3, Custom Authentication.

If you haven't done so already, restart the application to see the updates we have
made. At this point, you may realize that we are still displaying links we do not have
access to. For example, user1@example.com should not see a link to the All Events
page. Rest assured, we'll fix this when we cover the JSP tags in greater detail in
Chapter 10, Fine-grained Access Control.

Your code should now look like chapter02.05-calendar.

www.it-ebooks.info

mailto:user1@example.com
http://www.it-ebooks.info/

Getting Started with Spring Security

[46]

Customizing the behavior after login
We have already discussed how to customize a user's experience during login, but
sometimes it is necessary to customize the behavior after login. In this section, we
will discuss how Spring Security behaves after login and will provide a simple
mechanism to customize this behavior.

In the default configuration, Spring Security has two different flows after successful
authentication. The first scenario occurs if a user never visits a resource that requires
authentication. In this instance, after a successful login attempt, the user will be
sent to the default-target-url attribute of the <form-login> element. If left
undefined, default-target-url will be the context root of the application.

If a user requests a protected page before being authenticated, Spring Security will
remember the last protected page that was accessed prior to authenticating using
o.s.s.web.savedrequest.RequestCache. Upon successful authentication, Spring
Security will send the user to the last protected page that was accessed prior to
authentication. For example, if an unauthenticated user requests the My Events
page, they will be sent to the login page.

After successfully authenticating, they will be sent to the previously requested
My Events page.

A common requirement is to customize Spring Security to send the user to a different
default-target-url attribute, depending on the user's role. Let's take a look at
how this can be accomplished.

The first step is to configure the default-target-url attribute of the <form-login>
element. Go ahead and update security.xml to use /default instead of the
context root.

src/main/webapp/WEB-INF/spring/security.xml

<http ...>
 ...
 <form-login login-page="/login/form"
 login-processing-url="/login"
 username-parameter="username"
 password-parameter="password"
 authentication-failure-url="/login/form?error"
 default-target-url="/default"/>
 ...
</http>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

The next step is to create a controller that processes /default. In the following
code, you will find a sample Spring MVC controller, DefaultController, which
demonstrates how to redirect administrators to the All Events page and other users
to the Welcome page. Create a new file in the following location:

src/main/java/com/packtpub/springsecurity/web/controllers/
DefaultController.java

// imports omitted
@Controller
public class DefaultController {
 @RequestMapping("/default")
 public String defaultAfterLogin(HttpServletRequest request) {
 if (request.isUserInRole("ROLE_ADMIN")) {
 return "redirect:/events/";
 }
 return "redirect:/";
 }
}

In Spring Tool Suite you can use Shift + CTRL + O to automatically
add the missing imports.

There are a few things to point out about DefaultController and how it works.
The first is that Spring Security makes the HttpServletRequest parameter aware
of the currently logged-in user. In this instance, we are able to inspect which role
the user belongs to, without relying on any of Spring Security's APIs. This is good
because if Spring Security's APIs change or we decide we want to switch our security
implementation, we have less code that needs to be updated. It should also be noted
that while we implement this controller with a Spring MVC controller, our default-
target-url attribute could be handled by any controller implementation (for
example, Struts, a standard Servlet, and so on) we desire.

If you wish to always go to default-target-url, you can leverage the always-
use-default-target attribute. We will not do this in our configuration, but you can
see an example of this, as follows:

<form-login ...
 always-use-default-target="true"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Spring Security

[48]

You are now ready to give it a try. Restart the application and go directly to the
My Events page, then log in; you will see that you are at the My Events page.
Next, log out and try logging in as user1@example.com. You should go to the
Welcome page. Log out and log in as admin1@example.com, and you will be
sent to the All Events page.

Your code should now look like chapter02.06-calendar.

Summary
In this chapter we have applied a very basic Spring Security configuration, shown
how to customize the user's login and logout experience, and demonstrated how to
display basic information such as a username in our web application

In the next chapter, we will discuss how authentication in Spring Security works and
how we can customize it to our needs.

www.it-ebooks.info

mailto:user1@example.com
mailto:admin1@example.com
http://www.it-ebooks.info/

Custom Authentication
In Chapter 2, Getting Started with Spring Security, we demonstrated how to use
an in-memory data store to authenticate the user. In this chapter, we'll explore
how to solve some common, real-world problems by extending Spring Security's
authentication support to use our existing set of APIs. Through this exploration,
we'll get an understanding of each of the building blocks that Spring Security uses
in order to authenticate users.

During the course of this chapter we will:

•	 Discover how to obtain the details of the currently logged-in user
•	 Add the ability to log in after creating a new account
•	 Learn the simplest method for indicating to Spring Security that a user

is authenticated
•	 Create custom UserDetailsService and AuthenticationProvider

implementations that properly decouple the rest of the application from
Spring Security

•	 Add domain-based authentication to demonstrate how to authenticate with
more than just a username and password

JBCP Calendar architecture
Since this chapter is about integrating Spring Security with custom users
and APIs, we will start with a quick introduction to the domain model within
the JBCP Calendar application.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authentication

[50]

CalendarUser
Our calendar application uses a domain object named CalendarUser, which contains
information about our users .

src/main/java/com/packtpub/springsecurity/domain/CalendarUser.java

public class CalendarUser implements Serializable {
 private Integer id;
 private String firstName;
 private String lastName;
 private String email;
 private String password;

 ... accessor methods omitted ..
}

Event
Our application has an Event object that contains information about each event.

src/main/java/com/packtpub/springsecurity/domain/Event.java

public class Event {
 private Integer id;
 private String summary;
 private String description;
 private Calendar when;
 private CalendarUser owner;
 private CalendarUser attendee;

 ... accessor methods omitted ..
}

CalendarService
Our application contains a CalendarService interface that can be used for accessing
and storing our domain objects. The code for CalendarService is as follows:

src/main/java/com/packtpub/springsecurity/service/CalendarService.
java

public interface CalendarService {
 CalendarUser getUser(int id);
 CalendarUser findUserByEmail(String email);
 List<CalendarUser> findUsersByEmail(String partialEmail);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

 int createUser(CalendarUser user);
 Event getEvent(int eventId);
 int createEvent(Event event);
 List<Event> findForUser(int userId);
 List<Event> getEvents();
}

We won't go over the methods in CalendarService, but they should be fairly
straightforward. If you would like details about what each method does, please
consult the Javadoc in the sample code .

UserContext
Like most applications, our application requires us to interact with the currently
logged-in user. We have created a very simple interface called UserContext, to
manage the currently logged-in user.

src/main/java/com/packtpub/springsecurity/service/UserContext.java

public interface UserContext {
 CalendarUser getCurrentUser();
 void setCurrentUser(CalendarUser user);
}

This means that our application can call UserContext.getCurrentUser() to
obtain the details of the currently logged-in user. It can also call UserContext.
setCurrentUser(CalendarUser) to specify which user is logged in. Later in this
chapter, we will explore how we can write an implementation of this interface that
uses Spring Security to access our current user. Obtaining the details of the current
user using SecurityContextHolder.

Spring Security provides quite a few different methods for authenticating a user.
However, the net result is that Spring Security will populate o.s.s.core.context.
SecurityContext with an o.s.s.core.Authentication. The Authentication object
represents all the information we gathered at the time of authentication (username,
password, roles, and so on). The SecurityContext is then set on the o.s.s.core.
context.SecurityContextHolder. This means that Spring Security and developers
can use SecurityContextHolder to obtain information about the currently logged-in
user. An example of obtaining the current username is illustrated below:

String username = SecurityContextHolder.getContext()
 .getAuthentication()
 .getName();

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authentication

[52]

It should be noted that null checks should always be done
on the Authentication object, as it could be null if the
user is not logged in.

SpringSecurityUserContext
The current UserContext implementation, UserContextStub, is a stub that always
returns the same user. This means that the My Events page will always display the
same user no matter who is logged in. Let's update our application to utilize the
current Spring Security user's username to determine which events to display on the
My Events page.

You should be starting with the sample code in
chapter03.00-calendar.

The first step is to comment out the @Component attribute on UserContextStub, so
that our application no longer uses our canned results.

The @Component annotation is used in conjunction with the
<context:component-scan /> element found in src/main/
webapp/WEB-INF/spring/services.xml, to automatically create
a Spring Bean rather than creating explicit XML configuration for each
bean. You can learn more about Spring's classpath scanning in the
Spring Reference the link http://static.springsource.org/
spring/docs/current/spring-framework-reference/html/.

src/main/java/com/packtpub/springsecurity/service/UserContextStub.
java

…
//@Component
public class UserContextStub implements UserContext {
...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

The next step is to utilize SecurityContext to obtain the currently logged-in user.
We have included SpringSecurityUserContext within this chapter's code, which
is wired up with the necessary dependencies but contains no actual functionality.
Open SpringSecurityUserContext and add the @Component annotation. Next,
replace the getCurrentUser implementation as follows:

src/main/java/com/packtpub/springsecurity/service/
SpringSecurityUserContext.java

@Component
public class SpringSecurityUserContext implements UserContext {
 private final CalendarService calendarService;
 private final UserDetailsService userDetailsService;

 @Autowired
 public SpringSecurityUserContext(CalendarService
 calendarService,UserDetailsService userDetailsService) {
 this.calendarService = calendarService;
 this.userDetailsService = userDetailsService;
 }

 public CalendarUser getCurrentUser() {
 SecurityContext context = SecurityContextHolder.getContext();
 Authentication authentication = context.getAuthentication();
 if (authentication == null) {
 return null;
 }

 String email = authentication.getName();
 return calendarService.findUserByEmail(email);
 }

 public void setCurrentUser(CalendarUser user) {
 throw new UnsupportedOperationException();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authentication

[54]

Our code obtains the username from the current Spring Security Authentication
object and utilizes that to look up the current CalendarUser object by the e-mail
address. Since our Spring Security username is an e-mail address, we are able to use
the e-mail address to link CalendarUser with the Spring Security user. Note that
if we were to link accounts, we would normally want to do this with a key that we
generated rather than something that may change (that is, an e-mail address). We
follow the good practice of returning only our domain object to the application. This
ensures that our application is only aware of our CalendarUser object and thus is
not coupled to Spring Security.

This code may seem eerily similar to when we used the <sec:authentication />
tag in Chapter 2, Getting Started with Spring Security, to display the current user's
username. In fact, the Spring Security tag library uses SecurityContextHolder in
the same manner as we have done here. We could use our UserContext interface to
place the current user on HttpServletRequest and thus remove our dependency on
the Spring Security tag library.

Start up the application, visit http://localhost:8080/calendar/, and log in with
admin1@example.com as the username and admin1 as the password . Visit the My
Events page, and you will see that only the events for that current user who is the
owner or the attendee are displayed. Try creating a new event; you will observe
that the owner of the event is now associated with the logged-in user. Log out of the
application and repeat these steps with user1@example.com as the username and
user1 as the password.

Your code should now look like chapter03.01-calendar.

Logging in new users using
SecurityContextHolder
A common requirement is to allow users to create a new account and then
automatically log them into the application. In this section, we'll describe
the simplest method for indicating that a user is authenticated, by utilizing
SecurityContexHolder.

www.it-ebooks.info

mailto:admin1@example.com
mailto:user1@example.com
http://www.it-ebooks.info/

Chapter 3

[55]

Managing users in Spring Security
The application provided in Chapter 1, Anatomy of an Unsafe Application, provides a
mechanism for creating a new CalendarUser object, so it should be fairly trivial to
create our CalendarUser object after a user signs up. However, Spring Security has
no knowledge of CalendarUser. This means that we will need to add a new user in
Spring Security too. Don't worry, we will remove the need for the dual maintenance
of users later in this chapter.

Spring Security provides an o.s.s.provisioning.UserDetailsManager interface
for managing users. Remember our in-memory Spring Security configuration?

<user-service>
 <user name="user1@example.com"
 password="user1"
 authorities="ROLE_USER"/>
 ...
</user-service>

The <user-service> element creates an in-memory implementation of
UserDetailsManager, named o.s.s.provisioning.InMemoryUserDetailsManager,
which can be used to create a new Spring Security user. Since we have already defined
UserDetailsManager in our Spring configuration, all we need to do is update our
existing CalendarService implementation, DefaultCalendarService, to add a user
in Spring Security. Make the following updates to DefaultCalendarService:

src/main/java/com/packtpub/springsecurity/service/
DefaultCalendarService.java

public int createUser(CalendarUser user) {
 List<GrantedAuthority> authorities =
 AuthorityUtils.createAuthorityList("ROLE_USER");
 UserDetails userDetails = new User(user.getEmail(), user.
getPassword(),
 authorities);
 // create a Spring Security user
 userDetailsManager.createUser(userDetails);
 // create a CalendarUser
 return userDao.createUser(user);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authentication

[56]

In order to leverage UserDetailsManager, we first convert CalendarUser into
Spring Security's UserDetails object. Later, we use UserDetailsManager to save
the UserDetails object. The conversion is necessary, because Spring Security has
no understanding of how to save our custom CalendarUser object, so we must
map CalendarUser to an object Spring Security understands. You will notice that
the GrantedAuthority object corresponds to the authorities attribute of our
security.xml file. We hard code this for simplicity and due to the fact that there is
no concept of roles in our existing system.

Logging in a new user to an application
Now that we are able to add new users to the system, we need to indicate that the
user is authenticated. Update SpringSecurityUserContext to set the current user
on Spring Security's SecurityContextHolder object, as follows:

src/main/java/com/packtpub/springsecurity/service/
SpringSecurityUserContext.java

public void setCurrentUser(CalendarUser user) {
 UserDetails userDetails =
 userDetailsService.loadUserByUsername(user.getEmail());
 Authentication authentication = new
 UsernamePasswordAuthenticationToken(userDetails,
 user.getPassword(),userDetails.getAuthorities());
 SecurityContextHolder.getContext().
 setAuthentication(authentication);
}

The first step we perform is to convert our CalendarUser object into Spring Security's
UserDetails. This is necessary, because just as Spring Security didn't know how
to save our custom CalendarUser object, Spring Security does not understand how
to make security decisions with our custom CalendarUser object. We use Spring
Security's o.s.s.core.userdetails.UserDetailsService interface to obtain the
same UserDetails object we saved with UserDetailsManager. UserDetailsService
provides a subset, lookup by username, of the functionality provided by Spring
Security's UserDetailsManager object that we have already seen.

Next, we create a UsernamePasswordAuthenticationToken object and
place UserDetails, the password, and GrantedAuthority in it. Lastly, we
set the authentication on SecurityContextHolder. In a web application,
Spring Security will automatically associate the SecurityContext object in
SecurityContextHolder to our HTTP session for us.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

It is important that Spring Security not be instructed to ignore a URL
(that is, using security="none", as discussed in Chapter 2, Getting
Started with Spring Security) in which SecurityContextHolder is
accessed or set. This is because Spring Security will ignore the request and
thus not persist SecurityContext for subsequent requests. The proper
method to allow access to the URL in which SecurityContextHolder
is used is to specify the access attribute of the <intercept-url>
element (that is, <intercept-url … access="permitAll"/>).

It is worth mentioning that we could have converted CalendarUser by creating
a new User object directly, instead of looking it up in UserDetailsService. For
example, the following code would also authenticate the user:

List<GrantedAuthority> authorities =
 AuthorityUtils.createAuthorityList("ROLE_USER");
UserDetails userDetails = new
 User("username","password",authorities);
Authentication authentication = new
 UsernamePasswordAuthenticationToken(
 userDetails,userDetails.getPassword(),userDetails
 .getAuthorities());
SecurityContextHolder.getContext()
 .setAuthentication(authentication);

The advantage of this approach is that there is no need for hitting the data store
again. In our case, the data store is an in-memory data store, but this could be backed
by a database, which could have some security implications. The disadvantage of
this approach is that we do not get much code reuse. Since this method is invoked
infrequently, we opt for code reuse. In general, it is best to evaluate each situation
separately to determine which approach makes the most sense.

Updating SignupController
The application has a SignupController object, which is what processes the
HTTP request to create a new CalendarUser object. The last step is to update
SignupController to create our user and then indicate that they are logged in.
Make the following updates to SignupController:

src/main/java/com/packtpub/springsecurity/web/controllers/
SignupController.java

@RequestMapping(value="/signup/new",method=RequestMethod.POST)
public String signup(@Valid SignupForm signupForm,
 BindingResult result, RedirectAttributes redirectAttributes) {

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authentication

[58]

 ... existing validation …
 user.setPassword(signupForm.getPassword());
 int id = calendarService.createUser(user);
 user.setId(id);
 userContext.setCurrentUser(user);
 redirectAttributes.addFlashAttribute("message", "Success");
 return "redirect:/";
}

If you have not done so already, restart the application, visit http://localhost:8080/
calendar/, create a new user, and see that the new user is automatically logged in.

Your code should now look like chapter03.02-calendar.

Creating a custom UserDetailsService
object
While we are able to link our domain model (CalendarUser) with Spring Security's
domain model (UserDetails), we have to maintain multiple representations of the user.
To resolve this dual maintenance, we can implement a custom UserDetailsService
object to translate our existing CalendarUser domain model into an implementation of
Spring Security's UserDetails interface. By translating our CalendarUser object into
UserDetails, Spring Security can make security decisions using our custom domain
model. This means that we will no longer need to manage two different representations
of a user.

CalendarUserDetailsService
Up to this point, we have needed two different representations of users. One for
Spring Security to make security decisions and one for our application to associate
our domain objects to. Create a new class named CalendarUserDetailsService
that will make Spring Security aware of our CalendarUser object. This will ensure
that Spring Security can make decisions based upon our domain model. Create a
new file named CalendarUserDetailsService.java, as follows:

src/main/java/com/packtpub/springsecurity/core/userdetails/
CalendarUserDetailsService.java

// imports and package declaration omitted
@Component
public class CalendarUserDetailsService implements

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

 UserDetailsService {
 private final CalendarUserDao calendarUserDao;

 @Autowired
 public CalendarUserDetailsService(CalendarUserDao
 calendarUserDao) {
 this.calendarUserDao = calendarUserDao;
 }

 public UserDetails loadUserByUsername(String username) throws
 UsernameNotFoundException {
 CalendarUser user = calendarUserDao.findUserByEmail(username);
 if (user == null) {
 throw new UsernameNotFoundException("Invalid
 username/password.");
 }
 Collection<? extends GrantedAuthority> authorities =
 CalendarUserAuthorityUtils.createAuthorities(user);
 return new User(user.getEmail(), user.getPassword(),
 authorities);
 }
}

Within Spring Tool Suite you can use Shift+Ctrl+O to easily add the
missing imports. Alternatively, you can copy the code from the next
checkpoint (chapter03.03-calendar).

Here we utilize CalendarUserDao to obtain CalendarUser by using
the e-mail address. We take care not to return a null value; instead, a
UsernameNotFoundException exception should be thrown, as returning null
breaks the UserDetailsService interface. We then convert CalendarUser into
UserDetails, implemented by the user, as we did in the previous sections.

We now utilize a utility class named CalendarUserAuthorityUtils that we
provided in the sample code. This will create GrantedAuthority based upon the
e-mail address, so that we can support users and administrators. If the e-mail starts
with admin, the user is treated as ROLE_ADMIN,ROLE_USER. Otherwise, the user is
treated as ROLE_USER. Of course, we would not do this in a real application, but it's
this simplicity that allows us to focus on this lesson.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authentication

[60]

Configuring UserDetailsService
Now that we have a new UserDetailsService object, let's update the Spring
Security configuration to utilize it. Update the security.xml file as follows:

src/main/webapp/WEB-INF/spring/security.xml

<authentication-manager>
 <authentication-provider
 user-service-ref="calendarUserDetailsService"/>
</authentication-manager>

CalendarUserDetailsService is added to our Spring configuration automatically,
since we leverage classpath scanning and the @Component annotation. This means we
only need to update Spring Security to refer to the CalendarUserDetailsService
we just created. We are also able to remove the <user-service> element, Spring
Security's in-memory implementation of UserDetailsService, since we are now
providing our own UserDetailsService implementation.

Removing references to UserDetailsManager
We need to remove the code we added in the DefaultCalendarService
that used UserDetailsManager to synchronize the Spring Security users
and CalendarUsers. First, the code is not necessary, since Spring Security
now refers to our CalendarUserDetailsService. Second, since we removed the
<user-service> element, there is no UserDetailsManager object defined in our
Spring configuration. Go ahead and remove all references to UserDetailsManager
found in DefaultCalendarSerivce. The updates will look similar to the following
sample snippets:

src/main/java/com/packtpub/springsecurity/service/
DefaultCalendarService.java

public class DefaultCalendarService implements CalendarService {
 private final EventDao eventDao;
 private final CalendarUserDao userDao;

 @Autowired
 public DefaultCalendarService(EventDao eventDao, CalendarUserDao
userDao) {
 this.eventDao = eventDao;
 this.userDao = userDao;
 }
 ...
 public int createUser(CalendarUser user) {
 return userDao.createUser(user);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

Start up the application and see that Spring Security's in-memory UserDetailsManager
object is no longer necessary (we removed it from our security.xml file).

Your code should now look like chapter03.03-calendar.

CalendarUserDetails
We have successfully eliminated the need to manage both Spring Security users and
our CalendarUser objects. However, it is still cumbersome for us to continually need
to translate between the two objects. Instead, we will create a CalendarUserDetails
object, which can be referred to as both UserDetails and CalendarUser. Update
CalendarUserDetailsService to use CalendarUserDetails, as follows:

src/main/java/com/packtpub/springsecurity/core/userdetails/
CalendarUserDetailsService.java

public UserDetails loadUserByUsername(String username) throws
 UsernameNotFoundException {
 ...
 return new CalendarUserDetails(user);
}

private final class CalendarUserDetails extends
 CalendarUser implements UserDetails {
 CalendarUserDetails(CalendarUser user) {
 setId(user.getId());
 setEmail(user.getEmail());
 setFirstName(user.getFirstName());
 setLastName(user.getLastName());
 setPassword(user.getPassword());
 }
 public Collection<? extends GrantedAuthority>
 getAuthorities() {
 return CalendarUserAuthorityUtils.createAuthorities(this);
 }

 public String getUsername() {
 return getEmail();
 }
 public boolean isAccountNonExpired() { return true; }
 public boolean isAccountNonLocked() { return true; }
 public boolean isCredentialsNonExpired() { return true; }
 public boolean isEnabled() { return true; }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authentication

[62]

In the next section, we will see that our application can now refer to the principal
authentication on the current CalendarUser object. However, Spring Security can
continue to treat CalendarUserDetails as a UserDetails object.

SpringSecurityUserContext simplifications
We have updated CalendarUserDetailsService to return a UserDetails
object that extends CalendarUser and implements UserDetails. This means that,
rather than having to translate between the two objects, we can simply refer to a
CalendarUser object. Update SpringSecurityUserContext as follows:

public class SpringSecurityUserContext implements UserContext {
 public CalendarUser getCurrentUser() {
 SecurityContext context = SecurityContextHolder.getContext();
 Authentication authentication = context.getAuthentication();
 if(authentication == null) {
 return null;
 }
 return (CalendarUser) authentication.getPrincipal();
 }

 public void setCurrentUser(CalendarUser user) {
 Collection authorities =
 CalendarUserAuthorityUtils.createAuthorities(user);
 Authentication authentication = new
 UsernamePasswordAuthenticationToken(user,
 user.getPassword(),authorities);
 SecurityContextHolder.getContext()
 .setAuthentication(authentication);
 }
}

The updates no longer require the use of CalendarUserDao or Spring Security's
UserDetailsService interface. Remember our loadUserByUsername method from
the previous section? The result of this method call becomes the principal of the
authentication. Since our updated loadUserByUsername method returns an object
that extends CalendarUser, we can safely cast the principal of the Authentication
object to CalendarUser. We can pass a CalendarUser object as the principal into
the constructor for UsernamePasswordAuthenticationToken when invoking
setCurrentUser. This allows us to still cast the principal to a CalendarUser object
when invoking getCurrentUser.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[63]

Displaying custom user attributes
Now that CalendarUser is populated into the Spring Security's authentication, we
can update our UI to display the name of the current user rather than the e-mail
address. Update the header.jsp file with the following code:

src/main/webapp/WEB-INF/views/includes/header.jsp

<c:when test="${authenticated}">
 <li id="greeting">
 <div>
 Welcome <sec:authentication property="principal.name" />
 </div>

 ...
</c:when>

Internally, the <sec:authentication property="principal.name"/> tag executes
the following code. Observe that the highlighted values correlate to the property
attribute of the authentication tag we specified in header.jsp.

SecurityContext context = SecurityContextHolder.getContext();
Authentication authentication = context.getAuthentication();
CalendarUser user = (CalendarUser) authentication.getPrincipal();
String firstAndLastName = user.getName();

Restart the application, visit http://localhost:8080/calendar/, and log in to
view the updates. Instead of seeing the current user's e-mail, you should now see
their first and last names.

Your code should now look like chapter03.04-calendar.

Creating a custom
AuthenticationProvider object
Spring Security delegates to an AuthenticationProvider object to determine
whether a user is authenticated or not. This means we can write custom
AuthenticationProvider implementations to inform Spring Security how to
authenticate in different ways. The good news is that Spring Security provides quite
a few AuthenticationProvider objects so more often than not you will not need
to create one. In fact, up until this point, we have been utilizing Spring Security's
o.s.s.authentication.dao.DaoAuthenticationProvider object, which compares
the username and password returned by UserDetailsService.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authentication

[64]

CalendarUserAuthenticationProvider
Throughout the rest of this section, we are going to create a custom
AuthenticationProvider object named CalendarUserAuthenticationProvider
that will replace CalendarUserDetailsService. Then, we will use
CalendarUserAuthenticationProvider to consider an additional parameter to
support authenticating users from multiple domains. Create a new class named
CalendarUserAuthenticationProvider, as follows:

We must use an AuthenticationProvider object rather than
UserDetailsService, because the UserDetails interface
has no notion for a domain parameter.

src/main/java/com/packtpub/springsecurity/authentication/
CalendarUserAuthenticationProvider.java

// … imports omitted ...
@Component
public class CalendarUserAuthenticationProvider implements
 AuthenticationProvider {
 private final CalendarService calendarService;

 @Autowired
 public CalendarUserAuthenticationProvider(CalendarService
 calendarService) {
 this.calendarService = calendarService;
 }

 public Authentication authenticate(Authentication
 authentication) throws AuthenticationException {
 UsernamePasswordAuthenticationToken token =
 (UsernamePasswordAuthenticationToken) authentication;
 String email = token.getName();
 CalendarUser user = null;
 if(email != null) {
 user = calendarService.findUserByEmail(email);
 }
 if(user == null) {
 throw new UsernameNotFoundException("Invalid
 username/password");
 }
 String password = user.getPassword();
 if(!password.equals(token.getCredentials())) {
 throw new BadCredentialsException("Invalid

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[65]

 username/password");
 }
 Collection<? extends GrantedAuthority> authorities =
 CalendarUserAuthorityUtils.createAuthorities(user);
 return new UsernamePasswordAuthenticationToken(user, password,
 authorities);
 }

 public boolean supports(Class<?> authentication) {
 return UsernamePasswordAuthenticationToken
 .class.equals(authentication);
 }
}

Remember that you can use Shift+Ctrl+O within Eclipse to
easily add the missing imports. Alternativey, you can copy the
implementation from chapter03.05-calendar.

Before Spring Security can invoke the authenticate method, the supports method
must return true for the Authentication class that will be passed in. In this case,
AuthenticationProvider can authenticate a username and password. We do not
accept subclasses of UsernamePasswordAuthenticationToken, since there may be
additional fields that we do not know how to validate.

The authenticate method accepts an Authentication object as an argument
that represents an authentication request. In practical terms, it is the input from the
user that we need to attempt to validate. If authentication fails, the method should
throw an o.s.s.core.AuthenticationException exception. If authentication
succeeds, it should return an Authentication object that contains the proper
GrantedAuthority objects for the user. The returned Authentication object
will be set on SecurityContextHolder. If authentication cannot be determined,
the method should return null.

The first step in authenticating the request is to extract the information from the
Authentication object that we need to authenticate the user. In our case, we
extract the username and look up CalendarUser by the e-mail address, just as
CalendarUserDetailsService did. If the provided username and password
match CalendarUser, we will return a UsernamePasswordAuthenticationToken
object with proper GrantedAuthority. Otherwise, we will throw an
AuthenticationException exception.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authentication

[66]

Remember how the login page leveraged SPRING_SECURITY_LAST_EXCEPTION to
explain why login failed? The message for the AuthenticationException exception
thrown in AuthenticationProvider is the last AuthenticationException and will
be displayed by our login page in the event of a failed login.

Configuring
CalendarUserAuthenticationProvider
Next, update the security.xml file to refer to our newly created
CalendarUserAuthenticationProvider object, and remove the reference to
CalendarUserDetailsService.

src/main/webapp/WEB-INF/spring/security.xml

<authentication-manager>
 <authentication-provider
 ref="calendarUserAuthenticationProvider"/>
</authentication-manager>

Restart the application and ensure everything is still working. As a user, we
do not notice anything different. However, as a developer, we know that
CalendarUserDetails is no longer required; we are still able to display the
current user's first and last names, and Spring Security is still able to leverage
CalendarUser for authentication.

Your code should now look like chapter03.05-calendar.

Authenticating with different parameters
One of the strengths of AuthenticationProvider is that it can authenticate with
any parameters you wish. For example, maybe your application uses a random
identifier for authentication, or perhaps it is a multi-tenant application and requires
a username, password, and a domain. In the following section, we will update
CalendarUserAuthenticationProvider to support multiple domains.

A domain is a way to scope our users. For example, if we deploy our
application once but have multiple clients using the same deployment,
each client may want a user with the username admin. By adding a
domain to our user object, we can ensure that each user is distinct and
still supports this requirement.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

DomainUsernamePasswordAuthenticationToken
When a user authenticates, Spring Security submits an Authentication object to
AuthenticationProvider with the information provided by the user. The current
UsernamePasswordAuthentication object only contains a username and password
field. Create a DomainUsernamePasswordAuthenticationToken object that contains
a domain field.

src/main/java/com/packtpub/springsecurity/authentication/
DomainUsernamePasswordAuthenticationToken.java

public final class DomainUsernamePasswordAuthenticationToken
 extends UsernamePasswordAuthenticationToken {
 private final String domain;

 // used for attempting authentication
 public DomainUsernamePasswordAuthenticationToken(String
 principal, String credentials, String domain) {
 super(principal, credentials);
 this.domain = domain;
 }
 // used for returning to Spring Security after being
 //authenticated
 public DomainUsernamePasswordAuthenticationToken(CalendarUser
 principal, String credentials, String domain,
 Collection<? extends GrantedAuthority> authorities) {
 super(principal, credentials, authorities);
 this.domain = domain;
 }

 public String getDomain() {
 return domain;
 }
}

Updating CalendarUserAuthenticationProvider
Now, we need to update CalendarUserAuthenticationProvider to utilize the
domain field.

src/main/java/com/packtpub/springsecurity/authentication/
CalendarUserAuthenticationProvider.java

public Authentication authenticate(Authentication authentication)
 throws AuthenticationException {
 DomainUsernamePasswordAuthenticationToken token =
 (DomainUsernamePasswordAuthenticationToken) authentication;
 String userName = token.getName();
 String domain = token.getDomain();

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authentication

[68]

 String email = userName + "@" + domain;
 ... previous validation of the user and password ...
 return new DomainUsernamePasswordAuthenticationToken(user,
 password, domain, authorities);
}

public boolean supports(Class<?> authentication) {
 return DomainUsernamePasswordAuthenticationToken
 .class.equals(authentication);
}

We first update the supports method so that Spring Security will pass
DomainUsernamePasswordAuthenticationToken into our authenticate method.
We then use the domain information to create our e-mail address and authenticate,
as we had previously done. Admittedly, this example is contrived. However, the
example is able to illustrate how to authenticate with an additional parameter.

CalendarUserAuthenticationProvider can now use the new domain field.
However, there is no way for a user to specify the domain. For this, we must
update our login.jsp file.

Adding domain to the login page
Open up the login.jsp file, and add a new input named domain, as follows:

src/main/webapp/WEB-INF/views/login.jsp

...
<input type="text" id="username" name="username"/>
<label for="domain">Domain</label>
<input type="text" id="domain" name="domain"/>
<label for="password">Password</label>
 <input type="text" id="username" name="username"/>
 <label for="domain">Domain</label> <input type="text" id="domain"
name="domain"/>
 <label for="password">Password</label>
…

Now, a domain will be submitted when users attempt to log in.
However, Spring Security is unaware of how to use that domain to
create a DomainUsernamePasswordAuthenticationToken and pass
it into AuthenticationProvider. To fix this, we will need to create
DomainUsernamePasswordAuthenticationFilter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

DomainUsernamePasswordAuthenticationFilter
Spring Security provides a number of servlet filters that act as controllers
for authenticating users. The filters are invoked as one of the delegates of
the FilterChainProxy object that we discussed in Chapter 2, Getting Started with
Spring Security. Previously, the <form-login /> element instructed Spring Security
to use o.s.s.web.authentication.UsernamePasswordAuthenticationFilter,
to act as a login controller. The filter's job is to do the following:

•	 Obtain a username and password from the HTTP request
•	 Create a UsernamePasswordAuthenticationToken object with the

information obtained from the HTTP request
•	 Request that Spring Security validate

UsernamePasswordAuthenticationToken

•	 If the token is validated, it will set the authentication returned to it on
SecurityContextHolder, just as we did when a new user signed up
for an account.

•	 We will need to extend UsernamePasswordAuthenticationFilter to
leverage our newly created DoainUsernamePasswordAuthenticationToken
object. Create a DomainUsernamePasswordAuthenticationFilter object
as follows:
src/main/java/com/packtpub/springsecurity/web/authentication/
DomainUsernamePasswordAuthenticationFilter.java

public final class
 DomainUsernamePasswordAuthenticationFilter
 extends UsernamePasswordAuthenticationFilter {

 public Authentication
 attemptAuthentication(HttpServletRequest request,
 HttpServletResponse response) throws
 AuthenticationException {
 if (!request.getMethod().equals("POST")) {
 throw new AuthenticationServiceException(
 "Authentication method not supported: " +
 request.getMethod());
 }
 String username = obtainUsername(request);
 String password = obtainPassword(request);
 String domain = request.getParameter("domain");

 // authRequest.isAuthenticated() = false since no
 //authorities are specified

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authentication

[70]

 DomainUsernamePasswordAuthenticationToken authRequest
 = new DomainUsernamePasswordAuthenticationToken(
 username, password, domain);

 setDetails(request, authRequest);
 return this.getAuthenticationManager()
 .authenticate(authRequest);
 }
}

The new DomainUsernamePasswordAuthenticationFilter object will do
the following:

•	 Obtain a username, password, and domain from the HTTP request.
•	 Create our DomainUsernamePasswordAuthenticationToken object with

information obtained from the HTTP request.
•	 Request that Spring Security validate

DomainUsernamePasswordAuthenticationToken. The work is delegated to
CalendarUserAuthenticationProvider.

•	 If the token is validated, its superclass will set the authentication returned by
CalendarUserAuthenticationProvider on SecurityContextHolder, just
as we did to authenticate a user after they created a new account.

Updating our configuration
Now that we have created all the code required for an additional parameter, we need
to configure Spring Security to be aware of it. The following code snippet includes
the required updates to our security.xml file to support our additional parameter:

src/main/webapp/WEB-INF/spring/security.xml

<http use-expressions="true"
 auto-config="true"
 entry-point-ref="loginEntryPoint">
 <custom-filter ref="domainFormLoginFilter"
 position="FORM_LOGIN_FILTER"/>
 …
 …
 <form-login login-page="/login/form"
 login-processing-url="/login"
 username-parameter="username"
 password-parameter="password"
 authentication-failure-url="/login/form?error"
 default-target-url="/default"/>
 …

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[71]

</http>
<authentication-manager alias="authenticationManager">
 ...
</authentication-manager>

<bean:bean xmlns="http://www.springframework.org/schema/beans"
 id="domainFormLoginFilter"
 class="com.packtpub.springsecurity.web.authentication
 .DomainUsernamePasswordAuthenticationFilter">
 <property name="filterProcessesUrl" value="/login"/>
 <property name="authenticationManager"
 ref="authenticationManager"/>
 <property name="usernameParameter" value="username"/>
 <property name="passwordParameter" value="password"/>
 <property name="authenticationSuccessHandler">
 <bean class="org.springframework.security.web.authentication
 .SavedRequestAwareAuthenticationSuccessHandler">
 <property name="defaultTargetUrl" value="/default"/>
 </bean>
 </property>
 <property name="authenticationFailureHandler">
 <bean class="org.springframework.security.web.authentication
 .SimpleUrlAuthenticationFailureHandler">
 <property name="defaultFailureUrl" value=
 "/login/form?error"/>
 </bean>
 </property>
</bean:bean>
<bean:bean xmlns="http://www.springframework.org/schema/beans"
 id="loginEntryPoint" class="org.springframework.security.web.
 authentication.LoginUrlAuthenticationEntryPoint">
 <bean:constructor-arg value="/login/form"/>
</bean:bean>

The preceding code configures standard beans in our Spring
Security configuration. We do this to demonstrate that it can
be done. However, throughout much of the rest of the book we
include standard bean configuration in its own file as this makes
the configuration less verbose.
If you are having trouble or prefer not to type all of this, you may
copy it from chapter03.06-cvalendar.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authentication

[72]

You can see that deviating from using the Spring Security namespace has made
our configuration much more verbose. The following are a few highlights from the
configuration updates:

•	 We removed auto-config and added a reference to o.s.s.web.
AuthenticationEntryPoint, which determines what happens when a
request for a protected resource occurs and the user is not authenticated.
In our case, we are redirected to a login page.

•	 We remove <form-login/> and use a <custom-filter /> element to insert
our custom filter into FilterChainProxy. The position indicates the order in
which the delegates of FilterChain are considered and cannot overlap with
another filter.

•	 We added the configuration for our custom filter, which refers to the
authentication manager created by the <authentication-manager/> element.

If we do not remove auto-config or <form-login/>, and try to use
<custom-filter position="FORM_LOGIN"/>, Spring Security will
report an error similar to the following:
"Filter beans '<domainFormLoginFilter>' and '<org.
springframework.security.web.authentication.UsernamePass
wordAuthenticationFilter#chapter03.00-calendar#src/main/
webapp/WEB-INF/spring/security.xml#34>' have the same
'order'"

You can now restart the application and try the following steps, following along with
our diagram to understand how all the pieces fit together:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

1.	 Visit http://localhost:8080/calendar/events.
2.	 Spring Security will intercept the secured URL and use

LoginUrlAuthenticationEntryPoint to process it.
3.	 LoginUrlAuthenticationEntryPoint will send the user to the login page.

Enter admin1 as the username, example.com as the domain, and admin1 as
the password.

4.	 DomainUsernamePasswordAuthenticationFilter will intercept
the process of the login request. It will then obtain the username,
domain, and password from the HTTP request and create a
DomainUsernamePasswordAuthenticationToken object.

5.	 DomainUsernamePasswordAuthenticationFilter submits
DomainUsernamePasswordAuthenticationToken to
CalendarUserAuthenticationProvider.

6.	 CalendarUserAuthenticationProvider validates
DomainUsernamePasswordAuthenticationToken and then returns an
authenticated DomainUsernamePasswordAuthenticationToken object
(that is, isAuthenticated() returns true).

7.	 DomainUserPasswordAuthenticationFilter updates SecurityContext
with DomainUsernamePasswordAuthenticationToken and places it on
SecurityContextHolder.

Your code should look like chapter03.06-calendar.

Which authentication method to use
We have covered the three main methods of authenticating, so which one is the best?
Like all solutions, each comes with its pros and cons. You can find a summary of
when to use a specific type of authentication by referring to the following list:

•	 SecurityContextHolder: Interacting directly with SecurityContextHolder
is certainly the easiest way of authenticating a user. It works well when
you are authenticating a newly created user or authenticating in an
unconventional way. By using SecurityContextHolder directly, we do not
have to interact with so many Spring Security layers. The downside is that
we do not get some of the more advanced features Spring Security provides
automatically. For example, if we want to send the user to the previously
requested page after login, we would have to manually integrate that into
our controller.

www.it-ebooks.info

http://localhost:8080/calendar/events
http://www.it-ebooks.info/

Custom Authentication

[74]

•	 UserDetailsService: Creating a custom UserDetailsService object is
an easy mechanism for Spring Security to make security decisions based
on our custom domain model. It also provides a mechanism to hook into
other Spring Security features. For example, Spring Security requires
UserDetailsService in order to use the built-in Remember Me support
covered in Chapter 6, Remember-me Services. UserDetailsService does not
work when authentication is not based upon a username and password.

•	 AuthenticationProvider: This is the most flexible method for extending
Spring Security. It allows a user to authenticate with any parameters that
we wish. However, if we wish to leverage features such as Spring Security's
Remember Me, we will still need UserDetailsService.

Summary
This chapter has used real-world problems to introduce the basic building blocks
used in Spring Security. It also demonstrates to us how we can make Spring Security
authenticate against our custom domain objects by extending the basic building
blocks. In short, we have learned the following:

•	 SecurityContextHolder is the central location for determining the current
user. Not only can it be used by developers to get the current user but also to
set the currently logged-in user.

•	 How to create custom UserDetailsService and AuthenticationProvider
objects.

•	 How to perform authentication with more than just a username
and password.

In the next chapter, we will explore some of the built-in support for
JDBC-based authentication.

www.it-ebooks.info

http://www.it-ebooks.info/

JDBC-based Authentication
In the previous chapter, we saw how we can extend Spring Security to utilize our
CalendarDao interface and our existing domain model to authenticate users. In this
chapter, we will see how we can use Spring Security's built-in JDBC support. To keep
things simple, this chapter's sample code is based on our Spring Security setup from
Chapter 2, Getting Started with Spring Security. In this chapter we will:

•	 Use Spring Security's built-in JDBC-based authentication support
•	 Utilize Spring Security's group-based authorization to make administering

users easier
•	 Learn how to use Spring Security's UserDetailsManager interface
•	 Configure Spring Security to utilize our existing CalendarUser schema to

authenticate users
•	 Learn how we can secure passwords using Spring Security's new

cryptography module

Using Spring Security's default JDBC
authentication
If your application has not yet implemented security or your security infrastructure
is using a database, Spring Security provides an out-of-the-box support that can
simplify solving your security needs. Spring Security provides a default schema for
users, authorities, and groups. If that does not meet your needs, it allows for the
querying and managing the users to be customized. In the next section, we are going
to go through the basic steps for setting up JDBC Authentication with Spring Security.

www.it-ebooks.info

http://www.it-ebooks.info/

JDBC-based Authentication

[76]

Required dependencies
Our application has already defined all the necessary dependencies required for this
chapter. However, if you are using Spring Security's JDBC support, you are likely
going to want the following dependencies listed in your pom.xml file. It is important
to highlight that the JDBC driver that you will use will depend on which database
you are using. Consult your database vendor's documentation for details on which
driver is needed for your database.

Remember that all the Spring versions need to match, and Spring
Security versions need to match (this includes transitive dependency
versions). If you are having difficulty getting this to work in your own
application, you may want to define the dependency management
section in pom.xml to enforce this, as shown in Chapter 2, Getting Started
with Spring Security. As previously mentioned, you will not need to
worry about this when using the sample code, since we have already set
up the necessary dependencies for you.

pom.xml

<!-- matching JDBC driver -->
<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>1.3.163</version>
 <scope>runtime</scope>
</dependency>
<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-config</artifactId>
 <version>3.1.0.RELEASE</version>
 <scope>runtime</scope>
</dependency>
<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-core</artifactId>
 <version>3.1.0.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-jdbc</artifactId>
 <version>3.1.0.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-tx</artifactId>
 <version>3.1.0.RELEASE</version>
</dependency>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[77]

Using the H2 database
The first portion of this exercise involves setting up an instance of the Java-based
H2 relational database, populated with the Spring Security default schema.
We'll configure H2 to run in memory using Spring 3.1's embedded database
configuration feature—a significantly simpler method of configuration than
setting up the database by hand. You can find additional information on the
H2 website (http://www.h2database.com/).

Keep in mind that in our sample application, we'll use H2, primarily, due to its ease
of setup. Spring Security will work with any database that supports ANSI SQL out
of the box. We encourage you to tweak the configuration and use the database of
your preference, if you're following along with the examples. As we didn't want
this portion of the book to focus on the complexities of database setup, we chose
convenience over realism for the purposes of the exercises.

Provided JDBC scripts
We've supplied all the SQL files that are used for creating the schema and data in
an H2 database for this chapter in the src/main/resouces/database/h2/ folder.
Any files prefixed with security- are to support Spring Security's default JDBC
implementation. Any SQL files prefixed with calendar- are custom SQL files for
our JBCP Calendar application. Hopefully, this will make running the samples a
little easier. If you're following along with your own database instance, you
may have to adjust the schema definition syntax to fit your particular database.
Additional database schemas can be found in the Spring Security reference. You
can find a link to the Spring Security reference in the book's Appendix.

Configuring the H2-embedded database
To configure the H2 embedded database, we need to create a DataSource and run
SQL to create the Spring Security table structure. In our application, we do not need
to configure a DataSource since our services.xml file already declares one using
Spring's <jdbc:embedded-database /> element. We will need to update the SQL
that is loaded at startup to include Spring Security's basic schema definition, Spring
Security user definitions, and the authority mappings for those users. You can find
the DataSource definition and the relevant updates in the following code snippet:

src/main/webapp/WEB-INF/spring/services.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

www.it-ebooks.info

http://www.h2database.com/
http://www.it-ebooks.info/

JDBC-based Authentication

[78]

 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/jdbc
 http://www.springframework.org/schema/jdbc/spring-jdbc-3.1.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
 ... >
...
 <jdbc:embedded-database id="dataSource" type="H2">
 <jdbc:script location="classpath:/database/h2/calendar-
 schema.sql"/>
 <jdbc:script location="classpath:/database/h2/calendar-
 data.sql"/>
 <jdbc:script location="classpath:/database/h2/security-
 schema.sql"/>
 <jdbc:script location="classpath:/database/h2/security-
 users.sql"/>
 <jdbc:script location="classpath:/database/h2/security-user-
 authorities.sql"/>
 </jdbc:embedded-database>
</beans>

You will notice we are using the Spring jdbc namespace in this
example. If you were creating a new file, you would need to ensure that
you add the declaration at the top. You can use the Spring Tool Suite
to add the xmlns:jdbc declaration to your Spring configuration just as
we did in the previous chapter with the Spring Security namespace. If
you are unfamiliar with XML declarations, you can also copy-paste from
the sample code when integrating with your own application.

Remember that the <jdbc:embedded-database> declaration creates this database
only in memory, so you won't see anything on the disk, and you won't be able to use
standard tools to query it. However, you can use the H2 console that is embedded
into the application to interact with the database. See the instructions on the
Welcome Page of our application to learn how to use it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[79]

Configuring JDBC UserDetailsManager
We'll modify the security.xml file to declare that we're using a JDBC
UserDetailsManager implementation, instead of the Spring Security in-memory
UserDetailsService implementation that we configured in Chapter 2, Getting
Started with Spring Security. This is done with a simple change to the
<authentication-manager> declaration:

src/main/webapp/WEB-INF/spring/security.xml

…
<authentication-manager>
 <authentication-provider>
 <jdbc-user-service id="userDetailsService"
 data-source-ref="dataSource"/>
 </authentication-provider>
</authentication-manager>
…

We replace the previous <user-service> tag along with all of the child elements
with <jdbc-user-service>, as shown in the preceding code snippet. The value of
data-source-ref matches the id of the <jdbc:embedded-database> declaration
that we updated in the previous step.

Spring Security's default user schema
Let's take a look at each of the SQL files used to initialize the database. The first script
we added contains the default Spring Security schema definition for users and their
authorities. The following script has been adapted from Spring Security's appendix
to have explicitly named constraints, to make troubleshooting easier:

src/main/resources/database/h2/security-schema.sql

create table users(
 username varchar(256) not null primary key,
 password varchar(256) not null,
 enabled boolean not null
);
create table authorities (
 username varchar(256) not null,
 authority varchar(256) not null,
 constraint fk_authorities_users
 foreign key(username) references users(username)
);
create unique index ix_auth_username on authorities
(username,authority);

www.it-ebooks.info

http://www.it-ebooks.info/

JDBC-based Authentication

[80]

Defining users
The next script is in charge of defining the users in our application. The included
SQL creates the same users that we have used throughout the entire book so far. The
file also adds an additional user disabled1@example.com, which will not be able to
log in since we indicate it as disabled.

src/main/resources/database/h2/security-users.sql

insert into users (username,password,enabled)
 values ('user1@example.com','user1',1);
insert into users (username,password,enabled)
 values ('admin1@example.com','admin1',1);
insert into users (username,password,enabled)
 values ('user2@example.com','admin1',1);
insert into users (username,password,enabled)
 values ('disabled1@example.com','disabled1',0);

Defining user authorities
You may have noticed that there is no indication if a user is an administrator
or a regular user. The next file specifies a direct mapping of the user to their
corresponding authorities. If a user did not have an authority mapped to it, Spring
Security would not allow that user to be logged in.

src/main/resources/database/h2/security-user-authorities.sql

insert into authorities(username,authority)
 values ('user1@example.com','ROLE_USER');
insert into authorities(username,authority)
 values ('admin1@example.com','ROLE_ADMIN');
insert into authorities(username,authority)
 values ('admin1@example.com','ROLE_USER');
insert into authorities(username,authority)
 values ('user2@example.com','ROLE_USER');
insert into authorities(username,authority)
 values ('disabled1@example.com','ROLE_USER');

After the SQL is added to the embedded database configuration, we should be
able to start the application and log in. Try logging in with our new user using
disabled1@example.com as the username and disabled1 as the password. Notice
that Spring Security does not allow the user to log in and provides the error message
Reason: User is disabled.

Your code should look like calendar04.01-calendar now.

www.it-ebooks.info

mailto:disabled1@example.com
mailto:disabled1@example.com
mailto:disabled1@example.com
http://www.it-ebooks.info/

Chapter 4

[81]

UserDetailsManager
We have already leveraged the use of Spring Security's
InMemoryUserDetailsManager class in Chapter 3, Custom Authentication, to look
up the current CalendarUser application in our SpringSecurityUserContext
implementation of UserContext. This allowed us to determine which CalendarUser
should be used when looking up the events for the My Events page. Chapter 3,
Custom Authentication, also demonstrated how to update DefaultCalendarService
to utilize InMemoryUserDetailsManager, to ensure that we created a new Spring
Security user when we created CalendarUser. This chapter re-uses exactly the same
code. The only difference is now the UserDetailsManager implementation is backed
by Spring Security's JdbcUserDetailsManager class, which uses a database instead
of an in-memory data store.

What other features does UserDetailsManager
provide out of the box
Although these types of functions are relatively easy to write with additional JDBC
statements, Spring Security actually provides an out-of-the-box functionality to
support many common Create, Read, Update, and Delete (CRUD) operations on
users in JDBC databases. This can be convenient for simple systems, and a good base
to build on for any custom requirements that a user may have.

Method Description
void createUser(UserDetails user) Creates a new user with the given

UserDetails information, including any
declared GrantedAuthority authorities.

void updateUser(final UserDetails user) Updates a user with the given UserDetails
information. Updates GrantedAuthority and
removes the user from the user cache.

void deleteUser(String username) Deletes the user with the given username,
and removes the user from the user cache.

boolean userExists(String username) Indicates whether or not a user (whether
active or inactive) exists with the given
username.

void changePassword(String oldPassword,
String newPassword)

Changes the password of the currently
logged-in user. The user must supply the
correct current password in order for the
operation to succeed.

www.it-ebooks.info

http://www.it-ebooks.info/

JDBC-based Authentication

[82]

If UserDetailsManager does not provide all the methods that are necessary for your
application, you can extend the interface to provide these custom requirements. For
example, if you needed the ability to list all the possible users in an administrative
view, you could write your own interface with this method and provide an
implementation that points at the same data store as UserDetailsManager that
you are currently using.

Group-based access control
JdbcUserDetailsManager supports the ability to add a level of indirection between
the users and the GrantedAuthority declarations, by grouping GrantedAuthority
into logical sets called groups. Users are then assigned one or more groups, whose
membership confers a set of GrantedAuthority declarations.

As you see in the diagram, this indirection allows the assignment of the same
set of roles to multiple users, by simply assigning any new users to existing
groups. Compare this with the behavior we've seen so far, where we assigned
GrantedAuthority directly to individual users.

This bundling of common sets of authorities can be helpful in the following scenarios:

•	 You need to segregate users into communities, with some overlapping roles
between groups.

•	 You want to globally change the authorization for a class of user. For
example, if you have a "supplier" group, you might want to enable or
disable their access to particular portions of the application.

•	 You have a large number of users, and you don't need a user-level
authority configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[83]

Unless your application has a very small user base, there is a very high likelihood
that you'll be using group-based access control. While group-based access control
is slightly more complex than other strategies, the flexibility and simplicity in
managing a user's access makes this complexity worthwhile. This indirect technique
of aggregating user privileges by group is commonly referred to as Group-Based
Access Control (GBAC).

Group-based access control is an approach common to almost every secured
operating system or software package in the market. Microsoft Active Directory
(AD) is one of the most visible implementations of large-scale GBAC, due to its
design of slotting AD users into groups and assignment of privileges to those groups.
Management of privileges in large AD-based organizations is made exponentially
simpler through the use of GBAC.

Try to think of the security models of the software you use—how are the users,
groups, and privileges managed? What are the pros and cons of the way the security
model is written?

Let's add a level of abstraction to the JBCP Calendar application and apply the
concept of group-based authorization to the site.

Configuring group-based access control
We'll add two groups to the application—regular users, which we'll call Users, and
administrative users, which we'll call Administrators. Our existing accounts will be
associated to the appropriate groups through an additional SQL script.

Configuring JdbcUserDetailsManager to use
groups
By default, Spring Security does not use GBAC. Therefore, we must instruct Spring
Security to enable the use of groups. Modify the security.xml file to use group-
authorities-by-username-query, as follows:

src/main/webapp/WEB-INF/spring/security.xml

…
<authentication-manager>
 <authentication-provider>
 <jdbc-user-service id="userDetailsService"
 data-source-ref="dataSource"
 group-authorities-by-username-query=
 "select
 g.id, g.group_name, ga.authority

www.it-ebooks.info

http://www.it-ebooks.info/

JDBC-based Authentication

[84]

 from
 groups g, group_members gm, group_authorities ga
 where
 gm.username = ? and
 g.id = ga.group_id and
 g.id = gm.group_id"
 />
 </authentication-provider>
</authentication-manager>
…

Utilize the GBAC JDBC scripts
Next, we need to update the scripts that are being loaded at startup. We need to
remove the security-user-authorities.sql mapping, so that our users no longer
obtain their authorities with a direct mapping. We then need to add two additional
SQL scripts. Update DataSource to load the SQL required for GBAC, as follows:

src/main/webapp/WEB-INF/spring/services.xml

…
<jdbc:embedded-database id="dataSource" type="H2">
 <jdbc:script location="classpath:/database/h2/calendar-
 schema.sql"/>
 <jdbc:script location="classpath:/database/h2/calendar-
 data.sql"/>
 <jdbc:script location="classpath:/database/h2/security-
 schema.sql"/>
 <jdbc:script location="classpath:/database/h2/security-
 users.sql"/>
 <jdbc:script
 location="classpath:/database/h2/security-groups-
 schema.sql"/>
 <jdbc:script
 location="classpath:/database/h2/security-groups-
 mappings.sql"/>
</jdbc:embedded-database>
…

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[85]

Group-based schema
It may be obvious, but the first SQL file we added contains updates to the schema
to support group-based authorization. You can find the contents of the file, in the
following code snippet:

src/main/resources/database/h2/security-groups-schema.sql

create table groups (
 id bigint generated by default as identity(start with 0) primary
 key,
 group_name varchar(256) not null
);
create table group_authorities (
 group_id bigint not null,
 authority varchar(256) not null,
 constraint fk_group_authorities_group
 foreign key(group_id) references groups(id)
);
create table group_members (
 id bigint generated by default as identity(start with 0) primary
 key,
 username varchar(256) not null,
 group_id bigint not null,
 constraint fk_group_members_group
 foreign key(group_id) references groups(id)
);

Group authority mappings
Now, we need to map our existing users to groups, and the groups to authorities.
This is done in the security-groups-mappings.sql file. Mapping based upon
groups can be convenient, because many times organizations already have a logical
group of users for other reasons. By utilizing the existing groupings of users, it can
drastically simplify our configuration. This is how our layer of indirection helps us.
We have included the group definitions, group to authority mappings, and a few
users to the following group mappings:

src/main/resources/database/h2/security-groups-mappings.sql

-- Create the Groups
insert into groups(group_name) values ('Users');
insert into groups(group_name) values ('Administrators');
-- Map the Groups to Roles
insert into group_authorities(group_id, authority)
 select id,'ROLE_USER' from groups where group_name='Users';

www.it-ebooks.info

http://www.it-ebooks.info/

JDBC-based Authentication

[86]

insert into group_authorities(group_id, authority)
 select id,'ROLE_USER' from groups where
 group_name='Administrators';
insert into group_authorities(group_id, authority)
 select id,'ROLE_ADMIN' from groups where
 group_name='Administrators';
-- Map the users to Groups
insert into group_members(group_id, username)
 select id,'user1@example.com' from groups where
 group_name='Users';
insert into group_members(group_id, username)
 select id,'admin1@example.com' from groups where
 group_name='Administrators';
...

Go ahead and start the application, and it will behave just as before; however, the
additional layer of abstraction between the users and roles simplifies managing large
groups of users.

Your code should look like calendar04.02-calendar now.

Support for a custom schema
It's common for new users of Spring Security to begin their experience by adapting
the JDBC user, group, or role mapping to an existing schema. Even though a legacy
database doesn't conform to the expected Spring Security schema, we can still
configure JdbcDaoImpl to map to it.

We will now update Spring Security's JDBC support to use our existing
CalendarUser database along with a new calendar_authorities table.

We can easily change the configuration of JdbcUserDetailsManager to utilize this
schema, and override Spring Security's expected table definitions and columns that
we're using for the JBCP Calendar application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[87]

Determining the correct JDBC SQL queries
JdbcUserDetailsManager has three SQL queries that have a well-defined
parameter and set of returned columns. We must determine the SQL that we'll
assign to each of these queries, based on its intended functionality. Each SQL query
used by JdbcUserDetailsManager takes the username presented at login as its one
and only parameter.

Namespace query attribute
name

Description Expected SQL columns

users-by-username-query Returns one or more users
matching the username;
only the first user is used.

Username (string)
Password (string)
Enabled (Boolean)

authorities-by-username-
query

Returns one or more
granted authorities
directly provided to the
user; typically used when
GBAC is disabled.

Username (string)
Granted Authority (string)

group-authorities-by-
username-query

Returns granted
authorities and group
details provided to the
user through group
membership; used when
GBAC is enabled.

Group Primary Key (any)
Group Name (any)
Granted Authority (string)

Be aware that in some cases, the return columns are not used by the default
JdbcUserDetailsManager implementation, but they must be returned anyway.

Updating the SQL scripts that are loaded
We need to initialize DataSource with our custom schema rather than the Spring
Security's default schema. Update the services.xml file, as follows:

src/main/webapp/WEB-INF/spring/services.xml

…
<jdbc:embedded-database id="dataSource" type="H2">
 <jdbc:script location="classpath:/database/h2/calendar-
 schema.sql"/>
<jdbc:script location="classpath:/database/h2/calendar-data.sql"/>
<jdbc:script
 location="classpath:/database/h2/calendar-authorities.sql"/>
</jdbc:embedded-database>
…

www.it-ebooks.info

http://www.it-ebooks.info/

JDBC-based Authentication

[88]

Notice that we have removed all of the scripts that start with security-, and
replaced them with calendar-authorities.sql.

CalendarUser authority SQL
You can view the CalendarUser authority mappings in the following code snippet.
Notice that we use the ID as the foreign key, which is beter than utilizing the username
as a foreign key (as Spring Security does). By using the ID as the foreign key, we can
allow users to easily change their username.

src/main/resources/database/h2/calendar-authorities.sql

create table calendar_user_authorities (
 id bigint identity,
 calendar_user bigint not null,
 authority varchar(256) not null,
);
-- user1@example.com
insert into calendar_user_authorities(calendar_user, authority)
 select id,'ROLE_USER' from calendar_users where
 email='user1@example.com';
-- admin1@example.com
insert into calendar_user_authorities(calendar_user, authority)
 select id,'ROLE_ADMIN' from calendar_users where
 email='admin1@example.com';
insert into calendar_user_authorities(calendar_user, authority)
 select id,'ROLE_USER' from calendar_users where
 email='admin1@example.com';
-- user2@example.com
insert into calendar_user_authorities(calendar_user, authority)
 select id,'ROLE_USER' from calendar_users where
 email='user2@example.com';

Insert custom authorities
We need to update DefaultCalendarService to insert the authorities for the user
using our custom schema when we add a new CalendarUser class. This is because,
while we reused the schema for the user definition, we did not define custom
authorities in our existing application. Update DefaultCalendarService, as follows:

src/main/java/com/packtpub/springsecurity/service/
DefaultCalendarService.java

import org.springframework.jdbc.core.JdbcOperations;
...

www.it-ebooks.info

mailto:email%3D'user2@example.com
http://www.it-ebooks.info/

Chapter 4

[89]

public class DefaultCalendarService implements CalendarService {
 ...
 private final JdbcOperations jdbcOperations;

 @Autowired
 public DefaultCalendarService(EventDao eventDao, CalendarUserDao
userDao,
JdbcOperations jdbcOperations) {
 ...
 this.jdbcOperations = jdbcOperations;
 }
 ...
 public int createUser(CalendarUser user) {
 int userId = userDao.createUser(user);
 jdbcOperations.update(
 "insert into calendar_user_authorities(calendar_
user,authority) values (?,?)",
 userId, "ROLE_USER");
 return userId;
 }
}

You may have noticed the JdbcOperations interface that is used
for inserting our user. This is a convenient template provided by
Spring that helps manage boilerplate code, such as connection and
transaction handling. For more details, refer to the Appendix of this
book to find the Spring Reference.

Configuring the JdbcUserDetailsManager to
use custom SQL queries
In order to use the custom SQL queries for our non-standard schema, we'll simply
update our <jdbc-user-details-service> tag to include new queries. This is
quite similar to how we enabled support for GBAC, except instead of using the
default SQL we will use our modified SQL. Notice that we remove our old group-
authorities-by-username-query attribute, since we will not be using it in this
example in order to keep things simple.

src/main/webapp/WEB-INF/spring/security.xml

…
<authentication-manager>
 <authentication-provider>
 <jdbc-user-service id="userDetailsService"

www.it-ebooks.info

http://www.it-ebooks.info/

JDBC-based Authentication

[90]

 data-source-ref="dataSource"
 users-by-username-query="
 select
 email,password,true
 from
 calendar_users
 where
 email = ?"
 authorities-by-username-query="
 select
 cua.id, cua.authority
 from
 calendar_users cu, calendar_user_authorities cua
 where
 cu.email = ? and cu.id = cua.calendar_user"
 />
 </authentication-provider>
</authentication-manager>
…

This is the only configuration required to use Spring Security, to read settings from
an existing, non-default schema! Start up the application and ensure that everything
is working properly.

Your code should look like calendar04.03-calendar now.

Keep in mind that the utilization of an existing schema commonly requires an
extension of JdbcUserDetailsManager to support changing of passwords, renaming
of user accounts, and other user-management functions.

If you are using JdbcUserDetailsManager to perform user management tasks,
then there are over twenty SQL queries utilized by the class that are accessible
through the configuration. However, only the three covered are available through
the namespace configuration. Please refer to the Javadoc or source code to review the
defaults for the queries used by JdbcUserDetailsManager.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[91]

Configuring secure passwords
We recall from the security audit in Chapter 1, Anatomy of an Unsafe Application that
the security of passwords stored in cleartext was a top priority of the auditors.
In fact, in any secured system, password security is a critical aspect of trust and
authoritativeness of an authenticated principal. Designers of a fully secured system
must ensure that passwords are stored in a way in which malicious users would
have an impractically difficult time compromising them.

The following general rules should be applied to passwords stored in a database:

•	 Passwords must not be stored in cleartext (plain text)
•	 Passwords supplied by the user must be compared to the recorded

passwords in the database
•	 A user's password should not be supplied to the user upon demand

(even if the user forgets it)

For the purposes of most applications, the best fit for these requirements involves
one-way encoding, known as hashing, of the passwords. Using a cryptographic hash
provides properties such as security and uniqueness that are important to properly
authenticate users with the added bonus that once it is hashed, the password cannot
be extracted from the value that is stored.

In most secure application designs, it is neither required nor desirable to ever
retrieve the user's actual password upon request, as providing the user's password
to them without proper additional credentials could present a major security risk.
Instead, most applications provide the user the ability to reset their password, either
by presenting additional credentials (such as their social security number, date of
birth, tax ID, or other personal information), or through an email-based system.

Storing other types of sensitive information
Many of the guidelines listed that apply to passwords apply equally to
other types of sensitive information, including social security numbers
and credit card information (although, depending on the application,
some of these may require the ability to decrypt).
It's quite common for databases storing this type of information to
represent it in multiple ways, for example, a customer's full 16-digit
credit card number would be stored in a highly encrypted form, but the
last four digits might be stored in cleartext (for reference, think of any
Internet commerce site that displays XXXX XXXX XXXX 1234 to help you
identify your stored credit cards).

www.it-ebooks.info

http://www.it-ebooks.info/

JDBC-based Authentication

[92]

You may already be thinking ahead and wondering, given our (admittedly
unrealistic) approach of using SQL to populate our H2 database with users, how do
we encode the passwords? H2, or most other databases, for that matter, don't offer
encryption methods as built-in database functions.

Typically, the bootstrap process (populating a system with initial users and data) is
handled through some combination of SQL loads and Java code. Depending on the
complexity of your application, this process can get very complicated.

For the JBCP Calendar application, we'll retain the <jdbc:embedded-database/>
declaration and the corresponding SQL, and then add some SQL that will modify
the passwords to their hashed values.

PasswordEncoder
Password hashing in Spring Security is encapsulated and defined by
implementations of the o.s.s.authentication.encoding.PasswordEncoder
interface. Simple configuration of a password encoder is possible through the
<password-encoder> declaration within the <authentication-provider> element,
as follows:

<authentication-manager>
 <authentication-provider user-service-ref="jdbcUserService">
 <password-encoder hash="sha-256"/>
 </authentication-provider>
</authentication-manager>

You'll be happy to learn that Spring Security ships with a number of
implementations of PasswordEncoder, which are applicable for different needs and
security requirements. The implementation used can be specified using the hash
attribute of the <password-encoder> declaration.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[93]

The following table provides a list of the out-of-the-box implementation classes and
their benefits. Note that all implementations reside in the o.s.s.authentication.
encoding package.

Implementation class Description Hash value
PlaintextPasswordEncoder Encodes the password as

plaintext; this is the default.
plaintext

Md4PasswordEncoderPasswordEncoder Encoder utilizing the MD4
hash algorithm. MD4 is not a
secure algorithm—use of this
encoder is not recommended.

md4

Md5PasswordEncoderPassword Encoder utilizing the MD5
one-way encoding algorithm.

ShaPasswordEncoderPasswordEncoder Encoder utilizing the SHA
one-way encoding algorithm.
This encoder can support
configurable levels of
encoding strength.

sha

sha-256

LdapShaPasswordEncoder Implementation of LDAP SHA
and LDAP SSHA algorithms
used in integration with
LDAP authentication stores.
We'll learn more about this
algorithm in Chapter 5, LDAP
Directory Services, where we
cover LDAP.

{sha}

{ssha}

As with many other areas of Spring Security, it's also possible to reference a bean
definition implementing PasswordEncoder to provide more precise configuration
and allow PasswordEncoder to be wired into other beans through the dependency
injection. For the JBCP Calendar application, we'll need to use this bean reference
method in order to hash the passwords of the newly created users.

Let's walk through the process of configuring basic password encoding for the
JBCP Calendar application.

www.it-ebooks.info

http://www.it-ebooks.info/

JDBC-based Authentication

[94]

Configuring password encoding
Configuring basic password encoding involves two pieces: hashing the passwords
we load into the database after the SQL script executes, and ensuring that the Spring
Security is configured to work with PasswordEncoder.

