

Interaction Flow
Modeling Language

This page intentionally left blank

Interaction Flow
Modeling Language

Model-Driven UI Engineering
of Web and Mobile Apps

with IFML

Marco Brambilla
Professor of Software Engineering,
Politecnico di Milano, Milano, Italy

Piero Fraternali
Professor of Web Technologies,

Politecnico di Milano, Milano, Italy

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SYDNEY • TOKYO

Morgan Kaufmann is an imprint of Elsevier

Acquiring Editor: Steve Elliot
Editorial Project Manager: Kaitlin Herbert
Project Manager: Priya Kumaraguruparan
Cover Designer: Mark Rogers

Morgan Kaufmann is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

Copyright © 2015 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or any information storage
and retrieval system, without permission in writing from the publisher. Details on how to
seek permission, further information about the Publisher’s permissions policies and our
arrangements with organizations such as the Copyright Clearance Center and the Copyright
Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by
the Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and
experience broaden our understanding, changes in research methods, professional practices,
or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge
in evaluating and using any information, methods, compounds, or experiments described
herein. In using such information or methods they should be mindful of their own safety and
the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors,
assume any liability for any injury and/or damage to persons or property as a matter of
products liability, negligence or otherwise, or from any use or operation of any methods,
products, instructions, or ideas contained in the material herein.

ISBN: 978-0-12-800108-0

For information on all MK publications
visit our website at www.mkp.com

http://www.elsevier.com/permissions
http://www.mkp.com

v

Contents

Foreword ...xiii

 CHAPTER 1 Introduction ..1

 1.1 What IFML is About ..2
 1.2 The IFML Design Principles ..3
 1.3 How to Read this Book ..5

 1.3.1 Structure of the Book ...6
 1.4 On-line Resources ..6
 1.5 Background ..7
 1.6 Acknowledgment ..8

 CHAPTER 2 IFML in a Nutshell ...9

 2.1 Scope and Perspectives ...9
 2.2 Overview of IFML Main Concepts ..11
 2.3 Role of IFML in the Development Process15
 2.4 A Complete Example ...19
 2.5 Summary of the Chapter...23
 2.6 Bibliographic Notes ..24

 CHAPTER 3 Domain Modeling ..25

 3.1 Classes ..26
 3.2 Attributes ..26
 3.3 Identification and Primary Key ..27
 3.4 Attribute Type and Visibility ..29
 3.5 Operations ..30
 3.6 Generalization Hierarchies ...31
 3.7 Associations ...32
 3.8 N-ary Associations and Associations with Attributes34
 3.9 Derived Information and the Object Constraint

Language (OCL)...36
 3.10 Domain Modeling Patterns and Practices38
 3.11 The Process of Domain Modeling ..39

 3.11.1 Designing the Core Subschema ...40
 3.11.2 Designing an Interconnection Subschema41
 3.11.3 Designing an Access Subschema41
 3.11.4 Designing a Personalization Subschema44

Contentsvi

 3.12 Running Example ...47
 3.13 Summary of the Chapter...49
 3.14 Bibliographic Notes ..49

 CHAPTER 4 Modeling the Composition of the User Interface51

 4.1 Interface Organization ..51
 4.2 View Container Nesting ...53
 4.3 View Container Navigation ..55
 4.4 View Container Relevance and Visibility55
 4.5 Windows ...57
 4.6 Context and Viewpoint ...59
 4.7 User Interaction Patterns ..62
 4.8 Interface Organization Patterns and Practices62

 4.8.1 Desktop Interface Organization Patterns62
 4.8.2 Web Interface Organization Patterns63
 4.8.3 Mobile Interface Organization Patterns70

 4.9 Running Example ...71
 4.10 Summary of the Chapter...76
 4.11 Bibliographic Notes ..76

 CHAPTER 5 Modeling Interface Content and
Navigation ..77

 5.1 What ViewContainers Contain: ViewComponents78
 5.2 Events and Navigation Flows with ViewComponents..................79
 5.3 Content Dependencies: Data Binding ..81
 5.4 Input-Output Dependencies: Parameter Binding83
 5.5 Extending IFML with Specialized ViewComponents

and Events ..85
 5.5.1 Data Publishing Extensions ...86
 5.5.2 Data Entry Extensions ...89

 5.6 Content and Navigation Patterns and Practices91
 5.6.1 PATTERN CN-MD: Master Detail and PATTERN

CN-MMD: Master Multidetail ..92
 5.6.2 PATTERN CN-MLMD: Multilevel Master Detail92
 5.6.3 PATTERN CN-DEF: Default Selection92

 5.7 Data Entry Patterns ...93
 5.7.1 PATTERN DE-FRM: Multifield Forms93
 5.7.2 PATTERN DE-PLDF: Preloaded Field94
 5.7.3 PATTERN DE-PASF: Preassigned Selection Field96
 5.7.4 PATTERN DE-DLKP: Data Lookup97

Contents vii

 5.7.5 PATTERN DE-CSF: Cascade Selection Fields98
 5.7.6 PATTERN DE-WIZ: Wizard ...99

 5.8 Search Patterns ...99
 5.8.1 PATTERN CS-SRC: Basic Search99
 5.8.2 PATTERN CS-MCS: Multicriteria Search101
 5.8.3 PATTERN CS-FSR: Faceted Search101

 5.9 Running Example ...103
 5.10 Summary of the Chapter...113
 5.11 Bibliographic Notes ..113

 CHAPTER 6 Modeling Business Actions115

 6.1 Actions ...116
 6.2 Notification ...119
 6.3 Business Action Patterns ..119

 6.3.1 Content Management Patterns ...119
 6.3.2 PATTERN A-OCR: Object Creation120
 6.3.3 PATTERN A-OACR: Object and Association

Creation ...120
 6.3.4 PATTERN A-ODL: Object Deletion122
 6.3.5 PATTERN A-CODL: Cascaded Deletion123
 6.3.6 PATTERN A-OM: Object Modification125
 6.3.7 PATTERN A-AM: Association Management128
 6.3.8 PATTERN A-NOTIF: Notification130

 6.4 Running Example ...131
 6.5 Summary of the Chapter...136
 6.6 Bibliographic Notes ..136

 CHAPTER 7 IFML Extensions ..137

 7.1 Desktop Extensions ..138
 7.1.1 Event Extensions ...138
 7.1.2 Component Extensions ..140
 7.1.3 ComponentPart Extensions..144

 7.2 Web Extensions ..145
 7.2.1 Container Extensions: Pages, Areas, and Site Views145
 7.2.2 Event and Interaction Flow Extensions147
 7.2.3 Component Extensions ..148

 7.3 Mobile Extensions ..152
 7.3.1 Context Extensions ..153
 7.3.2 Containers Extensions ...154
 7.3.3 Component and Event Extensions155

Contentsviii

 7.3.4 Cameras and Sensors ...155
 7.3.5 Communication ...156
 7.3.6 Position ..157
 7.3.7 Maps ..160
 7.3.8 Gestures ...161

 7.4 Multiscreen Extensions ..161
 7.5 Summary of the Chapter...164
 7.6 Bibliographic Notes ..164

 CHAPTER 8 Modeling Patterns ..167

 8.1 Interface Organization ..167
 8.1.1 Reusable Modules ...167
 8.1.2 Master Pages ..169

 8.2 Navigation and Orientation ..173
 8.2.1 Toolbars and Menus ...174
 8.2.2 PATTERN CN-UP AND CN-BACK: Up and Back

Navigation ...186
 8.2.3 PATTERN CN-BREAD: Breadcrumbs187

 8.3 Content Publishing, Scrolling, and Previewing190
 8.3.1 PATTERN CN-MMD: Master Multidetail190
 8.3.2 PATTERN CN-PG: Paging ..192
 8.3.3 PATTERN CN-PR: Collection Preview192
 8.3.4 PATTERN CN-Alpha: Alphabetical Filter196

 8.4 Data Entry...197
 8.4.1 PATTERN DE-TDFP: Type-Dependent Field

Properties ...197
 8.4.2 PATTERN DE-RTE: Rich Text Editing197
 8.4.3 PATTERN DE-AUTO: Input

Auto-Completion ...198
 8.4.4 PATTER DE-DYN: Dynamic Selection Fields201
 8.4.5 PATTERN DE-INPL: In-Place Editing201
 8.4.6 PATTERN DE-VAL: Input Data Validation203

 8.5 Search ...204
 8.5.1 PATTERN CS-RSRC: Restricted Search204
 8.5.2 PATTERN CS-SRCS: Search Suggestions204

 8.6 Content Management ...205
 8.6.1 PATTERN CM-CBCM: Class-Based Content

Management ..205
 8.6.2 PATTERN CM-PBCM: Page-Based Content

Management ..208

Contents ix

 8.7 Personalization, Identification, and Authorization208
 8.7.1 PATTERN IA-LOGIN: Login ...209
 8.7.2 PATTERN IA-LOGOUT: Logout210
 8.7.3 PATTERN IA-CEX: Context Expiration Notification210
 8.7.4 PATTERN IA-SPLOG: Login to a Specific

ViewContainer ...213
 8.7.5 PATTERN IA-ROLE: User Role Display and

Switching ...213
 8.7.6 PATTERN IA-RBP: Role-Based Permissions for View

Elements ..215
 8.7.7 PATTERN IA-NRBP: Negative Role-Based

Permissions for View Elements216
 8.7.8 PATTERN IA-OBP: Object-Based Permissions217
 8.7.9 PATTERN IA-PRO: User Profile Display and

Management ..217
 8.7.10 PATTERN IA-IPSI: In-Place Sign-In220

 8.8 Session Data ...220
 8.8.1 PATTERN SES-CR: Creating Session Data from

Persistent Data ...222
 8.8.2 PATTERN SES-PER: Persisting Session Data223
 8.8.3 PATTERN SES-EXC: Session Data Expiration

Catching ...224
 8.9 Social Functions ...225

 8.9.1 PATTERN SOC-AW: Activity Wall225
 8.9.2 PATTERN SOC-SH: Sharing, Liking, and

Commenting ..226
 8.9.3 PATTERN SOC-FR: Friendship Management228

 8.10 GEO Patterns ..228
 8.10.1 PATTERN GEO-LAS: Location-Aware Search228

 8.11 Summary of the Chapter...230
 8.12 Bibliographic Notes ..230

 CHAPTER 9 IFML by Examples ...233

 9.1 Media Sharing App ...233
 9.1.1 Domain Model ...233
 9.1.2 IFML Model ..234

 9.2 Online Auctions ..252
 9.2.1 Domain Model ...253
 9.2.2 IFML Model ..256

 9.3 Summary of the Chapter...276

Contentsx

 CHAPTER 10 Implementation of Applications
Specified with IFML ..279

 10.1 Implementation of the Front End for URE-HTML Page
Templates ..282

 10.1.1 Overview of the ViewContainer Computation Steps282
 10.1.2 Standalone ViewContainer ...284
 10.1.3 Navigation Across ViewContainers287
 10.1.4 Navigation Within the Same ViewContainer290
 10.1.5 Forms ..293
 10.1.6 Landmarks and Nested ViewContainers295
 10.1.7 Actions ...298
 10.1.8 Context ...299

 10.2 Implementation of the Front End for Presentation
Frameworks ..301

 10.2.1 Model-View-Controller and its Adaptation to
the Web ...301

 10.2.2 Mapping IFML to the Spring MVC Framework305
 10.2.3 Mapping ViewContainers to Spring MVC305
 10.2.4 Mapping ViewComponents to Spring MVC310
 10.2.5 Mapping Forms to Spring MVC312
 10.2.6 Mapping Operations to the MVC Architecture315

 10.3 Implementation of the Front End for Rich Internet
Applications ...316

 10.3.1 Mapping IFML to the RIA Architecture317
 10.4 Implementation of the Front End for Mobile Applications321

 10.4.1 The Android Development Environment322
 10.4.2 Mapping IFML to Native Android Code323

 10.5 Summary of the Chapter...333
 10.6 Bibliographic Notes ..333

 CHAPTER 11 Tools for Model-Driven Development of
Interactive Applications335

 11.1 Introduction to Webratio ...335
 11.2 Domain Model Design ...337
 11.3 IFML Front-End Design ...338
 11.4 Data Mapping and Alignment ..341
 11.5 Action Design ...342
 11.6 Presentation Design ..344
 11.7 Code Generation ...346

Contents xi

 11.7.1 Code Generation for Web and Rich Internet
Application ...346

 11.7.2 Code Generation for Mobile Applications350
 11.8 Advanced Features ...350

 11.8.1 Model Checking ...350
 11.8.2 Model Debugging ...351
 11.8.3 Cooperative Work and Enterprise Scale

Development ...351
 11.8.4 Automatic Documentation ...353
 11.8.5 IFML Extensibility ...354

 11.9 Summary of the Chapter...355
 11.10 Bibliographic Notes ..357

 CHAPTER 12 IFML Language Design, Execution, and
Integration ...359

 12.1 IFML Language Specification Through Metamodeling359
 12.1.1 Metamodel ..360
 12.1.2 Extensibility ...361
 12.1.3 Profile, Visual Notation, and Interchange Format362

 12.2 IFML Model Execution ..362
 12.2.1 State Representation ...363
 12.2.2 ViewContainer State ...363
 12.2.3 State of a ViewComponent ...364
 12.2.4 ActivationExpressions ..364
 12.2.5 Event Processing ..366
 12.2.6 ViewContainer Visibility Update366
 12.2.7 ViewComponent Status Update367
 12.2.8 Navigation History Preservation367
 12.2.9 Parameter Values Conflicts ...370
 12.2.10 ViewComponent Computation Process371

 12.3 IFML Models Integration with Other System Modeling
Perspectives ..375

 12.3.1 Integration with Business Models and
Requirements ...377

 12.3.2 Integration with Content Model and Business
Logic ..377

 12.3.3 Integration with Implementation and Deployment
Aspects ..378

 12.4 Summary of the Chapter...380
 12.5 Bibliographic Notes ..380

Contentsxii

 Appendix A: IFML Notation Summary ..381
 Appendix B: List of IFML Design Patterns ..389

References ..395
Index ..401

xiii

Foreword

A decade and a half ago, on the strength of a relatively new modeling language
standard and a notion that software development needed to be more abstract, the
Object Management Group (OMG) took a leap of faith and launched an effort known
as the Model Driven Architecture (MDA). The idea was simple: like other, better-
established engineering disciplines, software development should begin with abstract
models, models that could be organized, evaluated, tested & shared before the tar-
geted system was built. After all, it’s much easier (and less expensive) to change a
system when it’s in a high-level (but precise) language, than to change it after it has
been fully built (or worse, fielded with customers and users).

Oddly, many fought the idea. We at OMG were convinced by other engineering
disciplines; after all, no ship is launched without first architecting the design on paper
(or online) and considering various important aspects. An important aspect for a ship,
which is best ascertained at design time rather than at launch time, is its center of
gravity (CG). After all, the CG of a ship had better be below the water line; if it isn’t
below the water line at launch time, it will be soon after (as the Swedes discovered
to their chagrin at the 10 August 1628 launch of the great warship Vasa, which sank
1300 m into its maiden voyage in Stockholm harbor). Evaluation of models can save
quite a lot of time, money and effort, and the MDA approach has had a salutatory
effect on software development in the 21st century. The best systems are fully archi-
tected and designed, with those designs evaluated before development begins. Even
better, though one cannot automate the construction of a ship or a building from its
blueprints, in the software realm one can automate the construction of a software sys-
tem from its blueprint (model), and many telecommunications, banking & military
systems are in fact built that way today.

Another major trend of the 21st century is “computing everywhere.” Fewer and
fewer complex systems are implemented without computing infrastructure today.
The music industry, the news industry, the telecommunications industry and the
banking industry have been totally disrupted by computing interfaces – music trav-
els by MP3 instead of by physical records and tapes; news travels by text & HTML
instead of by newsprint paper; voice travels by voice-over-IP (VoIP) instead of regu-
lar telecommunications channels; and money is by far more virtual than paper or
metal today. This has necessitated the construction of thousands of user interfaces to
access services and functions; dropping a tape into a tape recorder was quite simple
and straightforward, but every MP3 player in the world has a different user interface,
and some of them are quite bizarre and non-intuitive.

These two trends, modeling and computing everywhere, haven’t quite caught up
with each other. From the launch of the first international multi-market standard mod-
eling language (the Unified Modeling Language, or UML, in September 1997) to
2013, there has been no standard way to model user interfaces. This problem is made
even worse when one considers that many software systems need to be executable on
multiple computing platforms – after all, you want to listen to music on your desktop

Forewordxiv

computer, your laptop computer, your music player, perhaps even your wristwatch and
your hearing aid. Necessarily these different computing platforms have different user
interfaces – have you ever seen a screen on a hearing aid? – and while software model-
ing languages have for decades supported execution on multiple computing platforms,
they have not supported multiple interfaces on multiple computing platforms.

This is more important than it might sound. One of the major software product
failures of the second decade of this millennium has been the attempt by major soft-
ware vendors to support a single user interface concept on all computing platforms
(including servers, desktop computers, laptop computers and telephones). The touch-
screen concept makes sense for telephones (with their relatively small screens and
our relatively large fingers); it makes less sense for many on desktops and laptops
(where generally there is a full-size keyboard available, and many computing users
would prefer to use that keyboard and mouse); it makes no sense for servers (which
are generally “headless,” that is, without screens at all.

What is needed, of course, is to apply the concept of abstract models to user
interfaces, and this the new OMG Interaction Flow Modeling Language (IFML) is
designed to do. Becoming a fully-recognized standard in March, 2014, the IFML
allows the system modeler to capture the user interaction and content of the front-end
(user interface) of any system (including software systems) and model the control
behavior of that system’s front-end.

Clearly this is a major breakthrough for systems modeling in general, and soft-
ware design in particular. With a standard modeling language (fully integrated with
other OMG MDA modeling languages through shared underlying modeling struc-
ture), a systems designer can capture the control flow of both the system and the
interface to that system, and then map the system and interface to whatever infra-
structure needs to be delivered. Whether that system runs on a server in the cloud, or
on a watch on the user’s wrist, or in an embedded system in one’s body, the system
designer can expect to have both consistent execution of the system and consistent
interface to that system. This is clearly a very powerful concept for designing por-
table and interoperable systems.

In this book, you will learn the concepts of portable design of IFML models, and
how to apply those models in real-world systems. Real, executable, fully-worked
examples show you how to use IFML in practice, integrate with UML models, and
how to rely on the shared MDA infrastructure of OMG modeling languages. While
it’s worth taking a look at the standard itself to understand its structure, this book
is an invaluable guide to how to use the standard to good effect in real systems,
whether software systems, software-driven systems, or any other engineered systems
that feature a software front-end. This book belongs on the bookshelf of every system
designer that depends on software interfaces.

Richard Mark Soley, Ph.D.
Chairman and Chief Executive Officer,

Object Management Group, Inc.,

Moscow, Russian Federation,

23 October 2014

1Interaction Flow Modeling Language. http://dx.doi.org/10.1016/B978-0-12-800108-0.00001-1
Copyright © 2015 Elsevier Inc. All rights reserved.

CHAPTER

Introduction 1
In the last twenty years, capabilities such as information browsing, hypertext-style
navigation, multimedia content fruition, form-based interaction, and interface per-
sonalization have become widespread. They are found in consumer applications,
business information systems, and even human–machine interfaces for industrial
control. More and more embedded systems are equipped with sophisticated GUIs.
Powerful interaction functionalities are implemented on top of a variety of technolo-
gies and platforms whose boundaries are becoming less distinguishable: window-
based interfaces for desktop and client–server architectures, pure-HTML web pages,
rich Internet applications, and mobile apps. This convergence in technologies is well
portrayed by the HTML 5 initiative, which seeks to establish a coherent set of con-
cepts and common technological grounds for the development of a broad variety of
interaction front-ends.

However, the emergence of such an unprecedented mix of devices, technologi-
cal platforms, and communication channels is not accompanied by the maturation
of approaches for creating a platform independent model (PIM) that can be used
to express interaction design decisions independently of the implementation plat-
form. In addition, front-end design is a complex task where many requirements, per-
spectives, and disciplines intersect: graphic design and aesthetics, enterprise visual
identity, interaction design, usability, multi-screen support, offline-online usage,
integration with backend business logic and data, and coherence with the enterprise
organization models (e.g., business process compliance).

Front-end development, therefore, continues to be a costly and inefficient pro-
cess, where the collision of many complex factors imposes continuous reworking
and refinement of the implementation. The situation is made worse by the scarcity
of automation in mainstream software production methods, which causes low reuse
of design artifacts across the interfaces of different projects and high overhead for
ensuring cross-platform portability of applications. In this context, the role of a PIM-
level interaction modeling language is to provide a stable set of concepts that can
be used to characterize the essential aspect of the user’s interaction with a software
application interface: the provision of stimuli, the capturing and processing of such
stimuli by the application logic, and the update of the interface based on such pro-
cessing. The PIM should be designed for change. The stable core of concepts should
be accompanied by a native extension mechanism capable of accommodating new
forms of interactions and interface renditions (e.g., gestural stimuli and renditions in
3D or augmented reality devices).

CHAPTER 1 Introduction2

A PIM-level interaction modeling language—seamlessly integrated with other
modeling perspectives for the design of complete software solutions—brings several
benefits:

 • It permits the explicit representation of the different perspectives of the front

end (content, interface organization, interaction and navigation options, and
connection with the business logic and the presentation style).

 • It raises the abstraction level of the front-end specification, isolating it from
implementation-specific issues.

 • It improves the coordination of work in the development process by allowing
the allocation of interaction requirement specifications and their implementation
to different roles in the team.

 • It enables the communication of interface and interaction design to nontechnical
stakeholders, enabling the early validation of requirements.

 • With the proper tool support, it allows automatic checks on the interface mod-
els, not only for the correct use of the modeling constructs but also for desirable
properties of the portrayed interface such as uniformity of the interaction style
and usability of the interface.

To address these needs, the OMG (Object Management Group) adopted the Inter-

action Flow Modeling Language (IFML) as a standard in July 2014. This book offers
a structured introduction to this new modeling language. The spirit is not that of a ref-
erence manual for the illustration of the formal concepts that constitute the language,
but rather that of a practical guide book showing the language at work through a pro-
gression of examples, design patterns, and best practices. After reading the book, the
should have a clear understanding of how to exploit IFML in practice and integrate it
into mainstream enterprise software development standards.

As IFML gets implemented by tool vendors, the reader will be able to try out the
examples provided in the book and even generate partial or full applications from
the models.

1.1 WHAT IFML IS ABOUT
IFML supports the specification of the front end of applications independently of
the technological details of their realization. It addresses the following questions of
front-end modeling:

 • The composition of the view: What are the visualization units that compose the

interface, how are they organized, and which ones are displayed simultaneously
and which in mutual exclusion?

 • The content of the view: What content elements are displayed from the appli-
cation to the user, and what input is acquired from the user and supplied to the
application?

 • The commands: What interaction events are supported?
 • The actions: What business components are triggered by the events?

1.2 The IFML Design Principles 3

 • The effects of interaction: What is the effect of events and action execution on
the state of the interface?

 • The parameter binding: What data items are communicated between the ele-
ments of the user interface and the triggered actions?

IFML expresses the abovementioned aspects using a visual modeling language

based on the OMG standards. Its technical foundations lie on the OMG Model
Driven Architecture (MDA) framework. This grants seamless integration with the
specifications of the other layers of the software system. The specification consists
of five main technical artifacts:

 • The IFML metamodel specifies the structure and semantics of the IFML con-

structs using the OMG Meta Object Facility (MOF).
 • The IFML Unified Modeling Language (UML) profile defines a UML-based

syntax for expressing IFML models. In particular, the UML Profile for IFML is
based on the use of UML components (both basic components and packaging
components), classes, and other concepts, which may concur with hierarchical
structures or dependencies.

 • The IFML visual syntax offers a concrete representation based on a unique
diagram. This compacts all aspects of the user interface that are otherwise
expressed separately with UML class diagrams, state machine, and composite
structure diagrams.

 • The IFML textual syntax offers a textual alternative, equivalent to the visual
syntax, for expressing IFML models.

 • The IFML XMI provides a model exchange format for tool portability.

This book adopts the IFML visual syntax as a concrete vehicle for conveying the
user interaction models because it is close to UML—and thus familiar to developers—
and because it is very compact.

1.2 THE IFML DESIGN PRINCIPLES
Designing a modeling language for the front end is a complex and multidisciplinary
task where many perspectives intersect. A good modeling language should pay atten-
tion to coverage (i.e., the ability to represent complex application front ends but also
to model usability and understandability). The latter goals require addressing all the
factors that contribute to make a modeling language quick to learn, simple to use,
easy to implement by tool vendors, and open to extensibility. The design of IFML
adheres as much as possible to the following “golden” rules:

 • Conciseness: the number of diagram types and concepts needed to express the

salient interface and interaction design decisions is kept to the minimum. In
particular, the IFML visual syntax conveys the front-end model using a single
diagram. This design simplifies the model editing and maintenance processes,
because references between different types of diagrams need not be maintained

CHAPTER 1 Introduction4

and only the internal coherence among the various elements of a single type of
diagram must be preserved.

 • Inference from the context: whenever something can be deduced from existing
parts of the model, inference rules at the modeling level automatically apply
default modeling patterns and details, avoiding the need for modelers to specify
redundant information. For example, parameter passing rules between different
model elements, which are ubiquitous and cumbersome to specify, are inferred
from the context as often as possible.

 • Extensibility: adaptation to novel requirements, interaction modalities, and tech-
nologies must be planned in the language design. IFML builds upon a small set
of core concepts that capture the essence of interaction: the interface (containers),
stimuli (events), content (components and data binding), and dynamics (flows
and actions). By design, these concepts are meant to be extended to mirror the
evolution of technologies and devices. Thus, IFML incorporates standard means
for defining new concepts, such as novel interface components or event types. The
OMG standard already comprises examples of extensions, and this book illus-
trates many more cases that ease the specification of web, desktop, and mobile
applications. Time and practice will show if the core of IFML is sufficiently tech-
nology neutral to enable extension to novel interaction paradigms that are pos-
sibly very different from the ones for which the language was initially conceived.