Configuring the PasswordEncoder
First, we'll declare an instance of a PasswordEncoder as a normal Spring bean:

src/main/webapp/WEB-INF/spring/security.xml

…
</authentication-manager>

<bean:bean id="passwordEncoder"
 xmlns="http://www.springframework.org/schema/beans"
 class="org.springframework.security.authentication
 .encoding.ShaPasswordEncoder">
 <constructor-arg value="256"/>
</bean:bean>

You'll note that we're using the SHA-256 PasswordEncoder implementation. This is
an efficient one-way encryption algorithm, commonly used for password storage.

Making Spring Security aware of the
PasswordEncoder
We'll need to configure Spring Security to have a reference to PasswordEncoder, so
that it can encode and compare the presented password during user login. Simply
add a <password-encoder> declaration and refer to the bean ID we defined in the
previous step:

src/main/webapp/WEB-INF/spring/security.xml

...
<authentication-manager>
 <authentication-provider>
 <jdbc-user-service ... />
 <password-encoder ref="passwordEncoder"/>
 </authentication-provider>
</authentication-manager>
...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[95]

If you were to try the application at this point, you'd notice that what were
previously valid login credentials would now be rejected. This is because the
passwords stored in the database (loaded with the calendar-users.sql script)
are not stored as a hash that matches the password encoder. We'll need to update
the stored passwords to be a hashed value.

Hashing the stored passwords
As illustrated in the following diagram, when a user submits a password, Spring
Security hashes the submitted password and then compares that against the
unhashed password in the database:

This means that users cannot log into our application. To fix this, we will update the
SQL that is loaded at startup time to update the passwords to be the hashed values.
Update the services.xml file, as follows:

src/main/webapp/WEB-INF/spring/services.xml

…
<jdbc:embedded-database id="dataSource" type="H2">
 <jdbc:script location="classpath:/database/h2/calendar-
 schema.sql"/>
 <jdbc:script location="classpath:/database/h2/calendar-
 data.sql"/>
 <jdbc:script location="classpath:/database/h2/calendar-
 authorities.sql"/>
 <jdbc:script location="classpath:/database/h2/calendar-
 sha256.sql"/>
</jdbc:embedded-database>
…

www.it-ebooks.info

http://www.it-ebooks.info/

JDBC-based Authentication

[96]

calendar-sha256.sql simply updates the existing passwords to their expected
hashed value, as follows:

update calendar_users set password =
'0a041b9462caa4a31bac3567e0b6e6fd9100787db2ab433d96f6d178cabfce90'
where email = 'user1@example.com';

How did we know what value to update the password to? We have provided
o.s.s.authentication.encoding.Sha256PasswordEncoderMain to demonstrate
how to use the configured PasswordEncoder interface to hash the existing
passwords. The relevant code is as follows:

ShaPasswordEncoder encoder = new ShaPasswordEncoder(256);
String encodedPassword = encoder.encodePassword(password, null);

Hashing a new user's passwords
If we tried running the application and creating a new user, we would not be able to
log in. This is because the newly-created user's password would not be hashed. We
need to update DefaultCalendarService to hash the password. Make the following
updates to ensure that newly-created users' passwords are hashed:

src/main/java/com/packtpub/springsecurity/service/
DefaultCalendarService.java

import org.springframework.security.authentication.encoding.
PasswordEncoder;
// other imports omitted
public class DefaultCalendarService implements CalendarService {
 ...
 private final PasswordEncoder passwordEncoder;

 @Autowired
 public DefaultCalendarService(EventDao eventDao,
 CalendarUserDao userDao, JdbcOperations jdbcOperations,
 PasswordEncoder passwordEncoder) {
 ...
 this.passwordEncoder = passwordEncoder;
 }
 ...
 public int createUser(CalendarUser user) {
 String encodedPassword =
 passwordEncoder.encodePassword(user.getPassword(),
 null);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[97]

 user.setPassword(encodedPassword);
 ...
 return userId;
 }
}

Not quite secure
Go ahead and start the application. Try creating a new user with user1 as the
password. Log out of the application, then use the instructions on the Welcome page
to open the H2 console, and view all the users' passwords. Did you notice that the
hashed values for the newly created user and user1@example.com are the same
value? The fact that we have now figured out another user's password is a little
disturbing. We will solve this with a technique known as salting.

Your code should look like calendar04.04-calendar now.

Would you like some salt with that password
If the security auditor were to examine the encoded passwords in the database, he'd
find something that would still make him concerned about the website's security.
Let's examine the stored username and password values for a few of our users:

Username Plaintext
password

Hashed password

admin1@example.com admin1 25f43b1486ad95a1398e3eeb3d83bc4010015fcc9bed
b35b432e00298d5021f7

user1@example.com user1 0a041b9462caa4a31bac3567e0b6e6fd9100787db2ab
433d96f6d178cabfce90

This looks very secure—the encrypted passwords obviously bear no resemblance to
the original passwords. What could the auditor be concerned about? What if we add a
new user who happens to have the same password as our user1@example.com user?

Username Plain-text
password

Hashed password

hacker@example.com user1 0a041b9462caa4a31bac3567e0b6e6fd9100787d
b2ab433d96f6d178cabfce90

www.it-ebooks.info

mailto:admin1@example.com
mailto:admin1@exampe.com
mailto:user1@example.com
http://www.it-ebooks.info/

JDBC-based Authentication

[98]

Now, note that the encrypted password of the hacker@example.com user is exactly
the same as the real user! Thus, a hacker who had somehow gained the ability to read
the encrypted passwords in the database could compare their known password's
encrypted representation with the unknown one for the user account, and see they are
the same! If the hacker had access to an automated tool to perform this analysis, they
could likely compromise the user's account within a matter of hours.

While it is difficult to guess a single password, hackers can calculate all the hashes
ahead of time and store a mapping of the hash to the original password. Then
figuring out the original password is a matter of looking up the password by its
hashed value in constant time. This is a hacking technique known as rainbow tables.

One common and effective method of adding another layer of security to
encrypted passwords is to incorporate a salt. A salt is a second plaintext
component, which is concatenated with the plaintext password prior to
performing the hash in order to ensure that two factors must be used to
generate (and thus compare) the hashed password values. Properly selected
salts can guarantee that no two passwords will ever have the same hashed value,
thus preventing the scenario that concerned our auditor, and avoiding many
common types of brute force password cracking techniques.

Best practice salts generally fall into one of the two categories:

•	 They are algorithmically generated from some piece of data associated with
the user; for example, the timestamp that the user created

•	 They are randomly generated and stored in some form
•	 They are plaintext or two-way encrypted along with the user's

password record

Remember that because the salt is added to the plaintext password, it can't be
one-way encrypted—the application needs to be able to look up or derive the
appropriate salt value for a given user's record in order to calculate the hash of the
password, to compare with the stored hash of the user when performing authentication.

Using salt in Spring Security
Spring Security 3.1 provides a new cryptography module that is included in the
spring-security-core module or available separately in spring-security-crypto.
The crypto module contains its own o.s.s.crypto.password.PasswordEncoder.
In fact, using this interface is the preferred method for encoding passwords, because
it will salt passwords using a random salt. At the time of this writing, there are three
implementations of o.s.s.crypto.password.PasswordEncoder.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[99]

Class Description
o.s.s.crypto.bcrypt.BCryptPasswordEncoder Uses the bcrypt hashing function.

It supports salt and the ability to
become slower to perform over time
as technology improves. This helps
protect against brute-force search
attacks.

o.s.s.crypto.password.NoOpPasswordEncoder Does no encoding (returns the
password in its plaintext form).

o.s.s.crypto.password.StandardPasswordEncoder Uses SHA-256 with multiple
iterations and a random salt value.

For those who are familiar with Spring Security 3.0, salt used to be
provided using o.s.s.authentication.dao.SaltSource.
While still supported, this mechanism is not demonstrated in this
book, since it is not the preferred mechanism for providing salt.

Updating the Spring Security configuration
The first step is to update our Spring Security configuration. Remove our old
ShaPasswordEncoder and add the new StandardPasswordEncoder as follows:

src/main/webapp/WEB-INF/spring/security.xml…

</authentication-manager>
<bean:bean id="passwordEncoder"
 class="org.springframework.security.crypto
 .password.StandardPasswordEncoder"/>
…

Migrating existing passwords
We need to update our existing passwords to use the values produced by the new
PasswordEncoder class. If you would like to generate your own passwords, you can
use the following code:

StandardPasswordEncoder encoder = new StandardPasswordEncoder();

String encodedPassword = encoder.encode("password");

www.it-ebooks.info

http://www.it-ebooks.info/

JDBC-based Authentication

[100]

Remove the previously used calendar-sha256.sql file, and add the provided
saltedsha256.sql file.

src/main/webapp/WEB-INF/spring/services.xml

…
<jdbc:embedded-database id="dataSource" type="H2">
 <jdbc:script location="classpath:/database/h2/calendar-
 schema.sql"/>
 <jdbc:script location="classpath:/database/h2/calendar-
 data.sql"/>
 <jdbc:script location="classpath:/database/h2/calendar-
 authorities.sql"/>
 <jdbc:script location="classpath:/database/h2/calendar-
 saltedsha256.sql"/>
</jdbc:embedded-database>
...

Updating DefaultCalendarUserService
The <password-encoder> element we defined previously is smart enough to handle
the new password encoder interface. However, DefaultCalendarUserService
needs to update to the new interface. Make the following updates to
DefaultCalendarUserService:

src/main/java/com/packtpub/springsecurity/service/
DefaultCalendarService.java

import org.springframework.security.authentication.encoding.
PasswordEncoder;
import org.springframework.security.crypto.password.PasswordEncoder;
// other imports omitted
public class DefaultCalendarService implements CalendarService {
 ...
 public int createUser(CalendarUser user) {
 String encodedPassword =
 passwordEncoder.encode(user.getPassword());
 user.setPassword(encodedPassword);
 ...
 return userId;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[101]

Trying out the salted passwords
Start up the application and try creating another user with the password user1. Use
the H2 console to compare the new user's password to user1@example.com, and
observe that they are different.

Your code should look like calendar04.05-calendar now.

Spring Security now generates a random salt and combines this with the password
before hashing our password. It then adds the random salt to the beginning of the
password in plaintext, so that passwords can be checked. The stored password can
be summarized as follows:

salt = randomsalt()
hash = hash(salt+originalPassword)
storedPassword = salt + hash

This is the pseudo code for hashing a newly created password.

To authenticate a user, salt and hash can be extracted from the stored password,
since both salt and hash are fixed lengths. Then, the extracted hash can be compared
against a new hash, computed with extracted salt and the inputted password.

Following is the pseudo code for validating a salted password:

storedPassword = datasource.lookupPassword(username)
salt, expectedHash = extractSaltAndHash(storedPassword)
actualHash = hash(salt+inputedPassword)
authenticated = (expectedHash == actualHash)

www.it-ebooks.info

mailto:admin1@example.com
http://www.it-ebooks.info/

JDBC-based Authentication

[102]

Summary
In this chapter, we learned how to use Spring Security's built-in JDBC support.
Specifically we have:

•	 Learned that Spring Security provides a default schema for new applications
•	 Learned how to implement group-based access control and how it can make

managing users easier
•	 Demonstrated how to integrate Spring Security's JDBC support with an

existing database
•	 Learned to secure our passwords by hashing them and using a

randomly-generated salt

In the next chapter, we will explore Spring Security's built-in support for
LDAP-based authentication.

www.it-ebooks.info

http://www.it-ebooks.info/

LDAP Directory Services
In this chapter, we will review the Lightweight Directory Access Protocol (LDAP)
and learn how it can be integrated into a Spring Security-enabled application
to provide authentication, authorization, and user information services to
interested constituents.

During the course of this chapter we will:

•	 Learn some of the basic concepts related to the LDAP protocol and server
implementations

•	 Configure a self-contained LDAP server within Spring Security
•	 Enable LDAP authentication and authorization
•	 Understand the model behind LDAP search and user matching
•	 Retrieve additional user details from standard LDAP structures
•	 Differentiate between LDAP authentication methods and evaluate the pros

and cons of each type
•	 Explicitly configure Spring Security LDAP using Spring Bean declarations
•	 Connect to external LDAP directories
•	 Explore the built-in support for Microsoft Active Directory

We will also explore how to customize Spring Security for more flexibility when
dealing with custom Active Directory deployments.

www.it-ebooks.info

http://www.it-ebooks.info/

LDAP Directory Services

[104]

Understanding LDAP
LDAP has its roots in logical directory models dating back over thirty
years—conceptually akin to a combination of an organizational chart and
an address book. Today, LDAP is used more and more as a way to centralize
corporate user information, partition thousands of users into logical groups,
and allow unified sharing of user information between many disparate systems.

For security purposes, LDAP is quite commonly used to facilitate centralized
username and password authentication—users' credentials are stored in the LDAP
directory, and authentication requests can be made against the directory, on the user's
behalf. This eases management for administrators, as user credentials—login ID,
password, and other details—are stored in a single location in the LDAP directory.
Additionally, organizational information, such as group or team assignments,
geographic location, and corporate hierarchy membership, are defined based on the
user's location in the directory.

LDAP
At this point, if you have never used LDAP before, you may be wondering what it is.
We'll illustrate a sample LDAP schema with a screenshot, from the Apache Directory
Server 1.5 example directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[105]

Starting at a particular user entry for Albert Einstein (highlighted in the screenshot),
we can infer Mr. Einstein's organizational membership by starting at his node in
the tree and moving upward. We can see that the user aeinstein is a member of the
organizational unit (ou) users, which itself is a part of the domain example.com (the
abbreviation dc shown in the screenshot stands for domain component). Preceding
this are organizational elements (DIT and Root DSE) of the LDAP tree itself, which
don't concern us in the context of Spring Security The position of user aeinstein
in the LDAP hierarchy is semantically and definitively meaningful—you can
imagine a much more complex hierarchy easily illustrating the organizational and
departmental boundaries of a huge organization.

The complete top-to-bottom path formed by walking the tree down to an individual
leaf node forms a string composed of all intervening nodes along the way, as with
Mr. Einstein's node path:

uid=aeinstein,ou=users,dc=example,dc=com

This node path is unique, and is known as a node's distinguished name (DN).
The distinguished name is akin to a database primary key, allowing a node to be
uniquely identified and located in a complex tree structure. We'll see a node's DN
used extensively throughout the authentication and searching process with Spring
Security LDAP integration.

We note that there are several other users listed at the same level of the organization
as Mr. Einstein. All of these users are assumed to be within the same organizational
position as Mr. Einstein. Although this example organization is relatively simple
and flat, the structure of LDAP is arbitrarily flexible, with many levels of nesting and
logical organization possible.

Spring Security LDAP support is assisted by the Spring LDAP module
(http://www.springsource.org/ldap), which is actually a separate project
from the core Spring Framework and Spring Security projects. It's considered
to be stable and provides a helpful set of wrappers around the standard Java
LDAP functionality.

Common LDAP attribute names
Each actual entry in the tree is defined by one or more object classes. An object class
is a logical unit of organization, grouping a set of semantically-related attributes.
By declaring an entry in the tree as an instance of a particular object class, such as
person, the organizer of the LDAP directory is able to provide users of the directory
with a clear indication of what each element of the directory represents.

www.it-ebooks.info

http://www.it-ebooks.info/

LDAP Directory Services

[106]

LDAP has a rich set of standard schemas covering the available LDAP object
classes and their applicable attributes (along with gobs of other information). If
you are planning on doing extensive work with LDAP, it's highly advised that you
review a good reference guide, such as the appendix of the book Zytrax OpenLDAP
(http://www.zytrax.com/books/ldap/ape/), or Internet2 Consortium's Guide to
Person-related Schemas (http://middleware.internet2.edu/eduperson/).

In the previous section, we were introduced to the fact that each entry in an LDAP
tree has a distinguished name, which uniquely identifies it in the tree. The DN
is composed of a series of attributes, one (or more) of which is used to uniquely
identify the path down the tree of the entry represented by the DN. As each segment
of the path described by the DN represents an LDAP attribute, you could refer to the
available, well-defined LDAP schemas and object classes to determine what each of
the attributes in any given DN means.

We've included some of the common attributes and their meanings in the following
table. These attributes tend to be organizing attributes—meaning that they are
typically used to define the organizational structure of the LDAP tree—and are
ordered from top to bottom in the structure that you're likely to see in a typical
LDAP install.

Attribute Name Description Example
dc Domain Component—generally the

highest level of organization in an
LDAP hierarchy.

dc=jbcpcalendar,dc=com

c Country—some LDAP hierarchies
are structured at a high level by
country.

c=US

o Organization name—a parent
business organization used for
classifying LDAP resources.

o=Oracle Corporation

ou Organizational unit—a divisional
business organization, generally
within an organization.

ou=Product Development

cn Common name—the common name
or unique or human-readable name
for the object. For humans, this
is usually the person's full name,
while for other resources in LDAP
(computers, and so on) it's typically
the hostname.

cn=Super Visor

cn=Jim Bob

www.it-ebooks.info

http://middleware.internet2.edu/eduperson/
http://www.it-ebooks.info/

Chapter 5

[107]

Attribute Name Description Example
uid User ID—although not

organizational in nature, the uid is
generally what Spring looks for in
user authentication and search.

uid=svisor

userPassword User password—stores the password
for the person object to which this
attribute is associated. It is typically
one-way hashed using SHA or
something similar.

userPassword=plaintext

userPassword={SHA}
cryptval

Remember that there are hundreds of standard LDAP attributes—these
represent a very small fraction of those you are likely to see when integrating
with a fully-populated LDAP server. The attributes in the table do, however, tend
to be organizing attributes on the directory tree, and as such, will probably form
various search expressions or mappings that you will use to configure Spring
Security to interact with the LDAP server.

Updating our dependencies
We have already included all the dependencies you need for this chapter, so you
will not need to make any updates to your pom.xml file. However, if you were just
adding LDAP support to your own application, you would need to add spring-
security-ldap as a dependency in pom.xml, as follows:

pom.xml

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-ldap</artifactId>
 <version>3.1.0.RELEASE</version>
</dependency>

As mentioned previously, Spring Security's LDAP support is built on top of
Spring LDAP. Maven will automatically bring this dependency in as a transitive
dependency, so there is no need to explicitly list it.

www.it-ebooks.info

http://www.it-ebooks.info/

LDAP Directory Services

[108]

If you were using ApacheDS to run an LDAP Server within your web application, as
we are doing in our Calendar application, you would need to add dependencies on
the relevant Apache DS jars. There is no need to make these updates to our sample
application since we have already included them. Note that these dependencies are
not necessary if you are connecting to an external LDAP server.

pom.xml

<dependency>
 <groupId>org.apache.directory.server</groupId>
 <artifactId>apacheds-core</artifactId>
 <version>1.5.5</version>
 <scope>runtime</scope>
</dependency>
<dependency>
 <groupId>org.apache.directory.server</groupId>
 <artifactId>apacheds-protocol-ldap</artifactId>
 <version>1.5.5</version>
 <scope>runtime</scope>
</dependency>
<dependency>
 <groupId>org.apache.directory.shared</groupId>
 <artifactId>shared-ldap</artifactId>
 <version>0.9.15</version>
 <scope>runtime</scope>
</dependency>

Configuring embedded LDAP integration
Let's now enable the JBCP Calendar application to support LDAP-based
authentication. Fortunately, this is a relatively simple exercise, using the embedded
LDAP server and a sample LDIF file. For this exercise, we will be using an LDIF
file created for this book, intended to capture many of the common configuration
scenarios with LDAP and Spring Security. We have included several more sample
LDIF files, some from Apache DS 1.5, and one from the Spring Security unit tests,
which you may choose to experiment with as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[109]

Configuring an LDAP server reference
The first step is to declare the embedded LDAP server reference in the security.
xml file. The LDAP server declaration occurs outside of the <http> element at the
same level as <authentication-manager>. Make the following updates to your
security.xml file:

src/main/webapp/WEB-INF/spring/security.xml

<http …>
 …
</http>
<ldap-server id="ldapServer"
 ldif="classpath:/ldif/calendar.ldif"
 root="dc=jbcpcalendar,dc=com"/>
<authentication-manager>

You should be starting with the source
from chapter05.00-calendar.

We are loading the calendar.ldif file from classpath, and using it to populate
the LDAP server. The root attribute declares the root of the LDAP directory using
the specified DN. This should correspond to the logical root DN in the LDIF file
we're using.

Be aware that for embedded LDAP servers, the root is required, even
though the XML schema does not indicate as such. If it is not specified,
or is specified incorrectly, you may receive several odd errors upon
initialization of the Apache DS server. Also be aware that the ldif
resource should only load a single ldif, otherwise the server will
fail to start up. Spring Security requires a single resource, since using
something such as classpath*:calendar.ldif does not provide
the deterministic ordering that is required.

We'll reuse the bean ID defined here, later in the Spring Security configuration files,
when we declare the LDAP user service and other configuration elements. All other
attributes on the <ldap-server> declaration are optional when using the embedded
LDAP mode.

www.it-ebooks.info

http://www.it-ebooks.info/

LDAP Directory Services

[110]

Enabling the LDAP
AuthenticationProviderNext interface
Next, we'll need to configure another AuthenticationProvider that
checks user credentials against the LDAP provider. Simply update the
Spring Security configuration to use an o.s.s.ldap.authentication.
LdapAuthenticationProvider reference, as follows:

src/main/webapp/WEB-INF/spring/security.xml

<authentication-manager>
 <ldap-authentication-provider server-ref="ldapServer"
 user-search-filter="(uid={0})"
 group-search-base="ou=Groups">
 </ldap-authentication-provider>
</authentication-manager>

We'll discuss these attributes a bit more, later. For now, get the application back up
and running, and try logging in with admin1@example.com as the username and
admin1 as the password. You should be logged in!

Your source code should look like chapter05.01-calendar.

Troubleshooting embedded LDAP
It is quite possible that you will run into hard-to-debug problems with embedded
LDAP. Apache DS is not usually very friendly with its error messages, doubly so in
Spring Security embedded mode. If you are getting a 404 error when trying to access
the application in your browser, there is a good chance that things did not start up
properly. Some things to double-check if you can't get this simple example running are:

•	 Ensure the root attribute is set on the <ldap-server> declaration in your
configuration file, and make sure it matches the root defined in the LDIF
file that's loaded at startup. If you get errors referencing missing partitions,
it's likely that either the root attribute was missed or doesn't match your
LDIF file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[111]

•	 Be aware that a failure starting up the embedded LDAP server is not a fatal
failure. In order to diagnose errors loading LDIF files, you will need to
ensure that the appropriate log settings, including logging for the Apache DS
server, are enabled, at least at ERROR level. The LDIF loader is under the org.
apache.directory.server.protocol.shared.store package, and this
should be used to enable logging of LDIF load errors.

•	 If the application server shuts down non-gracefully, you may be required to
delete some files in your temporary directory (%TEMP% on Windows systems
or /tmp in Linux-based systems) in order to start the server again. The
error messages regarding this are (fortunately) fairly clear. Unfortunately,
embedded LDAP isn't as seamless and easy to use as the embedded H2
database, but it is still quite a bit easier than trying to download and
configure many of the freely-available external LDAP servers.

An excellent tool for troubleshooting or accessing LDAP servers in general is the
Apache Directory Studio project, which offers standalone and Eclipse plugin
versions. The free download is available at http://directory.apache.org/
studio/. If you want to follow along with the book, you may want to download
Apache Directory Studio 1.5 now.

Understanding how Spring LDAP
authentication works
We saw that we were able to log in using a user defined in the LDAP directory. But
what exactly happens when a user issues a login request for a user in LDAP? There
are three basic steps to the LDAP authentication process:

1.	 Authenticate the credentials supplied by the user against the
LDAP directory.

2.	 Determine the GrantedAuthority object that the user has, based on their
information in LDAP.

3.	 Pre-load information from the LDAP entry for the user into a custom
UserDetails object, for further use by the application.

www.it-ebooks.info

http://directory.apache.org/studio/
http://www.it-ebooks.info/

LDAP Directory Services

[112]

Authenticating user credentials
For the first step, authentication against the LDAP directory, a custom authentication
provider is wired into AuthenticationManager. o.s.s.ldap.authentication.
LdapAuthenticationProvider takes the user's provided credentials and verifies
them against the LDAP directory, as illustrated in the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[113]

We can see that the o.s.s.ldap.authentication.LdapAuthenticator
defines a delegate to allow the provider to make the authentication request in
a customizable way. The implementation that we've implicitly configured to
this point, o.s.s.ldap.authentication.BindAuthenticator, attempts to use
the user's credentials to bind (log in) to the LDAP server as if it were the user
themselves making a connection. For an embedded server, this is sufficient for our
authentication needs; however, external LDAP servers may be stricter, and in these,
users may not be allowed to bind to the LDAP directory. Fortunately, an alternative
method of authentication exists, which we will explore later in this chapter.

As noted in the diagram, keep in mind that the search is performed under an
LDAP context created by the credentials specified in the <ldap-server> reference's
manager-dn attribute. With an embedded server, we don't use this information,
but with an external server reference, unless manager-dn is supplied, anonymous
binding is used. To retain some control over the public availability of information
in the directory, is very common for organizations to require valid credentials to
search an LDAP directory, and as such, manager-dn will be almost always required
in real-world scenarios. The manager-dn attribute represents the full DN of a user
with valid access to bind the directory and perform searches.

Demonstrating authentication with Apache
Directory Studio
We are going to demonstrate how the authentication process works by using Apache
Directory Studio 1.5 to connect to our embedded LDAP instance and performing
the same steps that Spring Security is performing. We will use user1@example.com
throughout the simulation. These steps will help to ensure a firm grasp of what is
happening behind the scenes and will help in the event that you are having difficulty
figuring out the correct configuration.

Ensure that the calendar application is started up and working. Next, start Apache
Directory Studio 1.5 and close the Welcome screen.

Binding anonymously to LDAP
The first step is to bind anonymously to LDAP. The bind is done anonymously
because we did not specify the manager-dn and manager-password attributes on our
<ldap-server> element. Within Apache Directory Studio, create a connection using
the following steps:

1.	 Click on File | New | LDAP Browser | LDAP Connection.
2.	 Click on Next.

www.it-ebooks.info

mailto:user1@example.com
http://www.it-ebooks.info/

LDAP Directory Services

[114]

3.	 Enter the following information, and then click on Next:
°° Connection name: calendar-anonymous
°° Hostname: localhost
°° Port: 33389

4.	 We did not specify manager-dn, so select No Authentication for
Authentication Method.

5.	 Click on Finish.

You can safely ignore the message indicating no default schema information is present.
You should now see that you are connected to the embedded LDAP instance.

Searching for the user
Now that we have a connection, we can use it to look up the user's DN that we wish
to bind to.

1.	 Right-click on DIT, and select New | New Search.
2.	 Enter a search base of dc=jbcpcalendar,dc=com. This corresponds to the

root element of our <ldap-server/> tag that we specified.
3.	 Enter a filter of uid=user1@example.com. This corresponds to the

value we specified for the user-search-filter attribute of our
<ldap-authentication-provider/> tag. Note that we included the
parentheses and have substituted the username we are attempting to
log in with, for the {0} value.

4.	 Click on Search.
5.	 Click on the DN of the single result returned by our search. You can now

see our LDAP user being displayed. Note that this DN matches the value we
searched for. Remember this DN as it will be used in our next step.

www.it-ebooks.info

mailto:uid%3Dadmin1@example.com
mailto:uid%3Dadmin1@example.com
http://www.it-ebooks.info/

Chapter 5

[115]

Binding as a user to LDAP
Now that we have found the full DN of our user, we need to try to bind to LDAP
as that user, to validate the submitted password. These steps are the same as our
anonymous bind we already did, except that we will specify credentials of the user
that we are authenticating.

Within ApacheDS, create a connection using the following steps:

1.	 Select File | New | LDAP Browser | LDAP Connection.
2.	 Click on Next
3.	 Enter the following information and click on Next.

°° Connection name: calendar-user1
°° Hostname: localhost
°° Port: 33389

4.	 Leave Authentication Method as Simple Authentication.
5.	 Enter the DN from our search result as Bind DN. The value should be

uid=admin1@example.com,ou=Users,dc=jbcpcalendar,dc=com.
The Bind password should be the password that was submitted at the time of
login. In our case, we want to use admin1 to successfully authenticate. If the
wrong password was entered, we would fail to connect and Spring Security
would report an error.

6.	 Click on Finish.

Spring Security will determine that the username and password were correct for this
user, when it is able to successfully bind with the provided username and password
(similar to how we were able to create a connection). Spring Security will then
proceed with determining the user's role membership.

www.it-ebooks.info

mailto:uid%3Duseradmin1@example.com
mailto:uid%3Duseradmin1@example.com
mailto:uid%3Duseradmin1@example.com
http://www.it-ebooks.info/

LDAP Directory Services

[116]

Determining user role membership
After the user has been successfully authenticated against the LDAP server,
authorization information must be determined next. Authorization is defined by
a principal's list of roles, and an LDAP-authenticated user's role membership is
determined as illustrated in the following diagram:

We can see that after authenticating the user against LDAP,
LdapAuthenticationProvider delegates to LdapAuthoritiesPopulator.
DefaultLdapAuthoritiesPopulator will attempt to locate the authenticated user's
DN in an attribute located at or below another entry in the LDAP hierarchy. The DN of
the location searched for user role assignments is defined in the group-search-base
attribute; in our sample, we set this to group-search-base="ou=Groups". When the
user's DN is located within an LDAP entry below the DN of group-search-base, an
attribute on the entry in which their DN is found is used to confer a role to them.

You'll notice that we mix the case of these attributes—groupSearchBase
in the class flow diagram versus group-search-base referred to in
the text. This is intentional—the text refers to the XML configuration
attributes, while the diagram refers to the members of the relevant classes.
They are similarly named, but appropriately adjusted for the context
(XML and Java) in which they occur.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[117]

How Spring Security roles are associated with LDAP users can be a little confusing,
so let's look at the JBCP Calendar LDAP repository and see how the association of a
user to a role works. DefaultLdapAuthoritiesPopulator uses several attributes of
the <ldap-authentication-provider> declaration to govern the searching of roles
for the user. These attributes are used approximately in the following order:

1.	 group-search-base: It defines the base DN under which the LDAP
integration should look for one or more matches for the user's DN. The
default value performs a search from the LDAP root, which may be expensive.

2.	 group-search-filter: It defines the LDAP search filter used to match the
user's DN to an attribute of an entry located under group-search-base. This
search filter is parameterized with two parameters—the first ({0}) being the
user's DN, and the second ({1}) being the user's username. The default value
is uniqueMember={0}.

3.	 group-role-attribute: It defines the attribute of the matching entries,
which will be used to compose the user's GrantedAuthority object. The
default value is cn.

4.	 role-prefix: It is the prefix that will be prepended to the value found in
group-role-attribute, to make a Spring Security GrantedAuthority
object. The default value is ROLE_.

This can be a little abstract and hard for new developers to follow, because
it's very different from anything we've seen so far with our JDBC-based
UserDetailsService implementations. Let's continue walking through the login
process with our user1@example.com user in the JBCP Calendar LDAP directory.

Determining roles with Apache Directory
Studio
We will now try to determine the roles for our user with Apache Directory Studio.
Using the calendar-user1 connection we created previously, perform the
following steps:

1.	 Right-click on DIT and select New | New Search.
2.	 Enter a search base of ou=Groups,dc=jbcpcalendar,dc=com. This

corresponds to the root element of the <ldap-server/> tag we specified,
plus the group-search-base attribute we specified for the <ldap-
authentication-provider/> tag.

www.it-ebooks.info

mailto:admin1@example.com
mailto:admin1@example.com
http://www.it-ebooks.info/

LDAP Directory Services

[118]

3.	 Enter a filter of (uniqueMember=uid=user1@example.com,ou=Users,dc=jb
cpcalendar,dc=com). This corresponds to the default group-search-filter
attribute of (uniqueMember={0}). Notice that we have substituted the full DN
of the user we found in our previous exercise for the the {0} value.

4.	 Click on Search.
5.	 You will observe that the User group is the only group returned in our search

results. Click on the DN of the single result returned by our search. You can
now see the User group displayed in Apache DS. Note that the group has a
uniqueMember attribute with the full DN of our user and other users.

6.	 Spring Security now creates the GrantedAuthority object for each result by
forcing the name of the group that was found to uppercase and prepending
ROLE_ to the group name. The pseudo-code would look similar to the
following code snippet:
foreach group in groups:
 authority = ("ROLE_"+group).upperCase()
 grantedAuthority = new GrantedAuthority(authority)

Spring LDAP is as flexible as your gray matter
Keep in mind that although this is one way to organize an LDAP
directory to be compatible with Spring Security, typical usage scenarios
are exactly the opposite—an LDAP directory already exists that Spring
Security needs to be wired into. In many cases, you will be able to
reconfigure Spring Security to deal with the hierarchy of the LDAP
server; however, it's key that you plan effectively and understand how
Spring works with LDAP when it's querying. Use your brain, map out
the user search and group search, and come up with the most optimal
plan you can think of—keep the scope of searches as minimal and as
precise as possible.

Can you describe how the results of the login process would differ for our
admin1@example.com user? If you are confused at this point, we'd suggest that you
take a breather and try using Apache Directory Studio to work through browsing the
embedded LDAP server configured by the running an application. It can be easier to
grasp the flow of Spring Security's LDAP configuration, if you can attempt to search
the directory yourself by following the algorithm described previously.

www.it-ebooks.info

mailto:admin1@example.com
http://www.it-ebooks.info/

Chapter 5

[119]

Mapping additional attributes of
UserDetails
Finally, once the LDAP lookup has assigned the user a set of GrantedAuthority
objects, o.s.s.ldap.userdetails.LdapUserDetailsMapper will consult
o.s.s.ldap.userdetails.UserDetailsContextMapper to retrieve any additional
details to populate the UserDetails object for application use.

With <ldap-authentication-provider>, we've configured to this point that
LdapUserDetailsMapper will be used to populate a UserDetails object with
information gleaned from the user's entry in the LDAP directory.

We'll see in a moment how UserDetailsContextMapper can be configured to pull a
wealth of information from the standard LDAP person and inetOrgPerson objects.
With the baseline LdapUserDetailsMapper, little more than username, password,
and GrantedAuthority is stored.

Although there is more machinery involved behind the scenes in LDAP user
authentication and detail retrieval, you'll notice that the overall process seems
somewhat similar (authenticating the user and populating GrantedAuthority) to
the JDBC authentication that we've studied in Chapter 4, JDBC-based Authentication.
As with JDBC authentication, there is an ability to perform advanced configuration
of LDAP integration. Let's dive deeper and see what's possible!

www.it-ebooks.info

http://www.it-ebooks.info/

LDAP Directory Services

[120]

Advanced LDAP configuration
Once we get beyond the basics of LDAP integration, there's a plethora of additional
configuration capability in the Spring Security LDAP module, that is still within
the security XML namespace style of configuration. These include retrieval of
user personal information, additional options for user authentication, and the use
of LDAP as the UserDetailsService interface in conjunction with a standard
DaoAuthenticationProvider class.

Sample JBCP LDAP users
We've supplied a number of different users in the JBCP Calendar LDIF file. The
following quick reference chart may help you with the advanced configuration
exercises or in self-exploration:

Username/Password Role(s) Password encoding
admin1@example.com/admin1 ROLE_ADMIN,

ROLE_USER
Plaintext

user1@example.com/user1 ROLE_USER Plaintext
shauser@example.com/shauser ROLE_USER {sha}

sshauser@example.com/sshauser ROLE_USER {ssha}

hasphone@example.com/hasphone ROLE_USER Plaintext (in
telephoneNumber
attribute)

We'll explain why password encoding matters, in the next section.

Password comparison versus bind
authentication
Some LDAP servers will be configured so that certain individual users are not
allowed to bind directly to the server, or so that anonymous binding (what we have
been using for user search to this point) is disabled. This tends to occur in very large
organizations, which want a restricted set of users to be able to read information
from the directory. In these cases, the standard Spring Security LDAP authentication
strategy will not work, and an alternative strategy must be used, implemented by
o.s.s.ldap.authentication.PasswordComparisonAuthenticator (a sibling
class of BindAuthenticator).

www.it-ebooks.info

mailto:admin1@example.com
mailto:user1@example.com
mailto:shauser@example.com
mailto:sshauser@example.com
mailto:hasphone@example.com
http://www.it-ebooks.info/

Chapter 5

[121]

PasswordComparisonAuthenticator binds to LDAP and searches for the DN
matching the username provided by the user. It then compares the user-supplied
password with the userPassword attribute stored on the matching LDAP entry.
If the encoded password matches, the user is authenticated, and the flow proceeds
as with BindAuthenticator.

Configuring basic password comparison
Configuring password comparison authentication instead of bind authentication
is as simple as adding a sub-element to the <ldap-authentication-provider>
declaration. Update the security.xml file as follows:

src/main/webapp/WEB-INF/spring/security.xml

<ldap-authentication-provider server-ref="ldapServer"
 user-search-filter="(uid={0})"
 group-search-base="ou=Groups">
 <password-compare/>
</ldap-authentication-provider>

www.it-ebooks.info

http://www.it-ebooks.info/

LDAP Directory Services

[122]

The default PasswordComparisonAuthenticator class uses the LDAP password
encoding algorithm of SHA (recall that we discussed the SHA-1 password algorithm
extensively in the previous chapter). After restarting the server, you can attempt to
log in using shauser@example.com as the username and shauser as the password.

Your code should look like chapter05.02-calendar.

LDAP password encoding and storage
LDAP has general support for a variety of password encoding algorithms,
ranging from plain text to one-way hash algorithms, similar to those we explored
in the previous chapter, with database-backed authentication. The most common
storage formats for LDAP passwords are SHA (SHA-1 one-way hashed), and SSHA
(SHA-1 one-way hashed, with a salt value). Other password formats often supported
by many LDAP implementations are thoroughly documented in RFC 2307, An
Approach to Using LDAP as a Network Information Service (http://tools.ietf.org/
html/rfc2307).The designers of RFC 2307 did a very clever thing with regards to
password storage. Passwords retained in the directory are, of course, encoded with
whatever algorithm is appropriate (SHA, and so on), but then they are prefixed with
the algorithm used to encode the password. This makes it very easy for the LDAP
server to support multiple algorithms for password encoding. For example, an
SHA-encoded password is stored in the directory as {SHA}5baa61e4c9b93f3f06822
50b6cf8331b7ee68fd8.

We can see that the password storage algorithm is very clearly indicated (with the
{SHA} notation) and stored along with the password.

SSHA is an attempt to combine the strong SHA-1 hash algorithm with password
salting to prevent dictionary attacks. As with password salting, which we reviewed
in the previous chapter, the salt is added to the password prior to calculating
the hash. When the hashed password is stored in the directory, the salt value is
appended to the hashed password. The password is prepended with {SSHA}, so that
the LDAP directory knows that the user-supplied password needs to be compared
differently. The majority of modern LDAP servers utilize SSHA as the default
password storage algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[123]

The drawbacks of a password comparison
authenticator
Now that you know a bit about how LDAP uses passwords and we have
PasswordComparisonAuthenticator set up, what do you think will happen if you
log in using our sshauser@example.com user with their password stored in the
SSHA format? Go ahead, put the book aside and try it, and then come back.

Your login was denied, right? And yet you were still able to log in as the user with
the SHA-encoded password. Why? The password encoding and storage didn't
matter to us when we were using bind authentication. Why do you think that is?

The reason it didn't matter with bind authentication was because the LDAP server
was taking care of authentication and validation of the user's password. With
password compare authentication, Spring Security LDAP is responsible for encoding
the password in the format expected by the directory and then matching it against
the directory to validate the authentication.

For security purposes, password comparison authentication can't actually read
the password from the directory (reading directory passwords is often denied
by security policy). Instead, PasswordComparisonAuthenticator performs
an LDAP search, rooted at the user's directory entry, attempting to match with
a password attribute and value as determined by the password that's been
encoded by Spring Security. So, when we try to log in with sshauser@example.
com, PasswordComparisonAuthenticator is encoding the password using the
configured SHA algorithm and attempting to do a simple match, which fails as the
directory password for this user is stored in the SSHA format.

What happens if we change the hash algorithm for PasswordComparisonAuthenticator
to use SSHA? Update the security.xml as follows:

src/main/webapp/WEB-INF/spring/security.xml

<password-compare hash="{ssha}"/>

Your code should look like chapter05.03-calendar.

www.it-ebooks.info

http://www.it-ebooks.info/

LDAP Directory Services

[124]

Restart and try it out—it still doesn't work. Let's think why that might be. Remember that
SSHA uses a salted password, with the salt value stored in the LDAP directory along
with the password. However, PasswordComparisonAuthenticator is coded so that it
cannot read anything from the LDAP server (this typically violates the security policy at
companies that don't allow binding). Thus, when PasswordComparisonAuthenticator
computes the hashed password, it has no way to determine what salt value to use.

In conclusion, PasswordComparisonAuthenticator is valuable in certain limited
circumstances where security of the directory itself is a concern, but it will never be
as flexible as straight bind authentication.

Configuring UserDetailsContextMapper
As we noted earlier, an instance of o.s.s.ldap.userdetails.
UserDetailsContextMapper is used to map a user's entry into the LDAP server to
a UserDetails object in memory. The default UserDetailsContextMapper object
behaves similarly to JdbcDaoImpl in the level of detail that is populated on the
returned UserDetails object—that is to say, not a lot of information is returned
besides the username and password.

However, an LDAP directory potentially contains many more details about
individual users than usernames, passwords, and roles. Spring Security ships
with two additional methods of pulling more user data from two of the standard
LDAP object schemas—person and inetOrgPerson.

Implicit configuration of
UserDetailsContextMapper
In order to configure a different UserDetailsContextMapper implementation
than the default, we simply need to declare what LdapUserDetails class we want
LdapAuthenticationProvider to return. The security namespace parser will be
smart enough to instantiate the correct UserDetailsContextMapper implementation
based on the type of LdapUserDetails interface requested.

Let's reconfigure our security.xml file to use the inetOrgPerson version
of the mapper. Update the security.xml as illustrated below:

src/main/webapp/WEB-INF/spring/security.xml

<ldap-authentication-provider server-ref="ldapServer"
 user-search-filter="(uid={0})"
 group-search-base="ou=Groups"
 user-details-class="inetOrgPerson">

</ldap-authentication-provider>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[125]

Make sure to remove the <password-encoder />
tag as we did in the previous sample.

If you were to restart the application and attempt to log in as an LDAP user, you
would see that nothing changed. In fact, UserDetailsContextMapper has changed
behind the scenes to read additional detail in the case where attributes from the
inetOrgPerson schema are available in the user's directory entry. Try authenticating
with admin1@example.com as the username and admin1 as the password.

Viewing additional user details
To assist in this area, we'll add the ability to view the current account to the JBCP
Calendar application. We'll use this page to illustrate how the richer person and
inetOrgPerson LDAP schemas can provide additional (optional) information to
your LDAP-enabled application.

You may have noticed that this chapter came with an additional controller named
AccountController. You can see the relevant code as follows:

src/main/java/com/packtpub/springsecurity/web/controllers/
AccountController.java

...
@RequestMapping("/accounts/my")
public String view(Model model) {
 Authentication authentication =
 SecurityContextHolder.getContext().getAuthentication();
 // null check on authentication omitted
 Object principal = authentication.getPrincipal();
 model.addAttribute("user", principal);
 model.addAttribute("isLdapUserDetails", principal instanceof
 LdapUserDetails);
 model.addAttribute("isLdapPerson", principal instanceof Person);
 model.addAttribute("isLdapInetOrgPerson", principal instanceof
 InetOrgPerson);
 return "accounts/show";
}
...

www.it-ebooks.info

mailto:admin1@example.com
mailto:admin1@example.com
http://www.it-ebooks.info/

LDAP Directory Services

[126]

This code will retrieve the UserDetails object (principal) stored in the
Authentication object by LdapAuthenticationProvider and determine what
type of LdapUserDetailsImplinterface it is. The page code itself will then display
various details, depending on the type of UserDetails object that has been bound to
the user's authentication information, as we see in the following JSP code. We have
already included JSP as well.

src/main/webapp/WEB-INF/views/accounts/show.jsp

<dl>
 <dt>Username</dt>
 <dd><c:out value="${user.username}"/></dd>
 <dt>DN</dt>
 <dd><c:out value="${user.dn}"/></dd>
 <c:if test="${isLdapPerson}">
 <dt>Description</dt>
 <dd><c:out value="${user.description}"/></dd>
 <dt>Telephone</dt>
 <dd id="phone"><c:out value="${user.telephoneNumber}"/></dd>
 <dt>Full Name(s)</dt>
 <c:forEach items="${user.cn}" var="cn">
 <dd><c:out value="${cn}"/></dd>
 </c:forEach>
 </c:if>
 <c:if test="${isLdapInetOrgPerson}">
 <dt>Email</dt>
 <dd><c:out value="${user.mail}"/></dd>
 <dt>Street</dt>
 <dd><c:out value="${user.street}"/></dd>
 </c:if>
</dl>

The only work that actually needs to be done is to add a link in our header.jsp file,
as shown in the following code snippet:

<li id="greeting">
 <div>
 Welcome
 <c:url var="accountUrl" value="/accounts/my"/>

 <sec:authentication property="name" />

 </div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[127]

We've added two more users that you can use to examine the differences in the
available data elements.

Username Password Type
shainet@example.com shainet inetOrgPerson

shaperson@example.com shaperson person

Your code should look like chapter05.04-calendar.

Restart the server and examine the Account Details page for each of the types of
users by clicking on the username in the upper-right corner. You'll note that, when
user-details-class is configured to use inetOrgPerson, although o.s.s.ldap.
userdetails.InetOrgPerson is what is returned, the fields may or may not be
populated, depending on the available attributes in the directory entry.

In fact, inetOrgPerson has many more attributes than we've illustrated on this
simple page. You can review the full list in RFC 2798, Definition of the inetOrgPerson
LDAP Object Class (http://tools.ietf.org/html/rfc2798).

One thing you may notice is that there is no facility to support additional
attributes that may be specified on an entry but don't fall into a standard schema.
The standard UserDetailsContextMapper interfaces don't support arbitrary lists
of attributes, but it is possible nonetheless to customize it with a reference to your
own UserDetailsContextMapper interface through the use of the user-context-
mapper-ref attribute.

Using an alternate password attribute
In some cases, it may be necessary to use an alternate LDAP attribute instead of
userPassword, for authentication purposes. This can happen on occasions when
companies have deployed custom LDAP schemas or don't have a requirement for
strong password management (arguably, this is never a good idea, but it definitely
does occur in the real world).

www.it-ebooks.info

mailto:shainet@example.com
http://www.it-ebooks.info/

LDAP Directory Services

[128]

PasswordComparisonAuthenticator also supports the ability to verify the
user's password against an alternate LDAP entry attribute instead of the standard
userPassword attribute. This is very easy to configure, and we can demonstrate
a simple example using the plaintext telephoneNumber attribute. Update the
security.xml as follows:

src/main/webapp/WEB-INF/spring/security.xml

<ldap-authentication-provider server-ref="ldapServer"
 user-search-filter="(uid={0})"
 group-search-base="ou=Groups"
 user-details-class="inetOrgPerson">
 <password-compare
 hash="plaintext"
 password-attribute="telephoneNumber"/>
</ldap-authentication-provider>

We can restart the server and attempt to log in with hasphone@example.com as the
username and 0123456789 as the password (telephone number).

Of course, this type of authentication has all the perils we discussed earlier about
authentication based on PasswordComparisonAuthenticator; however, it's good to
be aware of it on the off chance that it comes up with an LDAP implementation.

Using LDAP as UserDetailsService
One thing to note is that LDAP may also be used as UserDetailsService. As we
will discuss later in the book, UserDetailsService is required to enable various
other bits of functionality in the Spring Security infrastructure, including the
remember me and OpenID authentication features.

We will modify our AccountController object to use the LdapUserDetailsService
interface, to obtain the user. Before doing this, make sure to remove the <password-
compare> element, as shown in the following code snippet:

src/main/webapp/WEB-INF/spring/security.xml

<authentication-manager>
 <ldap-authentication-provider server-ref="ldapServer"
 user-search-filter="(uid={0})"
 group-search-base="ou=Groups"
 user-details-class="inetOrgPerson"/>
</authentication-manager>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[129]

Configuring LdapUserDetailsService
Configuration of LDAP as a UserDetailsService functions very similarly
to the configuration of an LDAP AuthenticationProvider. Like a JDBC
UserDetailsService, an LDAP UserDetailsService is configured as a
sibling to the <http> declaration. Make the following updates to security.xml:

src/main/webapp/WEB-INF/spring/security.xml

...
<ldap-server .../>
<ldap-user-service id="ldapUserService"
 server-ref="ldapServer"
 user-search-filter="(uid={0})"
 group-search-base="ou=Groups"
 user-details-class="inetOrgPerson"/>
<authentication-manager>
...

Functionally, o.s.s.ldap.userdetails.LdapUserDetailsService is configured in
almost exactly the same way as LdapAuthenticationProvider, with the exception
that there is no attempt to use the principal's username to bind to LDAP. Instead, the
credentials supplied by the <ldap-server> reference itself are used to perform the
user lookup.

Do not make the very common mistake of configuring
<authentication-provider> with user-details-service-ref
referring to LdapUserDetailsService, if you intend to authenticate
the user against LDAP itself! As discussed previously, the password
attribute often cannot be retrieved from LDAP due to security reasons,
which makes UserDetailsService useless for authenticating. As
noted previously, LdapUserDetailsService uses the manager-
dn attribute supplied with the <ldap-server> declaration to get its
information—this means that it does not attempt to bind the user to
LDAP and as such may not behave as you expect.

www.it-ebooks.info

http://www.it-ebooks.info/

LDAP Directory Services

[130]

Updating AccountController to use
LdapUserDetailsService
We will now update the AccountController object to use the
LdapDetailsUserDetailsService interface, to look up the user that it displays.

src/main/java/com/packtpub/springsecurity/web/controllers/
AccountController.java

@Controller
public class AccountController {
 private final UserDetailsService userDetailsService;

 @Autowired
 public AccountController(UserDetailsService userDetailsService) {
 this.userDetailsService = userDetailsService;
 }

 @RequestMapping("/accounts/my")
 public String view(Model model) {
 Authentication authentication =
 SecurityContextHolder.getContext().getAuthentication();
 // null check omitted
 String principalName = authentication.getName();
 Object principal =
 userDetailsService.loadUserByUsername(principalName);
 ...
 }
}

Obviously, this example is a bit silly, but it demonstrates the usage of
LdapUserDetailsService. Go ahead and restart the application and give
this a try with the username admin1@example.com and the password admin1.
Can you figure out how to modify the controller to display an arbitrary user's
information? Can you figure out how you should modify the security settings to
restrict access to an administrator?

Your code should look like chapter05.06-calendar.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[131]

Integrating with an external LDAP server
It is likely that once you test the basic integration with the embedded LDAP server,
you will want to interact with an external LDAP server. Fortunately, this is very
straightforward and can be done using a slightly different syntax along with the
same <ldap-server> instruction we provided to set up the embedded LDAP server.

Update the Spring Security configuration to connect to an external LDAP server on
port 33389, as follows:

src/main/webapp/WEB-INF/spring/security.xml

 <ldap-server id="ldapServer"
 url="ldap://localhost:33389/dc=jbcpcalendar,dc=com"
 manager-dn="uid=admin,ou=system"
 manager-password="secret"/>
<ldap-user-service id="ldapUserService"

The notable differences here (aside from the LDAP URL) are that the DN and
password for an account are provided. The account (which is actually optional)
should be allowed to bind to the directory and perform searches across all relevant
DNs for user and group information. The binding resulting from the application
of these credentials against the LDAP server URL is used for the remaining LDAP
operations across the LDAP-secured system.

Be aware that many LDAP servers also support SSL-encrypted LDAP
(LDAPS)—this is, of course, preferred for security purposes and is supported
by the Spring LDAP stack. Simply use ldaps:// at the beginning of the LDAP
server URL. LDAPS typically runs on TCP port 636. Note that there are many
commercial and non-commercial implementations of LDAP. The exact configuration
parameters that you will use for connectivity, user binding, and population of
GrantedAuthoritys will wholly depend on both the vendor and the structure of the
directory. We will cover one very common LDAP implementation, Microsoft Active
Directory, in the next section.

If you do not have an LDAP server handy and would like to give this a try, go
ahead and add the following code to your security.xml file, which starts up the
embedded LDAP server we have been using:

src/main/webapp/WEB-INF/spring/security.xml

<ldap-server id="ldapServer"
 url="ldap://localhost:33389/dc=jbcpcalendar,dc=com"
 manager-dn="uid=admin,ou=system"

www.it-ebooks.info

http://www.it-ebooks.info/

LDAP Directory Services

[132]

 manager-password="secret"/>
<ldap-server ldif="classpath:/ldif/calendar.ldif"
 root="dc=jbcpcalendar,dc=com"/>
<ldap-user-service id="ldapUserService"

If this isn't convincing, start up an LDAP server using Apache Directory Studio and
import calendar.ldif into it. You can then connect to the external LDAP server.

Your code should look like chapter05.07-calendar.

Explicit LDAP bean configuration
In this section, we'll lead you through the set of bean configurations required
to explicitly configure both a connection to an external LDAP server and the
LdapAuthenticationProvider interface required to support authentication against
an external server. As with other explicit bean-based configurations, you really want
to avoid doing this, unless you find yourself in a situation where the capabilities
of the security namespace style of configuration will not support your business or
technical requirements, in which case, read on!

Configuring an external LDAP server
reference
To implement this configuration, we'll assume that we have a local LDAP
server running on port 33389, with the same configuration corresponding to
the <ldap-server> example provided in the previous section. The required bean
definition is already provided in security-explicitly-ldap.xml. In fact, to keep
things simple, we have provided the entire security-ldap-explicitly.xml file.
Review the LDAP server reference in the following code snippet:

src/main/webapp/WEB-INF/spring/security-ldap-explicitly.xml

<bean id="ldapServer"
 class="org.springframework.security.ldap
 .DefaultSpringSecurityContextSource">
 <constructor-arg

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[133]

 value="ldap://localhost:33389/dc=jbcpcalendar,dc=com"/>

 <property name="userDn" value="uid=admin,ou=system"/>
 <property name="password" value="secret"/>
</bean>

Next, we'll need to configure LdapAuthenticationProvider, which is a bit
more complex.

Configuring LdapAuthenticationProvider
If you've read and understood the explanations throughout this chapter, describing
how Spring Security LDAP authentication works behind the scenes, this bean
configuration will be perfectly understandable, albeit a bit complex. We'll configure
LdapAuthenticationProvider with the following characteristics:

•	 User credential binding authentication (not password compare)
•	 Use of the InetOrgPerson in UserDetailsContextMapper

Let's get to it—we'll explore the already configured LdapAuthenticationProvider
first:

src/main/webapp/WEB-INF/spring/security-ldap-explicitly.xml

<bean id="ldapAuthenticationProvider"
 class="org.springframework.security.ldap.authentication
 .LdapAuthenticationProvider">
 <constructor-arg ref="ldapBindAuthenticator"/>
 <constructor-arg ref="ldapAuthoritiesPopulator"/>
 <property name="userDetailsContextMapper"
 ref="ldapUserDetailsContextMapper"/>
</bean>

The next bean provided for us is BindAuthenticator, and the supporting
FilterBasedLdapUserSearch bean is used to locate the user's DN in the LDAP
directory prior to binding:

src/main/webapp/WEB-INF/spring/security-ldap-explicitly.xml

<bean id="ldapBindAuthenticator"
 class="org.springframework.security.ldap.authentication
 .BindAuthenticator">
 <constructor-arg ref="ldapServer"/>
 <property name="userSearch" ref="ldapSearch"/>
</bean>

www.it-ebooks.info

http://www.it-ebooks.info/

LDAP Directory Services

[134]

<bean id="ldapSearch"
 class="org.springframework.security.ldap.search
 .FilterBasedLdapUserSearch">
 <constructor-arg value=""/> <!-- user-search-base -->
 <constructor-arg value="(uid={0})"/> <!-- user-search-filter -->
 <constructor-arg ref="ldapServer"/>
</bean>

Finally, LdapAuthoritiesPopulator and UserDetailsContextMapper perform the
roles we've examined earlier in the chapter:

src/main/webapp/WEB-INF/spring/security-ldap-explicitly.xml

<bean id="ldapAuthoritiesPopulator"
 class="org.springframework.security.ldap.userdetails
 .DefaultLdapAuthoritiesPopulator">
 <constructor-arg ref="ldapServer"/>
 <constructor-arg value="ou=Groups"/>
 <property name="groupSearchFilter" value="(uniqueMember={0})"/>
</bean>

<bean id="ldapUserDetailsContextMapper"
 class="org.springframework.security.ldap.userdetails
 .InetOrgPersonContextMapper"/>

In the next step, we must update Spring Security to utilize our explicitly configured
LdapAuthenticationProvider. Update the security.xml file to use our new
configuration, ensuring to remove the old <authentication-provider> element.

src/main/webapp/WEB-INF/spring/security.xml

<authentication-manager>
 <authentication-provider ref="ldapAuthenticationProvider"/>
</authentication-manager>

Finally, update web.xml to use the already provided security-explicitly-ldap.
xml configuration.

src/main/webapp/WEB-INF/web.xml

<param-value>
 ...
 /WEB-INF/spring/security.xml
 /WEB-INF/spring/security-ldap-explicitly.xml
</param-value>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[135]

At this point, we have fully configured LDAP authentication with explicit Spring
Bean notation. Employing this technique in the LDAP integration is useful in a few
cases where the security namespace does not expose certain configuration attributes,
or where custom implementation classes are required to provide functionality
tailored to a particular business scenario. We'll explore one such scenario later in this
chapter, when we examine how to connect to Microsoft Active Directory via LDAP.

Go ahead and start the application and give the configuration a try. Assuming you
have an external LDAP server running or you have kept the configured in-memory
<ldap-server> element, everything should still be working.

Your code should look like chapter05.08-calendar.

Delegating role discovery to
UserDetailsService
One technique for populating user roles that are available to use with explicit
bean configuration is the support for looking up a user by username in the
UserDetailsService, and getting the GrantedAuthority objects from this source.
Configuration is as simple as replacing the bean with the id ldapAuthoritiesPopulator
bean with an updated UserDetailsServiceLdapAuthoritiesPopulator with a reference
to UserDetailsService. Make the following updates to our security-ldap-
explicitly.xml ensuring to remove the previous ldapAuthoritiesPopulator
bean definition:

src/main/webapp/WEB-INF/spring/security-ldap-explicitly.xml

<bean class="org.springframework.security.ldap.userdetails.
DefaultLdapAuthoritiesPopulator"
 id="ldapAuthoritiesPopulator">
 <constructor-arg ref="ldapServer"/>
 <constructor-arg value="ou=Groups"/>
 <property name="groupSearchFilter" value="(uniqueMember={0})"/>
</bean>
<bean class="org.springframework.security.ldap.authentication.
UserDetailsServiceLdapAuthoritiesPopulator"
 id="ldapAuthoritiesPopulator">
 <constructor-arg ref="userDetailsService"/>
</bean>

www.it-ebooks.info

http://www.it-ebooks.info/

LDAP Directory Services

[136]

We will also need to ensure that we have defined userDetailsService. To keep
things simple, add an in-memory UserDetailsService, as follows:

src/main/webapp/WEB-INF/spring/security.xml

...
 </authentication-manager>
 <user-service id="userDetailsService">
 <user name="user1@example.com"
 password="user1"
 authorities="ROLE_USER"/>
 <user name="admin1@example.com"
 password="admin1"
 authorities="ROLE_USER,ROLE_ADMIN"/>
 </user-service>
</bean:beans>

You should now be able to authenticate with admin1@example.com as the username
and admin1 as the password. Naturally, we could also substitute this in-memory
UserDetailsService interface for the JDBC-based one we discussed in the
previous chapter.

Your code should look like chapter05.09-calendar.

The logistical and managerial problem you may foresee with this is that the
usernames and roles must be managed both in the LDAP server and the repository
used by UserDetailsService—this is probably not a scalable model with a large
user base.

The more common use of this scenario is when LDAP authentication is required
to ensure that users of the secured application are valid corporate users but the
application itself wants to store authorization information. This keeps potentially
application-specific data out of the LDAP directory, which can be a beneficial
separation of concerns.

www.it-ebooks.info

mailto:admin1@example.com
http://www.it-ebooks.info/

Chapter 5

[137]

Integrating with Microsoft Active
Directory via LDAP
One of the convenient features of Microsoft Active Directory is not only its seamless
integration with Microsoft Windows-based network architectures, but also that it can
be configured to expose the contents of Active Directory using the LDAP protocol.
If you are a Windows shop, it is probable that any LDAP integration you do will be
against your Active Directory instance.

Depending on your configuration of Microsoft Active Directory (and the directory
administrator's willingness to configure it to support Spring Security LDAP), you
may have a difficult time not with the authentication and binding process, but with
the mapping of Active Directory information to the user's GrantedAuthority objects
within the Spring Security system.

The sample Active Directory LDAP tree for JBCP Calendar corporate, within our
LDAP browser, looks similar to the one in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

LDAP Directory Services

[138]

What you do not see here is ou=Groups, as we saw in our sample LDAP structure
earlier; this is because Active Directory stores group membership as attributes on the
LDAP entries of users themselves.

Let's use our recently acquired knowledge of explicit bean configuration to write
an LdapAuthoritiesPopulator implementation that obtains GrantedAuthority
from the user's memberOf attribute. In the following section, you will find the
ActiveDirectoryLdapAuthoritiesPopulator that is provided in this chapter's
sample code:

src/main/java/com/packtpub/springsecurity/ldap/userdetails/ad/
ActiveDirectoryLdapAuthoritiesPopulator.java

public final class ActiveDirectoryLdapAuthoritiesPopulator
 implements LdapAuthoritiesPopulator {

 public Collection<? extends GrantedAuthority>
 getGrantedAuthorities(DirContextOperations userData, String
 username) {
 String[] groups =
 userData.getStringAttributes("memberOf");
 List<GrantedAuthority> authorities = new
 ArrayList<GrantedAuthority>();

 for (String group : groups) {
 LdapRdn authority = new
 DistinguishedName(group).removeLast();
 authorities.add(new
 SimpleGrantedAuthority(authority.getValue()));
 }
 return authorities;
 }
}

Now, we need to alter our configuration to support our Active Directory structure.
Assuming we are starting with the bean configuration detailed in the previous
section, make the following updates:

src/main/webapp/WEB-INF/spring/security-explicitly-ldap.xml

<bean id="ldapServer"
 class="org.springframework.security.ldap
 .DefaultSpringSecurityContextSource">
 <constructor-arg value="ldap://corp.jbcpcalendar.com

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[139]

 /dc=corp,dc=jbcpcalendar,dc=com"/>

 <property name="userDn" value="CN=Administrator,CN=Users,
 DC=corp,DC=jbcpcalendar,DC=com"/>
 <property name="password" value="admin123!"/>
</bean>

<bean id="ldapAuthenticationProvider"
 class="org.springframework.security.ldap
 .authentication.LdapAuthenticationProvider">
 <constructor-arg ref="ldapBindAuthenticator"/>
 <constructor-arg ref="ldapAuthoritiesPopulator"/>
 <!-- removed userDetailsContextMapper -->
</bean>

...

<bean id="ldapSearch"
 class="org.springframework.security.ldap.search
 .FilterBasedLdapUserSearch">
 <constructor-arg value="CN=Users"/> <!-- use-search-base -->
 <constructor-arg value="(sAMAccountName={0})"/> <!-- user-
 search-filter -->
 <constructor-arg ref="ldapServer"/>
</bean>

<bean id="ldapAuthoritiesPopulator"
 class="com.packtpub.springsecurity.ldap.userdetails
 .ad.ActiveDirectoryLdapAuthoritiesPopulator"/>
<!-- removed ldapUserDetailsContextMapper -->

If you have it defined, you will want to remove <ldap-server> and <ldap-user-
service> in security.xml. Finally, you will want to remove the references to
UserDetailsService from AccountController.

The sAMAccountName attribute is the Active Directory equivalent of the uid
attribute we used in a standard LDAP entry. Although most Active Directory LDAP
integrations are likely to be more complex than this example, this should give you a
starting point to jump off and explore from with your conceptual understanding of
the inner workings of Spring Security LDAP integration; supporting even a complex
integration will be much easier.

www.it-ebooks.info

http://www.it-ebooks.info/

LDAP Directory Services

[140]

If you want to run this sample, you will need an instance of Active
Directory up and running that matches the schema displayed in the
screenshot. The alternative is to adjust the configuration to match your
Active Directory's schema. A simple way to play around with Active
Directory is to install Active Directory Lightweight Directory Services,
which can be found at http://www.microsoft.com/download/en/
details.aspx?id=14683.

Built-In Active Directory support in Spring
Security 3.1
Spring Security added Active Directory support in Spring Security 3.1. In fact, the
ActiveDirectoryLdapAuthoritiesPopulator from the previous section is based
on the newly-added support. To utilize the built-in support in Spring Security 3.1,
we can replace our entire security-explicitly-ldap.xml file with the following
configuration:

src/main/webapp/WEB-INF/spring/security-explicitly-ldap.xml

<bean id="ldapAuthenticationProvider"
 class="org.springframework.security.ldap.authentication
 .ad.ActiveDirectoryLdapAuthenticationProvider">
 <constructor-arg value="corp.jbcpcalendar.com"/>
 <constructor-arg value="ldap://corp.jbcpcalendar.com/"/>
 <property name="convertSubErrorCodesToExceptions" value="true"/>
</bean>

Of course, if you are going to use it, you need to ensure that you wire it to
AuthenticationManager. We have already done this, but a reminder of what the
configuration looks like can be found in the following code snippet:

<authentication-manager>
 <authentication-provider ref="ldapAuthenticationProvider"/>
</authentication-manager>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[141]

There are a few things that should be noted about the provided
ActiveDirectoryLdapAuthenticationProvider class:

1.	 The users that need to be authenticated must be able to bind to Active
Directory (there is no manager user).

2.	 The default method for populating users' authorities is to search the users'
memberOf attributes.

3.	 Users must contain an attribute named userPrincipalName, which is in
the username@<domain> format. Here, <domain> is the first constructor
argument to ActiveDirectoryLdapAuthenticationProvider. This is due
to the fact that, after the bind occurs, this is how the context for the memberOf
lookup is found.

Due to the complex LDAP deployments that occur in the real world, the built in
support will more likely than not provide a guide to as how you can integrate with
your custom LDAP schema.

Summary
We have seen that LDAP servers can be relied upon to provide authentication and
authorization information as well as rich user profile information, when requested.
In this chapter, we covered:

•	 LDAP terminology and concepts, and how LDAP directories might be
commonly organized to work with Spring Security

•	 Configuration of both standalone (embedded) and external LDAP servers
from a Spring Security configuration file

•	 Authentication and authorization of users against LDAP repositories, and
subsequent mapping to Spring Security actors

•	 Differences in authentication schemes and password storage and security
mechanisms in LDAP, and how they are treated in Spring Security

•	 Mapping user detail attributes from the LDAP directory to the
UserDetails object for rich information exchange between LDAP
and the Spring-enabled application

•	 Explicit bean configuration for LDAP, and the pros and cons of this approach
•	 Integration with Active Directory

In the next chapter, we will discuss Spring Security's Remember Me feature, which
allows a user's session to securely persist even after closing the browser.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Remember-me Services
In this chapter, we'll add the ability for an application to remember a user even after
their session has expired and the browser is closed. The following topics will be
covered in this chapter:

•	 Discuss what remember-me is
•	 Learn how to use the token-based remember-me feature
•	 Discuss how secure remember-me is, and various ways of making it

more secure
•	 Enable the persistent-based remember-me feature, and how to handle

additional considerations for using it
•	 Present the overall remember-me architecture
•	 Learn how to create a custom remember-me implementation that is restricted

to the user's IP address

What is remember-me
A convenient feature to offer frequent users of the website is the remember-me
feature. This feature allows a user to elect to be remembered even after their browser
is closed. In Spring Security, this is implemented through the use of a remember-me
cookie that is stored in the user's browser. If Spring Security recognizes that the user
is presenting a remember-me cookie, then the user will be automatically logged in to
the application, and will not need to enter a username or password.

www.it-ebooks.info

http://www.it-ebooks.info/

Remember-me Services

[144]

What is a cookie?
A cookie is a way for a client (that is, a web browser) to persist the state.
For more information about cookies, refer to additional online resources,
such as Wikipedia (http://en.wikipedia.org/wiki/HTTP_cookie).

Spring Security provides two different strategies that we will discuss in this chapter.
The first is Token-based remember-me feature, which relies on a cryptographic
signature. The second method, Persistent-based remember-me feature, requires a
data store (a database). As we previously mentioned, we will discuss these strategies
in much greater detail throughout this chapter. The remember-me feature must be
explicitly configured in order to enable it. Let's start off by trying the token-based
remember-me feature and see how it affects the flow of the login experience.

Dependencies
The token-based remember-me section does not need any additional dependencies
other than the basic setup from Chapter 2, Getting Started with Spring Security. However,
you will want to ensure to include the following additional dependencies in your
pom.xml file, if you are leveraging the persistent-based remember-me feature. We have
already included these dependencies in the chapter's sample, so there is no need to
update the sample application.

pom.xml

<!-- matching JDBC driver (depends on which database you use) -->
<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>1.3.163</version>
 <scope>runtime</scope>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-jdbc</artifactId>
 <version>3.1.0.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-tx</artifactId>
 <version>3.1.0.RELEASE</version>
</dependency>

www.it-ebooks.info

http://en.wikipedia.org/wiki/HTTP_cookie
http://www.it-ebooks.info/

Chapter 6

[145]

The token-based remember-me feature
Spring Security provides two different implementations of the remember-me feature.
We will start off by exploring how to set up the token-based remember-me services.

Configuring the token-based remember-me
feature
Completing this exercise will allow us to provide a simple and secure method to
keep users logged in for extended periods of time. To start, modify the security.
xml configuration file to add the <remember-me> declaration.

You should start with chapter06.00-calendar.

src/main/webapp/WEB-INF/spring/security.xml

<http auto-config="true" use-expressions="true">
 ...
 <remember-me key="jbcpCalendar"/>
 <logout logout-url="/logout"
 logout-success-url="/login/form?logout"/>
</http>

If we try running the application now, we'll see nothing different in the flow. This is
because we also need to add a field to the login form that allows the user to opt in to
this functionality. Edit the login.jsp file to add a checkbox similar to the following:

src/main/webapp/WEB-INF/views/login.jsp

…
<p>
<input type="password" id="password" name="password"/>
<label for="remember">Remember Me?</label>
<input type="checkbox" id="remember"
 name="_spring_security_remember_me"
 value="true"/>
<div class="form-actions">
</p>
<p>
 <input id="submit" name="submit" type="submit" value="Login"/>
</p>

www.it-ebooks.info

http://www.it-ebooks.info/

Remember-me Services

[146]

Your code should look like chapter06.01-calendar.

When we next log in, if the Remember Me box is selected, a remember-me cookie is
set in the user's browser. Spring Security understands that it should remember the
user by inspecting the HTTP parameter _spring_security_remember_me.

If the user then closes his/her browser and reopens it to an authenticated page on
the JBCP Calendar website, he/she won't be presented with the login page a second
time. Try it yourself now—log in with the Remember Me option selected, bookmark
the home page, then restart the browser, and access the home page. You'll see that
you're immediately logged in successfully without needing to supply your login
credentials again.

If this appears to be happening to you, it means that your browser or a browser
plugin is restoring the session. One tip is to try closing the tab first and then
close the browser. One more effective solution is to use a browser plugin, such as
Firecookie (https://addons.mozilla.org/en-US/firefox/addon/firecookie/),
to remove the JSESSIONID cookie. This can often save time and annoyance during
the development and verification of this type of a feature on your site.

How the token-based remember-me feature
works
The remember-me feature sets a cookie on the user's browser containing a Base64-
encoded string with the following pieces:

•	 The username
•	 An expiration date/time
•	 An MD5 hash value of the expiration date/time, username, password, and

the key attribute of the <remember-me> element
•	 These bits are combined into a single cookie value that is stored on the

browser for later use

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[147]

MD5
MD5 is one of the several well-known cryptographic hash algorithms. Cryptographic
hash algorithms compute a compact and unique text representation of input data
with arbitrary length, called a digest. This digest can be used to determine if an
untrusted input should be trusted, by comparing the digest of the untrusted input to
a known valid digest of the expected input. The following diagram illustrates how
this works:

For example, many open source software sites allow mirrors to distribute their
software to help increase download speeds. However, as a user of the software, we
would want to be sure that the software is authentic and doesn't include any viruses.
The software distributor will calculate and publish the expected MD5 checksum on
their website with their known good version of the software. Then, we can download
the file from any location. Before we install the software, we calculate the untrusted
MD5 checksum on the file we downloaded. We then compare the untrusted MD5
checksum to the expected MD5 checksum. If the two values match, we know that we
can safely install the file we downloaded. If the two values do not match, we should
not trust the downloaded file and delete it.

Although it is impossible to obtain the original data from the hash value, MD5 is
vulnerable to several types of attack, including the exploitation of weaknesses in
the algorithm itself and rainbow table attacks. Rainbow tables typically contain the
pre-computed hash values of millions of input values. This allows attackers to look
for the hash value in the rainbow table and determine the actual (unhashed) value.
Spring Security combats this by including the expiration date, the user's password,
and the <remember-me> key in the hashed value.

www.it-ebooks.info

http://www.it-ebooks.info/

Remember-me Services

[148]

Remember-me signature
We can see how MD5 can ensure that we have downloaded the correct file, but
how does this apply to Spring Security's remember-me service? Much like the
file we downloaded, the cookie is untrusted, but we can trust it if we can validate
the signature that originated from our application. When a request comes in with
the remember-me cookie, its contents are extracted and the expected signature is
compared to the signature found in the cookie. The steps in calculating the expected
signature are illustrated in the following diagram:

The remember-me cookie contains the username, expiration, and a signature. Spring
Security will extract the username and expiration from the cookie. It will then utilize
the username from the cookie to look up the password using UserDetailsService.
The key is already known because it was provided using the <remember-me>
element. Now that all the arguments are known, Spring Security can calculate the
expected signature using the username, expiration date, password, and key. It then
compares the expected signature against the cookie's signature.

If the two signatures match, we can trust that the username and expiration date are
valid. Forging a signature is next to impossible without knowing the remember-me
key (which only the application knows) and the user's password (which only this
user knows). This means if the signatures match and if the token is not expired, the
user can be logged in.

You have anticipated that if the user changes their username or
password, any remember-me token set will no longer be valid. Make
sure that you provide appropriate messaging to users if you allow
them to change these bits of their account. Later in this chapter, we
will look at an alternative remember-me implementation that is
reliant only on the username and not on the password.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[149]

Note that it is still possible to differentiate between users who have been
authenticated with a remember-me cookie and users who have presented the
username and password (or equivalent) credentials. We'll experiment with this
shortly when we investigate the security of the remember-me feature.

Token-based remember-me configuration
directives
Two configuration changes are commonly made to alter the default behavior of the
<remember-me> functionality:

Attribute Description
key Defines a unique key used when producing the remember-me

cookie's signature.
token-validity-
seconds

Defines the length of time (in seconds). The remember-me cookie
will be considered valid for authentication. It is also used to set
the cookie expiration timestamp.

As you may infer from the discussion of how the cookie contents are hashed, the key
attribute is critical for security of the remember-me feature. Make sure that the key
you choose is likely to be unique to your application, and long enough so that it can't
be easily guessed.

Keeping in mind the purpose of this book, we've kept the key values relatively
simple, but if you're using remember-me in your own application, it's suggested that
your key contains the unique name of your application and is at least 36 random
characters long. Password generator tools (search Google for "online password
generator") are a great way to get a pseudo-random mix of alphanumeric and special
characters to compose your remember-me key. For applications that exist in multiple
environments (such as development, test, and production), the remember-me cookie
value should include this fact as well. This will prevent remember-me cookies from
inadvertently being used in the wrong environment during testing!

An example key value in a production application might be similar to the following:

prodJbcpCalendar-rmkey-paLLwApsifs24THosE62scabWow78PEaCh99Jus

The token-validity-seconds attribute is used to set the number of seconds after
which the remember-me token will not be accepted for the automatic login function,
even if it is otherwise a valid token. The same attribute is also used to set the
maximum lifetime of the remember-me cookie on the user's browser.

www.it-ebooks.info

http://www.it-ebooks.info/

Remember-me Services

[150]

Configuration of the remember-me session cookies
If token-validity-seconds is set to -1, the login cookie will be set
to a session cookie, which does not persist after the browser is closed
by the user. The token will be valid (assuming the user doesn't close the
browser) for a non-configurable length of two weeks. Don't confuse this
with the cookie that stores your user's session ID—they're two different
things with similar names!

You may have noticed that we listed very few of the attributes. Don't worry,
we will spend time covering some of the other configuration attributes throughout
this chapter.

Is remember-me secure
Any feature related to security, which has been added for user convenience, has the
potential to expose a security risk to our carefully-protected site. The remember-me
feature, in its default form, runs the risk of the user's cookie from being intercepted
and re-used by a malicious user. The following diagram illustrates how this
might happen:

Use of SSL (covered in the Appendix) and other network security techniques can
mitigate this type of attack, but be aware that there are other techniques, such as
cross-site scripting (XSS) that could steal or compromise a remembered user session.
While convenient for the user, we don't want to risk financial or other personal
information from being inadvertently changed or possibly stolen if the remembered
session is misused.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[151]

Although we don't cover the malicious user behavior in detail in
this book, when implementing any secured system it is important to
understand the techniques employed by users who may be trying
to hack your customers or employees. XSS is one such technique,
but many others exist. It's highly recommended that you review the
OWASP Top Ten article (http://www.owasp.org/index.php/
Category:OWASP_Top_Ten_Project) for a good starting list, and
also pick up a web application security reference book, where many of
the techniques demonstrated are illustrated to apply to any technology.

One common approach for maintaining the balance between convenience and
security is identifying the functional locations in the site where personal or sensitive
information could be present. You can then use the fullyAuthenticated expression
to ensure these locations are protected using authorization that checks not just
the user's role, but that they have been authenticated with a full username and
password. We will explore this feature in greater detail in the next section.

Authorization rules for remember-me
We'll fully explore the advanced authorization techniques later in Chapter 10,
Fine-grained Access Control, however, it's important to realize that it's possible to
differentiate access rules based on whether an authenticated session was remembered.

Let's assume we want to limit users trying to access the H2 admin console to
administrators who have authenticated using a username and password. This
is similar to the behavior found in other major consumer-focused commerce
sites, which restrict access to the elevated portions of the site until a password is
entered. Keep in mind that every site is different, so don't blindly apply such rules
to your secure site. For our sample application, we'll concentrate on protecting
the H2 database console. Update the security.xml file to use the keyword
fullyAuthenticated, which ensures that remembered users who try to access the
H2 database are denied access. This is shown in the following code snippet:

src/main/webapp/WEB-INF/spring/security.xml

<http auto-config="true" use-expressions="true">
 ...
 <intercept-url pattern="/admin/**"
 access="hasRole('ROLE_ADMIN') and fullyAuthenticated"/>
 ...
</http>

www.it-ebooks.info

http://www.it-ebooks.info/

Remember-me Services

[152]

The existing rules remain unchanged. We've added a rule that requires requests for
account information to have the appropriate GrantedAuthority of ROLE_USER, and
that the user is fully authenticated; that is, during this authenticated session, they
have actually presented a username and password or other suitable credentials. Note
the syntax of the SpEL logical operators here—and, or, and not are used for logical
operators in SpEL. This was thoughtful of the SpEL designers, as the && operator
would be awkward to represent in XML!

Your code should look like chapter06.02-calendar.

Go ahead and log in with the username admin1@example.com and the password
admin1 ensuring to select the Remember Me feature. Access the H2 database console
and see that the access is granted. Now, delete the JSESSIONID cookie (or close the tab
and then all the browser instances), and ensure that access is still granted to the All
Events page. Now, navigate to the H2 console and observe that the access is denied.

Checking Full Authentication without Expressions
If your application does not use SpEL expressions for access
declarations, you can still check if the user is fully authenticated, by
using the IS_AUTHENTICATED_FULLY access rule (For example,
access=" IS_AUTHENTICATED_FULLY"). Be aware, however, that
standard role access declarations aren't as expressive as SpEL ones, so
you will have trouble handling complex Boolean expressions.

This approach combines the usability enhancements of the remember-me feature
with additional level of security, by requiring a user to present a full set of
credentials to access sensitive information. Throughout the rest of the chapter, we
will explore other ways of making the remember-me feature more secure.

Persistent remember-me
Spring Security provides the capability to alter the method for validating
the remember-me cookie by leveraging different implementations of the
RememberMeServices interface. In this section, we will discuss how we can use
the persistent remember-me tokens using a database, and how this can increase
the security of our application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[153]

Using the persistent-based remember-me
feature
Modifying our remember-me configuration at this point to persist to the database
is surprisingly trivial. The Spring Security configuration parser will recognize a
new data-source-ref attribute on the <remember-me> declaration, and simply
switch implementation classes for RememberMeServices. Let's now review the steps
required to accomplish this.

Adding SQL to create the remember-me schema
We have placed the SQL file containing the expected schema in our resources
folder in the same place we did for Chapter 3, Custom Authentication. You can view
the schema definition in the following code snippet:

src/main/resources/database/h2/security-rememberme-schema.sql

create table persistent_logins (
 username varchar_ignorecase(100) not null,
 series varchar(64) primary key,
 token varchar(64) not null,
 last_used timestamp not null
);

Initializing the data source with the remember-me
schema
You will need to ensure the database is initialized with the schema. We will do this
by adding another script element to our embedded database declaration. Update the
services.xml file shown as follows:

src/main/webapp/WEB-INF/spring/services.xml

<jdbc:embedded-database id="dataSource" type="H2">
 ...
 <jdbc:script location=
 "classpath:/database/h2/security-rememberme-schema.sql"/>
</jdbc:embedded-database>

www.it-ebooks.info

http://www.it-ebooks.info/

Remember-me Services

[154]

Configuring the persistent-based remember-me
feature
Finally, we'll need to make some brief configuration changes to the <remember-me>
declaration to point it to the data source we're using:

<http auto-config="true" use-expressions="true">
 ...
 <remember-me key="jbcpCalendar"
 data-source-ref="dataSource"/>
 ...
</http>

This is all we need to do to switch over to using the persistent-based remember-me
authentication. As you can see, the namespace configuration makes this quite simple.
Go ahead and start up the application, and give it a try. From a user's standpoint,
we do not notice any difference, but we know that the implementation backing this
feature has changed.

Your code should look like chapter06.03-calendar.

How does the persistent-based remember-me
feature work
Instead of validating a signature present in the cookie, the persistent-based
remember-me service validates if the token exists in a database. Each persistent
remember-me cookie consists of the following:

•	 Series identifier: Identifies the initial login of a user. This remains consistent
each time the user is automatically logged in from the original session.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[155]

•	 Token value: A unique value that changes each time a user is authenticated
using the remember-me feature.

When the remember-me cookie is submitted, Spring Security will use a o.s.s.web.
authentication.rememberme.PersistentTokenRepository implementation
to look up the expected token value and an expiration using the submitted series
identifier. It will then compare the token value in the cookie to the expected token
value. If the token is not expired and the two tokens match, the user is considered
authenticated. A new remember-me cookie with the same series identifier, a new
token value, and an updated expiration date will be generated.

If the series token submitted is found in the database, but the tokens do not match,
it can be assumed that someone stole the remember-me cookie. In this case, Spring
Security will terminate this series of remember-me tokens and warn the user that
their login has been compromised.

Are database-backed persistent tokens more
secure
Just like TokenBasedRememberMeServices, persistent tokens may be compromised
by cookie theft or other man-in-the-middle techniques. The use of SSL, as covered
in the Appendix, can circumvent man-in-the-middle techniques. If you are using a
Servlet 3.0 environment (that is, Tomcat 7), Spring Security will mark the cookie as
HttpOnly, which will help to mitigate against the cookie being stolen in the event of
an XSS vulnerability in the application. To learn more about the HttpOnly attribute,
refer to the external resource on cookies provided earlier in the chapter.

One of the advantages of using the persistent-based remember-me feature is that we
can detect if the cookie is compromised. If the correct series token and an incorrect
token is presented, we know that any remember-me feature using that series
token should be considered compromised, and we should terminate any sessions
associated with it. Since the validation is stateful, we can also terminate the specific
remember-me feature without needing to change the user's password.

www.it-ebooks.info

http://www.it-ebooks.info/

Remember-me Services

[156]

Cleaning up the expired remember-me
sessions
The downside of using the persistent-based remember-me feature is that there is no
built-in support for cleaning up the expired sessions. In order to do this, we need to
implement a background process that cleans up the expired sessions. We have included
code within the chapter's sample code to perform the cleanup. For conciseness, we
display a version that does not do validation or error handling, in the following code
snippet below. You can view the full version in the sample code of this chapter.

src/main/java/com/packtpub/springsecurity/web/authentication/
rememberme/JdbcTokenRepositoryImplCleaner.java

public final class JdbcTokenRepositoryImplCleaner implements
 Runnable {
 private final JdbcOperations jdbcOperations;
 private final long tokenValidityInMs;

 public JdbcTokenRepositoryImplCleaner(JdbcOperations
 jdbcOperations,
 long tokenValidityInMs) {
 this.jdbcOperations = jdbcOperations;
 this.tokenValidityInMs = tokenValidityInMs;
 }

 public void run() {
 long expiredInMs = System.currentTimeMillis() -
 tokenValidityInMs;
 jdbcOperations.update(
 "delete from persistent_logins where last_used <= ?",
 new Date(expiredInMs)
);
 }
}

The sample code for this chapter also includes a simple Spring configuration that
will execute the cleaner every ten minutes. If you are unfamiliar with Spring's task
abstraction and want to learn it, then you may want to read more about it in the
Spring reference at http://static.springsource.org/spring/docs/3.1.x/
spring-framework-reference/html/scheduling.html. You can find the relevant
configuration in the following code snippet. Remember that jdbcTemplate is
already configured in our services.xml file.

www.it-ebooks.info

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/
http://www.it-ebooks.info/

Chapter 6

[157]

src/main/webapp/WEB-INF/spring/cleaner.xml

<bean id="tokenRepositoryCleaner"
 class="com.packtpub.springsecurity.web.authentication
 .rememberme.JdbcTokenRepositoryImplCleaner">
 <constructor-arg ref="jdbcTemplate"/>
 <constructor-arg value="600000"/>
</bean>
<task:scheduled-tasks>
 <task:scheduled ref="tokenRepositoryCleaner"
 method="run"
 fixed-delay="600000"/>
</task:scheduled-tasks>

Keep in mind that this configuration is not cluster-aware. Therefore,
if this is deployed to a cluster, the cleaner will execute once for
every JVM that the application is deployed to.

The only thing that needs to be done in our application is to add the cleaner.xml to
the web.xml file, so that it gets loaded. Go ahead and update web.xml, as follows:

src/main/webapp/WEB-INF/web.xml

<param-value>
 ...
 /WEB-INF/spring/security.xml
 /WEB-INF/spring/cleaner.xml
</param-value>

Start up the application and give the updates a try. The configuration that was
provided will ensure that the cleaner is executed every ten minutes. You may want
to change the cleaner task to run more frequently and to clean up the more recently
used remember-me tokens by modifying cleaner.xml. You can then create a few
remember-me tokens and see that they get deleted, by querying for them in the
H2 database console.

Your code should look like chapter06.04-calendar.

www.it-ebooks.info

http://www.it-ebooks.info/

Remember-me Services

[158]

Remember-me architecture
We have gone over the basic architecture of both TokenBasedRememberMeServices
and PersistentTokenBasedRememberMeServices, but we have not described the
overall architecture. Let's see how all the remember-me pieces fit together.

The following diagram illustrates the different components involved in the process
of validating a token-based remember-me token:

As with any of the Spring Security filters, RememberMeAuthenticationFilter is invoked
from within FilterChainProxy. The job of RememberMeAuthenticationFilter is to
inspect the request, and if it is of interest, action is taken.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[159]

RememberMeAuthenticationFilter will use the RememberMeServices
implementation to determine if the user is already logged in. RememberMeServices
does this by inspecting the HTTP request for a remember-me cookie that is then
validated using either the token-based validation or the persistent-based validation
we previously discussed. If the token checks out, the user will be logged in.

Remember-me and the user lifecycle
The implementation of RememberMeServices is invoked at several points in the
user lifecycle (the lifecycle of an authenticated user's session). To assist in your
understanding of the remember-me functionality, it can be helpful to be aware
of the points in time when remember-me services are informed of lifecycle functions:

Action What should happen? RememberMeServices
method invoked

Successful login Implementation sets a remember-me cookie
(if the form parameter has been sent)

loginSuccess

Failed login Implementation should cancel the cookie,
if it's present

loginFailed

User logout Implementation should cancel the cookie,
if it's present

logout*

The logout method is not present on the RememberMeServices
interface. Instead, each RememberMeServices implementation
also implements the LogoutHandler interface, which contains the
logout method. By implementing the LogoutHandler interface,
each RememberMeServices implementation can perform the
necessary cleanup when the user logs out.

Knowing where and how RememberMeServices ties in to the user's lifecycle will be
important when we begin to create custom authentication handlers, because we need
to ensure that any authentication processor treats RememberMeServices consistently,
to preserve the usefulness and security of this functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

Remember-me Services

[160]

Restricting the remember-me feature to
an IP address
Let's put our understanding of the remember-me architecture to use. A common
requirement is that any remember-me token should be tied to the IP address of the
user that created it. This adds additional security to the remember-me feature. To do
this, we only need to implement a custom PersistentTokenRepository interface.
The configuration changes that we will make will illustrate how to configure a
custom RememberMeServices. Throughout this section, we will take a look at
IpAwarePersistentTokenRepository, which is included in the chapter's source code.
IpAwarePersistenTokenRepository ensures that the series identifier is internally
combined with the current user's IP address, and the series identifier includes only the
identifier externally. This means, whenever a token is looked up or saved, the current
IP address is used to lookup or persist the token. In the following code snippets, you
can see IpAwarePersistentTokenRepository works. If you want to dig in even
deeper, we encourage you to view the source included with the chapter.

The trick to looking up the IP address is using Spring's RequestContextHolder. The
relevant code is as follows:

It should be noted that in order to use RequestContextHolder,
you need to ensure you have set up your web.xml file to use
RequestContextListener. We have already performed this
setup for our sample code. However, this can be useful when
utilizing the example code in an external application. Refer to the
Javadoc of IpAwarePersistentTokenRepository for details
on how to set this up.

src/main/java/com/packtpub/springsecurity/web/authentication/
rememberme/IpAwarePersistentTokenRepository.java

private String ipSeries(String series) {
 ServletRequestAttributes attributes =
 (ServletRequestAttributes)
 RequestContextHolder.getRequestAttributes();
 return series + attributes.getRequest().getRemoteAddr();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[161]

We can build on this method to force tokens that are saved to include the IP address
in the series identifier:

public void createNewToken(PersistentRememberMeToken token) {
 String ipSeries = ipSeries(token.getSeries());
 PersistentRememberMeToken ipToken = tokenWithSeries(token,
 ipSeries);
 this.delegateRepository.createNewToken(ipToken);
}

You can see that we first created a new series with the IP address concatenated to
it. The tokenWithSeries method is just a helper that creates a new token with all
the same values except a new series. We then submit the new token with a series
identifier that includes the IP address to delegateRepsository, which is the
original implementation of PersistentTokenRepository.

Whenever the tokens are looked up, we require that the current user's IP address is
appended to the series identifier. This means that there is no way for a user to obtain
a token for a user with a different IP address.

public PersistentRememberMeToken getTokenForSeries(String seriesId) {
 String ipSeries = ipSeries(seriesId);
 PersistentRememberMeToken ipToken =
 delegateRepository.getTokenForSeries(ipSeries);
 return tokenWithSeries(ipToken, seriesId);
}

The remainder of the code is quite similar. Internally, we treat the series identifier
to include the IP address, and externally we present only the original series
identifier. By doing this, we enforce the constraint that only the user who created the
remember-me token can use it.

Let's review the Spring configuration included in this chapter's sample code for
IpAwarePersistentTokenRepository. In the following code snippet, we first create
RememberMeServices needed. We then create PersistentTokenRepository:

src/main/webapp/WEB-INF/spring/ipTokenRepository.xml

<bean id="remembermeServices"
 class="org.springframework.security.web.authentication
 .rememberme.PersistentTokenBasedRememberMeServices">
 <!-- must match remember-me's key attribute -->
 <constructor-arg value="jbcpCalendar"/>
 <constructor-arg ref="userDetailsService"/>
 <constructor-arg ref="tokenRepository"/>
</bean>

www.it-ebooks.info

http://www.it-ebooks.info/

Remember-me Services

[162]

<bean id="tokenRepository" class="com.packtpub.springsecurity.web
 .authentication.rememberme.IpAwarePersistentTokenRepository">
 <constructor-arg>
 <bean class="org.springframework.security.web
 .authentication.rememberme.JdbcTokenRepositoryImpl">
 <property name="dataSource" ref="dataSource"/>
 </bean>
 </constructor-arg>
</bean>

In order for Spring security to utilize our custom RememberMeServices, we need to
update our security configuration to point to it. Go ahead and make the following
updates to security.xml.

src/main/webapp/WEB-INF/spring/security.xml

<http ...>
 …
 <remember-me key="jbcpCalendar"
 services-ref="remembermeServices"/>
 <logout logout-url="/logout"
 logout-success-url="/login/form?logout"/>
</http>

We also need to update web.xml to pick up the new Spring bean configuration file
that includes our custom RememberMeServices interface. Add ipTokenRepository.
xml to the list of configurations in web.xml.

src/main/webapp/WEB-INF/web.xml

<param-value>
 ...
 /WEB-INF/spring/cleaner.xml
 /WEB-INF/spring/ipTokenRepository.xml
</param-value>

Now, go ahead and start up the application. You can use a second computer along
with a plugin, such as Firecookie, to manipulate your remember-me cookie. If you
try to use the remember-me cookie from one computer on another computer, Spring
security will now ignore the remember-me request and delete the associated cookie.

Your code should look like chapter06.05-calendar.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[163]

Note that the IP-based remember-me tokens may behave unexpectedly, if the user
is behind a shared or load balanced network infrastructure, such as a multi-WAN
corporate environment. In most scenarios, however, the addition of an IP address
to the remember-me function provides an additional, welcome layer of security to a
helpful user feature.

Custom cookie and HTTP parameter names
Curious users may wonder if the expected value of the remember-me form field
checkbox, _spring_security_remember_me, or the cookie name, SPRING_SECURITY_
REMEMBER_ME_COOKIE, can be changed, to obscure the use of Spring Security. While the
<remember-me> declaration does not allow this flexibility, now that we've declared our
own RememberMeServices implementation as a Spring Bean, we can simply define
more properties to change the checkbox and cookie names:

src/main/webapp/WEB-INF/spring/ipTokenRepository.xml

<bean id="remembermeServices"
 class="org.springframework.security.web.authentication
 .rememberme.PersistentTokenBasedRememberMeServices">
 ...
 <property name="parameter" value="rememberme"/>
 <property name="cookieName" value="rememberme"/>
</bean>

Don't forget to change the login.jsp page to set the name of the checkbox form
field, to match the parameter value we declared. Go ahead and make the updates to
login.jsp.

src/main/webapp/WEB-INF/views/login.jsp

<input type="checkbox" id="remember"
 name="rememberme"
 value="true"/>

We'd encourage you to do some experimentation here, to ensure you understand how
these settings are related. Go ahead and start up the application and give it a try.

Your code should look like chapter06.06-calendar.

www.it-ebooks.info

http://www.it-ebooks.info/

Remember-me Services

[164]

Summary
This chapter explained and demonstrated the use of Spring Security's remember-me
feature. We started with the most basic setup and learned how to gradually make the
feature more secure. Specifically, we learned the following:

•	 What token-based remember-me services was and how to configure it
•	 How persistent-based remember-me services could provide additional

security, how it works, and the additional considerations necessary when
using it.

•	 How to create a custom remember-me implementation that restricted the
remember-me token to a specific IP address

•	 Various other ways to make the remember-me feature more secure

Up next is certificate-based authentication, where we will discuss how to use trusted
client-side certificates to perform authentication.

www.it-ebooks.info

http://www.it-ebooks.info/

Client Certificate
Authentication

Although username and password authentication is extremely common, as we
discussed in Chapter 1, Anatomy of an Unsafe Application, and Chapter 2, Getting Started
with Spring Security, forms of authentication exist that allow users to present different
types of credentials. Spring Security caters to these requirements as well. In this
chapter, we'll move beyond form-based authentication to explore authentication
using trusted client-side certificates.

During the course of this chapter we will:

•	 Learn how client certificate authentication is negotiated between the user's
browser and a compliant server

•	 Configure Spring Security to authenticate users with client certificates
•	 Understand the architecture of client certificate authentication in

Spring Security
•	 Explore advanced configuration options related to client certificate

authentication
•	 Review pros, cons, and common troubleshooting steps when dealing with

client certificate authentication

www.it-ebooks.info

http://www.it-ebooks.info/

Client Certificate Authentication

[166]

How client certificate authentication
works
Client certificate authentication requires a request for information from the server
and a response from the browser, to negotiate a trusted authentication relationship
between the client (that is, a user's browser) and the server application. This trusted
relationship is built through the use of the exchange of trusted and verifiable
credentials, known as certificates.

Unlike much of what we have seen to this point, with client certificate authentication,
the servlet container or application server itself is typically responsible for
negotiating the trust relationship between the browser and server, by requesting a
certificate, evaluating it, and accepting it as valid.

Client certificate authentication is also known as mutual authentication and is part
of the Secure Sockets Layer (SSL) protocol and its successor, Transport Layer
Security (TLS). As mutual authentication is part of the SSL and TLS protocols, it
follows that an HTTPS connection (secured with SSL or TLS) is required in order to
make use of client certificate authentication. For more details on SSL/TLS support
in Spring Security, please refer to our discussion and implementation of SSL/TLS in
the Appendix. Setting up SSL/TLS in Tomcat (or the application server you have been
using to follow along with the examples) is required, to implement client certificate
authentication. As in the Appendix, we will refer to SSL/TLS as SSL for the remainder
of this chapter.

The following sequence diagram illustrates the interaction between the client
browser and the web server, when negotiating an SSL connection and validating
the trust of a client certificate used for mutual authentication:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[167]

::User

Client Browser Server

Initiate SSL Connection

Return Server Certificate

Return Client Certificate

Prompt User for Certificate

Respond with Certificate

SSL/TLS Key Exchange

Handshake Complete

Verify Client Certificate

The client and

server exchange

encrypted data at

this point, in order

to validate the

client certificate.

We can see that the exchange of two certificates, the server and client certificates,
provides authentication that both parties are known and can be trusted to continue
their conversation securely. In the interest of clarity, we omit some details of the
SSL handshake and trust checking of the certificates themselves; however, you are
encouraged to do further reading in the area of the SSL and TLS protocols, and
certificates in general, as many good reference guides on these subjects exist. RFC
5246, The Transport Layer Security (TLS) Protocol V1.2 (http://tools.ietf.org/
html/rfc5246), is a good place to begin reading about client certificate presentation,
and if you'd like to get into more detail, SL and TLS: Designing and Building Secure
Systems, Eric Rescorla, Addison-Wesley, is an incredibly detailed review of the protocol
and its implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

Client Certificate Authentication

[168]

An alternative name for client certificate-based authentication is X.509 authentication.
The term X.509 is derived from the X.509 standard, originally published by the ITU-T
organization for use in directories based on the X.500 standard (the origins of LDAP,
as you may recall from Chapter 5, LDAP Directory Services). Later, this standard was
adapted for use in securing internet communications.

We mention this here because many of the classes in Spring Security related to this
subject refer to X.509. Remember that X.509 doesn't define the mutual authentication
protocol itself, but defines the format and structure of the certificates and the
encompassing trusted certificate authorities instead.

Setting up client certificate
authentication infrastructure
Unfortunately for you as an individual developer, being able to experiment with
client certificate authentication requires some non-trivial configuration and setup
prior to the relatively easy integration with Spring Security. As these setup steps
tend to cause a lot of problems for first-time developers, we felt it was important to
walk you through them.

We assume that you are using a local, self-signed server certificate and self-signed
client certificates as well as Apache Tomcat. This is typical of most development
environments; however, it's possible that you may have access to a valid server
certificate, a certificate authority (CA), or another application server. If this is
the case, you may use these setup instructions as guidelines and configure your
environment in an analogous manner. Please refer to the SSL setup instructions in
the Appendix for assistance with configuring Tomcat and Spring Security to work
with SSL in a standalone environment.

Understanding the purpose of a public key
infrastructure
This chapter focuses on setting up a self-contained development environment for
the purposes of learning and education. However, in most cases where you are
integrating Spring Security into an existing client certificate-secured environment,
there will be a significant amount of infrastructure (usually a combination of
hardware and software) in place to provide functionality, such as certificate granting
and management, user self-service, and revocation. Environments of this type define
a public key infrastructure—a combination of hardware, software, and security
policies that result in a highly secure authentication-driven network ecosystem.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[169]

In addition to being used for web application authentication, certificates or
hardware devices in these environments can be used for secure, non-repudiated
e-mail (using S/MIME), network authentication, and even physical building access
(using PKCS 11-based hardware devices).

While the management overhead of such an environment can be high (and requires
both IT and process excellence to implement well), it is arguably one of the most
secure possible operating environments for technology professionals.

Creating a client certificate key pair
The self-signed client certificate is created in the same way as the self-signed server
certificate is created, by generating a key pair using the keytool command. A client
certificate key pair differs, in that it requires the key store to be available to the web
browser and requires the client's public key to be loaded into the server's trust store
(we'll explain what this is in a moment).

If you do not wish to generate your own key right now, you may skip to the next
section and use the sample certificates in the src/etc/keys folder in the sample
chapter. Otherwise, create the client key pair as follows:

keytool -genkeypair -alias jbcpclient -keyalg RSA -validity 365
-keystore jbcp_clientauth.p12 -storetype PKCS12

You can find additional information about keytool, along with all the
configuration options, on Oracle's site at http://docs.oracle.com/
javase/6/docs/technotes/tools/solaris/keytool.html.

Most of the arguments to keytool are fairly arbitrary for this use case. However,
when prompted to set up the first and last name (the common name, or CN, portion
of the owner's Distinguished Name or DN) for the client certificate, ensure that the
answer to the first prompt matches a user that we have set up in our Spring Security
JDBC store. For example, admin1@example.com is an appropriate value since we
have the admin1@example.com user set up with Spring Security. An example of the
command-line interaction is as follows:

What is your first and last name?
 [Unknown]: admin1@example.com
... etc
Is CN=admin1@example.com, OU=JBCP Calendar, O=JBCP, L=Chicago, ST=IL,
C=US correct?
 [no]: yes

www.it-ebooks.info

http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://www.it-ebooks.info/

Client Certificate Authentication

[170]

We'll see why this is important, when we configure Spring Security to access the
information from the certificate-authenticated user. We have one final step before
we can set up certificate authentication within Tomcat, which is explained in the
following section.

Configuring the Tomcat trust store
Recall that the definition of a key pair includes both a private and public key.
Much as with SSL certificates verifying and securing server communication, the
validity of the client certificate needs to be verified against the certifying authority
that created it.

As we have created our own self-signed client certificate using the keytool
command, the Java VM will not implicitly trust it as having been assigned by a
trusted certificate authority.

As such, we will need to force Tomcat to recognize the certificate as a trusted
certificate. We do this by exporting the public key from the key pair and adding it
to the Tomcat trust store. Again, if you do not wish to perform this step now, you
can use the existing trust store in src/etc/keys and skip to where we configure
server.xml, later in this section.

First, we'll export the public key to a standard certificate file named jbcp_
clientauth.cer, as follows:

keytool -exportcert -alias jbcpclient -keystore jbcp_clientauth.p12
-storetype PKCS12 -storepass changeit -file jbcp_clientauth.cer

Next, we'll import the certificate into the trust store (this will create the trust store,
but in a typical deployment scenario, you'd probably already have some other
certificates in the trust store).

keytool -importcert -alias jbcpclient -keystore tomcat.truststore
-file jbcp_clientauth.cer

The preceding command will create the trust store called tomcat.truststore and
prompt you for a password (we chose the password changeit). You'll also see some
information about the certificate and will finally be asked to confirm that you do
trust the certificate:

Owner: CN=admin1@example.com, OU=JBCP Calendar, O=JBCP, L=Chicago,
ST=IL, C=US
Issuer: CN=admin1@example.com, OU=JBCP Calendar, O=JBCP, L=Chicago,
ST=IL, C=US
Serial number: 4f5be716

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[171]

Valid from: Sat Mar 10 17:43:18 CST 2012 until: Sun Feb 26 17:43:18
CST 2062
Certificate fingerprints:
 MD5: A3:91:8C:2C:B4:6A:71:E4:18:B7:28:DE:0A:49:8E:B6
 SHA1: BB:4E:42:BE:F2:B4:3A:A6:31:21:70:43:FE:D3:51:A6:EC:4F:16:F5
 Signature algorithm name: SHA1withRSA
 Version: 3
Trust this certificate? [no]: yes

Remember the location of the new tomcat.truststore file, as we will need to
reference it in our Tomcat configuration.

What's the difference between a key store and a trust store?
The Java Secure Socket Extension (JSSE) documentation defines a key
store as a storage mechanism for private keys and their corresponding
public keys. The key store (containing key pairs) is used to encrypt
or decrypt secure messages and so on. The trust store is intended
to store only public keys for trusted communication partners when
verifying identity (similar to how the trust store is used in certificate
authentication). In many common administration scenarios, however,
the key store and trust store are combined into a single file (in Tomcat,
this would be done through the use of the keystoreFile and
truststoreFile attributes of the connector). The format of the files
themselves can be exactly the same (really, each file can be any JSSE-
supported keystore format, including Java Key Store (JKS), PKCS 12,
and so on).

As previously mentioned, we assume you have already configured the SSL Connector
as outlined in the Appendix. If you do not see the keystoreFile or keystorePass
attributes in server.xml, it means you should visit the Appendix to get SSL set up.

Finally, we'll need to point Tomcat at the trust store and enable client certificate
authentication. This is done by adding three additional attributes to the SSL
Connector in the Tomcat server.xml file, as follows:

sever.xml

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
 maxThreads="150" scheme="https" secure="true"
 sslProtocol="TLS"
 keystoreFile="<KEYSTORE_PATH>/tomcat.keystore"
 keystorePass="changeit"
 truststoreFile="<CERT_PATH>/tomcat.truststore"
 truststorePass="changeit"
 clientAuth="true"
 />

www.it-ebooks.info

http://www.it-ebooks.info/

Client Certificate Authentication

[172]

The server.xml file can be found at TOMCAT_HOME/conf/server.
xml. If you are interacting with Tomcat using Eclipse or Spring Tool
Suite, you will find a project named Servers that contains server.
xml. For example, if you are using Tomcat 7, the path in your Eclipse
workspace might look something similar to /Servers/Tomcat v7.0
Server at localhost-config/server.xml.

This should be the remaining configuration required to trigger Tomcat to request
a client certificate when any SSL connection is made. Of course, you will want
to ensure you replace both <CERT_PATH> and <KEYSTORE_PATH> with the full
paths. For example, on a Unix-based operating system, the path might look like
/home/rwinch/packt/chapter7/keys/tomcat.keystore. Go ahead and try
to start up Tomcat to ensure that the server starts up without any errors in the logs.

There's also a way to configure Tomcat to optionally use client certificate
authentication—we'll enable this later in the chapter. For now, we require
the use of client certificates to even connect to the Tomcat server in the
first place. This makes it easier to diagnose whether or not you have set
this up correctly!

The final step is to import the certificate into the client browser.

Importing the certificate key pair into a
browser
Depending on what browser you are using, the process of importing a certificate
may differ. We will provide instructions for installations of Firefox, Chrome, and
Internet Explorer, here, but if you are using another browser, please consult its help
section or your favorite search engine for assistance.

Using Firefox
Follow these steps to import the key store containing the client certificate key
pair in FireFox:

1.	 Click on Edit | Preferences.
2.	 Click on the Advanced button.
3.	 Click on the Encryption tab.
4.	 Click on the View Certificates button. The Certificate Manager window

should open up.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[173]

5.	 Click on the Your Certificates tab.
6.	 Click on the Import... button.
7.	 Browse to the location where you saved the jbcp_clientauth.p12 file and

select it.
8.	 You will need to enter the password (that is, changeit) that you used when

you created the file.

The client certificate should be imported, and you should see it in the list.

Using Chrome
Follow these steps to import the key store containing the client certificate key pair
in Chrome:

1.	 Click on the wrench icon on the browser toolbar.
2.	 Select Settings.
3.	 Click on Show advanced settings....
4.	 In the HTTPS/SSL section, click on the Manage certificates... button.
5.	 In the Your Certificates tab, click on the Import... button.
6.	 Browse to the location where you saved the jbcp_clientauth.p12 file and

select it.
7.	 You will need to enter the password (that is, changeit) that you used when

you created the file.
8.	 Click on OK.

Using Internet Explorer
As Internet Explorer is tightly integrated into the Windows OS, it's a bit easier to
import the key store.

1.	 Double-click on the jbcp_clientauth.p12 file in Windows Explorer. The
Certificate Import Wizard window should open.

2.	 Click on Next and accept the default values until you are prompted for the
certificate password.

3.	 Enter the certificate password (that is, changeit) and click on Next.
4.	 Accept the default Automatically select the certificate store option and click

on Next.
5.	 Click on Finish.

www.it-ebooks.info

http://www.it-ebooks.info/

Client Certificate Authentication

[174]

To verify that the certificate was installed correctly, you will need to follow another
series of steps.

1.	 Open the Tools menu (ALT+X) in Internet Explorer.
2.	 Click on the Internet Options menu item.
3.	 Click on the Content tab.
4.	 Click on the Certificates button.
5.	 Click on the Personal tab, if it is not already selected. You should see the

certificate listed here.

Wrapping up testing
You should now be able to connect to the JBCP Calendar site using the client certificate.
Navigate to https://localhost:8443/calendar/, taking care to use HTTPS and
8443. If all is set up correctly, you should be prompted for a certificate when you
attempt to access the site—in Firefox, the certificate is displayed as follows:

www.it-ebooks.info

https://localhost:8443/calendar/
https://localhost:8443/calendar/
http://www.it-ebooks.info/

Chapter 7

[175]

You'll notice, however, that if you attempt to access a protected section of the
site, such as the My Events section, you'll be redirected to the login page. This is
because we haven't yet configured Spring Security to recognize the information in
the certificate—at this point, all the negotiation between the client and server has
stopped at the Tomcat server itself.

You should start with the code from chapter07.00-calendar.

Troubleshooting client certificate
authentication
Unfortunately, if we said that getting client certificate authentication configured
correctly for the first time, without anything going wrong, was easy, we'd be lying
to you. The fact is, although this is a great and very powerful security apparatus, it
is poorly documented by both the browser and web server manufacturers, and the
error messages, when present, can be confusing at best and misleading at worst.

Remember that, at this point, we have not involved Spring Security in the equation
at all, so a debugger will most probably not help you (unless you have the Tomcat
source code handy). Some common errors and things to check are as follows:

•	 You aren't prompted for a certificate when you access the site. There are
many possible causes for this, and this can be the most puzzling problem to
try to solve. Here are some things to check:

°° Ensure that the certificate has been installed in the browser client
you are using. Sometimes, you need to restart the whole browser
(close all windows), if you attempted to access the site previously
and were rejected.

°° Ensure you are accessing the SSL port for the server (typically 8443
in a development setup), and have selected the https protocol in
your URL. Client certificates are not presented for insecure browser
connections. Make sure the browser also trusts the server SSL
certificate, even if you have to force it to trust a self-signed certificate.

°° Ensure you have added the clientAuth directive to your
Tomcat configuration (or equivalent for whatever application
server you are using).

www.it-ebooks.info

http://www.it-ebooks.info/

Client Certificate Authentication

[176]

°° If all else fails, use a network analyzer or packet sniffer,
such as Wireshark (http://www.wireshark.org/) or Fiddler2
(http://www.fiddler2.com/) to review the traffic and SSL key
exchange over the wire (check with your IT department first—many
companies do not allow tools of this kind on their networks).

•	 If you are using a self-signed client certificate, make sure the public key has
been imported into the server's trust store. If you are using a CA-assigned
certificate, make sure the CA is trusted by the JVM or that the CA certificate
is imported into the server's trust store.

•	 Internet Explorer, in particular, does not report details of client certificate
failures at all (it simply reports a generic Page Cannot be Displayed error).
Use Firefox for diagnosing whether an issue you are seeing is related to client
certificates or not.

Configuring client certificate
authentication in Spring Security
Unlike authentication mechanisms that we have utilized thus far, the use of client
certificate authentication results in the user's request having been pre-authenticated
by the server. As the server (Tomcat) has already established that the user has
provided a valid and trustworthy certificate, Spring Security can simply trust this
assertion of validity.

An important component of the secure login process is still missing, that is,
authorization of the authenticated user. This is where our configuration of Spring
Security comes in—we must add a component to Spring Security that will recognize
the certificate authentication information from the user's HTTP session (populated
by Tomcat), and then validate the presented credentials against the Spring Security
UserDetailsService invocation. The invocation of UserDetailsService will result
in the determination of whether the user declared in the certificate is known to Spring
Security at all, and then it will assign GrantedAuthority as per usual login rules.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[177]

Configuring client certificate authentication
using the security namespace
With all the complexity of LDAP configuration, configuring client certificate
authentication is a welcome reprieve. If we are using the security namespace style
of configuration, the addition of client certificate authentication is a simple one-line
configuration change, added within the <http> declaration. Go ahead and make the
following changes to the provided security.xml configuration.

src/main/webapp/WEB-INF/spring/security.xml

<http ...>
 ...
 <x509 user-service-ref="userDetailsService"/>
</http>
<authentication-manager>
 <authentication-provider>
 <user-service id="userDetailsService">
 <user name="user1@example.com"
 password="user1"
 authorities="ROLE_USER"/>
 <user name="admin1@example.com"
 password="admin1"
 authorities="ROLE_USER,ROLE_ADMIN"/>
 </user-service>
 </authentication-provider>
</authentication-manager>

Observe that the <x509> element references our existing
userDetailsService configuration. For simplicity, we use
the in-memory implementation. However, we could easily
swap this out with any other implementation (i.e., the JDBC
implementation covered in Chapter 4, JDBC-based Authentication).

After restarting the application, you'll again be prompted for a client certificate, but
this time you should be able to access areas of the site requiring authorization. You
can see from the logs (if you have them enabled) that you have been logged in as the
admin1@example.com user.

Your code should look like chapter07.01-calendar.

www.it-ebooks.info

http://www.it-ebooks.info/

Client Certificate Authentication

[178]

How Spring Security uses certificate
information
As previously discussed, Spring Security's involvement in certificate exchange is to
pick up information from the presented certificate and map the user's credentials to a
user service. What we did not see in the use of the <x509> declaration was the magic
that makes this happen. Recall that, when we had set the client certificate up, a DN
similar to an LDAP DN was associated with the certificate:

Owner: CN=admin@example.com, OU=JBCP Calendar, O=JBCP, L=Chicago,
ST=IL, C=US

Spring Security uses the information in this DN to determine the actual username
of the principal and it will look for this information in UserDetailsService. In
particular, it allows for the specification of a regular expression, which is used to
match a portion of the DN established with the certificate, and utilize this portion
of the DN as the principal name. The implicit, default configuration for the <x509>
declaration would be as follows:

<x509 user-service-ref="userDetailsService"
 subject-principal-regex="CN=(.*?),"/>

We can see that this regular expression would match the admin1@example.
com value as the principal's name. This regular expression must contain a single
matching group, but it can be configured to support the username and DN issuance
requirements of your application, for example, if the DNs for your organization's
certificates include the email or userid fields, the regular expression can be
modified to use these values as the authenticated principal's name.

How Spring Security certificate authentication
works
Let's review the various actors involved in the review and evaluation of the client
certificates and translation into a Spring Security-authenticated session, with the help
of the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[179]

www.it-ebooks.info

http://www.it-ebooks.info/

Client Certificate Authentication

[180]

We can see that o.s.s.web.authentication.preauth.x509.
X509AuthenticationFilter is responsible for examining the request of an
unauthenticated user for the presentation of client certificates. If it sees that the
request includes a valid client certificate, it will extract the principal using o.s.s.web.
authentication.preauth.x509.SubjectDnX509PrincipalExtractor, using
regular expression matching on the certificate owner's DN, as previously described.

Be aware that although the diagram indicates that examination of
the certificate occurs for unauthenticated users, a check can also be
performed when the presented certificate identifies a different user
than the one which was previously authenticated. This would result
in a new authentication request using the newly provided credentials.
The reason for this should be clear—any time a user presents a new
set of credentials, the application must be aware of this and react in a
responsible fashion by ensuring that the user is still able to access it.

Once the certificate has been accepted (or rejected/ignored), as with other
authentication mechanisms, an Authentication token is built and passed
along to AuthenticationManager for authentication. We can now review
the very brief illustration of the o.s.s.web.authentication.preauth.
PreAuthenticatedAuthenticationProvider handling of the authentication token:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[181]

Though we will not go over them in detail, there are a number of other
preauthenticated mechanisms supported by Spring Security. Some examples
include Java EE role mapping (J2eePreAuthenticatedProcessingFilter),
WebSphere integration (WebSpherePreAuthenticatedProcessingFilter), and
Site Minder-style authentication (RequestHeaderAuthenticationFilter). If you
understand the process flow of client certificate authentication, understanding these
other authentication types is significantly easier.

Handling unauthenticated requests with
AuthenticationEntryPoint
Since X509AuthenticationFilter will continue processing the request if
authentication fails, we'll need to handle situations where the user does not
authenticate successfully and has requested a protected resource. The way that Spring
Security allows developers to customize this is by plugging in a custom o.s.s.web.
AuthenticationEntryPoint implementation. In a default form login scenario,
LoginUrlAuthenticationEntryPoint is used to redirect the user to a login page if
they have been denied access to a protected resource and are not authenticated.

In contrast, in typical client certificate authentication environments, alternative
methods of authentication are simply not supported (remember that Tomcat
expects the certificate well before the Spring Security form login will take
place anyway). As such, it doesn't make sense to retain the default behavior of
redirection to a form login page. Instead, we'll modify the entry point to simply
return an HTTP 403 Forbidden message, using o.s.s.web.authentication.
Http403ForbiddenEntryPoint. Go ahead and make the following updates in your
security.xml file.

src/main/webapp/WEB-INF/spring/security.xml

<http auto-config="true" use-expressions="true"
 entry-point-ref="forbiddenAuthEntryPoint">
 …
</http>
<bean:bean id="forbiddenAuthEntryPoint"
class="org.springframework.security.web.authentication.Http403Fo
rbiddenEntryPoint"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Client Certificate Authentication

[182]

Now, if a user tries to access a protected resource and is unable to provide a valid
certificate, they will be presented with the following page:

Your code should now look like chapter07.02-calendar.

Other configuration or application flow adjustments that are commonly performed
with client certificate authentication are as follows:

•	 Removal of the form-based login page altogether
•	 Removal of the Log Out link (as there's no reason to log out because the

browser will always present the user's certificate)
•	 Removal of the functionality to rename the user account and change

the password
•	 Removal of the user registration functionality (unless you are able to tie it

into the issuance of a new certificate)

Supporting dual-mode authentication
It is also possible that some environments may support both certificate-based and
form-based authentication. If this is the case in your environment, it is also possible
(and trivial) to support it with Spring Security 3.1. We can simply leave the default
AuthenticationEntryPoint interface (redirecting to the form-based login page)
intact and allow the user to log in using the standard login form if they do not
supply a client certificate.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[183]

If you choose to configure your application this way, you'll need to adjust the Tomcat
SSL settings (change as appropriate for your application server). Simply change the
clientAuth directive to want instead of true:

 <Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
 maxThreads="150" scheme="https" secure="true"
 sslProtocol="TLS"
 keystoreFile="conf/tomcat.keystore"
 keystorePass="password"
 truststoreFile="conf/tomcat.truststore"
 truststorePass="password"
 clientAuth="want"
 />

We'll also need to remove the entry-point-ref attribute that we configured in
the previous exercise, so that the standard form-based authentication workflow
takes over if the user isn't able to supply a valid certificate upon the browser first
being queried.

Although this is convenient, there are a few things to keep in mind about dual-mode
(form- and certificate-based) authentication.

Most browsers will not re-prompt the user for a certificate if they have failed
certificate authentication once, so make sure that your users are aware that they
may need to re-enter the browser to present their certificate again.

Recall that a password is not required to authenticate users with certificates; however,
if you are still using UserDetailsService to support your form-based authenticated
users, this may be the same UserDetailsService that you are also using to give
the PreAuthenticatedAuthenticationProvider information about your users.
This presents a potential security risk, as users who you intend to sign in only with
certificates could potentially authenticate using form login credentials. There are
several ways to solve this problem, and they are described in the following list:

•	 Ensure that the users authenticating with certificates have an appropriately
strong password in your user store.

•	 Consider customizing your user store to clearly identify users who are
enabled for form-based login. This can be tracked with an additional field
in the table holding user account information and minor adjustments to the
SQL queries used by the JdbcDaoImpl object.

•	 Configure a separate user details store altogether for users who are logging
in as certificate-authenticated users, to completely segregate them from users
that are allowed to use form-based login.

www.it-ebooks.info

http://www.it-ebooks.info/

Client Certificate Authentication

[184]

Dual-mode authentication can be a powerful addition to your site and can be
deployed effectively and securely, provided that you keep in mind the situations
under which users will be granted access to it.

Configuring client certificate
authentication using Spring Beans
Earlier in this chapter, we reviewed the flow of the classes involved in client
certificate authentication. As such, it should be straightforward for us to configure
JBCP Calendar using explicit beans. By using the explicit configuration, we will have
additional configuration options at our disposal. Let's take a look and see how to
use explicit configuration. We have already created a file named security-x509-
explicitly.xml. You can view the contents of the file in the following code snippet:

src/main/webapp/WEB-INF/spring/security-x509-explicitly.xml

<bean id="x509Filter"
 class="org.springframework.security.web.authentication
 .preauth.x509.X509AuthenticationFilter">
 <property name="authenticationManager"
 ref="authenticationManager" />
</bean>
<bean id="preauthAuthenticationProvider"
 class="org.springframework.security.web.authentication
 .preauth.PreAuthenticatedAuthenticationProvider">
 <property name="preAuthenticatedUserDetailsService"
 ref="authenticationUserDetailsService" />
</bean>
<bean id="authenticationUserDetailsService"
 class="org.springframework.security.core.userdetails
 .UserDetailsByNameServiceWrapper">
 <property name="userDetailsService" ref="userDetailsService" />
</bean>

We'll also need to remove the <x509> element, add x509Filter to our filter chain,
and add our AuthenticationProvider implementation to AuthenticationManger.

<http auto-config="true" use-expressions="true">
 ...
 <x509 user-server-ref="userDetailsService"/>
 <custom-filter ref="x509Filter" position="X509_FILTER"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[185]

</http>

<authentication-manager alias="authenticationManager">
 <authentication-provider ref="preauthAuthenticationProvider"/>
 <authentication-provider>
 <user-service id="userDetailsService">
 <user name="user1@example.com"
 password="user1"
 authorities="ROLE_USER"/>
 <user name="admin1@example.com"
 password="admin1"
 authorities="ROLE_USER,ROLE_ADMIN"/>
 </user-service>
 </authentication-provider>
</authentication-manager>

Lastly, we need to instruct Spring to use our explicit configuration. Open up
web.xml, and add our explicit configuration, as follows:

src/main/webapp/WEB-INF/web.xml

<param-value>
 ...
 /WEB-INF/spring/security.xml
 /WEB-INF/spring/security-x509-explicitly.xml
</param-value>

Now give the application a try. Nothing much has changed from a user's perspective,
but as developers, we have opened the door to a number of
additional configuration options.

Your code should now look like chapter07.03-calendar.

Additional capabilities of bean-based
configuration
The use of Spring bean-based configuration provides us with additional capabilities
through the exposure of bean properties that aren't exposed through the security
namespace style of configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Client Certificate Authentication

[186]

Additional properties available on X509AuthenticationFilter are as follows:

Property Description Default
continueFilterChainOn
UnsuccessfulAuthentication

If false, a failed authentication will
throw an exception rather than allow the
request to continue. This would typically
be set in cases where a valid certificate
is expected, and required, to access the
secured site. If true, the filter chain
will proceed, even if there is a failed
authentication.

true

checkForPrincipalChanges If true, the filter will check to see if the
currently authenticated username differs
from the username presented in the client
certificate. If so, authentication against
the new certificate will be performed
and the HTTP session will be invalidated
(optionally, see the next attribute). If
false, once the user is authenticated,
they will remain authenticated even if
they present different credentials.

false

invalidateSessionOn
PrincipalChange

If true, and the principal in the
request changes, the user's HTTP
session will be invalidated prior to
being reauthenticated. If false, the
session will remain—note that this may
introduce security risks.

true

PreAuthenticatedAuthenticationProvider has a couple of interesting properties
available to us, which are listed in the following table:

Property Description Default

preAuthenticatedUser
DetailsService

Used to build a full UserDetails object from
the username extracted from the certificate.

None

throwExceptionWhen
TokenRejected

If true, a BadCredentialsException
exception will be thrown when the token is
not constructed properly (does not contain a
username or certificate). It is typically set to
true in environments where certificates are
used exclusively.

None

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[187]

In addition to these properties, there are a number of other opportunities for
implementing interfaces or extending classes involved in certificate authentication
to further customize your implementation.

Considerations when implementing
Client Certificate authentication
Client certificate authentication, while highly secure, isn't for everyone and isn't
appropriate for every situation.

The pros of client certificate authentication are listed as follows:

•	 Certificates establish a framework of mutual trust and verifiability that both
parties (client and server) are who they say they are.

•	 Certificate-based authentication, if implemented properly, is much more
difficult to spoof or tamper with than other forms of authentication.

•	 If a well-supported browser is used and configured correctly, client certificate
authentication can effectively act as a single sign-on solution, enabling
transparent login to all certificate-secured applications.

The cons of client certificate authentication are listed as follows:

•	 Use of certificates typically requires the entire user population to have them.
This can lead to both a user training burden and an administrative burden.
Most organizations deploying certificate-based authentication on a large
scale must have sufficient self-service and helpdesk support for certificate
maintenance, expiration tracking, and user assistance.

•	 Use of certificates is generally an all-or-none affair, meaning that
mixed-mode authentication, offering support for non-certificate users,
is not provided due to the complexity of web server configuration or poor
application support.

•	 Use of certificates may not be well supported by all users in your user
population, including the ones who use mobile devices.

•	 Correct configuration of the infrastructure required to support
certificate-based authentication may require advanced IT knowledge.

As we can see, there are both benefits and drawbacks to client certificate
authentication. When implemented correctly, it can be a very convenient mode of
access for your users and has extremely attractive security and non-repudiation
properties. You will need to determine for your particular situation whether or not
this type of authentication is appropriate.

www.it-ebooks.info

http://www.it-ebooks.info/

Client Certificate Authentication

[188]

Summary
In this chapter, we examined the architecture, flow, and Spring Security support for
client certificate-based authentication. We have:

•	 Reviewed the concepts and overall flow of client certificate
(mutual) authentication

•	 Learned the important steps required to configure Apache Tomcat for a
self-signed SSL and client certificate scenario

•	 Configured Spring Security to understand certificate-based credentials
presented by clients

•	 Understood the architecture of Spring Security classes related to
certificate authentication

•	 Discovered how to configure a Spring bean-style client certificate environment
•	 Weighed the pros and cons of this type of authentication

It's quite common for developers unfamiliar with client certificates to be confused by
many of the complexities of this type of environment. We hope that this chapter has
made this complicated subject a bit easier to understand and implement! In the next
chapter, we will discuss how you can accomplish Single Sign On with OpenID.

www.it-ebooks.info

http://www.it-ebooks.info/

Opening up to OpenID
OpenID is a very popular form of trusted identity management that allows users
to manage their identity through a single trusted provider. This convenient feature
provides users with the security of storing their password and personal information
with the trusted OpenID provider, optionally disclosing this personal information
upon request. Additionally, the OpenID-enabled website can have confidence that
the users providing OpenID credentials are who they say they are.

In this chapter, you will:

•	 Learn to set up your own OpenID in less than five minutes
•	 Configure the JBCP Calendar application with a very rapid implementation

of OpenID
•	 Learn the conceptual architecture of OpenID and how it provides your site

with a trustworthy user access
•	 Implement OpenID-based user registration
•	 Experiment with OpenID attribute exchange for user profile functionality
•	 Demonstrate how we can trigger automatic authentication to the previous

OpenID Provider
•	 Examine the security offered by the OpenID-based login

The promising world of OpenID
The promise of OpenID as a technology is to allow users on the Web to centralize
their personal data and information with a trusted provider, and then use the trusted
provider as a delegate to establish trustworthiness with the other sites with whom
the user wants to interact.

www.it-ebooks.info

http://www.it-ebooks.info/

Opening up to OpenID

[190]

In concept, this type of login through a trusted third party has been in existence for a
long time, in many different forms (For example, Microsoft Passport became one of
the more notable central login services on the Web for some time). OpenID's distinct
advantage is that the OpenID Provider needs to implement only the public OpenID
protocol to be compatible with any site seeking to integrate login with OpenID.

Since OpenID is an open specification, there is currently a diverse population of
public providers utilizing it. This is an excellent recipe for healthy competition and it
is good for consumer choice.

The following diagram illustrates the high-level relationship between a site
integrating OpenID during the login process and OpenID providers.

We can see that the user presents his credentials in the form of a unique named
identifier, typically a Uniform Resource Identifier (URI), which is assigned to the
user by their OpenID provider, and is used to uniquely identify both the user and
the OpenID provider. This is commonly done by either prepending a subdomain to
the URI of the OpenID Provider (for example, https://jamesgosling.myopenid.
com/), or appending a unique identifier to the URI of the OpenID provider URI (for
example, https://me.yahoo.com/springsecurity31). We can visually see from
the presented URI that both methods clearly identify both the OpenID provider (via
domain name) and the unique user identifier.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[191]

Don't trust OpenID unequivocally!
Here you can see a fundamental assumption that can fool users of the
system. It is possible for us to sign up for an OpenID, which would
make it appear as though we were James Gosling, even though we
obviously are not. Do not make the false assumption that just because
a user has a convincing-sounding OpenID (or OpenID delegate
provider) he/she is the authentic person, without requiring additional
forms of identification. Thinking about it another way, if someone
came to your door just claiming he was James Gosling, would you let
him in without verifying his ID?

The OpenID-enabled application then redirects the user to the OpenID provider, at
which the user presents his credentials to the provider, which is then responsible for
making an access decision. Once the access decision has been made by the provider,
the provider redirects the user to the originating site, which is now assured of the
user's authenticity.

OpenID is much easier to understand once you have tried it. Let's add OpenID to the
JBCP Calendar login screen now!

Signing up for an OpenID
In order to get the full value of the exercises in this section (and to be able to test
login), you'll need your own OpenID from one of the many available providers,
of which a partial listing is available at http://openid.net/get-an-openid/.
Common OpenID providers with which you probably already have an account are
Google, Yahoo!, AOL, Flickr, or MySpace. To get full value out of the exercises in this
chapter, we recommend you have accounts with at least:

•	 myOpenID
•	 Google

Enabling OpenID authentication with
Spring Security
We'll see a common theme with the external authentication providers examined over
the next several chapters. Spring Security provides convenient wrappers around the
provider integrations that are actually developed outside the Spring ecosystem.

In this vein, the openid4java project (http://code.google.com/p/openid4java/)
provides the underlying OpenID provider discovery and request/response
negotiation for the Spring Security OpenID functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

Opening up to OpenID

[192]

Additional required dependencies
In order to utilize OpenID, we will need to include spring-security-openid and its
transitive dependencies. This can be done in Maven by updating the pom.xml as
shown next.

pom.xml

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-openid</artifactId>
 <version>3.1.0.RELEASE</version>
</dependency>

You should start with the source in chapter08.00-calendar.

Writing an OpenID login form, we will need to replace the username and password
fields with an OpenID field. Go ahead and make the following updates to your
login.jsp file.

src/main/webapp/WEB-INF/views/login.jsp

<c:url value="/login" var="loginUrl"/>
<form action="${loginUrl}" method="post">
 …
 <c:if test="${param.logout != null}">
 <div class="alert alert-success">
 You have been logged out.
 </div>
 </c:if>
 <label for="openid_identifer">OpenID</label>
 <input id="openid_identifier" name="openid_identifier"
 type="text" />
 <div class="form-actions">
 <input class="btn" name="submit" type="submit" value="Login"/>
 </div>
</form>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[193]

You will notice that we have exchanged the username and password field for an
openid_identifier field. The name of the form field, openid_identifier, is not
a coincidence. The OpenID specification recommends that implementing websites
use this name for their OpenID login field, so that the user agents (browsers) have
the semantic knowledge of the function of this field. There are even browser plugins
such as Verisign's OpenID SeatBelt (https://pip.verisignlabs.com/seatbelt.
do), which take advantage of this knowledge to pre-populate your OpenID
credentials into any recognizable OpenID field on a page.

You'll note that we don't offer the remember me option with OpenID login. This
is due to the fact that the redirection to and from the vendor causes the remember
me checkbox value to be lost, such that when the user's successfully authenticated,
they no longer have the remember me option indicated. This is unfortunate, but
ultimately increases the security of OpenID as a login mechanism for our site, as
OpenID forces the user to establish a trust relationship through the provider with
each and every login.

Configuring OpenID support in Spring
Security
Turning on the basic OpenID support, via the inclusion of a servlet filter in our
FilterChainProxy and authentication provider, is as simple as removing the
<form-login> element and adding a directive to our <http> configuration element
in security.xml as follows:

src/main/webapp/WEB-INF/spring/security.xml

<http auto-config="true"...>
 …
 <form-login login-page="/login/form"
 login-processing-url="/login"
 username-parameter="username"
 password-parameter="password"
 authentication-failure-url="/login/form?error"
 default-target-url="/default"/>
 <openid-login login-page="/login/form"
 login-processing-url="/login"
 authentication-failure-url="/login/form?error"
 default-target-url="/default"/>
<logout logout-url="/logout"
 logout-success-url="/login/form?logout"/>
</http>

www.it-ebooks.info

http://www.it-ebooks.info/

Opening up to OpenID

[194]

Keeping all but the username and password attributes of our <login-form> element,
we have exchanged <login-form> for the <openid-login> element. Since we use
auto-config="true", if we had not chosen to override these defaults, we would
only have needed to specify <openid-login/> with no additional attributes. You
can find a summary of the attributes and their default values in the following table:

Attribute Default Value
login-page /spring_security_login

login-processing-url /j_spring_openid_security_check

authentication-failure-url /spring_security_login?login_
error

default-target-url /

After adding this configuration element and restarting the application, you will be
able to use the OpenID login form to present an OpenID and navigate through the
OpenID authentication process.

When you are returned to JBCP Calendar, however, you will be denied access. This
is because your credentials won't have any roles assigned to them. This is a good
example of the difference between authentication and authorization. We were able to
successfully authenticate the user, but the user is not authorized to do anything yet.
We'll adjust our configuration to grant the use access to the application next.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[195]

Adding OpenID users
As we do not yet have OpenID-enabled new user registration, we'll need to
preemptively add the user account to our existing users. To do this you will need to
update the calendar-data.sql file to include your OpenID. For example, if your
OpenID is http://springsecurity31.myopenid.com/, then you will want to
update one of the insert statements to use your OpenID as shown next:

src/main/resources/database/h2/calendar-data.sql

insert into calendar_users(
 id,openid,
 email,password,first_name,last_name)
values (

 0,'http://springsecurity31.myopenid.com/',
 'user1@example.com','user1','User','1'
);

You'll note that this is similar to our traditional username and password-based
admin account, with the exception that we have added an additional column for the
OpenID to act as another alias for the user.