 • Implementability: models that lack adequate tool support and cannot be used
to produce the code are quickly abandoned. IFML is a platform-independent
language but has been designed with executability in mind. This is obtained
through model transformations and code generators to ensure that models can
be mapped easily into executable applications for various platforms and devices.
Chapters 10 and 11 present some techniques for implementing IFML specifica-
tions in several platforms, discuss the tool support requested in general for mak-
ing the language usable, and illustrate one specific tool that enables automation
of the design process and code generation.

 • Not everything in the model: sometimes the hardest choice in language design
is what to leave out. IFML purposely ignores presentation aspects, because
presentation is adversarial to abstraction (in graphic design, every pixel is
important). It also delegates to external models the specification of aspects that,
although relevant to the user interface, are not properly part of it. For example,
the internal functioning of the actions triggered by the GUI can be described
using an action model. If the action is the invocation of an object’s method,
this can be described by referencing a method in a UML class; if the action is
the invocation of an orchestration of web services, this can be described using
a SoaML1 diagram; if the action is described by a complex behavior, this can
be obtained by referencing a whole UML dynamic diagram (e.g., a sequence
diagram or activity diagram). The content model underlying the application can
be described with any structural diagram, such as a UML class diagram, a Com-
mon Warehouse Metamodel (CWM) diagram,2 an Entity-Relationship diagram,
or an ontology.

1.3 How to Read this Book 5

1.3 HOW TO READ THIS BOOK
This book is directed not only to the IT specialists but also to a wider audience of
all the professionals involved in the construction of interactive applications, from
stakeholders to user-experience creators. To address this target, we purged the book
of any unnecessary formalism and academic discussion, and made intensive use of
practical and motivating examples to explain each new concept introduced to the
reader. The book should be approachable with limited effort by readers with a gen-
eral background in software development and in basic database, mobile, and web
technologies. Throughout the chapters, concepts are shown at work in the modeling
of popular real-life interactive application interfaces. In the same way, development
tasks are exemplified with the help of a running case taken from a popular online
application. Our intention is to show things with the help of progressive examples,
rather than to tell how things should be done.

While writing the book, we tried to cater to the needs of four main categories of
readers:

 • Software designers/analysts, whose main goal is learning IFML and under-

standing the design patterns and best practices that apply in practice. Another
fundamental question that software designers want to address is how to integrate
model-driven front-end design in current software development processes, with
the objective of enabling fast prototyping of the interface connected to the appli-
cation back end.

 • UI design professionals, whose aim is to use IFML for specifying the
dynamics of the interaction without developing software. Ultimately, IFML
should allow the UI professionals to produce a high-level description of
their interface concepts that is easily communicable to both IT and business
stakeholders.

 • Executives with interests in the IT field, whose purpose is to understand the
role of IFML in organizing software projects and its value in terms of efficiency
and cost reduction. Early validation of front-end requirements with customers,
cross-project reuse, documentation and cross-team dissemination of design best
practices, the unlocking of corporate knowledge from source code, and its pres-
ervation in technology-independent models are some of the factors where IFML
impacts the key performance indicators of software projects.

 • Students,whose objective is learning IFML, typically as part of an educa-
tion path that comprises software development and software engineering
disciplines. For students specializing in model-driven software engineering,
an added value can be the study of an example of modeling language design.
For all students, it may be interesting to try the examples of interface model-
ing illustrated in the book with the help of the online resources provided and
of an IFML modeling and code generation tool. The knowledge afforded
by the book can also be used to earn professional certification as an IFML
modeler.

CHAPTER 1 Introduction6

1.3.1 STRUCTURE OF THE BOOK
The book proceeds from the prerequisites of IFML (domain modeling), through the
various facets of the language, and toward more practical aspects, including a gallery
of design patterns, implementation, tool support, and integration within the MDA
framework.

 • Chapter 2 gives an introductory overview of the language, allowing readers to

grasp its main concepts quickly.
 • Chapters 3 addresses domain modeling, an activity complementary to front-end

modeling. It positions IFML with respect to the established practices for model-
ing the objects of a domain, most notably the use of UML class diagrams. The
chapter also discusses useful patterns that apply specifically to domain model-
ing for interactive applications.

 • Chapters 4–7 provide a walkthrough of IFML, addressing both the standard
primitives and the language extensions for specific purposes. Each construct
is defined and immediately exemplified. The chapters also contain several
design patterns that address typical requirements of application front-end
design.

 • Chapter 8 complements the feature-based illustration of IFML afforded in
chapters 4–7 with a requirement-based view. Various functionalities of interest
for desktop, mobile, web, and multiscreen applications are considered, and the
design patterns that model them are discussed.

 • Chapter 9 deepens the illustration of the concrete usage of IFML, switching
from a pattern-based perspective to an application-based one. Two real-life
applications are introduced and modelled.

 • Chapter 10 and 11 respectively focus on how to convert IFML models into
implemented software front ends, including the tool support available for
doing so. The aim is to show how to reap the benefits of front-end modeling by
quickly producing application prototypes and by generating the complete code
of the application from the models with the help of code generation tools.

 • Chapter 12 concludes the book by positioning IFML in the broader space of
OMG languages and standards, with the aim of giving the reader a precise view
on how to set up a coherent model-driven environment capable of spanning all
the tiers and facets of application development: the front end, the business logic,
the persistent data, and the interoperation with external services.

1.4 ON-LINE RESOURCES
The book is associated with several online resources. The web site at
http://www.ifml.org/ offers a variety of materials dedicated to model-driven inter-
face development and to IFML, including examples of modeling, design patterns,
technical and research articles, teaching materials, and resources for developers and

http://www.ifml.org/

1.5 Background 7

educators. In particular, the section at http://www.ifml.org/book/ is dedicated to this
book. A contact form in the web site permits instructors to contact the book’s authors
to obtain further up-to-date teaching materials.

The site at http://www.webratio.com/ is the home of WebRatio, the model-driven
engineering tool presented in Chapter 12. The WebRatio community hosts a wealth
of materials on the usage of IFML, which can be tried out in practice with the tool.
An evaluation program is available for trying the software, and academic licenses are
granted upon request to researchers, teachers, and students willing to use the tool in
educational activities.

1.5 BACKGROUND
The model-driven approach to application front-end development at the base of
this book is the result of more than fifteen years of research work at Politecnico di
Milano, the largest Italian IT School, accompanied by intense development activ-
ity in the industry at the international level. The first model-driven CASE tool for
the front end, called AutoWeb, was designed by Piero Fraternali between 1996 and
1998 and focused on web hypertexts. The tool was used to develop several web
applications and pioneered the possibility of automating the development of user
interfaces—including the presentation aspects—starting from a high-level concep-
tual model.

The ancestor of IFML was a modeling language called Web Modelling Language
(WebML), conceived in the context of the research project Web-Based Intelligent
Information Infrastructures (W3I3, 1998–2000), supported by the European Com-
mission. Since 1999, WebML has been used for the development of industrial web
applications, both as part of research contracts with companies such as Microsoft
and Cisco Systems, and in industrial projects with companies such as Acer Europe.
In the fall of 2001, a team of WebML designers and developers founded a start-up
company with the goal of developing, distributing, and marketing WebRatio, a tool
suite based on WebML. Since then, model-driven development of web applications
with WebRatio has been applied to thousands of applications worldwide, including
very large projects in such industries as utilities (water and energy), finance, logis-
tics, e-commerce, and more. This solid industrial experience has been the key to
understanding what works and what does not in the model-driven development of
user interfaces. This understanding has been distilled in the guidelines and design
patterns illustrated in this book.

The last step of the long story behind the book is the IFML standardization pro-
cess at the OMG. Here, the consensus process typical of a wide-scale international
standardization effort has produced the refinement of many fundamentals aspects
of the language, such as its compliance and integration with OMG standards, the
general applicability to any class of interactive applications, and the provision of a
model exchange format.

http://www.ifml.org/book/
http://www.webratio.com/

CHAPTER 1 Introduction8

1.6 ACKNOWLEDGMENT
We would like to thank all the people that made this book possible. First of all, we
wish to thank Stefano Ceri and the whole research group at Politecnico di Milano,
where the WebML language originated. Secondly, all the people that in these years
worked at WebRatio, starting with the founders Roberto Acerbis, Aldo Bongio, and
Stefano Butti. The industrial experience collected there has been inspirational for
continuous innovation. Third, the people that actually contributed to the specification
and implementation of the IFML language within the OMG: Richard Soley, OMG
Chairman, who encouraged and accompanied our initiative; the whole OMG team,
the co-submitters of the standard; and people like Ed Seidewitz, Manfred Koethe,
and Arne Berre that contributed their experience to the success of the standardization
process. Finally, we want to thank the team at Morgan Kaffman, including Kaitlin
Herbert and Andrea Dierna, who patiently took care of the whole process down to
the final release of the book. Last—but not least—the reviewers of this book, Antonio
Valecillo and Juha-Pekka Tolvanen, who provided us with extremely valuable com-
ments and feedback on the first draft of the manuscript.

END NOTES
 1. See http://www.omg.org/spec/SoaML/.
 2. See http://www.omg.org/spec/cwm/.

http://www.omg.org/spec/SoaML/
http://www.omg.org/spec/cwm/

9Interaction Flow Modeling Language. http://dx.doi.org/10.1016/B978-0-12-800108-0.00002-3
Copyright © 2015 Elsevier Inc. All rights reserved.

CHAPTER

IFML in a Nutshell 2
IFML supports the platform-independent description of graphical user interfaces for
applications deployed or accessed on systems such as desktop computers, laptops,
PDAs, mobile phones, and tablets. The main focus is on the structure and behavior
of the application as perceived by the end user. The modeling language also incor-
porates references to the data and business logic that influence the user’s experience.
This is achieved respectively by referencing the domain model objects that provide
the content displayed in the interface and the actions that can be triggered by interact-
ing with the interface.

This chapter introduces the essential features of IFML: its scope, the design rules
behind it, its main modeling elements, and its role in the development process. The
chapter concludes with an initial example of the language.

2.1 SCOPE AND PERSPECTIVES
To understand the aim and scope of IFML better, it may be useful to refer to
the well-known Model–View–Controller (MVC) software architecture of an
interactive application,1 shown in Figure 2.1. MVC distinguishes the applica-
tion’s internal status and business logic (Model), their representation in the user
interface (View), and the rules governing the response to the user’s interaction
(Controller).

IFML mainly describes the view (i.e., the content of the front end and the user
interaction mechanisms available in the interface). More precisely, IFML covers var-
ious aspects of the user interface:

 • View structure: It expresses the general organization of the interface in terms

of ViewContainers, along with their nesting relationships, visibility, and
reachability.

 • View content: It specifies what ViewContainers actually contain in terms of
ViewComponents (i.e., elements for content display and data entry). ViewCom-
ponents that display content are further characterized by a ContentBinding,
which expresses the source of the published content.

 • Events: They are the occurrences that affect the state of the user interface. They
can be produced by a user’s interaction, by the application itself, or by an exter-
nal system.

CHAPTER 2 IFML in a Nutshell10

 • Event transitions: They specify the consequences of an event on the user inter-
face, which can be a change of the ViewContainer, an update of the content on
display, the triggering of an action, or a mixture of these effects.

 • Parameter binding: It clarifies the input–output dependencies between View-
Components, view containers, and actions.

For the sake of conciseness, IFML condenses all these perspectives within only

one diagram type called an Interaction Flow Diagram. This is in contrast to other
modeling languages such as UML, which rely on multiple diagrams for conveying
the various facets of an application.

Besides describing the view part of the application, an IFML Interaction Flow
Diagram also provides the hooks to connect it with the model and controller parts:

 • With respect to the controller, IFML represents the effects of the user’s interac-

tions. It defines the events produced in the view and the course of action taken
by the controller in response to them, such as triggering a business component
and updating the view.

 • With respect to the model, IFML describes the data binding between the inter-
face elements and the objects that embody the state of the application, as well
the actions that are triggered by the user’s interactions.

Figure 2.2 shows as an initial example the IFML model of a simple interface: the

view structure consists of three ViewContainers (“ProductCategories,” “ProductOf-
Category,” and “ProductInformation”), which reflect the top-level organization of
the GUI in three distinct pages. The model shows the content of each ViewContainer.
For example, the “ProductCategories” ViewContainer comprises one ViewCompo-
nent called “CategoryList.” This notation represents the content of the respective
page in the GUI (i.e., a list of product categories). Events are represented in IFML
as circles. The “SelectCategory” event specifies that the “CategoryList” component
is interactive. In the GUI, the user can select one of the categories to access a list of
its products. The effect of the “SelectCategory” event is represented by the arrow
emanating from it (called InteractionFlow in IFML), which specifies that the trigger-
ing of the event causes the display of the “ProductOfCategory” ViewContainer and
the rendering of its “ProductList” ViewComponent (i.e., the list of products of the
selected category). The input–output dependency between the “CategoryList” and
the “ProductList” ViewComponents is represented as a parameter binding (the IFML

FIGURE 2.1

The Model–View–Controller architecture of an interactive application.

2.2 Overview of IFML Main Concepts 11

ParameterBindingGroup element in Figure 2.2). The value of the “SelectedCategory”
parameter, which denotes the object selected by the user in the “CategoryList” View-
Component, is associated with the value of the input parameter “Category,” which is
requested for the computation of the “ProductList” ViewComponent.

2.2 OVERVIEW OF IFML MAIN CONCEPTS
An IFML diagram consists of one or more top-level ViewContainers (i.e., inter-
face elements that comprise components for displaying content and supporting
interactions).

Figure 2.3 contrasts two different organizations of the GUI: (a) an e-mail appli-
cation (desktop or rich Internet application) consisting of a top-level container with
embedded sub-containers at different levels, and (b) an e-commerce web site that
organizes the user interface into different independent view containers corresponding
to page templates.

Each view container can be internally structured in a hierarchy of subcontainers.
For example, in a desktop or rich Internet application, the main window can contain
multiple tabbed frames, which in turn may contain several nested panes. The child
view containers nested within a parent view container can be displayed simultane-
ously (e.g., an object pane and a property pane) or in mutual exclusion (e.g., two
alternative tabs). In the case of mutually exclusive (XOR) containers, one could be
the default container, which is displayed by default when the parent container is
accessed. The meaning of a container can be specified more precisely by adding a

FIGURE 2.2

Example of an interface and its IFML specification.

CHAPTER 2 IFML in a Nutshell12

stereotype to the general-purpose construct. For instance, a ViewContainer can be
tagged as «window», as in the case of the “Mail” ViewContainer in Figure 2.4, to hint
at the nature of its expected implementation.

In Figure 2.4, the “Mail” top-level container comprises two subcontainers, dis-
played alternatively: one for messages and one for contacts. When the top level con-
tainer is accessed, the interface displays the “Messages” ViewContainer by default.

A ViewContainer can contain ViewComponents, which denote the publication of
content (e.g., a list of objects) or the input of data (e.g., entry forms).

Figure 2.5 shows the notation for embedding ViewComponents within View-
Containers. The “Search” ViewContainer comprises a “MessageKeywordSearch”

FIGURE 2.3

Example of different top-level interface structures.

FIGURE 2.4

Example of mutually exclusive subcontainers.

2.2 Overview of IFML Main Concepts 13

ViewComponent that represents a form for searching; the “MailBox” ViewContainer
comprises a “MessageList” ViewComponent that denotes a list of objects.

A ViewComponent can have input and output parameters. For example, a View-
Component that shows the details of an object has an input parameter corresponding
to the identifier of the object to display. a data entry form exposes as output param-
eters the values submitted by the user. and a list of items exports as output parameter
the item selected by the user.

A ViewContainer and a ViewComponent can be associated with events to express
that they support user interaction. For example, a ViewComponent can represent a list
associated with an event for selecting one or more items, a form associated with an event
for input submission, or an image gallery associated with an event for scrolling though
the gallery. IFML events are mapped to interactors2 in the implemented application. The
way in which such interactors are rendered depends on the specific platform for which
the application is deployed and is not captured by IFML. Rather, it is delegated to trans-
formation rules from a platform-independent model (PIM) to a platform-specific model
(PSM). For example, the scrolling of an image gallery may be implemented as a link in an
HTML application and as a swipe gesture handler in a mobile phone application.

The effect of an event is represented by an interaction flow, which connects the
event to the ViewContainer or ViewComponent affected by the event. For example,
in an HTML web application the event produced by the selection of one item from a
list may cause the display of a new page with the details of the selected object. This
effect is represented by an interaction flow connecting the event associated with the list
component in a top-level ViewContainer (the web page) with the ViewComponent rep-
resenting the object detail, which is positioned in a different ViewContainer (the target
web page). The interaction flow expresses a change of state of the user interface. The
occurrence of the event causes a transition from a source to a target web page.

For example, in Figure 2.6 the “MailBoxList” ViewComponent shows the list of
available mailboxes and is associated with the “MailBoxSelection” event, whereby
the user can open the “MailBox” ViewContainer and access the messages of the
mailbox selected in the “MessageList” ViewComponent .

An event can also cause the triggering of an action, which is executed prior to
updating the state of the user interface. The effect of an event firing an action is rep-
resented by an interaction flow connecting the event to an action symbol (represented

FIGURE 2.5

Example of ViewComponents within view containers.

CHAPTER 2 IFML in a Nutshell14

by a hexagon). For example, in a mail management application, the user can select
several messages from a list and choose to delete them. The selection event triggers a
delete action, after which the ViewContainer is displayed again with an updated list.
The result of action execution is represented by an interaction flow that connects the
action to the affected ViewContainer or ViewComponent.

In Figure 2.7, the “Message toolbar” ViewContainer is associated with the events
for deleting, archiving, and reporting mail messages. Such events are connected by
a flow to an action symbol (a labeled hexagonal icon), which represents the business
operation. The outgoing flow of the action points to the ViewContainer displayed
after the action is executed; if the outgoing flow of an action is omitted, this means
that the same ViewContainer from which the action was activated remains in view (as
illustrated by the “Archive” and “Report” actions in Figure 2.7).

The model of Figure 2.7 does not express the objects on which the business actions
operate. Such an input–output dependency between view elements (ViewContainers
and ViewComponents) or between view elements and actions requires the specification
of parameter bindings associated with interaction flows. More specifically, two kinds
of interaction flows can host parameter bindings: navigation flows, which represent
navigation between view elements, and data flows, which express data transfer only
but are not produced by user interaction. Parameter binding rules are represented by
annotations attached to navigation and data flows, as shown in Figure 2.8.

In Figure 2.7, the “MessageToolbar” ViewContainer has an input parameter
“MessageSet” whose value is set to the messages selected from the “MessageList”
ViewComponent when the user triggers the “MessageSelection” event. Another
parameter binding rule is associated with the Delete, Archive and Report events; the
value of the “MessageSet” parameter is bound to the “InputMessages” parameter of
the triggered action.

FIGURE 2.6

Example of interaction flow between ViewComponents.

2.3 Role of IFML in the Development Process 15

2.3 ROLE OF IFML IN THE DEVELOPMENT PROCESS
The development of interactive applications is typically managed with agile
approaches, which traverse several cycles of “problem discovery” / “design refine-
ment” / “implementation.” Each iteration of the development process generates
a prototype or a partial version of the system. Such an incremental lifecycle is

FIGURE 2.7

Example of events triggering business actions.

FIGURE 2.8

Example of parameter bindings used for expressing input–output dependencies.

CHAPTER 2 IFML in a Nutshell16

particularly appropriate for modern web and mobile applications, which must be
deployed quickly and change frequently during their lifetime to adapt to user require-
ments. Figure 2.9 schematizes a possible development process and positions IFML
within the flow of activities.

Requirements specification collects and formalizes the information about the
application domain and expected functions. The input is the set of business require-
ments that motivate the application development and all the available information
on the technical, organizational, and managerial context. The output is a functional
specifications document comprising:

 • the identification of the user roles and of the use cases associated with each role;
 • a data dictionary of the essential domain concepts and of their semantic relation-

ships; and
 • the workflow embodied in each use case, which shows how the main actors (the

user, the application, and possibly external services) interact during the execu-
tion of the use case.

In addition, nonfunctional requirements must also be specified, including perfor-

mance, scalability, availability, security, and maintainability. When the application is
directed to the general public, requirements about the look and feel and the usability
of the interfaces assume special prominence among the nonfunctional requirements.
User-centered design practices that rely on the construction of realistic mock-ups
of the application functionality can be applied. These mock-ups can be used for the
early validation of the interface concepts and then serve as the basis for creating more
detailed and technical specifications during the front-end modeling phase.

Domain modeling3 organizes the main information objects identified dur-
ing requirements specification into a comprehensive and coherent domain model.

FIGURE 2.9

The role of IFML in the development process of an interactive application.

2.3 Role of IFML in the Development Process 17

Domain modeling specifies the main information assets identified during require-
ments specification into a domain model, which is a (typically visual) representa-
tion of the essential objects, their attributes and associations. The first conceptual
data modeling language, the Entity-Relationship model, was proposed in 1976, and
ever since new modeling languages have been proposed, including UML. At the
same time, modeling practices and guidelines have been consolidated; in particu-
lar, domain modeling for interactive applications exploits suitable design patterns,
discussed in chapter 3. The entities and associations of the domain model identified
during domain modeling are referenced in the front-end design models, to describe
what pieces of data are published in the interface.

Front-end modeling maps the information delivery and data manipulation func-
tionality dictated by the requirements use cases into a front-end model. Front-end
modeling operates at the conceptual level, where IFML comes into play. The designer
may use IFML to specify the organization of the front end in one or more top-level
view containers, the internal structure of each view container in terms of subcontain-
ers, the components that form the content of each view container, the events exposed
by the view containers and components, and how such events trigger business actions
and update the interface.

Business logic modeling specifies the business objects and the methods nec-
essary to support the identified use cases. UML static and dynamic diagrams are
normally employed to highlight the interfaces of objects and the flow of messages.
Process-oriented notations—such as UML activity and sequence diagrams, BPMN
process models, and BPEL service orchestrations—provide a convenient way to rep-
resent the workflow across objects and services. The actions specified in the business
logic design can be referenced in the front-end model to show which operations can
be triggered by interacting with the interface.

Data, front-end, and business-logic design are interdependent activities executed
iteratively. The precedence order of Figure 2.9 is only illustrative. In some organi-
zations, work could start from the design of the front end and the data objects and
actions could be discovered at a later stage by analyzing what information is pub-
lished in the interface and what operations are requested to support the interactions.

Architecture design is the process of defining the hardware, network, and soft-
ware components that make up the architecture on which the application delivers its
services to users. The goal of architecture design is to find the mix of these compo-
nents that best meets the application requirements in terms of performance, security,
availability, and scalability, and at the same time respects the technical and economic
constraints of the project. The inputs of architecture design are the nonfunctional
requirements and the constraints identified during business requirements collection
and formalized in the requirements specifications. The output may be any specifica-
tion that addresses the topology of the architecture in terms of processors, processes,
and connections, such as UML deployment diagrams.

Implementation is the activity of producing the software modules that trans-
form the data, business logic, and interface design into an application running on
the selected architecture. Data implementation maps the domain model onto one

CHAPTER 2 IFML in a Nutshell18

or more data sources by associating the conceptual-level constructs with the logical
data structures (e.g., entities and relationships to relational tables). Business logic
implementation creates the software components needed to support the identified
use cases. The implementation of individual components may benefit from the adop-
tion of software frameworks, which organize the way in which fine-grain compo-
nents are orchestrated and assembled into larger and more reusable functional units
and also cater to nonfunctional requirements like performance, scalability, security,
and availability. Business logic may also reside in external services, in which case
implementation must address the orchestration of calls to remote components such as
web APIs (Application Programming Interfaces). Interface implementation trans-
lates the conceptual-level ViewContainers and ViewComponents into the proper con-
structs in the selected implementation platform. ViewContainers may interoperate
with business objects deployed either in the client layer or in the server layer.

Testing and evaluation verify the conformance of the implemented application
to the functional and nonfunctional requirements. The most relevant concerns for
interactive applications testing are:

 • Functional testing: the application behavior is verified with respect to the func-

tional requirements. Functional testing can be broken down into the classical
activities of module testing, integration testing, and system testing.

 • Usability testing: the nonfunctional requirements of ease of use, communica-
tion effectiveness, and adherence to consolidated usability standards are verified
against the produced front end.

 • Performance testing: the throughput and response time of the application must
be evaluated in average and peak workload conditions. In case of inadequate
level of service, the deployment architecture, including the external services,
must be monitored and analyzed to identify and remove bottlenecks.

Deployment is the activity of installing the developed modules on top of the

selected architecture. Deployment involves the data layer, the software gateways to
the external services, and the business and presentation layer, where the interface
modules and the business objects must be installed.

Maintenance and evolution encompass all the modifications applied after the
application has been deployed in the production environment. Differently from the
other phases of development, maintenance and evolution are applied to an existing
system, which includes both the running application and its related documentation.

IFML models are the result of front-end design, but their production has impor-
tant implications for other development activities as well.

 • Domain modeling may specify entities and associations whose purpose is to

aid the categorization and retrieval of the main business objects for a better user
experience. We discuss this practice in chapter 3.

 • Business logic modeling identifies the available operations and defines their
possible outcomes and output, which affect the status of the interface. Chapter 6
discusses the interplay between front-end and business-logic modeling.

2.4 A Complete Example 19

 • Implementation may exploit model transformations and code generation to produce
prototypes of the user interface or even fully functional code. In chapter 10
we discuss how to implement IFML models manually in some representative
software platforms, and then in chapter 11 we exemplify the automation of the
development activities achieved with model-driven tools.

 • Testing and evaluation can be anticipated and performed on the IFML models
rather than on the final code. Model checking may discover inconsistencies
in the design of the front end (e.g., unreachable statuses of the interface) and
suggest ways to refactor the user interface for better usability (e.g., recommend
uniform design patterns for the different types of user interactions, such as
searching, browsing, creating. modifying, and deleting objects).

 • Finally, maintenance and evolution benefit most from the existence of a conceptual
model of the application. Requests for changes are analyzed and turned into changes
at the design level. Then, changes at the conceptual level are propagated to the
implementation, possibly with the help of model-to-code transformation rules. This
approach smoothly incorporates change management into the mainstream produc-
tion lifecycle and greatly reduces the risk of breaking the software engineering
process due to the application of changes solely at the implementation level.

2.4 A COMPLETE EXAMPLE
As a conclusion to this brief introduction of IFML, we present a simple, yet com-
plete, example. The application is an online store where the user can browse prod-
ucts, such as books, music, and software, and add products to his shopping cart, as
shown by the UML use case diagram of Figure 2.10.

The application has a web front end. In the “Browse books” use case, the user
accesses a home page that contains a list of product categories. Clicking on a
product category such as “Books” leads to a page displaying the summary data
about all the items of that category. Clicking on a “See more” associated with
one item’s summary opens a page where the full details of the selected object are

FIGURE 2.10

Use cases of the Bookstore application.

CHAPTER 2 IFML in a Nutshell20

presented. Figure 2.11 shows the mock-ups of the application front end supporting
the “Browse books” use case.

When looking at the details of an item, the user can press the “Add to cart” button
to add the item to his virtual shopping cart. A modal window appears where the user
can specify the quantity of goods he wants to purchase. After submitting the desired
quantity, a confirmation pop-up window is presented to acknowledge the addition of
the product to the cart. Figure 2.12 shows the mock-ups of the interface supporting
the “Manage cart” use case.

The IFML model of the Bookstore application contains the five ViewContainers
shown in Figure 2.13.

The ViewContainers are annotated with stereotypes (such as H, for “Home,” L
for “Landmark,” and “Modal” and “Modeless”) that further specify their properties.
These are discussed in chapter 4.

The ViewContainers definition is refined by specifying the ViewComponents they
comprise, as illustrated in Figure 2.14.

Interactivity is represented by adding the relevant events and specifying the
interaction flows they trigger, along with the parameter binding between the source
and the target components of the interaction flows. The model of Figure 2.15 shows
that the “CategoryList” ViewComponent supports an interactive event “SelectCat-
egory,” whereby the user can choose a category from the index. As a result, the

FIGURE 2.11

Mock-ups of the user interface supporting the “Browse books” use case.

2.4 A Complete Example 21

“ProductOfCategory” page is displayed, and the “ProductList” ViewComponent
shows the items corresponding to the chosen category. The input–output depen-
dency between the “CategoryList” and the “ProductList” ViewComponents is rep-
resented by the parameter binding group, which associates the “SelectedCategory”
output parameter of the source component with the “Category” input parameter of
the target component. The same modeling pattern is used to express the interaction

FIGURE 2.12

Mock-ups of the user interface supporting the “Manage cart” use case.

FIGURE 2.13

IFML ViewContainers of the Bookstore application.

CHAPTER 2 IFML in a Nutshell22

for selecting a product from the “ProductList” component and then accessing its
data in the “ProductDetails” component.

Some event may trigger the execution of a piece of business logic. As an example,
Figure 2.12 and Figure 2.16 show the activation of an action for inserting items in
the shopping cart. After the user presses the “Add to cart” button associated with
the “ProductDetails” component, a modal window appears asking for the quantity
of items desired. The quantity submission event triggers the execution of the “Add

FIGURE 2.14

ViewComponents embedded in IFML ViewContainers, with their mock-up renditions.

FIGURE 2.15

IFML events and interaction flows of the “Browse books” use case .

2.5 Summary of the Chapter 23

to cart” action. The “Quantity” value from the Form ViewComponent and the
“ DisplayedProduct” parameter from the “ProductDetails” ViewComponent are
submitted as input parameters to the “Add to cart” action. Once the action is com-
pleted, a confirmation window is displayed.

Notice that the binding of the “Quantity” output parameter is associated with
an interaction flow, which denotes the effect of a submit event that requires the
user’s interaction. Conversely, the binding of the “DisplayedProduct” param-
eter is associated with a data flow, which merely expresses an input–output
dependency automatically performed by the system and not triggered by a user’s
interaction.

2.5 SUMMARY OF THE CHAPTER
In this chapter we have provided a bird’s-eye view of IFML. First, we positioned its
concepts in the software architecture of an interactive application by referring them
to the elements of the Model–View–Controller design pattern. We then summarized
the essential concepts of the language: interfaces are modeled as one or more View-
Containers, possibly nested hierarchically; ViewContainers comprise ViewCompo-
nents that enable content display and data entry; and interactivity is expressed by
Events associated with ViewContainers and ViewComponents, whose effect on the
interface is denoted by InteractionFlows that connect the event to a ViewContainer, a
ViewComponent, or an Action. The latter express a business operation triggered from
the user interface. ViewContainers, ViewComponents, and Actions may have param-
eters. In this case, the input–output dependencies between them are represented by
parameter bindings associated with the InteractionFlows. These concepts have been

FIGURE 2.16

IFML events and interaction flows of the “Browse Products” use case.

CHAPTER 2 IFML in a Nutshell24

illustrated in a small, yet complete, example. The chapter has also highlighted the
role and benefits of IFML in the application development cycle.

2.6 BIBLIOGRAPHIC NOTES
Model-driven engineering basic principles are covered by various books, including
[BCW12]. Domain-specific modelling (DSM) is thoroughly discussed in the books
[Kelly08] and [Voelter13], which underline the motivations for adopting a higher
level of abstraction in the development of applications, discuss the design principles
and architecture of DSM, and contain several use cases that illustrate the approach
in practice.

The processes and modeling language for web applications—a special class of
interactive applications—have been addressed by James Conallen, who adapted
UML and the Rational Unified Process to the specific context of web application
development [Conallen99, Conallen00]. The resulting method includes the activi-
ties of requirements gathering, analysis, design, implementation, testing, deploy-
ment, configuration, and change management. In the design phase, ad hoc UML
stereotypes are used to describe the components of web pages. In this way, page
design is made visual according to one of the basic principles of the Rational Unified
Process. A more recent textbook on web application modeling and code generation
is [BBC03], which introduces the Web Modeling Language, a conceptual language
similar to IFML but specifically tailored to web application development. The book
presents a comprehensive method applied to a real-world use case and discusses the
architectures and tools for code generation.

END NOTES
 1. See, e.g., http://en.wikipedia.org/wiki/Mode-view-controller/.
 2. By “interactor” we mean any interface widget that supports user interaction, such as a but-

ton, a link, or a check box.
 3. “Domain modeling” is the locution normally employed in object-oriented method, whereas

conceptual database design normally refers to “data modeling.”

http://en.wikipedia.org/wiki/Mode-view-controller/

25Interaction Flow Modeling Language. http://dx.doi.org/10.1016/B978-0-12-800108-0.00003-5
Copyright © 2015 Elsevier Inc. All rights reserved.

CHAPTER

Domain modeling 3
The goal of domain modeling is the specification of the relevant information assets
that constitute the application domain in a formal yet comprehensible and readable
way. The activity of domain modeling produces a domain model, also called a con-
ceptual schema by database designers. This embodies the available knowledge about
the relevant concepts, their properties and relationships, and, in object-oriented mod-
eling, the operations applicable to them. The reason why a book on interface model-
ing contains a chapter on domain modeling is that the interface model must refer to
the objects that provide content to be published in the application front end. Further-
more, events triggered within the interface may cause the execution of operations,
which may update objects and change the status of the interface.

Thus, domain modeling naturally interplays with the modeling of the business
logic and of the front end of the application. The produced domain model also
drives the implementation of the physical structures for data storage, update, and
retrieval.

Domain modeling is one of the most consolidated disciplines of information
technology. The resulting domain model can be regarded as a content model, which
emphasizes the description of the information assets used by the application.

Many languages and guidelines have been proposed and are now consolidated for
domain modeling. For this reason, we do not propose yet another domain modeling
language but instead exploit UML class diagrams. The motivation for this choice is
that IFML is an OMG standard based on UML, and thus using class diagrams makes
one notation fit both domain and front-end modelling. As a more familiar alterna-
tive to UML class diagrams, information system and database designers may use
the Entity–Relationship (E–R) model, which focuses only on entities, attributes, and
relations but disregards the operations supported by objects. For the sake of express-
ing most IFML patterns illustrated in this book, only the UML class diagram features
that are also present in the E–R model are necessary, and thus the two modeling
languages can be considered almost equivalent.

The essential ingredients of the domain model in UML are classes, defined
as blueprints abstracting the common properties of objects (also known as class
instances), and associations, representing semantic connections between classes.
Classes are characterized by typed attributes and by the operations applicable to their
instances. Classes can also be organized in generalization hierarchies, which express
the derivation of a specific concept from a more general one and imply inheritance
of properties and behavior. Associations are characterized by multiplicity constraints

CHAPTER 3 Domain modeling26

that impose restrictions on the number of association instances in which an object
may take part.

This chapter introduces the essential domain modeling concepts sufficient to
specify the domain model of an interactive application. Examples are represented
using UML notation. The bibliographic notes at the end of the chapter mention sev-
eral textbooks on data and domain modeling in which the reader can find further
examples and discussions of advanced data modeling constructs.

3.1 CLASSES
Classes are the central concept of the domain model.

A class has a population, which is the set of objects that are described by the class.
These objects are also called the instances of the class. For example, the population
of class Person is a specific set of persons, while the population of class Car is a
specific set of cars.

As is the case for all the concepts of the domain model, classes are specified using
a graphical notation. They are denoted by means of rectangles with the class name at
the top. Figure 3.1 shows two classes: “Category” and “Product.”

3.2 ATTRIBUTES
Classes are further specified by means of attributes, which are the properties com-
mon to all instances of the class.

In other words, the class is a descriptor of the common properties of a set of
objects, and such properties are expressed as typed attributes.

CLASS
A class represents a description of the common features of set of objects of the real world. Exam-
ples of class are Person, Car, Product, and MailBox.

FIGURE 3.1

Graphic notation for classes.

ATTRIBUTE
Attributes are the properties of objects that are relevant for application purposes. Examples
of attributes are the name, address, and photo of a person. Attributes have values, which are
typed.

3.3 Identification and Primary Key 27

Class instances are allowed to have null values for one or more attributes. How-
ever, a null value may represent different modeling situations and raises ambiguities
in the interpretation of the properties of an instance:

 • A null value may denote that a certain attribute does not apply to a specific class

instance (for example, the driving license number for persons without a driving
license).

 • A null value may denote that the value of a certain attribute is unknown for a
specific class instance (for example, the age or the marital status of a person).

Attributes are graphically represented inside the class box below the class name,

as shown in Figure 3.2. In the example, the class “Category” is characterized by
attribute “Name,” and class “Product” by attributes “Code,” “Name,” “Description,”
“Image,” and “Price.”

3.3 IDENTIFICATION AND PRIMARY KEY
UML follows the object-oriented assumption that all the instances of a class are distin-
guishable by means of an internal identifier, which need not be specified explicitly in the
class diagram. However, in information system and database modeling, it is customary to
highlight domain attributes that are human readable and can be used to identify objects
because they have unique values across the entire class population. Such attributes are
called primary keys and have an important role in denoting objects in the user interface
and in retrieving information about selected objects from the database.

Primary key attributes must satisfy a few restrictions not required for regular attributes.
Their value must be not null for every instance of the class and unique, which means that

FIGURE 3.2

Graphic notation for classes and attributes.

PRIMARY KEY
A primary key is an attribute that can be used to identify the instances of the class uniquely. Exam-
ples of primary keys are the plate number of a car and the Social Security Number of a person.

A composite primary key is a set of attributes that can be used to identify the instances of the
class uniquely. An example can be the pair code and year of delivery of an academic course.

CHAPTER 3 Domain modeling28

there should not exist two class instances with the same value for the key attributes. UML
does not provide a specific notation for expressing key attributes. One option is to add an
OCL constraint to the relevant attribute, to denote that its value is not null and unique.

An example of such an OCL statement could be the following, which forces attri-
bute “code” of class “Product” to be not null and unique (i.e., it must be a key):

Context Product
self.code <> null and Product.allInstances() -> forAll(c1,c2 | c1
<> c2 implies c1.code <> c2.code)

An effective way to handle the specification of key constraints is to create a UML
stereotype of the general concept of attribute or of attribute group and associate the
OCL constraints with such a stereotype so that it can be managed by any standard
UML tool. An example of such notation is the addition of the «PK» stereotype to the
primary key attributes.

In the rest of this book, we will use the convention of prefixing with «PK» the
primary key attributes in class diagrams and assume that the implicit identity attri-
bute of class instances is represented by an “OID” (object identifier) attribute, which
is defined for all classes and thus can be omitted from the domain model diagrams.

Figure 3.3 shows the classes “Category” and “Product” completed with the speci-
fication of primary keys. Attribute “Name” is a key of class “Category,” while the
attribute “Code” is a key for class “Product.”

OCL, which we have employed for expressing the key constraint, is a general-purpose
textual language adopted as a standard by the OMG1 for defining calculation rules and
constraints on top of the basic UML models semantics. The language is typed, declara-
tive, and side effect-free. Typed means that each OCL expression has a type, evaluates to a
value of that type, and must conform to the rules and operations of that type. Declarative
means that OCL does not include imperative constructs. Side effect-free implies that OCL
expressions can query or constraint the state of the modeled system but not modify it.

OCL statements defining constraints are invariants embedded in the context of a
specific type (e.g., a class or an association) called the context type of the constraint.
The body of an OCL constraint is a Boolean condition that must be satisfied by all
the instances of the context type.

The standard OCL library predefines the primitive and collection-related types (and
their operations) that can be used in the definition of an OCL expression, together with
quantifiers (such as for all and exists) and iterators (select, reject, closure, etc.). Access to

FIGURE 3.3

Notation for primary keys in class diagrams.

293.4 Attribute Type and Visibility

the properties of an object and navigation from an object to its related objects (via asso-
ciations) is expressed using the dot notation, as shown in Figures 3.14 and 3.15.

Although we use OCL extensively in the examples throughout the book, the
detailed explanation of all the features of the language is outside the scope of the
book. The bibliographic notes provide hints for further readings on OCL.

3.4 ATTRIBUTE TYPE AND VISIBILITY
Attributes must be typed, which means that they assume values from well-defined
domains (e.g., the set of integer or floating point numbers). Expressing attribute types
in the domain model is good practice for making the specification more expressive
and for driving implementation.

In the sequel, we assume that class attributes are associated with the usual data
types supported by most programming languages and database products. Such data
types may include string, text, integer, float, date, time, boolean, enumeration, blob,
are url. The meanings of these types are summarized in Table 3.1.

Attribute types can be represented in class diagrams by means of a label posi-
tioned besides the attribute declaration in the class box. Figure 3.4 shows the classes
“Category” and “Product” with the attributes types specified.

Table 3.1 Typical built-in data types

Data type Description

string A “short” sequence of characters
text A “long” sequence of characters
integer An integer numerical type
float A floating point numerical type
date A calendar date
time A temporal instant of time
boolean A true or false value
enumeration A sequence of user-defined values
blob A binary large object, for example an image or a video, which must

be handled in a special way because of its size. Blob types can be
further refined by expressing their MIME type (for example image/gif)

url A uniform resource locator of a web resource

FIGURE 3.4

Graphic notation for attribute types.

CHAPTER 3 Domain modeling30

Attributes are associated with access modifiers that denote their visibility. Access
qualification is denoted by a symbol prefixing the attribute name, which can be:

 • (+) the attribute is public, that is, visible globally;
 • (-) the attribute is private, that is, visible only from objects of the owning class;
 • (#) the attribute is protected, that is, visible only from objects of the owning

class or of classes derived from it; or
 • (∼) the attribute has package visibility, that is, only objects of the classes in the

same package can access it.

In classic object-oriented design, the general practice is to define class attributes
as private and then specify access to them through appropriate getter and setter meth-
ods, as described in Section 3.5. Conversely, in information system and database
modeling, visibility of attributes is not normally specified at the class level, as it is
assumed that the domain model represents the available data objects and access is
controlled at a global level, for example, by means of database permissions. In the
rest of the book we follow the database approach and assume all attributes in the
domain model to be public by default. This assumption simplifies the reference to
content in the interface model, because it allows one to use attribute names directly
rather that getter and setter methods.

3.5 OPERATIONS
In object-oriented modeling, classes are not only containers of information but also
allow the specification of behavior, which is expressed by their operations.

Operations’ parameters and return values are typed just as attributes are. Opera-
tions also have visibility, which can be public, private, protected, or package.

Examples of operations for a class “Product” are “buy,” “applyDiscount,” and
“bundle.” Besides operations that denote business actions, classes typically com-
prise operations for handling the access to the attributes in read and write mode.
Setter methods are the operations that assign values to class attributes, whereas
getter methods are those used to extract the value of an attribute. Furthermore,
classes include constructors, which are operations for creating new instances of
a class. Figure 3.5 shows the UML notation for representing operations in class
diagrams.

As done for the implicit OID attribute of objects, we do not explicitly represent
constructors, getters, and setters in the domain model and assume that they exist for
all classes.

OPERATION
Operations represent the actions allowed on the objects of a class. They are described by a name, a
return value, and a (possibly empty) set of parameters.

313.6 Generalization Hierarchies

3.6 GENERALIZATION HIERARCHIES
The domain model allows the designer to organize classes into a hierarchy to high-
light their common features.

Each subclass inherits the features (attributes, operations, and associations) defined
in the superclass and may add locally defined features. For example, Figure 3.6 speci-
fies that “Laptop” and “Tablets” are subclasses of class “Computer.” “Laptop” has
the additional attribute “HDinterface,” denoting the type of hard disk interface, and
“Tablet” has the additional attribute “Connectivity,” denoting the type of connectivity
(WiFi, 3G, or 4G). We say that “Computer” is specialized into “Laptop” and “Tablet,”
and conversely that “Laptop” and “Tablet” are generalized into “Computer.”

When domain modeling has the purpose of specifying the persistent classes
that form the data tier of an application, it is customary to assume a few restrictive
hypotheses that simplify the form of generalization hierarchies and make them more
easily implementable with conventional database technology.

 1. Each class is defined as the specialization of at most one superclass. In technical

terms, “multiple inheritance” is avoided.
 2. Each instance of a superclass is specialized exclusively into one subclass.
 3. Each class appears in at most one generalization hierarchy.

These restrictions reduce the expressive power of the domain model. For example,
due to the first two constraints, an instance of class “Computer” cannot be a “Tablet”
and a “Laptop” at the same time. However, a similar meaning can be conveyed by

FIGURE 3.5

Representation of operations in class diagrams.

GENERALIZATION
A generalization hierarchy (also called is-a hierarchy) connects a superclass and one or more
subclasses, representing a specialization of the superclass. The hierarchy can be multilevel, because
a subclass can in turn be a superclass of other subclasses.

CHAPTER 3 Domain modeling32

the diagram of Figure 3.7, which specializes class “Computer” into three subclasses:
laptops, tablets, and convertibles. With this solution, the locally defined attributes of
class “Laptop” and “Tablet” must be duplicated in class “Convertible.”

3.7 ASSOCIATIONS
Classes do not exist in isolation but exhibit semantic connections to other classes
called associations.

FIGURE 3.6

Graphic notation for IS-A hierarchies.

FIGURE 3.7

Generalization hierarchy approximating the use of multiple inheritance and nonexclusive
specialization.

ASSOCIATION
An association represents a semantic connection between the objects of classes. Examples of
associations are the connection between a product and the category to which it belongs or between a
product and its accessories.

3.7 Associations 33

The meaning of the association is conveyed by the association’s name, which is
established by the designer. For example, the association between a product and the
accessories available for it could be named “Options.” The simplest form of associa-
tion is the binary association, which connects two classes. Associations involving
more than two classes, called N-ary associations, are also allowed. However, N-ary
associations are more complex to understand and may raise subtle interpretation
issues [GLM01]. In most cases, they can be equivalently replaced by multiple binary
associations, as explained in Section 8.

Figure 3.8 shows the UML notation for associations, applied to the “Options”
relationship between class “Product” and class “Accessory.”

Each binary association is characterized by two association ends (also called
association roles), each one expressing the function that one class plays in the asso-
ciation. For example, the association “Options” between an accessory and a product
can be decomposed into two association roles, one from product to accessory, named
“accessories,” and one from accessory to product, named “product.”

An association role/end can be regarded as the interpretation of the association
from the viewpoint of one of the involved classes, that is, as an oriented connection
between a source class and a destination class.

Association ends can be enriched with multiplicity constraints in terms of lower
and upper bounds, denoting respectively the minimum and maximum number of
objects of the destination class to which any object of the source class can be related.

 • Relevant values for the multiplicity lower bound are zero or one. An associa-

tion is said to be optional for its source class if the multiplicity lower bound is
zero, and mandatory otherwise. Mandatory associations introduce existential
dependencies between classes, because an object of the source class cannot exist
without being associated with at least one object of the destination class.

 • Relevant values for multiplicity lower bound are one or many. The latter option
can be denoted as “*” (or as “N” in other notations such as E–R).

Based on their multiplicity constraint upper bound, associations are called “one-

to-one” if both association ends multiplicity upper bound equals 1, “one-to-many” if
one association end has multiplicity upper bound 1 and the other one has multiplicity
upper bound N, or “many-to-many” if both association ends have multiplicity upper
bound N.

In UML, multiplicity constraints are expressed by annotating the association
ends with multiplicity indicators. Figure 3.9 shows how to represent association role
names and multiplicity constraints: an accessory is associated with multiple prod-
ucts (multiplicity 1..*, placed at the side of class “Product”), and each product may
be associated with several accessories (multiplicity 0..*, placed at the side of class

FIGURE 3.8

Graphic notation for associations.

CHAPTER 3 Domain modeling34

“Accessory”). The role from “Accessory” to “Product” is mandatory, while the role
from “Product” to “Accessory” is optional. The association is “many-to-many,”
because it connects one product to multiple accessories and one accessory to mul-
tiple products.

Association end names can be omitted from the diagram for better readability. In
this case we assume default names as follows:

 • An association end from class “A” to class “B” with multiplicity upper bound 1

is named by default after the name of the class in singular form.
 • An association end from class “A” to class “B” with multiplicity upper bound *

is named by default after the name of the class in plural form.

Defaults are not used when there is ambiguity, for example, when multiple asso-
ciations exist between the same two classes or an association relates a class to itself.
Figure 3.9 exemplifies the naming conventions assumed as default; thus the associa-
tion end names could be omitted without ambiguity from the class diagram.

3.8 N-ARY ASSOCIATIONS AND ASSOCIATIONS WITH
ATTRIBUTES

Most domain modeling languages, including UML, admit the specification of associ-
ations involving more than two classes, called N-ary associations, and of associations
with attributes, represented with association classes. However, these constructs are
less intuitive than binary relationships and also raise interpretation problems, such as
those related to the meaning of multiplicity annotations [GLM01].

However, it is well known from the data modeling field that both these constructs
can be represented using a combination of classes and binary associations. This
practice requires slightly more modeling effort but makes the diagram interpretation
more intuitive.

Figure 3.10 and Figure 3.11 show the representation of N-ary associations (actu-
ally ternary, for the sake of illustration) with equivalent binary associations and
classes.

An N-ary association is equivalent to one “central” class and N binary associa-
tions connecting the central class to the participant classes of the N-ary association
(Figure 3.10). Multiplicity constraints for the central class of the binary association
have both upper and lower bounds equal to 1 to express the fact that an object of the
central class must be connected to exactly one object of each one of the other classes.

FIGURE 3.9

Graphic notations for association roles and multiplicity constraints.

3.8 N-ary Associations and Associations with Attributes 35

This is done because it does not correspond to an object in the real world but is sim-
ply an artifact denoting the connection of N real world objects.

For example, the diagram in Figure 3.11 represents the supply of parts by suppli-
ers to the departments of a company, which is a ternary association representable by
means of three binary associations. Class “Supply” is the central class, which is con-
nected to exactly one instance each of classes “Part,” “Supplier,” and “Department.”

A (binary) association with attributes is equivalent to one “central” class con-
nected by two binary associations to the participant classes of the association with
attributes (Figure 3.12). As in the case of N-ary associations, multiplicity constraints
of the binary associations must have both upper and lower bounds equal to 1 for the
central class to express the fact that an object of such class must be connected to
exactly one object of each of the other two classes, because it does not correspond to
an object of the real world, but is a notation for denoting the attributes relevant to the
connection of two real world objects.

FIGURE 3.10

N-ary associations as a primitive construct (left) and as binary associations and classes
(right).

FIGURE 3.11

A ternary association, represented by the class “Supply” plus three binary associations.

CHAPTER 3 Domain modeling36

For example, the grade taken by a student in a given exam session could be rep-
resented using an association between the classes “Student” and “ExamSession,”
with an attribute “grade.” The same situation can be equivalently modeled by replac-
ing the association with attribute with a class “Exam,” with an attribute “grade.”
The “Exam” class represents an individual exam taken by a student during an exam
session. The resulting domain model, consisting solely of classes and associations
without attributes, is represented in Figure 3.13.

N-ary associations with attributes are treated similarly: one central class is cre-
ated, the association attributes are added to it, and then N binary associations are
created between the central class and the other involved classes.

3.9 DERIVED INFORMATION AND THE OBJECT CONSTRAINT
LANGUAGE (OCL)

In domain modeling, it may happen that the value of some attribute or association of
a class can be determined from the value of some other elements of the model. For
instance, the price after taxes of an article may be computed as the product of the
price before taxes and the VAT, and the tracks published by an artist can be computed

FIGURE 3.12

Association with attributes expressed with an UML association class “AB” (left) and an
equivalent model using only binary associations and classes (right).

FIGURE 3.13

An association with attribute, represented by the class “Exam.”

373.9 Derived Information and the Object Constraint Language (OCL)

by “joining” all the albums published by the artist to the tracks contained in each
album. Attribute and associations that can be calculated are called derived.

UML includes a standard notation for characterizing attributes and associations
as derived, and a language for expressing their computation rule.

 • An attribute or association is denoted as derived by adding a slash character

(“/”) in front of the attribute or association name.
 • The computation rule that defines the derived attribute or association is specified

as an expression added to the declaration of the attribute or association.

Figure 3.14 shows two examples of derived attributes. Among its attributes,
class “Product” includes two regular attributes, “Price” and “Discount,” and two
derived attributes: “/DiscountedPrice,” computed as the value of the expression
(Price*Discount), and “/NumberOfAccessories,” computed as the values of the
expression self.accessories -> size(). This expression counts the number of acces-
sories associated with a product according to the “accessories” association role. The
subexpression self.accessories is an example of path-expression, which is used for
accessing the objects of an association owned by an object.