CalendarUserDetailsService lookup by
OpenID
We have included code from the custom authentication we did in Chapter 3,
Custom Authentication. Previously, we linked Spring Security's UserDetails to our
CalendarUser using its e-mail property. However, the username will now be an
OpenID rather than an e-mail,
so we need to update our CalendarUserDetailsService to lookup the
CalendarUser user by OpenID. Go ahead and make the following changes:

src/main/java/com/packtpub/springsecurity/core/userdetails/
CalendarUserDetailsService.java

public UserDetails loadUserByUsername(String username) {
 CalendarUser user = calendarUserDao.findUserByOpenid(username);
 ...
}

Your code should look like chapter08.01-calendar.

www.it-ebooks.info

http://springsecurity31.myopenid.com/
http://www.it-ebooks.info/

Opening up to OpenID

[196]

At this point, you should be able to complete a full log in using OpenID. The
redirects that occur are as follows:

We've now OpenID-enabled JBCP Calendar login! Feel free to test using several
OpenID providers. You'll notice that, although the overall functionality is the same,
the experience that the provider offers when reviewing and accepting the OpenID
request differs greatly from provider to provider.

The OpenID user registration problem
Try using the same technique that we worked through previously with a Yahoo!
OpenID—for example, https://me.yahoo.com/springsecurity31. You will find
that it doesn't work, as it did with the other OpenID providers. This illustrates a key
problem with the structure of OpenID, and highlights the importance of OpenID-
enabled user registration.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[197]

How are OpenID identifiers resolved
The actual OpenID that Yahoo! returns will be included in the error message on the
login page and will be similar to the following: https://me.yahoo.com/a/MMifyI
8ZntF5DvkzM29BhUGVeNr0kEi4Nw--#5a086. In OpenID terminology, the identifier
that the user enters in the login box is known as the user-supplied identifier. This
identifier may not actually correspond to the identifier that uniquely identifies the
user (the user's claimed identifier), but as part of the verification of ownership, the
OpenID Provider will take care of translating the user input to the identifier that the
provider can actually prove that the user owns.

The OpenID discovery protocol and the OpenID Provider itself
actually have to be smart about figuring out what the user meant,
based on what they supply upon OpenID authentication. For
example, try entering the name of an OpenID provider (for example,
www.yahoo.com) in the OpenID login box—you'll get a slightly
different interface that allows you to pick your OpenID, as you
didn't supply a unique OpenID in the login box. Pretty clever! For
details on this and other aspects of the OpenID specifications, check
out the specifications page (on the developers page) of the OpenID
Foundation website at http://openid.net/developers/.

Once the user is able to provide proof of ownership of their claimed identifier, the
OpenID provider will return a normalized version of the claimed identifier, known
as the OpenID Provider Local Identifier (or OP-Local Identifier), to the requesting
application. This is the final, unique identifier that the OpenID provider indicates
that the user owns, and the one which will always be returned from authentication
requests to the provider. Hence, this is the identifier that the JBCP Calendar should
be storing for user identification.

www.it-ebooks.info

https://me.yahoo.com/a/MMifyI8ZntF5DvkzM29BhUGVeNr0kEi4Nw--#5a086
https://me.yahoo.com/a/MMifyI8ZntF5DvkzM29BhUGVeNr0kEi4Nw--#5a086
http://www.it-ebooks.info/

Opening up to OpenID

[198]

The flow of an OpenID login request handled by Spring Security proceeds as follows:

The o.s.s.openid.OpenIDAuthenticationFilter is responsible for
responding to requests to log in and responding to the user's login request,
much as the UsernamePasswordAuthenticationFilter did for username
password-based authentication. We can see from the diagram that the
o.s.s.openid.OpenID4JavaConsumer delegates to the openid4java library
to construct the URL, which ultimately redirects the user to the OpenID Provider.
The openid4java library (via the org.openid4java.consumer.ConsumerManager)
is also responsible for the provider discovery process described earlier.

This filter is actually used in both phases of OpenID authentication—both
in formulating the redirect to the OpenID Provider, and the handling of the
authentication response from the provider. The response from the OpenID Provider
is a simple GET request, with a series of well-defined fields, which are consumed and
verified by the openid4java library. While you won't be dealing with these fields
directly, some of the important ones are as follows:

Field Name Description
openid.op_
endpoint

The OpenID Provider's endpoint URL used for verification.

openid.claimed_id The OpenID claimed identifier provided by the user.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[199]

Field Name Description
openid.response_
nonce

The nonce calculated by the provider, which is a unique value
that is used to help prevent replay attacks.

openid.sig The OpenID response signature.
openid.
association

The one-time use association generated by the requestor and
used to calculate the signature, and determine the validity of
the response.

openid.identifier The OP-Local Identifier.

We'll examine how some of these fields are used in verifying the validity of a response.
Let's look at the actors involved in processing the vendor's OpenID response:

We see that the user is redirected to log in after he/she submits his/her credentials
to the OpenID provider's site. The OpenIDAuthenticationFilter performs some
rather basic checks to see if the invoking request is an OpenID request (from the
JBCP Calendar login form), or a possibly valid OpenID response from a provider.

www.it-ebooks.info

http://www.it-ebooks.info/

Opening up to OpenID

[200]

Once the request is determined to be an OpenID response, a complex series of
validations ensure to validate the correctness and authenticity of the response
(refer to the Is OpenID secure? section later in this chapter for more details on this).
The OpenID4JavaConsumer eventually returns a sparsely populated o.s.s.openid.
OpenIDAuthenticationToken, which is used by the filter to determine whether the
initial validation of the response was successful. The token is then passed along to
the AuthenticationManager, which treats it like any other Authentication object.

The o.s.s.openid.OpenIDAuthenticationProvider ends up being responsible
for performing final verification against the local authentication store (for example,
InMemoryUserDetailsManager). It's important to remember that what is expected in
the authentication store is a username containing the OP-Local Identifier, which may
not necessarily match the identifier initially supplied by the user—this is the crux of
the OpenID registration problem. The flow from this point onward is very similar
to traditional username/password authentication, most notably in the retrieval of
appropriate group and role assignments from the UserDetailsService.

Implementing user registration with
OpenID
For a user to be able to create an account on the JBCP Calendar application,
which will be OpenID enabled, they'll need to first prove that they own the identifier.
Thus, we'll integrate the registration with the login process. If desired,
you could extend this example to have an explicit registration form that may even
have additional parameters.

Registering
OpenIDAuthenticationUserDetailsService
We have already seen the power of Spring Security's UserDetailsService,
which allows developers to customize the lookup of UserDetails by a username.
However, there is another more powerful interface that we can leverage to create our
users from the OpenID response if the user does not already exist. Let's have a look
at the code that is required to do this.

src/main/java/com/packtpub/springsecurity/openid/core/userdetails/
RegisteringOpenIDAuthenticationUserDetailsService.java

public UserDetails loadUserDetails(OpenIDAuthenticationToken token) {
 String openid = token.getIdentityUrl();
 try {
 return userDetailsService.loadUserByUsername(openid);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[201]

 } catch (UsernameNotFoundException e) {
 }

 // user does not exist, so create a new one
 CalendarUser newUser = new CalendarUser();
 newUser.setOpenid(openid);
 newUser.setEmail("mock@example.com");
 newUser.setFirstName("Dynamic");
 newUser.setLastName("Provision");
 newUser.setPassword("notused");
 calendarService.createUser(newUser);

 // now the user exists, try looking them up again
 return userDetailsService.loadUserByUsername(openid);
}

The first step is to attempt to lookup the user by the OpenID. You will notice that we
are calling the same CalendarUserDetailsService that we just updated to lookup
our CalendarUser by its OpenID. If the user is not found, then we create a new one
with mostly mock data and then return the newly created user. Later we will use the
OpenIDAuthenticationToken to populate the entire CalendarUser.

We could avoid the second lookup by using the CalendarUserDetails
object we specified in our CalendarUserDetailsService. However,
we choose to leave the conversion as an implementation detail and
perform the lookup again.

Since the RegisteringOpenIDAuthenticationUserDetailsService was
included with this chapter and it is configured using classpath scanning
(as we saw in Chapter 3, Custom Authentication), all we need to do is instruct Spring
Security to use it. Go ahead and make the following updates to your security.xml:

src/main/webapp/WEB-INF/spring/security.xml

<openid-login login-page="/login/form"
 login-processing-url="/login"
 authentication-failure-url="/login/form?error"
 default-target-url="/default"
 user-service-ref=
"registeringOpenIDAuthenticationUserDetailsService"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Opening up to OpenID

[202]

Keep in mind that OP-Local Identifiers can potentially be quite long—in
fact, the OpenID 2.0 specification does not supply a maximum length
for an OP-Local Identifier. The default Spring Security JDBC schema
provides a relatively small username column (which you may recall that
we already extended from the default to 100 characters). Depending on
your needs, you may wish to extend the username column further to
accommodate long identifiers.
Remember that authentication isn't an issue at this point, merely
being able to correctly identify the user in the database, based on their
OpenID. Some OpenID-enabled sites go one step further than this,
and allow a level of indirection between the OpenID identifier and
the username used for authentication (for example, allowing multiple
OpenIDs to be associated with the same user account). The abstraction
of the OpenID from the user's account name can be helpful for those
users who have multiple OpenIDs from different providers that they
may wish to use on your site. Although this is somewhat contrary to the
goals of OpenID, it does happen, and you need to keep it in mind when
designing an OpenID-enabled site.

In order for us to utilize dynamic provisioning, we must have a user that does not
exist in the database yet. Go ahead and make changes to the database script so that
your OpenID is no longer referenced.

src/main/resources/database/h2/calendar-data.sql

insert into calendar_users(
 id,openid,
 email,password,first_name,last_name)
values (
 0,null,
 'user1@example.com','user1','User','1'
);

Start up the application and log in with a user that does not yet exist to see that your
user is dynamically provisioned. While it is good to no longer have to pre-populate
users in the database, using mock data for the e-mail and name leaves a lot to be
desired. Fortunately, we can leverage OpenID attribute exchange to obtain this
information too.

Your code should look like chapter08.02-calendar.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[203]

Attribute Exchange
One other interesting feature of OpenID is the ability for the OpenID Provider to
supply (upon the user's consent) typical user registration data such as name, e-mail,
and date of birth, if the OpenID-enabled website requests it. This functionality is
called Attribute Exchange (AX). The following diagram illustrates how a request for
attribute exchange makes it into the OpenID request:

The AX attribute values (if supplied by the provider) are returned along with the rest
of the OpenID response, and inserted into the OpenIDAuthenticationToken as a list
of o.s.s.openid.OpenIDAttribute.

www.it-ebooks.info

http://www.it-ebooks.info/

Opening up to OpenID

[204]

AX attributes can be arbitrarily defined by OpenID Providers, but are always
uniquely defined by a URI. There has been an effort to standardize the available
and common attributes into a schema of sorts. Attributes such as the following are:

Attribute name Description
http://axschema.org/contact/email User's e-mail address
http://axschema.org/namePerson User's full name

The axschema.org site used to list over 30 different attributes, with unique URIs
and descriptions. While the site is no longer in existence, many OpenID Providers
still use the axschema.org definitions. Other OpenID Providers reference schema.
openid.net instead of axschema.org. For additional information, refer to the
OpenID Provider's documentation.

Let's see how to configure attribute exchange with Spring Security.

Enabling AX in Spring Security OpenID
Enabling AX support in Spring Security OpenID is actually quite trivial, once you
know the appropriate attributes to request. We can configure AX support so that the
user's e-mail address and name is requested as follows:

<openid-login ...>
 <attribute-exchange>
 <openid-attribute name="email"
 type="http://schema.openid.net/contact/email"
 required="true"/>
 <openid-attribute name="fullname"
 type="http://schema.openid.net/namePerson"
 required="true" />
 </attribute-exchange>
</openid-login>

We can then extract these attributes from the OpenIDAuthenticationToken
in our RegisteringOpenIDAuthenticationUserDetailsService. You will
notice that we have provided some helper methods that extract the correct
OpenIDAttribute for you.

src/main/java/com/packtpub/springsecurity/openid/core/userdetails/
RegisteringOpenIDAuthenticationUserDetailsService.java

private String getAttr(String attrName, List<OpenIDAttribute> attrs) {
 List<String> attrValues = getAttrs(attrName, attrs);
 if (attrValues.isEmpty()) {

www.it-ebooks.info

http://schema.openid.net/contact/email
http://www.it-ebooks.info/

Chapter 8

[205]

 return null;
 }
 return attrValues.iterator().next();
}

private List<String> getAttrs(String attrName, List<OpenIDAttribute>
attrs) {
 for (OpenIDAttribute attr : attrs) {
 if (attrName.equals(attr.getName())) {
 return new ArrayList<String>(attr.getValues());
 }
 }
 return Collections.emptyList();
}

private String getFirstName(List<OpenIDAttribute> attrs) {
 String firstName = getAttr("firstname", attrs);
 if(firstName != null) {
 return firstName;
 }
 return parseFullName(attrs, true);
}

private String getLastName(List<OpenIDAttribute> attrs) {
 String lastName = getAttr("lastname", attrs);
 if(lastName != null) {
 return lastName;
 }
 return parseFullName(attrs, false);
}

The method getAttrs will iterate over each OpenIDAttribute to find all the values
for a particular attribute name. Our getAttr method uses the getAttrs method to
extract the first value. We have also defined a few helper methods to get the first
and last name for the current user. If we do not find the first or last name as its own
attribute, we extract the appropriate value from an attribute that contains the full
name. Update the loadUserDetails method to extract out the attributes using the
provided utility methods as shown next:

src/main/java/com/packtpub/springsecurity/openid/core/userdetails/
RegisteringOpenIDAuthenticationUserDetailsService.java

public UserDetails loadUserDetails(OpenIDAuthenticationToken token) {
 ...
 List<OpenIDAttribute> attrs = token.getAttributes();

www.it-ebooks.info

http://www.it-ebooks.info/

Opening up to OpenID

[206]

 CalendarUser newUser = new CalendarUser();
 newUser.setOpenid(openid);
 newUser.setEmail(getAttr("email", attrs));
 newUser.setFirstName(getFirstName(attrs));
 newUser.setLastName(getLastName(attrs));
 ...
 return userDetailsService.loadUserByUsername(openid);
}

Your code should look like chapter08.03-calendar.

For simplicity, the existing code will return existing users as is without updating
the user with the attributes. This means that in order for us to utilize the attribute
exchange, we must again use a user that does not exist in the database yet.

For this example, we'd suggest that you log in with your myOpenID identity. You'll
see that this time, when you are redirected to the provider, the provider informs you
that additional information is being requested by the JBCP Calendar site.

If you do not see the attributes being shared, you will want to
check to ensure that you have entered a full name with at least one
space and e-mail in Your Account | Registration Personas on the
myOpenID site.

You should see something similar to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[207]

Afterwards, you will be logged in with the e-mail address you entered and
your first and last name. You may notice that our example demonstrates an
e-mail coming from example.com, which should not be possible. This is one
of the common misconceptions about attribute exchange. In fact, there is no
requirement that OpenID Providers verify the e-mail address they return.

Furthermore, realize that anyone (even a malicious user) can create an OpenID
Provider. While an OpenID from another provider cannot be impersonated, a
malicious OpenID Provider can return arbitrary attributes. This means that using
attributes, like e-mail, as a means for access control should be avoided.

Configuring different attributes for each
OpenID Provider
Unfortunately, the promise of AX falls far short in reality. AX is very poorly
supported by the available OpenID Providers in the market, with only a handful
of providers offering support (myOpenID and Google being the most prominent).
Additionally, there is a lot of confusion, even among providers that do support the
standard, of what attributes correspond to the data that they are willing to send. For
example, to query for a user's e-mail address, the attribute name to request differs
even between the two major providers who support AX!

Provider AX attribute supported
myOpenID http://schema.openid.net/contact/email

Google http://axschema.org/contact/email

Fortunately, Spring Security makes it easy to request different attributes depending
on which OpenID Provider is being used. Let's update our security.xml to take
advantage of OpenID Provider's specific attribute exchange.

src/main/webapp/WEB-INF/spring/security.xml

<openid-login ...>
 <attribute-exchange identifier-match=".*myopenid.com.*">
 <openid-attribute name="email"
 type="http://schema.openid.net/contact/email"
 required="true"/>
 <openid-attribute name="fullname"
 type="http://schema.openid.net/namePerson"
 required="true"/>
 </attribute-exchange>
 <attribute-exchange identifier-match="https://www.google.com/.*">
 <openid-attribute name="email"

www.it-ebooks.info

http://www.it-ebooks.info/

Opening up to OpenID

[208]

 type="http://axschema.org/contact/email"
 required="true" count="1"/>
 <openid-attribute name="firstname"
 type="http://axschema.org/namePerson/first"
 required="true" />
 <openid-attribute name="lastname"
 type="http://axschema.org/namePerson/last"
 required="true" />
 </attribute-exchange>
 <attribute-exchange identifier-match=".*yahoo.com.*">
 <openid-attribute name="email"
 type="http://axschema.org/contact/email"
 required="true"/>
 <openid-attribute name="fullname"
 type="http://axschema.org/namePerson"
 required="true" />
 </attribute-exchange>
</openid-login>

You will notice that each <attribute-exchange> element contains an identifier-
match attribute, which is a regular expression that is used to compare against the
OpenID Provider. If the pattern matches the user provided OpenID, the attributes
will be sent to the OpenID Provider. Go ahead and start the application and try
logging in with your Google account. We can now authenticate with a Google
account just as easily as we did with our myOpenID account.

Your code should look like chapter08.04-calendar.

Usability enhancements
A number of usability studies have been done on OpenID that have demonstrated
it is not as user-friendly as one might want. It is difficult for users to remember their
OpenID and even if they remember it, it can be cumbersome to type. One way of
dealing with this is by allowing users to select which OpenID Provider they would
like to use with a UI.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[209]

We have already included the necessary images, css, and JavaScript to use OpenID
Selector http://code.google.com/p/openid-selector/ in our sample application
at src/main/webapp/resources. Our header.jsp file has already included the
JQuery library and the OpenID Selector library in the <head> of our page. To use it
we will need to make a few updates to our login.jsp page.

src/main/webapp/WEB-INF/views/login.jsp

<form action="${loginUrl}" method="post" id="openid_form">
 ...
 <div id="openid_choice">
 <p>Please click your account provider:</p>
 <div id="openid_btns"></div>
 </div>
 <div id="openid_input_area">
 <input id="openid_identifier"
 name="openid_identifier" type="text" value="http://"
/>
 <input id="openid_submit" type="submit" value="Sign-In"/>
 </div>
</form>
<script type="text/javascript">
 $(document).ready(function() {
 openid.init('openid_identifier');
 });
</script>

Observe that we add some additional markup to our OpenID login form. If you
have not seen it before, the $(document).ready is utilizing JQuery to initialize our
OpenID Selector library after the document is ready. To learn more about JQuery
visit their site at http://jquery.com.

Now when you are presented with the login page you will see a listing of various
OpenID Providers that can easily be selected.

www.it-ebooks.info

http://code.google.com/p/openid-selector/
http://www.it-ebooks.info/

Opening up to OpenID

[210]

Go ahead and try to use Google to log in. Wasn't this a lot easier? If you are looking
for more information on OpenID studies, a good place to start is the article Thoughts
on combining Google & Yahoo UX research at https://sites.google.com/site/
oauthgoog/UXFedLogin/CombineGoogYahoo.

Your code should look like chapter08.05-calendar.

Automatic redirection to the OpenID
Provider
At times it may be nice to automatically redirect to a specific OpenID Provider. For
example, perhaps we always wanted to use Google for authentication. To do this
we only need to make a single configuration update. Update our login page in the
security.xml as shown next:

src/main/webapp/WEB-INF/spring/security.xml

<openid-login ...
 login-page=
 "/login?openid_identifier=https://www.google.com/accounts/
o8/id">
 ...
</openid-login>

Your code should look like chapter08.06-calendar.

Start up the application and navigate to the My Events page. You will find that you are
automatically redirected to the Google OpenID Provider. If you are already logged into
Google, you will automatically be logged into our Calendar application too.

Keep in mind that this setup does not prevent a user from using
another OpenID Provider. To do this we would need to explicitly
check the OpenID Provider's URL before allowing the application to
indicate the user is authenticated.

www.it-ebooks.info

https://sites.google.com/site/oauthgoog/UXFedLogin/CombineGoogYahoo
https://sites.google.com/site/oauthgoog/UXFedLogin/CombineGoogYahoo
http://www.it-ebooks.info/

Chapter 8

[211]

Conditional automatic redirection
More realistically, we might want to remember if the user last went to the Google
OpenID Provider and if so, automatically authenticate with Google. The question
now becomes, how do we determine when we should request the login page or
automatically redirect the user to Google?

The JavaScript we integrated into our project for enhancing the user experience sets a
cookie by the name of openid_provider to Google if it was the last OpenID Provider
used. We have included a controller that will request automatic log in from Google if
the cookie is present and contains the value of Google. Otherwise, the original login
page is displayed. As you can see next the implementation is rather trivial:

src/main/java/com/packtpub/springsecurity/web/controllers/
ConditionalLoginPageController.java

@Controller
public class ConditionalLoginPageController {
 @RequestMapping("/login/check")
 public String check(@CookieValue(required = false) String openid_
provider) {
 if ("google".equals(openid_provider)) {
 return "redirect:/login?openid_identifier=https://www.
google.com/accounts/o8/id";
 }
 return "redirect:/login/form";
 }
}

This solution should feel very similar to how we set up custom home
pages using the DefaultController in Chapter 2, Getting Started
with Spring Security. When possible, creating a controller should be
preferred to writing a custom AuthenticationEntryPoint since
it is not coupled to Spring Security. It should also be noted that while
we use Spring MVC, the controller could be implemented using other
technologies (such as Struts, a standard Servlet, and so on).

Since we have already included the controller in this chapter, all we need to do now
is to update our security.xml to send the user to the controller.

src/main/webapp/WEB-INF/spring/security.xml

<openid-login ...
 login-page="/login/check">
 ...
</openid-login>

www.it-ebooks.info

http://www.it-ebooks.info/

Opening up to OpenID

[212]

Go ahead and start the application up and give it a try. Try requesting the My
Events page and you will find that if you last used Google to log in, you will
automatically be redirected to Google. If you are already logged in to Google, you
will transparently be logged in to the JBCP Calendar application.

Your code should look like chapter08.07-calendar.

Is OpenID Secure
As support for OpenID relies on the trustworthiness of the OpenID Provider and the
verifiability of the provider's response, security, and authenticity are critical in order
for the application to have confidence in the user's OpenID-based login.

Fortunately, the designers of the OpenID specification were very aware of this
concern, and implemented a series of verification steps to prevent response forgery,
replay attacks, and other types of tampering, which are explained as follows:

•	 Response forgery is prevented due to the combination of a shared secret key
(created by the OpenID-enabled site prior to the initial request), and a one-way
hashed message signature on the response itself. A malicious user tampering
with the data in any of the response fields without having access to the shared
secret key and signature algorithm would generate an invalid response.

•	 Replay attacks are prevented due to the inclusion of a nonce, or a one-time
use, random key, that should be recorded by the OpenID-enabled site so that
it cannot ever be reused. In this way, even a user attempting to re-issue the
response URL would be foiled because the receiving site would determine
that the nonce had been previously used and would invalidate the request.

The most likely form of attack that could result in a compromised user interaction
would be a man-in-the-middle attack, where a malicious user could intercept the
user's interaction between their computer and the OpenID Provider. A hypothetical
attacker in this situation could be in a position to record the conversation between
the user's browser and the OpenID Provider, and record the secret key used when
the request was initiated. The attacker in this case would need a very high level of
sophistication and a reasonably complete implementation of the OpenID signature
specification—in short, this is not likely to occur with any regularity.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[213]

Do note that although the openid4java library does support the use of persistent
nonce tracking using JDBC, Spring Security OpenID does not currently expose this as
a configuration parameter on the namespace configuration—thus nonces are tracked
only in memory. This means that a replay attack could occur after a server restart,
or in a clustered environment, where the in-memory store would not be replicated
between JVMs on different servers.

Summary
In this chapter, we reviewed OpenID, a relatively recent technology for user
authentication and credentials management. OpenID has a very wide reach on the
Web, and has made great strides in usability and acceptance within the past year
or two. Most public-facing sites on the modern web should plan on some form of
OpenID support, and JBCP Calendar application is no exception!

In this chapter we:

•	 Learned about the OpenID authentication mechanism, and explored its high-
level architecture and key terminology

•	 Implemented OpenID login and automatic user registration with the JBCP
Calendar application

•	 Explored the future of OpenID profile management through the use of
Attribute Exchange (AX)

•	 Demonstrated automatic login with OpenID
•	 Examined the security of OpenID login responses

We covered one of the simplest single sign on mechanisms to implement with Spring
Security. One of the downsides is that it does not support a standard mechanism for
single logout. In the next chapter, we will explore CAS, another standard single sign
on protocol that also supports single logout.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Single Sign-on with Central
Authentication Service

In this chapter, we'll examine the use of Central Authentication Service (CAS) as a
single sign-on portal for Spring Security-based applications.

During the course of this chapter, we'll:

•	 Learn about CAS, its architecture, and how it benefits system administrators
and organizations of any size

•	 Understand how Spring Security can be reconfigured to handle the
interception of authentication requests and redirect it to CAS

•	 Configure the JBCP Calendar application to utilize CAS single sign-on
•	 Gain an understanding of how a single logout can be performed and

configure our application to support it
•	 Discuss how to use CAS proxy ticket authentication for services, and

configure our application to utilize proxy ticket authentication
•	 Discuss how to customize the out of the box JA-SIG CAS Server using the

recommended war overlay approach
•	 Integrate the CAS Server with LDAP, and pass data from LDAP to Spring

Security via CAS

www.it-ebooks.info

http://www.it-ebooks.info/

Single Sign-on with Central Authentication Service

[216]

Introducing Central Authentication
Service
CAS is an open source, single sign-on server, providing centralized access control
and authentication to web-based resources within an organization. The benefits of
CAS are numerous to administrators supporting many applications and diverse user
communities, which are as follows:

•	 Individual or group access to resources (applications) can be configured in
one location

•	 Broad support for a wide variety of authentication stores (to centralize user
management) provides a single point of authentication and control to a
widespread, cross-machine environment

•	 Wide authentication support is provided for web-based and non web-based
Java applications through CAS client libraries

•	 A single point of reference for user credentials (via CAS) is provided, so that
CAS client applications are not required to have any knowledge of the user's
credentials or knowledge of how to verify them

In this chapter, we'll not focus much on the management of CAS but on
authentication, and how CAS can act as an authentication point for the users of our
site. Although CAS is commonly seen in intranet environments for enterprises or
educational institutions, it can also be found in use at high-profile locations such as
Sony Online Entertainment's public-facing site.

High-level CAS authentication flow
At a high level, CAS is composed of a CAS Server, which is the central web
application for determining authentication and one or more CAS Services, which
are distinct web applications that use the CAS Server to get authenticated. The basic
authentication flow of CAS proceeds via the following actions:

1.	 The user attempts to access a protected resource on the website.
2.	 The user is redirected through the browser from the CAS Service to the CAS

server to request a login.
3.	 The CAS server is responsible for user authentication. If the user is not

already authenticated to the CAS server, it requests credentials from the user.
In the next diagram, the user is presented with a login page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[217]

4.	 The user submits the credentials (i.e. the username and password).
5.	 If the user's credentials are valid, the CAS Server responds with a redirect

through the browser with a Service Ticket. A Service Ticket is a one time use
token used to identify a user.

6.	 The CAS Service calls the CAS Server back to verify that the ticket is valid,
has not expired, and so on. Note that this step does not occur through
the browser.

7.	 The CAS Server responds with an assertion indicating that trust has been
established. If the ticket is acceptable, trust has been established and the user
may proceed via normal authorization checking.

Visually, this behaves as is illustrated in the following diagram:

CAS

Server

Requests CAS login

Login Page

Submit credentials

Validate Service Ticket

Returns current user

Sends Service Ticket

Web

Browser

Requests protected

resource

Web

Application

2

3

4

2

7

5

2

We can see that there is a high level of interaction between the CAS Server and the
secured application, with several data exchange handshakes required before trust of
the user can be established. The result of this complexity is a single sign-on protocol
that is quite hard to spoof through common techniques (assuming other network
security precautions, such as the use of SSL and network monitoring are in place).

Now that we understand how CAS authentication works in general, let's see how it
applies to Spring Security.

www.it-ebooks.info

http://www.it-ebooks.info/

Single Sign-on with Central Authentication Service

[218]

Spring Security and CAS
Spring Security has a strong integration capability with CAS, although not as
tightly integrated into the security namespace style of configuration as the OpenID
and LDAP integrations that we've explored thus far in the latter part of this book.
Instead, much of the configuration relies on bean wiring and configuration by
reference from the security namespace elements to bean declarations.

The two basic pieces of CAS authentication when using Spring Security involve
the following:

•	 Replacement of the standard AuthenticationEntryPoint
implementation—which typically handles redirection of unauthenticated
users to the login page—with an implementation that redirects the user to
the CAS Server instead

•	 Processing the Service Ticket when the user is redirected back from the CAS
Server to the protected resource, through the use of a custom servlet filter

An important thing to understand about CAS is that in typical deployments, CAS is
intended to replace all the alternative login mechanisms of your application. As such,
once we configure CAS for Spring Security, our users must use CAS exclusively as
an authentication mechanism to our application. In most cases, this is not a problem;
as we discussed in the previous section, CAS is designed to proxy authentication
requests to one or more authentication stores (similar to what Spring Security does
when delegating to a database or LDAP for authentication). From our previous
diagram, we can see that our application is no longer checking its own authentication
store to validate users. Instead, it determines the user through the use of the Service
Ticket. However, as we will discuss later, initially Spring Security still needs a data
store to determine the user's authorization. We will discuss how to remove this
restriction later on in the chapter.

After completing the basic CAS integration with Spring Security, we can remove
the Login link from the home page, and enjoy automatic redirection to CAS's login
screen where we attempt to access a protected resource. Of course, depending on the
application, it can also be beneficial to still allow the user to explicitly log in (so that
they can see customized content, and so on).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[219]

Required dependencies
Before we get too far, we should ensure that our dependencies are updated. A list of
the dependencies that we have added with comments about when they are needed
can be seen as follows:

pom.xml

<!-- needed for any CAS integration
<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-cas</artifactId>
 <version>3.1.0.RELEASE</version>
</dependency>
<!-- both needed for Single Logout -->
<dependency>
 <groupId>org.opensaml</groupId>
 <artifactId>opensaml</artifactId>
 <version>1.1</version>
 <scope>runtime</scope>
</dependency>
<dependency>
 <groupId>xml-security</groupId>
 <artifactId>xmlsec</artifactId>
 <version>1.3.0</version>
 <scope>runtime</scope>
</dependency>
<!-- needed for caching of proxy tickets -->
<dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache</artifactId>
 <version>1.6.2</version>
 <scope>runtime</scope>
</dependency>

www.it-ebooks.info

http://www.it-ebooks.info/

Single Sign-on with Central Authentication Service

[220]

CAS installation and configuration
CAS has the benefit of having an extremely dedicated team behind it that has done
an excellent job of developing both quality software and accurate, straightforward
documentation of how to use it. Should you choose to follow along with the
examples in this chapter, you are encouraged to read the appropriate Getting Started
manual for your CAS platform. You can find this manual at https://wiki.jasig.
org/display/CASUM/Demo.

In order to make integration as simple as possible, we have included a cas-server
application for this chapter, which can be deployed in Spring Tool Suite along with
the Calendar application. For the examples in this chapter, we will assume that CAS
is deployed at https://localhost:8443/cas/ and the Calendar application is
deployed at https://localhost:8443/calendar/. In order to work, CAS requires
the use of HTTPS. For detailed instructions on setting up HTTPS, refer to Appendix,
Additional Reference Material.

The examples in this chapter were written using the most recent
available version of CAS Server, 3.4.11, at the time of this writing.
Be aware that some significant changes to some of the backend
classes were made to CAS in the 3.x time frame. So if you are on an
earlier version of the server, these instructions may be slightly or
significantly different for your environment.

Let's go ahead and configure the components required for CAS authentication.

You should start the chapter off with the source from
chapter09.00-calendar and chapter09.00-cas-server.

Configuring basic CAS integration
Since the Spring Security namespace does not support CAS configuration, there
are quite a few more steps that we need to implement in order to get a basic setup
working. In order to get a high-level understanding of what is happening, you can
refer to the following diagram. Don't worry about understanding the entire diagram
right now, as we will break it into small chunks in order to make it easy to digest.

www.it-ebooks.info

https://localhost:8443/cas/
https://localhost:8443/cas/
https://localhost:8443/calendar/
https://localhost:8443/calendar/
http://www.it-ebooks.info/

Chapter 9

[221]

www.it-ebooks.info

http://www.it-ebooks.info/

Single Sign-on with Central Authentication Service

[222]

Creating the CAS ServiceProperties object
The Spring Security setup relies on a o.s.s.cas.ServiceProperties bean in order
to store common information about the CAS Service. The ServiceProperties object
plays a role in coordinating data exchange between the various CAS components—it
is used as a data object to store CAS configuration settings that are shared (and are
expected to match) by the varying participants in the Spring CAS stack. You can
view the configuration included in the following code snippet:

src/main/webapp/WEB-INF/spring/security-cas.xml

<bean id="serviceProperties"
 class="org.springframework.security.cas.ServiceProperties">
 <property name="service"
 value="https://${cas.service.host}/calendar/login"/>
</bean>
<context:property-placeholder
 system-properties-mode="OVERRIDE" properties-
ref="environment"/>
<util:properties id="environment">
 <prop key="cas.service.host">localhost:8443</prop>
 <prop key="cas.server.host">localhost:8443</prop>
</util:properties>

You probably will have noticed that we leveraged <context:property-
placeholder /> to use variables named ${cas.service.host} and ${cas.
server.host}. Both of these values can be included in your application, and Spring
will automatically replace them with the values provided in <context:property-
placeholder/>. This is a common strategy when deploying a CAS Service, since
the CAS Server will likely change as we progress from development to production.
In this instance, we default to using localhost:8443 for both the CAS Server
and the Calendar application. This configuration can be overridden using a
system argument when the application is taken to production. Alternatively, the
configuration could be externalized into a Java property's files. Either mechanism
allows us to externalize our configuration properly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[223]

Adding the CasAuthenticationEntryPoint
As we briefly mentioned earlier in this chapter, Spring Security uses a o.s.s.web.
AuthenticationEntryPoint interface to request credentials from the user. Typically,
this involves redirecting the user to the login page. With CAS, we will need to redirect
the CAS Server to request a login. When we redirect to the CAS Server, Spring
Security must include a service parameter that indicates where the CAS server
should send the Service Ticket. Fortunately, Spring Security provides the o.s.s.cas.
web.CasAuthenticationEntryPoint, which is specifically designed for this purpose.
The configuration that is included in the sample application is as follows:

src/main/webapp/WEB-INF/spring/security-cas.xml

<bean id="casEntryPoint"
 class="org.springframework.security.cas.web
 .CasAuthenticationEntryPoint">
 <property name="serviceProperties" ref="serviceProperties"/>
 <property name="loginUrl" value=
 "https://${cas.server.host}/cas/login" />
</bean>

The CasAuthenticationEntryPoint object uses the ServiceProperties class to
specify where to send the Service Ticket once the user is authenticated. CAS allows
for the selective granting of access per user, per application, based on configuration.
We'll examine the particulars of this URL in a moment, when we configure the
servlet filter that is expected to process it.

Next, we will then need to update Spring Security to utilize the bean with the ID
casEntryPoint. You will notice that the autoconfig="true" attribute is no longer
necessary since we are explicitly configuring the AuthenticationEntryPoint. Make
the following update to our security.xml file:

src/main/webapp/WEB-INF/spring/security.xml

<http use-expressions="true"
 entry-point-ref="casEntryPoint">
 …
</http>

www.it-ebooks.info

http://www.it-ebooks.info/

Single Sign-on with Central Authentication Service

[224]

Lastly, we need to ensure that the security-cas.xml file is loaded by Spring.
Update the web.xml file as follows:

src/main/webapp/WEB-INF/web.xml

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 /WEB-INF/spring/services.xml
 /WEB-INF/spring/i18n.xml
 /WEB-INF/spring/security.xml
 /WEB-INF/spring/security-cas.xml
 </param-value>
</context-param>

If you start the application at this point and attempt to access the My Events page,
you will immediately be redirected to the CAS Server for authentication. The default
configuration of CAS allows authentication for any user whose username is equal to
the password. So, you should be able to log in with a username as admin1@example.
com and a password as admin1@example.com (or user1@example.com/user1@
example.com).

You'll notice, however, that even after the login, you will immediately be redirected
back to the CAS Server. This is because although the destination application
was able to receive the ticket, it wasn't able to be validated, and as such the
AccessDeniedException object is handled by CAS as a rejection of the ticket.

Enabling CAS ticket verification
Referring to the diagram that we saw earlier in the Configuring Basic CAS
Authentication section, we can see that Spring Security is responsible for
identifying an unauthenticated request and redirecting the user to CAS via the
FilterSecurityInterceptor class. Adding the CasAuthenticationEntryPoint
object has overridden the standard redirect to the login page functionality and
provided the expected redirection from the application to the CAS Server. Now we
need to configure things so that, once authenticated to CAS, the user is properly
authenticated to the application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[225]

We remember from Chapter 8, Opening up to OpenID, that OpenID uses a similar
redirection approach, by redirecting unauthenticated users to the OpenID Provider
for authentication and then back to the application with verifiable credentials. CAS
differs from OpenID. In the CAS protocol, upon the user's return to the application,
the application is expected to call back the CAS server to explicitly validate that the
credentials provided are valid and accurate. Contrast this with OpenID that uses
the presence of a date-based nonce and key-based signature so that the credentials
passed by the OpenID Provider can be independently verified.

The benefit of the CAS approach is that the information passed on from the CAS
Server to authenticate the user is much simpler—only a single URL parameter is
returned to the application by the CAS server. Additionally, the application itself
need not track the active or valid tickets, and instead can wholly rely on CAS to
verify this information. Much as we saw with OpenID, a servlet filter is responsible
for recognizing a redirect from CAS and processing it as an authentication request.
We can see how this is configured in our security-cas.xml file, as follows:

src/main/webapp/WEB-INF/spring/security-cas.xml

<bean id="casFilter"
 class="org.springframework.security.cas.web
 .CasAuthenticationFilter">
 <property name="authenticationManager"
 ref="authenticationManager"/>
 <property name="filterProcessesUrl" value="/login"/>
</bean>

We'll then replace the <form-login> element with the custom servlet filter
declaration in our security.xml file:

src/main/webapp/WEB-INF/spring/security.xml

 <http use-expressions="true"
 entry-point-ref="casEntryPoint">
 ...
 <custom-filter ref="casFilter" position="CAS_FILTER"/>
 <logout logout-url="/logout"
 logout-success-url="/login/form?logout"/>
 </http>

www.it-ebooks.info

http://www.it-ebooks.info/

Single Sign-on with Central Authentication Service

[226]

Finally, we noted that a reference to the AuthenticationManager was required by
the CasAuthenticationFilter object—this is added (if not already present) with the
alias attribute of the <authentication-manager> declaration in security.xml:

src/main/webapp/WEB-INF/spring/security.xml

 <authentication-manager
 alias="authenticationManager">

You may have noticed that the CAS service name from
the ServiceProperties configuration evaluates to
https://localhost:8443/calendar/login. As we've
seen with other authentication filters, it is best to override
the default URL /j_spring_cas_security_check, to
ensure that we do not unnecessarily disclose to malicious
users that we are using Spring Security.

The CasAuthenticationFilter object populates an Authentication implementation
(a UsernamePasswordAuthenticationToken object) with special credentials that are
recognizable by the next and final elements of a minimal CAS configuration.

Proving authenticity with the
CasAuthenticationProvider
If you have been following the logical flow of Spring Security through the rest of
this book, hopefully you already know what comes next—the Authentication
token must be inspected by an appropriate AuthenticationProvider. CAS is
no different, and as such, the final piece of the puzzle is the configuration of an
o.s.s.cas.authentication.CasAuthenticationProvider object within the
AuthenticationManager.

www.it-ebooks.info

https://localhost:8443/calendar/login
https://localhost:8443/calendar/login
http://www.it-ebooks.info/

Chapter 9

[227]

First, we'll declare the Spring Bean in security-cas.xml, as follows:

src/main/webapp/WEB-INF/spring/security-cas.xml

<bean id="casAuthProvider"
 class="org.springframework.security.cas.authentication
 .CasAuthenticationProvider">
 <property name="ticketValidator" ref="ticketValidator"/>
 <property name="serviceProperties" ref="serviceProperties"/>
 <property name="key" value="casJbcpCalendar"/>
 <property name="authenticationUserDetailsService"
 ref="authenticationUserDetailsService"/>
</bean>

Next, we'll configure a reference to this new AuthenticationProvider in
security.xml, where our <authentication-manager> declaration resides:

src/main/webapp/WEB-INF/spring/security.xml

</http>
<authentication-manager alias="authenticationManager">
 <authentication-provider ref="casAuthProvider"/>
</authentication-manager>
<user-service id="userDetailsService">
 <user name="user1@example.com"
 password="user1"
 authorities="ROLE_USER"/>
 <user name="admin1@example.com"
 password="admin1"
 authorities="ROLE_USER,ROLE_ADMIN"/>
</user-service>
</bean:beans>

If you have any other AuthenticationProvider references remaining from
prior exercises, please remember to remove them for our work with CAS. While
removing the remaining <authentication-provider> references, ensure to
move the <user-service> tag outside the <authentication-manager> tag. It
is also important to update the <user-service> tag to have an ID that is set to
userDetailsService. All of these changes are illustrated in the preceding code.
Now, we'll need to take care of the other attributes and bean references within the
CasAuthenticationProvider class.

www.it-ebooks.info

http://www.it-ebooks.info/

Single Sign-on with Central Authentication Service

[228]

The ticketValidator attribute refers to an implementation of the org.jasig.
cas.client.validation.TicketValidator interface; as we are using CAS
2.0 authentication, we'll declare an org.jasig.cas.client.validation.
Cas20ServiceTicketValidator instance, as follows:

src/main/webapp/WEB-INF/spring/security-cas.xml

<bean id="ticketValidator"
 class="org.jasig.cas.client.validation
 .Cas20ServiceTicketValidator">
 <constructor-arg value="https://${cas.server.host}/cas/"/>
</bean>

Astute readers may be confused as to why we are configuring our
CAS 3.x Server to use CAS 2.0. The version in the CAS 3.x Server
refers to the version of the CAS Server implementation of the
protocol; this is distinct from the version in CAS 2.0, which is the
version of the CAS protocol being used.

The constructor argument supplied to this class should refer (once again) to
the URL used to access the CAS Server. You'll note that at this point, we have
moved out of the org.springframework.security package into org.jasig,
which is part of the CAS client JAR files. Later in this chapter, we'll see that the
TicketValidator interface also has implementations (still within the CAS client
JAR files) that support other methods of authentication with CAS, such as the
Proxy Ticket and SAML authentication.

Next, we see the key attribute; this is simply used to validate the integrity of
UsernamePasswordAuthenticationToken and can be arbitrarily defined.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[229]

Just as we saw in Chapter 8, Opening up to OpenID the
authenticationUserDetailsService attribute refers to an o.s.s.core.userdetails.
AuthenticationUserDetailsService object that is used to translate the username
information from the Authentication token to a fully-populated UserDetails object.
The current implementation does this translation by looking up the username returned
by the CAS Server and looking up UserDetails using the UserDetailsService.
Obviously, this technique would only ever be used when we have confirmed that the
integrity of the Authentication token has not been compromised. We configure this
object with a reference to our InMemoryUserDetailsManager implementation of the
UserDetailsService interface.

src/main/webapp/WEB-INF/spring/security-cas.xml

<bean id="authenticationUserDetailsService" class="org.
springframework.security.core.userdetails.
UserDetailsByNameServiceWrapper">
 <property name="userDetailsService" ref="userDetailsService"/>
</bean>

We may wonder why a UserDetailsService interface isn't directly referenced;
it's because, just as we did with OpenID, there will be additional "advanced
configuration options" later, which will allow details from the CAS Server to be used,
to populate the UserDetails object.

Your code should look like chapter09.01-calendar and
chapter09.01-cas-server.

At this point, we should be able to start both the CAS Server and JBCP Calendar
application. You can then visit https://localhost:8443/calendar/ and select
All Events, which will redirect you to the CAS Server. You can then log in using
the username admin1@example.com and the password admin1@example.com.
Upon successful authentication, you will be redirected back to the JBCP Calendar
application. Excellent job!

If you are experiencing issues, it is most likely due to an improper
SSL configuration. Ensure that you have set up the trust store file as
tomcat.keystore, as described in the Appendix.

www.it-ebooks.info

https://localhost:8443/calendar/
mailto:user1@example.com
mailto:user1@example.com
http://www.it-ebooks.info/

Single Sign-on with Central Authentication Service

[230]

Single logout
You may notice that if you log out of the application, you get the logout confirmation
page. However, if you click on a protected page, such as the My Events page, you
are still authenticated. The problem is that the logout is only occurring locally. So
when you request for another protected resource in the JBCP Calendar application,
a login is requested from the CAS Server. Since the user is still logged in to the CAS
Server, it immediately returns a Service Ticket and logs the user back into the JBCP
Calendar application.

This also means that if the user had signed in to other applications using the CAS
Server, they would still be authenticated to those applications, since our Calendar
application does not know anything about the other applications. Fortunately, CAS
and Spring Security offer a solution to this problem. Just as we can request a login
from the CAS Server, we can also request a logout. You can see a high-level diagram
of how a logout works within CAS, as follows.

CAS

Server

Requests CAS login

Display

Logout Success

Logout of each

CAS Service

Web

Browser

Request Logout

Web

Application
2

4

1

3

Web

Application

The following steps explain how a single logout takes place:

1.	 The user requests to log out of the web application.
2.	 The web application then requests to logout of CAS by sending a redirect

through the browser to the CAS server.
3.	 The CAS Server recognizes the user and then sends a logout request to each

CAS Service that was authenticated. Note that these logout requests do not
occur through the browser. The CAS Server indicates which user should log
out by providing the original Service Ticket that was used to log the user in.
The application is then responsible for ensuring that the user is logged out.

4.	 The CAS Server displays the logout success page to the user.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[231]

Configuring single logout
The configuration for a single logout is relatively simple. The first step is to specify
a logout-success-url attribute to be the logout URL of the CAS Server in our
security.xml file. This means that after we log out locally, we will automatically
redirect the user to the CAS Server's logout page.

src/main/webapp/WEB-INF/spring/security.xml

<http ...>
 ...
 <logout logout-url="/logout"
 logout-success-url="https://${cas.server.host}/cas/logout"/>
</http>

Since we only have one application, this is all we need to make it appear as though
a single logout is occurring. This is because we log out of our Calendar application
before redirecting to the CAS Server logout page. This means that by the time the
CAS Server sends the logout request to the Calendar application, the user has
already been logged out.

If there were multiple applications and the user logged out of another application,
the CAS Server would send a logout request to our Calendar application and not
process the logout event. This is because our application is not listening for these log
out events. The solution is simple; we must create the SingleSignoutFilter object,
as follows:

src/main/webapp/WEB-INF/spring/security-cas.xml

 <bean id="singleLogoutFilter"
 class="org.jasig.cas.client.session.SingleSignOutFilter"/>
</beans>

Next, we need to make Spring Security aware of the singleLogoutFilter object
in our security.xml file by including it as a <custom-filter> element. Place the
single logout filter before our regular logout to ensure that it receives the logout
events, as follows:

src/main/webapp/WEB-INF/spring/security.xml

<http ...>
 …
 <custom-filter ref="casAuthenticationFilter"
 position="CAS_FILTER"/>
 <custom-filter ref="singleLogoutFilter"
 before="LOGOUT_FILTER"/>
 <logout logout-url="/logout"
 logout-success-url="https://${cas.server.host}/cas/logout"/>
</http>

www.it-ebooks.info

http://www.it-ebooks.info/

Single Sign-on with Central Authentication Service

[232]

Under normal circumstances, we would need to make a few updates to the web.xml
file. However, for our Calendar application, we have already made the updates to
our web.xml file, as follows:

src/main/webapp/WEB-INF/web.xml

<listener>
 <listener-class>
 org.jasig.cas.client.session.SingleSignOutHttpSessionListener
 </listener-class>
</listener>
<filter>
 <filter-name>characterEncodingFilter</filter-name>
 <filter-class>
 org.springframework.web.filter.CharacterEncodingFilter
 </filter-class>
 <init-param>
 <param-name>encoding</param-name>
 <param-value>UTF-8</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>characterEncodingFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

First, we added the SingleSignoutHttpSessionListener object to ensure
that the mapping of the Service Ticket to the HttpSession has been removed.
We have also added the CharacterEncodingFilter, as recommended by the
JA-SIG documentation, to ensure that character encoding is correct when using
SingleSignOutFilter.

Go ahead and start up the application, and try logging out now. You will observe
that you are actually logged out. Now, try logging back in and visiting the CAS
Server's logout URL directly. For our setup, the URL is https://localhost:8443/
cas/logout. Now try to visit the JBCP Calendar application. You will observe
that you are unable to access the application without authenticating again. This
demonstrates that a single logout works.

Your code should look like chapter09.02-calendar and
chapter09.02-cas-server.

www.it-ebooks.info

https://localhost:8443/cas/logout
https://localhost:8443/cas/logout
http://www.it-ebooks.info/

Chapter 9

[233]

Clustered environments
One of the things that we failed to mention in our initial diagram of a single logout is
how the logout is performed. Unfortunately, it is implemented by storing a mapping
of the Service Ticket to the HttpSession in an in-memory map. This means that a
single logout will not work properly within a clustered environment.

CAS

Server

Requests CAS login

Display

Logout Success

Logout of each

CAS Service

Web

Browser

Sends Service Ticket

4

6

1

5

Member

B

Service Ticket a

Session A

Clustered

Application

Member

A

I don't recognize

Service Ticket A

4 Validate Service Ticket and get User

3

Consider the following situation:

1.	 The user logs into Cluster Member A.
2.	 Cluster Member A validates the Service Ticket.
3.	 It then remembers, in memory, the mapping of the Service Ticket to the

user's session.
4.	 The user requests to log out from the CAS Server.
5.	 The CAS Server sends a logout request to the CAS Service, but the Cluster

Member B receives the logout request. It looks in its memory, but does not
find a session for Service Ticket A, because it only exists in Cluster Member
A. This means the user has not been logged out successfully.

www.it-ebooks.info

http://www.it-ebooks.info/

Single Sign-on with Central Authentication Service

[234]

Users looking for this functionality might consider looking in the JA-SIG JIRA
queue and forums for solutions to this problem. In fact, a working patch has been
submitted on https://issues.jasig.org/browse/CASC-114. Keep in mind that
there are a number of ongoing discussions and proposals on the forums and in the
JA-SIG JIRA queue, so you may want to look around before deciding which solution
to use. For more information about clustering with CAS, refer to JA-SIG's clustering
documentation at https://wiki.jasig.org/display/CASUM/Clustering+CAS.

Proxy ticket authentication for stateless
services
Centralizing our authentication using CAS seems to work rather well for web
applications, but what if we want to call a web service using CAS? In order to support
this, CAS has a notion of Proxy Tickets (PT). Following is a diagram of how it works:

CAS

Server

Validate Service Ticket and provide PGT URL

Authenticates the PGT URL using HTTPS

and ensures returns a 200

Submits the PGT and PGTIOU to the PGT URL

Web

Application

1

2

3

Returns the Username and the PGTIOU
5

Retrieve PGT w/

PGTIOU

4

5

PGTIOU

PGT

The flow is the same as standard CAS authentication, until the Service Ticket
is validated when an additional parameter is included called the Proxy Ticket
callback URL (PGT URL).

1.	 The CAS Server calls the the PGT URL over HTTPS to validate that the PGT
URL is what it claims to be. Like most of CAS, this is done by performing an
SSL handshake to the appropriate URL.

2.	 The CAS Server submits the Proxy Granting Ticket (PGT) and the Proxy
Granting Ticket I Owe You (PGTIOU) to the PGT URL over HTTPS to
ensure that the tickets are submitted to the source they claim to be.

3.	 The PGT URL receives the two tickets and must store an association of the
PGTIOU to the PGT.

www.it-ebooks.info

https://issues.jasig.org/browse/CASC-114
https://wiki.jasig.org/display/CASUM/Clustering+CAS
http://www.it-ebooks.info/

Chapter 9

[235]

4.	 The CAS Server finally returns a response to the request in step 1 that
includes the username and the PGTIOU.

5.	 The CAS Service can look up the PGT using the PGTIOU.

Configuring proxy ticket authentication
Now that we know how Proxy Ticket authentication works, we will make updates to
our current configuration to obtain a Proxy Granting Ticket.

The first step is to add a reference to a ProxyGrantingTicketStorage
implementation. Go ahead and add the following code to our security-cas.xml file.

src/main/webapp/WEB-INF/spring/security-cas.xml

 <bean id="pgtStorage"
 class="org.jasig.cas.client.proxy.
ProxyGrantingTicketStorageImpl"/>
 <task:scheduled-tasks>
 <task:scheduled ref="pgtStorage"
 method="cleanUp"
 fixed-delay="300000"/>
 </task:scheduled-tasks>
</beans>

ProxyGrantingTicketStorageImpl is an in-memory mapping of the PGTIOU to
a PGT. Just as with logging out, this means we would have problems in a clustered
environment using this implementation. Refer to the JA-SIG documentation to
determine how to set this up in a clustered environment:

https://wiki.jasig.org/display/CASUM/Clustering+CAS

We also need to periodically clean ProxyGrantingTicketStorage by invoking its
cleanUp() method. As you can see, Spring's task abstraction makes this very simple.
You may consider tweaking the configuration to clear a schedule, and with a thread
pool that makes sense for your environment. For more information, refer to the Task
Execution and Scheduling section of the Spring Framework reference documentation
at http://static.springsource.org/spring/docs/3.1.x/spring-framework-
reference/html/scheduling.html.

www.it-ebooks.info

https://wiki.jasig.org/display/CASUM/Clustering+CAS
https://wiki.jasig.org/display/CASUM/Clustering+CAS
http://www.it-ebooks.info/

Single Sign-on with Central Authentication Service

[236]

Now we need to use ProxyGrantingTicketStorage that we just created. We just
need to update ticketValidator to refer to our storage and to know the PGT URL.
Make the following updates to security-cas.xml:

src/main/webapp/WEB-INF/spring/security-cas.xml

<bean id="ticketValidator"
 class="org.jasig.cas.client.validation
 .Cas20ServiceTicketValidator">
 <constructor-arg value="https://${cas.server.host}/cas" />

 <property name="proxyCallbackUrl"
 value="https://${cas.service.host}/calendar/pgtUrl"/>
 <property name="proxyGrantingTicketStorage" ref="pgtStorage"/>
</bean>

The last update we need to make is to our CasAuthenticationFilter object to store
the PGTIOU to the PGT mapping in our ProxyGrantingTicketStorage
implementation when the PGT URL is called. It is critical to ensure that
the proxyReceptorUrl attribute matches proxyCallbackUrl of the
Cas20ProxyTicketValidator object, to ensure that the CAS Server sends the
ticket to the URL that our application is listing to. Make the following changes to
security-cas.xml:

src/main/webapp/WEB-INF/spring/security-cas.xml

<bean id="casFilter"
 class="org.springframework.security.cas.web
 .CasAuthenticationFilter">
 ...
 <property name="proxyGrantingTicketStorage" ref="pgtStorage"/>
 <property name="proxyReceptorUrl" value="/pgtUrl"/>
</bean>

You will observe that the proxyCallBackUrl attribute matches the
absolute path of our context-relative proxyReceptorUrl attribute
path. Since we are deploying our base application to https://${cas.
serverice.host}/calendar, the full path of our proxyReceptor
URL will be https://${cas.serverice.host}/calendar/pgtUrl.

Now that we have a PGT, what do we do with it? A Service Ticket is a one-time use
token. However, a PGT can be used to produce Proxy Tickets (PT). Let's see how we
can create a PT using a PGT.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[237]

Using proxy tickets
We can now use our PGT to create a PT to authenticate it to a service. The code to
do this is quite trivially demonstrated in the EchoController class that we included
with this chapter. You can see the relevant portions of it in the following code
snippet. For additional details, refer to the sample's source code.

src/main/java/com/packtpub/springsecurity/web/controllers/
EchoController.java

@ResponseBody
@RequestMapping("/echo")
public String echo() throws UnsupportedEncodingException {
 final CasAuthenticationToken token = (CasAuthenticationToken)
 SecurityContextHolder.getContext().getAuthentication();
 final String proxyTicket =
 token.getAssertion().getPrincipal()
 .getProxyTicketFor(targetUrl);
 return restClient.getForObject(targetUrl+"?ticket={pt}",
 String.class, proxyTicket);
}

This controller is a contrived example that will obtain a PT that will be used to
authenticate a RESTful call to obtain all the events for the currently logged-in user.
It then writes the JSON response to the page. The thing that may confuse some
users is that the EchoController object is actually making a RESTful call to the
MessagesController object that is in the same application. This means that the
Calendar application makes a RESTful call to itself.

Go ahead and visit https://localhost:8443/calendar/echo to see it in action.
The page looks a lot like the CAS login page (minus the css). This is because the
controller attempts to echo our My Events page, and our application does not yet
know how to authenticate a proxy ticket. This means it is redirected to the CAS login
page. Let's see how we can authenticate proxy tickets.

Your code should look like chapter09.03-calendar and
chapter09.03-cas-server.

www.it-ebooks.info

https://localhost:8443/calendar/rest-client
https://localhost:8443/calendar/rest-client
http://www.it-ebooks.info/

Single Sign-on with Central Authentication Service

[238]

Authenticating proxy tickets
We first need to instruct the ServiceProperties object that we want to authenticate
all the tickets and not just those submitted to the filterProcessesUrl attribute.
Make the following updates to security-cas.xml:

src/main/webapp/WEB-INF/spring/security-cas.xml

<bean id="serviceProperties"
 class="org.springframework.security.cas.ServiceProperties">
 ...
 <property name="authenticateAllArtifacts" value="true"/>
</bean>

We then need to update our CasAuthenticationFilter object for it to know that we
want to authenticate all artifacts (that is, tickets) instead of only listening to a specific
URL. We also need to use an AuthenticationDetailsSource that can dynamically
provide the CAS Service URL when validating proxy tickets on arbitrary URLs.
This is important because when a CAS Service asks whether a ticket is valid or not,
it must also provide the CAS Service URL that was used to create the ticket. Since
Proxy Tickets can occur on any URL, we must be able to dynamically discover this
URL. This is done by leveraging the ServiceAuthenticationDetailsSource object,
which will provide the current URL from the HTTP request.

src/main/webapp/WEB-INF/spring/security-cas.xml

<bean id="casFilter"
 class="org.springframework.security.cas.web
 .CasAuthenticationFilter">
 ...
 <property name="serviceProperties" ref="serviceProperties"/>
 <property name="authenticationDetailsSource">
 <bean class="org.springframework.security.cas
 .web.authentication.ServiceAuthenticationDetailsSource"/>
 </property>
</bean>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[239]

We will also need to ensure that we are using the Cas20ProxyTicketValidator
object and not the Cas20ServiceTicketValidator, and indicate which proxy tickets
we will want to accept. We will configure ours to accept a proxy ticket from any CAS
Service. In a production environment, you will want to consider restricting yourself
to only those CAS Services that are trusted.

src/main/webapp/WEB-INF/spring/security-cas.xml

<bean id="ticketValidator" class="org.jasig.cas.client
 .validation.Cas20ProxyTicketValidator">
 …
 <property name="acceptAnyProxy" value="true"/>
</bean>

Lastly, we will want to provide a cache for our CasAuthenticationProvider object
so that we do not need to hit the CAS Service for every call to our service.

src/main/webapp/WEB-INF/spring/security-cas.xml

<bean id="casAuthProvider" class="org.springframework.security.
 cas.authentication.CasAuthenticationProvider">
 ...
 <property name="statelessTicketCache"
 ref="statelessTicketCache"/>
</bean>
<bean id="statelessTicketCache" class="org.springframework
 .security.cas.authentication.EhCacheBasedTicketCache">
 <property name="cache">
 <bean class="net.sf.ehcache.Cache"
 init-method="initialise" destroy-method="dispose">
 <constructor-arg value="casTickets"/>
 <constructor-arg value="50"/>
 <constructor-arg value="true"/>
 <constructor-arg value="false"/>
 <constructor-arg value="3600"/>
 <constructor-arg value="900"/>
 </bean>
 </property>
</bean>

www.it-ebooks.info

http://www.it-ebooks.info/

Single Sign-on with Central Authentication Service

[240]

As you might have suspected, the cache requires the ehcache dependency that we
mentioned at the beginning of the chapter. Go ahead and start the application back
up and visit https://localhost:8443/calendar/echo again. This time you should
see a JSON response of calling our My Events page.

Your code should look like chapter09.04-calendar and
chapter09.04-cas-server.

Customizing the CAS Server
All of the changes in this section will be to the CAS Server and NOT the Calendar
application. This section is only meant to be an introduction to configuring the CAS
Server, as a detailed setup is certainly beyond the scope of this book. Just as with the
changes for the Calendar application, we encourage you to follow along with the
changes in this chapter. For more information, you can refer to the JA-SIG CAS wiki
at https://wiki.jasig.org/display/CAS/Home.

CAS Maven WAR Overlay
The preferred way to customize CAS is to use a Maven War Overlay. With this
mechanism, you can change everything from the UI to the method in which you
authenticate to the CAS Server. The concept of a WAR overlay is simple. You add
a WAR overlay, cas-server-webapp, as a Maven dependency, and then provide
additional files that will be merged with the existing WAR overlay. For more
information about the CAS Maven WAR Overlay, refer to the JA-SIG documentation
at https://wiki.jasig.org/display/CASUM/Best+Practice+-+Setting+Up+CAS
+Locally+using+the+Maven2+WAR+Overlay+Method.

www.it-ebooks.info

https://localhost:8443/calendar/rest-client
https://wiki.jasig.org/display/CAS/Home
https://wiki.jasig.org/display/CASUM/Best+Practice+-+Setting+Up+CAS+Locally+using+the+Maven2+WAR+Overlay+Method
https://wiki.jasig.org/display/CASUM/Best+Practice+-+Setting+Up+CAS+Locally+using+the+Maven2+WAR+Overlay+Method
https://wiki.jasig.org/display/CASUM/Best+Practice+-+Setting+Up+CAS+Locally+using+the+Maven2+WAR+Overlay+Method
http://www.it-ebooks.info/

Chapter 9

[241]

How CAS internal authentication works
Before we jump into CAS configuration, we'll briefly illustrate the standard behavior
of the CAS authentication processing. The following diagram should help you follow
the configuration steps required to allow CAS to talk to our embedded LDAP server:

www.it-ebooks.info

http://www.it-ebooks.info/

Single Sign-on with Central Authentication Service

[242]

While the previous diagram describes the internal flow of authentication within the
CAS server itself, it is likely that if you are implementing integration between Spring
Security and CAS, you will need to adjust the configuration of the CAS server as
well. It's important, therefore, that you understand how CAS authentication works at
a high level.

The CAS server's org.jasig.cas.authentication.AuthenticationManager
interface (not to be confused with the Spring Security interface of the same name)
is responsible for authenticating the user based on the provided credentials. Much
as with Spring Security, the actual processing of the credentials is delegated to one
(or more) processing class implementing the org.jasig.cas.authentication.
handler.AuthenticationHandler interface (we recognize that the analogous
interface in Spring Security would be AuthenticationProvider).

Finally, a org.jasig.cas.authentication.principal.
CredentialsToPrincipalResolver interface is used to translate the credentials
passed into a full org.jasig.cas.authentication.principal.Principal
object (similar behavior in Spring Security occurs during the implementation of
UserDetailsService).

While not a full review of the behind-the-scenes functionality of the CAS server,
this should help you understand the configuration steps in the next several exercises.
We encourage you to read the source code for CAS and consult the web-based
documentation available at the JA-SIG CAS wiki, at http://www.ja-sig.org/wiki/
display/CAS.

Configuring CAS to connect to our embedded
LDAP server
The org.jasig.cas.authentication.principal.
UsernamePasswordCredentialsToPrincipalResolver object that comes
configured, by default, with CAS doesn't allow us to pass back attribute information
and demonstrate this feature of Spring Security CAS integration, so we'd suggest
using an implementation that does allow this.

An easy authentication handler to configure and use (especially if you have gone
through the previous chapter's LDAP exercises) is org.jasig.cas.adaptors.ldap.
BindLdapAuthenticationHandler, which communicates with the embedded LDAP
server that we used in the previous chapter. We'll lead you through the configuration
of CAS that returns user LDAP attributes in the following guide.

www.it-ebooks.info

http://www.ja-sig.org/wiki/display/CAS
http://www.ja-sig.org/wiki/display/CAS
http://www.it-ebooks.info/

Chapter 9

[243]

All of the CAS configuration will take place in the WEB-INF/
deployerConfigContext.xml file of the CAS installation, and will typically involve
inserting class declarations into configuration file segments that already exist. We
have already extracted the default WEB-INF/deployerConfigContext.xml file from
cas-server-webapp and placed it in cas-server/src/main/webapp/WEB-INF.

If the contents of this file look familiar to you, it's because CAS uses the Spring
Framework for its configuration just like JBCP Calendar! We'd recommend using
a good IDE with a handy reference to the CAS source code if you want to dig into
what these configuration settings do. Remember that in this section, and all sections
where we refer to WEB-INF/deployerConfigContext.xml, we are referring to the
CAS installation and not JBCP Calendar.

First, we'll add a new BindLdapAuthenticationHandler object in place of the
SimpleTestUsernamePasswordAuthenticationHandler object, which will attempt
to bind the user to LDAP (just as we did in Chapter 5, LDAP Directory Services).

The AuthenticationHandler interface will be placed in the
authenticationHandlers property of the authenticationManager bean:

cas-server/src/main/webapp/WEB-INF/deployerConfigContext.xml

<property name="authenticationHandlers">
 <list>
 ... remove ONLY
 SimpleTestUsernamePasswordAuthenticationHandler ...
 <bean class="org.jasig.cas.adaptors
 .ldap.BindLdapAuthenticationHandler">
 <property name="filter" value="uid=%u"/>
 <property name="searchBase" value="ou=Users"/>
 <property name="contextSource" ref="contextSource"/>
 </bean>
 </list>
</property>

Don't forget to remove the reference to the
SimpleTestUsernamePasswordAuthenticationHandler
object, or at least move its definition to after that of the
BindLdapAuthenticationHandler object, otherwise your CAS
authentication will not use LDAP and use the stub handler instead!

www.it-ebooks.info

http://www.it-ebooks.info/

Single Sign-on with Central Authentication Service

[244]

You'll note the bean reference to a contextSource bean; this defines the org.
springframework.ldap.core.ContextSource implementation, which CAS will use
to interact with LDAP (yes, CAS uses Spring LDAP as well). We'll define this at the
end of the file, using the Spring Security namespace to simplify its definition:

cas-server/src/main/webapp/WEB-INF/deployerConfigContext.xml

<sec:ldap-server id="contextSource"
 ldif="classpath:ldif/calendar.ldif"
 root="dc=jbcpcalendar,dc=com" />
</beans>

This creates an embedded LDAP instance that uses the calendar.ldif file included
with this chapter. Of course in a production environment, you would want to point
to a real LDAP server.

Finally, we'll need to configure a new org.jasig.cas.authentication.
principal.CredentialsToPrincipalResolver, that is responsible for translating
the credentials that the user has provided (that CAS has already authenticated
using the BindLdapAuthenticationHandler object) to a full org.jasig.cas.
authentication.principal.Principal authenticated principal. You'll notice
many configuration options in this class, which we'll skim over, that you are
welcome to dive into as you explore CAS further.

Remove UsernamePasswordCredentialsToPrincipalResolver and add the
following bean definition inline to the credentialsToPrincipalResolvers
property of the CAS authenticationManager bean:

cas-server/src/main/webapp/WEB-INF/deployerConfigContext.xml

<property name="credentialsToPrincipalResolvers">
 <list>
 <!-- REMOVE UsernamePasswordCredentialsToPrincipalResolver -->
 <bean class="org.jasig.cas.authentication.principal
 .HttpBasedServiceCredentialsToPrincipalResolver" />
 <bean class="org.jasig.cas.authentication.principal
 .CredentialsToLDAPAttributePrincipalResolver">
 <property name="credentialsToPrincipalResolver">
 <bean class="org.jasig.cas.authentication.principal
 .UsernamePasswordCredentialsToPrincipalResolver"/>
 </property>
 <property name="filter" value="(uid=%u)"/>
 <property name="principalAttributeName" value="uid"/>
 <property name="searchBase" value="ou=Users"/>
 <property name="contextSource" ref="contextSource"/>
 <property name="attributeRepository"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[245]

 ref="attributeRepository"/>
 </bean>
 </list>
</property>

You'll notice that as with Spring Security LDAP configuration, much of the same
behavior exists in CAS with principals being searched on property matches below a
subtree of the directory, based on a DN.

Note that we haven't yet configured the bean with the ID attributeRepository
ourselves, which should refer to an implementation of org.jasig.services.
persondir.IPersonAttributeDao. CAS ships with a default configuration
that includes a simple implementation of this interface, org.jasig.services.
persondir.support.StubPersonAttributeDao, which will be sufficient until we
configure LDAP-based attributes in a later exercise.

Your code should look like chapter09.05-calendar and
chapter09.05-cas-server.

So now we've configured basic LDAP authentication in CAS. At this point, you
should be able to restart CAS, start JBCP Calendar (if it's not already running), and
authenticate it using admin1@example.com/admin or user1@example.com/user1.
Go ahead and try it to see that it works. If it does not work, try checking the logs and
comparing your configuration with the sample configuration.

Just as discussed in Chapter 5, LDAP Directory Services you may
encounter issues with starting the application whether the temporary
directory named apacheds-spring-security still exists. If
the application appears to not exist, check the logs and see if the
apacheds-spring-security directory needs to be removed.

Getting UserDetails from a CAS assertion
Up until this point we have been authenticating with CAS, but by obtaining the
roles from our InMemoryUserDetailsManager object. However, we can create the
UserDetails from the CAS assertion just as we did with OpenID. The first step is
to configure the CAS Server to return the additional attributes.

www.it-ebooks.info

mailto:admin1@example.com
mailto:user1@example.com
http://www.it-ebooks.info/

Single Sign-on with Central Authentication Service

[246]

Returning LDAP attributes in the CAS
Response
We know that CAS can return the username in the CAS Response, but it it can also
return arbitrary attributes in the CAS Response. Let's see how we can update the
CAS Server to return additional attributes. Again, all the changes in this section are
in the CAS Server and NOT in the Calendar application.

Mapping LDAP attributes to CAS attributes
The first step requires us to map LDAP attributes to attributes in the CAS assertion
(including the role attribute in which we're expecting to contain the user's
GrantedAuthority).

We'll add another bit of configuration to the CAS deployerConfigContext.xml file.
This new bit of configuration is required to instruct CAS on how to map attributes
from the CAS Principal object to the CAS IPersonAttributes object, which will
ultimately be serialized as a part of ticket validation. This bean configuration should
replace the bean of the same name, which is attributeRepository.

cas-server/src/main/webapp/WEB-INF/deployerConfigContext.xml

<bean id="attributeRepository" class="org.jasig.services.persondir
 .support.ldap.LdapPersonAttributeDao">
 <property name="contextSource" ref="contextSource"/>
 <property name="requireAllQueryAttributes" value="true"/>
 <property name="baseDN" value="ou=Users"/>
 <property name="queryAttributeMapping">
 <map>
 <entry key="username" value="uid"/>
 </map>
 </property>
 <property name="resultAttributeMapping">
 <map>
 <entry key="cn" value="FullName"/>
 <entry key="sn" value="LastName"/>
 <entry key="description" value="role"/>
 </map>
 </property>
</bean>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[247]

The functionality behind the scenes here is definitely confusing—essentially, the
purpose of this class is to map Principal back to the LDAP directory. (This is the
queryAttributeMapping property mapping the username field of Principal to
the uid attribute in the LDAP query.) The provided baseDN Java Bean property
is searched using the LDAP query (uid=user1@example.com), and attributes are
read from the matching entry. The attributes are mapped back to Principal using
the key/value pairs in the resultAttributeMapping property—we recognize
that LDAP's cn and sn attributes are being mapped to meaningful names, and the
description attribute is being mapped to the role that will be used for determining
the authorization of our user.

Part of the complexity comes from the fact that a portion of this functionality is
wrapped up in a separate project called Person Directory (http://www.ja-sig.
org/wiki/display/PD/Home), which is intended to aggregate multiple sources of
information about a person into a single view. The design of Person Directory is
such that it is not directly tied to the CAS Server and can be re-used as part of other
applications. The downside of this design choice is that it makes some aspects of
CAS configuration more complex than it initially seems should be required.

Troubleshooting LDAP attribute mapping in CAS
We would love to set up the same type of query in LDAP as we used
with Spring Security LDAP in Chapter 5, LDAP Directory Services to be
able to map Principal to a full LDAP-distinguished name, and then
to use that DN to look up group membership by matching on the basis
of the uniqueMember attribute of a groupOfUniqueNames entry.
Unfortunately, the CAS LDAP code doesn't have this flexibility yet,
leading to the conclusion that more advanced LDAP mapping will
require extensions to base classes in CAS.

Authorizing CAS Services to access custom
attributes
Next, we will need to authorize any CAS Service over HTTPS to access these attributes.
To do this, we can update RegisteredServiceImpl that has the description "Only
Allows HTTPS URLs" in InMemoryServiceRegistryDaoImpl, as follows:

cas-server/src/main/webapp/WEB-INF/deployerConfigContext.xml

<bean class="org.jasig.cas.services.RegisteredServiceImpl">

 <property name="id" value="1" />
 <property name="name" value="HTTPS" />
 <property name="description" value="Only Allows HTTPS Urls" />
 <property name="serviceId" value="https://**" />

www.it-ebooks.info

http://www.it-ebooks.info/

Single Sign-on with Central Authentication Service

[248]

 <property name="evaluationOrder" value="10000002" />
 <property name="allowedAttributes">
 <list>
 <value>FullName</value>
 <value>LastName</value>
 <value>role</value>
 </list>
 </property>
</bean>

Getting UserDetails from a CAS assertion
When we first set up CAS integration with Spring Security, we configured a
UserDetailsByNameServiceWrapper that simply translated the username presented
to CAS into a UserDetails object from UserDetailsService that we had referenced
(in our case, it was InMemoryUserDetailsManager). Now that CAS is referencing the
LDAP server, we could set up LdapUserDetailsService as we discussed at the tail
end of Chapter 5, LDAP Directory Services and things would work just fine. Note that we
have switched back to modifying the Calendar application and NOT the CAS Server.

GrantedAuthorityFromAssertionAttributesUser
Details Service
Now that we have modified the CAS server to return custom attributes, we'll experiment
with another capability of the Spring Security CAS integration, the ability to populate
a UserDetails from the CAS assertion itself! This is actually as simple as switching
the AuthenticationUserDetailsService implementation to the o.s.s.cas.
userdetails.GrantedAuthorityFromAssertionAttributesUserDetailsService
object, whose job it is to read the CAS assertion, look for a certain attribute, and map
the value of that attribute directly to GrantedAuthority for the user. Let's assume that
there is an attribute entitled role that will be returned with the assertion. We'll simply
configure a new authenticationUserDetailsService bean (ensure to replace the
previously defined authenticationUserDetailsService bean) in security-cas.xml:

src/main/webapp/WEB-INF/spring/security-cas.xml

<bean id="authenticationUserDetailsService" class=
 "org.springframework.security.cas.userdetails
 .GrantedAuthorityFromAssertionAttributesUserDetailsService">
 <constructor-arg>
 <array>
 <value>role</value>
 </array>
 </constructor-arg>
</bean>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[249]

You will also want to remove the userDetailsService bean from our security.
xml file since it is no longer needed.

Alternative ticket authentication using SAML 1.1
Security Assertion Markup Language (SAML) is a standard, cross-platform
protocol for identity verification through structured XML assertions. SAML is
supported by a wide variety of products, including CAS. (In fact, we will look at
support for SAML within Spring Security itself in a later chapter.)

While the standard CAS protocol can be extended to return attributes, the SAML
security assertion XML dialect solves some of the issues with attribute passing,
using the CAS response protocol that we previously described. Happily, switching
between CAS ticket validation and SAML ticket validation is as simple as changing
the TicketValidator implementation configured in security-cas.xml. Modify
ticketValidator as follows:

src/main/webapp/WEB-INF/spring/security-cas.xml

<bean id="ticketValidator" class="org.jasig.cas.client.validation
 .Saml11TicketValidator">
 <constructor-arg value="https://${cas.server.host}/cas" />
</bean>

You will notice that there is no longer a reference to the PGT URL. This is because
the Saml11TicketValidator object does not support PGT. While both could exist,
we opt to remove any references to the Proxy Ticket authentication since we will no
longer be using Proxy Ticket authentication. If you do not want to remove it for this
exercise, don't worry; it won't prevent our application from running so long as your
ticketValidator bean ID looks similar to the previous code snippet.

In general, it's recommended that SAML ticket validation be used over CAS 2.0
ticket validation, as it adds more non-repudiation features, including timestamp
validation, and solves the attribute problem in a standard way.

Restart the CAS Server and JBCP Calendar application. You can then visit
https://localhost:8443/calendar/ and see that our calendar application
can obtain the UserDetails from the CAS response.

Your code should now look like chapter09.06-calendar
and chapter09.06-cas-server.

www.it-ebooks.info

http://www.it-ebooks.info/

Single Sign-on with Central Authentication Service

[250]

How is attribute retrieval useful
Remember that CAS provides a layer of abstraction for our application, removing the
ability for our application to directly access the user repository, and instead forcing
all such access to be performed through CAS as a proxy.

This is extremely powerful! It means that our application no longer cares what kind
of repository the users are stored in, nor does it have to worry about the details
of how to access them—this simply confirms that authentication with CAS is
sufficient to prove that a user should be able to access our application. For system
administrators, this means that should an LDAP server be renamed, moved, or
otherwise adjusted, they only need to reconfigure it in a single location—CAS.
Centralizing access through CAS allows for a high level of flexibility and adaptability
in the overall security architecture of the organization.

Extend this story to the usefulness of attribute retrieval from CAS; now all
applications authenticated through CAS have the same view of a user and can
consistently display information across any CAS-enabled environment.

Be aware that, once authenticated, Spring Security CAS does not requery the CAS
server unless the user is required to reauthenticate. This means that attributes and
other user information stored locally in the application in the user's Authentication
object may become stale over time and possibly out of sync with the source CAS
server. Take care to set session timeouts appropriately to avoid this potential issue!

Additional CAS capabilities
CAS offers additional advanced configuration capabilities outside of those that
are exposed through the Spring Security CAS wrappers. Some of these include
the following:

•	 Providing transparent single sign-on for users who are accessing multiple
CAS-secured applications within a configurable (on the CAS server) time
window. Applications can force users to authenticate to CAS by setting
the renew property to true on the TicketValidator; you may want to
conditionally set this property in custom code in the event where the user is
attempting to access a highly secured area of the application.

•	 RESTful API for obtaining Service Tickets.
•	 JA-SIG's CAS Server can also act as an OpenID server. If you think about it,

this makes sense since CAS is very similar to OpenID.
•	 Provide OAuth support for the CAS server, so that it can obtain access tokens

to a delegate OAuth provider (that is, Google) or so that the CAS Server can
be the OAuth server itself.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[251]

We'd encourage you to explore the full capabilities of the CAS client and server as
well as ask questions to the helpful folks in the JA-SIG community forums!

Summary
In this chapter, we learned about the Central Authentication System (CAS) single
sign-on portal and how it can be integrated with Spring Security, and we also
covered the following:

•	 The CAS architecture and communication paths between actors in a
CAS-enabled environment

•	 The benefits of CAS-enabled applications for application developers and
system administrators

•	 Configuring JBCP Calendar to interact with a basic CAS installation
•	 How to use CAS's Single Logout support
•	 How proxy ticket authentication works and how to leverage it to authenticate

to stateless services
•	 Updating CAS to interact with LDAP, and sharing LDAP data with our

CAS-enabled application
•	 Implementing attribute exchange with the industry standard SAML protocol

We hope this chapter was an interesting introduction to the world of single sign-on.
There are many other single sign-on systems in the marketplace, mostly commercial,
but CAS is definitely one of the leaders of the open source SSO world and an
excellent platform to build out SSO capability in any organization.

In the next chapter, we'll learn more about Spring Security authorization.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Fine-grained Access Control
Up to this point, we've explored different ways of authenticating users to the
JBCP Calendar site. Now that we know who the user is, we are going to use that
information to determine if the user is allowed (authorized), to access resources at a
more granular level.

In this chapter, we will first examine two ways to implement fine-grained
authorization—authorization that may affect portions of a page of the application.
Next, we will look at Spring Security's approach for securing the business tier
through method annotation and the use of interface-based proxies to accomplish
aspect-oriented programming. Then, we will review an interesting capability of
annotation-based security that allows for role-based filtering on collections of data.
Last, we will look at how class-based proxies differ from interface-based proxies.

During the course of this chapter, we'll learn the following:

•	 Configuring and experimenting with different methods of performing
in-page authorization checks on content, given the security context of
a user request

•	 Performing configuration and code annotation to make caller
preauthorization a key part of our application's business-tier security

•	 Several alternative approaches to implement method-level security, and
review the pros and cons of each type

•	 Implementing data-based filters on collections and arrays using
method-level annotations

•	 Implementing method-level security on our Spring MVC controllers to avoid
configuring <intercept-url> elements

www.it-ebooks.info

http://www.it-ebooks.info/

Fine-grained Access Control

[254]

Maven dependencies
There are a number of optional dependencies that may be required depending on
what features you decide to use. You will find that our pom.xml file already includes
all of the following dependencies:

pom.xml

<!-- Required for class based proxy support -->
<dependency>
 <groupId>cglib</groupId>
 <artifactId>cglib-nodep</artifactId>
 <version>2.2.2</version>
 <scope>runtime</scope>
</dependency>
<!-- Required for JSR-250 based security -->
<dependency>
 <groupId>javax.annotation</groupId>
 <artifactId>jsr250-api</artifactId>
 <version>1.0</version>
</dependency>
<!-- Required for protect-pointcut -->
<dependency>
 <groupId>org.aspectj</groupId>
 <artifactId>aspectjweaver</artifactId>
 <version>1.6.12</version>
 <scope>runtime</scope>
</dependency>

Spring Expression Language (SpEL)
integration
Spring Security leverages the Spring Expression Language (SpeL) in order to easily
articulate various authorization requirements. If you recall, we have already seen the
use of SpEL in Chapter 2, Getting Started with Spring Security, when we defined our
<intercept-url> elements.

<intercept-url pattern="/events/"
 access="hasRole('ROLE_ADMIN')"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[255]

Spring Security provides a o.s.s.access.expression.SecurityExpressionRoot
object that provides the methods and objects available for use, in order to make an
access control decision. For example, one of the methods available for use is hasRole,
which accepts a string. This corresponds to the value of the access attribute (in the
preceding code snippet). In fact, there are a number of other expressions available, as
shown in the following table:

Expression Description
hasRole(String role)

hasAuthority(String role)

Returns true if the current user has the specified
authority.

hasAnyRole(String... role)

hasAnyAuthority(String...
authority)

Returns true if the current user has any of the
specified authorities.

principal Allows access to the current Authentication
object's principal attribute. As discussed in
Chapter 3, Custom Authentication, this will often be an
instance of UserDetails.

authentication Obtains the current Authentication
object from the SecurityContext interface
returned by the getContext() method of the
SecurityContextHolder class.

permitAll Always returns true.
denyAll Always returns false.
isAnonymous() Returns true if the current principal is anonymous

(is not authenticated).
isRememberMe() Returns true if the current principal was

authenticated using the remember me feature.
isAuthenticated() Returns true if the user is not an anonymous user

(that is, they are authenticated).
isFullyAuthenticated() Returns true if the user is authenticated through a

means other than remember me.
hasPermission(

 Object target,

 Object permission)

Returns true if the user has permission to access
the specified object for the given permission.

hasPermission(

 String targetId,

 String targetType,

 Object permission)

Returns true if the user has permission to access
the specified identifier for a given type and
permission.

www.it-ebooks.info

http://www.it-ebooks.info/

Fine-grained Access Control

[256]

We have provided some examples of using these SpEL expressions in the following
code snippet. Keep in mind that we will go into more detail throughout this and the
next chapter.

// allow users with ROLE_ADMIN
hasRole('ROLE_ADMIN')

// allow users that do not have the ROLE_ADMIN
!hasRole('ROLE_ADMIN')

// allow users that have ROLE_ADMIN or ROLE_ROOT and
// did not use the remember me feature to login
fullyAuthenticated and hasAnyRole('ROLE_ADMIN','ROLE_ROOT')

// allow if Authentication.getName() equals admin
authentication.name == 'admin'

WebSecurityExpressionRoot
The o.s.s.web.access.expression.WebSecurityExpressionRoot class makes a
few additional properties available to us. These properties, along with the standard
properties already mentioned, are made available in the access attribute of the
<intercept-url> tag and in the JSP access attribute of the <sec:authorize> tag,
as we will discuss shortly.

Expression Description
request The current HttpServletRequest.
hasIpAddress(String...
ipAddress)

Returns true if the current IP address matches the
ipAddress value. This can be an exact IP Address or the
IP address/network mask.

Using the request attribute
The request attribute is fairly self-explanatory, but we have provided a few
examples in the following section. Remember, any of these examples could be
placed in the <intercept-url> element's access attribute or the <sec:authorize>
element's access attribute.

// allows only HTTP GET
request.method == 'GET'

// allow anyone to perform a GET, but
// other methods require ROLE_ADMIN
request.method == 'GET' ? permitAll : hasRole('ROLE_ADMIN')

www.it-ebooks.info

mailto:'admin1@example.com
http://www.it-ebooks.info/

Chapter 10

[257]

Using hasIpAddress
The hasIpAddress method is not quite as clear cut as the request attribute. The
most obvious support is an exact match; for example, the following code would
allow access if the current user's IP address was 192.168.1.93.

hasIpAddress('192.168.1.93')

However, this is not all that useful. Instead, we can define the following code, which
would also match our IP address and any other IP address in our subnet.

hasIpAddress('192.168.1.0/24')

The question is, how is this calculated? The key is to understand how to calculate
the network address and its mask. To learn how to do this, we can take a look at
a concrete example. We launch ifconfig from our Linux terminal to view our
network information (Windows users can use enter ipconfig /ALL into the
command prompt).

$ ifconfig

wlan0 Link encap:Ethernet HWaddr a0:88:b4:8b:26:64

 inet addr:192.168.1.93 Bcast:192.168.1.255 Mask:255.255.255.0

We see that the first three octets of our mask are 255. This means that the first three
octets of our IP address belong to the network address. In our calculation, this means
the remaining octets are 0.

We can then calculate the mask by first transforming each octet into a binary
number, and then count how many ones there are. In our instance, we get 24.

This means our IP address will match 192.168.1.0/24. A good site for additional
information on netmasks is Cisco's documentation, available at http://www.cisco.
com/en/US/tech/tk365/technologies_tech_note09186a00800a67f5.shtml.

www.it-ebooks.info

http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a00800a67f5.shtml
http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a00800a67f5.shtml
http://www.it-ebooks.info/

Fine-grained Access Control

[258]

MethodSecurityExpressionRoot
Method SpEL expressions also provide a few additional properties that can be used
through the o.s.s.access.expression.method.MethodSecurityExpressionRoot
class.

Expression Description
target Refers to "this" or the current object being secured.
returnObject Refers to the object returned by the annotated method.
filterObject Can be used on a collection or array in conjunction with @

PreFilter or @PostFilter, to only include the elements that
match the expression. filterObject represents the loop variable of
the collection or array.

#<methodArg> Any argument to a method can be referenced by prefixing the
argument name with #. For example, a method argument named id
can be referred to using #id.

If the description of these expressions appears a bit brief, don't worry; we'll work
through a number of examples later in this chapter.

We hope that you have a decent grasp of the power of Spring Security's SpEL
support. To learn more about SpEL, refer to the Spring reference documentation at
http://static.springsource.org/spring/docs/3.1.x/spring-framework-
reference/html/.

Page-level authorization
Page-level authorization refers to the availability of application features based on
the context of a particular user's request. Unlike coarse-grained authorization that we
explored in Chapter 2, Getting Started with Spring Security, fine-grained authorization
typically refers to the selective availability of the portions of a page, rather than
restricting access to a page entirely. Most real-world applications will spend a
considerable amount of time with the details of fine-grained authorization planning.

www.it-ebooks.info

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/
http://www.it-ebooks.info/

Chapter 10

[259]

Spring Security provides us with two methods of selective display of functionality:

•	 Spring Security JSP Tag Libraries allow conditional access declarations
to be placed within a page declaration itself, using the standard JSP tag
library syntax.

•	 Checking user authorization in an MVC application's controller layer allows
the controller to make an access decision and bind the results of the decision
to the model data provided to the view. This approach relies on standard
JSTL conditional page rendering and data binding, and is slightly more
complicated than Spring Security tag libraries; however, it is more in line
with the standard web application MVC logical design.

Any of these approaches is perfectly valid when developing fine-grained
authorization models for a web application. Let's explore how each approach
is implemented through a JBCP Calendar use case.

Conditional rendering with Spring Security
tag library
The most common functionality used in the Spring Security tag library is to
conditionally render portions of the page based on authorization rules. This is
done with the <authorize> tag that functions similarly to the <if> tag in the
core JSTL library, in that the tag's body will render depending on the conditions
provided in the tag attributes. We have already seen a very brief demonstration of
how the Spring Security tag library can be used to restrict the viewing of content if
the user is not logged in.

Conditional rendering based on URL access rules
The Spring Security tag library provides functionality to render content based on the
existing URL authorization rules that are already defined in the security configuration
file. This is done by the use of the <authorize> tag with the url attribute.

If there are multiple <http> elements, the <authorize> tag uses
the currently matched <http> element's rules.

For example, we could ensure that the All Events link is displayed only when
appropriate, that is, for users who are administrators—recall that the access rules
we've previously defined are as follows:

<intercept-url pattern="/events/"
 access="hasRole('ROLE_ADMIN')"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Fine-grained Access Control

[260]

Update our header.jsp file to utilize this information to conditionally render the
link to the All Events page:

You should start with the code from chapter10.00-calendar.

src/main/webapp/WEB-INF/views/includes/header.jsp

<%@ taglib prefix="sec" uri="http://www.springframework.org/security/
tags" %>
...
<c:url var="eventsUrl" value="/events/" />
<sec:authorize url="${eventsUrl}">
 All Events
</sec:authorize>

This will ensure that the content of the tag is not displayed unless the user has
sufficient privileges to access the stated URL. It is possible to further qualify the
authorization check by the HTTP method, by including the method attribute:

<c:url var="eventsUrl" value="/events/" />
<sec:authorize url="${eventsUrl}"
 method="GET">
 All Events
</sec:authorize>

Using the url attribute to define authorization checks on blocks of code is
convenient, because it abstracts knowledge of the actual authorization checks from
your JSPs and keeps them in your security configuration file.

Be aware that the HTTP method should match the case specified in your security
<intercept-url> declarations, otherwise they may not match as you expect. Also,
note that the URL should always be relative to the web application context root (as
your URL access rules are).

For many purposes, the use of the <authorize> tag's url attribute will suffice to
correctly display link- or action-related content only when the user is allowed to see
it. Remember that the tag need not only surround a link, but it could even surround
a whole form if the user doesn't have permission to submit it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[261]

Conditional rendering using SpEL
An additional, more flexible method of controlling the display of JSP content is
available when the <authorize> tag is used in conjunction with a SpEL expression.
Let's review what we learned in Chapter 2, Getting Started with Spring Security. We
could hide the My Events link from any unauthenticated users by changing our
header.jsp file as follows:

src/main/webapp/WEB-INF/views/includes/header.jsp

<sec:authorize access="authenticated">
 <c:url var="myEventsUrl" value="/events/my" />
 My Events</
li>
</sec:authorize>

The SpEL evaluation is performed by the same code behind the scenes as the
expressions utilized in the <intercept-url> access declaration rules (assuming the
expressions have been configured). Hence, the same set of built-in functions and
properties are accessible from the expressions built using the <authorize> tag.

Both these methods of utilizing the <authorize> tag provide powerful, fine-grained
control over the display of page contents based on security authorization rules.

Go ahead and start up the JBCP Calendar application, visit http://localhost:8080/
calendar/, and log in with the user user1@example.com and the password user1.
You will observe that the My Events link is displayed, but the All Events link is
hidden. Log out and log in as the user admin1@example.com and the password
admin1. Now both links are visible.

Using controller logic to conditionally render
content
In this section, we will demonstrate how we can use Java-based code to determine
if we should render some content. We choose to only show the Create Event link
on the Welcome page to users who have a username that contains user. This will
hide the Create Event link on the Welcome page from users who are not logged
in as administrators.

www.it-ebooks.info

http://www.it-ebooks.info/

Fine-grained Access Control

[262]

The welcome controller from the sample code for this chapter has been updated to
populate the model with an attribute named showCreateLink, derived from the
method name.

src/main/java/com/packtpub/springsecurity/web/controllers/
WelcomeController.java

@ModelAttribute
public boolean showCreateLink(Authentication authentication) {
 return authentication != null && authentication.getName().
contains("user");
}

You may notice that Spring MVC can automatically obtain the Authentication
object for us. This is because Spring Security maps our current Authentication
object to the HttpServletRequest.getPrincipal() method for us. Since Spring
MVC will automatically resolve any object of the type java.security.Principal to
the value of HttpServletRequest.getPrincipal(), specifying Authentication as
an argument to our controller is an easy way to access the current Authentication
object. We could also decouple the code from Spring Security by specifying an
argument of the type Principal instead. However, we choose Authentication in
this scenario to help demonstrate how everything connects together.

If we were working in another framework that did not know how to do this, we
could obtain the Authentication object using the SecurityContextHolder class,
as we did in Chapter 3, Custom Authentication. Also note that if we were not using
Spring MVC, we could just set the HttpServletRequest attribute directly rather
than populating it on the model. The attribute that we populated on the request
would then be available to our JSP just as it is when using a ModelAndView object
with Spring MVC.

Next, we will need to use this HttpServletRequest attribute in our index.jsp
file to determine if we should display the Create Event link. Update index.jsp
as follows:

src/main/webapp/WEB-INF/views/index.jsp

<c:if test="${showCreateLink}">
 <a id="createEventLink" ...
</c:if>

Now start the application, log in using admin1@example.com as the username
and admin1 as the password, and visit the All Events page. You should no longer
see the Create Events link within the page (although it will still be present in the
main navigation).

www.it-ebooks.info

mailto:admin1@example.com
http://www.it-ebooks.info/

Chapter 10

[263]

Your code should look like chapter10.02-calendar.

WebInvocationPrivilegeEvaluator
There may be times when an application will not be written using JSPs and will need
to be able to determine access based upon a URL, as we did with <sec:authorize
url="${eventsUrl}">. This can be done by using the o.s.s.web.access.
WebInvocationPrivilegeEvaluator interface, which is the same interface that
backs the JSP tag library. In the following code snippet, we demonstrate its use by
populating our model with an attribute named showAdminLink. We are able to
obtain WebInvocationPrivilegeEvaluator using the @Autowired annotation.

src/main/java/com/packtpub/springsecurity/web/controllers/
WelcomeController.java

@ModelAttribute
public boolean showAdminLink(Authentication authentication) {
 return webInvocationPrivilegeEvaluator.
 isAllowed("/admin/", authentication);
}

If the framework you are using is not being managed by Spring, @Autowire will not
be able to provide you with WebInvocationPrivilegeEvaluator. Instead, you can
use Spring's org.springframework.web.context.WebApplicationContextUtils
interface to obtain an instance of WebInvocationPrivilegeEvaluator, as follows:

ApplicationContext context = WebApplicationContextUtils
 .getRequiredWebApplicationContext(servletContext);
WebInvocationPrivilegeEvaluator privEvaluator =
 context.getBean(WebInvocationPrivilegeEvaluator.class)

To try it out; go ahead and update index.jsp to use the showAdminLink request
attribute, as follows:

src/main/webapp/WEB-INF/views/index.jsp

<c:if test="${showAdminLink}">

 H2 Database Console

 ...

</c:if>

www.it-ebooks.info

http://www.it-ebooks.info/

Fine-grained Access Control

[264]

Restart the application and view the welcome page before you have logged in.
The H2 link should not be visible. Log in as admin1@example.com/admin1, and
you should see it.

Your code should look like chapter10.03-calendar.

What is the best way to configure in-page
authorization
The major advances in the Spring Security <authorize> tag in Spring Security 3
removed many of the concerns about the use of this tag in prior versions of the
library. In many cases, the use of the url attribute of the tag can appropriately isolate
the JSP code from changes in authorization rules. You should use the url attribute of
the tag in the following scenarios:

•	 The tag is preventing display of functionality that can be clearly identified by
a single URL

•	 The contents of the tag can be unambiguously isolated to a single URL

Unfortunately, in a typical application, the likelihood that you will be able to use the
url attribute of the tag frequently is somewhat low. The reality is that applications
are usually much more complex than this, and require more involved logic when
deciding to render portions of a page.

It's tempting to use the Spring Security tag library to declare bits of rendered pages
off-limits based on security criteria in the other ways. However, there are a number
of reasons why (in many cases) this isn't a great idea:

•	 Complex conditions beyond role membership are not supported by the tag
library. For example, if our application incorporated customized attributes on
the UserDetails implementation, IP filters, geo-location, and so on—none of
these would be supported using the standard <authorize> tag.
These could, however, conceivably be supported by a custom JSP tag or
using SpEL expressions. Even in this case, the JSP is more likely to be directly
tied to business logic rather than what is typically encouraged.

www.it-ebooks.info

mailto:admin1@example.com
http://www.it-ebooks.info/

Chapter 10

[265]

•	 The <authorize> tag must be referenced on every page that it's used in.
This leads to potential inconsistencies between the rulesets that are intended
to be common, but may be spread across different physical pages. A
good object-oriented system design would suggest that conditional rule
evaluations be located in only one place and logically referred to from where
they should be applied.
It is possible (and we illustrate this using our common header JSP include)
to encapsulate and reuse portions of JSP pages to reduce the occurrence
of this type of problem, but it is virtually impossible to eliminate in a
complex application.

•	 There is no way to validate the correctness of rules stated at compile time.
Whereas compile-time constants can be used in typical Java-based, object-
oriented systems, the JSP tag library requires (in typical use) hardcoded role
names where a simple typo might go undetected for some time.
To be fair, such typos could be caught easily by comprehensive functional
tests of the running application, but they are far easier to test using a
standard Java component unit testing techniques.

We can see that although the JSP-based approach for conditional content rendering is
convenient, there are some significant downsides.

All of these issues can be solved through the use of code in controllers that can be used
to push data into the application view model. Additionally, performing advanced
authorization determinations in code allows the benefits of re-use, compile-time
checks, and proper logical separation of the model, view, and controller.

Method-level security
Our primary focus up to this point in the book has been on securing the web-facing
portion of the JBCP Calendar application; however, in the real-world planning of
secured systems, equal attention should be paid to securing the service methods
that allow users access to the most critical part of any system—its data.

www.it-ebooks.info

http://www.it-ebooks.info/

Fine-grained Access Control

[266]

Why we secure in layers
Let's take a minute to see why it is important to secure our methods even though we
have already secured our URLs. Start the JBCP Calendar application up. Log in using
user1@example.com as the username and user1 as the password, and visit the All
Events page. You will see our custom Access Denied page. Now add .json to the
end of the URL in the browser so that the URL is now http://localhost:8080/
calendar/events/.json. You will now see a JSON response with the same data as
the HTML All Events page. This data should only be visible to an administrator, but
we have bypassed it by finding a URL that was not configured properly.

We can also view the details of an event that we do not own and are not invited
to. Change .json to be 102 so that the URL is now http://localhost:8080/
calendar/events/102. You will now see a Lunch event that is not listed in your
My Events page. This should not be visible to us because we are not an administrator
and this is not our event.

As you can see, our URL rules are note quite strong enough to entirely secure our
application. These exploits do not even need to take advantage of more complex
problems, such as differences in how containers handle URL normalization. In short,
there are often ways to bypass URL-based security. Let's see how adding a security
layer to our business tier can help with our new security vulnerability.

Securing the business tier
Spring Security has the ability to add a layer of authorization (or authorization-based
data pruning) to the invocation of any Spring-managed bean in your application.
While many developers focus on web-tier security, business-tier security is arguably
just as important, as a malicious user may be able to penetrate the security of your
web tier or access services exposed through a non-UI frontend, such as a web service.

Let's examine the following logical diagram to see where we're interested in applying
a secondary layer of security:

www.it-ebooks.info

mailto:user1@example.com
mailto:user1@example.com
http://localhost:8080/calendar/events/.json
http://localhost:8080/calendar/events/.json
http://localhost:8080/calendar/events/102
http://localhost:8080/calendar/events/102
http://www.it-ebooks.info/

Chapter 10

[267]

Spring Security has two main techniques for securing methods:

•	 Preauthorization ensures that certain constraints are satisfied prior to the
execution of a method that is being allowed—for example, if a user has a
particular GrantedAuthority, such as ROLE_ADMIN. Failure to satisfy the
declared constraints means that the method call will fail.

•	 Postauthorization ensures that the calling principal still satisfies declared
constraints after the method returns. This is used rarely, but can provide
an extra layer of security around some complex, interconnected business
tier methods.

Pre and postauthorization provide formalized support for what are generally termed
preconditions and postconditions in a classic, object-oriented design. Preconditions
and postconditions allow a developer to declare through runtime checks that certain
constraints around a method's execution must always hold true. In the case of security
pre and postauthorization, the business tier developer makes a conscious decision
about the security profile of particular methods by encoding expected runtime
conditions as part of an interface or class API declaration. As you may imagine, this
can require a great deal of forethought to avoid unintended consequences!

Adding @PreAuthorize method annotation
Our first design decision will be to augment method security at the business tier by
ensuring that a user must be logged in as a user with ROLE_ADMIN before he/she is
allowed to access the getEvents() method. This is done with a simple annotation
added to the method in the service interface definition, as follows:

import org.springframework.security.access.prepost.PreAuthorize;
...
public interface CalendarService {
 ...
 @PreAuthorize("hasRole('ROLE_ADMIN')")
 List<Event> getEvents();
}

This is all that is required to ensure that anyone invoking our getEvents()
method is an administrator. Spring Security will use a runtime Aspect Oriented
Programming (AOP) pointcut to execute before an advice on the method, and throw
o.s.s.access.AccessDeniedException if the security constraints aren't met.

www.it-ebooks.info

http://www.it-ebooks.info/

Fine-grained Access Control

[268]

Instructing Spring Security to use method
annotations
We'll also need to make a one-time change to security.xml, where we've got the
rest of our Spring Security configuration. Simply add the following element right
before the <http> declaration:

src/main/webapp/WEB-INF/spring/security.xml

<global-method-security
 pre-post-annotations="enabled"/>
<http ...>

Validating method security
Don't believe it was that easy? Log in with user1@example.com as the username
and user1 as the password, and try accessing http://localhost:8080/calendar/
events/.json. You should see the Access Denied page now.

Your code should look like chapter10.04-calendar.

If you look at the Tomcat console, you'll see a very long stack trace, starting with the
following output:

DEBUG ExceptionTranslationFilter - Access is denied (user is not
anonymous); delegating to AccessDeniedHandler
org.s.s.access.AccessDeniedException: Access is denied
 at org.s.s.access.vote.AffirmativeBased.decide
 at org.s.s.access.intercept.AbstractSecurityInterceptor.
beforeInvocation
 at org.s.s.access.intercept.aopalliance.MethodSecurityInterceptor.
invoke
 ...
 at $Proxy16.getEvents
 at com.packtpub.springsecurity.web.controllers.EventsController.
events

Based on the access denied page, and the stack trace clearly pointing to the
getEvents method invocation, we can see that the user was appropriately denied
access to the business method because it lacked GrantedAuthority of ROLE_ADMIN.
If you run the same with the username admin1@example.com and the password
admin1, you will discover that access will be granted.

www.it-ebooks.info

mailto:user1@example.com
mailto:admin1@example.com
http://www.it-ebooks.info/

Chapter 10

[269]

Isn't it amazing that with a simple declaration in our interface, we're able to ensure
that the method in question has been secured? How does AOP work?

Interface-based proxies
In the preceding example, Spring Security uses an interface-based proxy to secure
our getEvents method. Let's take a look at simplified pseudo code of what is
happening to understand how this works.

DefaultCalendarService originalService = context.
getBean(CalendarService.class)
CalendarService secureService = new CalendarService() {
 … other methods just delegate to originalService ...
 public List<Event> getEvents() {
 if(!permitted(originalService.getEvents)) {
 throw AccessDeniedException()
 }
 return originalCalendarService.getEvents()
 }
};

You can see that Spring creates the original CalendarService just as it normally
does. However, it instructs our code to use another implementation of the
CalendarService that performs a security check before returning the result of the
original method. The secure implementation can be created with no prior knowledge
of our interface because Spring uses Java's java.lang.reflect.Proxy APIs to
dynamically create new implementations of the interface. Note that the object
returned is no longer an instance of DefaultCalendarService since it is a new
implementation of CalendarService (that is, it is an anonymous implementation of
CalendarService). This means that we must program against an interface in order
to use the secure implementation, otherwise a ClassCastException would occur.
To learn more about Spring AOP, refer to the Spring reference documentation at
http://static.springsource.org/spring/docs/current/spring-framework-
reference/html/aop.html#aop-introduction-proxies.

In addition to the @PreAuthorize annotation, there are several other ways of
declaring security preauthorization requirements on methods. We can examine
these different ways of securing methods and then evaluate their pros and cons in
different circumstances.

www.it-ebooks.info

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/aop.html#aop-introduction-proxies
http://www.it-ebooks.info/

Fine-grained Access Control

[270]

JSR-250 compliant standardized rules
JSR-250, Common Annotations for the Java Platform, defines a series of annotations,
some that are security-related, which are intended to be portable across JSR-250
compliant runtime environments. The Spring Framework became compliant with
JSR-250 as part of the Spring 2.x release, including the Spring Security framework.

While the JSR-250 annotations are not as expressive as the Spring native annotations,
they have the benefit that the declarations they provide are compatible across
implementing Java EE application servers such as Glassfish or service-oriented
runtime frameworks such as Apache Tuscany. Depending on your application's
needs and requirements for portability, you may decide that the trade-off of reduced
specificity is worth the portability of the code.

To implement the rule we specified in the first example, we would make a few changes.
First, we need to update our security.xml file to use the JSR-250 annotations.

src/main/webapp/WEB-INF/spring/security.xml

<global-method-security
 jsr250-annotations="enabled"/>

Lastly, the @PreAuthorize annotation needs to change to the @RolesAllowed
annotation. As we might anticipate, the @RolesAllowed annotation does not support
SpEL expressions, so we edit CalendarService as follows:

@RolesAllowed("ROLE_ADMIN")
List<Event> getEvents();

Restart the application, log in as user1@example.com/user1, and try to access
http://localhost:8080/calendar/events/.json. You should see the Access
Denied page again.

Your code should look like chapter10.05-calendar.

Note that it's also possible to provide a list of allowed GrantedAuthority names
using the standard Java 5 String array annotation syntax:

@RolesAllowed({"ROLE_USER","ROLE_ADMIN"})
List<Event> getEvents();

www.it-ebooks.info

mailto:user1@example.com
http://www.it-ebooks.info/

Chapter 10

[271]

There are also two additional annotations specified by JSR-250, namely @PermitAll
and @DenyAll, which function as you might expect, permitting and denying all
requests to the method in question.

Annotations at the class level
Be aware that the method-level security annotations can be applied at
the class level as well! Method-level annotations, if supplied, will always
override annotations specified at the class level. This can be helpful if
your business needs to dictate specification of security policies for an
entire class at a time. Take care to use this functionality in conjunction
with good comments and coding standards so that developers are very
clear about the security characteristics of a class and its methods.

Method security using Spring's @Secured
annotation
Spring itself provides a simpler annotation style that is similar to the JSR-250
@RolesAllowed annotation. The @Secured annotation is functionally and
syntactically the same as @RolesAllowed. The only notable differences are
that it does not require the external dependency, cannot be processed by other
frameworks, and the processing of these annotations must be explicitly enabled
with another attribute on the <global-method-security> element:

src/main/webapp/WEB-INF/spring/security.xml

<global-method-security
 secured-annotations="enabled"/>

As @Secured functions in the same way as the JSR standard @RolesAllowed
annotation does, there's no real compelling reason to use it in new code, but
you may run across it in older Spring code.

Method security rules using aspect-oriented
programming
The final technique for securing methods has the benefit that it doesn't require
code modification at all. Instead, it uses aspect-oriented programming to declare a
pointcut at a method or set of methods, with an advice that performs checks for role
membership when the pointcut matches. The AOP declarations are only present in
the Spring Security XML configuration file and do not involve any annotations.

www.it-ebooks.info

http://www.it-ebooks.info/

Fine-grained Access Control

[272]

Following is an example of a declaration protecting all the CalendarService
interface methods with administrative rights:

<global-method-security>
 <protect-pointcut access="ROLE_ADMIN" expression=
 "execution(* com.packtpub.springsecurity.service.
CalendarService.*(..))"/>
</global-method-security>

The pointcut expressions are supported under the hood with Spring AOP support
via AspectJ. Unfortunately, Spring AspectJ AOP only supports a very small subset of
the AspectJ pointcut expression language—refer to the Spring AOP documentation
for more details on supported expressions and other important elements of
programming with Spring AOP.

That said, be aware that it's possible to specify a series of pointcut declarations
that target different roles and pointcut targets. Update your configuration to add a
pointcut to target a method in your DAO:

src/main/webapp/WEB-INF/spring/security.xml

<global-method-security>
 <protect-pointcut access="ROLE_ADMIN" expression="execution(* com.
packtpub.springsecurity.dataaccess.EventDao.getEvents(..)) &&
args()"/>
</global-method-security>

Note that the new pointcut we added uses some more advanced AspectJ syntax,
illustrating Boolean logic and the other supported pointcuts, args, that can be used
to specify the type declaration of arguments.

Your code should look like chapter10.06-calendar.

Start up the application and try accessing the All Events page with the user user1@
example.com and password user1. You should get the Access Denied page.

Much as with other areas of Spring Security that allow a series of security declarations,
AOP-style method security is processed from top to bottom, so it's a good idea to write
the pointcuts in a most-specific to least-specific order.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[273]

Programming using AOP can be confusing for even seasoned developers. If you
intend to use AOP heavily for security declarations, it is highly suggested that you
review the Spring AOP reference documentation.

Method security rules using bean decorators
An alternative form for declaring method security rules involves the use of
declarative XML, which can be included within a Spring Bean definition. Although
easier to read, this form of method security is far less expressive than pointcuts and
far less comprehensive than the annotation-based approaches that we've reviewed
so far. Nonetheless, for certain types of projects, using an XML declarative approach
may be sufficient for your needs.

We can experiment by replacing the rules we declared in the prior examples with
XML-based declarations to secure the getEvents method. As we have used bean
auto-wiring upto this point, which is unfortunately not compatible with XML
method decorators, we'll need to explicitly declare the service layer beans in order
to demonstrate this technique.

The security decorators are part of the security XML namespace. When including
Spring Security configuration, it is important to specify the security namespace.
We have already updated our services.xml file to have the Security namespace
defined, as follows:

src/main/webapp/WEB-INF/spring/services.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 ...
 xmlns:security="http://www.springframework.org/schema/security"
 xsi:schemaLocation="...
 http://www.springframework.org/schema/security http://www.
springframework.org/schema/security/spring-security-3.1.xsd">

Next (for the purposes of this exercise), remove any security annotations that you
may have on the DefaultCalendarService.getEvents method. Also, remove any
<pointcut-protect> elements from your security.xml file.

www.it-ebooks.info

http://www.springframework.org/schema/security/spring-security-3.1.xsd
http://www.springframework.org/schema/security/spring-security-3.1.xsd
http://www.it-ebooks.info/

Fine-grained Access Control

[274]

Finally, declare the bean in Spring XML syntax with the following additional
decorator that will declare that anyone wishing to invoke the getEvents method
must be of the type ROLE_ADMIN:

src/main/webapp/WEB-INF/spring/services.xml

<bean id="calendarService"
 class="com.packtpub.springsecurity.service.
DefaultCalendarService"
 autowire="constructor">
 <security:intercept-methods>
 <security:protect access="ROLE_ADMIN" method="getEvents"/>
 </security:intercept-methods>
</bean>

As with the earlier examples in this chapter, this protection can be easily verified by
changing ROLE_USER to ROLE_ADMIN and attempting to view the All Events page
with user1@example.com as the username and user1 as the password.

Your code should look like chapter10.07-calendar now.

Behind the scenes, the functionality of this type of method access
protection uses a MethodSecurityInterceptor object wired to
MapBasedMethodSecurityMetadataSource, which the interceptor uses, to determine
appropriate access. Unlike the more expressive SpEL-aware @PreAuthorize
annotation, the <protect> declaration takes only a comma-separated list of roles in the
access attribute (similar to the JSR-250 @RolesAllowed annotation).

It is also possible to use a simple wildcard match as part of the stated method name,
for example, we might protect all getters of a given bean as follows:

<security:intercept-methods>
 <security:protect access="ROLE_ADMIN" method="get*"/>
</security:intercept-methods>

Method name matching can be performed by including a leading or trailing regular
expression wildcard indicator (*). The presence of such an indicator will perform a
wildcard search on the method name, adding the interceptor to any method matching
the regular expression. Please note that other common regular expression operators
(such as ? or [) are not supported. Please consult the relevant Java documentation for
assistance on formulating and understanding basic regular expressions.

www.it-ebooks.info

mailto:user1@example.com
mailto:user1@example.com
http://www.it-ebooks.info/

Chapter 10

[275]

It is not common to see this type of security declaration in new code, as more
expressive options exist, but it is good to be aware of this type of security decoration
so that you can recognize it as an option in your method security tool belt. This
type of method security declaration can be especially useful in cases where adding
annotations to relevant interfaces or classes is not an option, such as when you are
dealing with securing components in third-party libraries.

Method security rules incorporating method
parameters
Logically, writing rules that refer to method parameters in their constraints seems
sensible for certain types of operations. For example, it might make sense for us to
restrict the findForUser(int userId) method to meet the following constraints:

•	 The userId argument must be equal to the the current user's ID
•	 The user must be an administrator (in this case, it is valid for the user to see

any event)

While it's easy to see how we could alter the rule to restrict the method invocation
only to administrators, it's not clear how we would determine if the user is
attempting to change their own password.

Fortunately, the SpEL binding used by the Spring Security method annotations
supports more sophisticated expressions, including expressions that incorporate
method parameters.

Remove the <security:intercept-methods> element from services.xml so that
our bean with the ID calendarService is as follows:

src/main/webapp/WEB-INF/spring/services.xml

<bean id="calendarService"
 class="com.packtpub.springsecurity.service.
DefaultCalendarService"
 autowire="constructor">
<!-- this should be empty -->
</bean>

You will also want to ensure that you have enabled pre-post-annotations in the
security.xml file, as follows:

src/main/webapp/WEB-INF/spring/security.xml

<global-method-security
 pre-post-annotations="enabled"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Fine-grained Access Control

[276]

Lastly, we can update our CalendarService interface as follows:

@PreAuthorize("hasRole('ROLE_ADMIN') or principal.id == #userId")
List<Event> findForUser(int userId);

You can see here that we've augmented the SpEL directive we used in the first
exercise with a check against the ID of the principal against the userId method
parameter (#userId—the method parameter name is prefixed with a # symbol). The
fact that this powerful feature of method parameter binding is available should get
your creative juices flowing and allow you to secure method invocations with a very
precise set of logical rules.

Our principal is currently an instance of CalendarUser due to the
custom authentication setup from Chapter 3, Custom Authentication. This
means that principal has all the properties that our CalendarUser
has on it. If we had not done this customization, only the properties on
the UserDetails would be available.

SpEL variables are referenced with the hash (#) prefix. One important note is that
in order for method argument names to be available at runtime, debugging symbol
table information must be retained after compilation. Common methods of enabling
this are listed as follows:

•	 If you are using the javac compiler, you will need to include the -g flag
when building your classes

•	 When using the <javac> task in ant, add the attribute debug="true"
•	 In Maven, ensure the property maven.compiler.debug=true

(the default is true)

Consult your compiler, build tool, or IDE documentation for assistance on
configuring this same setting in your environment.

Start up your application and try logging in with user1@example.com as the username
and user1 as the password. On the Welcome page, request the My Events (userId=0)
link to see an Access denied page. Try again with the My Events (userId=1) to see
it work. Note that the displayed user on the My Events page matches the currently
logged-in user. Now try the same steps and log in as admin1@example.com / admin1.
We will be able to see both pages since we are logged in as a user with ROLE_ADMIN.

Your code should look like chapter10.08-calendar.

www.it-ebooks.info

mailto:user1@example.com
mailto:admin1@example.com
http://www.it-ebooks.info/

Chapter 10

[277]

Method security rules incorporating returned values
Just as we were able to leverage the parameters to the method, we can also leverage
the returned value of the method call. Let's update the getEvent method to meet the
following constraints on the returned value:

•	 The attendee's ID must be the current user's ID or
•	 The owner's ID must be the current user's ID or
•	 The user must be an administrator (in this case, it is valid for the user to see

any event)

Add the following code to our CalendarService interface:

@PostAuthorize("hasRole('ROLE_ADMIN') or " +
 "principal.id == returnObject.owner.id or " +
 "principal.id == returnObject.attendee.id")
Event getEvent(int eventId);

Now try logging in with the username user1@example.com and the password
user1. Next, try accessing the Lunch event using the link on the Welcome page.
You should now see the Access Denied page. If you log in using the username
user2@example.com and the password user2, the event will display as expected
since user2@example.com is the attendee on the Lunch event.

Your code should look like chapter10.09-calendar.

Securing method data through role-based filtering
Two, final, Spring Security-dependent annotations are @PreFilter and @PostFilter,
which are used to apply security-based filtering rules to collections or arrays (with
@PostFilter only). This type of functionality is referred to as security trimming or
security pruning, and involves using the security credentials of principal at runtime,
to selectively remove members from a set of objects. As you might expect, this filtering
is performed using the SpEL expression notation within the annotation declaration.

We'll work through an example with JBCP Calendar, where we want to filter the
getEvents method to only return the events that this user is allowed to see. In order
to do this, we remove any existing security annotations and add the @PostFilter
annotation to our CalendarService interface, as follows:

@PostFilter("principal.id == filterObject.owner.id or " +
 "principal.id == filterObject.attendee.id")
List<Event> getEvents();

www.it-ebooks.info

mailto:user1@example.com
mailto:user2@example.com
mailto:user2@example.com
http://www.it-ebooks.info/

Fine-grained Access Control

[278]

Your code should look like chapter10.10-calendar.

Remove the <intercept-url> element restricting access to /events/ URL so that
we can test our annotation. Start up the application and view the All Events page
when logged in with user1@example.com and password user1. You will observe
that only the events that are associated to our user are displayed.

With filterObject acting as the loop variable that refers to the current event,
Spring Security will iterate over the List<Event> returned by our service and
modify it to only contain the Event objects that match our SpEL expression.

In general, the @PostFilter method behaves in the following way. For brevity, we
refer to collection as the method return value, but be aware that @PostFilter works
with either collection or array method return types.

•	 filterObject is rebound to the SpEL context for each element in the
collection. This means that if your method is returning a collection with
100 elements, the SpEL expression will be evaluated for each.

•	 The SpEL expression must return a Boolean value. If the expression evaluates
to true, the object will remain in the collection, while if the expression
evaluates to false, the object will be removed.

In most cases, you'll find that collection post filtering saves you from the complexity
of writing boilerplate code that you would likely be writing anyway.

Take care that you understand how @PostFilter works conceptually; unlike
@PreAuthorize, @PostFilter specifies method behavior and not a precondition.
Some object-oriented purists may argue that @PostFilter isn't appropriate for
inclusion as a method annotation, and such filtering should instead be handled
through code in a method implementation.

Safety of collection filtering
Be aware that the actual collection returned from your method
will be modified! In some cases, this isn't desirable behavior, so
you should ensure that your method returns a collection that can
be safely modified. This is especially important if the returned
collection is an ORM-bound one, as postfilter modifications could
inadvertently be persisted to the ORM data store!

Spring Security also offers functionality to prefilter method parameters that are
collections; let's try implementing it now.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[279]

Pre-filtering collections with @PreFilter
The @PreFilter annotation can be applied to a method to filter collection elements
that are passed into a method based on the current security context. Functionally
once it has a reference to a collection, this annotation behaves exactly the same as
the @PostFilter annotation, with a couple of exceptions:

•	 @PreFilter supports only collection arguments and does not support
array arguments

•	 @PreFilter takes an additional, optional attribute filterTarget that
is used to specifically identify the method parameter to filter it when the
annotated method has more than one argument

As with @PostFilter, keep in mind that the original collection passed to the method
is permanently modified. This may not be desirable behavior, so ensure that callers
know that the collection's security may be trimmed after the method is invoked!

Imagine if we had a save method that accepted a collection of event objects, and we
wanted to only allow the saving of events that are owned by the currently logged-in
user. We could do this as follows:

@PreFilter("principal.id == filterObject.owner.id")
void save(Set<Event> events);

Much like our @PostFilter method, this annotation causes Spring Security to iterate
over each event with the loop variable filterObject. It then compares the current
user's ID against the event owner's ID. If they match, the event is retained. If they do
not match, the result is discarded.

Comparing method authorization types
The following quick reference chart may assist you in selecting a type of method
authorization checking to use:

Method authorization type Specified as JSR standard Allows SpEL expressions
@PreAuthorize

@PostAuthorize

Annotation No Yes

@RolesAllowed @
PermitAll @DenyAll

Annotation Yes No

@Secure Annotation No No
protect-pointcut XML No No

www.it-ebooks.info

http://www.it-ebooks.info/

Fine-grained Access Control

[280]

Most Java 5 consumers of Spring Security will probably opt to use the JSR-250
annotations for maximum compatibility and re-use of their business classes
(and relevant constraints) across the IT organization. Where needed, these basic
declarations can be replaced with the annotations that tie the code to the Spring
Security implementation itself.

If you are using Spring Security in an environment that doesn't support annotations
(Java 1.4 or previous), unfortunately your choices are somewhat limited with method
security enforcement. Even in this situation, the use of AOP provides a reasonably
rich environment in which we can develop basic security declarations.

Practical considerations for annotation-based
security
One thing to consider is that when returning a collection in real-world applications,
there is likely to be some sort of paging. This means that our @PreFilter and
@PostFilter annotations cannot be used as the sole means of selecting which objects
to return. Instead, we need to ensure that our queries only select the data that the
user is allowed to access. This means that the security annotations become redundant
checks. However, it is important to remember our lesson at the beginning of this
chapter; we want to secure in layers in the event that one layer is able to be bypassed.

Method security on Spring MVC controllers
Rather than typing the URL configuration in our Spring Security configuration,
we may want to add @PreAuthorize annotations to our MVC controllers. We
already have our global-method-security setup, so the setup seems like it is
straightforward. Let's demonstrate this functionality with the /events/ URL. First,
we will demonstrate that we are securing our controller. Start by ensuring the
following code has been removed from our security.xml file:

src/main/webapp/WEB-INF/spring/security.xml

<intercept-url pattern="/events/"
 access="hasRole('ROLE_ADMIN')"/>

We will also want to ensure that we remove any annotations from the getEvents()
method of CalendarService.

src/main/java/com/packtpub/springsecurity/service/CalendarService.
java

// ensure no annotations on this method
List<Event> getEvents();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[281]

Next, we will add the @PreAuthorize tag to our EventsController as follows:

@PreAuthorize("hasRole('ROLE_ADMIN')")
@RequestMapping("/")
public ModelAndView events() {
 return new ModelAndView("events/list", "events", calendarService.
getEvents());
}

Now start up the application and visit the All Events page, ensuring to log in with
the username user1@example.com and the password user1 to see that the method
is not secured. How can this be done? We have just encountered one of the most
common problems when trying to secure a Spring MVC controller. Remember
in Chapter 2, Getting Started with Spring Security we briefly discussed that the
ContextLoaderListener typically loads the Spring Security configuration and the
DispatcherServlet loads our Spring MVC configuration? The problem is that our
<global-method-security> is loaded by our ContextLoaderListener, which has
no visibility to our MVC configuration (that is, our EventsController) and so does
not secure it. Add the following code to mvc-config.xml.

src/main/webapp/WEB-INF/mvc-config.xml

<sec:global-method-security
 pre-post-annotations="enabled"/>

Try starting the application, ensuring to log in with the username user1@example.
com and the password user1, and visiting the All Events page. We now see a 404
error rather than our Access Denied page. Now what is wrong?

The problem this time is that Spring's AOP support has created an interface-based
proxy of the Serializable interface that is on our EventsController. The result is
an object that looks similar to the following code snippet:

Serializable secureController = new Serializable() {
 private CalendarController insecureController;
}

Since there are no methods on the Serializable interface, no methods have been
exposed to process our All Events page. To get around this, we can modify our mvc-
config.xml file as follows:

src/main/webapp/WEB-INF/mvc-config.xml

<sec:global-method-security
 proxy-target-class="true"
 pre-post-annotations="enabled"/>

www.it-ebooks.info

mailto:user1@example.com
mailto:user1@example.com
http://www.it-ebooks.info/

Fine-grained Access Control

[282]

This will instruct Spring to create a class-based proxy using cglib instead of using
an interface-based proxy.

Class-based proxies
A class-based proxy looks much like our interface-based proxy except that
instead of an anonymous implementation of an interface, it creates an anonymous
implementation of the class. This means the object still has all the same methods on it
and so there are methods to process the requests unlike our interface-based proxy. A
simplified pseudo code would look similar to the following code snippet:

EventsController secureController = new EventsController() {
 ... other methods just delegate to originalService ...
 public ModelAndView events() {
 if(!permitted(insecureController.events)) {
 throw AccessDeniedException()
 }
 return insecureController.events();
 }
};

Class-based proxy limitations
Start up the application again and you will get an error stating Cannot subclass
final class class ...EventsController. If you look at our example, you
can see that in order to secure our EventsController, Spring must create an
anonymous inner class (which is trying to extend a final class). This is not possible
since final classes cannot be extended. Remove the final declaration from our
EventsController.

src/main/java/com/packtpub/springsecurity/web/controllers/
EventsController.java

public class EventsController implements Serializable {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[283]

When we try to start our application this time, we get another exception stating
Superclass has no null constructors but no arguments were given.
The problem is that Spring will not create a proxy of an object that does not have
a default constructor. This is a safety precaution to ensure that the arguments
are not processed twice (that is, once for the secure proxy and once for the actual
implementation) in the event that the constructor modifies the state. For example,
consider if the argument was a DataSource and the constructor tried to create the
schema. Passing it in twice would cause the schema to be created twice, resulting in
an error. Add a default constructor to the EventsController to resolve this error.
Note that the constructor can be in the default scope rather than in public.

src/main/java/com/packtpub/springsecurity/web/controllers/
EventsController.java

EventsController() {
 calendarService = null;
 userContext = null;
}

Your code should now look like chapter10.11-calendar.

We are finally able to start the application; log in with the username
user1@example.com and password user1, visit the All Events page,
and see the expected Access Denied page.

It should be noted that switching to using annotations means that
our <sec:authorize> JSP tag will no longer work since it uses the
information in our <intercept-url> elements. This makes sense
since Spring Security is unaware of our Spring MVC mappings.

www.it-ebooks.info

mailto:user1@example.com
mailto:user1@example.com
http://www.it-ebooks.info/

Fine-grained Access Control

[284]

Summary
In this chapter, we have covered most of the remaining areas in standard Spring
Security implementations that deal with authorization. We've learned enough
to take a thorough pass through the JBCP Calendar application and verify that
proper authorization checks are in place at all tiers of the application, to ensure that
malicious users cannot manipulate or access data to which they do not have access.

Specifically, we:

•	 Developed two techniques for micro-authorization, namely filtering out
in-page content based on authorization or other security criteria using the
Spring Security JSP tag library and Spring MVC controller data binding

•	 Explored several methods of securing business functions and data in the
business tier of our application and supporting a rich, declarative security
model that is tightly integrated with the code

•	 Learned how to secure our Spring MVC controllers and the differences
between interface and class proxy objects

At this point, we've wrapped up coverage of much of the important Spring Security
functionality that you're likely to encounter in most standard, secure web application
development scenarios.

In the next chapter, we will discuss the access control list (domain object model)
module of Spring Security. This will allow us to explicitly declare authorization
rather than relying on existing data.

www.it-ebooks.info

http://www.it-ebooks.info/

Access Control Lists
In this chapter, we will address the complex topic of Access Control Lists (ACL),
which can provide a rich model of the domain object instance-level authorization.
Spring Security ships with a robust, but complicated, access control list module that
can serve the needs of small to medium-sized implementations reasonably well.

During the course of this chapter we'll:

•	 Understand the conceptual model of access control lists
•	 Review the terminology and application of access control list concepts in the

Spring Security ACL module
•	 Build and review the database schema required to support Spring ACL
•	 Configure JBCP Calendar to use ACL secured business methods via

annotations and Spring Beans
•	 Perform advanced configuration, including customized ACL permissions,

ACL-enabled JSP tag checks and method security, mutable ACLs, and
smart caching

•	 Examine architectural considerations and plan scenarios for ACL deployment

Using access control lists for business
object security
The final piece of the non web tier security puzzle is security at the business object
level, applied at or below the business tier. Security at this level is implemented
using a technique known as access control lists, or ACLs. Summing up the objective
of ACLs in a single sentence—ACLs allow specification of a set of group permissions
based on the unique combination of a group, business object, and logical operation.

www.it-ebooks.info

http://www.it-ebooks.info/

Access Control Lists

[286]

For example, an ACL declaration for JBCP Calendar might declare that a given user
has write access to his or her own event. This might be shown as follows:

Username Group Object Permissions
rob event_01 read, write

ROLE_USER event_123 read
ANONYMOUS Any Event none

You can see that this ACL is eminently readable by a human—rob has read
and write access to his own event (event_01); other registered users can read the
events of rob, but anonymous users cannot. This type of rule matrix is, in a nutshell,
what ACL attempts to synthesize about a secured system and its business data into
a combination of code, access checking, and metadata. Most true ACL-enabled
systems have extremely complex ACL lists, and may conceivably have millions of
entries across the entire system. Although this sounds frighteningly complex, proper
up-front reasoning and implementation with a capable security library can make
ACL management quite feasible.

If you use a Microsoft Windows or Unix/Linux-based computer, you experience the
magic of ACLs every single day. Most modern computer operating systems use ACL
directives as part of their file storage systems, allowing permission granting based
on a combination of a user or group, file or directory, and permission. In Microsoft
Windows, you can view some of the ACL capabilities of a file by right-clicking on a
file and examining its security properties (Properties | Security):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[287]

You will be able to see that the combinations of inputs to the ACL are visible and
intuitive as you navigate through the various groups or users and permissions.

Access control lists in Spring Security
Spring Security supports ACL-driven authorization checks against access to
individual domain objects by individual users of the secured system. Much as in the
OS filesystem example, it is possible to use the Spring Security ACL components
to build logical tree structures of both business objects and groups or principals.
The intersection of permissions (inherited or explicit) on both the requestor and the
requestee is used to determine allowed access.

It's quite common for users approaching the ACL capability of Spring Security to be
overwhelmed by its complexity, combined with a relative dearth of documentation
and examples. This is compounded by the fact that setting up the ACL infrastructure
can be quite complicated, with many interdependencies and a reliance on bean-based
configuration mechanisms, which are quite unlike much of the rest of Spring Security
(as you'll see in a moment when we set up the initial configuration).

The Spring Security ACL module was written to be a reasonable baseline, but users
intending to build extensively on the functionality will likely run into a series of
frustrating limitations and design choices, which have gone (for the most part)
uncorrected as they were first introduced in the early days of Spring Security. Don't
let these limitations discourage you! The ACL module is a powerful way to embed
rich access controls in your application, and further scrutinize and secure user
actions and data.

Before we dig into configuring Spring Security ACL support, we need to review
some key terminology and concepts.

The main unit of secured actor identity in the Spring ACL system is the Security
Identity (SID). The SID is a logical construct that can be used to abstract the identity
of either an individual principal or a group (GrantedAuthority). The SIDs defined by
the ACL data model you construct are used as the basis for explicit and derived access
control rules, when determining the allowed level of access for a particular principal.

If SIDs are used to define actors in the ACL system, the opposite half of the security
equation is the definition of the secured objects themselves. The identification of
individual secured objects is called (unsurprisingly) an object identity. The default
Spring ACL implementation of an object identity requires ACL rules to be defined
at the individual object instance level, which means, if desired, every object in the
system can have an individual access rule.

www.it-ebooks.info

http://www.it-ebooks.info/

Access Control Lists

[288]

Individual access rules are known as Access Control Entries (ACEs). An ACE is the
combination of the following factors:

•	 The SID for the actor to which the rule applies
•	 The object identity to which the rule applies
•	 The permission that should be applied to the given SID and the stated

object identity
•	 Whether or not the stated permission should be allowed or denied for the

given SID and object identity

The purpose of the Spring ACL system as a whole is to evaluate each secured
method invocation and determine whether the object or objects being acted on in
the method should be allowed as per the applicable ACEs. Applicable ACEs are
evaluated at runtime, based on the caller and the objects in play.

Spring Security ACL is flexible in its implementation. Although the majority
of this chapter details the out-of-the-box functionality of the Spring Security
ACL module, keep in mind, however, that many of the rules indicated represent
default implementations, which in many cases can be overridden based on more
complex requirements.

Spring Security uses helpful value objects to represent the data associated with each
of these conceptual entities. These are listed in the following table:

ACL conceptual object Java object
SID o.s.s.acls.model.Sid

Object identity o.s.s.acls.model.ObjectIdentity

ACL o.s.s.acls.model.Acl

ACE o.s.s.acls.model.AccessControlEntry

Let's work through the process of enabling Spring Security ACL components for a
simple demonstration in the JBCP Calendar application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[289]

Basic configuration of Spring Security
ACL support
Although we hinted previously that configuring ACL support in Spring Security
requires bean-based configuration (which it does), you can use ACL support while
retaining the simpler security XML namespace configuration if you choose.

Maven dependencies
As with most of the chapters, we will need to add some dependencies in order to
use the functionality in this chapter. A list of the dependencies we have added with
comments about when they are needed can be seen as follows:

pom.xml

<!-- needed for any ACL integration - - >
<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-acl</artifactId>
 <version>3.1.0.RELEASE</version>
</dependency>
<!-- needed for caching of ACLs -->
<dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache</artifactId>
 <version>1.6.2</version>
 <scope>runtime</scope>
</dependency>

Defining a simple target scenario
Our simple target scenario is to grant user2@example.com read access to only the
Birthday Party event. All other users will not have any access to any events. You will
observe that this differs from our other examples since user2@example.com is not
otherwise associated with the Birthday Party event.

Although there are several ways to set up ACL checking, our preference is to
follow the annotation-based approach that we used in this chapter's method-level
annotations. This nicely abstracts the use of ACLs away from the actual interface
declarations, and allows for replacement (if you want) of the role declarations with
something other than ACLs at a later date (should you so choose).

www.it-ebooks.info

mailto:user2@example.com
http://www.it-ebooks.info/

Access Control Lists

[290]

We'll add an annotation to the CalendarService.getEvents method, which filters
each event based upon the current user's permission to the event:

src/main/java/com/packtpub/springsecurity/service/CalendarService.
java

@PostFilter("hasPermission(filterObject, 'read')")
List<Event> getEvents();

You should start with the code from chapter11.00-calendar.

When we are done, the events listed on the All Events page will be filtered based
upon the configured permissions. Let's get started with our configuration changes!