Figure 3.15 shows an example of derived association. Class “Product” is associ-
ated with class “Producer” by a derived association “/BrandedAccessories,” which
is the concatenation of the two associations between a product and its accessories
and between an accessory and the company that produces it. The derivation rule is
expressed on one of the two association roles by means of a path expression. In the
example, the derivation rule is applied to the association role from class “Product”
to class “Producer,” and is formally specified by adding the OCL constraint to the
role declaration:

context Product::BrandsOfAccessories:Set(Producer)
derive: self.accessories.producer

The examples of Figures 3.14 and 3.15 are formulated using the Object Constraint
Language (OCL), which is the standard way for expressing constraints and derived
information in UML. The use of OCL in domain modeling is important because it

FIGURE 3.14

Derived attributes.

CHAPTER 3 Domain modeling38

permits the designer to convey more of the semantics of the application domain than
would be possible with native UML constructs only, which are limited to simple
restrictions such as visibility and multiplicity constraints.

3.10 DOMAIN MODELING PATTERNS AND PRACTICES
When designing the domain model for an interactive application that offers function-
alities for data publication and management, some recurrent patterns and best prac-
tices can be exploited. They come from recognizing the role that information objects
play in the application. Such roles can be summarized as follows:

 • Core objects: These are the essential assets managed by the application that form

the backbone of the domain model, around which the rest of the data schema is
progressively built. Each core concept may require more than a single class to be
represented, due to the presence of complex properties and internal components.
For this reasons, core concepts become core submodels, which are sets of classes
correlated by associations, collectively representing one core concept.

 • Interconnection objects: These stem from the semantic associations between
core concepts. In an interactive application they are used to construct links and
indexes for navigating from one object to a related one. In the domain model,
interconnection objects are denoted by associations between core classes that
express the desired semantic connections.

 • Access objects: These are auxiliary objects facilitating the construction of
access mechanisms for optimizing the ease of use and effectiveness of the appli-
cation in various ways:

 • by representing relevant categorizations over core objects, which can be used
to express index hierarchies, progressively leading the user to the desired
core objects;

 • by providing more precise keyword-based search mechanisms focused on
well-defined categories of core objects; and

 • by clustering representative core objects into meaningful clusters, like the
“pick of the day” or the “most popular objects.” These collections offer the
user a preview of the most interesting core objects.

 Access objects are normally mapped into classes connected to the core classes
by associations or specialization links. In the case of access objects, it is more

FIGURE 3.15

Derived association.

3.11 The Process of Domain Modeling 39

appropriate to speak of access subschemas, because the same core object may
be categorized or specialized in different ways, using multiple categorizing
classes, associations, and specialized subclasses.

 • Personalization objects: These are used to incorporate into the data model the
relevant properties of the user needed for personalization purposes. For exam-
ple, classes may be used to model user profile data and the groups in which the
users participate, and associations may be used to connect the user and group
classes to other classes in the application domain to represent aspects like object
ownership or personal preferences. Groups can also denote roles played by the
users, as is customary in role-based access control (RBAC) for regulating the
access to the core objects.

The distinction between the different roles played by the classes and associations

must take into account the application domain and the mission of the specific appli-
cation. For instance, in an e-commerce web site for selling books, the author con-
cept associated with the book concept could be considered either as a piece of core
content or just as a property of books, not deserving the status of a core concept. A
concept is core if it independently contributes to the achievement of the application’s
mission. In the book selling example, authors may qualify as core concepts if the site
offers also information about authors, irrespective of books. In this case, the designer
should treat authors as first-class objects, and, for example, publish their biography,
interviews, and so on. As another example, the profile data about users are auxiliary
content used for personalization in most e-commerce applications. Conversely, in a
social network, data about people are the main asset, and profile data are the core
content of the application.

3.11 THE PROCESS OF DOMAIN MODELING
The domain modeling process can be naturally structured as an incremental and
iterative activity. Starting from an initial nucleus—typically consisting of the most
important core concepts—the domain modeler can progressively extend the model
by applying refinement operations:

 • Adding a new core subschema or enriching an existing core subschema by

detailing the internal properties and components of a core concept.
 • Adding an interconnection subschema by drawing associations between core

classes that express the semantic relationships between core concepts.
 • Adding an access subschema by introducing a categorization class and connect-

ing it to a core class, or by specializing a core class using a subclass that denotes
a special collection.

 • Adding a personalization subschema by introducing the user and role class,
defining their properties, and connecting them to the core objects to express
user- or role-related preferences and personal objects.

CHAPTER 3 Domain modeling40

Following the above domain modeling guidelines produces a domain model with
a more regular structure, which is decomposed into modules with a well-identified
purpose, as shown in Figure 3.16:

3.11.1 DESIGNING THE CORE SUBSCHEMA
The process of defining a core subschema from the description of the core concepts
identified in the data requirements analysis is straightforward:

 1. The core concept is represented by a class (called core class).
 2. Properties with a single, atomic value become attributes of the core class. The

identifying properties become the primary key of the core class.
 3. Properties with multiple or structured values become internal components of the

core class.

Internal components are represented as classes connected to the core class via
a part-of association. Two cases are possible, which differ in the multiplicity con-
straints of the association connecting the component to the core class:

 1. If the connecting association has a 1:1 multiplicity constraint for the com-

ponent, the component is a proper subpart of the core concept. In this case,
no instance of the internal component can exist in absence of the core class
instance it belongs to, and multiple core objects cannot share the same instance
of the internal component. Internal components of this kind are sometimes
called “weak classes” in data modeling terminology, or “part-of components” in
object-oriented terminology.

FIGURE 3.16

Data schema highlighting access, core, connection, and personalization subschemas.

3.11 The Process of Domain Modeling 41

 2. If the association between the core class and the component has 0:* multiplic-
ity for the internal component, the notion of “component” is interpreted in a
broader sense. The internal component is considered a part of the core concept,
even if an instance of it may exist independently of the connection to a core
class instance and can be shared among different core objects. Nonetheless, the
internal component is not deemed an essential data asset of the application and
thus is not elevated to the status of a core concept.

Figure 3.17 illustrates the typical domain model of a core subschema, including

one core class, two proper nonshared internal components, and one shared component.
Note that a shared component may be part of one or more concepts, but it is not

treated as an independent object for the purpose of the application. Such a consid-
eration is useful for building the front-end model, which should present or manage
components as parts of their “enclosing” core concepts and not as standalone objects.

3.11.2 DESIGNING AN INTERCONNECTION SUBSCHEMA
Interconnection subschemas are patterns of associations introduced in the domain model
for expressing semantic relationships between core objects, as illustrated in Figure 3.18.

At the two extremes, it is possible that all core concepts are related, which pro-
duces a completely connected graph of associations, or that all the core concepts of
the application are unrelated. In the latter case, the interconnection subschema is
empty, and the core concepts are isolated.

3.11.3 DESIGNING AN ACCESS SUBSCHEMA
Access subschemas are patterns of classes and associations that support the loca-
tion and selection of core concepts. Identifying the needed access subschemas is
less straightforward than identifying the other classes of subschemas. Hints as to
the presence of access concepts can be found in the use case inventory, by carefully
reviewing how users locate their objects of interest. An access subschema consists of
two kinds of classes: categorizing classes and specialized subclasses.

FIGURE 3.17

Typical core subschema.

CHAPTER 3 Domain modeling42

 1. A categorizing class is a class connected via an association to a core class that
plays the role of the categorized class, with the purpose of superimposing a
classification hierarchy over the instances of the core class. For example, in an
online portal application, the published news can be classified into categories by
introducing a “NewsCategory” class into the domain model, with the role of cat-
egorizing class, and associating it to the class “NewsItem,” which plays the role
of the categorized class.

 2. A specialized subclass is a class connected by an “is-a” association to a core
class. The instances of this subclass share some common property that distin-
guishes them from the general case and can be exploited for facilitating access.
Examples of this way of grouping special instances are commonly found in web
applications and social networks in the form of “highlighted items,” like editor’s
choices, specials of the day, recent news, and popular topics. In this case, the
subclass denotes the restricted subgroup of instances of the superclass that are
selected as members of the special collection.

Figure 3.19 pictorially represent a “canonical” access schema. A central

class, labeled “Core,” represents the core concept, and is surrounded by two
classes representing access concepts, labeled “Access1,” and “Access2,” which
denote alternative categorizations. The diagram contains also a subclass, labeled
“SpecialCollection,” which denotes a collection of representative core concepts.

Note that categorical concepts are treated as classes and not only as an inter-
nal property of the categorized class, because they may themselves store sev-
eral pieces of information, like a representative image or some descriptive text,
which illustrates the common features of core objects belonging to the category.
The organization of categorical concepts can reflect the following three recurrent
patterns:

 • Categorical concepts can themselves be categorized, resulting in a hierarchy of

categorizations. For example, hardware products can be classified by category

FIGURE 3.18

Typical connection subschema.

3.11 The Process of Domain Modeling 43

(computers or peripherals), then by family (PCs, servers, and laptops), then by
commercial brand, and so on (Figure 3.20a).

 • The same core concept may be subject to more than one categorization, provid-
ing multiple classifications. For example, blog posts may be organized by topic
and by user generated tags (Figure 3.20b).

 • Finally, the same categorical concept can be used to classify more than one core
concept, resulting in a shared categorization. For example, the class “Country”
may classify both news and products (Figure 3.20c).

FIGURE 3.19

Typical access subschema.

FIGURE 3.20

Three forms of categorization: hierarchical (a), multiple (b), and shared (c).

CHAPTER 3 Domain modeling44

3.11.4 DESIGNING A PERSONALIZATION SUBSCHEMA
A personalization subschema consists of classes and associations describing proper-
ties of the users, relevant to the adaptation of the user interface. The properties cap-
tured by the personalization subschema typically comprise:

 1. Profile data, which are the attributes—possibly complex—that characterize

the individual users. Example of general-purpose profile attributes may be the
name, address, location, sex, and age of a user. Profile data may also be applica-
tion specific. For instance, in e-commerce applications profile attributes may
include the total amount of expenditure, the date of the last visit or purchase, the
feedback score of a buyer or seller, and so on.

 2. User groups, which represents the identified clusters of users with homogeneous
requirements or permissions. The typical usage of the user group concept is the
clustering of users according to the role they are entitled to play in the application.

 3. Personalization associations, which are semantic associations between core
objects and the users or groups, denoting aspects such as the access rights of
users or groups over core objects, the ownership of core objects by users or
groups, the preference of users or groups for selected core objects, or the recom-
mendation of core objects to users or groups.

Information about a user can be represented explicitly in the domain model. The

model in Figure 3.21 is an example of a basic, yet typical, personalization subschema.

 • Class “User” specifies information about the individuals who access the applica-

tion. It includes basic properties such as username, password, photo, and e-mail.
 • Class “Group” specifies information about clusters of users with homogeneous

requirements. It includes collective properties, such as the group name, the
number of members, and so on. The “Group” class can also be used to represent
the roles of the users for access control purposes.

 • A many-to-many association (called “Membership”) connects class “User” and
“Group,” denoting that a user may belong to multiple groups and that a group
clusters multiple users.

 • A one-to-many association (called “Default”) connects class “User” and
“Group,” denoting that a user may have one group as the default one among
the groups he belongs to. This additional information is useful for assigning the

FIGURE 3.21

User and Group representations in the personalization data schema.

3.11 The Process of Domain Modeling 45

user to the default group after he logs into the application. Note that in those
applications where users are associated with a single group there is no need of
the “Default” association.

The simple data schema of Figure 3.21 can be augmented with further elements

to represent user information needed in a specific application domain.
Figure 3.22 shows an example in which the “User” class includes additional

profile attributes, such as “FirstName,” “LastName,” “Title,” “Country,” “City,”
“Street,” and “ZIPcode.” Further classes can be included for modeling additional
data of the user profile. For instance, the class “ShippingAddress” can be added to
allow users to ship goods to multiple addresses. The class “LastPurchase” can be
added for recording data about the last purchased products, like the price, the ordered
quantity, the total order value, the purchase date and time, and the shipping address.
Personalization data of this kind can be used, for example, for recommending prod-
ucts based on the past purchase history.

Personalization associations can also represent interface configuration prefer-
ences. An example of personalization association is reported in Figure 3.23, in the
context of a personalized geo-referenced application publishing local information,
like weather reports, events, and city guides. The preference associated with the user
records the city where he is currently located and is represented by an association
between class “User” and class “City,” which permits the selection of specific content

FIGURE 3.22

Domain-specific user profiles data for an e-commerce application.

CHAPTER 3 Domain modeling46

based on the preferred city of the user, as denoted by the “Forecast,” “LocalNews,”
and “CityGuideItem” components classes owned by class “City.”

Note that the choice of making forecasts and local news part-of components of
class “City,” rather than shared components, is arguable and depends on the specific
application and viewpoint of the modeler. This observation applies to most examples
in the book, which should not be taken as the only possible models. Many of them
may admit alternative variants in different contexts, based on the interpretation of
requirements and even on the modeling style of the designer.

A personalization association may also denote information objects owned by
individual users. The meaning of such an association may be that only the user who
owns personal objects can access and manipulate them. This happens, for example,
for the shopping cart in e-commerce applications. In other cases, personal objects
are created and managed by their authors but are also available to other users. This
happens, for example, in blog and content sharing platforms, where users publish
content items for other users to view and comment.

The data schema of Figure 3.24 includes two personalization associations that
relate each user with the articles and comments he has produced. Comments are also
connected to the article with which they are associated.

FIGURE 3.23

Basic domain model for a geo-localized newsfeed application.

473.12 Running Example

The personalization subschema of the domain model describes the properties
of users and the way they are clustered and associated with other domain objects.
They are typically stored persistently (e.g., as the result of a user registration pro-
cess). Exploiting the information of the personalization subschema for dynami-
cally adapting the interface requires identifying the specific user at runtime and
preserving his identity during the course of the interaction. In chapter 4, we intro-
duce the IFML constructs for modeling interface adaptation: Context, ContextDi-
mensions, and ContextVariables. A ContextVariable is a runtime-initialized object
that can be used in the interface model. It can represent, among the other things,
the authenticated user’s identity and, if the application assigns specific roles to the
authenticated user (e.g., as part of a RBAC scheme), also the current role of the
user. In chapter 8, we will show how to model the login process, which is the typi-
cal way in which the ContextVariable with the authenticated identity of the user
gets initialized at runtime.

3.12 RUNNING EXAMPLE
In this Section we start illustrating a running example that will support the descrip-
tion of interface modeling with IFML in the next sections.

The application is an e-mail management system that lets users manage mes-
sages and contacts. Users have a name and an e-mail address. E-mail messages are

FIGURE 3.24

Basic domain model of a blog application.

CHAPTER 3 Domain modeling48

clustered into system- or user-generated mailboxes for easier access. They can also
be associated with tags for enabling topic-driven access. Tags themselves can be
organized in hierarchies. E-mail messages have a subject, a body, a date and time,
a “read” flag, a sender, several recipients (direct, carbon copy, and blind copy), and
possibly multiple attachments. Users can be recorded as contacts with additional
data such a photo and phone number. Contacts can be clustered in groups for easier
access. Users can have chat conversations. A chat conversation consists of several
chat messages belonging to the user who produced them.

Figure 3.25 shows the domain model of the e-mail management application.
Classes and associations are laid out to highlight the different subschemas:

 • Core subschema: contains the classes “Message,” “Contact,” and “ChatConver-

sation,” with their attributes, subclasses, and part-of classes.
 • Interconnection subschema: messages are related to their recipient users.
 • Access subschema: e-mail messages are categorized by tags and clustered into

mail boxes. Contacts are clustered into groups.
 • Personalization subschema: the “User” class stores profile data Users are related

to the messages, chat conversations, and contacts they possess.

FIGURE 3.25

Domain model of the e-mail management application.

493.14 Bibliographic Notes

3.13 SUMMARY OF THE CHAPTER
This chapter has addressed domain modeling, an activity complementary and highly
relevant to interface modeling. Adhering to the principles of simplicity and separa-
tion of concerns, IFML does not prescribe a specific domain modelling language
but can be interfaced to the notation preferred by designers, provided that it allows
expressing the objects and associations of the application domain. For the sake of
illustration, we have employed UML class diagrams, and briefly recapped their main
features for structural modeling.

To show the interplay of domain and interface modeling, we have discussed
design patterns that occur in the domain model, which stem from the joint consider-
ation of data representation and interaction support requirements. The chapter ended
with the specification of the domain model of an e-mail application, the running
example that we discussed in chapters 4, 5, and 6, devoted to the systematic introduc-
tion of the core IFML concepts.

As a final remark, the position of a chapter about domain modeling before those
devoted to front-end modeling follows the editorial necessity of sequencing topics,
but does not imply a prescription on the order in which things must be done. Dis-
covering the objects and the associations of the domain model benefits from the
understanding of the type of interaction that the application must support. The design
of the front end equally benefits from the knowledge about the important objects
and associations the application deals with. The relative importance and the order in
which domain design and front-end design should be executed depend also on the
emphasis of the specific application at hand.

3.14 BIBLIOGRAPHIC NOTES
Domain modeling dates back to 1976, the year in which the seminal article by Peter
Chen, “The Entity–Relationship Model—Toward a Unified View of Data,” appeared
in the first issue of ACM’s Transactions on Database Systems. Ever since, conceptual
data modeling with the Entity–Relationship model has been the cornerstone informa-
tion systems development. Conceptual database design is a classic ingredient of data
design, described in detail in [BCN92]. A popular book on the subsequent phase of
physical database design is [Shasha92].

Domain modeling is also part of object-oriented analysis and design. Classic
books on the subject are [BJR98, Booch94, CY90, Jacobson94, RBPEL91, SM88].
In particular, Booch, Jacobson, and Rumbaugh provide an excellent guide to the Uni-
fied Modeling Language (UML), by means of an easy-to-understand example-driven
approach [BJR98]. A concise reference to UML is Martin Fowler’s UML Distilled
[Fowler03]. The Object Constraint Language official specifications are published
in the web site of the OMG (http://www.omg.org/spec/OCL/). The language use is
treated extensively in the textbook [WK03].

http://www.omg.org/spec/OCL/

CHAPTER 3 Domain modeling50

The idea of using domain modeling in conjunction with web front-end design has
been explored by a few web design methods proposed in the research community,
including HDM [GPS93], RMM [ISB95], and WebML [BBC03]. These methods
have underlined the differences between data modeling for traditional applications
and for hypertext-based interfaces. The importance of design patterns in object-
oriented design was first been recognized in the milestone book [GBM86]. Design
patterns and best practices specific to data design for the web were first discussed in
[CFP99].

END NOTES
 1. http://www.omg.org/spec/OCL/.

http://www.omg.org/spec/OCL/

51Interaction Flow Modeling Language. http://dx.doi.org/10.1016/B978-0-12-800108-0.00004-7
Copyright © 2015 Elsevier Inc. All rights reserved.

CHAPTER

The goal of user interface modeling is the specification of the front end of the appli-
cation. This activity is performed at a high level, comparable to the conceptual level
at which objects and associations are specified in the domain model. In contrast to
domain modeling, which rests on a consolidated tradition, interface modeling is a
younger discipline based on new concepts and methods.

In this chapter, we describe IFML in detail, commencing with the elements used
to specify the general organization of the interface and high-level navigation. In
chapter 5, we discuss the IFML primitives for expressing the internal composition
of the interface: the published content components and the data entry forms, as well
as the interaction mechanisms associated with them. In chapter 6, we focus on the
specification of the business actions triggered by user interaction and on their effect
on the status of the interface. For a more formal introduction to the elements of IFML
and their associations, the reader can refer to chapter 12, where the IFML metamodel
is briefly discussed.

4.1 INTERFACE ORGANIZATION
The specification of the interface in IFML is organized hierarchically using modular-
ization constructs called ViewContainers.

In practice, a ViewContainer may represent a physical interface artifact such as a
window or a page of a web application. But it can also denote a purely logical aggre-
gation of other view containers, such as a section of a large web portal constituted by
several pages dealing with a homogeneous subject.

ViewContainers support navigation, which is the change of focus from one con-
tainer to another. To specify that a ViewContainer is the source of a navigation com-
mand, it is necessary to associate it with an event.

Modeling the composition
of the user interface 4

VIEWCONTAINERS
A ViewContainer is an element of the interface that aggregates other view containers and/or view
components displaying content.

CHAPTER 4 Modeling the composition of the user interface52

A ViewElementEvent is an Event that may be triggered by the user while
interacting with ViewContainers, ViewComponents, and parts thereof called
ViewComponentParts.

The effect of user interaction—that is, the target ViewContainer displayed after
a ViewElementEvent has occurred—is specified by means of a NavigationFlow,
denoted as a directed arc connecting the event symbol to the target view container.

Figure 4.1 shows a very simple IFML model exemplifying these concepts,
together with a hypothetical rendition.

EVENTS
An Event is an occurrence that can affect the state of the application by causing navigation and/
or passing parameters. Events may be produced by a user interaction (ViewElementEvent), by an
action when it finishes its execution normally or exceptionally (ActionEvent), or by the system in
the form of notifications (SystemEvent).

NAVIGATIONFLOW
A NavigationFlow represents the navigation or the change of the view element in focus, the trig-
gering of an Action, or the reaction to a SystemEvent. NavigationFlows are activated when Events
are triggered. They connect Events owned by ViewContainers, ViewComponents, ViewComponent-
Parts, or Actions with other ViewContainers, ViewComponents, ViewComponentParts, or Actions.

FIGURE 4.1

Model of navigation between view containers expressed with events (top) and the corre-
sponding rendition (bottom).

4.2 View Container Nesting 53

“Source” and “Target” are ViewContainers, denoted as UML classifiers.
“ClickMe” is an Event, represented as a circle associated with the owning ViewCon-
tainer. The NavigationFlow, denoted by an unlabeled directed arrow, connects the
event named “ClickMe” of the “Source” ViewContainer to the “Target” ViewCon-
tainer, indicating that the occurrence of the “ClickMe” event causes the display of
the “Target” ViewContainer.

Notice that some model features, such as the name of the ViewContainers and
of the Event, are purposely shown also in the rendition. This is to highlight that
the model features can be employed to create the implementation. For example, the
name of the ViewContainer could be used to produce the title of a window or the
name and URL of a web page, and the name of an Event could be exploited to create
the text of a hyperlink anchor or a button label.

4.2 VIEW CONTAINER NESTING
Most interfaces organize the content and interaction commands presented to the user
into a regular structure to enhance usability. For example, many web pages have
a central content area and one or two columns for collateral items such as menus,
search bars, and ads. Window-based interfaces split the work area into several panels
and use tabbing to present alternative views of the work items.

IFML models the structure of the interface by means of nested ViewContainers.
Nested ViewContainers express the organization of the interface at a conceptual level
but necessarily have an interpretation that depends on the platform where the inter-
face is deployed. Two typical situations arise:

 • In window-based platforms, such as Java Swing or Windows.NET, the interface

is normally hosted within one top-level container.
 • In a pure HTML web application, the interface is normally fragmented across a

set of independent page templates, which means that there is no top-level View-
Container. Rather, one ViewContainer is elected as the one accessed by default
(the so-called “Home Page”).

The advent of rich Internet applications has blurred the distinction between win-

dow-based and page-based interfaces, so it is not uncommon to see interfaces that
have an organization that stands in the middle between the two extremes. This is in
line with the single page development paradigm.

In the rest of this section, we proceed in the explanation of the features of View-
Containers from a platform-independent perspective. We will come back to the influ-
ence of platform-dependent features on design when discussing interface design
patterns later in this chapter. In chapter 7, we will present some extensions to IFML
conceived for desktop, web, and mobile development, which customize the termi-
nology and concepts of IFML to make the language closer to the expectations of
developers of these popular classes of solutions.

Nested ViewContainers may be in conjunctive form, which means that they
are displayed together, or in disjunctive form, which means that the display of one

http://Windows.NET

CHAPTER 4 Modeling the composition of the user interface54

ViewContainer replaces another ViewContainer. The property of disjunctiveness is
explicitly associated with the enclosing container with the notation shown in Figure 4.2:
a XOR label before the name of the ViewContainer. By default, ViewContainers dis-
play their inner ViewContainers in conjunctive form.

Figure 4.3 shows an example of disjunctive ViewContainers from the e-mail
application used as a running example. The interface consists of a top-level View-
Container from which the user can access either the “MailMessages” ViewContainer
or the “Contacts” ViewContainer.

FIGURE 4.2

Cconjunctive and disjunctive nested ViewContainer and a possible rendition.

FIGURE 4.3

Example of disjunctive nested ViewContainer in the e-mail application.

4.4 View Container Relevance and Visibility 55

4.3 VIEW CONTAINER NAVIGATION
ViewContainers support a basic form of navigation, which we call content-independent
navigation to mark the distinction with the content-dependent navigation described in
chapter 5.

Content-independent navigation is expressed by associating a navigation event to
a ViewContainer and by specifying the target of the navigation with an Interaction-
Flow. An example of this design pattern was illustrated in Figure 4.1.

The meaning of content-independence is that user interaction does not depend on
the content of the source and destination ViewContainers. In implementation terms,
it is not necessary to associate parameter values with the interaction in order to com-
pute the content of the target ViewContainer. This behavior is in contrast to content-
dependent navigation, discussed in chapter 5.

4.4 VIEW CONTAINER RELEVANCE AND VISIBILITY
ViewContainers are characterized by some distinguishing properties that highlight
their “importance” in the organization of the interface.

Default view containers are denoted by a “D” within square brackets placed at the
top-left corner of the view container.

Landmark view containers are denoted by an “L” within square brackets placed
at the top-left corner of the view container.

Figure 4.4 shows an example of the landmark and default properties in the
e-mail application. When the user starts the application the “Mail” ViewContainer is
accessed. The default subcontainer “MailMessages” is displayed, whereas the alter-
native ViewContainer “Contacts” remains hidden. Both “MailMessages” and “Con-
tacts” are defined as landmarks, which means it is always possible to access the one
that is not in view from the one that is in view.

DEFAULT VIEWCONTAINERS
The default property characterizes the ViewContainer presented by default when its enclosing
ViewContainer is accessed.