Adding ACL tables to the H2 database
The first thing we'll need to do is add the required tables and data to support
persistent ACL entries in our in-memory H2 database. To do this, we'll add a new
SQL DDL file and the corresponding data to our embedded-database declaration in
services.xml. We will break down each of these files later in the chapter.

src/main/webapp/WEB-INF/spring/services.xml

<jdbc:embedded-database id="dataSource" type="H2">
 <jdbc:script location="classpath:/database/h2/calendar-
 schema.sql"/>
 <jdbc:script location="classpath:/database/h2/calendar-
 data.sql"/>
 <jdbc:script
 location="classpath:/database/h2/security-acl-schema.sql"/>
 <jdbc:script location="classpath:/database/h2/security-acl-
 data.sql"/>
</jdbc:embedded-database>

We have included the following security-acl-schema.sql file with this chapter's
source code, which is based upon the schema files included in the Spring Security
reference's Appendix, Additional Reference Material.

src/main/resources/database/h2/security-acl-schema.sql

create table acl_sid (
 id bigint generated by default as identity(start with 100) not
 null primary key,
 principal boolean not null,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[291]

 sid varchar_ignorecase(100) not null,
 constraint uk_acl_sid unique(sid,principal));

create table acl_class (
 id bigint generated by default as identity(start with 100) not
 null primary key,
 class varchar_ignorecase(500) not null,
 constraint uk_acl_class unique(class));

create table acl_object_identity (
 id bigint generated by default as identity(start with 100) not
 null primary key,
 object_id_class bigint not null,
 object_id_identity bigint not null,
 parent_object bigint,
 owner_sid bigint not null,
 entries_inheriting boolean not null,
 constraint uk_acl_objid
 unique(object_id_class,object_id_identity),
 constraint fk_acl_obj_parent foreign
 key(parent_object)references acl_object_identity(id),
 constraint fk_acl_obj_class foreign
 key(object_id_class)references acl_class(id),
 constraint fk_acl_obj_owner foreign key(owner_sid)references
 acl_sid(id));

create table acl_entry (
 id bigint generated by default as identity(start with 100) not
 null primary key,
 acl_object_identity bigint not null,
 ace_order int not null,
 sid bigint not null,
 mask integer not null,
 granting boolean not null,
 audit_success boolean not null,
 audit_failure boolean not null,
 constraint uk_acl_entry unique(acl_object_identity,ace_order),
 constraint fk_acl_entry_obj_id foreign key(acl_object_identity)
 references acl_object_identity(id),
 constraint fk_acl_entry_sid foreign key(sid) references

 acl_sid(id));

www.it-ebooks.info

http://www.it-ebooks.info/

Access Control Lists

[292]

The preceding code will result in the following database schema:

You can see how the concepts of SIDs, object identity, and ACEs map directly to the
database schema. Conceptually, this is convenient, as we can map our mental model
of the ACL system and how it is enforced directly to the database.

If you've cross referenced this with the H2 database schema supplied with the Spring
Security documentation, you'll note that we've made a few tweaks that commonly
bite users. These are as follows:

•	 Change the ACL_CLASS.CLASS column to 500 characters, from the default
value of 100. Some long, fully-qualified class names don't fit in 100 characters.

•	 Name the foreign keys with something meaningful so that failures are more
easily diagnosed.

If you are using another database, such as Oracle, you'll
have to translate the DDL into DDL and data types
specific to your database.

Once we configure the remainder of the ACL system, we'll return to the database to
set up some basic ACEs to prove the ACL functionality in its most primitive form.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[293]

Configuring SecurityExpressionHandler
We'll need to configure <global-method-security> to enable annotations (where
we'll annotate based on the expected ACL privilege), and reference a custom access
decision manager.

We will also need to provide a o.s.s.access.expression.
SecurityExpressionHandler implementation that is aware of how to evaluate
permissions. Update your security.xml configuration as follows:

src/main/webapp/WEB-INF/spring/security.xml

<global-method-security
 pre-post-annotations="enabled">
 <expression-handler ref="expressionHandler"/>
</global-method-security>
<http pattern="/resources/**" security="none"/>

This is a bean reference to the DefaultMethodSecurityExpressionHandler object
that we have defined in security-acl.xml for you:

src/main/webapp/WEB-INF/spring/security-acl.xml

<bean id="expressionHandler"
 class="org.springframework.security.access.expression
 .method.DefaultMethodSecurityExpressionHandler">
 <property name="permissionEvaluator" ref="permissionEvaluator"/>
 <property name="permissionCacheOptimizer"
 ref="permissionCacheOptimizer"/>
</bean>

With even a relatively straightforward ACL configuration, as we have in our
scenario, there are a number of required dependencies to set up. As we mentioned
previously, the Spring Security ACL module comes out of the box with a number of
components that you can assemble to provide a decent set of ACL capabilities. Take
note that all of the components that we'll reference in the following diagram are part
of the framework:

www.it-ebooks.info

http://www.it-ebooks.info/

Access Control Lists

[294]

AclPermissionCacheOptimizer
The DefaultMethodSecurityExpressionHandler object has two dependencies. The
AclPermissionCacheOptimizer object is used to prime the cache with all the ACLs
for a collection of objects in a single JDBC select statement. The relatively simple
configuration included with this chapter can be seen as follows:

src/main/webapp/WEB-INF/spring/security-acl.xml

<bean id="permissionCacheOptimizer"
 class="org.springframework.security.acls
 .AclPermissionCacheOptimizer">
 <constructor-arg ref="aclService"/>
</bean>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[295]

PermissionEvaluator
DefaultMethodSecurityExpressionHandler then delegates to a
PermissionEvalulator instance. For the purposes of this chapter, we are using
ACLs so that the bean we will use AclPermissionEvaluator, which will read the
ACLs that we define in our database. You can view the provided configuration for
permissionEvaluator as follows:

src/main/webapp/WEB-INF/spring/security-acl.xml

<bean id="permissionEvaluator"
 class="org.springframework.security.acls
 .AclPermissionEvaluator">
 <constructor-arg ref="aclService"/>
</bean>

JdbcMutableAclService
At this point, we have seen a reference to the bean with ID as aclService twice.
aclService resolves to an implementation of o.s.s.acls.model.AclService that
is responsible (through delegation) for translating information about the object being
secured by ACLs into expected ACEs.

src/main/webapp/WEB-INF/spring/security-acl.xml

<bean id="aclService" class="org.springframework.security.acls
 .jdbc.JdbcMutableAclService">
 <constructor-arg ref="dataSource"/>
 <constructor-arg ref="lookupStrategy"/>
 <constructor-arg ref="aclCache"/>
</bean>

We'll use o.s.s.acls.jdbc.JdbcMutableAclService, which is the default
implementation of o.s.s.acls.model.AclService. This implementation comes
out of the box, and is ready to use the schema that we defined earlier in the chapter.
JdbcMutableAclService will additionally use recursive SQL and post-processing
to understand object and SID hierarchies, and ensure representations of these
hierarchies are passed back to AclPermissionEvaluator.

www.it-ebooks.info

http://www.it-ebooks.info/

Access Control Lists

[296]

BasicLookupStrategy
The JdbcMutableAclService class uses the same JDBC dataSource instance that
we've defined with the embedded-database declaration, and also delegates to an
implementation of o.s.s.acls.jdbc.LookupStrategy, which is solely responsible
for actually making database queries and resolving requests for ACLs. The only
LookupStrategy implementation supplied with Spring Security is o.s.s.acls.
jdbc.BasicLookupStrategy, and is defined as follows:

src/main/webapp/WEB-INF/spring/security-acl.xml

<bean id="lookupStrategy"
 class="org.springframework.security.acls
 .jdbc.BasicLookupStrategy">
 <constructor-arg ref="dataSource" />
 <constructor-arg ref="aclCache" />
 <constructor-arg ref="aclAuthzStrategy"/>
 <constructor-arg ref="consoleAuditLogger"/>
</bean>

Now, BasicLookupStrategy is a relatively complex beast. Remember that its
purpose is to translate a list of ObjectIdentity declarations to be protected into
the actual, applicable ACE list from the database. As ObjectIdentity declarations
can be recursive, this proves to be quite a challenging problem, and a system which
is likely to experience heavy use should consider the SQL that's generated for
performance impact on the database.

Querying with the lowest common denominator
Be aware that BasicLookupStrategy is intended to be compatible
with all databases by strictly sticking with standard ANSI SQL syntax,
notably left [outer] joins. Some older databases (notably, Oracle 8i)
did not support this join syntax, so be sure to verify that the syntax and
structure of SQL is compatible with your particular database!
There are also most certainly more efficient database-dependent methods
of performing hierarchical queries using non-standard SQL, for example,
Oracle's CONNECT BY statement and the Common Table Expression
(CTE) capability of many other databases, including PostgreSQL and
Microsoft SQL Server.
Much as we learned in the example in Chapter 4, JDBC-based
Authentication, using a custom schema for the JdbcDaoImpl
implementation of the UserDetailsService properties are exposed to
allow for configuration of the SQL utilized by BasicLookupStrategy.
Please consult the Javadoc and the source code itself to see how they are
used, so that they can be correctly applied to your custom schema.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[297]

We can see that LookupStrategy requires a reference to the same JDBC dataSource
instance that AclService utilizes. The other three references bring us almost to the
end of the dependency chain.

EhCacheBasedAclCache
o.s.s.acls.model.AclCache declares an interface for a caching ObjectIdentity
to ACL mappings, to prevent redundant (and expensive) database lookups. Spring
Security ships with only one implementation of AclCache, using the third-party
library Ehcache.

Ehcache is an open-source, memory and disk-based caching library that is widely
used in many open-source and commercial Java products. As mentioned earlier in
the chapter, Spring Security ships with a default implementation of ACL caching,
which relies on the availability of a configured Ehcache instance, which it uses to
store ACL information in preference to reading ACLs from the database.

While deep configuration of Ehcache is not something we want to cover in this
section, we'll cover how Spring ACL uses the cache, and walk you through a basic,
default configuration.

Setting up Ehcache is trivial—we'll simply declare o.s.s.acls.domain.
EhCacheBasedAclCache along with its two dependent beans from Spring Core that
manage Ehcache instantiation and expose several helpful configuration properties.
Like our other beans, we have already provided the following configuration in
security-acl.xml.

src/main/webapp/WEB-INF/spring/security-acl.xml

<bean id="aclCache"
 class="org.springframework.security.acls
 .domain.EhCacheBasedAclCache">
 <constructor-arg ref="aclEhCacheFactoryBean"/>
</bean>
<bean id="aclEhCacheFactoryBean"
 class="org.springframework.cache.ehcache.EhCacheFactoryBean">
 <property name="cacheManager" ref="aclCacheManager"/>
 <property name="cacheName" value="aclCache" />
</bean>
<bean id="aclCacheManager"
 class="org.springframework.cache.ehcache
 .EhCacheManagerFactoryBean"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Access Control Lists

[298]

ConsoleAuditLogger
The next simple dependency hanging off of o.s.s.acls.jdbc.
BasicLookupStrategy is an implementation of the o.s.s.acls.domain.
AuditLogger interface, which is used by the BasicLookupStrategy class to audit
ACL and ACE lookups. Similar to the AclCache interface, only one implementation
is supplied with Spring Security that simply logs to the console. We'll configure it
with another one-line bean declaration:

src/main/webapp/WEB-INF/spring/security-acl.xml

<bean id="consoleAuditLogger"
 class="org.springframework.security.acls.domain
 .ConsoleAuditLogger" />

AclAuthorizationStrategyImpl
The final dependency to resolve is to an implementation of the o.s.s.acls.
domain.AclAuthorizationStrategy interface, which actually has no immediate
responsibility at all during the load of the ACL from the database. Instead,
the implementation of this interface is responsible for determining whether a
runtime change to an ACL or ACE is allowed, based on the type of change. We'll
explain more on this later when we cover mutable ACLs, as the logical flow is
both somewhat complicated and not pertinent to getting our initial configuration
complete. The final configuration requirements are as follows:

src/main/webapp/WEB-INF/spring/security-acl.xml

<bean id="aclAuthzStrategy"
 class="org.springframework.security.acls
 .domain.AclAuthorizationStrategyImpl">
 <constructor-arg ref="adminAuthority"/>
</bean>
<bean id="adminAuthority"
 class="org.springframework.security.core
 .authority.SimpleGrantedAuthority">
 <constructor-arg value="ROLE_ADMINISTRATOR" />
</bean>

You might wonder what the reference to the bean with ID as adminAuthority
is for—AclAuthorizationStrategyImpl provides the ability to specify
GrantedAuthority that is required to allow specific operations at runtime on
mutable ACLs. We'll cover these later in the chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[299]

Last we need to update our web.xml file to load our security-acl.xml file as
follows:

src/main/webapp/WEB-INF/web.xml

<param-value>
 ...
 /WEB-INF/spring/security-acl.xml
</param-value>

We're finally done with basic configuration of an out-of-the-box Spring Security ACL
implementation. The next and final step requires that we insert a simple ACL and
ACE into the H2 database, and test it out!

Creating a simple ACL entry
Recall that our very simple scenario is to only allow user2@example.com access to
the Birthday Party event and ensure that no other events are accessible. You may
find it helpful to refer back several pages to the database schema diagram to follow
which data we are inserting and why.

We have already included a file named security-acl-data.sql in the sample
application. All the SQL explained in this section will be from the file—you may
feel free to experiment and add more test cases based on the sample SQL we've
provided—in fact, we'd encourage that you experiment with sample data!

First, we'll need to populate the ACL_CLASS table with any or all of the domain object
classes, which may have ACL rules—in the case of our example, this is simply our
Event class:

src/main/resources/database/h2/security-acl-data.sql

insert into acl_class (id, class)
values (10, 'com.packtpub.springsecurity.domain.Event');

We chose to use primary keys that are between 10 to 19 for the
ACL_CLASS table, 20 to 29 for the ACL_SID table, and so on. This
will help to make it easier to understand which data associates to
which table. Note that our EVENTS table starts with a primary key
of 100. These conveniences are done for example purposes and
are not suggested for production purposes.

Next, the ACL_SID table is seeded with SIDs that will be associated to the ACEs.
Remember that SIDs can either be roles or users—we'll populate the roles and
user2@example.com here.

www.it-ebooks.info

mailto:user2@example.com
http://www.it-ebooks.info/

Access Control Lists

[300]

While the SID for roles is straightforward, the SID for a user is not quite as clear
cut. For our purposes, the username is used for the SID. To learn more about
how the SIDs are resolved for roles and users, refer to o.s.s.acls.domain.
SidRetrievalStrategyImpl. If the defaults do not meet your needs, a custom
o.s.s.acls.model.SidRetrievalStrategy default can be injected into
AclPermissionCacheOptimizer and AclPermissionEvaluator. We will not
need this sort of customization for our example, but it is good to know that it is
available if necessary.

src/main/resources/database/h2/security-acl-data.sql

insert into acl_sid (id, principal, sid) values (20, true, 'user2@
example.com');
insert into acl_sid (id, principal, sid) values (21, false, 'ROLE_
USER');
insert into acl_sid (id, principal, sid) values (22, false, 'ROLE_
ADMIN');

The table where things start getting complicated is the ACL_OBJECT_IDENTITY table
that is used to declare individual domain object instances, their parent (if any),
and owning SID. For example, this table represents the Event objects that we are
securing. We'll insert a row with the following properties:

•	 Domain Object of type Event that is a foreign key, 10, to our ACL_CLASS via
the OBJECT_ID_CLASS column.

•	 Domain Object primary key of 100 (the OBJECT_ID_IDENTITY column).
This is a foreign key (although not enforced with a database constraint)
to our Event object.

•	 Owner SID of user2@example.com, which is a foreign key, 20, to ACL_SID
via the OWNER_SID column.

The SQL to represent our events with IDs of 100 (Birthday Event), 101, and 102 is:

src/main/resources/database/h2/security-acl-data.sql

insert into acl_object_identity
 (id,object_id_identity,object_id_class,parent_object,owner_
sid,entries_inheriting)
 values (30, 100, 10, null, 20, false);
insert into acl_object_identity
 (id,object_id_identity,object_id_class,parent_object,owner_
sid,entries_inheriting)
 values (31, 101, 10, null, 21, false);
insert into acl_object_identity
 (id,object_id_identity,object_id_class,parent_object,owner_
sid,entries_inheriting)
 values (32, 102, 10, null, 21, false);

www.it-ebooks.info

mailto:user2@example.com
http://www.it-ebooks.info/

Chapter 11

[301]

Keep in mind that the owning SID could also represent a role—both types of rules
function equally well as far as the ACL system is concerned.

Finally, we'll add an ACE related to this object instance, which declares that user2@
example.com is allowed read access to the the Birthday event.

 src/main/resources/database/h2/security-acl-data.sql

 insert into acl_entry
 (acl_object_identity, ace_order, sid, mask, granting, audit_
success, audit_failure)
 values(30, 1, 20, 1, true, true, true);

The MASK column here represents a bitmask, which is used to grant permission
assigned to the stated SID on the object in question. We'll explain the details of this
later in this chapter—unfortunately, it doesn't tend to be as useful as it may sound.

Now, we can start the application and run through our sample scenario. Try logging
in with user1@example.com / user1 and accessing the All Events page. You will
see that only the Birthday event is listed. When logged in with admin1@example.com
/ admin1 and viewing the All Events page, no events will be displayed. However, if
we navigated directly to an event, it would not be protected. Can you figure out how
to secure direct access to an event based upon what we learned in this chapter?

If you have not figured it out yet, you can secure direct access to an event by making
the following update to CalendarService:

src/main/java/com/packtpub/springsecurity/service/CalendarService.
java

@PostAuthorize("hasPermission(filterObject, 'read') " +
 "or hasPermission(filterObject, 'admin_read')")
Event getEvent(int eventId);

We now have a basic working setup of ACL-based security (albeit, a very simple
scenario). Let's move on to some more explanation about concepts we saw during
this walkthrough, and then review a couple of considerations in a typical Spring
ACL implementation that you should consider before using it.

@PostAuthorize("hasPermission(returnObject, 'read')")

Your code should look like calendar11.01-calendar.

www.it-ebooks.info

mailto:user1@example.com
mailto:admin1@example.com
http://www.it-ebooks.info/

Access Control Lists

[302]

Advanced ACL topics
Some high-level topics that we skimmed over during the configuration of our ACL
environment had to do with ACE permissions, and the use of GrantedAuthority
indicators to assist the ACL environment in determining whether certain types of
runtime changes to ACLs were allowed. Now that we have a working environment,
we'll review these more advanced topics.

How permissions work
Permissions are no more than single logical identifiers represented by bits in an
integer. An access control entry grants permissions to SIDs based on the bitmask,
which comprises the logical ANDing of all permissions applicable to that access
control entry.

The default permission implementation, o.s.s.acls.domain.BasePermission,
defines a series of integer values representing common ACL authorization verbs.
These integer values correspond to single bits set in an integer, so a value of
BasePermission, WRITE, with integer value 1 has a bitwise value of 21 or 2.

These are illustrated in the following diagram:

We can see that the sample permission bitmask would have an integer value of 3,
due to the application of both the Read and Write permissions to the permission
value. All of the standard integer single permission values shown in the diagram are
defined in the BasePermission object as static constants.

The logical constants that are included in BasePermission are just a sensible
baseline of commonly used permissions in access-control entries, and have no
semantic meaning within the Spring Security framework. It's quite common for very
complex ACL implementations to invent their own custom permissions, augmenting
best practice examples with domain- or business-dependent ones.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[303]

One issue that often confuses users is how the bitmasks are used in practice, given
that many databases either do not support bitwise logic, or do not support it in a
scalable way. Spring ACL intends to solve this problem by putting more of the load
of calculating appropriate permissions vis-à-vis bitmasks on the application, rather
than on the database.

It's important to review the resolution process, where we see how
AclPermissionEvaluator resolves permissions declared on the method itself
(in our example, with the @PostFilter annotation) to real ACL permissions. The
following diagram illustrates the process that Spring ACL performs to evaluate the
declared permission against the relevant ACEs for the requesting principal:

www.it-ebooks.info

http://www.it-ebooks.info/

Access Control Lists

[304]

We see that AclPermissionEvaluator relies on classes implementing two interfaces,
o.s.s.acls.model.ObjectIdentityRetrievalStrategy and o.s.s.acls.model.
SidRetrievalStrategy, to retrieve ObjectIdentity and SIDs appropriate for the
authorization check. The important thing to note about these strategies is how the
default implementation classes actually determine ObjectIdentity and SIDs to
return, based on the context of the authorization check.

ObjectIdentity has two properties, type and identifier, that are derived from
the object being checked at runtime, and used to declare ACE entries. The default
ObjectIdentityRetrievalStrategy uses the fully-qualified class name to populate
the type property. The identifier property is populated with the result of a method
with the signature Serializable getId(), invoked on the actual object instance.

As your object isn't required to implement an interface to be compatible with ACL
checks, the requirement to implement a method with a specific signature can be
surprising for developers implementing Spring Security ACL. Plan ahead and
ensure that your domain objects contain this method! You may also implement
your own ObjectIdentityRetrievalStrategy (or subclass the out-of-the-box
implementation) to call a method of your choice. The name and type signature of the
method is, unfortunately, not configurable.

Unfortunately, the actual implementation of AclImpl directly compares the permission
specified in our SpEL expression in our @PostFilter annotation, and the permission
stored on the ACE in the database, without using bitwise logic. The Spring Security
community is in debate about whether this is unintentional or working as intended,
but regardless, you will need to take care when declaring a user with a combination
of permissions; as either AclEntryVoter must be configured with all combinations of
permission, or the ACEs need to ignore the fact that the permission field is intended to
store multiple values, and instead store a single permission per ACE.

If you want to verify this with our simple scenario, change the Read permission
we granted to the user2@example.com SID to the bitmask combination of
Read and Write, which translates to a value of 3. This would be changed in
security-acl-data.sql:

src/main/resources/database/h2/security-acl-data.sql

insert into acl_entry
 (acl_object_identity, ace_order, sid, mask, granting, audit_
success, audit_failure)
 values(30, 1, 20, 3, true, true, true);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[305]

You can see that if you now try to view the All Events page with user2@example.com
/ user2, you will not be able to view the Birthday event, even though we've declared
that you have both Read and Write access in a single ACE.

Your code should look like chapter11.02-calendar.

Custom ACL permission declaration
As stated in the earlier discussion on permission declarations, permissions are
nothing but logical names for integer bit values. As such, it's possible to extend the
o.s.s.acls.domain.BasePermission class and declare your own permissions.
We'll cover a very straightforward scenario here, where we create a new ACL
permission called ADMIN_READ. This is a permission that will be granted only
to administrative users, and will be assigned to protect resources that only
administrators could read. Although a contrived example for the JBCP Calendar
application, this type of use of custom permissions occurs quite often in situations
dealing with personally identifiable information (for example, social security number,
and so on—recall that we covered PII in Chapter 1, Anatomy of an Unsafe Application).

Let's get started making the changes required to support this. The first step is to
extend BasePermission with our own com.packtpub.springsecurity.acls.
domain.CustomPermission class:

package com.packtpub.springsecurity.acls.domain;

public class CustomPermission extends BasePermission {
 public static final Permission ADMIN_READ = new CustomPermission(1
<< 5, 'M'); // 32

 public CustomPermission(int mask, char code) {
 super(mask, code);
 }
}

www.it-ebooks.info

mailto:user2@example.com
http://www.it-ebooks.info/

Access Control Lists

[306]

Next, we will need to configure the o.s.s.acls.domain.PermissionFactory
default implementation, o.s.s.acls.domain.DefaultPermissionFactory, to
register our custom permission logical value. The role of the PermissionFactory
is to resolve permission bitmasks into logical permission values (which can be
referenced by constant value, or by name, such as ADMIN_READ, in other areas of
the application). The PermissionFactory requires that any custom permissions be
registered with it for proper lookup. We have included the following configuration
that registers our CustomPermission as follows:

src/main/webapp/WEB-INF/spring/security-acl.xml

<bean id="permissionFactory"
 class="org.springframework.security.acls
 .domain.DefaultPermissionFactory">
 <constructor-arg value="com.packtpub.springsecurity.acls
 .domain.CustomPermission"/>
</bean>

Next, we will need to override the default PermissionFactory instance for our
BasicLookupStrategy and our AclPermissionEvaluator with the customized
DefaultPermissionFactory. Make the following updates to your security-acl.
xml file:

src/main/webapp/WEB-INF/spring/security-acl.xml

<bean id="permissionEvaluator" ...>
 ...
 <property name="permissionFactory" ref="permissionFactory"/>
</bean>
...
<bean id="lookupStrategy" ...>
 ...
 <property name="permissionFactory" ref="permissionFactory"/>
</bean>

We also need to add the SQL query to utilize the new permission to grant access to
the Conference Call (acl_object_identity ID of 31) event to admin1@example.com
the following lines into security-acl.xml:

src/main/resources/database/h2/security-acl-data.sql

insert into acl_sid (id, principal, sid) values (23, true, 'admin1@
example.com');
insert into acl_entry
 (acl_object_identity, ace_order, sid, mask, granting, audit_
success, audit_failure)
 values(31, 1, 23, 32, true, true, true);

www.it-ebooks.info

mailto:admin1@example.com
http://www.it-ebooks.info/

Chapter 11

[307]

We can see that the new integer bitmask value of 32 has been referenced in the ACE
data. This intentionally corresponds to our new ADMIN_READ ACL permission, as
defined in Java code. The Conference Call event is referenced by its primary key (stored
in the object_id_identity column) value of 31, in the ACL_OBJECT_IDENTITY table.

The last step is to update our CalendarService's getEvents() method, to utilize
our new permission.

@PostFilter("hasPermission(filterObject, 'read') " +
 "or hasPermission(filterObject, 'admin_read')")
List<Event> getEvents();

With all these configurations in place, we can start up the site again and test out the
custom ACL permission. Based on the sample data we have configured, here is what
should happen when the various available users click on categories:

Username/password Birthday
Party event

Conference Call
event

Other events

user2@example.com/
user2

Allowed via
READ

Denied Denied

admin1@example.com/
admin1

Denied Allowed via ADMIN_
READ

Denied

user1@example.com/
user1

Denied Denied Denied

We can see that even with the use of our simple cases, we've now been able to extend
the Spring ACL functionality in a very limited way to illustrate the power of this
fine-grained access control system.

Your code should look like chapter11.03-calendar.

Enabling your JSPs with the Spring Security
JSP tag library through ACL
We saw in Chapter 2, Getting Started with Spring Security, that the Spring Security JSP
tag library offers functionality to expose authentication-related data to the user, and
to restrict what the user can see based on a variety of rules.

The very same tag library can also interact with an ACL-enabled system right
out of the box! From our simple experiments, we have configured a simple ACL
authorization scenario around the first two categories in the list on the home page.

www.it-ebooks.info

mailto:user2@example.com
mailto:admin1@example.com
mailto:user1@example.com
http://www.it-ebooks.info/

Access Control Lists

[308]

First, we will need to remove our @PostFilter annotation from the getEvents()
method in our CalendarService interface in order to give our JSP tag library a
chance to filter out the events that are not allowed for display. Go ahead and remove
@PostFilter now:

src/main/java/com/packtpub/springsecurity/service/CalendarService.
java

List<Event> getEvents();

Now that we have removed @PostFilter, we can utilize the
<sec:accesscontrollist> tag to hide the events that the user doesn't actually have
access to. Please refer to the table in the previous section as a refresher of the access
rules we've configured up to this point!

We'll wrap the display of each event with the <sec:accesscontrollist> tag,
declaring the list of permissions to check on the object to be displayed:

src/main/webapp/WEB-INF/views/events/list.jsp

<c:forEach items="${events}" var="event">
 <sec:authorize access="hasPermission(#event,'read') or
 hasPermission(#event,'admin_read')">
 <tr>
 <fmt:formatDate value="${event.when.time}" type="both"
 pattern="yyyy-MM-dd HH:mm" var="when"/>
 <td><c:out value="${when}"/></td>
 <td><c:out value="${event.owner.name}" /></td>
 <td><c:out value="${event.attendee.name}" /></td>
 <c:url var="eventUrl" value="${event.id}"/>
 <td>
 <c:out value="${event.summary}" />
 </td>
 </tr>
 </sec:authorize>
</c:forEach>

Think for a moment about what we want to occur here—we want the user to see
only the items to which they actually have the READ or ADMIN_READ (our custom
permission) access.

Behind the scenes, the tag implementation utilizes the same SidRetrievalStrategy
and ObjectIdentityRetrievalStrategy discussed earlier in this chapter. So,
the computation of access checking follows the same workflow as it does with
ACL-enabled voting on method security. As we will see in a moment, the tag
implementation will also use the same PermissionEvaluator.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[309]

We have already configured our <global-method-security> element with an
<expression-handler> element that references a DefaultMethodSecurityExpress
ionHandler. DefaultMethodSecurityExpressionHandler is aware of our
AclPermissionEvaluator, but we must also make Spring Security's web tier aware
of AclPermissionEvalulator. If you think about it, this symmetry makes sense,
since securing methods and an HTTP request are protecting two very different
resources. Fortunately, Spring Security's abstractions make this rather simple. Add
DefaultWebSecurityExpressionHandler that references the bean with ID as
permissionEvaluator that we have already defined.

src/main/webapp/WEB-INF/spring/security-acl.xml

<bean id="webExpressionHandler"
 class="org.springframework.security.web.access.expression.
DefaultWebSecurityExpressionHandler">
 <property name="permissionEvaluator" ref="permissionEvaluator"/>
</bean>

Now update security.xml to refer to our webExpressionHandler as follows:

src/main/webapp/WEB-INF/spring/security.xml

<http auto-config="true" use-expressions="true">
 ...
 <expression-handler ref="webExpressionHandler"/>
</http>

You can see how these steps are very similar to how we added support for permission
handling to our method security. This time it was a bit simpler, since we were able to
reuse the same bean with ID as PermissionEvaluator that we already configured.

Start up our application and try accessing the All Events page as different users.
You will find that the events that are not allowed for a user are now hidden using
our tag library instead of the @PostFilter annotation. We are still aware that
accessing an event directly would allow a user to see it. However, this could easily
be added by combining what we learned in this chapter with what we learned about
the @PostAuthorize annotation in this chapter.

Your code should look like chapter11.04-calendar.

www.it-ebooks.info

http://www.it-ebooks.info/

Access Control Lists

[310]

Mutable ACLs and authorization
Although the JBCP Calendar application doesn't implement full user administration
functionality, it's likely that your application will have common features, such as
new user registration and administrative user maintenance. To this point, lack of
these features—which we have worked around using SQL inserts at application
startup—hasn't stopped us from demonstrating many of the features of Spring
Security and Spring ACL.

However, the proper handling of runtime changes to declared ACLs, or the addition
or removal of users in the system, is critical to maintaining the consistency and
security of the ACL-based authorization environment. Spring ACL solves this issue
through the concept of the mutable ACL (o.s.s.acls.model.MutableAcl).

Extending the standard ACL interface, the MutableAcl interface, allows for runtime
manipulation of ACL fields in order to change the in-memory representation of a
particular ACL. This additional functionality includes the ability to create, update, or
delete ACEs, change ACL ownership, and other useful functions.

We might expect, then, that the Spring ACL module would come out of the box
with a way to persist runtime ACL changes to the JDBC data store, and indeed
it does. The o.s.s.acls.jdbc.JdbcMutableAclService class may be used to
create, update, and delete MutableAcl instances in the database, as well as to do
general maintenance on the other supporting tables for ACLs (handling SIDs,
ObjectIdentity, and domain object class names).

Recall from earlier in the chapter that the AclAuthorizationStrategyImpl class
allows us to specify the administrative role for actions on mutable ACLs. These
are supplied to the constructor as part of the bean configuration. The constructor
arguments and their meanings are as follows:

Arg # What it does
1 Indicates the authority that a principal is required to have in order to take

ownership of an ACL-protected object at runtime
2 Indicates the authority that a principal is required to have in order to change the

auditing of an ACL-protected object at runtime
3 Indicates the authority that a principal is required to have in order to make any

other kind of change (create, update, and delete) to an ACL-protected object at
runtime.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[311]

It may be confusing that we only specified a single
constructor argument when there are three arguments listed.
AclAuthorizationStrategyImpl can also accept a
single GrantedAuthority, which will then be used for
all three arguments. This is convenient if we want the same
GrantedAuthority to be used for all of the operations.

JdbcMutableAclService contains a number of methods used to manipulate ACL
and ACE data at runtime. While the methods themselves are fairly understandable
(createAcl, updateAcl, deleteAcl), the correct way to configure and use
JdbcMutableAclService is often difficult for even advanced Spring Security users.

Let's modify CalendarService to create a new ACL for newly-created events.

Adding ACLs to newly created Events
Currently, if a user creates a new event, it will not be visible to the user in the All
Events view since we are using the <sec:authorize> JSP tag to only display Event
objects that the user has access to. Let's update our DefaultCalendarService, so
that when a user creates a new event, they are granted read access to that event and
it will be displayed for them on the All Events page. The first step is to update our
constructor to accept MutableAclService and UserContext:

src/main/java/com/packtpub/springsecurity/service/
DefaultCalendarService.java

public class DefaultCalendarService implements CalendarService {
 ...
 private final MutableAclService aclService;
 private final UserContext userContext;

 @Autowired
 public DefaultCalendarService(EventDao eventDao,
 CalendarUserDao userDao,
 MutableAclService aclService,
 UserContext userContext) {
 ...
 this.aclService = aclService;
 this.userContext = userContext;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Access Control Lists

[312]

Then we need to update our createEvent method to also create an ACL for the
current user. Make the following changes:

src/main/java/com/packtpub/springsecurity/service/
DefaultCalendarService.java

@Transactional
public int createEvent(Event event) {
 int result = eventDao.createEvent(event);
 event.setId(result);

 MutableAcl acl = aclService.createAcl(new
ObjectIdentityImpl(event));
 PrincipalSid sid =
 new PrincipalSid(userContext.getCurrentUser().getEmail());
 acl.setOwner(sid);
 acl.insertAce(0, BasePermission.READ, sid, true);
 aclService.updateAcl(acl);

 return result;
}

JdbcMutableAclService uses the current user as the default owner for the created
MutableAcl. We chose to explicitly set the owner again to demonstrate how this can
be overridden. We then add a new ACE and save our ACL. That's all there is to it.

Start the application and log in as user1@example.com/user1. Visit the All Events
page and see that there are no events currently listed. Then, create a new event and
it will be displayed the next time you visit the All Events page. If you log in as any
other user, the event will not be visible on the All Events page. However, it will
potentially be visible to the user since we have not applied security to other pages.
Again, we encourage you to attempt to secure these pages on your own.

Your code should look like chapter11.05-calendar.

Considerations for a typical ACL
deployment
Actually deploying Spring ACL in a true business application tends to be quite
involved. We wrap up coverage of Spring ACL with some considerations that arise
in most Spring ACL implementation scenarios.

www.it-ebooks.info

mailto:user1@example.com
http://www.it-ebooks.info/

Chapter 11

[313]

About ACL scalability and performance
modelling
For small and medium-sized applications, the addition of ACLs is quite manageable,
and while it adds overhead to database storage and runtime performance, the
impact is not likely to be significant. However, depending on the granularity with
which ACLs and ACEs are modeled, the numbers of database rows in a medium- to
large-sized application can be truly staggering, and can task even the most seasoned
database administrator.

Let's assume we were to extend ACLs to cover an extended version of the JBCP
Calendar application. Let's assume that users can manage accounts, post pictures
to events, and administer (add/remove users) from an event. We'll model the data
as follows:

•	 All users have accounts.
•	 10 percent of users are able to administer an event. The average number of

events that a user can administer will be two.
•	 Events will be secured (read-only) per customer, but also need to be

accessible (read/write) by administrators.
•	 10 percent of all customers will be allowed to post pictures. The average

number of posts per user will be 20.
•	 Posted pictures will be secured (read-write) per user, as well as

administrators. Posted pictures will be read-only for all other users.

Given what we know about the ACL system, we know that the database tables have
the following scalability attributes:

Table Scales with data Scalability notes
ACL_CLASS No One row is required per domain

class.
ACL_SID Yes (users) One row is required per role

(GrantedAuthority). One row
is required for each user account
(if individual domain objects are
secured per user).

ACL_OBJECT_IDENTITY Yes (domain class *
instances per class)

One row is required per instance of
secured domain object.

ACL_ENTRY Yes (domain object
instances * individual
ACE entries)

One row is required per ACE; may
require multiple rows for a single
domain object.

www.it-ebooks.info

http://www.it-ebooks.info/

Access Control Lists

[314]

We can see that ACL_CLASS doesn't really have scalability concerns (most systems
will have fewer than 1000 domain classes). ACL_SID will scale linearly based on the
number of users in the system. This is probably not a matter of concern because other
user-related tables will scale in this fashion as well (user account, and so on).

The two tables of concern are ACL_OBJECT_IDENTITY and ACL_ENTRY. If we model
the estimated rows required to model an order for an individual customer, we come
up with the following estimates:

Table ACL data per event ACL data per picture post
ACL_OBJECT_IDENTITY One row is required for a

single event.
One row required for a single
post.

ACL_ENTRY Three Rows—one row is
required for read access by
the owner (the user SID),
two rows are required (one
for read access, one for write
access) for the administrative
group SID.

Four rows—one row is
required for read access
by the user group SID, one
row is required for write
access by the owner, two
rows are required for the
administrative group SID (as
with events)

We can then take the usage assumptions from the previous page and calculate the
following ACL scalability matrix:

Table/Object Scale factor Estimates
(Low)

Estimates
(High)

Users 10,000 1,000,000
Events # Users * 0.1 * 2 2,000 200,000
Picture Posts # Users * 0.1 * 20 20,000 2,000,000
ACL_SID # Users 10,000 1,000,000
ACL_OBJECT_
IDENTITY

Events + # Picture
Posts

22,0000 2,200,000

ACL_ENTRY (# Events * 3) + (#
Picture Posts * 4)

86,000 8,600,000

From these projections based on only a subset of the business objects likely to
be involved and secured in a typical ACL implementation, you can see that the
number of database rows devoted to storing ACL information is likely to grow
linearly (or faster) in relation to your actual business data. Especially in large
system planning, forecasting the amount of ACL data that you are likely to use
is extremely important. It is not uncommon for very complex systems to have
hundreds of millions of rows related to ACL storage.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[315]

Do not discount custom development costs
Utilizing a Spring ACL-secured environment often requires significant development
work above and beyond the configuration steps we've described to this point. Our
sample configuration scenario has the following limitations:

•	 No facility is provided for responding to the manipulation modification of
events or modification of permissions

•	 Not all of the application is using permissions. For example, the My Events
page and directly navigating to an event are both not secured

The application does not effectively use ACL hierarchies. These limitations would
significantly impact the functionality where we were to roll out ACL security to the
whole site. This is why it is critical that when planning Spring ACL rollout across
an application, you must carefully review all places where the domain data is
manipulated and ensure that these locations correctly update ACL and ACE rules,
and invalidate caches. Typically, the securing of methods and data takes place at the
service or business application layer, and the hooks required to maintain ACLs and
ACEs occur at the data access layer:

If you are dealing with a reasonably standard application architecture, with proper
isolation and encapsulation of functionality, it's likely that there's an easily identified
central location for these changes. On the other hand, if you're dealing with an
architecture that has devolved (or was never designed well in the first place), then
adding ACL functionality and supporting hooks in data manipulation code can
prove to be very difficult.

As previously hinted, it's important to keep in mind that the Spring ACL architecture
hasn't changed significantly since the days of Acegi 1.x. During that time, many users
have attempted to implement it, and have logged and documented several important
restrictions, many of which are captured in the Spring Security JIRA repository
(http://jira.springframework.org/). Issue SEC-479 functions as a useful entry
point for some of the key limitations, many of which remain unaddressed with Spring
Security 3, and (if they are applicable to your situation) can require significant custom
coding to work around.

www.it-ebooks.info

http://www.it-ebooks.info/

Access Control Lists

[316]

The following are some of the most important and commonly encountered, issues:

•	 The ACL infrastructure requires a numeric primary key. For applications that
use a GUID or UUID primary key (which occurs more frequently due to more
efficient support in modern databases), this can be a significant limitation.

•	 As of this writing, the JIRA issue, SEC-1140, documents the issue that
the default ACL implementation does not correctly compare permission
bitmasks using bitwise operators. We covered this earlier in the section
on permissions.

•	 Several inconsistencies exist between the method of configuring Spring
ACL and the rest of Spring Security. In general, it is likely that you will run
into areas where class delegates or properties are not exposed through DI,
necessitating an override and rewrite strategy that can be time-consuming
and expensive to maintain.

•	 The permission bitmask is implemented as an integer, and thus has 32
possible bits. It's somewhat common to expand the default bit assignments
to indicate permissions on individual object properties (for example,
assigning a bit to read the social security number of an employee). Complex
deployments may have well over 32 properties per domain object, in which
case the only alternative would be to remodel your domain objects around
this limitation.

Depending on your specific application's requirements, it is likely that you will
encounter additional issues, especially with regards to the number of classes
requiring change when implementing certain types of customizations.

Should I use Spring Security ACL
Just as the details of applying Spring Security as a whole tend to be highly business
dependent, so too is the application of Spring ACL support—in fact, this tends to be
even more true of ACL support due to its tight coupling to business methods and
domain objects. We hope that this guide to Spring ACL explained the important
high- and low-level configurations and concepts required to analyze Spring ACL
for use in your application, and can assist you in determining and matching its
capabilities to real-world use.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[317]

Summary
In this chapter, we focused on security based on access control list and the specific
details of how this type of security is implemented by the Spring ACL module.

We did the following:

•	 Reviewed the basic concept of access control lists, and the many reasons why
they can be very effective solutions to authorization.

•	 Learned the key concepts related to the Spring ACL implementation,
including access control entries, SIDs, and object identity.

•	 Examined the database schema and logical design required to support a
hierarchical ACL system.

•	 Configured all the required Spring Beans to enable the Spring ACL module,
and enhanced one of the service interfaces to use annotated method
authorization. We then tied the existing users in our database, and business
objects used by the site itself, into a sample set of ACE declarations and
supporting data.

•	 Reviewed the concepts around Spring ACL Permission handling.
•	 Expanded our knowledge of the Spring Security JSP tag library and SpEL

expression language (for method security) to utilize ACL checks.
•	 Discussed the mutable ACL concept, and reviewed the basic configuration

and custom coding required in a mutable ACL environment.
•	 Developed a custom ACL permission, and configured the application to

demonstrate its effectiveness.
•	 Configured and analyzed the use of the Ehcache cache manager to reduce the

database impact of Spring ACL.
•	 Analyzed the impact and design considerations of using the Spring ACL

system in a complex business application.

This wraps up our discussion about Spring Security ACLs. In the next chapter, we'll
dig a bit further into how Spring Security works.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authorization
In this chapter, we will write custom implementations of Spring Security's key
authorization APIs. Once we have done this, we will use the understanding of
the custom implementations to understand how Spring Security's authorization
architecture works.

Throughout this chapter, we'll:

•	 Gain an understanding of how authorization works
•	 Write a custom SecurityMetaDataSource backed by a database instead of

<intercept-url> elements.
•	 Create a custom SpEL expression
•	 Implement a custom PermissionEvaluator that allows our permissions to

be encapsulated

How requests are authorized
Similar to authentication, Spring Security provides a servlet filter, o.s.s.web.
access.intercept.FilterSecurityInterceptor, which is responsible for coming
up with a decision on whether or not a particular request will be accepted or denied.
At the point the filter is invoked, the principal has already been authenticated, so
the system knows that a valid user has logged in; remember that we implemented
a method (List<GrantedAuthority> getAuthorities()), which returns a list
of authorities for the principal in Chapter 3, Custom Authentication. In general, the
authorization process will use the information from this method (defined by the
Authentication interface) to determine, for a particular request, whether or not the
request should be allowed.

Remember that authorization is a binary decision—a user either has access to a secured
resource or he does not. There is no ambiguity when it comes to authorization.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authorization

[320]

Smart object-oriented design is pervasive within the Spring Security framework, and
authorization decision management is no exception.

In Spring Security, the o.s.s.access.AccessDecisionManager interface specifies
two simple and logical methods that fit sensibly into the processing decision flow
of requests:

•	 supports: This logical operation actually comprises two methods that allow
the AccessDecisionManager implementation to report whether or not it
supports the current request.

•	 decide: This allows the AccessDecisionManager implementation to verify,
based on the request context and security configuration, whether or not
access should be allowed and the request be accepted. decide actually has
no return value, and instead reports the denial of a request by throwing an
exception to indicate rejection.

Specific types of exceptions can further dictate the action to be taken
by the application to resolve authorization decisions. o.s.s.access.
AccessDeniedException is the most common exception thrown in the area of
authorization and merits special handling by the filter chain.

The implementation of AccessDecisionManager is completely configurable using
standard Spring Bean binding and references. The default AccessDecisionManager
implementation provides an access granting mechanism based on
AccessDecisionVoter and vote aggregation.

A voter is an actor in the authorization sequence whose job is to evaluate any or all of
the following:

•	 The context of the request for a secured resource (such as a URL requesting
an IP address)

•	 The credentials (if any) presented by the user
•	 The secured resource being accessed
•	 The configuration parameters of the system, and the resource itself

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[321]

The AccessDecisionManager implementation is also responsible for passing the
access declaration (referred to in the code as implementations of the o.s.s.access.
ConfigAttribute interface) of the resource being requested to the voter. In the case
of web URLs, the voter will have information about the access declaration of the
resource. If we look at our very basic configuration file's URL intercept declaration,
we'll see ROLE_USER being declared as the access configuration for the resource the
user is trying to access:

<intercept-url pattern="/**" access="ROLE_USER"/>

Based on the voter's knowledge, it will decide whether the user should have access to
the resource or not. Spring Security allows the voter to make one of three decisions,
whose logical definition is mapped to constants in the interface:

Decision type Description
Grant (ACCESS_GRANTED) The voter recommends giving access to the resource.
Deny (ACCESS_DENIED) The voter recommends denying access to the

resource.
Abstain (ACCESS_ABSTAIN) The voter abstains (does not make a decision)

on access to the resource. This may happen for a
number of reasons, such as:

•	 The voter doesn't have conclusive
information

•	 The voter can't decide on a request of this
type

As you may have guessed from the design of access decision-related objects and
interfaces, this portion of Spring Security has been designed so that it can be
applicable to authentication and access control scenarios that aren't exclusively in the
web domain. We'll encounter voters and access decision managers when we look at
method-level security later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authorization

[322]

When we put this all together, the overall flow of the "default authorization check for
web requests" is similar to the following diagram:

We can see that the abstraction of ConfigAttribute allows for data to be passed
from the configuration declarations (retained in the o.s.s.web.access.intercept.
DefaultFilterinvocationSecurityMetadataSource) to the voter responsible for
acting on ConfigAttribute without any intervening classes needing to understand
the contents of ConfigAttribute. This separation of concerns provides a solid
foundation for building new types of security declarations (such as the declarations
we will see with method security) while utilizing the same access decision pattern.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[323]

Configuration of access decision aggregation
Spring Security does actually allow configuration of AccessDecisionManager in the
security namespace. The access-decision-manager-ref attribute on the <http>
element allows you to specify a Spring Bean reference to an implementation of
AccessDecisionManager. Spring Security ships with three implementations of this
interface, all in the o.s.s.access.vote package. They are as follows:

Class name Description
AffirmativeBased If any voter grants access, access is immediately granted,

regardless of previous denials.
ConsensusBased The majority vote (grant or deny) governs the decision of the

AccessDecisionManager. Tie-breaking and handling of
empty votes (containing only abstentions) is configurable.

UnanimousBased All voters must grant access, otherwise access is denied.

Configuring to use a UnanimousBased
access decision manager
If we want to modify our application to use the access decision manager, we'd
require two modifications. In order to do this, we would add the access-decision-
manager-ref attribute to the <http> element in our security.xml file as follows:

src/main/webapp/WEB-INF/spring/security.xml

<http auto-config="true"
 access-decision-manager-ref="unanimousBased">

This is a standard Spring Bean reference, so this should correspond to the id
attribute of a bean. We could then define the UnanimousBased bean, as shown in the
following code snippet. Note that we will not actually utilize this configuration in
our exercises.

src/main/webapp/WEB-INF/spring/security-accessdecisionmanager.xml

<bean id="unanimousBased"
 class="org.springframework.security.access.vote.
UnanimousBased">
 <constructor-arg>
 <list>
 <ref bean="roleVoter" />
 <ref bean="authenticatedVoter" />
 </list>

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authorization

[324]

 </constructor-arg>
</bean>
<bean id="roleVoter"
 class="org.springframework.security.access.vote.RoleVoter"/>
<bean id="authenticatedVoter"
 class="org.springframework.security.access.vote.
AuthenticatedVoter"/>

You may be wondering what the decisionVoters property is about. This property
is auto-configured until we declare our own AccessDecisionManager. The default
AccessDecisionManager requires us to declare the list of voters who are consulted
to arrive at the authentication decisions. The two voters listed here are the defaults
supplied by the security namespace configuration.

Spring Security doesn't come supplied with a wide variety of voters, but it would be
trivial to implement a new one. As we will see later in the chapter, in most situations,
creating a custom voter is not necessary, since it can typically be implemented using
custom expressions or even a custom o.s.s.access.PermissionEvaluator.

The two voter implementations that we reference here do the following:

Class name Description Example
o.s.s.access.vote.
RoleVoter

Checks that the user has the matching
the declared role. Expects the attribute
to define a comma-delimited list of
names. The prefix is expected, but
optionally configurable.

access="ROLE_
USER,ROLE_ADMIN"

o.s.s.access.vote.
AuthenticatedVoter

Supports special declarations allowing
wildcard matches:
IS_AUTHENTICATED_FULLY allows
access if a fresh username and
password are supplied.
IS_AUTHENTICATED_REMEMBERED
allows access if the user has
authenticated with the remember me
functionality.
IS_AUTHENTICATED_ANONYMOUSLY
allows access if the user is anonymous

access="IS_
AUTHENTICATED_
ANONYMOUSLY"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[325]

Expression-based request authorization
As you might expect, the SpEL handling is supplied by a different Voter
implementation, o.s.s.web.access.expression.WebExpressionVoter, which
understands how to evaluate the SpEL expressions. The WebExpressionVoter
class relies on an implementation of the SecurityExpressionHandler interface
for this purpose. The SecurityExpressionHandler is responsible both for
evaluating the expressions, as well as for supplying the security-specific methods
that are referenced in the expressions. The default implementation of this
interface exposes methods defined in the o.s.s.web.access.expression.
WebSecurityExpressionRoot class.

The flow and relationship between these classes is shown in the following diagram:

Now that we know how request authorization works, let's solidify our
understanding by making a few custom implementations of key interfaces.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authorization

[326]

Customizing request authorization
The real power of Spring Security's authorization is demonstrated by how adaptable
it is to custom requirements. Let's explore a few scenarios that will help reinforce our
understanding of the overall architecture.

Dynamically defining access control to URLs
Spring Security provides several methods for mapping ConfigAttribute objects
to a resource. For example, the <intercept-url> element to ensure it is simple
for developers to restrict access to specific HTTP requests in their web application.
Under the covers, an implementation of o.s.s.acess.SecurityMetadataSource is
populated with these mappings and queried to determine what is required in order
to be authorized to make any given HTTP request.

While the <intercept-url> method is very simple, there may be times that it would
be desirable to provide a custom mechanism for determining the URL mappings. An
example of this might be if an application needs to be able to dynamically provide
the access control rules. Let's demonstrate what it would take to move our URL
authorization configuration into a database.

JdbcRequestConfigMappingService
The first step is to be able to obtain the necessary information from the database.
This will replace the logic that reads in the <intercept-url> elements from our
security bean configuration. In order to do this, the chapter's sample code contains
JdbcRequestConfigMappingService, which will obtain a mapping of an ant pattern
and an expression from the database represented as a RequestConfigMapping. The
rather simple implementation is as follows:

src/main/java/com/packtpub/springsecurity/web/access/intercept/
JdbcRequestConfigMappingService.java

@Repository("requestConfigMappingService")
public class JdbcRequestConfigMappingService implements
RequestConfigMappingService {
 private static final String SELECT_SQL = "select ant_pattern,
expression from security_filtermetadata order by sort_order";
 private final JdbcOperations jdbcOperations;

 public JdbcRequestConfigMappingService(JdbcOperations
jdbcOperations) {
 this.jdbcOperations = jdbcOperations;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[327]

 }

 public List<RequestConfigMapping> getRequestConfigMappings() {
 return jdbcOperations.query(SELECT_SQL,
 new RequestConfigMappingMapper());
 }

 private static final class RequestConfigMappingMapper implements
RowMapper<RequestConfigMapping> {
 public RequestConfigMapping mapRow(ResultSet rs, int rowNum)
throws SQLException {
 String pattern = rs.getString("ant_pattern");
 String expressionString = rs.getString("expression");
 AntPathRequestMatcher matcher = new AntPathRequestMatcher
(pattern);
 return new RequestConfigMapping(matcher,
 new SecurityConfig(expressionString));
 }
 }
}

It is important to notice that, just as with the <intercept-url> element, order matters.
Therefore, we ensure the results are sorted by the column named, sort_order.
The service creates an AntRequestMatcher and associates it to SecurityConfig,
an instance of ConfigAttribute. This will provide a mapping of HTTP request to
ConfigAttribute objects that can be used by Spring Security to secure our URLs.

In order for the new service to work, we will need to initialize our database with the
schema and the access control mappings. Just as with the service implementation,
our schema is rather straightforward.

src/main/resources/database/h2/security-metadata-schema.sql

create table security_filtermetadata (
 id bigint identity,
 ant_pattern varchar(1024) not null unique,
 expression varchar(1024) not null,
 sort_order bigint not null
);

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authorization

[328]

We can then use the same <intercept-url> mappings from our security.xml file
to produce the security-metadata-data.sql file.

src/main/resources/database/h2/security-metadata-data.sql

insert into security_filtermetadata(ant_pattern,expression,sort_order)
 values ('/','permitAll',10);
...
insert into security_filtermetadata(ant_pattern,expression,sort_order)
 values ('/admin/**','hasRole("ROLE_ADMIN")',60);
...

We can then instruct Spring to load our newly defined SQL scripts at startup
time, in order to properly initialize our database. Make the following updates
to services.xml:

You should be starting with chapter12.00-calendar.

src/main/webapp/WEB-INF/spring/services.xml

<jdbc:embedded-database id="dataSource" type="H2">
 ...
 <jdbc:script location="classpath:/database/h2/security-metadata-
schema.sql"/>
 <jdbc:script location="classpath:/database/h2/security-metadata-
data.sql"/>
</jdbc:embedded-database>

FilterInvocationServiceSecurityMetadataSource
In order for Spring Security to be aware of our URL mappings, we need to
provide a custom FilterInvocationSecurityMetadataSource implementation.
FilterInvocationSecurityMetadataSource extends the SecurityMetadataSource
interface which given a particular HTTP request is what provides Spring Security
the information necessary for determining if access should be granted. Let's take
a look at how we can utilize our RequestConfigMappingService to implement a
SecurityMetadataSource interface.

src/main/java/com/packtpub/springsecurity/web/access/intercept/
FilterInvocationServiceSecurityMetadataSource.java

@Component("filterInvocationServiceSecurityMetadataSource")
public class FilterInvocationServiceSecurityMetadataSource implements
 FilterInvocationSecurityMetadataSource, InitializingBean{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[329]

 … constructor and member variables omitted ...

 public Collection<ConfigAttribute> getAllConfigAttributes() {
 return this.delegate.getAllConfigAttributes();
 }

 public Collection<ConfigAttribute> getAttributes(Object object) {
 return this.delegate.getAttributes(object);
 }

 public boolean supports(Class<?> clazz) {
 return this.delegate.supports(clazz);
 }

 public void afterPropertiesSet() throws Exception {
 List<RequestConfigMapping> requestConfigMappings =
 requestConfigMappingService.
getRequestConfigMappings();
 LinkedHashMap requestMap =
 new LinkedHashMap(requestConfigMappings.size());
 for(RequestConfigMapping requestConfigMapping :
requestConfigMappings) {
 RequestMatcher matcher = requestConfigMapping.
getMatcher();
 Collection<ConfigAttribute> attributes =
 requestConfigMapping.getAttributes();
 requestMap.put(matcher,attributes);
 }
 this.delegate =
 new ExpressionBasedFilterInvocationSecurityMetadataSource
(requestMap,
 expressionHandler);
 }
}

We are able to use our RequestConfigMappingService to create a map of
RequestMatcher to the ConfigAttribute objects. We then delegate to an instance
of ExpressionBasedFilterInvocationSecurityMetadataSource to do all the
work. For simplicity, the current implementation would require restarting the
application to pick up changes. However, with a few minor changes, we could
avoid this inconvenience.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authorization

[330]

BeanPostProcessor to extend namespace
configuration
Now, all that is left is for us to configure
FilterInvocationServiceSecurityMetadataSource. The only problem is
that the Spring Security namespace does not support configuring a custom
FilterInvocationServiceSecurityMetadataSource. If we abandon the
namespace configuration, the amount of work to configure Spring Security
quickly gets out of control. Instead, we will use o.s.beans.factory.config.
BeanPostProcessor to customize our configuration.

BeanPostProcessor is a standard Spring interface that allows any object
configured through Spring to be manipulated before the application starts
up. We will use a custom BeanPostProcessor to replace the standard
FilterInvocationServiceSecurityMetadataSource with our custom
implementation. Make sure to uncomment the @Component annotation.

src/main/java/com/packtpub/springsecurity/config/
FilterInvocationServiceSecurityMetadataSourceBeanPostProcessor.java

@Component
public class
FilterInvocationServiceSecurityMetadataSourceBeanPostProcessor
implements BeanPostProcessor {
 @Autowired
 private FilterInvocationServiceSecurityMetadataSource
metadataSource;

 public Object postProcessBeforeInitialization(Object bean, String
beanName) {
 if(bean instanceof FilterInvocationSecurityMetadataSource) {
 return metadataSource;
 }
 return bean;
 }

 public Object postProcessAfterInitialization(Object bean, String
beanName) {
 return bean;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[331]

To customize our configuration if the passed in bean is an instance
of FilterInvocationSecurityMetadataSource, we will return our
FilterInvocationServiceSecurityMetadataSource instead of the
default implementation. Otherwise we simply return the original bean.

Removing our <intercept-url> elements
Now that the database is being used to map our security configuration, we can
remove the <intercept-url> elements from our security.xml file. Go ahead and
remove them, so that the configuration looks similar to the following code snippet:

src/main/webapp/WEB-INF/spring/security.xml

<http auto-config="true" use-expressions="true">
 <!-- no intercept-url elements -->
 <access-denied-handler .../>
 <form-login .../>
 <logout .../>
</http>

You should now be able to start the application and test to ensure that our URLs are
secured as they have been. Our users will not notice a difference, but we know that
our URL mappings are persisted in a database now.

Your code should look like chapter12.01-calendar.

Creating a custom expression
The o.s.s.access.expression.SecurityExpresssionHandler interface is how
Spring Security abstracts how the Spring Expressions are created and initialized.
Just as with the SecurityMetadataSource interface, there is an implementation for
creating expressions for web requests and creating expressions for securing methods.
In this section, we will explore how we can easily add new expressions.

CustomWebSecurityExpressionRoot
Let's assume that we want to support a custom web expression named isLocal that
will return true if the host is localhost and false otherwise. This new method
could be used to provide additional security for our SQL console by ensuring that it
is only accessed from the same machine that the web application is deployed from.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authorization

[332]

This is an artificial example that does not add any security benefit
since the host comes from the headers of the HTTP request. This
means a malicious user could inject a header stating the host is
localhost even if they are requesting to an external domain.

All the expressions that we have seen are available because the
SecurityExpressionHandler makes them available via an instance of
o.s.s.access.expression.SecurityExpressionRoot. If you open this object,
you will find the methods and properties we use in our Spring Expressions
(that is, hasRole, hasPermission, and so on) that are common to both web
and method security. A subclass provides the methods that are specific to
web and method expressions. For example, o.s.s.web.access.expression.
WebSecurityExpressionRoot provides the hasIpAddress method for web requests.

To create a custom web SecurityExpressionhandler, we will first need to create a
subclass of WebSecurityExpressionRoot that defines our isLocal method.

src/main/java/com/packtpub/springsecurity/web/access/expression/
CustomWebSecurityExpressionRoot.java

public class CustomWebSecurityExpressionRoot extends
 WebSecurityExpressionRoot {

 public CustomWebSecurityExpressionRoot(Authentication a,
FilterInvocation fi) {
 super(a, fi);
 }

 public boolean isLocal() {
 return "localhost".equals(request.getServerName());
 }
}

It is important to note that getServerName() returns the value that
is provided in the Host header value. This means a malicious user can
inject a different value in the header to bypass constraints. However,
most application servers and proxies can enforce the value of the Host
header. Please read the appropriate documentation before leveraging
such an approach to ensure that malicious users do not inject a Host
header value to bypass such a constraint.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[333]

CustomWebSecurityExpressionHandler
In order for our new method to become available, we need to create a custom
SecurityExpressionHandler interface that utilizes our new root object.
This is as simple as extending WebSecurityExpressionHandler as follows:

src/main/java/com/packtpub/springsecurity/web/access/expression/
CustomWebSecurityExpressionHandler.java

@Component
public class CustomWebSecurityExpressionHandler extends
 DefaultWebSecurityExpressionHandler {
 private final AuthenticationTrustResolver trustResolver =
 new AuthenticationTrustResolverImpl();

 protected SecurityExpressionOperations
 createSecurityExpressionRoot(Authentication
authentication,

FilterInvocation fi) {
 WebSecurityExpressionRoot root =
 new CustomWebSecurityExpressionRoot(authentication,
fi);
 root.setPermissionEvaluator(getPermissionEvaluator());
 root.setTrustResolver(trustResolver);
 root.setRoleHierarchy(getRoleHierarchy());
 return root;
 }
}

We perform the same steps that the super class does except that we use our
CustomWebSecurityExpressionRoot, which contains the new method.
CustomWebSecurityExpressionRoot becomes the root of our Spring Expression
Language (SpeL) expression. For further details, refer to the SpEL documentation
within the Spring Reference at http://static.springsource.org/spring/docs/
current/spring-framework-reference/html/expressions.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authorization

[334]

Configuring and using
CustomWebSecurityExpressionHandler
We now need to configure CustomWebSecurityExpressionHandler. Fortunately,
this can be done easily using the Spring Security namespace configuration support.
Add the following configuration to security.xml:

src/main/webapp/WEB-INF/spring/security.xml

<http ...>
 ...
 <expression-handler ref="customWebSecurityExpressionHandler"/>
</http>

Now, let's update our initialization SQL query to use the new expression. Update
our security-metadata-data.sql file, so that it requires the user to be ROLE_ADMIN
and requested from the local machine. You will notice that we are able to write
local instead of isLocal, since SpEL supports Java Bean conventions.

src/main/resources/database/h2/security-metadata-data.sql

insert into security_filtermetadata(ant_pattern,expression,sort_order)
 values ('/admin/**','local and hasRole("ROLE_ADMIN")',60);

Restart the application and access the H2 console using http://localhost:8080/
calendar/admin/h2 and admin1@example.com/admin1 to see the admin console. If
the H2 console is accessed using http://127.0.0.1:8080/calendar/admin/h2 and
admin1@example.com admin1, the access denied page will be displayed.

Your code should look like chapter12.03-calendar.

How does method security work
The access decision mechanism for method security—whether or not a given request
is allowed—is conceptually the same as the access decision logic for web request
access. AccessDecisionManager polls a set of AccessDecisionVoters, each of
which can provide a decision to grant or deny access, or abstain from voting. The
specific implementation of AccessDecisionManager aggregates the voter decisions
and arrives at an overall decision to allow the method invocation.

www.it-ebooks.info

http://localhost:8080/calendar/admin/h2
mailto:admin1@example.com
mailto:admin1@example.com
http://localhost:8080/calendar/admin/h2
mailto:admin1@example.com
http://www.it-ebooks.info/

Chapter 12

[335]

Web request access decision making is less complicated, due to the fact that
the availability of servlet filters makes interception (and summary rejection) of
securable requests relatively straightforward. As method invocation can happen
from anywhere, including areas of code that are not directly configured by Spring
Security, Spring Security designers chose to use a Spring-managed AOP approach
to recognize, evaluate, and secure method invocations.

The following high-level flow illustrates the main players involved in authorization
decisions for method invocation:

We can see that Spring Security's o.s.s.access.intercept.aopalliance.
MethodSecurityInterceptor is invoked by the standard Spring AOP runtime to
intercept method calls of interest. From here, the logic of whether or not to allow a
method call is relatively straightforward, as per the previous flow diagram.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authorization

[336]

At this point, we might wonder about the performance of the method security
feature. Obviously, MethodSecurityInterceptor couldn't be invoked for every
method call in the application—so how do annotations on methods or classes result
in AOP interception?

First of all, AOP proxying isn't invoked for all Spring-managed beans by
default. Instead, if <global-method-security> is defined in the Spring
Security configuration, a standard Spring AOP o.s.beans.factory.config.
BeanPostProcessor will be registered that will introspect the AOP configuration to
see if any AOP advisors indicate that proxying (and interception) is required. This
workflow is a standard Spring AOP handling (known as AOP auto-proxying), and
doesn't inherently have any functionality specific to Spring Security. All registered
BeanPostProcessor run at initialization of the spring ApplicationContext, after
all Spring Bean configurations have occurred.

The AOP auto-proxy functionality queries all registered PointcutAdvisor to see
if there are AOP pointcuts that resolve to method invocations that should have
AOP advice applied. Spring Security implements the o.s.s.access.intercept.
aopalliance.MethodSecurityMetadataSourceAdvisor class, which examines
any and all configured method security and sets up appropriate AOP interception.
Take note that only interfaces or classes with declared method security rules will be
proxied for AOP!

Be aware that it is strongly encouraged to declare AOP rules
(and other security annotations) on interfaces, and not on
implementation classes. The use of classes, while available using
CGLIB proxying with Spring, may unexpectedly change certain
behavior of your application, and is generally less semantically
correct than security declarations (through AOP) on interfaces.
MethodSecurityMetadataSourceAdvisor delegates the
decision to affect methods with AOP advice to an o.s.s.access.
method.MethodSecurityMetadataSource instance. The
different forms of method security annotation each have their own
MethodSecurityMetadataSource implementation, which is used
to introspect each method and class in turn and add AOP advice to be
executed at runtime.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[337]

The following diagram illustrates how this process occurs:

Depending on the number of Spring Beans configured in your application, and the
number of secured method annotations you have, adding method security proxying
may increase the time required to initialize your ApplicationContext. Once your
Spring context is initialized, however, there is a negligible performance impact on
individual proxied beans.

Now that we have an understanding of how we use AOP to apply Spring Security,
let's strengthen our grasp of Spring Security authorization by creating a custom
PermissionEvaluator.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authorization

[338]

Creating a custom PermissionEvaluator
In the previous chapter, we demonstrated that we could use Spring Security's
built-in PermissionEvaluator implementation, AclPermissionEvaluator, to
restrict access to our application. While powerful, this can often at times be more
complicated than necessary. We have also discovered how Spring's Expression
language can formulate complex expressions that are able to secure our application.
While simple, one of the downsides of using complex expressions is that the logic is
not centralized. Fortunately, we can easily create a custom PermissionEvaluator
that is able to centralize our authorization logic and still avoid the complexity of
using ACLs.

CalendarPermissionEvaluator
A simplified version of our custom PermissionEvaluator that does not contain any
validation can be seen as follows:

src/main/java/com/packtpub/springsecurity/access/
CalendarPermissionEvaluator.java

public final class CalendarPermissionEvaluator implements
PermissionEvaluator {
 private final EventDao eventDao;

 public CalendarPermissionEvaluator(EventDao eventDao) {
 this.eventDao = eventDao;
 }

 public boolean hasPermission(Authentication authentication, Object
targetDomainObject, Object permission) {
 // should do instanceof check since could be any domain object
 return hasPermission(authentication, (Event)
targetDomainObject, permission);
 }

 public boolean hasPermission(Authentication authentication,
Serializable targetId, String targetType,
 Object permission) {
 // missing validation and checking of the targetType
 Event event = eventDao.getEvent((Integer)targetId);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[339]

 return hasPermission(authentication, event, permission);
 }

 private boolean hasPermission(Authentication authentication, Event
event, Object permission) {
 if(event == null) {
 return true;
 }
 String currentUserEmail = authentication.getName();
 String ownerEmail = extractEmail(event.getOwner());
 if("write".equals(permission)) {
 return currentUserEmail.equals(ownerEmail);
 } else if("read".equals(permission)) {
 String attendeeEmail = extractEmail(event.getAttendee());
 return currentUserEmail.equals(attendeeEmail) ||
currentUserEmail.equals(ownerEmail);
 }
 throw new IllegalArgumentException("permission "+permission+"
is not supported.");
 }

 private String extractEmail(CalendarUser user) {
 if(user == null) {
 return null;
 }
 return user.getEmail();
 }
}

The logic is fairly similar to the Spring Expressions that we have already used except
that it differentiates read and write access. If the current user's username matches
the owner's e-mail of the Event object, then both read and write access are granted.
If the current user's e-mail matches the attendee's e-mail, then read access is granted.
Otherwise access is denied.