LANDMARK VIEWCONTAINERS
The landmark property characterizes a ViewContainer that is reachable from all the other View-
Containers nested within its enclosing ViewContainer (i.e., from its sibling ViewContainers) and
from their subcontainers.

CHAPTER 4 Modeling the composition of the user interface56

The landmark property is an example of a construct introduced for model usability.
It does not augment the expressive power of IFML, because the access to ViewCon-
tainers can be represented explicitly with navigation flows, but reduces the burden of
model specification and augments the readability of diagrams. Figure 4.5 illustrates
on a small scale example why this is true. It shows two equivalent IFML diagrams.
In the diagram on the left, the ViewContainers nested inside the Top ViewContainer
are marked as landmarks, which means that every ViewContainer is the target of an
implicit navigation flow pointing to it from the sibling ViewContainers. The diagram
on the right explicitly shows these navigation flows and the events triggering the
navigation. The meaning conveyed by the diagram on the left is that a landmark View-
Container can be reached from any other ViewContainer of the enclosing module. If
an interface contains many containers, the landmark property significantly reduces
the number of events and navigation flows to be drawn and makes the diagram much
more readable.

FIGURE 4.4

Use of the landmark and default properties in the e-mail application.

FIGURE 4.5

Landmark ViewContainers (left) and equivalent diagram with explicit events and navigation
flows (right).

4.5 Windows 57

Figure 4.6 shows an example with nested ViewContainers. ViewContainer “One”
is landmark and thus accessible from its sibling ViewContainers and their children
(i.e., from the ViewContainers “Two,” “Three,” and “Four”). The same applies to
ViewContainer “Two.” Again, the use of the landmark property avoids cluttering the
diagram with many events and navigation flows.

4.5 WINDOWS
IFML provides a set of specializations of the ViewContainer concept that allow one
to represent more precisely the behavior of the container-level navigation.

Navigation from a source window to a target window (not tagged as Modal or
Modeless) implies that the source window disappears and is replaced by the target. If
the target Window is tagged as Modal or Modeless instead, the new window will be
superimposed onto the old one and will behave as modal or modeless respectively.
Window, Modal, and Modeless specializations can be specified as stereotypes of the
ViewContainer classifier, as shown in Figure 4.7.

Navigation between Windows “Step 1” and “Step 2” implies that “Step 2” sub-
stitute “Step 1” on the screen. Navigations from “Submission” to “Confirmation”
and “ToolsMenu” will open the two new windows in front of the old one and will
respectively grant modal and modeless behavior.

FIGURE 4.6

Landmark ViewContainers with nesting (left) and an equivalent diagram with explicit events
and navigation flows (right).

WINDOW
A Window is a specific kind of ViewContainer that represents a window in a user interface.
A Window ViewContainer can be tagged as Modal or Modeless depending on its behavior with
respect to the user interaction. A Modal window opens as a new window and disables the interaction
with the background window(s) of the application; a Modeless window opens as a new window and
still allows interaction with the other pieces of the user interface.

C
H

A
P

TE
R

 4
 M

odeling the com
position of the user interface

5
8

FIGURE 4.7

Examples of window, modal window, and modeless window, and their possible renditions.

4.6 Context and Viewpoint 59

4.6 CONTEXT AND VIEWPOINT
The composition of the interface is not necessarily a static concept. Many applica-
tions update the interface organization and content at runtime, based on informa-
tion about the context of the user interaction. For example, a mobile application can
deliver alerts based on the current position of the user, and a web-based portal may
exploit the information of the personalization subschema, introduced in chapter 3,
for publishing user profile data and personalized recommendations.

To support the dynamic adaptation of the interface, IFML comprises concepts
that capture both the design-time adaptation requirements set by the developer and
the runtime values set by the application, which are necessary for deciding which
adaptations to apply based on the interaction context of the user. The notion of con-
text provided by IFML is purposely very broad. It may encompass aspects such as
the identity, role, geographic position, or device of the user.

IFML comes with various predefined extensions of the ContextDimension
concept.

The predefined Context and ContextDimension elements can be extended to rep-
resent finer-grain or other context perspectives, such as network connectivity or tem-
poral aspects.

The requirements for a Context to be active are expressed by OCL expressions,
called ActivationExpressions.

Figure 4.8 shows the IFML notation for an ActivationExpression that speci-
fies when a Context is active. The specific context is represented as an instance

CONTEXT AND CONTEXTDIMENSION
The Context is a descriptor of the runtime aspects of the system that determine how the user inter-
face is adapted. A ContextDimension is a component of the Context.

USERROLE, DEVICE, AND POSITION
The UserRole represents the role currently played by the user in the application. It comprises the
attributes that the user’s profile should satisfy to enable the context.

Device represents the characteristics that a device possesses.
Position represents the availability of location and orientation information of the device used to

access the application.

ACTIVATIONEXPRESSION
An ActivationExpression is a Boolean condition that determines whether the associated Context
(or other IFML element) is active (if the condition is true) or inactive (if the condition is false).

CHAPTER 4 Modeling the composition of the user interface60

(“AdminMobileContext”) of a classifier stereotyped as «context». The Activa-
tionExpression is expressed as a stereotyped annotation associated to the Context
instance.

The example of Figure 4.8 assumes that the “UserRole” ContextDimension has
an attribute called “RoleName” that specifies the role that the user should fulfill
in a role-based access control (RBAC) system. It also assumes that the “Device”
ContextDimension has two attributes. “Type” identifies the class of device, while
“Size” indicates the dimensions of the screen. The specification of Figure 4.8
therefore mandates that the “CustomerMobileContext” is enabled when the user’s
access device is a small screen tablet and the role granted after login is that of a
registered customer.

The evaluation of an ActivationExpression associated with a context requires that
the values of the relevant ContextDimensions be recorded at runtime. Such runtime
values can be represented in IFML as ContextVariables.

ContextVariables enable a form of fine-grain interface adaption, as we will see
in chapters 7, 8, and 9. They can be used in ActivationExpressions associated with
ViewElements to condition their visibility based on the situation. Another, coarser-
grain form of interface adaptation is achieved by using ViewPoints, which denote
whole application designs tailored for a specific context.

The enablement of the ViewPoint is dynamic and governed by the ActivationEx-
pression associated with the Context. When the ActivationExpression is satisfied, the

FIGURE 4.8

ActivationExpression specifying the requirements for the Context to be enabled.

CONTEXTVARIABLE
A ContextVariable is a runtime variable that holds information about the usage context. It special-
izes into SimpleContextVariable (of a primitive value type) and DataContextVariable (referencing a
DataBinding).

VIEWPOINT
A ViewPoint is the specification of an entire interface model that is active only when a specific
Context is enabled.

4.6 Context and Viewpoint 61

Context becomes active and so does the associated ViewPoint with all the ViewEle-
ments and Events contained in it.

Figure 4.9 shows an example of ViewPoint specification. Two ViewPoints are
defined (“Admin” and “Editor”) that contain different interface models for the
two distinct roles. They are associated with the contexts that specify the activation
requirements of the ViewPoints.

In summary, the ContextDimensions express the enabling dimensions of the Con-
text, and an ActivationExpression can be used to dictate the required values for such
ContextDimensions. The actual runtime values for a specific user are represented by
ContextVariables. When the relevant runtime values of the ContextVariables match
the required values for the ContextDimensions in the ActivationExpression, the Con-
text is enabled. The enabled Context in turn identifies the ViewPoint (i.e., the variant
of the interface) to be used. Finer-grain adaptation can be achieved using ContextVari-
ables in ActivationExpressions associated with individual element of the interface.

The values of the ContextVariables can also be used to publish or to put to work
the content of the personalization schema

 • A ContextVariable holding the user’s identity (e.g., the “username” attribute)

permits the application to look up the appropriate instance of the “User” class of
the personalization subschema, retrieve profile data and personal objects from
the database, and publish them in the interface.

 • A ContextVariable holding the role of an authenticated user can be used to look
up the appropriate instance of the “Group” class in the personalization sub-
schema, retrieve the permissions of the user, and adapt the interface content and
actions to such permissions.

In chapter 7, we put these concepts to work in various examples of the adapta-

tion of the interface for web and mobile applications. In chapter 8, we discuss how
to set the ContextVariables explicitly based on user interaction (e.g., as the effect of
a login Action) and how to use them in applications exploiting the identity and role
of the user.

FIGURE 4.9

ActivationExpressions and Contexts enabling different ViewPoints.

CHAPTER 4 Modeling the composition of the user interface62

4.7 USER INTERACTION PATTERNS
The proper organization of the interface is paramount for getting a good and user-
friendly experience. IFML allows the designer to express such an organization at
a conceptual level before committing to the implementation architecture. To sup-
port the design of the interface structure, we introduce a set of guidelines based on
user interaction patterns, reusable models that effectively address a recurrent set of
requirements in the design of user interfaces. When most users become accustomed
to a successful pattern, new applications tend to implement the same design to reduce
the learning curve and induce a sense of familiarity. User interaction patterns are
classified into various categories, based on the concern addressed.

We will use a pattern naming convention to help designers immediately identify
the purpose of a pattern. The name of a pattern is structured as XY-Z, where:

 • X is the category of pattern. For instance, interface organization patterns start

with the letter “O.”
 • D is the deployment platform. For instance, desktop patterns are labeled with

“D,” web with “W,” and mobile with “M.” The letter “G” (for “general”) is
reserved for cross-platform patterns that apply irrespective of the deployment
platform.

 • Z is a mnemonic label identifying the specific pattern.

For instance, a pattern could be named OD-SWA (as in the first example described
in section 4.8.1.1).

4.8 INTERFACE ORGANIZATION PATTERNS AND PRACTICES
An interface organization pattern is a user interaction pattern that focuses on the
hierarchical structure of the user interface. Different interface organization patterns
have emerged for different classes of applications and for the various delivery plat-
forms and access devices. This section reports some of the best-known patterns in
this category, classified by platform (desktop, web, and mobile). Other categories of
patterns are presented in the next chapters.

4.8.1 DESKTOP INTERFACE ORGANIZATION PATTERNS
In desktop applications—and more recently in single-page rich Internet appli-
cations—the entire user interface is hosted within a single topmost ViewCon-
tainer, which has an articulated internal structure based on a hierarchy of nested
ViewContainers.

4.8.1.1 PATTERN OD-SWA: Simple work area
A typical functional division distinguishes a work area where the main tasks of the
application are performed from one or more service areas, including ViewContainers

4.8 Interface Organization Patterns and Practices 63

either hosting commands (e.g., menu bars, tool bars) or supporting auxiliary tasks
(e.g., console or error message panels, status bars).

Figure 4.10 shows the IFML model of the simple work area interface organiza-
tion pattern with an example application (a text editor). The pattern simply comprises
a top-level ViewContainer with embedded nested sub-ViewContainers.

4.8.1.2 PATTERN OD-MWA: Multiview work area
When the task supported by the application and the data or the objects to be manipu-
lated grow in complexity, the simple work area organization can be refined. One
extension is to allow for multiple alternative views of the object/data/task in the work
area, as represented by View1 and View2 in Figure 4.11.

Figure 4.11 shows an example of the multiview work area interface organization.
An image editor has a normal view shown by default (called “Home”) and a zoom
view used for adjusting the zoom level of the image (called “View”).

4.8.1.3 PATTERN OD-CWA: Composite work area
An alternative way of breaking down complexity is to split the work area into subre-
gions devoted to different subtasks or perspectives of the object/data/task, presented
simultaneously to allow the user to switch without losing the focus on the item under
consideration. In such a case, one subregion often hosts the principal representation
of the object/data/task and the other regions support collateral properties or subtasks.

Figure 4.12 shows an example of a composite work area interface with an exam-
ple application: a document editor, featuring the main work area with a set of associ-
ated panels plus a set of menu bars.

4.8.1.4 PATTERN OD-MCWA: Multiview composite work area
The decomposition of the work area into alternative perspectives and simultaneous
partial views can be combined to achieve a nested structure that best fits the specific
requirements of the task supported by the application. For example, the work area
could be partitioned into partial views displayed simultaneously, and the main view
could be organized into multiple perspectives. Another option could have the work
area supporting alternative perspectives, each one composed of several partial views
appropriate to a perspective, displayed simultaneously.

Figure 4.13 shows an example of a multiview composite work area: a program-
ming language IDE has an editing and a debug view, the latter composed of several
parts.

4.8.2 WEB INTERFACE ORGANIZATION PATTERNS
In web applications, the typical organization of the interface allocates functional-
ity to multiple pages, either produced statically or generated dynamically by page
templates or server side scripts. In this case, nested ViewContainers are still useful
and can fulfill a twofold role. As with desktop applications, they may express the
allocation of content and navigation within regions of a page (e.g., as is possible with

C
H

A
P

TE
R

 4
 M

odeling the com
position of the user interface

6
4

FIGURE 4.10

The simple work area interface organization pattern with an example application (a text editor).

4
.8

 Interface O
rganization P

atterns and P
ractices

6
5

FIGURE 4.11

The multiview work area interface organization pattern with an example application.

C
H

A
P

TE
R

 4
 M

odeling the com
position of the user interface

6
6

FIGURE 4.12

The composite work area interface composition pattern.

4
.8

 Interface O
rganization P

atterns and P
ractices

6
7

FIGURE 4.13

The multiview composite work area pattern.

CHAPTER 4 Modeling the composition of the user interface68

HTML frames or through the use of JavaScript). In contrast to desktop applications,
they may express the logical clustering of multiple pages that have some common
characteristics, for the purpose of modularizing the web application and supporting
cross-site navigation mechanisms.

4.8.2.1 PATTERN OW-MFE: Multiple front-ends on the same domain
model

In many cases, the web is used as a technical architecture to deliver a set of appli-
cations on top of the same data, represented in the domain model. A classical
case is that of content management systems (CMS). These applications support
two roles, as shown in Figure 4.14: the content editor and the reader, which have
different use cases and must be served by distinct front ends acting upon the
same data. In such a scenario, the pages constituting the two applications could
be clustered into two distinct top-level containers, one for the editor and one for
the reader.

Such an organization brings several benefits:

 • It expresses a functional modularization of the front end that could be exploited,

for example, to partition the implementation effort across different teams.
 • It allows ViewContainers to be used as resources in a role-based access control

policy. Users with role “editor” will access the pages of the “Editor” ViewCon-
tainer, whereas users with role “reader” will access the pages of the “Reader”
ViewContainer.

 • It enables a better management of the implementation artifacts, including the
deployment at different web addresses and the separation of graphic resource files.

FIGURE 4.14

User roles and use cases in a content management system.

4.8 Interface Organization Patterns and Practices 69

Figure 4.15 shows an example of multiple front ends interface composition pat-
tern applied to a content management application serving the roles and use cases
illustrated in Figure 4.14. A top-level ViewContainer “Login” denotes a public page
for logging into the application, common to both roles. Then two nested ViewCon-
tainers comprise the ViewContainers that denote the web pages specific to the use
cases of each role.
The dynamic activation of the appropriate interface after a user request based on his
role can be specified using the Context and Viewpoints introduced in chapter 3. For
each role, a Context with the appropriate ActivationExpression on the “UserRole”
ContextDimension can be defined and associated with a ViewPoint that comprises
the ViewContainers of Figure 4.15 appropriate for that role.

4.8.2.2 PATTERN OW-LWSA: Large web sites organized into areas
ViewContainers also come handy for expressing the logical organization of many
real-world web applications that exhibit a hierarchical structure whereby the pages
of the site are clustered into sections dealing with a homogeneous subject. Nested
ViewContainers can play the role of “site areas,” recursively structured into other
subareas and/or pages. Most real-life web sites exhibit an organization into areas.
For example, Figure 4.16 shows an interface fragment taken from a web site
whose pages include a navigation bar with anchors pointing to the various areas
of the site.

In chapter 7, we will exploit the native extension mechanism of IFML to intro-
duce specializations of the ViewContainer concept that make the specification of web
interface organization patterns more expressive.

FIGURE 4.15

Example of multiple front ends interface composition pattern applied to a CMS application.

CHAPTER 4 Modeling the composition of the user interface70

FIGURE 4.16

Popular web sites exhibit an organization into logical areas.

4.8.3 MOBILE INTERFACE ORGANIZATION PATTERNS
Mobile interface organization must account for the reduced screen space of
 portable devices and for the usage context, whereby users often access the
 application in unconformable conditions, such as while standing or walking.
Therefore, a consistent usage of the scarce screen space is the number one rule of
interface organization to reduce the learning curve and minimize the interactions
needed to perform tasks. This requirement constrains the top-level organiza-
tion, which repeats consistently across mobile operating systems and individual
applications.

In this section, we introduce only one high-level interface organization pattern.
We defer to chapters 7 and 8 the illustration of several other design patters for mobile
applications based on the interplay between the organization of the main interface
containers and the content components.

4.8.3.1 PATTERN OM-MSL: Mobile screen layout
The basic organization of the interface of mobile applications maps the interface to a
top-level grid that contains three regions: the header, the content area, and the footer,
as shown in Figure 4.17.

The header is normally used for command menus and notifications. Part of the
header may be reserved for operating-system notifications and therefore remains
fixed across all applications. The content area normally has a simple layout that lim-
its the use of multiple perspectives and nested panes to a minimum and exploits
scrolling along one dimension to accommodate content that overflows the size of the
screen. The footer region is normally allocated to system-level commands, such as
general or application-specific settings menus.

4.9 Running Example 71

This essential design pattern can be articulated in a variety of more specific forms
depending on the device capacity, the content type, and the application requirements.
Chapters 7 and 8 provide many examples of IFML extensions that make the models
of mobile applications more expressive and introduce several design patterns that
recur in different classes of mobile applications.

4.9 RUNNING EXAMPLE
We return to the running example of the e-mail management application started in
chapter 3 to show how to model the organization of the interface.

When the user accesses the application, the interface presents by default the func-
tionality for accessing mailboxes and managing messages, as shown in Figure 4.18.

An equivalent interface is available for contact management, which is accessed
upon request. Its organization is shown in Figure 4.19.

The application lets the user always switch from one view to the other by means
of a menu, as shown in Figure 4.20.

FIGURE 4.17

Mobile applications organize the interface into header, footer, and content regions.

CHAPTER 4 Modeling the composition of the user interface72

The message management interface comprises an area for working with mail-
boxes and messages. This area is displayed by default, as shown in Figure 4.18. If
the user activates the compose command, the mailbox and message area is replaced
with a message composer interface, shown in Figure 4.21. Similarly, if the user acti-
vates the “Settings” command, a pop-up panel for editing options and preferences is
displayed, as shown in Figure 4.22.

The area for working with mailboxes and messages displays a search panel, a
toolbar, and a mailbox/message display region, as visible in Figure 4.18. When a

FIGURE 4.19

Mock-up of the contact management interface of the e-mail application.

FIGURE 4.18

Mock-up of the initial e-mail message management interface of the e-mail application.

4.9 Running Example 73

message is selected, the message list is replaced with the visualization of the message
content, as shown in Figure 4.23.

The message search box alternates between two interfaces for searching: a simple
keyword input field, visible in Figure 4.18, and an advanced search form with mul-
tiple fields, shown in Figure 4.24.

Figure 4.25 shows an excerpt of the IFML model that specifies the organiza-
tion of the interface of the e-mail application sketched in Figures 4.18–4.24.

FIGURE 4.20

Mock-up of the view switching menu.

FIGURE 4.21

Mock-up of the interface element for composing message.

CHAPTER 4 Modeling the composition of the user interface74

FIGURE 4.23

Mock-up of the interface element for reading a mail message.

FIGURE 4.22

Mock-up of the interface element for editing options and preferences.

4.9 Running Example 75

FIGURE 4.24

Mock-up of the interface for advanced searchs.

FIGURE 4.25

Fragment of the IFML model specifying the organization of the interface of the e-mail
application.

CHAPTER 4 Modeling the composition of the user interface76

The top ViewContainer (“Mail”) hosts two alternative subcontainers: one for mes-
sage management and one for contact management. For brevity, we illustrate only
the internal structure of the default ViewContainer (“Messages”). Its structure
comprises two ViewContainers that are displayed together: “MessageSearch” and
“MessageManagement.”

The “MessageSearch” ViewContainer comprises two mutually exclusive land-
mark subcontainers: “Search” (shown by default) and “FullSearch.” The “Mes-
sageManagement” ViewContainer comprises three mutually exclusive landmark
subcontainers: “MailBox” (the default), “Settings,” and “MessageWriter.” The “Mail-
Box” ViewContainer consists of the “Message Toolbar” and the “MessageViewer”
containers displayed simultaneously. Finally, the “MessageViewer” ViewContainer
comprises the “MessageList” and the “MessageDetails” subcontainers, which are
visualized in alternative.

4.10 SUMMARY OF THE CHAPTER
This chapter has started the systematic illustration of the essential IFML concepts,
which continues in the next two chapters. We have introduced the IFML constructs
for representing the general organization of the interface independently of the content
published in the view. Roughly speaking, two types of organizations are possible:
one typical of web applications, where multiple peer-level ViewContainers embody
the content and navigation of the interface; one typical of desktop, mobile, and rich
Internet applications, where the interface is hosted within a top level container with
an internal structure of nested subcontainers. We have discussed the concepts of vis-
ibility and relevance of ViewContainers and of content-independent navigation. These
notions—though very simple—permit the designer to sketch a realistic model of the
high-level navigation that can be transformed into a prototype of the interface manu-
ally or with the help of tools such as the one described in chapter 11. We have applied
the IFML concepts introduced in the chapter to the modeling of various interface orga-
nization patterns for web, desktop, and mobile applications, and started the specifica-
tion of the front end of the running case, which will be completed in chapters 5 and 6.

4.11 BIBLIOGRAPHIC NOTES
Interface composition guidelines are part of usability design, a discipline described
in many textbooks, such as the classic work by Ben Shneiderman, recently reedited
[Shneiderman10]. Dedicated usability guidelines have also been proposed for web
applications that have a specific interaction flavor. An exemplary textbook on the
subject is [Nielsen00]. The advent of mobile applications has sparkled interest in
the design of usable mobile interfaces. Good textbooks on the subject are [Neil12,
NB12]. The first chapter of [HB11] deals with composition patterns for mobile
interfaces.

77Interaction Flow Modeling Language. http://dx.doi.org/10.1016/B978-0-12-800108-0.00005-9
Copyright © 2015 Elsevier Inc. All rights reserved.

CHAPTER

Modeling interface
content and navigation

Interface composition partitions the user interface into ViewContainers and possibly
establishes hierarchical relationships among them. The user interface specification is
completed by the definition of the content shown within each ViewContainer and the
supported user interaction. The key ingredients of content and navigation modeling
are ViewElements, Events, and InteractionFlows.

ViewElements are distinguished in ViewContainers (already treated in chapter 4)
and ViewComponents, which are the main subject of this chapter.

Events and InteractionFlows have been already introduced in chapter 4 but
acquire a more interesting meaning in content and navigation modeling. They enable
the specification content-dependent navigation, that is, a form of interaction that
exploits the objects of the domain model. The simplest example of content-dependent
navigation is the selection of items from a list. The user accesses a ViewComponent
that displays a list of objects, selects one, and accesses another ViewComponent that
displays detailed information about the chosen object.

On the one hand, content-dependent navigation is similar to content-independent
navigation, described in chapter 4:

 • It involves a source and a destination element and is expressed by means of an

Event and of a NavigationFlow.
 • On the other hand, it has important differences: typically the source and target

of the navigation are ViewComponents (and not ViewContainers). Furthermore,
the target ViewComponent normally depends on some data provided by the
source ViewComponent; this dependency is expressed by associating one or
more ParameterBinding specifications to the NavigationFlow.

The specification of ViewComponents can be done at different levels of precision:

 • At the most abstract level, a ViewComponent is just a “box with a name,” as

in the preliminary examples introduced in chapter 2 (e.g., see Figure 2.2). Its
meaning is conveyed only by the name, without further details except for the
optional specification of subcomponents specified with the IFML ViewCompo-
nentPart construct. Using this level of abstraction keeps the specification very
general and easy to produce but may overlook important information needed for
model checking and code generation.

 • At an intermediate level of abstraction, IFML allows a standard way of binding
ViewComponents to elements of the domain model. This is extremely useful
to express, for example, that a ViewComponent “Index of Products” actually

5

CHAPTER 5 Modeling interface content and navigation78

derives its content from the instances of a “Product” class of the domain model.
This additional knowledge can be used for checking the consistency between
the IFML model and the domain model and for automatically generating the
data query that extracts the content of the “Index of Products” ViewComponent.

 • At the most refined level, the ViewComponent construct can be extended with
specialized subclasses to express specific ways in which content is presented or
exploited to enable user interaction. For example, a List ViewComponent can be
defined to represent a specific ViewComponent aimed at publishing an ordered
set of objects from which the user can select one item. Extended components
may have domain-dependent properties and thus enable deep model checking
and full code generation.

In this chapter we discuss both the basic IFML notion of ViewComponent and the

extensions already defined in the standard. In chapter 7 we illustrate how the designer
can introduce novel extensions, using web and mobile application development as
examples.

5.1 WHAT VIEWCONTAINERS CONTAIN: VIEWCOMPONENTS
A ViewContainer may comprise ViewComponents.

Examples of ViewComponents are interface elements for visualizing the data of
one object, for displaying a list of objects, data entry forms for accepting user input,
and grid controls for displaying and editing data tables. A ViewComponent may have
an internal structure consisting of one or more ViewComponentParts.

The meanings of ViewComponent and of ViewComponentPart are left purposely
broad. Their semantics are defined by the designer and conveyed by the component/
part name. Figure 5.1 shows the graphic representation of ViewComponents and
some exemplary renderings. As can be noted, at the highest level of abstraction only
the name of the component is used to suggest the intended meaning.

VIEWCOMPONENT
A ViewComponent is any element that can display content in the user interface or accept input
from the user.

VIEWCOMPONENTPART
A ViewComponentPart is an interface element or a structural property that may not live outside
the context of ViewComponent.

5.2 Events and Navigation Flows with ViewComponents 79

5.2 EVENTS AND NAVIGATION FLOWS WITH
VIEWCOMPONENTS

ViewComponents and ViewComponentParts can support interaction. This capacity
is denoted by associating them with Events, which in turn enable NavigationFlows.
Figure 5.2 shows an example of an interactive ViewComponent. The “ProductList”
ViewComponent is associated with an Event “SelectProduct,” which is the source
of a NavigationFlow leading to the “ProductDetails” ViewComponent. The mean-
ing of this design pattern is that “ProductList” publishes a list of objects from
which the user can select. The selection event triggers an interaction, whose
effect is showing the information of the chosen object in the “ProductDetails”
ViewComponent.

In content-based navigation, the source and destination ViewComponents can
be positioned in different ViewContainers, as shown in Figure 5.2. In this case, the
navigation event has the effect of showing the target ViewContainer and of trigger-
ing the computation of the ViewComponents present in it. The display of the target
ViewContainer may impact the visualization of the source ViewContainer in one of
two ways:

 • If the source and target ViewContainers are mutually exclusive (either directly

or because they are nested within mutually exclusive ViewContainers), the
 target replaces the source.

 • Otherwise the target is displayed in addition to the source.

For example, Figure 5.3 shows the ViewComponents, Event, and NavigationFlow
of Figure 5.2, but this time both the source and target ViewComponent are in the
same ViewContainer. This indicates that the choice of one product in the list causes
the display of the details in the same ViewContainer.

FIGURE 5.1

Examples of ViewComponents and of their rendition.

CHAPTER 5 Modeling interface content and navigation80

FIGURE 5.3

Content-based navigation within the same ViewContainer.

FIGURE 5.2

A basic example of an interactive ViewComponent and a possible rendition.

5.3 Content Dependencies: Data Binding 81

5.3 CONTENT DEPENDENCIES: DATA BINDING
ViewComponents publish content in the interface. It is therefore necessary to specify
the source of the published content. This aspect is represented by means of the Con-
tentBinding specification.

Figure 5.4 shows a simple example of ContentBinding: the “FeedReader”
 ViewComponent is associated with a ContentBinding specification that references
the URL of the feed provider.

To represent the common situation in which the content published by a
 ViewComponent originates from the objects of the domain model or from an external
service, the ContentBinding concept is refined in two specializations: DataBinding
and DynamicBehavior.

More precisely, a DataBinding is associated with:

 • a reference to a domain model concept (depending on the type of domain

model, the referenced concept can be a UML classifier—which may represent a
class in the domain model, an XML file, a table in a database, etc.—or another
element);

 • a ConditionalExpression, which determines the specific instances to be
extracted from the content source;

CONTENTBINDING
A ContentBinding is a very general representation of the content source of a ViewComponent; its
only attribute is the URI of the resource from which the content may be obtained.

FIGURE 5.4

Example of ContentBinding.

DATABINDING
A DataBinding represents the provenance of content from objects of the domain model; it is
characterized by features that specify the type of data, the criterion for selecting instances, and the
attributes relevant for publication.

CHAPTER 5 Modeling interface content and navigation82

 • one or more VisualizationAttributes, used by the ViewComponent to locate the
data shown in the interface, such as an object attribute, a database column or an
XML element or attribute; and

 • an optional OrderBy ViewComponentPart, which lists one or more sorting
criteria consisting of an attribute name and a sort direction (ASC or DESC for
ascending or descending, respectively).

Figure 5.5 shows an example of a simple DataBinding. The “MessageList” View-

Component draws its content from the “MailMessage” entity of the domain model.
The DataBinding neither specifies which instances are to be published nor the attri-
butes to be visualized, and so these aspects are left unspecified.

Figure 5.6 refines the example of Figure 5.5. The DataBinding contains an
OCL ConditionalExpression “self.isRead = false,” which specifies that only the
instances of the entity “MailMessage” with the attribute “isRead” equal to false
should be published. The VisualizationAttributes ViewComponentPart specifies
that the attributes “subject” and “date” should be used to display the objects, and
the OrderBy ViewComponentPart indicates that they are sorted in descending
order of date.

FIGURE 5.6

A DataBinding with a reference to an entity of the domain model and an instance selection
condition.

FIGURE 5.5

A DataBinding with a reference to an entity of the domain model.

5.4 Input-Output Dependencies: Parameter Binding 83

Note that because the conditional expression is defined within the DataBinding
ViewComponentPart, the context of the expression is implicitly set to “MailMessage”
(i.e., the object referenced by the DataBinding).

The DataBinding represents the association of a ViewComponent to the content
elements in a declarative way, which facilitates the generation of the data extraction
queries. An alternative way of expressing the content of a ViewComponent is through
the DynamicBehavior element.

For instance, a DynamicBehavior can be expressed by referencing any
 UMLBehavior or UMLBehavioralFeature.

Figure 5.7 shows an example of DynamicBehavior used to specify that the
“TweetList” ViewComponent exploits the web API of an external service to publish
content.

5.4 INPUT-OUTPUT DEPENDENCIES: PARAMETER BINDING
Content-dependent navigation allows expressing the very common situation in
which one component displays content that depends on some previous interaction
performed by the user. Examples are the display of the data of an object previ-
ously selected from a list, the display of the result list of a keyword search, and the
 drill-down into a hierarchy.

All these situations require expressing an input–output dependency between
ViewComponents. The ViewComponent target of the navigation requires input pro-
vided by the source ViewComponent for retrieving the content to publish. An input–
output dependency is described by means of the ParameterBinding construct.

DYNAMICBEHAVIOR
A DynamicBehavior represents the data access of a ViewComponent in an operational way (e.g.,
through the invocation of a service or method that returns content).

FIGURE 5.7

A DynamicBehavior that specifies the retrieval of content through a call to the API of an
external service.

CHAPTER 5 Modeling interface content and navigation84

Figure 5.8 shows an example of an input–output dependency. The “MessageList”
ViewComponent displays the messages of the specific mailbox selected by the
user in the “MBoxList” ViewComponent. The NavigationFlow is associated with
a ParameterBindingGroup that contains the declaration of an input–output depen-
dency: the value of the parameter “SelectedMailBox” (output of the “MBoxList”
ViewComponent) is associated with the value of the parameter “MailBox” (input of
the “MessageList” ViewComponent). The value of the “MailBox” parameter is used
in the ConditionalExpression of the “MessageList” ViewComponent, specified by
the following OCL expression:

self.MailMessageGroup = MailBox

The OCL expression specifies that the instances of “MailMessage” to retrieve are
those associated by the relationship role “MailMessageGroup” with the object iden-
tified by the value of the parameter “MailBox.” The pattern of Figure 5.8 provides
an example of a ConditionalExpression that exploits an association in the domain
model.

The transfer of parameters necessary for satisfying the input–output dependen-
cies between correlated components does not always requires user intervention.

PARAMETERBINDING AND PARAMETERBINDINGGROUP
A ParameterBinding specifies that the value of one parameter, typically the output of some
ViewComponent, is associated with that of another parameter, typically the input of another
ViewComponent. When the input–output dependency involves several parameters at the same time,
ParameterBinding elements are grouped into a ParameterBindingGroup.

FIGURE 5.8

Example of an input–output dependency expressed with a ParameterBinding and a
 parametric ConditionalExpression.

5.5 Extending IFML with Specialized ViewComponents and Events 85

Figure 5.9 shows an example of such a situation. When one contact is selected in the
“ContactList” ViewComponent, the details of the selected object are displayed in the
“ContactInfo” ViewComponent. In addition, further information about the same object
is displayed, namely, the list of addresses and e-mails in the “Addresses” and “Emails”
ViewComponents respectively. These two components are displayed simultaneously with
the “ContactInfo” ViewComponent after the selection from the list without any further
user interaction. The input parameter needed for computing their content (the ID of the
selected contact) is provided by a ParameterBinding associated with the DataFlows from
the “ContactInfo” ViewComponent to the “Addresses” and “Emails” ViewComponents.

DataFlows emanate directly from ViewComponents rather than from Events and
are denoted with dashed arrows to distinguish them from NavigationFlows.

5.5 EXTENDING IFML WITH SPECIALIZED
VIEWCOMPONENTS AND EVENTS

The examples of the previous sections introduced a rather rudimentary notion of
ViewComponent. So far this concept is little more than a box. Its meaning is con-
veyed only by the name assigned to it by the designer. In this way, however, the

FIGURE 5.9

DataFlows for parameter passing without user interaction.

DATAFLOW
A DataFlow is an InteractionFlow that specifies that some parameters are supplied from a source to
a target element, without any user’s interaction; the involved parameters are specified by means of a
ParameterBindingGroup associated with the DataFlow.

CHAPTER 5 Modeling interface content and navigation86

model usability and semantics cannot be improved much. If “all boxes are equal,”
tools could not check the correctness of the models or support the designer with use-
ful inferences and shortcuts.

To allow deeper model checking and improve model usability, IFML supports
the extension of the basic ViewComponents with user-defined specializations.
Figure 5.10 illustrates the extensions of the base ViewComponent construct already
provided in the IFML standard, which are still quite general. More extensions will be
introduced in chapter 7 for web and mobile applications.

The List and Details ViewComponents just add a stereotype to the basic View-
Component concept. The Form ViewComponent also adds novel ViewComponent-
Parts (SimpleField and SelectionField).

5.5.1 DATA PUBLISHING EXTENSIONS
IFML component extensions are represented in the model by stereotypes added to
a ViewComponent. For the sake of conformance to the IFML standard, we use tex-
tual stereotyping, which is quite cumbersome for ViewComponents, especially when
their names are long. However, a tool may replace the textual notation of stereotypes
with a more concise representation to save screen space (e.g., small icons, font col-
ors, textures).

FIGURE 5.10

Extensions of the ViewComponent concept.

LIST VIEWCOMPONENT
A List ViewComponent is a ViewComponent used to display a list of objects retrieved through a
ContentBinding. When the List ViewComponent is associated with an Event, it means that each
object displayed by the component can be used to trigger the Event. Firing the Event causes the
passing of the chosen instances as a parameter value to a target IFML element.

DETAILS VIEWCOMPONENT
A Details ViewComponent is a ViewComponent used to display the attribute values of one object
retrieved through a ContentBinding. When the Details ViewComponent is associated with an Event,
it means that the instance displayed by the component can be used to trigger the Event. Firing the
Event causes the passing of the displayed instance as a parameter value to a target IFML element.

5.5 Extending IFML with Specialized ViewComponents and Events 87

Figure 5.11 shows an example of List and Details ViewComponents connected
with an event and a navigation flow. The “MessageList” publishes the list of all
“MailMessage” instances. The “select” event indicates that the “MessageList”
ViewComponent supports interaction (i.e., the user can click on one of the dis-
played object and trigger the event). The firing of the event produces the display
of the “Message” Details ViewComponent, which receives as input the chosen
“MailMessage” object.

The selection from a list is an event frequently associated with ViewComponents.
It thus has a specific representation in IFML as an extension of the base Event con-
cept, shown in Figure 5.11 (and previously in Figures 5.2, 5.3, 5.8, and 5.9).

In chapter 6 we will introduce another refinement of the Event, the “select all”
event, which is used to express an Event that supports the selection of all elements
of a set.

Figure 5.12 shows an example that illustrates how adding more semantics to the
model via IFML extensions can improve usability. The model representation is more
concise than that of Figure 5.11, but the usage of extensions with precise semantics
easily allows a tool (or a human reader) to infer that the two models are equivalent.
Indeed, the List ViewComponent publishes a set of instances of the “MailMessage”
class, the Details ViewComponent publishes one instance of the same class, and the
“select” Event actually allows the user to select one item from the source ViewCom-
ponent and pass it to the target ViewComponent. Thus the designer could draw the
more concise variant of Figure 5.12, sparing the effort of expressing the inferable
ParameterBinding and ConditionalExpression.

The selection from a list can also include multiple items, as supported by the
multichoice list ViewComponent.

An example of a multichoice list is shown in Figure 5.31 and in the multiple-
object deletion pattern discussed in chapter 8.

SELECTEVENT
A SelectEvent is a kind of Event that supports the selection of one or more elements from a set.
When triggered, it causes the selected value(s) to be passed as a Parameter to the target of its associ-
ated NavigationFlow.

MULTICHOICELIST
The MultiChoice List enables the selection and submission of multiple instances. It supports mul-
tiple event types. The standard select event expresses the selection of one element of the list, while
the checking and unchecking events express the application or removal of a selection ticker on any
element in the list. The set selection event denotes the submission of the entire set of objects, and
the submit event denotes the submission of the currently selected objects.

C
H

A
P

TE
R

 5
 M

odeling interface content and navigation
8

8

FIGURE 5.11

Example of the List and Details extensions of ViewComponent and their renditions.

5.5 Extending IFML with Specialized ViewComponents and Events 89

5.5.2 DATA ENTRY EXTENSIONS
Besides content publishing, IFML extensions can also be used to express data entry.
This is done using the Form ViewComponent extension.

A form comprises one or more ViewComponentParts that represent input fields
(and thus are tagged with the Field stereotype).

Fields also represent Parameters for passing their values to other IFML elements.
There are two kinds of fields: SimpleFields and SelectionFields.

As customary in data entry applications, form fields could also allow a quicker
and more controlled type of interaction (e.g., the selection of values from a pre-
defined set). This feature is captured by the SelectionField element.

FIGURE 5.12

Concise model representation that a tool can infer as equivalent to that of Figure 5.11.

FORM
A Form is a ViewComponent that represents a data entry form.

FIELD
A Field is a subelement of a Form that denotes a typed value acquired from or displayed to the user.

SIMPLEFIELD
A SimpleField is a kind of Field that captures a typed value. Such a value is typically entered by
the user but can also be designated read-only or even hidden. The value of a SimpleField is an
output Parameter that can be passed to other ViewElements or Actions.

SELECTIONFIELD
A SelectionField is a kind of Field that enables the choice of one or more values from a
predefined set.

CHAPTER 5 Modeling interface content and navigation90

Figure 5.13 shows an example of a Form with two SimpleFields and one
SelectionField.

The mock-up rendition of Figure 5.13 hints at the fact that the type of the field can
be used by the developer or by a code generation tool to produce the most appropriate
interaction widget within the form.

Both simple and selection fields can be preloaded with values. Each Field also
defines an input parameter of the Form that contains it so that its value can be pre-
loaded with a value supplied by another IFML element. Alternatively, the prove-
nance of the Field content can be expressed with a ContentBinding, if the content
is extracted from domain model objects. Preloaded Fields behave as follow: a pre-
loaded SimpleField displays a value to the user, who can overwrite it; a preloaded
SelectionField displays multiple values to the user, who can choose the one(s) to sub-
mit. Each field also defines an output parameter of the Form that contains it, which
assumes as value the entered value (for a SimpleField) or the selected value(s) (for a
SelectionField) provided by the user.

Forms support interaction for submitting the content of their Fields. The basic
data submission activity of the user can be represented by an extension of the generic
Event construct called SubmitEvent.

Figure 5.14 shows an example of Form ViewComponent with one SimpleField
and one SubmitEvent (note that the SubmitEvent is represented by an “enter but-
ton” icon). The “MessageKeywordSearch” Form ViewComponent is associated
with the “SearchKey” SimpleField and with the “Search mail” SubmitEvent. The
latter triggers an interaction that leads to the display of the “MessageList” View-
Component, which publishes the messages that contain the search keyword in their

FIGURE 5.13

Form, SimpleField, and SelectionField, and a possible rendition.

SUBMITEVENT
A SubmitEvent is a kind of event that denotes the submission of one or more values. It triggers the
Parameter passing from the ViewComponent owning the event to the ViewComponent or Action
target of the NavigationFlow outgoing from the event.

5.6 Content and Navigation Patterns and Practices 91

title. The OCL expression that selects the set of instances whose title contains the
input keyword is:

if (keyword.size() <= title.size()) then
Sequence(1..title.size()- Keyword.size()) -> exists(i |

title.substring(i,i+Keyword.size()) = Keyword)
else
false

which checks that the input keyword is a substring of the message title.

5.6 CONTENT AND NAVIGATION PATTERNS AND PRACTICES
As already mentioned in chapter 4, interface design patterns are IFML models that
embody the solution to recurrent interface design problems. In the following, we
discuss useful patterns that emerge frequently during the design of the content and
interactivity of the user interface. The patterns described in this chapter are high level
and platform independent. Platform-specific patterns are discussed in chapter 7.

FIGURE 5.14

Example of a Form ViewComponent with one SimpleField and one SelectEvent.

CHAPTER 5 Modeling interface content and navigation92

We start by introducing content and navigation patterns, reusable models that
effectively addresses a recurrent set of requirements in the design of the content and
navigation in user interfaces. We prefix the name of platform-independent content
and navigation patterns with CN.

5.6.1 PATTERN CN-MD: MASTER DETAIL AND PATTERN CN-MMD:
MASTER MULTIDETAIL

The master detail pattern is the simplest data access pattern, already exemplified
in Figure 5.11. A List ViewComponent is used to present some instances (the so-
called master list), and a selection Event permits the user to access the details of one
instance at a time. The master multidetail variant occurs when the object selected
in the master list is published with more than one ViewComponents, as shown in
Figure 5.9.

5.6.2 PATTERN CN-MLMD: MULTILEVEL MASTER DETAIL
This pattern, sometimes also called “cascaded index,” consists of a sequence of List
ViewComponents defined over distinct classes, such that each List specifies a change
of focus from one object (selected from the index) to the set of objects related to it via
an association role. In the end, a single object is shown in a Details ViewComponent,
or several objects are shown in a List ViewComponent. A typical usage of the pattern
exploits one or more data access classes to build a navigation path to the instances of
a core class. For example, Figure 2.2 provides an example of the multilevel master
detail pattern exploiting the instances of the “Category” access class to access the
instances of the “Product” core class.

5.6.3 PATTERN CN-DEF: DEFAULT SELECTION
A usability principle suggests maximizing the stability of the interface by avoiding
abrupt and far reaching changes of the view when they are not necessary. The default
selection pattern helps improve the stability of interfaces that show pieces of corre-
lated content and allow the user to make choices.

The basic master detail pattern and the multilevel master detail pattern exhibit
possibly unwanted interface instability, as visible in Figure 5.3. When the ViewCon-
tainer is initially accessed, the first List ViewComponent is computed and appears
rendered in the interface. However, the Details or List ViewComponent, which
depends on a parameter value supplied by a user selection, cannot be computed, and
thus the interface contains an “empty hole” corresponding to it. When the user selects
one item from the list, then the missing parameter value becomes available and the
content of the second ViewComponent can be computed, thus filling the hole but
producing a possibly unwanted instability of the interface.

The default selection pattern resolves this problem by simulating a user selection
at the initial access of the ViewContainer. A default value is chosen from the source

5.7 Data Entry Patterns 93

ViewComponent and used to define the value of the parameter needed for computing
the target ViewComponent. In this way, the user sees a stable interface initialized
with a system-defined object or list, which the user can subsequently change by using
the provided interactive events.

Figure 5.15 shows the notation for expressing the default selection pattern.
Besides the NavigationFlow outgoing from the select event, the pattern also

includes a DataFlow, which expresses a parameter passing rule for supplying a
default value when the page is accessed, in absence of user interaction.

5.7 DATA ENTRY PATTERNS
Data entry is one of the most important activities supported by the front end and one
where usability requirements are most stringent. In the next sections, we illustrate
some cross-platform patterns generally applicable to data entry interfaces, based on
the usage of Form ViewComponents. We prefix the name of platform-independent
data entry patterns with DE.

5.7.1 PATTERN DE-FRM: MULTIFIELD FORMS
The basic data entry pattern consists of a Form ViewComponent with several fields
corresponding to such elements as the properties of an object to be created or updated,
the criteria for searching a repository, or the parameter values to be sent to an external
service.

Figure 5.16 shows an example of multi-field form for composing an e-mail
message.

As Figure 5.16 illustrates, assigning a type with the fields adds useful informa-
tion to the model. For example, a code generator may render a text editing field by
means of a rich text editing widget or a Blob field with a file chooser window. Other

FIGURE 5.15

Default selection pattern.

CHAPTER 5 Modeling interface content and navigation94

examples are Boolean fields rendered as radio buttons and date fields rendered as
calendars. We will show how to extend Fields to specify several usability hints in
chapter 8.

5.7.2 PATTERN DE-PLDF: PRELOADED FIELD
In many situations, the data entered in a form modify or add to existing information.
Examples include updating the description of a product in an online e-commerce
web site or changing one’s profile in a social network. In each case, preloading
fields with content augments the usability of the interface and reduces data entry
errors.

Figure 5.17 shows the pattern for preloading a SimpleField and a SelectionField
in two different ways. The “Categories” SelectionField incorporates a DataBind-
ing element, which specifies that the values are extracted from the “name” attri-
bute of the “Category” objects of the domain model. Conversely, the “Description”
SimpleField is preloaded by means of a ParameterBinding associated with the
DataFlow connecting the “ProductDetails” Form and the “UpdateProduct” View-
Components. In this way, the text of the description attribute of the product object
in display is also used to provide an initial value to the homonymous field in the
Form.

Figure 5.18 shows another example of field preloading: a form for replying to an
existing e-mail message, in which the fields of the new message are partly preloaded
with the values of the original message. The “Reply” event associates the subject of
the original message to the subject of the new message prefixed with the string “Re:
,” copies the recipient of the original message into the sender of the new message,
and pulls the body of the original message into the body of the new message.

FIGURE 5.16

Multifield form.

5
.7

 D
ata Entry P

atterns
9

5

FIGURE 5.17

Form fields preloaded with DataBinding and ParameterBinding.

CHAPTER 5 Modeling interface content and navigation96

5.7.3 PATTERN DE-PASF: PREASSIGNED SELECTION FIELD
This design pattern helps when the user’s selection among a number of different
choices can be inferred from available information (e.g., from profile data, previous
choices, or the interaction context). In this case, the value of a SelectionField can be
initialized with a ParameterBinding, as shown in Figure 5.19.

The “SignUp” ViewContainer shown in Figure 5.19 contains a “UserCountry”
Details ViewComponent that retrieves the default country for a user by querying the
Locale contextVariable and exposes an OutputParameter UserCountry. Such a piece
of information is passed to the form “SignUp” as input parameter CountryPreselect

FIGURE 5.18

Form fields preloaded with parameters.

FIGURE 5.19

Preassigned selection field.

5.7 Data Entry Patterns 97

to set the value of the “Country” SelectionField. Note the use of a DataFlow from the
Details to the Form because no interaction is required except the association of the
parameter with the SelectionField parameter value.

5.7.4 PATTERN DE-DLKP: DATA LOOKUP
This design pattern is useful when the data entry task involves a complex form with
choices among many options, such as in the case of form filling with large product
catalogues. In this case, a SelectionField can be conveniently supported by a data
lookup ViewContainer, which contains a data access pattern such as a master details.

Figure 5.20 shows an example of data lookup. The “FillRequest” Form con-
tains a SimpleField “ProductCode” that must be filled with the code of a product.

FIGURE 5.20

Selection help.

CHAPTER 5 Modeling interface content and navigation98

An event “Pick” opens a ViewContainer (e,g, a modal window) whereby the user
can navigate the product taxonomy and select the desired code. The product code
chosen with the data lookup is assigned to the SimpleField “ProductCode” using
a ParameterBinding.

5.7.5 PATTERN DE-CSF: CASCADE SELECTION FIELDS
The cascade selection field pattern is useful when the data entry task involves enter-
ing a set of selections that have some kind of dependency. The typical example is
a form for entering user information, where the address is incrementally built by
selecting the country, the state or province, and then the city. If this step by step selec-
tion is performed within a form with selection fields, the fields need to be dynami-
cally updated according to the selection at the previous step. In this case, the list of
states or provinces depends on the selected country, and the list of cities depends
on the selected province. Figure 5.21 shows the IFML model that exemplifies this
behavior. The selection of an element in the “Country” SelectionField triggers the
calculation of the list of associated states to be shown in the “State” SelectionField.

FIGURE 5.21

Cascade selection fields pattern: selecting a country triggers the calculation of the
 corresponding states or provinces.

5.8 Search Patterns 99

5.7.6 PATTERN DE-WIZ: WIZARD
The wizard design pattern supports the partition of a data entry procedure into logi-
cal steps that must be followed in a predetermined sequence. Depending on the step
reached, the user can move forward or backward without losing the partial selections
made up to that point. Figure 5.22 shows a three-step wizard.

Notice that at each step the Form ViewComponent shows one Field, the one
pertinent to the current step, and caches the values of the inputs of all steps in
Parameters. The events and navigation flows for moving from one step to another
are associated with a ParameterBinding that carries the current values of all the
fields to keep track of interactions performed in previous steps. In this way, the
user can go back and forth and—at the end—all the collected values are correctly
submitted.

An alternative equivalent design can be that of associating a single copy of all
the wizard parameters with the enclosing ViewContainer and updating such global
parameters at each previous/next event.

5.8 SEARCH PATTERNS
Search patterns address recurrent problems in which user input must be matched
against some content to retrieve relevant information. We prefix the name of plat-
form-independent content search patterns with CS.

5.8.1 PATTERN CS-SRC: BASIC SEARCH
The basic search pattern has already been exemplified in Figure 5.14, where a Form
ViewComponent with one SimpleField is used to input a search key. This key is used
as the value of a parameter in the ConditionalExpression of a List ViewComponent
that displays all the instances of a class that contain the keyword. A variant of the
pattern that searches the keyword in multiple attributes of the target class is obtained
using disjunctive subclauses in the ConditionalExpression:

if (keyword.size() <= title.size()) then
Sequence(1..title.size() - Keyword.size()) -> c(i |

title.substring(i, i + Keyword.size()) = Keyword)
else

false
OR
if (keyword.size() <= body.size()) then

Sequence(1..body.size() - Keyword.size()) -> exists(i |
body.substring(i, i + Keyword.size()) = Keyword)

else
false

With the above expression, the keyword is searched in the title or in the body of a
message.

C
H

A
P

TE
R

 5
 M

odeling interface content and navigation
1

0
0

FIGURE 5.22

Three-step wizard.

5.8 Search Patterns 101

5.8.2 PATTERN CS-MCS: MULTICRITERIA SEARCH
The advanced multicriteria search pattern uses a Form ViewComponent with mul-
tiple Fields to express a composite search criterion. Figure 5.23 shows an example of
multicriteria search pattern. The “Message full search” Form contains multiple Field
elements for the user to fill. A ParameterBindingGroup assigns the field values to
the parameters in the ConditionalExpression of the “MessageList” ViewComponent.