It should be noted that a single PermissionEvaluator is used for
every domain object. So, in a real world situation, we must perform
instanceof checks first. For example, if we were also securing our
CalendarUser objects, these could be passed into this same instance.
For a full example with these minor changes, refer to the sample code
included in the text.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Authorization

[340]

Configuring CalendarPermissionEvaluator
We can then leverage the security-globalsecurity.xml configuration that
is provided with this chapter to provide ExpressionHandler that uses our
CalendarPermissionEvaluator.

src/main/webapp/WEB-INF/spring/security-globalsecurity.xml

<bean id="defaultExpressionHandler" class="org.springframework
 .security.access.expression.method
 .DefaultMethodSecurityExpressionHandler">
 <property name="permissionEvaluator">
 <bean autowire="constructor"
 class="com.packtpub.springsecurity.access
 .CalendarPermissionEvaluator"/>
 </property>
</bean>

The configuration should look similar to the configuration from Chapter 12, Access
Control Lists, except that we now use our CalendarPermissionEvalulator instead
of the AclPermissionEvaluator.

Next, we inform Spring Security to use our customized ExpressionHandler by
adding the following configuration to security.xml.

src/main/webapp/WEB-INF/spring/security.xml

 <global-method-security pre-post-annotations="enabled">
 <expression-handler ref="defaultExpressionHandler"/>
 </global-method-security>

In the configuration, we ensure that pre-post-annotations is enabled and
point the configuration to our ExpressionHandler definition. Once again, the
configuration should look very similar to our configuration from Chapter 12,
Access Control Lists.

Securing our CalendarService
Lastly, we can secure our CalendarService getEvent(int eventId) method with
a @PostAuthorize annotation. You will notice that this step is exactly the same as
we did in Chapter 1, Anatomy of an Unsafe Application since we have only changed the
implementation of PermissionEvaluator.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[341]

src/main/java/com/packtpub/springsecurity/service/CalendarService.
java

@PostAuthorize("hasPermission(returnObject,'read')")
Event getEvent(int eventId);

If you have not done so already, restart the application, log in as admin1@example.
com/admin1, and visit the Conference Call event using the link on the Welcome
page. The access denied page will be displayed. However, we would like users with
ROLE_ADMIN to be able to access all events.

Benefits of a custom PermissionEvaluator
With only a single method being protected, it would be trivial to update the
annotation to check if the user has the role ROLE_ADMIN or has permission.
However, if we had protected all of our service methods that use an event,
it would become quite cumbersome. Instead, we could just update our
CalendarPermissionEvaluator. Make the following changes:

private boolean hasPermission(Authentication authentication, Event
event, Object permission) {
 if(event == null) {
 return true;
 }
 GrantedAuthority adminRole =
 new SimpleGrantedAuthority("ROLE_ADMIN");
 if(authentication.getAuthorities().contains(adminRole)) {
 return true;
 }
 ...
}

Now, restart the application and repeat our previous exercise. This time, the
Conference Call event will display successfully. You can see that the ability to
encapsulate our authorization logic can be extremely beneficial. However,
sometimes it may be useful to extend the expressions themselves.

Your code should look like chapter12.03-calendar.

www.it-ebooks.info

mailto:user1@example.com
http://www.it-ebooks.info/

Custom Authorization

[342]

Summary
After reading this chapter, you should have a firm understanding of how Spring
Security authorization works for HTTP requests and methods. With this knowledge
and the provided concrete examples, you should also know how to extend
authorization to meet your needs. Specifically in this chapter, we:

•	 Covered the Spring Security authorization architecture for both HTTP
requests and methods

•	 Demonstrated how to configure secured URLs from a database
•	 Created a custom PermissionEvaluator
•	 Created a custom Spring Security expression

In the next chapter, we will explore how Spring Security performs session
management. We will also gain an understanding of how it can be used to restrict
access to our application.

www.it-ebooks.info

http://www.it-ebooks.info/

Session Management
This chapter discusses Spring Security's session management functionality. It starts
off with an example of how Spring Security defends against session fixation. We
will then discuss how concurrency control can be leveraged to restrict access to
software licensed on a per user basis. We will also see how session management can
be leveraged for administrative functions. Last, we will explore how HttpSession is
used in Spring Security and how we can control its creation.

The following is a list of topics that will be covered in the chapter:

•	 Session Management/session fixation
•	 Concurrency control
•	 Managing logged in users
•	 How HttpSession are used in Spring Security and how to control

their creation
•	 How to use the DebugFilter class to discover where HttpSession

was created

Configuring session fixation protection
As we are using the security namespace style of configuration, session fixation
protection is already configured on our behalf. If we wanted to explicitly configure it
to mirror the default settings, we would do the following:

<http auto-config="true" use-expressions="true">
 ...
 <session-management
 session-fixation-protection="migrateSession"/>
</http>

www.it-ebooks.info

http://www.it-ebooks.info/

Session Management

[344]

Session fixation protection is a feature of the framework that you most likely won't
even notice unless you try to act as a malicious user. We'll show you how to simulate
a session-stealing attack; but before we do, it's important to understand what session
fixation does and the type of attack it prevents.

Understanding session fixation attacks
Session fixation is a type of attack whereby a malicious user attempts to steal the
session of an unauthenticated user of your system. This can be done by using a variety
of techniques that result in the attacker obtaining the unique session identifier of the
user (for example, JSESSIONID). If the attacker creates a cookie or a URL parameter
with the user's JSESSIONID identifier in it, they can access the user's session.

Although this is obviously a problem, typically, if a user is unauthenticated, they
haven't entered any sensitive information. This becomes a more critical problem if the
same session identifier continues to be used after a user has been authenticated. If the
same identifier is used after authentication, the attacker may now gain access to the
authenticated user's session without ever having to know their username or password!

At this point, you may scoff in disbelief and think this is extremely
unlikely to happen in the real world. In fact, session-stealing attacks
happen frequently. We would suggest that you spend some time
reading the very informative articles and case studies on the subject,
published by the Open Web Application Security Project (OWASP)
organization (http://www.owasp.org/). Specifically, you will want
to read the OWASP Top 10 list. Attackers and malicious users are real,
and they can do very real damage to your users, your application,
or your company, if you don't understand the techniques that they
commonly use and know how to avoid them.

The following diagram illustrates how a session fixation attack works:

www.it-ebooks.info

http://www.owasp.org/
http://www.it-ebooks.info/

Chapter 13

[345]

Now that we have seen how an attack like this works, we'll see what Spring Security
can do to prevent it.

Preventing session fixation attacks with
Spring Security
If we can prevent the same session that the user had prior to authentication from
being used after authentication, we can effectively render the attacker's knowledge of
the session ID useless. Spring Security session fixation protection solves this problem
by explicitly creating a new session when a user is authenticated, and invalidating
their old session.

Let's see the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Session Management

[346]

We can see that a new filter, o.s.s.web.session.SessionManagementFilter,
is responsible for evaluating if a particular user is newly authenticated. If
the user is newly authenticated, a configured o.s.s.web.authentication.
session.SessionAuthenticationStrategy determines what to do. o.s.s.web.
authentication.session.SessionFixationProtectionStrategy will create
a new session (if the user already had one), and copy the contents of the existing
session to the new one. That's pretty much it—seems simple; however, as we can see
in the diagram, it effectively prevents the evil user from reusing the session ID after
the unknowing user is authenticated.

Simulating a session fixation attack
At this point, you may want to see what's involved in simulating a session-fixation
attack. To do this, you'll first need to disable session fixation protection in security.
xml by adding the <session-management> element as a child of the <http> element.

You should start with the code from chapter13.00-calendar.

src/main/webapp/WEB-INF/spring/security.xml

<http ...>
 ...
 <session-management
 session-fixation-protection="none"/>
</http>

Your code should now look like chapter13.01-calendar.

Next, you'll need to open two browsers. We'll initiate the session in Google Chrome,
steal it from there, and our attacker will log in using the stolen session in Firefox.
We will use the Chrome and the Firefox web developer add-on in order to view
and manipulate cookies. The Firefox web developer add-on can be downloaded
from https://addons.mozilla.org/en-US/firefox/addon/web-developer/.
Chrome's web developer tools are built-in.

www.it-ebooks.info

https://addons.mozilla.org/en-US/firefox/addon/web-developer/
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
http://www.it-ebooks.info/

Chapter 13

[347]

Open the JBCP Calendar home page in Chrome. Next, from the main menu, navigate
to Edit | Preferences | Under the Hood. In the Privacy category, press the Content
Settings... button. Next, in Cookies Settings, press the All Cookies and Site Data...
button. Finally, enter localhost into the Search field.

Select the JSESSIONID cookie, copy the value of Content to the clipboard, and log
in to the JBCP Calendar application. If you repeat the View Cookie Information
command, you'll see that JSESSIONID did not change after you logged in, making
you vulnerable to a session-fixation attack!

In Firefox, open the JBCP Calendar website. You will have been assigned a session
cookie, which we can view by navigating to Tools | Web Developer | Cookies |
View Cookie Information... from the main menu. Keep in mind that newer versions
of Firefox include web developer tools too. However, you will need to ensure that you
are using the extension and not the built-in one, as it provides additional capabilities.

www.it-ebooks.info

http://www.it-ebooks.info/

Session Management

[348]

To complete our hack, we'll click on the Edit Cookie option, and paste in the
JSESSIONID cookie that we copied to the clipboard from Chrome, as shown in
the following screenshot:

Our session fixation hack is complete! If you now reload the page in Firefox, you
will see that you are logged in as the same user that was logged in using Chrome,
without requiring the knowledge of the username and password. Are you scared of
malicious users yet?

Now, re-enable session fixation protection and try this exercise again. You'll see
that, in this case, the JSESSIONID changes after the user logs in. Based on our
understanding of how session-fixation attacks occur, this means that we have
reduced the likelihood of an unsuspecting user falling victim to this type of attack.
Excellent job!

Cautious developers should take note that there are many methods of stealing
session cookies, some of which, such as Cross-Site Scripting (XSS), may make
even session fixation protected sites vulnerable. Please consult the OWASP site for
additional resources on preventing these types of attacks.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[349]

Comparing session-fixation-protection
options
The session-fixation-protection attribute has three options that allow you to
alter its behavior:

Attribute value Description
None This option disables session fixation protection, and (unless other

<session-management> attributes are non-default) does not
configure SessionManagementFilter.

migrateSession When the user is authenticated and a new session is allocated, it
ensures that all attributes of the old session are moved to the new
session.

newSession When the user is authenticated, a new session is created and no
attributes from the old (unauthenticated) session will be migrated.

In most cases, the default behavior of migrateSession will be appropriate for sites
that wish to retain important attributes of the user's session (such as click interest
and shopping carts) after the user has been authenticated.

Restricting the number of concurrent
sessions per user
In the software industry, software is often times sold on a per user basis. This means
that, as software developers, we have an interest in ensuring that only a single
session per user exists, to combat sharing of accounts. Spring Security's concurrent
session control ensures that a single user cannot have more than a fixed number of
active sessions simultaneously (typically one). Ensuring that this maximum limit
is enforced involves several components working in tandem to accurately track
changes in user session activity.

Let's configure the feature, review how it works, and then test it out!

www.it-ebooks.info

http://www.it-ebooks.info/

Session Management

[350]

Configuring concurrent session control
Now that we have understood the different components involved in concurrent
session control, setting it up should make much more sense. To do this, update
your security.xml file as follows:

src/main/webapp/WEB-INF/spring/security.xml

<http ...>
 ...
 <session-management>
 <concurrency-control max-sessions="1"/>
 </session-management>
</http>

Next, we need to enable o.s.s.web.session.HttpSessionEventPublisher in
the web.xml deployment descriptor, so that the servlet container will notify Spring
Security (through HttpSessionEventPublisher) of session lifecycle events.

src/main/webapp/WEB-INF/web.xml

<listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
</listener>
<listener>
 <listener-class>
 org.springframework.security.web.session.
HttpSessionEventPublisher
 </listener-class>
</listener>

With these two configuration bits in place, concurrent session control will now
be activated. Let's see what it actually does, and then we'll demonstrate how
it can be tested.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[351]

Understanding concurrent session control
Concurrent session control uses o.s.s.core.session.SessionRegistry to maintain
a list of active HTTP sessions and the authenticated users with which they are
associated. As sessions are created and expired, the registry is updated in real-time,
based on the session lifecycle events published by HttpSessionEventPublisher to
track the number of active sessions per authenticated user.

An extension of SessionAuthenticationStrategy, o.s.s.web.authentication.
session.ConcurrentSessionControlStrategy is the method by which new
sessions are tracked and the method by which concurrency control is actually
enforced. Each time a user accesses the secured site, SessionManagementFilter is
used to check the active session against SessionRegistry. If the user's active session
isn't in the list of active sessions tracked in SessionRegistry, the least recently used
session is immediately expired.

The secondary actor in the modified concurrent session control filter chain is
o.s.s.web.session.ConcurrentSessionFilter. This filter will recognize expired
sessions (typically, sessions that have been expired either by the servlet container or
forcibly by the ConcurrentSessionControlStrategy interface) and notify the user
that their session has expired.

Now that we have understood how concurrent session control works, it should be
easy for us to reproduce a scenario in which it is enforced.

Your code should now look like chapter13.02-calendar.

www.it-ebooks.info

http://www.it-ebooks.info/

Session Management

[352]

Testing concurrent session control
As we did with verifying session fixation protection, we will need to access two web
browsers. Follow these steps:

1.	 In Chrome, log in to the site as user1@example.com/user1.
2.	 Now, in Firefox, log in to the site as the same user.
3.	 Finally, go back to Chrome, and take any action. You will see a message

indicating that your session has expired.

The following message will appear:

If you were using the application, you'd probably be confused. This is because it's
obviously not a friendly method of being notified that only a single user can access
the application at a time. However, it does illustrate that the session has been forcibly
expired by the software.

Concurrent session control tends to be a very difficult concept for new
Spring Security users to grasp. Many users try to implement it without
truly understanding how it works, and what the benefits are. If you're
trying to enable this powerful feature, and it doesn't seem to be working
as you expect, make sure you have everything configured correctly; and
then review the theoretical explanations in this section—hopefully they
will help you understand what may be wrong!

When this event occurs, we should probably redirect the user to the login page, and
provide them a message to indicate what went wrong.

Configuring expired session redirect
Fortunately, there is a simple method for directing users to a friendly page (typically,
the login page) when they are flagged by concurrent session control—simply specify
the expired-url attribute, and set it to a valid page in your application. Update
your security.xml file as follows:

src/main/webapp/WEB-INF/spring/security.xml

<http ...>
 <session-management>
 <concurrency-control max-sessions="1"

www.it-ebooks.info

mailto:user1@example.com
http://www.it-ebooks.info/

Chapter 13

[353]

 expired-url="/login/form?expired"/>
 </session-management>
</http>

In the case of our application, this will redirect the user to the standard login form.
We will then use the query parameter to display a friendly message indicating that
we determined that they had multiple active sessions, and should log in again.
Update your login.jsp page to use this parameter to display our message.

src/main/webapp/WEB-INF/views/login.jsp

...
<c:if test="${param.expired != null}">
 <div class="alert alert-success">
 You have been forcibly logged out due to multiple
 sessions on the same account (only one active
 session per user is allowed).
 </div>
</c:if>
<label for="username">Username</label>

Go ahead and give it a try by logging in with admin1@example.com/admin1 using
both Chrome and Firefox. This time, you should see a login page with a custom
error message.

Your code should now look like chapter13.03-calendar.

Common problems with concurrency control
There are a few common reasons that logging in with the same user does not
trigger a logout event. The first occurs when using a custom UserDetails (as we
did in Chapter 3, Custom Authentication) while the equals and hashCode methods
are not properly implemented. This occurs because the default SessionRegistry
implementation uses an in-memory map to store UserDetails. In order to resolve
this, you must ensure that you have properly implemented the hashCode and
equals methods.

www.it-ebooks.info

mailto:admin1@example.com
http://www.it-ebooks.info/

Session Management

[354]

The second problem occurs when restarting the application container while the user
sessions are persisted to a disk. When the container has started back up, the users
who were already logged in with a valid session are logged in. However, the in-
memory map of SessionRegistry that is used to determine if the user is already
logged in, will be empty. This means that Spring Security will report that the user
is not logged in even though the user is. To solve this problem, either a custom
SessionRegistry is required along with disabling session persistence within the
container, or implementing a container-specific way to ensure that the persisted
sessions get populated into the in-memory map at startup.

Yet another reason is that at the time of this writing, concurrency control was
not implemented for the Remember Me feature. If users are authenticated with
Remember Me, that concurrency control is not enforced. There is a JIRA to
implement this feature, so refer to it for any updates if your application requires
both Remember Me and concurrency control, at https://jira.springsource.org/
browse/SEC-2028.

The last common reason we will cover is that concurrency control will not work in
a clustered environment with the default SessionRegistry implementation. As
mentioned previously, the default implementation uses an in-memory map. This
means that if user1 logs in to Application Server A, the fact that they are logged in will
be associated to that server. Thus, if user1 then authenticates to Application Server B,
the previously associated authentication will be unknown to Application Server B.

Preventing authentication instead of forcing
logout
Spring Security can also prevent a user from being able to log in to the application if
the user already has a session. This means that instead of forcing the original user to
be logged out, Spring Security will prevent the second user from being able to log in.
The configuration changes can be seen as follows:

src/main/webapp/WEB-INF/spring/security.xml

<session-management>
 <concurrency-control max-sessions="1"
 expired-url="/login/form?expired"
 error-if-maximum-exceeded="true"/>
</session-management>

Make the updates and log in to the Calendar application with Chrome. Now,
attempt to log in to the Calendar application with Firefox using the same user.
You should see our custom error message from our login.jsp file.

www.it-ebooks.info

https://jira.springsource.org/browse/SEC-2028
https://jira.springsource.org/browse/SEC-2028
http://www.it-ebooks.info/

Chapter 13

[355]

Your code should now look like chapter13.04-calendar.

There is a disadvantage to this approach that may not be apparent without some
thought. Try closing Chrome without logging out and then opening it up again.
Now, attempt to log in to the application again. You will observe that you are
unable to log in. This is because when the browser is closed, the JSESSIONID
cookie is deleted. However, the application is not aware of this, so the user is still
considered to be authenticated. You can think of this as a kind of memory leak, since
HttpSession still exists but there is no pointer to it (the JSESSIONID cookie is gone).
It is not until the session times out that our user will be able to authenticate again.
Thankfully, once the session times out, our SessionEventPublisher will remove
the user from our SessionRegistry. Our take away is that if a user forgets to log
out and closes the browser, they will not be able to log in to the application until the
session times out.

Just as with the Chapter 6, Remember-me Services, this experiment may
not work if the browser decides to remember a session even after
the browser is closed. Typically, this will happen if a plugin or the
browser is configured to restore sessions. In this event, you might
want to delete the JSESSIONID cookie manually to simulate the
browser being closed.

Other benefits of concurrent session control
Another benefit of concurrent session control is that SessionRegistry exists to
track active (and, optionally, expired) sessions. This means that we can get runtime
information about what user activity exists in our system (for authenticated users,
at least).

You can even do this if you don't want to enable concurrent session control. Simply
set max-sessions to -1, and session tracking will remain enabled, even though no
maximum will be enforced. Unfortunately, the namespace support will not allow
us to use a negative number. Instead, we will use the explicit bean configuration
provided in the security-session.xml file of this chapter.

src/main/webapp/WEB-INF/spring/security-session.xml

<bean id="concurrentSessionManager"
 class="org.springframework.security.web.authentication.
session.ConcurrentSessionControlStrategy">
 <constructor-arg ref="sessionRegistry"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Session Management

[356]

 <property name="maximumSessions" value="-1"/>
</bean>
<bean id="concurrencyControlFilter"
 class="org.springframework.security.web.session.
ConcurrentSessionFilter">
 <constructor-arg ref="sessionRegistry"/>
 <constructor-arg value="/login/form?expired"/>
</bean>
<bean id="sessionRegistry"
 class="org.springframework.security.core.session.
SessionRegistryImpl"/>

We have already added the import of the security-session.xml file to the
web.xml file. So, all that we need to do is reference the custom configuration in
our security.xml file. Go ahead and replace our current <session-management>
and <concurrency-control> configurations with the following code:

src/main/webapp/WEB-INF/spring/security.xml

<http ...>
...
 <custom-filter
 ref="concurrencyControlFilter"
 position="CONCURRENT_SESSION_FILTER"/>
 <session-management
 session-authentication-strategy-ref="concurrentSessionManager"/>
</http>

Now, our application will allow an unlimited number of authentications for the same
user. However, we can use SessionRegistry to forcibly log out the users. Let's see
how we can use this information to enhance the security of our users.

Your code should now look like chapter13.05-calendar.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[357]

Displaying active sessions for a user
You've probably seen how many websites allow a user to view and forcibly log out
sessions for their account. We can easily use this functionality to do the same. We
have already provided UserSessionController that obtains the active sessions for
the currently logged in user. You can see the implementation as follows:

src/main/java/com/packtpub/springsecurity/web/controllers/
UserSessionController.java

@Controller
public class UserSessionController {
 private final SessionRegistry sessionRegistry;

 @Autowired
 public UserSessionController(SessionRegistry sessionRegistry) {
 this.sessionRegistry = sessionRegistry;
 }

 @RequestMapping("/user/sessions/")
 public String sessions(Authentication authentication, ModelMap
model) {
 List<SessionInformation> sessions =
 sessionRegistry.getAllSessions(authentication.
getPrincipal(), false);
 model.put("sessions", sessions);
 return "user/sessions";
 }

 @RequestMapping(value="/user/sessions/{sessionId}",
 method=RequestMethod.DELETE)
 public String removeSession(@PathVariable String sessionId,
 RedirectAttributes redirectAttrs) {
 SessionInformation sessionInformation =
 sessionRegistry.getSessionInformation(sessionId);
 if(sessionInformation != null) {
 sessionInformation.expireNow();
 }
 redirectAttrs.addFlashAttribute("message", "Session was
removed");
 return "redirect:/user/sessions/";
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Session Management

[358]

Our sessions method will use Spring MVC to automatically obtain the current
Spring Security Authentication. If we were not using Spring MVC, we could also get
the current Authentication from SecurityContextHolder, as discussed in Chapter 3,
Custom Authentication. The principal is then used to obtain all the SessionInformation
objects for the current user. The information is easily displayed by iterating over the
SessionInformation objects in our sessions.jsp file.

src/main/webapp/WEB-INF/views/user/sessions.jsp

...
<c:forEach items="${sessions}" var="session">
 <tr>
 <fmt:formatDate value="${session.lastRequest}" type="both"
pattern="yyyy-MM-dd HH:mm" var="lastUsed"/>
 <td><c:out value="${lastUsed}"/></td>
 <td><c:out value="${session.sessionId}" /></td>
 <c:url var="deleteUrl" value="./${session.sessionId}"/>
 <td>
 <form action="${deleteUrl}" ...>
 ...
 </form>
 </td>
 </tr>
</c:forEach>
…

You can now safely start the JBCP Calendar application and log in to it using
user1@example.com/user1 in Chrome. Now, log in using Firefox and click on
the user1@example.com link in the upper-right corner. You will then see both
sessions listed in the display:

www.it-ebooks.info

mailto:user1@example.com
mailto:user1@example.com
mailto:user1@example.com
mailto:user1@example.com
http://www.it-ebooks.info/

Chapter 13

[359]

While in Firefox, click on the Delete button for the first session. This sends the
request to our deleteSession method of UserSessionsController. This indicates
that the session should be terminated. Now, navigate to any page within Chrome.
You will see our custom message saying the session has been forcibly terminated.
While the message could use updating, we see that this is a nice feature for users to
terminate other active sessions.

Other possible uses include allowing an administrator to list and manage all active
sessions, displaying the number of active users on the site, or even extending the
information to include things like an IP Address or location information.

How Spring Security uses the
HttpSession
We have already discussed how Spring Security uses SecurityContextHolder
to determine the currently logged in user. However, we have not explained how
SecurityContextHolder gets automatically populated by Spring Security. The
secret to this lies in the o.s.s.web.context.SecurityContextPersistenceFilter
and o.s.s.web.context.SecurityContextRepository interfaces.

1.	 At the beginning of each web request, SecurityContextPersistenceFilter
is responsible for obtaining the current SecurityContext using
SecurityContextRepository.

2.	 Immediately afterwards, it sets SecurityContext on
SecurityContextHolder.

www.it-ebooks.info

http://www.it-ebooks.info/

Session Management

[360]

3.	 For the remainder of the web request, SecurityContext is available
via SecurityContextHolder. For example, if a Spring MVC controller
or CalendarService wanted to access SecurityContext, it could use
SecurityContextHolder to access it.

4.	 Then, at the end of each request, SecurityContextPersistenceFilter gets
SecurityContext from SecurityContextHolder.

5.	 Immediately afterwards, SecurityContextPersistenceFilter saves
SecurityContext in SecurityContextRepository. This ensures that
if SecurityContext is updated at any point during the web requests
(that is, when a user creates a new account, as done in Chapter 3, Custom
Authentication) SecurityContext is saved.

6.	 Last, SecurityContextPersistenceFilter clears
SecurityContextHolder.

The question that comes into place is how is this related to HttpSession? This is all
tied together by the default SecurityContextRepository implementation, which
uses HttpSession.

HttpSessionSecurityContextRepository
The default implementation of SecurityContextRepository, o.s.s.web.context.
HttpSessionSecurityContextRepository, uses HttpSession to retrieve and store
the current SecurityContext. There are no other SecurityContextRepository
implementations provided out of the box. However, since the usage of HttpSession
is abstracted behind the SecurityContextRepository interface, we could easily
write our own implementation if we desired.

Configuring how Spring Security uses
HttpSession
Spring Security has the ability to configure when the session is created by Spring
Security. This can be done with the <http> element's create-session attribute. A
summary of the options can be seen in the following table:

Attribute value Description
ifRequired Spring Security will create a session only if one is required (default

value).
always Spring Security will proactively create a session if one does not exist.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[361]

Attribute value Description
never Spring Security will never create a session, but will make use of

one if the application does. This means if there is HttpSession,
SecurityContext will be persisted or retrieved from it.

stateless Spring Security will not create a session and ignore the session
for obtaining a Spring Authentication. In such instances,
NullSecurityContextRepository is used, which will always
state that the current SecurityContext is null.

In practice, controlling session creation can be more difficult than it first appears.
This is because the attributes only control a subset of Spring Security's usage of
HttpSession. It does not apply to any other components, such as JSPs, in the
application. To help figure out when HttpSession was created, we can add Spring
Security's DebugFilter.

Debugging with Spring Security's DebugFilter
Update your security.xml file to have a session policy of never. Also add the
<debug> element so that we can track when the session is created. The updates can
be seen as follows:

src/main/webapp/WEB-INF/spring/security.xml

<debug/>
<http auto-config="true"
 use-expressions="true"
 create-session="never">

When you start up the application, you should see something similar to the
following code written to standard out. If you do not, ensure that you have logging
enabled for all levels on the Spring Security Debugger category.

**
********** Security debugging is enabled.

********** This may include sensitive information.

********** Do not use in a production system!

**

www.it-ebooks.info

http://www.it-ebooks.info/

Session Management

[362]

Now, clear out your cookies (this can be done in Firefox with Shift + Ctrl + Del),
start up the application, and navigate directly to http://localhost:8080/
calendar/. When we look at the cookies, as we did earlier in the chapter, we see
that JSESSIONID is created even though we stated that Spring Security should never
create HttpSession. Look at the logs again, and you will see a call stack of the code
that created HttpSession:

New HTTP session created: 66E512273121EEECC242EA1D2A334A1C

Call stack:
 at Logger.log(Logger.java:29)
 at DebugRequestWrapper.getSession(DebugFilter.java:90)
 ...
 at JspFactoryImpl.internalGetPageContext(JspFactoryImpl.java:112)
 at JspFactoryImpl.getPageContext(JspFactoryImpl.java:65)
 at WEB_002dINF.views.login_jsp._jspService(login_jsp.java:66)

In this instance, our JSP page is responsible for creating the new HttpSession.
In fact, all JSPs will create a new HttpSession by default unless you include the
following at the top of each JSP:

<%@ page session="false" %>

There are a number of other uses for DebugFilter, which we encourage you to
explore on your own. For example, determining when a request will match a
particular URL, which Spring Security Filters are being invoked, and so on.

www.it-ebooks.info

http://localhost:8080/calendar/
http://localhost:8080/calendar/
http://www.it-ebooks.info/

Chapter 13

[363]

Summary
After reading this chapter you should:

•	 Understand how Spring Security manages sessions and protects against
session-fixation attacks

•	 Know how to use Spring Security's concurrency control to prevent the same
user from being authenticated multiple times

•	 Be able to utilize concurrency control to allow a user to terminate sessions
associated with their account

•	 Know how to configure Spring Security's creation of sessions
•	 Know how to use Spring Security's DebugFilter to troubleshoot issues

related to Spring
•	 Learn about security, including determining when HttpSession was created

and what caused it to be created

This concludes our discussion about Spring Security's session management.
In the next chapter we will discuss specifics about integrating Spring Security
with other frameworks.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating with
Other Frameworks

In this chapter, we explore how to integrate Spring Security with other frameworks.
The chapter aims to assist you in setting up a very basic project with Spring Security
and the respective framework. It is out of the scope of this chapter to provide details
of the frameworks we integrate with, other than how they relate to Spring Security,
as entire books have been written on all of these frameworks. In this chapter, we
will cover how to integrate Spring Security with a number of frameworks and
technologies including the following:

•	 Java Server Faces (JSF) applications
•	 AJAX-enabled applications
•	 Google Web Toolkit (GWT) applications
•	 Spring Roo applications
•	 AspectJ

Before you read this chapter, you should already have an understanding of
how Spring Security works. This means you should already be able to set up
authentication and authorization in a simple web application. If you are unable to do
this, you will want to ensure you have read up to Chapter 3, Custom Authentication,
before proceeding with this chapter. If you keep the basic concepts of Spring Security
in mind and you understand the framework you are integrating with, then integrating
with other frameworks is fairly straightforward.

As we have already mentioned, we will only provide details about the particular
framework we are integrating with, when it pertains to integration with Spring
Security. This means that you will need an understanding of the framework you
are integrating with, in order to get the most out of this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating with Other Frameworks

[366]

Integrating with Java Server Faces (JSF)
Using Spring Security with JSF is fairly straightforward, but there are a few
challenges that can make it a bit difficult. In this section, we will go over the steps
that are specific to integrating Spring Security with JSF. Our sample application
integrates with the JBoss Richfaces project, but the steps should be similar for other
JSF implementations.

The entire source code for the JSF sample code can be found
in chapter14.00-richfaces. When started it can be found at
http://localhost:8080/richfaces/. You may log
into it using the username admin1@example.com and the
password admin1.

Customizations to support AJAX
The first problem that users will probably encounter when integrating with JSF,
or any framework that makes heavy use of Asynchronous JavaScript and XML
(AJAX) requests, is that when the application times out, a redirect to the login
page is sent. This does not work very well when making AJAX requests. The
problem is that we want to support requesting that the user logs in for both AJAX
requests and standard web requests. The answer involves using o.s.s.web.
authentication.DelegatingAuthenticationEntryPoint, a custom o.s.s.web.
util.RequestMatcher, and a custom o.s.s.web.AuthenticationEntryPoint.

DelegatingAuthenticationEntryPoint
o.s.s.web.authentication.DelegatingAuthenticationEntryPoint
uses a LinkedHashMap of the RequestMatcher implementations to the
AuthenticationEntryPoint implementations to determine which
AuthenticationEntryPoint to use.

Remember from Chapter 7, Client Certificate Authentication,
that AuthenticationEntryPoint is Spring
Security's way of requesting credentials. For example,
LoginUrlAuthenticationEntryPoint performs a
redirect to a page that typically has a form to submit a
username and password.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[367]

If there are no more mappings, the default AuthenticationEntryPoint is used.
This means that if we can create RequestMatcher that identifies all AJAX requests,
we can take a different action when login is required for an AJAX request than when
a full page request is made.

AjaxRequestMatcher
Most AJAX frameworks will have something that uniquely identifies an AJAX
request from a standard web request. In the case of Richfaces, a header by the name
of faces-request can be found in AJAX requests. This means that we can create a
request matcher as follows:

richfaces/src/main/java/com/packtpub/springsecurity/
RichfacesRequestMatcher.java

public class RichfacesRequestMatcher implements RequestMatcher {
 public boolean matches(HttpServletRequest request) {
 return request.getHeader("faces-request") != null;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating with Other Frameworks

[368]

While this request matcher works for Richfaces, it will not work for other frameworks
making AJAX requests. Inspect the request to figure out what is unique about the
AJAX requests. Some options are the X-Requested-With header, the content type,
and so on.

You can use Firefox Tamper Data or Chrome Developer Tools
to inspect the requests.

Http401EntryPoint
As we mentioned previously, Spring Security's default behavior when using form-
based login is to redirect the user to a page that contains a form to submit their
username and password. This will not behave very well with a JavaScript client.
Therefore, we now need to provide a mechanism that can indicate to the JavaScript
client that it should request the user to log in.

richfaces/src/main/java/com/packtpub/springsecurity/
Http401EntryPoint.java

public class Http401EntryPoint implements AuthenticationEntryPoint {
 public void commence(HttpServletRequest request,
 HttpServletResponse response, AuthenticationException
authException)
 throws IOException, ServletException {
 response.sendError(401);
 }
}

Http401EntryPoint indicates that login is required by returning an HTTP status
of 401. This is much easier for a JavaScript client to process. If it sees an error status
code of 401, it can then take appropriate measures to allow the user to log in. We
demonstrate how to do this with Richfaces later in this chapter.

Configuration updates
Now that we have explained all the moving parts, we can discuss the
necessary configuration updates. The first set of updates can be found in
our security-ajax.xml file:

richfaces/src/main/webapp/WEB-INF/spring/security-ajax.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[369]

 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="entryPoint" class="org.springframework.security.
web.authentication.DelegatingAuthenticationEntryPoint">
 <constructor-arg>
 <map>
 <entry>
 <key>
 <bean class="com.packtpub.springsecurity.
RichfacesRequestMatcher" />
 </key>
 <bean class="com.packtpub.springsecurity.
Http401EntryPoint" />
 </entry>
 </map>
 </constructor-arg>
 <property name="defaultEntryPoint">
 <bean
 class="org.springframework.security.web.
authentication.LoginUrlAuthenticationEntryPoint">
 <property name="loginFormUrl" value="/login" />
 </bean>
 </property>
 </bean>
</beans>

This specifies the DelegatingAuthenticationEntryPoint class, which will delegate
to the appropriate AuthenticationEntryPoint depending on whether the request
is a Richfaces AJAX request or not.

The next configuration change is to update security.xml to instruct Spring Security
to utilize the custom AuthenticationEntryPoint.

richfaces/src/main/webapp/WEB-INF/spring/security.xml

<http security="none" pattern="/org.richfaces.resources/**"/>
<http auto-config="true"
 use-expressions="true"
 entry-point-ref="entryPoint">
 <intercept-url pattern="/jsf-login.jsf" access="permitAll"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating with Other Frameworks

[370]

Recall that Spring Security will send the browser to the last requested page that
requires authentication after the user logs in. It would not work very well if the user
had requested a JSON resource using AJAX. A simple method to avoid redirecting to
the JSON resources is to always send the user to the default-target-url attribute.
This can be done with the following changes to the security.xml file:

<form-login login-page="/login.jsf"
 authentication-failure-url="/login.jsf?error"
 default-target-url="/"
 always-use-default-target="true"/>

JavaScript updates
The last change we need to make is to have the JavaScript framework handle the
401 response sent by Spring Security when a login is required. The method in
which this is done will vary depending on the JavaScript framework being used.
The following example demonstrates how to add a global handler that redirects
the user to the default target URL page if the HTTP response status is a 401 when
using JBoss Richfaces:

richfaces/src/main/webapp/templates/template.xhtml

<script type="text/javascript">
 jsf.ajax.addOnError(handleError);

 function handleError(data) {
 if(data.responseCode == 401) {
 window.location = "${request.contextPath}"
 }
 }
</script>

Assuming the default target URL is protected, redirecting to the default target URL
when an AJAX request requires authentication can be used as an alternative to
setting always-use-default-target to true. The advantage to this approach is
that Spring Security can still remember non-AJAX requests.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[371]

Proxy-based authorization with JSF
As we discussed in Chapter 10, Fine-grained Access Control, Spring must create our
objects in order to support proxy-based authorization. This conflicts with the fact
that JSF will typically create and inject the managed beans. However, there is a very
simple method to allow Spring to create our managed beans. In order for Spring to
create our beans, we need to update our faces-config.xml file to use o.s.web.jsf.
el.SpringBeanFacesElResolver. This allows JSF to resolve standard Spring beans,
allowing Spring Security to restrict access to secure our service tier using proxy objects
just as we did in Chapter 10, Fine-grained Access Control. If you are unsure of the steps
that are required to set up proxy-based authorization with Spring Security, we invite
you to revisit Chapter 10, Fine-grained Access Control in order to refresh your memory.
You can refer to this chapter's richfaces sample project for a working example of
proxy-based authorization in JSF. The relevant code is as follows:

richfaces/src/main/webapp/WEB-INF/faces-config.xml

<application>
 <el-resolver>
 org.springframework.web.jsf.el.SpringBeanFacesELResolver
 </el-resolver>
</application>

Custom login page in JSF
For developers who are accustomed to using JSF, it can be challenging to create a
custom login page for their application when using Spring Security. Typically, the
problem is that developers want to use all of the standard JSF tag libraries, but this
does not work, since Spring Security provides a hook for authenticating the user in
a servlet filter and the standard JSF tags cannot point to a servlet filter. There are a
couple of techniques that we can use to more easily create our custom login page in a
JSF application.

The first approach to creating a custom login page with JSF is to use a standard
HTML form tag rather than the JSF tag. This has the downside of no longer
integrating with JSF. However, we are able to reuse Spring Security's servlet filters
for processing the username and password. You can find an example of how this
works as follows:

richfaces/src/main/webapp/login.xhtml

<c:if test="${param.error != null}">
 <div class="alert alert-error">
 Failed to login.
 <c:if test="${SPRING_SECURITY_LAST_EXCEPTION != null}">

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating with Other Frameworks

[372]

 Reason: <h:outputText value="#
 {sessionScope.SPRING_SECURITY_LAST_EXCEPTION.message}"/>
 </c:if>
 </div>
</c:if>
<c:if test="${param.logout != null}">
 <div class="alert alert-success">
 You have been logged out.
 </div>
</c:if>
<form action="${request.contextPath}/j_spring_security_check"
 method="post">
 <label for="username">Username</label>
 <input type="text" id="username" name="j_username"/>
 <label for="password">Password</label>
 <input type="password" id="password" name="j_password"/>
 <div class="form-actions">
 <input id="submit" class="btn" name="submit" type="submit"
 value="Login"/>
 </div>
</form>

This should look nearly identical to the login page that we created for a standard
JSP page. For a working example, refer to the richfaces sample application that is
provided with this chapter.

The second approach to creating a custom login page with JSF leverages the fact that
any part of our application can authenticate the user. This means that we can use
AuthenticationManager in a JSF-managed bean to authenticate the user. In order to
ensure that AuthenticationManager is injected into the managed bean:

1.	 Add SpringBeanFacesElResolver to the faces-config.xml file, as
discussed previously in this chapter.

2.	 Create the Spring Security configuration as you would normally.
3.	 Use Spring to create the managed bean so that the AuthenticationManager

can be injected into the managed bean.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[373]

The relevant portion of the example LoginBean provided in the chapter's sample
code can be seen in the following code. You will need to ensure to map the
navigation rules for success and fail for this bean to work properly. We have
already done so in the sample application.

richfaces/src/main/java/com/packtpub/springsecurity/LoginBean.java

@Component
@Scope("request")
public class LoginBean {
 … members and getter/setters omitted …

 @Autowired
 public LoginBean(AuthenticationManager authenticationManager) {
 this.authenticationManager = authenticationManager;
 }

 public String login() {
 UsernamePasswordAuthenticationToken token =
 new UsernamePasswordAuthenticationToken(username, password);
 try {
 Authentication authentication =
 authenticationManager.authenticate(token);
 SecurityContext sContext =
 SecurityContextHolder.getContext();
 sContext.setAuthentication(authentication);
 return "success";
 } catch (AuthenticationException loginError) {
 FacesContext fContext = FacesContext.getCurrentInstance();
 FacesMessage message =
 new FacesMessage("Invalid username/password. Reason "
 + loginError.getMessage());
 fContext.addMessage(null, message);
 return "fail";
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating with Other Frameworks

[374]

Since authentication is performed in the managed bean (rather than Spring Security's
servlet filters), we can now use the standard JSF tag libraries for creating our custom
login form. You can see the relevant portion of jsf-login.xhtml provided within
the chapter's sample code, as follows:

richfaces/src/main/webapp/jsf-login.xhtml

<h:message for="login" styleClass="alert alert-error"/>
<div>
 <h:form id="login" method="post">
 <h:outputLabel for="username" value="Username"/>
 <h:inputText id="username" value="#{loginBean.username}"/>
 <h:outputLabel for="password" value="Username"/>
 <h:inputSecret id="password" value="#{loginBean.password}"/>
 <div class="form-actions">
 <h:commandButton value="Login" class="btn"
 action="#{loginBean.login}" />
 </div>
 </h:form>
</div>

If you would like to give this method of authenticating the user a try, replace any
occurrence of login.jsf with jsf-login.jsf within the security.xml and
security-ajax.xml files of the richface example, and try out the application.

Spring Security Facelets tag library
The spring-faces project is a part of Spring Web Flow and provides JSF tag library
integration with Spring Security.

The first step to integrating Spring Security and JSF is to add the spring-faces
dependency, which provides tight integration with Spring and JSF. You can see an
example of adding the spring-faces dependency as follows:

richfaces/pom.xml

<dependency>
 <groupId>org.springframework.webflow</groupId>
 <artifactId>spring-faces</artifactId>
 <version>2.3.1.RELEASE</version>
</dependency>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[375]

The next step is to supply the taglib definition based upon the JSF version you
are using. The richfaces sample project provides the JSF 2 definition that is
shown as follows:

src/main/webapp/WEB-INF/springsecurity.taglib.xml

<?xml version="1.0"?>
<!DOCTYPE facelet-taglib PUBLIC
 "-//Sun Microsystems, Inc.//DTD Facelet Taglib 1.0//EN"
 "http://java.sun.com/dtd/facelet-taglib_1_0.dtd">
<facelet-taglib>
 <namespace>
 http://www.springframework.org/security/tags
 </namespace>
 <tag>
 <tag-name>authorize</tag-name>
 <handler-class>
 org.springframework.faces.security
 .FaceletsAuthorizeTagHandler
 </handler-class>
 </tag>
 <function>
 <function-name>areAllGranted</function-name>
 <function-class>
 org.springframework.faces.security.FaceletsAuthorizeTagUtils
 </function-class>
 <function-signature>
 boolean areAllGranted(java.lang.String)
 </function-signature>
 </function>
 <function>
 <function-name>areAnyGranted</function-name>
 <function-class>
 org.springframework.faces.security.FaceletsAuthorizeTagUtils
 </function-class>
 <function-signature>
 boolean areAnyGranted(java.lang.String)
 </function-signature>
 </function>
 <function>
 <function-name>areNotGranted</function-name>
 <function-class>
 org.springframework.faces.security.FaceletsAuthorizeTagUtils
 </function-class>
 <function-signature>

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating with Other Frameworks

[376]

 boolean areNotGranted(java.lang.String)
 </function-signature>
 </function>
 <function>
 <function-name>isAllowed</function-name>
 <function-class>
 org.springframework.faces.security.FaceletsAuthorizeTagUtils
 </function-class>
 <function-signature>
 boolean isAllowed(java.lang.String, java.lang.String)
 </function-signature>
 </function>
</facelet-taglib>

Next, update web.xml to inform JSF to use the custom tag library as follows:

richfaces/src/main/webapp/WEB-INF/web.xml

<context-param>
 <param-name>javax.faces.FACELETS_LIBRARIES</param-name>
 <param-value>/WEB-INF/springsecurity.taglib.xml</param-value>
</context-param>

You can then use the authorized tag just as we did in Chapter 10, Fine-grained Access
Control. As shown in the taglib definition file, there are additional methods that
are also supported. We have provided a few examples within the richfaces
application. For example, the index.xhtml page demonstrates the use of the
ifAnyGranted attribute:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html ...
 xmlns:sec="http://www.springframework.org/security/tags">
...
<sec:authorize ifAnyGranted="ROLE_ADMIN">
 This is an admin
</sec:authorize>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[377]

The expressions can be used in the rendered attribute of JSF components. For
example, we can prevent a link from being rendered, as demonstrated by the
template.xhtml in the sample application.

richfaces/src/main/webapp/templates/template.xhtml

<h:outputLink
 value="${request.contextPath}/j_spring_security_logout"
 rendered="#{sec:isAllowed('/j_spring_security_logout','GET')}">
 <f:verbatim>Logout</f:verbatim>
</h:outputLink>

This should provide a fairly good foundation for integrating with a JSF application.
For more details about Spring Web Flow including JSF 1.2 taglib definition, consult
the spring web flow project documentation at http://www.springsource.org/
spring-web-flow.

Google Web Toolkit (GWT) integration
There are a number of ways to set up a GWT-based application to communicate
with the server. This section describes how to use Spring Security when utilizing
GWT's com.google.web.bindery.requestfactory.shared.RequestFactory.
We have chosen to use RequestFactory, because it is optimal for larger data-driven
applications that are more likely to be found in real-world applications. Another
benefit of using RequestFactory is that we can utilize the ServiceLocator interface
to allow Spring to create our objects.

While the initial complexity of setting up RequestFactory can be difficult for
developers; the long-term benefits of RequestFactory are likely to outweigh the initial
complexity. For more information about RequestFactory and its benefits, refer to the
GWT documentation at https://developers.google.com/web-toolkit/.

Spring Roo and GWT
If you are new to using GWT or just want a rapid way to create GWT applications,
Spring Roo provides scaffolding support for GWT and simplifies integrating Spring
and GWT. In fact, the sample application that we will be securing was generated
using Spring Roo. For additional information, refer to the Spring Roo documentation
at http://www.springsource.org/spring-roo.

www.it-ebooks.info

http://www.springsource.org/spring-web-flow
http://www.springsource.org/spring-web-flow
https://developers.google.com/web-toolkit/
http://www.it-ebooks.info/

Integrating with Other Frameworks

[378]

Spring Security setup
The first steps are the same as that of any application that you would want to run
Spring Security in. If you do not remember the details of these steps, please revisit
Chapter 2, Getting Started with Spring Security. The following is a high-level checklist
of items that are covered in Chapter 2, Getting Started with Spring Security that will
need to be done:

•	 Ensure that the necessary dependencies are added. No additional Spring or
Spring Security dependencies are required for this sample.

•	 Update web.xml to refer to the necessary Spring configuration,
ContextLoaderListener and springSecurityFilterChain.

GwtAuthenticationEntryPoint
By now you should be getting rather familiar with Spring Security's
AuthenticationEntryPoint interface. This is how Spring Security determines what
to do when a user is not yet authenticated, but should be. Normally, Spring Security
will redirect to a login page to prompt for a username and password. However, just
as with JSF, we will need to customize the behavior to allow the GWT JavaScript
library to understand that a login is required. You can view GwtEntryPoint that we
have included with the chapter's sample code.

events/src/main/java/com/packtpub/springsecurity/web/authentication/
GwtEntryPoint.java

public class GwtEntryPoint implements AuthenticationEntryPoint {
 private final String loginUrl = "/spring_security_login";

 public void commence(HttpServletRequest request,
 HttpServletResponse response,
 AuthenticationException authException)
 throws IOException, ServletException {

 String scheme = request.getScheme();
 String serverName = request.getServerName();
 int serverPort = request.getServerPort();
 String url = request.getContextPath() + loginUrl;

 String login =
 UrlUtils.buildFullRequestUrl(scheme, serverName,
serverPort, url, null);
 response.setHeader("login", login); response.
sendError(HttpServletResponse.SC_UNAUTHORIZED);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[379]

In this example, Spring Security will return an HTTP status of 401 and a custom header
with the URL to redirect to in order for the user to log in. Just as with JSF, we do not
use a redirect so that the JavaScript can process the response as a request to log in.

GWT client updates
We now need to instruct GWT to interpret the response from our GwtEntryPoint
into an action to send the user to the login page. All the code in this section occurs
within the context of the GWT client code and is GWT-specific. You will notice that
the code has no dependencies on Spring Security.

AuthRequestTransport
We now need to instruct GWT to translate the response from our GwtEntryPoint
into a notification that authentication is required.

If you are familiar with the GWT examples, you may have noticed
that we are using a similar pattern to integrate Spring Security that
is demonstrated by the expenses sample provided with the GWT 2.4
distribution at http://google-web-toolkit.googlecode.
com/files/gwt-2.4.0.zip. Studying the expenses sample will
demonstrate that integrating with Spring Security is trivial once you
understand the framework you are integrating with. Inspection of
the expenses sample may also help if you are new to GWT and have
trouble implementing some of the topics not covered in this chapter.

You can find the implementation in the following sample code:

events/src/main/java/com/packtpub/springsecurity/events/client/
scaffold/request/AuthRequestTransport.java

protected RequestCallback
 createRequestCallback(final TransportReceiver receiver) {
 final RequestCallback superCallback =
 super.createRequestCallback(receiver);
 return new AuthCallbackWrapper(superCallback, receiver);
}

private final class AuthCallbackWrapper implements RequestCallback {
 private final RequestCallback delegate;
 private final TransportReceiver receiver;

 public AuthCallbackWrapper(RequestCallback delegate,
 TransportReceiver receiver) {
 this.delegate = delegate;

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating with Other Frameworks

[380]

 this.receiver = receiver;
}

public void onResponseReceived(Request request, Response response) {
 if (Response.SC_UNAUTHORIZED == response.getStatusCode()) {
 String loginUrl = response.getHeader("login");
 if (loginUrl != null) {
 boolean fatal = false;
 ServerFailure failure =
 new ServerFailure("Unauthenticated user", null, null,
 fatal);
 receiver.onTransportFailure(failure);
 eventBus.fireEvent(new AuthRequiredEvent(loginUrl));
 return;
 }
 }
 delegate.onResponseReceived(request, response);
}

public void onError(Request request, Throwable exception) {
 delegate.onError(request, exception);
}
}

To translate the response we create a custom RequestTransport that
wraps the standard RequestCallback to determine if a log in is required.
If an HTTP 401 error is found, we use EventBus to fire AuthRequiredEvent
containing the login URL from the response headers. In order to simplify our
code, we have extended the DefaultRequestTransport class and overridden
the createRequestCallback method.

AuthRequiredEvent
AuthRequiredEvent is a very simple GwtEvent that stores the login
URL and provides hooks for listening to events from EventBus using
AuthRequiredEvent.Handler implementation.

events/src/main/java/com/packtpub/springsecurity/events/client/
scaffold/request/AuthRequiredEvent.java

public class AuthRequiredEvent extends
 GwtEvent<AuthRequiredEvent.Handler> {
 public interface Handler extends EventHandler {
 void onAuthFailure(AuthRequiredEvent requestEvent);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[381]

 }

 // constructor and getters omitted
 private static final Type<Handler> TYPE = new Type<Handler>();

 private String loginUrl;

 public static HandlerRegistration register(EventBus eventBus,
 AuthRequiredEvent.Handler handler) {
 return eventBus.addHandler(TYPE, handler);
 }

 protected void dispatch(Handler handler) {
 handler.onAuthFailure(this);
 }
}

LoginOnAuthRequired
We need to listen for and take some sort of action when AuthRequiredEvent is
fired. To do this, we will create an implementation of the AuthRequiredEvent.
Handler interface that sets the URL with the login URL from the header when
AuthRequiredEvent is received.

events/src/main/java/com/packtpub/springsecurity/events/client/
scaffold/request/LoginOnAuthRequired.java

public class LoginOnAuthRequired implements AuthRequiredEvent.Handler {

 public HandlerRegistration register(EventBus eventBus) {
 return AuthRequiredEvent.register(eventBus, this);
 }

 public void onAuthFailure(AuthRequiredEvent requestEvent) {
 Location.replace(requestEvent.getLoginUrl());
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating with Other Frameworks

[382]

Configuring GWT
Explaining all the details of how GWT works would be a book all by itself, and thus
it is out of the scope of this book. Instead, we will simply go through the specific
pieces necessary in order for GWT to use our customizations. If you are unfamiliar
with the GWT architecture, we encourage you to review the GWT documentation.

Spring Roo generates a Gin module named ScaffoldModule, which is used for
configuring, among other things, RequestFactory that should be used.

GWT INjection (GIN) utilizes a subset of Google Guice to
support automatic dependency injection to GWT client-side
code. For details about Gin, visit their website at
http://code.google.com/p/google-gin/.

We can update RequestFactoryProvider to utilize our custom
AuthRequestTransport. The relevant updates are as follows:

events/src/main/java/com/packtpub/springsecurity/events/client/
scaffold/ioc/ScaffoldModule.java

public class ScaffoldModule ... {
 ...
 static class RequestFactoryProvider ... {
 ...
 public RequestFactoryProvider(EventBus eventBus) {
 requestFactory = GWT.create(ApplicationRequestFactory.
class);
 AuthRequestTransport authReqTransport =
 new AuthRequestTransport(eventBus);
 EventSourceRequestTransport transport =
 new EventSourceRequestTransport(eventBus,
authReqTransport);
 requestFactory.initialize(eventBus, transport);
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[383]

We also need to instruct our GWT EntryPoint to utilize our LoginOnAuthRequired
handler. In order to do this, we will update the init method of ScaffoldDesktopApp
that invokes our EntryPoint named Scaffold. The following code provides relevant
updates to register our LoginOnAuthRequired handler:

events/src/main/java/com/packtpub/springsecurity/events/client/
scaffold/ScaffoldDesktopApp.java

public class ScaffoldDesktopApp extends ScaffoldApp {

 ...
 private void init() {
 ...
 // Check for Authentication failures or mismatches
 new LoginOnAuthRequired().register(eventBus);
 ...
 }
}

Spring Security configuration
We will also need to ensure to update our Spring Security configuration in order to
use our new security extensions.

Observant readers will notice that our Spring Security configuration
is in a different location than we have placed it in the past. We tried to
minimize the changes between a standard Spring Roo application, which
places the security configuration in the META-INF folder. The location
does not matter so long as the configuration is referenced in web.xml.

events/src/main/resources/META-INF/spring/applicationContext-
security.xml

<http entry-point-ref="entryPoint" ...>
 ...
 <form-login
 default-target-url="/ApplicationScaffold
 .html?gwt.codesvr=127.0.0.1:9997"
 always-use-default-target="true"/>
 <intercept-url pattern="/gwtRequest*/**"
 access="hasRole('ROLE_USER')" />
 <!-- <intercept-url pattern="/**"
 access="hasRole('ROLE_USER')" /> -->
</http>
<beans:bean id="entryPoint"
 class="com.packtpub.springsecurity.web
 .authentication.GwtEntryPoint"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating with Other Frameworks

[384]

Our configuration updates AuthenticationEntryPoint to use our GwtEntryPoint
that we created earlier. We ensure that our servlet is protected so that only users can
request resources from it.

Start up the application and give the configuration a try. You can refer to the README
file in the sample code for special instructions on how to run this application, since it
is set up to run in Google App Engine.

When you request the application, you will notice that the page flickers
with the application prior to displaying the login page. This is because
we are only protecting the gwtRequest URL and not the host page.
In practice, we should protect the host page. However, this allows us
to easily test scenarios where security integration is different from a
standard application. For example, we need to process an AJAX request
that requires a login differently from a standard application.

Since we are testing AJAX requests we have set our default-target-url attribute,
and instructed Spring Security to always use it. Otherwise, when we log in, we would
be redirected to a page that would be made with JavaScript. Observant readers have
probably already realized that DelegatingAuthenticationEntryPoint could be
used, as we did in the JSF section, to support a login page from an HTML request and a
JSON request. If you are feeling ambitious, go ahead and try to update the application
to use this strategy now.

Method security
Since we utilized Spring Roo to generate this application, there are no special steps
required to utilize method-level security. If you are not using Spring Roo in your
application, the secret to integrating with GWT is creating a custom ServiceLocator
that integrates with GWT's RequestFactory. A rather straightforward
implementation is displayed as follows:

events/src/main/java/com/packtpub/springsecurity/events/server/
CustomServiceLayerDecorator.java

public class CustomServiceLayerDecorator extends
 ServiceLayerDecorator {
 public <T extends Locator<?, ?>> T createLocator(Class<T> clazz)
 {
 ApplicationContext context =
 WebApplicationContextUtils.getWebApplicationContext(
 CustomRequestFactoryServlet
 .getThreadLocalServletContext());
 return context.getBean(clazz);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[385]

This is then tied together by our CustomRequestFactoryServlet, which extends the
standard RequestFactoryServlet to inject our CustomServiceLayerDecorator.

events/src/main/java/com/packtpub/springsecurity/events/server/
CustomRequestFactoryServlet.java

public class CustomRequestFactoryServlet extends
 RequestFactoryServlet {
 public CustomRequestFactoryServlet() {
 this(new DefaultExceptionHandler(), new
 CustomServiceLayerDecorator());
 }
 ...
}

Our CustomRequestFactoryServlet is configured in our web.xml file instead of the
standard RequestFactoryServlet, which ensures that Spring is used to lookup the
Locator implementations.

The Locator implementations object itself can then be annotated just as we did
in Chapter 10, Fine-grained Access Control. For example, we could update our
EventLocator to require ROLE_ADMIN as follows:

events/src/main/java/com/packtpub/springsecurity/events/server/
locator/EventLocator.java

@PreAuthorize("hasRole('ROLE_ADMIN')")
public Event find(...) {

In fact, we can use all the techniques we used to restrict access to our services, as
we did in Chapter 10, Fine-grained Access Control, Chapter 11, Access Control Lists, and
Chapter 12, Custom Authorization. For details on how to implement authorization with
Spring Security, refer back to the relevant chapters.

Go ahead and try to update the application to require ROLE_ADMIN for the find
method. Then, authenticate with user1@example.com/user1. Spring Security will
prevent the user from accessing the protected data.

Note that in order to gracefully handle the failure, we would need to customize
how GWT handled the failed authorization attempt, similar to what we did for
authentication required.

www.it-ebooks.info

mailto:user1@example.com
http://www.it-ebooks.info/

Integrating with Other Frameworks

[386]

Method security with Spring Roo
You may notice that there are not many methods on the EventLocator. This is
because Spring Roo generates a Event_Roo_Jpa_ActiveRecord aspect, which adds
the data access methods as static methods to the Event class itself. We do not want
to modify the aspect generated by Roo, since it may get updated if we decide to
add more fields. Instead, we can create our own aspect named EventSecurity that
specifies our security annotations. The result would look similar to the following
code snippet:

src/main/java/com/packtpub/springsecurity/events/server/domain/
EventSecurity.aj

public aspect EventSecurity {
 declare @method: public long Event.countEvents(): @
PreAuthorize("hasRole('ROLE_ADMIN')");
}

The countEvents method was added by the aspects generated by Spring Roo.
We create our own aspect to add the @PreAuthorize annotation to the method
introduced by Spring Roo. This gives us a very nice separation of concerns.
Additionally, we can continue to use Spring Roo without accidentally removing
our Security annotations.

Authorization with AspectJ
We will need to make a few other changes in order for this to work. Spring Roo
already weaves advice into the Event object using AspectJ at compile time. This
means that we are not able to weave advice using proxy-based AOP as we did in
Chapter 13, Session Management. Instead, we will configure Spring Security to use
AspectJ compile-time weaving.

AspectJ is an alternative to using proxy-based AOP as we saw in
Chapter 10, Fine-grained Access Control. It is important to note that
when adding security using AspectJ, we must add the security
annotations to implementations and not interfaces. For further details
about using AspectJ in your Spring projects, refer to the Spring
reference at http://static.springsource.org/spring/
docs/3.1.x/spring-framework-reference/html/.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[387]

The first step is to update our maven dependencies to include spring-security-
aspects as follows:

events/pom.xml

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-aspects</artifactId>
 <version>3.1.0.RELEASE</version>
</dependency>

The next step is to configure aspectj-maven-plugin to compile with the
spring-security-aspects.jar file.

events/pom.xml

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>aspectj-maven-plugin</artifactId>
 ...
 <configuration>
 ...
 <aspectLibraries>
 ...
 <aspectLibrary>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-aspects</artifactId>
 </aspectLibrary>
 </aspectLibraries>
 </configuration>
</plugin>

This configuration informs AspectJ to compile the additional code instructions that
secure any method that has a Spring Security annotation on it. For our sample, this
means that our Events.countEvents() method is secured.

We will also need to instruct Spring Security to use AspectJ to secure methods
annotated with the security annotations. This is a simple change in our security
configuration.

events/src/main/resources/META-INF/spring/applicationContext-
security.xml

<global-method-security pre-post-annotations="enabled"
 mode="aspectj" />

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating with Other Frameworks

[388]

Start up the application and you will find that now if you log in with user1
@example.com/user1, it will give an error before an event is even added.
This is because the countEvents method has now been secured. If you log in
with admin1@example.com/admin1, you will be able to access the application
without problems.

There are a number of features that still need to be implemented in our GWT. For
example, we do not display a username, there is no way to log out, we do not handle
access denied errors cleanly, and so on. However, these should be simple so long as
you understand the basics of GWT, since they do not involve special knowledge of
Spring Security that has not been covered in the book already.

Summary
We have covered integrating Spring Security in a number of different frameworks
and contexts, but there will always be some left uncovered. It is our belief that the
concepts learned from this chapter combined with the rest of the book are a solid
foundation for integrating with other frameworks. After reading this chapter, you
should know how to do the following:

•	 Integrate Spring Security with Java Server Faces (JSF)
•	 Use Spring Security in AJAX-enabled web applications
•	 Secure Google Web Toolkit (GWT) applications using Spring Security
•	 Leverage Spring Security in a Spring Roo application and integrate Spring

Security using AspectJ

In the next chapter, we will discuss how to migrate from Spring Security 2.0 to
Spring Security 3.1.

www.it-ebooks.info

mailto:user1@example.com
mailto:admin1@example.com
http://www.it-ebooks.info/

Migration to
Spring Security 3.1

In this final chapter, we will review information relating to common migration issues
when moving from Spring Security 2 to Spring Security 3. We'll spend much more time
discussing the differences between Spring Security 2 and Spring Security 3, because
this is what most users will struggle with. This is due to the fact that the updates from
Spring Security 2 to Spring Security 3 contain a lot of non-passive refactoring.

At the end of the chapter, we will also highlight some of the new features that can
be found in Spring Security 3.1. However, we do not explicitly cover changes from
Spring Security 2 to Spring Security 3.1. This is because by explaining the differences
between Spring Security 2 and Spring Security 3, users should be able to update to
Spring Security 3.1 with ease, since the changes to Spring Security 3.1 are passive.

During the course of this chapter we'll:

•	 Review important enhancements in Spring Security 3
•	 Understand configuration changes required in your existing Spring
•	 Review Security 2 applications when moving them to Spring Security 3
•	 Illustrate the overall movement of important classes and packages in

Spring Security 3
•	 Highlight some of the new features found in Spring Security 3.1

Once you have completed the review of this chapter, you will be in a good position
to migrate an existing application from Spring Security 2 to Spring Security 3.

www.it-ebooks.info

http://www.it-ebooks.info/

Migration to Spring Security 3.1

[390]

Migrating from Spring Security 2
You may be planning to migrate an existing application to Spring Security 3.1,
or trying to add functionality to a Spring Security 2 application and looking for
guidance in the pages of this book. We'll try to address both of your concerns
in this chapter.

First, we'll run through the important differences between Spring Security 2 and
3.1—both in terms of features and configuration. Second, we'll provide some
guidance in mapping configuration or class name changes. These will better enable
you to translate the examples in the book from Spring Security 3.1 back to Spring
Security 2 (where applicable).

A very important migration note is that Spring Security 3+ mandates a migration
to Spring Framework 3 and Java 5 (1.5) or greater. Be aware that in many cases,
migrating these other components may have a greater impact on your application
than the upgrade of Spring Security!

Enhancements in Spring Security 3
Significant enhancements in Spring Security 3 over Spring Security 2 include
the following:

•	 The addition of Spring Expression Language (SpEL) support for access
declarations, both in URL patterns and method access specifications,
which we covered in Chapter 2, Getting Started with Spring Security
and Chapter 10, Fine-grained Access Control.

•	 Additional fine-grained configuration around authentication and accessing
successes and failures.

•	 Enhanced capabilities of method access declaration, including
annotation-based pre- and post-invocation access checks and filtering,
as well as highly configurable security namespace XML declarations
for custom backing bean behavior. These capabilities are examined in
Chapter 10, Fine-grained Access Control.

•	 Fine-grained management of session access and concurrency control using
the namespace, covered in Chapter 13, Session Management.

•	 Noteworthy revisions to the ACL module, with the removal of the legacy
ACL code in o.s.s.acl and some important issues with the ACL framework
are addressed. ACL configuration and support is reviewed in Chapter 11,
Access Control Lists.

•	 Support for OpenID Attribute Exchange, and other general improvements to
the robustness of OpenID, illustrated in Chapter 8, Opening up to OpenID.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15

[391]

Other more innocuous changes encompassed a general restructuring and cleaning
up of the code base and the configuration of the framework, such that the overall
structure and usage makes much more sense. The authors of Spring Security have
made efforts to add extensibility where none previously existed, especially in the
areas of login and URL redirection.

If you are already working in a Spring Security 2 environment, you may not
find compelling reasons to upgrade if you aren't pushing the boundaries of the
framework. However, if you have found limitations in the available extension points,
code structure, or configurability of Spring Security 2, you'll welcome many of the
minor changes that we discuss in detail in the remainder of this chapter.

Changes to configuration in Spring
Security 3
Many of the changes in Spring Security 3 will be visible in the namespace style of
configuration. Although this chapter cannot cover all of the minor changes in detail,
we'll try to cover those changes that will be most likely to affect you as you move to
Spring Security 3.

Rearranged AuthenticationManager
configuration
The most obvious changes in Spring Security 3 deal with the configuration of the
AuthenticationManager and any related AuthenticationProvider elements. In Spring
Security 2, the AuthenticationManager and AuthenticationProvider configuration
elements were completely disconnected—declaring an AuthenticationProvider didn't
require any notion of an AuthenticationManager at all.

<authentication-provider>
 <jdbc-user-service data-source-ref="dataSource" />
</authentication-provider>

In Spring Security 2, it was possible to declare the <authentication-manager>
element as a sibling of any AuthenticationProvider.

<authentication-manager alias="authManager"/>
<authentication-provider>
 <jdbc-user-service data-source-ref="dataSource"/>
</authentication-provider>
<ldap-authentication-provider server-ref="ldap://localhost:10389/"/>

www.it-ebooks.info

ldap://localhost:10389/
http://www.it-ebooks.info/

Migration to Spring Security 3.1

[392]

In Spring Security 3, all AuthenticationProvider elements must be the children of
the <authentication-manager> element, so this would be rewritten as follows:

<authentication-manager alias="authManager">
 <authentication-provider>
 <jdbc-user-service data-source-ref="dataSource" />
 </authentication-provider>
 <ldap-authentication-provider server-ref= "ldap://
localhost:10389/"/>
</authentication-manager>

Of course, this means that the <authentication-manager> element is now required
in any security namespace configuration.

If you had defined a custom AuthenticationProvider in Spring Security 2, you would
have decorated it with the <custom-authentication-provider> element as part of its
bean definition. An example using the CalendarUserAuthenticationProvider from
Chapter 3, Custom Authentication, is shown as follows:

<bean id="calendarUserAuthenticationProvider"
class="com.packtpub.springsecurity.authentication.
CalendarUserAuthenticationProvider">
 ...
 <security:custom-authentication-provider/>
</bean>

While moving this custom AuthenticationProvider to Spring Security 3, we would
remove the decorator element and instead configure the AuthenticationProvider
as we saw in Chapter 3, Custom Authentication using the ref attribute of the
<authentication-provider> element as follows:

<authentication-manager alias="authenticationManager">
<authentication-provider ref= "calendarUserAuthenticationProvider"/>
</authentication-manager>

Of course, the source code of our custom provider would change due to class
relocations and renaming in Spring Security 3—look later in the chapter for
basic guidelines.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15

[393]

New configuration syntax for session
management options
In addition to continuing support for the session fixation and concurrency
control features from prior versions of the framework, Spring Security 3 adds
new configuration capabilities for customizing URLs and classes involved in
session and concurrency control management, as described in detail in Chapter 14,
Integrating with Other Frameworks. If your older application was configuring session
fixation protection or concurrent session control, the configuration settings have a
new home in the <session-management> directive of the <http> element.