5.8.3 PATTERN CS-FSR: FACETED SEARCH
Faceted search is a modality of information retrieval particularly well suited to
structured multidimensional data. It is used to allow the progressive refinement
of the search results by restricting the objects that match the query based on their
properties, called facets. By selecting one or more values of some of the facets, the
result set is narrowed down to only those objects that possess the selected values.
Figure 5.24 shows an example of faceted search applied to bibliography informa-
tion retrieval.

FIGURE 5.23

Multicriteria search pattern.

C
H

A
P

TE
R

 5
 M

odeling interface content and navigation
1

0
2

FIGURE 5.24

Faceted search pattern.

5.9 Running Example 103

The model of Figure 5.24 consists of a ViewContainer (“FacetedSearch”), which
comprises a Form for entering the search keywords, a List for showing the query
matches (“Results”), and two MultiChoice Lists (“Years” and “Venues”) for select-
ing facet values and restricting the result set. At the first access of the ViewContainer,
no keyword has been provided yet by the user, and thus the ConditionalExpression
of the “Results” List evaluates to false and the ViewComponent is not displayed. The
same holds for the “Years” and “Venues” ViewComponents (their ConditionalEx-
pressions are not entirely shown in Figure 5.24 for space reasons, but they retrieve
the documents that match the input keyword). When the user submits a keyword and
triggers the “Search” event, the ConditionalExpressions of the “Results,” “Years,”
and “Venues” ViewComponents are evaluated and the content of these ViewCompo-
nents is populated with the matching documents. The VisualizationAttributes of the
“Years” and “Venues” ViewComponents comprise a single attribute, whose distinct
values are displayed as facets1. Checking or unchecking the values of the facets trig-
gers the corresponding events shown in Figure 5.24, which causes the binding of the
“Years” and “Venues” parameters. As a consequence, the ConditionalExpression of
the “Results” ViewComponent is evaluated using thoseparameters, which—if not
empty—can lead to the restriction of the result set.

5.9 RUNNING EXAMPLE
As already mentioned in chapter 4, the e-mail application interface consists of a top-
level ViewContainer, which is logically divided into two alternative subcontainers:
one for managing mail messages (open by default when the application is accessed)
and one for managing contacts.

The “Messages” ViewContainer, visible in Figure 5.25, displays the list of the
available mailboxes, which is presented in conjunction with the messages con-
tained in a mailbox or with the interface for composing a message or for editing
the mail settings. Selecting a mailbox causes the messages it contains to appear
in the central part of the interface (the MailBox sub-ViewContainer). Entering the
application causes the selection of a default mailbox in accordance with PATTERN
CN-DEF: default selection.

Figure 5.26 shows the ViewComponents, Event, and NavigationFlow that model
the selection and display of a mailbox.

Access to the messages can also occur through a search functionality displayed
together with the mailbox list. An input field supports simple keyword based search.
With a click, the user can access an alternative full-search input form that allows the
entry of various criteria, as shown in Figure 5.27.

Figure 5.28 shows the model of the two alternate search functions. A mode-
less ViewContainer is used to denote that the full search form opens in a modeless
window, as shown in Figure 5.27. The forms “Message Keyword search” and “Full
Search” contain the fields shown in Figure 5.14 and Figure 5.23, respectively. The
“Message List” ViewComponent has three ConditionalExpressions. Each expression

CHAPTER 5 Modeling interface content and navigation104

FIGURE 5.26

The ViewComponents, Event, and NavigationFlow that model the selection and display of a
mailbox.

FIGURE 5.25

Mock-up of the top-level ViewContainer of the e-mail application, with the default subcon-
tainer “Messages” in view.

5.9 Running Example 105

is reached by a navigation flow, one for each of the ways in which it can be accessed.
At every user interaction, only the expression that is the target of the current user
navigation will be evaluated. The condition expressions are visible in Figure 5.14,
Figure 5.23, and Figure 5.26.

For brevity, Figure 5.28 omits representation of the ParameterBindingGroup ele-
ments associated with the events “Select Mailbox,” “Search mail,” and “Search mail
full.”

Figure 5.28 also shows a refinement of the “MailBox” ViewContainer, which
unveils its internal organization into the sub-ViewContainers necessary to alternate
between the visualization of a message list and that of a single message. The “Mes-
sageList” ViewComponent supports interaction with mail messages individually or
in sets. On the entire set of messages, the “MarkAllAsRead” event permits the user
to update all the messages in the current MailBox, setting their status to “read” (see
Figure 5.29).

As shown in Figure 5.30, the “MessageList” ViewComponent also supports a sec-
ond kind of interaction, the selection of a subset of messages. When at least one mes-
sage is selected, a ViewContainer is displayed (“MessageToolbar”), which permits
the user to perform several actions on the selected message(s), including archiving,
deleting, moving to a MailBox/Tag, and reporting as spam.

When one or more messages are selected in the “MessageList” ViewComponent,
the “MessageToolbar” view container appears, which allows the user to perform

FIGURE 5.27

Mock-up of the full-search input form.

C
H

A
P

TE
R

 5
 M

odeling interface content and navigation
1

0
6

FIGURE 5.28

Refined model of the search functionality, alternating between a basic and a full search form.

5.9 Running Example 107

several actions on the selected messages. If all messages are deselected, such a view
container disappears

In summary, the “MessageList” ViewComponent supports three types of interac-
tive events:

 1. An event for selecting the entire set of messages and triggering an action upon

them, marking all messages as read (Figure 5.29);
 2. Two events for checking/unchecking messages (Figure 5.30);
 3. An event for selecting an individual message and opening it for reading.

The Events of the “MessageList” ViewComponent are modeled in Figure 5.31
and Figure 5.33.

The “SelectMultiple” checking event marks one or more messages in the current
mailbox and produces the display of the “MessageToolbar” ViewContainer, which
remains active while at least one message is selected. The “Deselect” unchecking
event allows the user to deselect messages, which updates the value of the “Messag-
eSet” parameter. Notice that the checking and unchecking events are triggered every
time one element is checked or unchecked in the list. The “SelectMultiple” event has
a ParameterBinding, which associates the (possibly empty) set of currently selected
messages with an input parameter of the “MessageToolbar” ViewContainer. The
“MessageToolbar” ViewContainer is also associated with an ActivationExpression,
which verifies that at least one message is selected. The “SelectOne” SelectEvent

FIGURE 5.29

The “MarkAllAsRead” event marks all messages in the current mailbox as “read.”

FIGURE 5.30

Behavior of message selection in the “MessageList” ViewComponent.

C
H

A
P

TE
R

 5
 M

odeling interface content and navigation
1

0
8

FIGURE 5.31

Model of the behavior of the “SelectMultiple” Event.

5.9 Running Example 109

enables the selection of a single message from the mailbox and causes the details of
the message to be displayed, as shown in the mock-up of Figure 5.32.

This functionality is modeled in Figure 5.33 with a SelectEvent associated with
the “MessageList” ViewComponent, which causes the setting of the “MessageSet”
parameter and the display of the “MessageReader” ViewComponent. Such a com-
ponent permits the user to access one specific message at a time. Its visualization
replaces the “MessageList” ViewContainer, as denote by the XOR nesting of the
children ViewContainers “MessageList” and “MessageDetails” within “Messa-
geViewer,” shown in Figure 5.31 and Figure 5.33.

We conclude this elaborate example with a model of the functionality for com-
posing messages. The interface for composing a message can be accessed in two
ways: by clicking on the “Compose” link anywhere in the message management
interface (to write a new message) and by selecting one of the various commands
available in the message reader interface (for replying to or forwarding an existing
message). Consequently, the model should support both the content-independent and
the content-dependent navigation to the message composer. Figure 5.34 shows the
mock-ups of the two ways for accessing the message composer functionality; notice
that the content of the message editing fields and the navigation events available dif-
fer in the two cases.

Figure 5.31 and Figure 5.33 show the model of content-independent navigation
that permits the user to access the message writing functionality. The “Message-
Writer” ViewContainer is marked as landmark, and therefore it is accessible from all
the other ViewContainers of the “MessageManagement” ViewContainer. It contains

FIGURE 5.32

Mock-up of the selection of a single message, which causes the details of the message to
be displayed.

C
H

A
P

TE
R

 5
 M

odeling interface content and navigation
1

1
0

FIGURE 5.33

Model of the events and components for reading a single message.

5.9 Running Example 111

the “MessageComposer” ViewComponent, modeled as a form with different fields
corresponding to the main attributes and relationships of the domain model class
“Message”: To, Cc, Bcc, Subject, Body, and Attachment. When the “MessageWriter”
ViewComponent is accessed in the content-independent navigation case, the form
fields are not preloaded and the user can fill them freely, as shown in the left part of
Figure 5.34.

Conversely, Figure 5.35 shows the model expressing the access to the mes-
sage composer functionality as a consequence of content-dependent navigation.
The “MessageReader” ViewComponent is associated with three events (“Reply,”

FIGURE 5.34

Mock-up of the interface of the message composer when reached with content-independent
navigation (left) and when accessed with content-dependent navigation (right).

FIGURE 5.35

Model of the content-based navigation to the “MessageWriter” ViewContainer.

CHAPTER 5 Modeling interface content and navigation112

“ReplyToAll,” and “Forward”) that allow the user to navigate to the “MessageWriter”
ViewContainer and access the “MessageComposer” Form. The “ReplyToAll” event
is active only when the message displayed in the “MessageReader” ViewComponent
has more than one recipients, as expressed by the activation expression associated
with the “ReplyToAll” event.

The “Reply,” “ReplyToAll,” and “Forward” events are associated with a Parame-
terBindingGroup, which conveys the properties of the original message displayed in the
“MessageReader” ViewComponent. These properties are used to preload the fields of
the “MessageComposer” Form as shown in the mock-up in Figure 5.34 (right). Each
form field is associated with a parameter of the same name, which takes a value from
the proper attribute of the original message as expressed by the ParameterBindingGroup:

 • The “Reply” and “ReplyAll” events associate the subject of the original message

with the subject of the new message (prefixed with the string “Re: “), the recipient
of the original message with the sender of the new message, the body and the cc
recipients of the original message to the body and cc recipients of the new message.

 • The “Forward” event associates the subject of the original message with the
subject of the new message (prefixed with the string “Fw: ”) and the body of the
original message with the body the new message.

The “MessageComposer” Form supports two SubmitEvents (“Send” and “Save”)

for sending and for saving without sending the message, respectively.
The “MessageComposer” Form, whose mock-up appears in Figure 5.34, also

supports a kind of stateful interaction. Besides the events “AddCc,” “AddBcc,”
“AddAttachment”—which are available irrespective of the kind of response the user
is editing—the events “Reply,” “ReplyToAll,” and “Forward,” allow switching the
response type. However, only two out the three events are active at a time depending
on the current state of the editing. For example, when the user is editing a “ReplyTo-
All” message, only the “Reply,” and “Forward” events are active. This is conveyed
by the “State” parameter of the Form and by the three ActivationExpressions associ-
ated with the events, as shown in Figure 5.36. The ActivationExpressions check for
the value of the parameter “State,” which is set appropriately by each of the “Reply,”
“ReplyToAll,” and “Forward” events, so that only the events appropriate to the cur-
rent editing context are active.

Another example of a conditional event is the “EditSubject” Event. The event for
editing the subject field is disabled when the value of the “State” parameter is “Forward.”

In chapter 6, we will conclude the e-mail application example by showing how
to represent the invocation of the business actions triggered by events, such as send-
ing the message, moving it to another folder, or applying rich formatting to its body.

5.11 Bibliographic Notes 113

5.10 SUMMARY OF THE CHAPTER
In this chapter we have delved into the specification of the content and navigation
aspects of the interface and shown how to use ViewContainers, Events, Navigation-
Flows, and DataFlows to describe many configurations. The readability of models is
enhanced by using more specific ViewComponents, such as List and Details, which
make diagram more understandable and amenable to deeper checking and more thor-
ough code generation. We have paid special attention to the input–output depen-
dencies between ViewComponents, which are essential for specifying the runtime
update of interface content induced by user events. The introduced IFML constructs
have been shown at work in the specification of different categories of design pat-
tern for content publication, data entry, and searching. At the end of the chapter, we
resumed the specification of the running case, refining the interface model with the
content publication components and the content-dependent navigation flows.

5.11 BIBLIOGRAPHIC NOTES
Modeling the content of interfaces is a relatively new subject. Its academic roots
can be traced back to a few pioneering design models proposed in the past for
hypermedia applications such as HDM (Hypermedia Design Model) [GPS93],
OOHDM (Object Oriented HDM) [SR95], and RMM (Relationship Management

FIGURE 5.36

Model of the stateful interaction supported by the “MessageComposer” Form
ViewComponent.

CHAPTER 5 Modeling interface content and navigation114

Methodologies) [ISB95]. The first hypermedia model to gain acceptance was the
Dexter Model [HBR94], a model providing a uniform terminology for represent-
ing the different primitives offered by hypertext construction systems. In the Dexter
Model, components describe the pieces of information that constitute the hypertext,
and links represent navigable paths. Many subsequent proposals in the hypermedia
field started from the Dexter Model and added more sophisticated modeling primi-
tives, formal semantics, and structured development processes. For example, HDM
adds more complex forms of hypertext organization and more powerful navigation
primitives to capture the semantics of hypermedia applications. RMM proposes a
modeling language built upon the Entity-Relationship model and goes further in the
definition of a structured method for hypermedia design. OOHDM takes inspiration
from object-oriented modeling by adding specific classes for modeling advanced
navigation features. It also exploits classical object-oriented concepts and notations
in the design process.

The advent of the web as an application development architecture has sparked
new interest in platform-independent modeling of the front end as a means for over-
coming the proliferation of the implementation technologies and nonstandard exten-
sions of web languages. The Autoweb system was the first system demonstrating the
fully automatic generation of complex web application from a model of the front end
[FP00]. Among the several languages and systems proposed in the literature, the Web
Modeling Language (WebML) reached industrial maturity, being employed in the
development of applications since 2000 [BBC03]. WebML describes the composi-
tion of the (web) interface using domain-specific concepts, such as site views, areas,
pages, areas, content units, and links. The language includes a set of predefined con-
tent publishing components and allows developers to extend the core set with their
own components.

END NOTES
 1. When the data binding of a List contains objects with duplicate values of the visualization

attributes, two options are possible: showing duplicates or distinct values. We assume the
latter option as the default. If needed, the alternative option can be specified (e.g., with the
«duplicate» stereotype).

115Interaction Flow Modeling Language. http://dx.doi.org/10.1016/B978-0-12-800108-0.00006-0
Copyright © 2015 Elsevier Inc. All rights reserved.

CHAPTER

Modeling business
actions 6
Interactive applications are not only about displaying an interface to the user. The
interface is a means for requesting services. These services are performed by the
application business logic, possibly with the help of external programs.

Taking the Model–View–Controller pattern as a high-level conceptual descrip-
tion of the way in which an interactive application works, the view allows the user
to trigger events, which are handled by the controller. The controller dispatches each
event to the proper element in the model, which performs the business action implied
by the event. This can result in the update of the application status. At the end of the
cycle, the view is updated to display the current status to the user for the next round
of interaction. This typical roundtrip is shown in Figure 6.1.

The model could be logically regarded as responsible for two distinct aspects:
exposing the business actions that embody the service requested by the user and
maintaining the status of the application, which displays in the view.

In chapter 3, we discussed how to construct a domain model that specifies the
objects of the application model. In chapter 4, we described how to define the general
structure of the application interface. Chapter 5 illustrated how to express the publi-
cation of the domain objects in the interface.

The focus of this chapter is on the business logic of the application, be it embed-
ded in methods of the application domain objects, described by suitable UML behav-
ioral diagrams, or delegated to external objects and services.

The goal of IFML is not modeling the internal functioning of the application busi-
ness logic. Rather the objective is to express the interplay between the interface and
the business logic. This is done by:

 • Showing that an event triggers a business action, which may imply also the

specification of some input–output dependency between the interface and the
business logic; and

 • Showing that the interface can receive and respond to events generated by “the
system,” be it a business component of the application or an external service. In
this case, IFML also permits the designer to describe the input–output depen-
dency between the information carried by a system event and the affected ele-
ments of the interface.

IFML does not replace the behavior specification languages that are normally

employed to describe the algorithmic aspects of the business logic. IFML business
actions are black boxes that show the minimal amount of information needed to

CHAPTER 6 Modeling business actions116

specify the abovementioned aspects. The designer is free to focus on such black
boxes and describe their internal functioning using the behavioral language of choice.
To support this kind of refinement, an action in IFML can reference a behavior in an
external model.

6.1 ACTIONS

Actions may reside on the server or on the client side. The elementary design pat-
tern for triggering actions is represented in Figure 6.2.

The model contains a source ViewContainer and ViewComponent, with an
Event connected via an InteractionFlow to an Action (shown as a named hexa-
gon). The Action is itself connected to a target ViewComponent through an
outgoing flow by an event typically representing the completion of the Action.
 ParameterBinding elements are used to denote the input–output dependency
between the source ViewComponent and the Action, and between the Action
and the target ViewComponent.

For example, the source ViewComponent could be a form for entering a flight
request. The Action could be a flight brokering business component that takes as
input the form data, checks availability and price at different flight operators, and
produces the best offers as output. The target ViewComponent could be a List show-
ing the retrieved options to the user.

The pattern of Figure 6.2 assumes that the action always terminates with the same
event, after which the same target ViewContainer is displayed. However, in many
situations, invoking a piece of business logic may result in various alternative out-
comes lead to different termination events. Therefore, Actions may trigger different

ACTIONS
An Action represents a reference to some business logic triggered by an Event.

FIGURE 6.1

Sequence diagram describing at a high level the cycle of an interactive application.

6.1 Actions 117

Events, called ActionEvents, as the result of the normal termination of computation
or to signal the occurrence of exceptions.

Figure 6.3 shows the typical usage of multiple ActionEvents. The Action can
terminate in normal or exceptional conditions, and the ActionEvents and associated
InteractionFlows express the course of action taken in the two cases. For example,

FIGURE 6.2

Elementary model describing the triggering of the action and its effect on the interface.

ACTIONEVENTS
An ActionEvent is an Event that may be produced by an Action to signal normal or exceptional
termination.

FIGURE 6.3

Model of action invocation with explicit ActionEvent.

CHAPTER 6 Modeling business actions118

the source ViewComponent could be a form for signing up an application to an
external service, and the Action could be a validation business component, taking
as input the form data, validating it, and producing a limited-time service token. In
case of normal termination, the target ViewComponent could be a Details component
showing the newly generated token and the service terms and conditions to the user.
Exceptional termination may also occur (e.g., when the user’s request does not meet
the conditions for obtaining an access token). In this case, the target ViewComponent
could be a Details component showing the reasons of failure to the user.

The source and the target ViewComponent of an action invocation need not be dis-
tinct. For example, Figure 6.4 shows a model of an interface for deleting objects from
a list. The source ViewComponent allows the user to select an object for deletion. After
the deletion, the same ViewComponent is presented again with its content updated.

Figure 6.4 also shows two shortcuts for simplifying the ActionEvent notation.
When no outgoing InteractionFlow and no ActionEvent are associated with the
Action, it is assumed that the target is the smallest ViewContainer comprising the
source ViewElement from which the Action has been activated.

FIGURE 6.4

Model of an interface that redisplays the (updated) source ViewContainer after an action is
executed.

6.3 Business Action Patterns 119

6.2 NOTIFICATION
The influence of business logic on the interface manifests not only when the user
takes the initiative but also as a consequence of a system-initiated action. This situ-
ation requires modeling the notification of an occurrence from the application back
end of an external system to the user interface. In this case, the IFML model does not
represent the initiation and execution of the action but only its ultimate effect, which
is captured by a SystemEvent.

The cause of a SystemEvent may be left unspecified in the model, although it
is also possible to express a condition whose occurrence triggers the SystemEvent.
Such a condition is represented by means of a TriggeringExpression.

The notification PATTERN A-notif, introduced later in this chapter, contains an
example of a SystemEvent, a SystemFlow, and a TriggeringExpression.

6.3 BUSINESS ACTION PATTERNS
Several design patterns embody the solution to recurrent problems in the design of
the interplay between the user interface and the business logic. We call such plat-
form-independent patterns action patterns and prefix their name with an “A.”

6.3.1 CONTENT MANAGEMENT PATTERNS
The most important action patterns relate to the management of the objects of the
domain model. Such content management patterns all have a similar structure. They
exploit an Action endowed with the input parameters necessary to create, delete, or
modify objects and association instances, and with output parameters that character-
ize the effect of the performed content update. The role of the interface is that of
supplying the input and of visualizing the output to the user as a confirmation that the
action has been executed and the application state updated.

SYSTEMEVENT AND SYSTEMFLOW
A SystemEvent is an Event produced by the system that triggers a computation reflected in the user
interface. Examples of SystemEvents are time events (which are triggered after an elapsed frame of
time), system alerts (such as a database connection loss), or message receipt notifications.

A SystemFlow is an InteractionFlow that connects a SystemEvent to a ViewElement to identify
the element affected by the occurrence of the SystemEvent.

TRIGGERINGEXPRESSION
A TriggeringExpression is an expression that determines when or under what conditions a System-
Event should be triggered.

CHAPTER 6 Modeling business actions120

6.3.2 PATTERN A-OCR: OBJECT CREATION
The object creation pattern enables the creation of a new object. The pattern relies on
an Action characterized by:

 • a user-defined name;
 • a reference to the dynamic behavior that the action must perform; and
 • a set of input parameters, used to initialize the attributes of the object to be

created.

The input of the Action is typically supplied by a ParameterBindingGroup asso-
ciated with a NavigationFlow exiting from a Form ViewComponent. The parameter
values are used to construct the new object. If some attributes have no associated
input value, they are set to null. The only exception is the object identifier (OID),
which is normally treated in an ad hoc way: if no value is supplied, a new unique
value is generated by the Action. The behavior of the object creation Action typically
consists of invoking a class constructor or a factory method in a creator class. The
output produced by the Action is the newly created object, comprising its OID and
all its attribute values. The output of the Action is defined only when the operation
succeeds and thus can be associated as a ParameterBindingGroup only with the Inter-
actionFlow that denotes normal termination. If no ParameterBindingGroup is speci-
fied explicitly, a default output ParameterBinding consisting of the OID of the newly
created object is assumed as implicitly associated to the normal termination event.

The example of Figure 6.5 shows the typical object creation pattern, which con-
sist of the combination of an entry Form (“EnterProductData”) providing input to an
Action (“CreateProduct”) that creates a new Product by invoking the DynamicBehav-
iour implemented by a factory method of a creator class. The Form has several fields
(e.g., “Code,” “Name,” and “Price”) for entering the respective attribute values. The
field values inserted by the user are associated as explicit parameters with the Naviga-
tionFlow from the Form to the Action. In the rendition, also shown in Figure 6.5, the
SubmitEvent associated with the form is displayed as a submit button, which permits
the activation of the Action. The “CreateProduct” Action has two ActionEvents. Nor-
mal termination is associated with an InteractionFlow that points to the “NewPro-
ductDetails” ViewComponent and with the default output parameter (the OID of the
new object). The exceptional termination event is associated with an InteractionFlow
that points to a ViewContainer for displaying an error message.

6.3.3 PATTERN A-OACR: OBJECT AND ASSOCIATION CREATION
A variant of the object creation pattern can be used to create a new object and set its
associations to other objects. Figure 6.6 shows an example of such an object creation
and connection pattern.

The “EnterProductData” Form contains an additional SelectionField, correspond-
ing to the association that must be set, namely the association between Product and
Category. The Category SelectionField can be preloaded with all the categories as
discussed in chapter 5. The NavigationFlow triggered by the SubmitEvent “Creat-
eNewProduct” has one additional ParameterBinding for the identifier of the selected

6.3 Business Action Patterns 121

FIGURE 6.5

The object creation pattern and a possible rendition.

FIGURE 6.6

The object creation and connection pattern.

CHAPTER 6 Modeling business actions122

category, which is passed as input to the Action. The Action itself can be specified
either by referencing a constructor that sets the proper category for the product or
by referencing a behavioral diagram (e.g., a UML sequence or activity diagram) that
describes all the steps to be performed for creating the object and connecting it to a
category.

6.3.4 PATTERN A-ODL: OBJECT DELETION
The object deletion pattern is used to eliminate one or more objects of a given class.
The pattern requires an Action characterized by:

 • a user-defined name;
 • a reference to the dynamic behavior that the action must perform, which is

 typically the invocation of a delete operation of the database; and
 • the input parameters necessary to identify the object to delete.

The input to the action is conveyed by a set of ParameterBinding elements. Nor-
mally these values are one or more primary keys, although nonkey attribute values
can be used as input, and the Action encapsulates the business logic for exploiting
such information to retrieve the objects to delete.

At runtime, the user typically chooses either a single object displayed by a Details
ViewComponent or selected from a List ViewComponent, or a set of objects chosen
from a MultiChoice List ViewComponent. The identifiers of the chosen objects are
associated by a ParameterBindingGroup to the NavigationFlow exiting the View-
Component and pointing to the Action that actually deletes the objects.

Normal termination occurs when all the objects have been deleted. In this case,
the Action has no output parameters. Exceptional termination occurs when at least
one of the objects has not been deleted. In this case, the Action has an output param-
eter holding the OIDs of the objects that were not deleted. This can be useful to
display the list of items that could not be deleted, together with an error message.

The example of Figure 6.7 illustrates the object deletion pattern applied to a
single object. The ViewContainer includes the “ProductsList” ViewComponent con-
nected to the “DeleteProduct” Action. The NavigationFlow has a default parameter
holding the OID of the selected product, which is used in the Action. The SelectE-
vent fires the deletion of the chosen object. If the operation succeeds, the “Products”
ViewContainer is redisplayed, but the deleted product no longer appears. In case of
failure, a different ViewContainer with an error message is displayed, which may use
the information about the object whose deletion failed and any other useful param-
eter returned by the action (e.g., a human-readable explanation of the failure).