In Spring Security 2, these options would be configured as follows:

<http ... session-fixation-protection="none">
 …
 <concurrent-session-control max-sessions="1"
 exception-if-maximum-exceeded ="true"/>
</http>

The analogous configuration in Spring Security 3 removes the session-fixation-
protection attribute from the <http> element, and consolidates as follows:

<http ...>
 <session-management session-fixation-protection="none">
 <concurrency-control max-sessions="1"
 error-if-maximum-exceeded ="true" />
 </session-management>
</http>

You can see that the new logical organization of these options is much more sensible
and leaves room for future expansion.

Changes to custom filter configuration
Many users of Spring Security 2 have developed custom authentication filters (or
other filters to alter the flow of a secured request). As with custom authentication
providers, such filters were previously indicated through decoration of a bean with
the <custom-filter> element. This made it a bit difficult in some cases to tie the
configuration of a filter directly to the Spring Security configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Migration to Spring Security 3.1

[394]

Let's see an example of the configuration for the signed request header filter from
Chapter 6, Remember-me Services, as applied to a Spring Security 2 environment.

<bean id="domainUsernamePasswordAuthenticationFilt
er" class="com.packtpub.springsecurity.web.authentication.
DomainUsernamePasswordAuthenticationFilter">
 ...
 <security:custom-filter
 after="AUTHENTICATION_PROCESSING_FILTER"/>
</bean>

Contrast this with the same configuration from Spring Security 3, and you can see
that the bean definition and security wiring are done independently. The custom
filter is declared within the <http> element as follows:

<http ...>
 ...
 <custom-filter ref="domainUsernamePasswordAuthenticationFilter"
 position="FORM_LOGIN_FILTER"/>
</http>

The bean declaration remains the same as in Spring Security 2, although, as you'd
expect, the code for a custom filter is quite different. You can find a sample of a
custom filter in Chapter 3, Custom Authentication.

Also, the logical filter names for some of the filters have changed in Spring Security
3. We present the list of changes in the following figure and a full table for reference
is provided in Appendix, Additional Reference Material:

Spring Security 2 Spring Security 3
SESSION_CONTEXT_INTEGRATION_FILTER SECURITY_CONTEXT_FILTER

CAS_PROCESSING_FILTER CAS_FILTER

AUTHENTICATION_PROCESSING_FILTER FORM_LOGIN_FILTER

OPENID_PROCESSING_FILTER OPENID_FILTER

BASIC_PROCESSING_FILTER BASIC_AUTH_FILTER

NTLM_FILTER Removed in Spring Security 3

You must make these changes in your configuration files in addition to relocating the
<custom-filter> element.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15

[395]

Changes to
CustomAfterInvocationProvider
One final bean decoration from Spring Security 2 has been replaced by a straight,
inline element reference, a CustomAfterInvocationProvider declared by the
<custom-after-invocation-provider> element.

<bean id="customAfterInvocationProvider"
 class="com.packtpub.springsecurity.security
.CustomAfterInvocationProvider">
 <security:custom-after-invocation-provider/>
</bean>

Similar to what we saw with the other bean decorators from Spring Security 2,
in Spring Security 3, this element has been moved within the <global-method-
security> declaration, with a simple bean reference.

<global-method-security ...>
 <after-invocation-provider ref="customAfterInvocationProvider"/>
</global-method-security>

Minor configuration changes
The following points will briefly state the additional changes in configuration
attributes between Spring Security 2 and 3:

•	 While using the auto-config attribute in Spring Security 3, remember-me
services are no longer configured by default. You will need to explicitly add
the <remember-me> declaration within your <http> element.

•	 For LDAP configuration, the default value for group-search-base-
attribute (used in LDAP authorities search) changed in Spring Security 3
from ou=Groups to an empty string (the root of the LDAP tree). We used this
attribute in Chapter 5, LDAP Directory Services.

•	 The <filter-invocation-definition-source> decoration element, used
for configuring a filter chain manually, has been renamed in Spring Security
3 to <filter-security-metadata-source>.

•	 The attribute exception-if-maximum-exceeded, related to the
<concurrent-session-control> element, has been moved and renamed
in Spring Security 3 to error-if-maximum-exceeded, on the new
<concurrency-control> element.

•	 While using the in-memory DAO UserDetailsService, the password
attribute is no longer required in Spring Security 3 when declaring users in
the configuration file.

www.it-ebooks.info

http://www.it-ebooks.info/

Migration to Spring Security 3.1

[396]

The remainder of the changes in the XML configuration dialect for Spring Security 3
represent additions to functionality, and will not cause migration issues for existing
applications configured with the security namespace.

Changes to packages and classes
Although in very straightforward applications of Spring Security 2, the locations of
classes in packages may not matter, most applications of Spring Security don't end
up being free from some kind of ties with the underlying code. So, we felt it would
be helpful to point you in the direction of many of the overall package migrations
and class renames that occurred between Spring Security 2 and 3.

Wherever possible, we have tried to map classes as accurately as we could—an
overview of the major package moves are provided here, and (should you need it)
a more comprehensive list is provided as a download with the source code. The
following table indicates the biggest relocations of classes from Spring Security 2
to Spring Security 3—we've truncated the table to include the majority of changes
you're likely to see:

Number
of classes

Location in Spring 2 Location in Spring 3

13 o.s.s o.s.s.authentication

13 o.s.s.acls o.s.s.acls.model

13 o.s.s.event.
authentication

o.s.s.authentication.event

12 o.s.s.vote o.s.s.access.vote

11 o.s.s.ui.rememberme o.s.s.authentication.rememberme

10 o.s.s.providers.jaas o.s.s.authentication.jaas

10 o.s.s.securechannel o.s.s.web.access.channel

10 o.s.s.userdetails.ldap o.s.s.ldap.userdetails

9 o.s.s.providers.encoding o.s.s.authentication.encoding

8 o.s.s.config o.s.s.config.authentication

8 o.s.s.util o.s.s.web.util

7 o.s.s.config o.s.s.config.http

7 o.s.s.context o.s.s.core.context

7 o.s.s.userdetails o.s.s.core.userdetails

6 o.s.s o.s.s.access

6 o.s.s.afterinvocation o.s.s.acls.afterinvocation

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15

[397]

Number
of classes

Location in Spring 2 Location in Spring 3

6 o.s.s.event.
authorization

o.s.s.access.event

6 o.s.s.util o.s.s.web

5 o.s.s.annotation o.s.s.access.annotation

5 o.s.s.authoritymapping o.s.s.core.authority.mapping

5 o.s.s.providers o.s.s.authentication

5 o.s.s.token o.s.s.core.token

5 o.s.s.ui o.s.s.web.authentication

If it appears to you that classes have moved substantially, you are correct! Very
few classes were untouched in the overall package reorganization as part of Spring
Security 3. Hopefully, this overview points you in the right direction for classes that
you may be looking for. Again, please consult the downloads for this chapter to
review a detailed class-by-class mapping.

The benefit to this reorganization is that the entire framework is now much more
modular, and fits into discrete JAR files containing only particular elements of
functionality, as indicated in the following table (we used <version> in place of the
release number):

JAR name Functionality
spring-security-acl-<version>.
jar

ACL support (see Chapter 12, Custom
Authorization)

spring-security-cas-client-
<version>.jar *

CAS support (see Chapter 9, Single Sign-on
with Central Authentication Service)

spring-security-config-
<version>.jar

Namespace configuration support

spring-security-core-<version>.
jar

Core framework and classes

spring-security-ldap-<version>.
jar

LDAP support (see Chapter 5, LDAP
Directory Services)

spring-security-openid-
<version>.jar

OpenID support (see Chapter 8, Opening Up
To OpenID)

spring-security-tablibs-
<version>.jar

JSP Tag Library support (see Chapter 2,
Getting Started with Spring Security and
Chapter 11, Access Control Lists)

spring-security-web-<version>.
jar

Web tier support

www.it-ebooks.info

http://www.it-ebooks.info/

Migration to Spring Security 3.1

[398]

Note that the CAS JAR file was renamed to spring-security-cas-
<version>.jar in Spring Security 3.1.
This modularization means that, for example, it is possible to
deploy Spring Security to a non-web application without any web
dependencies (and might even be enough for your needs).

Updates in Spring Security 3.1
Fortunately, the path from Spring Security 3 to Spring Security 3.1 is a rather passive
one. There have been a number of updates that are found in Spring Security 3.1
that we have already gone over, but we will highlight some of the most significant
features added in Spring Security 3.1 shown as follows:

•	 One of the biggest updates is that Spring Security 3.1 was the first release to
allow multiple <http> elements as discussed in Chapter 2, Getting Started with
Spring Security. For example, the following code would not be allowed in
Spring Security 3:
<http security="none" pattern="/resources/**"/>
<http auto-config="true">
 <intercept-url pattern="/**" access="ROLE_USER"/>
</http>

•	 Spring Security 3.1 added support for using CAS to authenticate with
RESTful services using proxy tickets as discussed in Chapter 9, Single Sign-on
with Central Authentication Service.

•	 Support for stateless authentication as discussed in Chapter 13,
Session Management.

•	 A Google App Engine sample application is now included in the
sample applications. You can find additional information on the
Spring Source blog post that introduces this new sample application
at http://blog.springsource.org/2010/08/02/spring-security-in-
google-app-engine/.

•	 Improved Active Directory LDAP support as discussed in Chapter 5, LDAP
Directory Services.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15

[399]

Unfortunately, we did not have space for discussing Spring Security's JAAS
integration. However, there is a JAAS sample application included in the Spring
Security samples at http://static.springsource.org/spring-security/
site/docs/3.1.x/reference/sample-apps.html. In fact, there is also excellent
documentation about the JAAS integration available in the Spring Security reference
at http://static.springsource.org/spring-security/site/docs/3.1.x/
reference/jaas.html. When looking at the JAAS reference documentation, you
will notice that starting with Spring Security 3.1, there is added support for using
JAAS login modules using arbitrary JAAS configuration implementations. Spring
Security 3.1 also adds the jaas-api-provision attribute to the <http> element that
ensures that the JAAS Subject is populated for applications that may also rely on the
JAAS Subject.

Summary
This chapter reviewed the major and minor changes that you will find when
upgrading an existing Spring Security 2 project to Spring Security 3. In this
chapter we have:

•	 Reviewed the significant enhancements to the framework that are likely to
motivate an upgrade

•	 Examined upgrade requirements, dependencies, and common types of
code and configuration changes that will prevent applications from
working post-upgrade

•	 Investigated (at a high level) the overall code-reorganization changes that the
Spring Security authors made as part of codebase restructuring

If this is the first chapter you've read, we hope that you return to the rest of the book,
using this chapter as a guide, to allow your upgrade to Spring Security 3 to proceed
as smoothly as possible!

www.it-ebooks.info

http://static.springsource.org/spring-security/site/docs/3.1.x/reference/sample-apps.html
http://static.springsource.org/spring-security/site/docs/3.1.x/reference/sample-apps.html
http://static.springsource.org/spring-security/site/docs/3.1.x/reference/jaas.html
http://static.springsource.org/spring-security/site/docs/3.1.x/reference/jaas.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Additional Reference Material
In this appendix, we will cover some reference material that we feel is helpful
(and largely undocumented) but too comprehensive to insert into the text of
the chapters.

Getting started with the JBCP Calendar
sample code
As we described in Chapter 1, Anatomy of an Unsafe Application, we have made
the assumption that you have installed a Java Development Kit (JDK). You can
download a JDK from Oracle's website, at http://www.oracle.com/technetwork/
java/javase/downloads/index.html.

We also assume you have access to Spring Tool Suite (STS) 3.1.0. You can download
STS from http://www.springsource.org/springsource-tool-suite-download.
At the time of this writing, if you prefer not to fill out the form, you can accept the
terms and select the link to take you to the download page.

Downloading the example code
You can download the example code files for all Packt books
you have purchased from your account at http://www.
PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Additional Reference Material

[402]

Creating a new workspace
It is best to create a fresh workspace in order to minimize discrepancies with your
environment. When you first open STS, it will prompt you for the workspace
location. If you were previously using STS, you may need to use File | Switch
Workspace | Other to create a new workspace. We recommend entering a
workspace location that does NOT contain any spaces. For example:

Once you have created a new workspace, you will want to exit the Welcome screen
by clicking on the close button on the Welcome tab.

Sample code structure
The sample code is structured in a .zip file and contains folders of Maven projects
named chapterNN.mm-project, where NN is the chapter number and mm is the
milestone within that chapter. For simplicity, we recommend that you extract the
source to a path that does NOT contain any spaces. Each milestone is a checkpoint
within the chapter and allows you to easily compare your code with the book's code.
For example, chapter02.03-calendar contains milestone number 03 within
Chapter 2, Getting Started with Spring Security, of the Calendar application.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

[403]

In order to keep each chapter as independent as possible, most chapters in the
book are built off of Chapter 2, Getting Started with Spring Security or Chapter 3,
Custom Authentication. This means that, in most cases, you can read through
Chapter 3, Custom Authentication and then skip around to the other parts of the
book. However, this also means that it is important to start each chapter with
the chapter's milestone 00 source code rather than continuing to work on the
code from the previous chapter. This ensures that your code starts in the same
place that the chapter does.

While you can get through the entire book without performing any of the steps,
we recommend starting each chapter with milestone 00 and implementing the steps
in the book. This will ensure that you get the most out of the book. You can use the
milestone versions to copy large portions of code or to compare your code if you run
into problems.

Importing the samples
Starting with our fresh workspace, perform the following steps:

1.	 Go to File | Import and select Existing Maven Projects.

www.it-ebooks.info

http://www.it-ebooks.info/

Additional Reference Material

[404]

2.	 Click on Next.

3.	 Browse to the location you exported the code to, and select the parent folder
of the code.
You will see all of the projects listed. You can select the projects you are
interested in, or you can leave all of the projects selected. If you decide to
import all of the projects, you can easily focus on the current chapter since
the naming conventions will ensure the projects are sorted in the order that
they are presented in, in the book.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

[405]

4.	 Click on Finish. All of the selected projects will be imported. If you have not
used Maven frequently, it will take a while to download your dependencies.

An Internet connection is required to download
the dependencies.

Updated instructions for running the projects will be found in the README file. This
ensures that, as updates are made to STS, the code can still be built and run with the
latest tools.

Running the samples in Spring Tool Suite
There are a few things that are necessary in order to run the sample applications
within Spring Tool Suite. In the following section, we have included instructions to
run the samples on Tomcat within STS to get you started fast.

Creating a Tomcat v7.0 server
In order to run the application, you will first need to configure a server. To do
so, you will need to download the latest Tomcat 7 Core distribution and extract
it onto your local hard drive. You can navigate to the Tomcat 7 Download page
at http://tomcat.apache.org/download-70.cgi to download the latest
Core distribution.

After you have extracted Tomcat 7 to your local hard drive (or if you have already
done this), you will need to perform the following steps within STS:

1.	 Go to File | New | Other....
2.	 Enter Server into the filter and select Server from the listing of Wizards:

www.it-ebooks.info

http://www.it-ebooks.info/

Additional Reference Material

[406]

3.	 Click on Next.
4.	 Under Select the server type:, enter Tomcat v7, and then select

Tomcat v7.0 Server:

5.	 Click on Next.
6.	 Click on Browse... and navigate to the location you extracted the Tomcat 7

distribution to:

7.	 Click on Finish.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

[407]

You should now see the Tomcat v7.0 server at localhost in the Servers view. If you
cannot find the Servers view, you can open it using Window | Show View | Servers:

Starting the samples within Spring Tool Suite
Now that you have created a Tomcat v7.0 server within Spring Tool Suite, you can
run the Calendar application on it. Use the following steps to run the Calendar
application on the Tomcat v7.0 server we created in the previous section:

1.	 Locate the project that you wish to run on the server. For example, if you
want to run the unsecured application from Chapter 1, Anatomy of an Unsafe
Application you can select the chapter01.00-calendar project from Package
Explorer view. If you cannot find the Package Explorer view, use Window |
Show View | Package Explorer:

2.	 Right-click on the project and select Run As | Run on Server.
3.	 Select the server we created previously (Tomcat v7.0 Server at localhost):

4.	 Click on Finish.

www.it-ebooks.info

http://www.it-ebooks.info/

Additional Reference Material

[408]

Tomcat will be started and the application will be opened in STS. You can observe
the standard output from Tomcat in the console view. If you have any issues running
the application (that is, if you get a Page Not Found error), you will want to look in
the console for any clues as to why the application did not start properly.

Many developers may want to copy the URL from STS and paste it into an external
web browser such as Firefox in order to use browser plugins for development.

Shutting down the samples within Spring Tool Suite
To shut down the application, you can select the Tomcat server in the Servers view
and click on the Stop button (the red square):

Removing previous versions of the samples
Since all the Calendar projects use the same context root, you must remove any
other versions of the Calendar application before adding a new version. This can be
done by using the following steps:

1.	 When it is stopped, right-click the server named Tomcat v7.0 Server at
localhost from within the Servers view.

2.	 Select the Add and Remove... menu item:

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

[409]

3.	 Click on the Remove All... button.
4.	 Click on Finish.

Using HTTPS within Spring Tool Suite
Some of the chapters' sample code (that is, Chapter 8, Opening up to OpenID and
Chapter 9, Single Sign-on with Central Authentication Service) require the use of HTTPS
in order for the sample code to work. You can find the simplified steps for getting
these samples working within Spring Tool Suite, as follows:

1.	 The source code included with the book contains a directory named etc that
contains a file named server.xml. Open the server.xml file using your
favorite text editor and copy the entire contents of the file to your clipboard.

2.	 Within the Package Explorer view of Spring Tool Suite, navigate to Servers |
Tomcat v7.0 Server at localhost-config:

3.	 Open server.xml, select the Source tab, and paste the contents of your
clipboard. For Chapter 7, Client Certificate Authentication, copy the contents of
the server-clientauth.xml file instead.

4.	 Copy the path to the folder where you found the server.xml file.

www.it-ebooks.info

http://www.it-ebooks.info/

Additional Reference Material

[410]

5.	 Open the catalina.properties file found in the same directory, and at the
bottom, and add a new property with the name of keystore.folder and
the value <server-path>, where <server-path> is the value you copied
previously. For example, if server.xml from the sample source was found at
/home/rwinch/packt/source/etc/, a new entry in catalina.properties
should look similar to the following screenshot:

Ensure that the value of keystore.folder ends with a / character.

The preceding steps are enough to get the server to run using HTTPS. However,
we will need to ensure that when our application makes HTTPS calls to another
application, the SSL handshake succeeds. To do this, we need to update the system
properties on the JVM, as follows:

1.	 In the Servers view, double-click on the Tomcat v7.0 server:
2.	 In the Overview tab, locate the General Information section and click on

Open launch configuration:

3.	 In the Arguments tab, locate the VM arguments and append the following
system arguments to the end. Take care to replace <server-path> with the
path to the folder the server.xml file was in, and ensure that there is a space
before each entry, but no other spaces:
-Djavax.net.ssl.trustStore=<server-path>/tomcat.keystore
-Djavax.net.ssl.trustStorePassword=changeit

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

[411]

Now, when you run the sample code on the Tomcat Server within Spring
Tool Suite, you can connect to http://localhost:8080/calendar/ or to
https://localhost:8443/calendar/.

Default URLs processed by Spring
Security
The following URLs are the default URLs (all of which can be customized through
configuration) processed by the filters that are looked up in Spring Security's
FilterChainProxy. Remember that these URLs are relative to your web
application's context root.

•	 /j_spring_security_check: It is checked by
UsernamePasswordAuthenticationFilter for username/password
form authentication

•	 /j_spring_openid_security_check: It is checked by
OpenIDAuthenticationFilter for OpenID returning authentication
(from the OpenID provider)

•	 /j_spring_cas_security_check: It is used by CAS authentication upon
return from the CAS SSO login

•	 /spring_security_login: It is the URL used by the
DefaultLoginPageGeneratingFilter when configured to auto-generate a
login page

•	 /j_spring_security_logout: It is used by LogoutFilter to detect a
logout action

•	 /saml/SSO: It is used by the Spring Security SAML SSO extension,
SAMLProcessingFilter, to process a SAML SSO sign-on request

•	 /saml/logout: It is used by the Spring Security SAML SSO extension,
SAMLLogoutFilter, to process a SAML SSO sign-out request

•	 /j_spring_security_switch_user: It is used by SwitchUserFilter to
switch users to another user

•	 /j_spring_security_exit_user: It is used to exit the switch
user functionality

www.it-ebooks.info

http://www.it-ebooks.info/

Additional Reference Material

[412]

Logical filter names migration reference
As discussed in Chapter 15, Migration to Spring Security 3, many of the logical filter
names (used in the <custom-filter> element) change when we migrate from
Spring Security 2 and 3. We present a full table of the changes here, to ease your
migration of custom filter configuration from Spring Security 2 to 3:

Spring Security 2 Spring Security 3/3.1
CHANNEL_FILTER CHANNEL_FILTER

CONCURRENT_SESSION_FILTER CONCURRENT_SESSION_FILTER

SESSION_CONTEXT_INTEGRATION_FILTER SECURITY_CONTEXT_FILTER

LOGOUT_FILTER LOGOUT_FILTER

PRE_AUTH_FILTER PRE_AUTH_FILTER

CAS_PROCESSING_FILTER CAS_FILTER

AUTHENTICATION_PROCESSING_FILTER FORM_LOGIN_FILTER

OPENID_PROCESSING_FILTER OPENID_FILTER

LOGIN_PAGE_FILTER is not present in Spring
Security 2

LOGIN_PAGE_FILTER

DIGEST_AUTH_FILTER is not present in Spring
Security 2

DIGEST_AUTH_FILTER

BASIC_PROCESSING_FILTER BASIC_AUTH_FILTER

REQUEST_CACHE_FILTER is not present in
Spring Security 2

REQUEST_CACHE_FILTER

SERVLET_API_SUPPORT_FILTER SERVLET_API_SUPPORT_FILTER

JAAS_API_SUPPORT_FILTER is not present in
Spring Security 2

JAAS_API_SUPPORT_FILTER (only in
Spring Security 3.1)

REMEMBER_ME_FILTER REMEMBER_ME_FILTER

ANONYMOUS_FILTER ANONYMOUS_FILTER

SESSION_MANAGEMENT_FILTER is not present
in Spring Security 2

SESSION_MANAGEMENT_FILTER

EXCEPTION_TRANSLATION_FILTER EXCEPTION_TRANSLATION_FILTER

NTLM_FILTER NTLM_FILTER is removed in Spring
Security 3

FILTER_SECURITY_INTERCEPTOR FILTER_SECURITY_INTERCEPTOR

SWITCH_USER_FILTER SWITCH_USER_FILTER

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

[413]

HTTPS setup in Tomcat
In this section, we outline how to set up HTTPS in Tomcat to provide
Transport Layer Security to our application. If you are just trying to run
the sample applications, you can refer to documentation in the Using HTTPS
within Spring Tool Suite section of this appendix.

Generating a server certificate
If you do not already have a certificate, you must first generate one. If you wish, you
can skip this step and use the tomcat.keystore file, which contains a certificate that
is located in the etc directory in the book's sample source. Enter the following at the
command prompt:

$ keytool -genkey -alias jbcpcalendar -keypass changeit -keyalg RSA \

 -keystore tomcat.keystore

Enter keystore password:

changeit

Re-enter new password:

changeit

What is your first and last name?

 [Unknown]: localhost

What is the name of your organizational unit?

 [Unknown]: JBCP Calendar

What is the name of your organization?

 [Unknown]: JBCP

What is the name of your City or Locality?

 [Unknown]: Anywhere

What is the name of your State or Province?

www.it-ebooks.info

http://www.it-ebooks.info/

Additional Reference Material

[414]

 [Unknown]: IL

What is the two-letter country code for this unit?

 [Unknown]: US

Is CN=localhost, OU=JBCP Calendar, O=JBCP, L=Anywhere, ST=IL, C=US
correct?

 [no]: yes

Most of the values are self-explanatory, but you will want to ensure that the answer
to "What is your first and last name?" is the host that you will be accessing your web
application from. This is necessary to ensure that the SSL handshake will succeed.

You should now have a file in the current directory named tomcat.keystore. You
can view its contents using the following command from within the same directory:

$ keytool -list -v -keystore tomcat.keystore

 Enter keystore password: changeit

Keystore type: JKS

Keystore provider: SUN

...

Alias name: jbcpcalendar

...

Owner: CN=localhost, OU=JBCP Calendar, O=JBCP, L=Anywhere, ST=IL, C=US

Issuer: CN=localhost, OU=JBCP Calendar, O=JBCP, L=Anywhere, ST=IL, C=US

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

[415]

As you may have guessed, it is insecure to use changeit as a
password as this is the default password used with many JDK
implementations. In a production environment, you should use a
secure password rather than something as simple as changeit.

For additional information about the keytool, refer to the documentation found on
Oracle's website, at http://docs.oracle.com/javase/6/docs/technotes/tools/
solaris/keytool.html. If you are having issues, you might also find the CAS SSL
Troubleshooting and Reference Guide to be helpful (https://wiki.jasig.org/
display/CASUM/SSL+Troubleshooting+and+Reference+Guide).

Configuring Tomcat Connector to use SSL
In this section we will discuss how to configure a Tomcat 7 Connector to SSL.

1.	 Open the server.xml file that was included with the download of
Tomcat 7. You can find this in the conf directory of your Tomcat server's
home directory.

2.	 Find the following entry in your server.xml file:
 <!--

 <Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"

 maxThreads="150" scheme="https" secure="true"

 clientAuth="false" sslProtocol="TLS" />

3.	 Uncomment the Connector and modify the value of the keystoreFile
attribute to be the location of the keystore from the previous section. Also
ensure to update the value of the keystorePass attribute to be the password
used when generating the keystore. An example is shown in the following
code snippet, but ensure to update the values of both keystoreFile and
keystorePass:
<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
 maxThreads="150" scheme="https" secure="true"
 clientAuth="false" sslProtocol="TLS"

 keystoreFile="/home/rwinch/packt/etc/tomcat.keystore"
 keystorePass="changeit"/>

You should now be able to start Tomcat and access it at https://locahost:8443/.
For more information on configuring SSL on Tomcat, refer to the SSL Configuration
How-To at http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Additional Reference Material

[416]

Basic Tomcat SSL termination guide
This section is intended to help set up Tomcat to use SSL when using an SSL
termination. The idea is that an external entity, such as a load balancer, is managing
the SSL connection instead of Tomcat. This means that the connection from the client
(that is, the web browser) to the load balancer is over HTTPS and is secured. The
connection from the load balancer to Tomcat is over HTTP and insecure. For this sort
of setup to provide any layer of security, the connection from the load balancer to
Tomcat should be over a private network.

The problem this setup causes is that Tomcat will now believe that the client is using
HTTP and thus redirects will be sent as though there is an HTTP connection. To get
around this, you can modify the configuration to instruct Tomcat that it is behind a
proxy server.

Starting with our configuration in Chapter 7, Client Certificate Authentication, we can
add the following code to our connector:

server.xml

<Connector
 scheme="https"
 secure="true"
 proxyPort="443"
 proxyHost="example.com"
 port="8443"
 protocol="HTTP/1.1"
 redirectPort="443"
 maxThreads="750"
 connectionTimeout="20000" />

The server.xml file can be found at TOMCAT_HOME/conf/
server.xml. If you are interacting with Tomcat using Eclipse
or Spring Tool Suite, you will find a project named Servers that
contains server.xml. For example, if you are using Tomcat 7, the
path in your Eclipse workspace might look similar to /Servers/
Tomcat v7.0 Server at localhost-config/server.xml.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

[417]

Note that there is no reference to a keystore because Tomcat does not manage the
SSL connection. This setup will override the HttpServletRequest object to believe
that the connection is HTTPS so that redirects are performed correctly. However, it
will continue to accept HTTP connections. If the client can make an HTTP connection
as well, a separate Connector can be created, one that does not include the HTTPS
setup. The proxy server can then send requests to the appropriate connector
depending on whether the original request was HTTP or HTTPS.

For more information, refer to the Tomcat Proxy How To documentation at
http://tomcat.apache.org/tomcat-7.0-doc/proxy-howto.html. If you are
working with a different application, you can refer to their documentation for
working with proxy servers.

Supplimentary materials
This section contains a listing of additional resources to technologies and concepts
that are used throughout the book.

•	 Java Development Kit Downloads: http://www.oracle.com/
technetwork/java/javase/downloads/index.html.

•	 MVC Architecture: http://en.wikipedia.org/wiki/Model%E2%80%93vie
w%E2%80%93controller.

•	 Spring Security Site: http://www.springsource.org/spring-security.
You can find links to the Spring Security Javadoc, Downloads, Source Code,
and Reference from this link.

•	 Spring Framework: http://www.springsource.org/spring-framework.
You can find links to the Spring Framework Javadoc, Downloads, Source
Code, and Reference from this link.

•	 Maven: For more information about Maven, visit their site at http://maven.
apache.org/. For more information about Maven Transitive dependencies,
refer to the Introduction to the Dependency Mechanism documentation at
http://maven.apache.org/guides/introduction/introduction-to-
dependency-mechanism.html#Transitive_Dependencies.

•	 Building with Gradle: Spring Security builds with Gradle (http://gradle.
org/) instead of using Maven. You can refer to the samples, for examples of
how to build with Gradle at http://static.springsource.org/spring-
security/site/docs/3.1.x/reference/sample-apps.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Additional Reference Material

[418]

•	 Object Relational Mapping (ORM): You can find more general information
on Wikipedia at http://en.wikipedia.org/wiki/Object-relational_
mapping. If you want more hands-on instruction, you may also be interested
in the Hibernate (a common Java ORM Framework) documentation at
http://www.hibernate.org/.

The following are UI technologies:

•	 JSP: You can find more information about JSPs on Oracle's site at
http://docs.oracle.com/javaee/5/tutorial/doc/bnagx.html.

•	 Thymeleaf: It is a modern, tempting framework that provides an excellent
alternative to JSPs. An additional benefit is that it provides support for both
Spring and Spring Security out of the box. You can find more information
about Thymeleaf at http://www.thymeleaf.org.

•	 Freemarker: It is a templating library that provides an alternative to
JSPs. You can learn more about Freemarker at http://freemarker.
sourceforge.net.

•	 Velocity: It is a templating library that provides an alternative to JSPs. You
can learn more about Velocity at http://velocity.apache.org.

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
<login-form> element 194
<openid-login> element 194
<password-encoder> element 100
@PostFilter method 279
@PreAuthorize annotation 270
@PreAuthorize method annotation 267
@PreFilter

using, for pre-filtering collections 279
<sec:authentication /> tag 45

A
access control lists

about 285
in Spring Security 287, 288
using, for business object security 286, 287

Access Control Lists. See ACL
AccountController

configuring, for LdapUserDetailsService
usage 130

ACL 285
AclAuthorizationStrategyImpl class 310
AclAuthorizationStrategyImpl

object 298, 299
AclCache 297
AclPermissionCacheOptimizer

object 294, 295
Active Directory (AD) 83
ActiveDirectoryLdapAuthentication

Provider class 141
additional user details

viewing 125-127
Administrators 83

advanced ACL topics
about 302
permissions, working 302-304

advanced LDAP
configurationUserDetails 120

AffirmativeBased class 323
AJAX 366
AJAX supported customization

about 366
AjaxRequestMatcher 367, 368
DelegatingAuthenticationEntryPoint 366,

367
Http401EntryPoint 368
JavaScript updates 370
updates, configuring 368-370

All Events page 17, 281
alternate password attribute

using 127, 128
always attribute 360
AOP auto-proxying 336
Apache Directory Studio 111
application technology

about 11
audit results, reviewing 12, 13
sample code, integrating 11

AspectJ 365, 386
Asynchronous JavaScript and XML. See

AJAX
attribute name, LDAP

about 106
c 106
cn 106
dc 106
o 106
ou 106

www.it-ebooks.info

http://www.it-ebooks.info/

[420]

uid 107
userPassword 107

authentication
about 14, 15
credential-based authentication 14
hardware authentication 14
two-factor authentication 14

AuthenticationException exception 66
authentication-failure-url attribute 194
authentication method

AuthenticationProvider 74
SecurityContextHolder 73
UserDetailsService 74

AuthenticationProvider method 74
authorization

about 16-18
unauthorized user 18

auto-config attribute 395
AX

attributes 204
enabling, in Spring Security OpenID 207

B
Base64-encoded string 146
basic CAS integration configuration

about 220
authenticity proving,

CasAuthenticationProvider interface
used 226-229

CasAuthenticationEntryPoint interface,
adding 223, 224

CAS ServiceProperties object, creating 222
CAS ticket verification, enabling 224, 225

basic configuration, Spring Security ACL
support

ACL tables, adding to H2 database 290, 292
Maven dependencies 289
simple target scenario, defining 289

BasicLookupStrategy object 296
basic password comparison

configuring 121
basic Tomcat SSL termination guide 416,

417
bcrypt hashing function 99
BeanPostProcessor 330

bind authentication
versus password comparison 120

Birthday Party event 289
boolean userExists() method 81
bootstrap process 92
business tier security

about 266
aspect-oriented programming,

using 271, 272
bean decorators, using 273, 274
interface-based proxies 269
JSR-250 compliant standardized

rules 270, 271
method authorization types,

comparing 279
method data security, role-based filtering

used 277, 278
method parameters 275, 276
method security, validating 268, 269
post authorization 267
preauthorization 267
@PreAuthorize method annotation,

adding 267
@PreFilter, using 279
returned values 277
Spring Security, instructing 268
Spring's @Secured annotation, using 271
techniques 267

C
calendar application 8
CalendarPermissionEvaluator

about 338
configuring 340

CalendarService
about 50, 51
securing 340

CalendarUser 50
CAS

about 215, 216
capabilities 250
configuring 220
high-level authentication flow 216, 217
installing 220
required dependencies 219

www.it-ebooks.info

http://www.it-ebooks.info/

[421]

Spring Security 218
CAS assertion

attribute retrieval, using 250
GrantedAuthorityFromAssertion

AttributesUserDetailsService 248
ticket authentication, SAML 1.1 used 249
UserDetails, getting 248

CAS capabilities 250
CAS Maven WAR Overlay 240
CAS Server

about 240
CAS Maven WAR Overlay 240
configuring, to LDAP server 242-245
internal authentication, working 241, 242

Central Authentication Service. See CAS
certificate authority (CA) 168
certificate key pair, importing

Chrome, using 173
Firefox, using 172
Internet Explorer, using 173, 174

certificates 166
checkForPrincipalChanges property 186
client certificate authentication

about 166
bean-based configuration capabilities,

adding 185
configuring, in Spring Security 176
configuring, security namespace used 177
configuring, Spring Beans used 184-187
cons 187
implementing, considerations 187
pros 187
Spring Security certificate authentication

178
working 166-168

client certificate authentication
infrastructure

about 168
certificate key pair, importing 172
client certificate key pair, creating 169, 170
public key infrastructure 168, 169
setting up 168
testing 174, 175
Tomcat trust store, configuring 170-172
troubleshooting 175

Common Table Expression. See CTE

concurrent session control
about 351
authentication, preventing 354
benefits 355-359
common problems 353
configuring 350
expired session redirect,

configuring 352, 353
per user count, restricting 349
testing 352

conditional rendering
SpEL, using 261
Spring Security tag library, using 259
URL access rules based 259, 260

configuration changes, Spring Security 3
custom filter configuration,

changes 393, 394
rearranged AuthenticationManager

configuration 391, 392
session management options, configuration

syntax 393
connector 171
ConsensusBased class 323
ConsoleAuditLogger object 298
ContextLoaderListener 27
continueFilterChainOnUnsuccessful

Authentication property 186
controller logic

used, for content rendering 262
WebInvocationPrivilegeEvaluator 263

cookie 144
countEvents method 386
createRequestCallback method 380
credential-based authentication 14
Cross-Site Scripting. See XSS
cryptographic hash algorithms 147
CTE 296
custom ACL permission

declaring 305-307
JSPs, enabling with Spring Security JSP tag

307-309
CustomAfterInvocationProvider changes

about 395
minor changes 395

custom AuthenticationProvider object
authentication, parameters used 66

www.it-ebooks.info

http://www.it-ebooks.info/

[422]

CalendarUserAuthenticationProvider 64,
65

CalendarUserAuthenticationProvider,
configuring 66

configuration, updating 70-73
creating 63
domain, adding to page 68
DomainUsernamePassword

AuthenticationFilter 69, 70
DomainUsernamePassword

AuthenticationToken 67
updating 68

custom expression, creating
CustomWebSecurityExpressionHandler

333
CustomWebSecurityExpressionHandler,

using 334
CustomWebSecurityExpressionRoot 331,

332
method security, working 334-337

custom PermissionEvaluator
benefits 341
CalendarPermissionEvaluator 338, 339
CalendarPermissionEvaluator,

configuring 340
CalendarService, securing 340
creating 338
custom PermissionEvaluator, benefits 341

custom schema support
about 86
CalendarUser authority SQL 88
custom authorities, inserting 88
dbcUserDetailsManager, configuring 89, 90
JDBC SQL queries, determining 87
SQL scripts, updating 87

custom UserDetailsService object
about 58
CalendarUserDetails 61, 62
CalendarUserDetailsService 58, 59
custom user attributes, displaying 63
references, removing to

UserDetailsManager 60, 61
SpringSecurityUserContext

simplifications 62
UserDetailsService, configuring 60

CustomWebSecurityExpressionHandler
about 333
configuring 334

CustomWebSecurityExpressionRoot 331

D
database credential security 18
DebugFilter

about 362
using, for debug 361

default-target-url attribute 194
deleteSession method 359
dependencies

updating 107, 108
digest 147
DispatcherServlet 28, 29
distinguished name (DN) 105, 169
domain component 105

E
Ehcache 297
EhCacheBasedAclCache object 297
embedded LDAP

troubleshooting 110, 111
embedded LDAP integration

configuring 108
Event 50
Events.countEvents() method 387
expression-based authorization 43
external LDAP server

integrating with 131
external LDAP server reference

configuring 132

F
Fiddler2 176
FilterChainProxy 30
FilterInvocationServiceSecurity

MetadataSource 328, 329
fine-grained authorization 253
Firecookie 146
Freemarker 418

www.it-ebooks.info

http://www.it-ebooks.info/

[423]

G
GBAC. See Group-Based Access Control
GBAC JDBC scripts

about 84
group authority mappings 85
group-based schema 85

getEvents() method 308
Google provider 207
Google Web Toolkit. See GWT
Gradle

URL 417
GrantedAuthorityFromAssertion

AttributesUserDetailsService 248
Group-based access control

about 82, 83
configuring 83
GBAC JDBC scripts, utilizing 84
JdbcUserDetailsManager, configuring 83

group-role-attribute 117
groups 82
group-search-base 117
group-search-base attribute 116
group-search-filter attribute 117
GWT

about 365
and Spring Roo 377
client updates 379
configuring 382, 383
GwtAuthenticationEntryPoint 378, 379
integrating 377
method security 384
Spring Security, configuring 383, 384
Spring Security setup 378

GWT client updates
about 379
AuthRequestTransport 379, 380
AuthRequiredEvent 380
LoginOnAuthRequired 381

GWT INjection (GIN) 382

H
H2 website 77
hardware authentication 14
hashing 91

Health Insurance Privacy and
Accountability Act. See HIPAA

high-level authentication flow, CAS
about 218
actions 216
CAS server 216
CAS Services 216
diagram 217

HIPAA 13
Http401EntryPoint 368
HttpServletRequest.getPrincipal() method

262
HttpSession

using 359, 360
HTTPS setup, Tomcat

server certificate, generating 413-415
Tomcat Connector, configuring 415

I
ifAnyGranted attribute 377
ifRequired attribute 360
invalidateSessionOn PrincipalChange

property 186

J
jaas-api-provision attribute 399
JAAS 20
Java Authentication and Authorization

Service. See JAAS
Java Development Kit. See JDK
Java Development Kit Downloads

URL 417
Java EE role mapping 181
Java EE Security 20
Java Key Store (JKS) 171
Java Secure Socket Extension (JSSE) 171
Java Server Faces . See JSF
JBCP calendar application architecture

about 10, 11
data access layer 11
diagram 10
service layer 11
web layer 10

JBCP Calendar architecture
about 49

www.it-ebooks.info

http://www.it-ebooks.info/

[424]

CalendarService 50, 51
CalendarUser 50
Event 50
SpringSecurityUserContext 52, 54
UserContext 51

JBCP Calendar sample code
new workspace, creating 402
sample code structure 402, 403
samples, importing 403-405
samples, running in Spring Tool Suite 405
starting with 401

JBCP LDAP users 120
JDBC authentication, Spring Security

default user schema 79
H2 database, using 77
H2-embedded database, configuring 77, 78
JDBC scripts 77
JDBC UserDetailsManager, configuring 79
required dependencies 76
user authorities, defining 80
users, defining 80

JdbcMutableAclService object 295
JdbcRequestConfigMappingService 326-328
JDK 401
Jim Bob Circle Pants Online Calendar 8
JSF

about 365
AJAX supported customization 366
custom login page, creating 371-374
integrating with 366
proxy-based authorization 371
Spring Security Facelets tag library 374-377

JSP 418

K
keystorePass attribute 415

L
LDAP

about 104, 105
attribute name 105-107
binding anonymously 113, 114
binding, as user 115
overview 103, 104
user, searching for 114
using, as UserDetailsService 128

LDAP attribute names
userPassword 107

LDAP attributes
CAS Services, authorizing 247
mapping, to CAS attributes 246, 247
returning, in CAS Response 246

LDAP authentication process
user role membership, determining 118

LdapAuthenticationProvider
configuring 133, 134

LDAP bean configuration 132
LDAP password encoding 122
LDAP server reference

configuring 109
LDAP AuthenticationProviderNext

interface, configuring 110
LdapShaPasswordEncoder class 93
LdapUserDetailsService

configuring 129
configuring, for AccountController 130

Lightweight Directory Access Protocol. See
LDAP

loadUserByUsername method 62
logical filter names

migration reference 412
login-page attribute 34, 194
login-processing-url attribute 194
logout method 159

M
Maven

URL 417
maven dependencies 254
Md4PasswordEncoderPasswordEncode

class 93
MD5 147
Md5PasswordEncoderPassword class 93
method-level security

about 265
annotation-based security 280
business tier, securing 266
layers, securing 266
Spring MVC controllers 280

method-level security, on Spring MVC
controllers

about 280-282

www.it-ebooks.info

http://www.it-ebooks.info/

[425]

class-based proxies 282
class-based proxies, limitations 282, 283

method security
method parameters, incorporating 275, 276
returned values, incorporating 277
rules, aspect-oriented programming used

271, 272
rules, bean decorators used 273, 274
Spring's @Secured annotation, using 271

MethodSecurityExpressionRoot 258
method security, GWT

about 384, 385
authorizing, AspectJ used 386, 387
with Spring Roo 386

Microsoft Active Directory 131
integrating, via LDAP 137-139

migrateSession attribute 349
mutable ACL

about 310
adding, to newly created Events 311, 312

MVC Architecture
URL 417

myOpenID provider 207

N
never attribute 361
newSession attribute 349
new user login, SecurityContextHolder used

SignupController, updating 57, 58
steps 56, 57
users, managing 55, 56

O
object identity 287
Object Relational Mapping. See ORM
OpenID

adding, to JBCP Calendar login screen 191
dependencies 192, 193
providers, list 191
replay attacks 212
response forgery 212
security 212
signing up 191

openid4java project
URL 191

openid.association field 199
OpenID authentication

enabling, with Spring Security 191
OpenID authentication feature 128
openid.claimed_id field 198
openid_identifier field 193
openid.identifier field 199
OpenID identifiers

resolving 198
openid.op_endpoint field 198
OpenID Provider

attributes, configuring 207
automatic redirection 210
conditional automatic redirection 211, 212

openid.response_nonce field 199
openid.sig field 199
OpenID studies

URL 210
OpenID support

configuring, in Spring Security 193
Open Web Application Security Project. See

OWASP
ORM 9, 418
o.s.s.access.vote.AuthenticatedVoter class

324
o.s.s.access.vote.RoleVoter class 324
o.s.s.crypto.bcrypt.BCryptPasswordEncoder

class 99
o.s.s.crypto.password.

NoOpPasswordEncoder class 99
OWASP 344
OWASP Top Ten article 151

P
page-level authorization

conditional rendering , Spring Security tag
library used 259

configuring 264, 265
content, rendering, controller logic

used 261
page-level authorization 258
password comparison

versus bind authentication 120
password comparison authenticator

drawbacks 123, 124

www.it-ebooks.info

http://www.it-ebooks.info/

[426]

password encoding configuration
best practices 98
new user's password, hashing 96
PasswordEncoder awareness, creating 94
PasswordEncoder, configuring 94
security, checking 97
stored password 97
stored passwords, hashing 95, 96

path attribute 42
Payment Card Industry Data Security

Standard. See PCI
PCI 13
persistent-based remember-me feature

about 152
configuring 154
database-backed persistent, security 155
data source, initializing 153
expired remember-me sessions, cleaning

up 156
Series identifier 154
SQL adding, for remember-me schema

creation 153
Token value 155
using 153
working 154, 155

Personally Identifiable Information. See PII
Person Directory 247
PGT 234
PGTIOU 234
PGT URL 234
PII 13
PlaintextPasswordEncoder class 93
postconditions 267
preAuthenticatedUserDetailsService

property 186
preconditions 267
Proxy Granting Ticket. See PGT
Proxy Granting Ticket I Owe You. See

PGTIOU
proxy ticket authentication, stateless

services
about 234-236
configuring 235
proxy tickets, authenticating 238, 240
proxy tickets, using 237

Proxy Ticket callback URL. See PGT URL
Proxy Tickets (PT) 236

Q
queryAttributeMapping property 247

R
rainbow tables 98, 147
Read permission 304
registration process, OpenID

implementing 200
OpenIDAuthenticationUserDetailsService,

registering 200-202
remember-me

about 143
authorization rules 151, 152
dependencies 144
Persistent-based 144
security feature 150, 151
Token-based 144

remember-me architecture
about 158, 159
custom cookie 163
HTTP parameter names 163
user lifecycle 159
using 160-162

remember me option 193
remember-me schema

created, SQL adding 153
data source, initializing 153

remember-me session cookies
configuration 149

replay attacks 212
request authorization

about 319, 320
access decision aggregation,

configuring 323
customizing 326
decide 320
decision types 321
supports 320

request authorization customization
<intercept-url> elements, removing 331
about 326
access control, to URLs 326
custom expression, creating 331
FilterInvocationServiceSecurity

MetadataSource 328, 329
JdbcRequestConfigMappingService 326-328

www.it-ebooks.info

http://www.it-ebooks.info/

[427]

namespace configuration, extending 330,
331

requestee 287
requestor 287
response forgery 212
resultAttributeMapping property 247
Richfaces 367
role-based authorization 39, 40, 42
role discovery

delegating, to UserDetailsService 135, 136
role-prefix attribute 117
roles 16

S
salt 98
SAML 249
sample application 8-10
sample running, in Spring Tool Suite

HTTPS, using 409-411
previous version, removing 408, 409
sample, shutting down 408
sample, starting 407, 408
Tomcat v7.0 server, creating 405-407

secure passwords
about 91
configuring 91, 92

secure passwords configuration
PasswordEncoder 92, 93
password encoding configuration 94
rules 91

Secure Sockets Layer. See SSL
Security Assertion Markup Language. See

SAML
security audit 8
SecurityContextHolder

using, for new user login 54
SecurityContextHolder method 73
SecurityExpressionHandler configuration

about 293
AclAuthorizationStrategyImpl 298, 299
AclPermissionCacheOptimizer 294, 295
BasicLookupStrategy 296, 297
ConsoleAuditLogger 298
EhCacheBasedAclCache 297
JdbcMutableAclService 295

Security Identity (SID) 287

security namespace
used, for client certificate authentication

configuration 177
security namespace style 26
security pruning 277
security trimming 277
sensitive information 19
server 405
session fixation attacks

about 344, 345
preventing, Spring Security used 345, 346
simulating 346-348

session fixation protection
configuring 343, 344
session fixation attacks 344, 345
session fixation attacks, preventing with

Spring Security 345, 346
session fixation attacks, simulating 346, 348
session-fixation-protection options,

comparing 349
sessions method 358
SHA 122
ShaPasswordEncoderPasswordEncoder

class 93
simple ACL entry

creating 299-301
single logout

about 230
clustered environment 233
configuring 231, 232
steps 230

Site Minder-style authentication 181
SpEL integration

about 254
expressions 255, 256
WebSecurityExpressionRoot 256

SpEL logical operators 152
Spring 3.1

using 24
Spring Beans

used, for client certificate authentication
configuring 184-187

Spring Expression Language (SpEL) 43
Spring LDAP authentication

Apache Directory Studio, using 113
user credentials, authenticating 112, 113
working 111

www.it-ebooks.info

http://www.it-ebooks.info/

[428]

Spring LDAP module 105
Spring MVC controllers

method security 280
Spring Roo

GWT 377
Spring Security

about 21, 22, 98
CAS 218
certificate information, using 178
client certificate authentication,

configuring 176
common issues 31, 32
configuration, updating 99
configuring, for HttpSession usage 360, 361
DebugFilter, debugging 361, 362
DefaultCalendarUserService, updating 100
default URLs 411
dependencies, updating 22, 23
existing passwords, migrating 99
goals 32, 33
HttpSession 360
HttpSession, using 359, 360
JDBC authentication, using 75
need for 20
OpenID authentication, enabling 191
OpenID support, configuring 193
salted passwords 101
sample application, importing 22
secured application, running 31
Spring 3.1, using 23, 24
Spring Security 3.1, using 23, 24
web.xml file, updating 27
XML configuration file,

implementing 24, 26
Spring Security 2

migrating from 390
Spring Security 2 to Spring Security 3 class

relocation 396-398
Spring Security 2 to Spring Security 3 login

filter name
changes 394

Spring Security 3
configuration changes 391
enhancements 390, 391

Spring Security 3.1
built-In Active Directory support 140, 141
updates 398, 399

using, for security concern addressal 19
Spring Security 3.1 migration 389
Spring Security ACL

using 316
Spring Security certificate authentication

dual-mode authentication,
supporting 182, 183

unauthenticated requests,
handling 181, 182

working 178-181
Spring Security JIRA repository 315
Spring Security login

customizing 33, 34
Spring Security login customization

about 33-36
authentication information,

displaying 44, 45
expression-based authorization 43
logout, configuring 36, 37
redirection problem 38
role-based authorization 39-42
user login 46, 47

Spring Security OpenID
AX, enabling 207

Spring Security Site
URL 417

SpringSecurityUserContext 52, 54
Spring Tool Suite 78. See STS

samples, running 405
SSHA 122
SSL 166
stateless attribute 361
stateless services

proxy ticket authentication 234
proxy ticket authentication, configuring

235
STS 401

T
telephoneNumber attribute 128
throwExceptionWhenTokenRejected

property 186
Thymeleaf 418
TLS 166
token-based remember-me

about 144, 145

www.it-ebooks.info

http://www.it-ebooks.info/

[429]

configuration directives 149, 150
configuring 145, 146
MD5 147
signature 148, 149
working 146

token-validity-seconds attributes 149
Tomcat

HTTPS setup 413
Transport Layer Security See TLS
transport-level protection 19
two-factor authentication 14
typical ACL deployment

about 312
issues 316
performance modelling 313-315
scalability 313-315

U
uid attribute 139
UI technologies

Freemarker 418
JSP 418
Thymeleaf 418
Velocity 418

UnanimousBased access decision manager
configuring 323, 324
expression-based request authorization 325

UnanimousBased class 323
Uniform Resource Identifier (URI) 190
UserContext 51
user credentials

authenticating 112, 113
UserDetails

additional attributes, mapping 119
getting, from CAS assertion 245

UserDetailsContextMapper
configuring 124
implicit configuration 124

UserDetailsManager
about 81
features 81

UserDetailsService
role discovery, delegating to 135, 136

UserDetailsService method 74
user role membership

about 116
determining 116, 117
roles determining, with Apache Directory

Studio 117, 118
Users 83

V
Velocity 418
Verisign's OpenID SeatBelt

URL 193
void changePassword() method 81
void createUser() method 81
void deleteUser() method 81
void updateUser() method 81

W
web.xml file, updating

ContextLoaderListener 27
DispatcherServlet 28, 29
FilterChainProxy 30

WebInvocationPrivilegeEvaluator 263
WebSecurityExpressionRoot

about 256
hasIpAddress, using 257
MethodSecurityExpressionRoot 258
WebSecurityExpressionRoot, using 256

WebSphere integration 181
web.xml file, updating

ContextLoaderListener 27
 DispatcherServlet 28, 29
FilterChainProxy 30

Wireshark 176

X
XSS 150, 348

Z
Zytrax OpenLDAP book 106

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Spring Security 3.1

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Spring Security 3
ISBN: 978-1-84719-974-4 Paperback: 396 pages

Secure your web applications against malicious
intruders with this easy to follow practical guide

1.	 Make your web applications impenetrable

2.	 Implement authentication and authorization of
users

3.	 Integrate Spring Security 3 with common
external security providers

4.	 Packed full with concrete, simple, and concise
examples

JSF 2.0 Cookbook
ISBN: 978-1-84719-952-2 Paperback: 396 pages

Over 100 simple but incredibly effective recipes for
taking control of your JSF applications

1.	 Discover JSF 2.0 features through complete
examples

2.	 Put in action important JSF frameworks, such
as Apache MyFaces Core, Trinidad, Tomahawk,
RichFaces Core, Sandbox and so on

3.	 Develop JSF projects under NetBeans/Glassfish
v3 Prelude and Eclipse/JBoss AS

4.	 Part of Packt's Cookbook series: Each recipe is a
carefully organized sequence of instructions to
complete the task as efficiently as possible

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

JasperReports for Java
Developers
ISBN: 978-1-90481-190-9 Paperback: 344 pages

Create, Design, Format, and Export Reports with the
World's Most Popular Java Reporting Library

1.	 Get started with JasperReports, and develop the
skills to get the most from it

2.	 Create, design, format, and export reports

3.	 Generate report data from a wide range of
datasources

4.	 Integrate Jasper Reports with Spring,
Hibernate, Java Server Faces, or Struts

Liferay Portal Systems
Development
ISBN: 978-1-84951-598-6 Paperback: 546 pages

Build dynamic, content-rich, and social systems on
top of Liferay

1.	 Use Liferay tools (CMS, WCM, collaborative
API and social API) to create your own Web
sites and WAP sites with hands-on examples

2.	 Customize Liferay portal using JSR-286
portlets, hooks, themes, layout templates, webs
plugins, and diverse portlet bridges

3.	 Build your own websites with kernel
features such as indexing, workflow, staging,
scheduling, messaging, polling, tracking,
auditing, reporting and more

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover

	Copyright

	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Anatomy of an
Unsafe Application
	Security audit
	About the sample application
	The JBCP calendar application architecture
	Application technology
	Reviewing the audit results
	Authentication
	Authorization
	Database credential security
	Sensitive information
	Transport-level protection
	Using Spring Security 3.1 to address security concerns
	Why Spring Security?
	Summary

	Chapter 2:
Getting Started with
Spring Security
	Hello Spring Security
	Importing the sample application
	Updating your dependencies
	Using Spring 3.1 and Spring Security 3.1

	Implementing a Spring Security XML configuration file
	Updating your web.xml file
	ContextLoaderListener
	ContextLoaderListener versus DispatcherServlet
	springSecurityFilterChain
	DelegatingFilterProxy
	FilterChainProxy

	Running a secured application
	Common problems

	A little bit of polish
	Customizing login
	Configuring logout
	The page isn't redirecting properly
	Basic role-based authorization
	Expression-based authorization
	Conditionally displaying authentication information
	Customizing the behavior after login

	Summary

	Chapter 3:
Custom Authentication
	JBCP Calendar architecture
	CalendarUser
	Event
	CalendarService
	UserContext
	SpringSecurityUserContext

	Logging in new users using SecurityContextHolder
	Managing users in Spring Security
	Logging in a new user to an application
	Updating SignupController

	Creating a custom UserDetailsService object
	CalendarUserDetailsService
	Configuring UserDetailsService
	Removing references to UserDetailsManager
	CalendarUserDetails
	SpringSecurityUserContext simplifications
	Displaying custom user attributes

	Creating a custom AuthenticationProvider object
	CalendarUserAuthenticationProvider
	Configuring CalendarUserAuthenticationProvider
	Authenticating with different parameters
	DomainUsernamePasswordAuthenticationToken
	Updating CalendarUserAuthenticationProvider
	Adding domain to the login page
	DomainUsernamePasswordAuthenticationFilter
	Updating our configuration

	Which authentication method to use
	Summary

	Chapter 4:
JDBC-based Authentication
	Using Spring Security's default JDBC authentication
	Required dependencies
	Using the H2 database
	Provided JDBC scripts
	Configuring the H2-embedded database
	Configuring JDBC UserDetailsManager
	Spring Security's default user schema
	Defining users
	Defining user authorities

	UserDetailsManager
	What other features does UserDetailsManager provide out of the box?

	Group-based access control
	Configuring group-based access control
	Configuring JdbcUserDetailsManager to use groups
	Utilize the GBAC JDBC scripts
	Group-based schema
	Group authority mappings

	Support for a custom schema
	Determining the correct JDBC SQL queries
	Updating the SQL scripts that are loaded
	CalendarUser authority SQL
	Insert custom authorities
	Configuring the JdbcUserDetailsManager to use custom SQL queries

	Configuring secure passwords
	PasswordEncoder
	Configuring password encoding
	Configuring the PasswordEncoder
	Making Spring Security aware of the PasswordEncoder
	Hashing the stored passwords
	Hashing a new user's passwords

	Not quite secure
	Would you like some salt with that password?
	Using salt in Spring Security

	Summary

	Chapter 5:
LDAP Directory Services
	Understanding LDAP
	LDAP
	Common LDAP attribute names
	Updating our dependencies
	Configuring embedded LDAP integration
	Configuring an LDAP server reference
	Enabling the LDAP AuthenticationProviderNext interface

	Troubleshooting embedded LDAP
	Understanding how Spring LDAP authentication works
	Authenticating user credentials
	Demonstrating authentication with Apache Directory Studio

	Binding anonymously to LDAP
	Searching for the user
	Binding as a user to LDAP
	Determining user role membership
	Determining roles with Apache Directory Studio

	Mapping additional attributes of UserDetails
	Advanced LDAP configuration
	Sample JBCP LDAP users
	Password comparison versus bind authentication

	Configuring basic password comparison
	LDAP password encoding and storage
	The drawbacks of a password comparison authenticator

	Configuring UserDetailsContextMapper
	Implicit configuration of UserDetailsContextMapper

	Viewing additional user details
	Using an alternate password attribute
	Using LDAP as UserDetailsService
	Configuring LdapUserDetailsService
	Updating AccountController to use LdapUserDetailsService

	Integrating with an external LDAP server
	Explicit LDAP bean configuration
	Configuring an external LDAP server reference

	Configuring LdapAuthenticationProvider
	Delegating role discovery to UserDetailsService

	Integrating with Microsoft Active Directory via LDAP
	Built-In Active Directory support in Spring Security 3.1

	Summary

	Chapter 6:
Remember-me Services
	What is remember-me?
	Dependencies
	The token-based remember-me feature
	Configuring the token-based remember-me feature
	How the token-based remember-me feature works
	MD5
	Remember-me signature

	Token-based remember-me configuration directives

	Is remember-me secure?
	Authorization rules for remember-me

	Persistent remember-me
	Using the persistent-based remember-me feature
	Adding SQL to create the remember-me schema
	Initializing the data source with the remember-me schema
	Configuring the persistent-based remember-me feature

	How does the persistent-based remember-me feature work?
	Are database-backed persistent tokens more secure?
	Cleaning up the expired remember-me sessions

	Remember-me architecture
	Remember-me and the user lifecycle

	Restricting the remember-me feature to an IP address
	Custom cookie and HTTP parameter names

	Summary

	Chapter 7:
Client Certificate Authentication
	How client certificate authentication works
	Setting up client certificate authentication infrastructure
	Understanding the purpose of a public key infrastructure
	Creating a client certificate key pair
	Configuring the Tomcat trust store
	Importing the certificate key pair into a browser
	Using Firefox
	Using Chrome
	Using Internet Explorer

	Wrapping up testing
	Troubleshooting client certificate authentication

	Configuring client certificate authentication in Spring Security
	Configuring client certificate authentication using the security namespace
	How Spring Security uses certificate information
	How Spring Security certificate authentication works
	Handling unauthenticated requests with AuthenticationEntryPoint
	Supporting dual-mode authentication

	Configuring client certificate authentication using Spring Beans
	Additional capabilities of bean-based configuration

	Considerations when implementing Client Certificate authentication
	Summary

	Chapter 8:
Opening up to OpenID
	The promising world of OpenID
	Signing up for an OpenID
	Enabling OpenID authentication with Spring Security
	Additional required dependencies
	Configuring OpenID support in Spring Security
	Adding OpenID users
	CalendarUserDetailsService lookup by OpenID

	The OpenID user registration problem
	How are OpenID identifiers resolved?

	Implementing user registration with OpenID
	Registering OpenIDAuthenticationUserDetailsService

	Attribute Exchange
	Enabling AX in Spring Security OpenID
	Configuring different attributes for each OpenID Provider

	Usability enhancements
	Automatic redirection to the OpenID Provider
	Conditional automatic redirection

	Is OpenID Secure?
	Summary

	Chapter 9:
Single Sign-on with Central Authentication Service
	Introducing Central Authentication Service
	High-level CAS authentication flow
	Spring Security and CAS
	Required dependencies
	CAS installation and configuration

	Configuring basic CAS integration
	Creating the CAS ServiceProperties object
	Adding the CasAuthenticationEntryPoint
	Enabling CAS ticket verification
	Proving authenticity with the CasAuthenticationProvider

	Single logout
	Configuring single logout
	Clustered environments

	Proxy ticket authentication for stateless services
	Configuring proxy ticket authentication
	Using proxy tickets
	Authenticating proxy tickets

	Customizing the CAS Server
	CAS Maven WAR Overlay
	How CAS internal authentication works
	Configuring CAS to connect to our embedded LDAP server

	Getting UserDetails from a CAS assertion
	Returning LDAP attributes in the CAS Response
	Mapping LDAP attributes to CAS attributes
	Authorizing CAS Services to access custom attributes

	Getting UserDetails from a CAS assertion
	GrantedAuthorityFromAssertionAttributesUser Details Service
	Alternative ticket authentication using SAML 1.1

	How is attribute retrieval useful?

	Additional CAS capabilities
	Summary

	Chapter 10:
Fine-grained Access Control
	Maven dependencies
	Spring Expression Language (SpEL) integration
	WebSecurityExpressionRoot
	Using the request attribute
	Using hasIpAddress

	MethodSecurityExpressionRoot

	Page-level authorization
	Conditional rendering with Spring Security tag library
	Conditional rendering based on URL access rules
	Conditional rendering using SpEL

	Using controller logic to conditionally render content
	WebInvocationPrivilegeEvaluator

	What is the best way to configure in-page authorization?

	Method-level security
	Why we secure in layers
	Securing the business tier
	Adding @PreAuthorize method annotation
	Instructing Spring Security to use method annotations
	Validating method security
	Interface-based proxies
	JSR-250 compliant standardized rules
	Method security using Spring's @Secured annotation
	Method security rules using aspect-oriented programming
	Method security rules using bean decorators
	Method security rules incorporating method parameters
	Method security rules incorporating returned values
	Securing method data through role-based filtering
	Pre-filtering collections with @PreFilter
	Comparing method authorization types

	Practical considerations for annotation-based security
	Method security on Spring MVC controllers
	Class-based proxies
	Class-based proxy limitations

	Summary

	Chapter 11:
Access Control Lists
	Using access control lists for business object security
	Access control lists in Spring Security

	Basic configuration of Spring Security ACL support
	Maven dependencies
	Defining a simple target scenario
	Adding ACL tables to the H2 database
	Configuring SecurityExpressionHandler
	AclPermissionCacheOptimizer
	AclPermissionCacheOptimizer
	JdbcMutableAclService
	BasicLookupStrategy
	EhCacheBasedAclCache
	ConsoleAuditLogger
	AclAuthorizationStrategyImpl

	Creating a simple ACL entry

	Advanced ACL topics
	How permissions work

	Custom ACL permission declaration
	Enabling your JSPs with the Spring Security JSP tag library through ACL

	Mutable ACLs and authorization
	Adding ACLs to newly created Events

	Considerations for a typical ACL deployment
	About ACL scalability and performance modelling
	Do not discount custom development costs

	Should I use Spring Security ACL?
	Summary

	Chapter 12:
Custom Authorization
	How requests are authorized
	Configuration of access decision aggregation

	Configuring to use a UnanimousBased access decision manager
	Expression-based request authorization

	Customizing request authorization
	Dynamically defining access control to URLs
	JdbcRequestConfigMappingService
	FilterInvocationServiceSecurityMetadataSource
	BeanPostProcessor to extend namespace configuration
	Removing our <intercept-url> elements

	Creating a custom expression
	CustomWebSecurityExpressionRoot
	CustomWebSecurityExpressionHandler
	Configuring and using CustomWebSecurityExpressionHandler

	How does method security work?

	Creating a custom PermissionEvaluator
	CalendarPermissionEvaluator
	Configuring CalendarPermissionEvaluator
	Securing our CalendarService
	Benefits of a custom PermissionEvaluator

	Summary

	Chapter 13:
Session Management
	Configuring session fixation protection
	Understanding session fixation attacks
	Preventing session fixation attacks with Spring Security
	Simulating a session fixation attack
	Comparing session-fixation-protection options

	Restricting the number of concurrent sessions per user
	Configuring concurrent session control
	Understanding concurrent session control
	Testing concurrent session control
	Configuring expired session redirect
	Common problems with concurrency control
	Preventing authentication instead of forcing logout
	Other benefits of concurrent session control
	Displaying active sessions for a user

	How Spring Security uses the HttpSession
	HttpSessionSecurityContextRepository
	Configuring how Spring Security uses HttpSession
	Debugging with Spring Security's DebugFilter

	Summary

	Chapter 14:
Integrating with
Other Frameworks
	Integrating with Java Server Faces (JSF)
	Customizations to support AJAX
	DelegatingAuthenticationEntryPoint
	AjaxRequestMatcher
	Http401EntryPoint
	Configuration updates
	JavaScript updates

	Proxy-based authorization with JSF
	Custom login page in JSF
	Spring Security Facelets tag library

	Google Web Toolkit (GWT) integration
	Spring Roo and GWT
	Spring Security setup
	GwtAuthenticationEntryPoint
	GWT client updates
	AuthRequestTransport
	AuthRequiredEvent
	LoginOnAuthRequired

	Configuring GWT
	Spring Security configuration
	Method security
	Method security with Spring Roo
	Authorization with AspectJ

	Summary

	Chapter 15:
Migration to
Spring Security 3.1
	Migrating from Spring Security 2
	Enhancements in Spring Security 3
	Changes to configuration in Spring Security 3
	Rearranged AuthenticationManager configuration
	New configuration syntax for session management options
	Changes to custom filter configuration

	Changes to CustomAfterInvocationProvider
	Minor configuration changes

	Changes to packages and classes
	Updates in Spring Security 3.1
	Summary

	Appendix:
Additional Reference Material
	Getting started with the JBCP Calendar sample code
	Creating a new workspace
	Sample code structure
	Importing the samples
	Running the samples in Spring Tool Suite
	Creating a Tomcat v7.0 server
	Starting the samples within Spring Tool Suite
	Shutting down the samples within Spring Tool Suite
	Removing previous versions of the samples
	Using HTTPS within Spring Tool Suite

	Default URLs processed by Spring Security
	Logical filter names migration reference
	HTTPS setup in Tomcat
	Generating a server certificate
	Configuring Tomcat Connector to use SSL

	Basic Tomcat SSL termination guide
	Supplimentary materials

	Index