The example of Figure 6.8 shows a variant of the object deletion patterns in which
a multichoice list ViewComponent is used to let the user check a set of products and
invoke the deletion Action on them. In this case, the default ParameterBinding asso-
ciated with the “Delete” event of the “ProductList” ViewComponent holds the set
of OIDs of the selected objects. These are displayed in the “SelectedProducts” List
ViewComponent, which is associated with the “Confirm” event.

6.3 Business Action Patterns 123

The NavigationFlow of the Delete set selection event has as default Parame-
terBinding that includes the entire set of objects output by the source List ViewCom-
ponent (“SelectedProducts” in this case) and triggers the “DelectedProduct” action
on all the objects bound to the event.

6.3.5 PATTERN A-CODL: CASCADED DELETION
The cascaded deletion pattern allows one to remove a specific object and all the
objects associated with it via one or more associations. In this case, the action is
implemented by a sequence formed by two or more delete operations, one for remov-
ing the main object and the others for removing the related objects (at least one). In
particular, cascaded deletion is used to propagate the deletion of an object to other
dependent objects, which are connected to it by an association with minimum cardi-
nality of 1, and thus could not exist without the object to which they refer. An example
of such a situation is illustrated in Figure 6.9, which shows the use of the pattern for
deleting an e-mail message and all its attachment. The “MessageDetails” ViewCon-
tainer includes a Details ViewComponent (“Message”) showing the message, and a

FIGURE 6.7

Basic object deletion pattern.

CHAPTER 6 Modeling business actions124

List ViewComponent (“Attachments”) displaying its attachments. The “ Message”
ViewComponent is associated with an event that triggers the “ CascadeDelete”
Action, which conceptually consists of a sequence of two operations, deleting both
the attachment and the e-mail message. The internal structure of the Action is not
specified in IFML and can be described by means of a behavioral diagram. For
example, Figure 6.10 specifies the cascade deletion using a UML sequence diagram.

FIGURE 6.8

Multiple objects deletion pattern.

FIGURE 6.9

Cascade delete pattern.

6.3 Business Action Patterns 125

An alternative Action design could exploit the native referential integrity mechanism
of the underlying data store (for example, the ON DELETE CASCADE clause of
SQL foreign key constraints) and delete only the message object, leaving to the data-
base the task of cascading the deletion.

The pattern of Figure 6.9 is a good illustration of the intertwining between the
business logic and the interface design. The NavigationFlow denoting the normal
termination of the “CascadeDelete” Action does not lead back to the source View-
Container but instead to the “MessageList” ViewContainer, which is the default
subcontainer of the enclosing “MessageDetails” ViewContainer. This is because
the object that was displayed in the “MessageDetails” ViewComponent (the deleted
message) no longer exists, and it would make no sense to redisplay it. The IFML
model is the right place to express this kind of relationship between the semantics of
actions and their effect in the interface.

The resulting interaction is shown in the mock-up of Figure 6.11.

6.3.6 PATTERN A-OM: OBJECT MODIFICATION
The object modification pattern is used to update one or more objects of a given class.
An object modification pattern uses an Action that is characterized by:

 • a user-defined name;
 • the reference to the dynamic behavior that the action must perform, which is

typically the invocation of a setter method; and
 • the input parameters necessary to identify the object(s) to modify and to supply

new values to their attributes.

When the user chooses multiple objects at runtime, the same update applies to all
the selected objects. The Action must be properly linked to ViewComponents of the
interface, to obtain the needed inputs.

FIGURE 6.10

UML sequence diagram specifying the behavior of the “CascadeDelete” Action.

CHAPTER 6 Modeling business actions126

 • The new attribute values: these are typically defined as a ParameterBinding-
Group associated with a NavigationFlow coming from a Form ViewComponent.

 • The objects to modify: these are usually specified as a ParameterBindingGroup
holding one OID or a set of OIDs.

 • As an alternative to the usage of object identifiers as parameters, the objects to
modify can be retrieved by the Action based on logical criteria, exploiting the
values associated as parameters with InteractionFlows incoming to the Action.
In this case, the Action encapsulates the object retrieval business logic.

The normal termination of the Action occurs when all the objects have been

successfully modified. In this, case the ActionEvent is associated with a default
parameter holding the set of OIDs of the modified objects. An exceptional termina-
tion occurs when at least one of the objects could not be modified. In that case, the
ActionEvent is associated with a default parameter holding set of OIDs of the objects
that were not modified.

The example of Figure 6.12 shows a Form ViewComponent used to supply values
to an object modification Action. The “ProductEditor” ViewContainer comprises a
Details ViewComponent (“Product”), which shows the name of the product to mod-
ify, and a Form (“EnterProductData”), whereby the user can modify the existing
product attribute values. A DataFlow from the Details ViewComponent to the Action
has a default parameter holding the OID of the product to modify, which is used by
the Action to identify the instance to update. The Action is activated by a Submit-
Event associated with the Form. The NavigationFlow has a ParameterBindingGroup

FIGURE 6.11

Mock-up of the interaction for deleting a message and its attachments.

6.3 Business Action Patterns 127

element, which associates the value of the fields of the Form with corresponding
input parameters of the Action. The normal termination leads to the “UpdatedProd-
uct” ViewContainer, which shows the modified values of the product attributes. The
exceptional termination points “back” to the “ProductEditor” ViewContainer, which
redisplays the old values.

Note that for classes with many attributes, the specification of the pattern can
be cumbersome due to the need to repeat the relevant attributes twice: once as form
fields and once in the parameter binding. However, a tool such as the one described in
chapter 11 can easily provide a wizard for building the pattern with less effort (e.g.,
by inserting all the class attributes in the model automatically).

The example of Figure 6.13 illustrates the modification of a set of objects. The
“MessageList” multichoice List is associated with a SelectEvent (“MarkAsRead”)
for updating the status of the chosen messages, marking them as “read.” The outgo-
ing NavigationFlow of the event is associated with a ParameterBindingGroup that
holds the OIDs of the objects selected in the multichoice list and a constant value
(“read”) for updating the status of the messages. The operation succeeds if the modi-
fication can be applied to all the objects chosen from the list, in which case the normal
termination ActionEvent is raised. After this event, the “Messages” ViewContainer is
redisplayed, with a notification of the number of marked messages.

FIGURE 6.12

Single object modification pattern.

CHAPTER 6 Modeling business actions128

The Action fails if the modification cannot be applied to some of the selected
messages, which causes the exceptional termination ActionEvent to be raised and an
modeless alert window to be displayed.

6.3.7 PATTERN A-AM: ASSOCIATION MANAGEMENT
An association management pattern is about maintaining the instances of associa-
tions specified in the domain model. Specifically, it is used to create/replace/delete
instances of an association by connecting and/or disconnecting some objects of the
source and target classes. The association management pattern exploits an Action
characterized by:

 • a user-defined name;
 • the reference to the dynamic behavior that the action must perform, which is

typically the invocation of a setter method acting on the attribute that imple-
ments the association in one or in both classes; and

 • input parameters for locating the objects of the source class and of the target
class.

The Action is triggered by a NavigationFlow and receives as input pairs of objects

of the source and target classes, identified by the ParameterBindingGroup of the Navi-
gationFlow. It provides as output the pairs of OIDs corresponding to the objects of the
source and of the target class for which an association instance has been created/replaced/
deleted. These values can be used to define a ParameterBindingGroup associated with
the normal and exceptional termination ActionEvents. The latter is raised when the

FIGURE 6.13

Multiple objects modification pattern.

6.3 Business Action Patterns 129

management of at least one association instance fails, whereas the normal termination
ActionEvent signals that all the association instances have been managed properly.

Figure 6.14 shows an example of the association management pattern for updat-
ing the category of a product, which corresponds to a one-to-many association in the
domain model. The “Product” Details ViewComponent in the “ProductCategories”
ViewContainer displays a current product, as the result of a previous selection in
another ViewContainer (not shown in Figure 6.14). The ViewContainer also includes
the “CurrentCategory” Details ViewComponent, which displays the category of the
displayed product. The primary key of the displayed product—necessary for deter-
mining the actual category in the “CurrentCategory” ViewComponent—is supplied
by a ParameterBindingGroup associated with the DataFlow from the “Product” to
the “CurrentCategory” ViewComponent.

Finally, the “ProductCategories” ViewContainer comprises a List ViewCompo-
nent (“Categories”) showing all the categories from which the user can select the
desired one and trigger the “Assign” SubmitEvent. This event triggers the Action
for updating the relationship instance between the displayed product, whose primary
key is supplied by a DataFlow with a ParameterBindingGroup, and the new category
selected from the list. The normal termination event of the Action causes the “Pro-
ductCategories” ViewContainer to be redisplayed, showing the updated category of
the product. In case of abnormal termination, an Alert window is presented before
letting the user go back to the original ViewContainer.

FIGURE 6.14

Association management pattern.

CHAPTER 6 Modeling business actions130

6.3.8 PATTERN A-NOTIF: NOTIFICATION
This pattern models the case in which the interface is (typically asynchronously)
updated by the occurrence of a system generated event. Figure 6.15 shows an exam-
ple of the notification pattern.

In the e-mail application, actions on messages (such as sending, deleting, and
moving to a different folder) are triggered by an Event and executed by an Action
at the server side. When the action terminates, the system produces a completion
event and sends an asynchronous notification to the interface. The effect of catching

FIGURE 6.15

Notification pattern.

6.4 Running Example 131

a notification event is represented by a SystemEvent, which triggers the display of a
“MessageNotification” ViewComponent, as shown in Figure 6.15.

The production of a SystemEvent can be left undetermined, in which case it is
assumed that the system sends the event in a completely unspecified manner, or be
associated with an Action of the interface model to convey that the notification is
connected with the termination of an Action. For example, all the notification events
of the e-mail application can be associated with the termination of the respective
Action, as shown in Figure 6.16.

6.4 RUNNING EXAMPLE
The e-mail application allows the users to perform a variety of operations on mes-
sages, including composing a new message, replying to a received message, and
moving a message to a new or to an existing folder. When one or more messages are
selected, they can be moved to another folder by means of the “MoveTo” command.

Figure 6.17 shows the mock-up of interface supporting a command. A ViewCon-
tainer is displayed in a new window with the list of available MailBox and Tags. The
user can select from such a list the destination Folder to which he wants to move the
messages. This functionality can be modeled with an instance of PATTERN A-AM:
Association management, shown in Figure 6.18: the “MessageToolbar” ViewContainer
is associated with the “MoveTo” Event, which causes the display of the “Chooser” mod-
eless window. This ViewContainer comprises a list for selecting the target folder. The
selection event triggers the “MoveTo” Action that performs the command and sends a
notification event upon termination, which is captured by the “MessageNotification”
ViewComponent in the top-level container (as already illustrated in Figure 6.15).

Note that in this example of association management pattern, the messages to
move are associated as a ParameterBinding to a DataFlow that connects the “Mes-
sageToolbar” ViewContainer to the Action, whereas the OID of the destination folder

FIGURE 6.16

Model of the production of a SystemEvent that notifies the completion of an action.

CHAPTER 6 Modeling business actions132

is associated by default with the NavigationFlow of the “Select” Event and thus omit-
ted from the diagram.

As visible in the mock-up of Figure 6.17, the window for choosing the target
folder also contains a command for creating a new folder that opens a modal window
for entering the name and parent folder of the new folder. Figure 6.19 shows the
mock-up of this functionality.

The model including the functionality for moving a message to a newly cre-
ated folder is shown in Figure 6.20. The “CreateNew” event associated with the
“Chooser” ViewContainer opens a modal ViewContainer with the form for entering

FIGURE 6.17

Mock-up of the “MoveTo” command showing the step for selecting the folder.

FIGURE 6.18

Model of the interface for moving messages to a folder.

6.4 Running Example 133

FIGURE 6.19

Mock-up of the modal window for creating a new folder.

FIGURE 6.20

Complete model of the interface for the “MoveTo” command.

CHAPTER 6 Modeling business actions134

the name of the new folder (using a SimpleField) and selecting the parent folders
(using a SelectionField). The “Create” Event in the modal window triggers an Action
for creating the new folder and associating it to the specified parent folder and to the
messages selected previously. Upon normal termination, the Action emits a notifica-
tion message.

Besides the commands for moving messages, the toolbar provides functional-
ity for archiving, reporting, and deleting message. Figure 6.21 completes the partial
model viewed so far with the remaining Actions.

An additional note concerning the allocation of the business logic to the archi-
tectural tiers of the application is needed. So far, the illustration has been purposely
neutral as to where an Action is executed within the architecture of the application,
because the platform-independent model should not incorporate unnecessary archi-
tectural assumptions. However, this does not mean that all actions are executed on
the same tier or that only server-side business logic can be modeled. To illustrate this
aspect, we conclude the running example with an expansion of the model of the mes-
sage composition functionality, already described in chapter 5.

FIGURE 6.21

Complete model of the toolbar commands on messages.

6.4 Running Example 135

The model of the “MessageWriter” ViewComponent can be refined by zooming in
inside the “Body” field, which supports client-side business logic (such as rich format-
ting of the text) and mixed server- and client-side functionality (such as spellchecking).
Figure 6.22 shows a mock-up of this functionality.

The embedding of a full-fledged microapplication such as a rich text editor inside
a Form ViewComponent can be modeled by replacing the SimpleField with a more
complex ViewComponentPart called RichTextEditor, as shown in Figure 6.23. Such

FIGURE 6.22

Mock-up of the “Body” field of the “MessageWriter” ViewComponent.

FIGURE 6.23

Model of the rich editing functionality of the “Body” field.

CHAPTER 6 Modeling business actions136

ViewComponentPart could support events and further nested ViewComponentParts
as required to express its interface. The execution tier of an Action could also be
expressed as a stereotype. For example, Figure 6.23 tags the Actions executed at cli-
ent side with an appropriate stereotype.

6.5 SUMMARY OF THE CHAPTER
We have discussed the IFML concept of Action, which describes a black-box compo-
nent that embodies arbitrary business logic triggered from the interface. Actions can
be connected to interface elements with navigation and data flows to enable param-
eter passing. Next we illustrated several design patterns involving actions, mostly
for updating the objects and associations of the domain model. In addition, system
events and notification have been exemplified.

6.6 BIBLIOGRAPHIC NOTES
Several works have addressed the design of user interfaces and their integration
with the business logic based on the MVC paradigm [LR01] [HLS+14]. The work
[FCBT10] discusses a model for representing the execution of Rich Internet Applica-
tions. The model allows expressing advanced aspects such as the partition of func-
tionality and data across multiple architecture tiers, asynchronous communication
patterns, and the selective computation of interface parts after the occurrence of
events.

137Interaction Flow Modeling Language. http://dx.doi.org/10.1016/B978-0-12-800108-0.00007-2
Copyright © 2015 Elsevier Inc. All rights reserved.

CHAPTER

IFML extensions 7
The IFML standard comes organized as a core set of concepts and a number of
 extensions that embody general characteristics found in many interactive applica-
tions. The extension mechanism applies to all the main concepts of IFML. The exten-
sions included in the standard are:

 • ViewContainer extensions: Window
 • ViewComponent and ViewComponent Part extensions: Details, Field, Form,

List, SelectionField, SimpleField, Slot
 • Event extensions: SelectEvent, SubmitEvent, SystemEvent
 • ContextDimension extensions: Device, Position, UserRole
 • Expression extensions: ValidationRule

Further custom extensions are allowed for the main concepts of IFML: ViewCon-
tainers, ViewComponents, ViewComponentParts, Events, and domain and behavior
concepts (and their extensions).

The purposes of extensions are manifold:

 • Adding expressive power to the modeling language;
 • Making the concepts and notation less abstract and closer to the intuition of

designers;
 • Allowing different specialized concepts to be distinguishable visually, for

improved readability of diagrams; and
 • Assigning more precise meaning to concepts to enable deeper model checking,

formalization of semantics, and executability (through code generation or model
interpretation).

Figure 7.1 shows the use of IFML extensions (equipped with customized icons)

for making the visual notation more intuitive, enabling model checking, and support-
ing code generation. This example will be expanded in chapter 11.

The advantages of extensibility persist and even increase when one considers
IFML under the perspective of a specific category of applications that exhibit their
own interface styles, technological constraints, and sometimes even peculiar termi-
nology or jargon.

This chapter introduces several specializations of IFML that exploit extensibil-
ity to capture features found in different classes of applications, including, desktop,
web, and mobile applications. The assignment of an extension to a class of applica-
tion is somewhat arbitrary. The convergence of the implementation languages and
platforms makes it impossible to distinguish the features of desktop, web, and mobile

CHAPTER 7 IFML extensions138

application sharply. For a better organization of the chapter, though, we have placed
each extension under the category in which it originated or is most often or exclu-
sively used.

7.1 DESKTOP EXTENSIONS
Under the umbrella term of desktop applications we mean applications that allow
the most precise control over the user interface, developed with a variety of different
technologies, ranging from window-based applications developed in such technolo-
gies as Java Swing or Windows Forms to rich Internet applications implemented with
JavaScript and HTML 5. Although this equivalence is imprecise from the program-
ming point of view, it is sufficient to identify cross-platform features that are general
enough to provide good candidates for IFML extensions.

7.1.1 EVENT EXTENSIONS
Probably, the most relevant capability of desktop applications is the very detailed
management of the events that the user can generate in the interface. Therefore, an
important area of extensibility of IFML regards the event types supported by desk-
top interfaces. These events are so numerous as to make it unfeasible to review all
of them and the properties to be modeled for creating an IFML extension. Rather,
we will discuss what makes an event type worth an extension and the features that

FIGURE 7.1

Use of IFML extensions for visual notation, model checking, and code generation.

7.1 Desktop Extensions 139

should be modeled as additions to the basic notion of Event. When considering a new
event type as a candidate for extension, the following questions should be addressed:

 • What ViewElements can the event be associated with? ViewContainers, View-

Components, ViewComponentParts, a specific extension of such elements, or a
mix thereof?

 • In there any restriction on the type of ViewElements that can be the target of the
InteractionFlow associated with the event?

 • What parameters can be associated with the InteractionFlow connected with the
event?

Figure 7.2 shows an example of event specialization.

Figure 7.2 demonstrates the usage of the OnFocusLost event to invoke Actions. In
one case the event is associated with the “Username” field for checking the availability

FIGURE 7.2

Example of extended event for Form and SimpleField ViewElements.

ONFOCUSLOST
The OnFocusLost event is an extension of ViewElementEvent that captures the loss of focus of a
SimpleField in a Form. The event is triggered when the user moves away from the field (e.g., by
using the tab key or by clicking on another field). It can be associated with a SimpleField or with
an entire Form. Its outgoing InteractionFlow can have any ViewElement as a target and a Param-
eterBindingGroup comprising as input parameter the value of the SimpleField or the values of all
the SimpleFields of the Form.

CHAPTER 7 IFML extensions140

of the username provided by the user. Other OnFocusLost events are associated with
other fields for auto-saving the value input by the user when the focus leaves the field.

7.1.1.1 Drag and Drop
The OnFocusLost event and other similar event extensions detect an atomic self-
contained user interaction. Desktop applications also support more elaborate behav-
iors that span a sequence of interactions, such as drag and drop. A drag and drop
behavior consists of the correlation of two event types: OnDragStart and OnDrop.

As shown in Figure 7.3, the drag and drop behavior is modeled with a pair of
events: one (OnDragStart) binds to the object(s) that are dragged, and the other
(OnDrop) binds to the object(s) on which the dragged item(s) are dropped. These
two (sets of) instances can be used as parameter values associated with the Interac-
tionFlow exiting the OnDrop event. In the case of Figure 7.3, one or more messages
are dragged from the message list of the currently open mail box and dropped on
another mail box. The drop termination event triggers the “MoveTo” Action, which
moves the dragged messages to the drop mail box.

7.1.2 COMPONENT EXTENSIONS
Container and component extensions add features to the basic IFML ViewElements.

7.1.2.1 Tree explorer
A “classic” component of desktop interfaces is the Tree component, used to display
hierarchical data. Essentially, a tree is a special kind of list that displays not only
objects but also their containment associations. Therefore, the data model of a tree
component consists of a class, which represents the common type of the objects
displayed in the tree, and a recursive association, which represents the hierarchy. In
the simplest case, interaction with the tree is done by selecting one node at a time.

ONDRAGSTART AND ONDROP
The OnDragStart event is an extension of ViewElementEvent that captures the beginning of a drag
interaction. It can be associated with Details or List ViewComponents (and specializations thereof).
It has no outgoing InteractionFlow element. It has a mandatory property “OnDropEvent” that
denotes an event of type OnDrop, which is the target of the OnDragStart event.

The OnDrop event is an extension of ViewElementEvent that captures the termination of a drop
interaction. It can be associated with a Details or List ViewComponent (and specializations thereof).
It must appear as the value of the OnDropEvent property of an event of type OnDragStart, which is
the source of the OnDrop event. It has one outgoing InteractionFlow element. Such InteractionFlow
can have any ViewElement as a target and a DataBindingGroup comprising two input parameters:
(1) the value of one or more class instances of the ViewComponent associated with the source
OnDragStart event and (2) the value of one or more class instances of the ViewComponent associ-
ated with the OnDrop target event.

7.1 Desktop Extensions 141

Figure 7.4 shows an example of the Tree component for publishing a selectable
list of nested mailboxes. A Selection event allows the user to select one element in
the tree and thus display its details.

7.1.2.2 Table
Another popular component of desktop applications is the table editor, also
called a record set editor or data grid. The component displays a table of data and
allows the user to add and delete rows and edit cell content. The data model of
the component is any piece of tabular data. For simplicity we illustrate the case
in which instances of a class are used as data, but alternative data bindings can be
defined, as already possible with the standard concept of DataBinding. The only
constraint is that the rows of the table should correspond to identifiable objects,
if one wants to trap events like row deletion and therefore update the underlying
data accordingly.

The Table component can be associated with such events as the update of a cell
or the insertion and deletion of a row.

FIGURE 7.3

Extending IFML with drag and drop events.

TREE VIEWCOMPONENT
A Tree is an extension of the List ViewComponent that displays hierarchical data. It owns a
DataBinding element that refers to a class of the domain model and a RecursiveNestedDataBinding
element that refers to a one-to-many association defined on the instances of the class.

CHAPTER 7 IFML extensions142

Figure 7.5 shows an example of usage of the Table component for editing a record
set of products. At each cell update, a data update Action “SaveProduct” is invoked
with a parameter binding that holds the modified field value. The deletion of a row
triggers the deletion of the corresponding class instance, identified by a parameter
binding corresponding to the object displayed in the affected table row. The creation

FIGURE 7.4

Example of usage of the Tree ViewComponent

TABLE VIEWCOMPONENT
A Table is an extension of ViewComponent that displays tabular data and allows the user to edit
them. It has a DataBinding element that typically refers to a class of the domain model. The
attributes of the class are mapped to the columns of the table using the ColumnAttribute ViewCom-
ponentPart. The Table component can be associated with events of type CellUpdate, RowInsertion,
and RowDeletion.

7
.1 D

esktop Extensions
1

4
3

FIGURE 7.5

Example of usage of the Table ViewComponent.

CHAPTER 7 IFML extensions144

of a row invokes the creation of a new object based on the values entered in the Table
row by the user. After the execution of the Actions, the Table is redisplayed with the
updated content. (Recall that an InteractionFlow pointing to the source element of
the action is assumed by default and thus can be omitted from the diagram).

The basic example discussed in this section can be extended, for example, with
event types supporting the explicit synchronization of the table content with the data
in the data store, such as “Refresh” and “SaveAll,” and with more compact param-
eters (e.g., representing the content of an entire row or of all the rows of the table).

7.1.3 COMPONENTPART EXTENSIONS
Extensions can also be defined at a finer granularity, such as at the ViewComponent-
Part level. An example could be an editable selection field that mixes the functional-
ity of SimpleField and SelectionField by allowing the user to edit the value of the
input field or choose it from a list of options.

Figure 7.6 shows an example of usage of the EditableSelectionField extension.
The “ProductCreator” form contains the “Category” EditableSelectionField that
allows the user to pick the category from a list of existing categories or invent a new
one. The internal business logic of the “CreateProductAndCategory” Action must
distinguish whether the category is new and, if so, create the category in addition to
the product. Such a behavior can be described in a separate UML diagram associated
with the Action.

EDITABLESELECTIONFIELD
An EditableSelectionField extends the Field element and denotes an input field that is both edit-
able and selectable.

FIGURE 7.6

An example of usage of the EditableSelectionField.

7.2 Web Extensions 145

7.2 WEB EXTENSIONS
Web applications have brought several new concepts and an almost completely new
terminology to user interface development. These are based on the fusion of previ-
ously segregated areas such as hypertext, multimedia, and form-based GUIs. The fun-
damental concepts of a web application are pages and links, which are borrowed from
hypertext documents. Both can be viewed as specializations of core IFML concepts.

7.2.1 CONTAINER EXTENSIONS: PAGES, AREAS, AND SITE VIEWS
In this section, we introduce IFML extensions that make the specification of the web
interface composition patterns introduced in chapter 4 adhere more closely to the termi-
nology and characteristics of web applications. The basic unit of dialogue with the user
in a web application is a page, a ViewContainer produced statically by a human editor
or generated automatically at the server side by a program (a page template or a server-
side script). As user interfaces, pages embed navigation commands; as resources of a
document system, they have a human readable address, called uniform resource locator
(URL). Web applications offer service to multiple users over a multitier, client-server
architecture; therefore they are concerned with the security of data transmission, achieved
by delivering the interface over the HTTPS protocol, and with the control of access,
achieved by enforcing user’s authentication, identification, and permission control.

As already mentioned in chapter 4, pages in a large web application can be
arranged hierarchically to facilitate user navigation.

Examples of areas in an e-commerce web application can be products, special
deals, shipping rates and conditions, and returns and complaints.

As noted in chapter 4, web applications often offer different viewpoints on the
same content to different classes of users. This characteristic can be captured by
associating a ViewPoint with a specific type of ViewContainer called SiteView.

PAGE
A page is an extension of ViewContainer that denotes an addressable web interface unit.

AREA
An Area is an extension of a disjunctive (XOR) ViewContainer that denotes a collection of pages or
other areas, grouped according to an application-specific purpose.

SITEVIEW
A SiteView is an extension of a disjunctive (XOR) ViewContainer that denotes web application
areas and pages grouped together according to an application-specific purpose, typically because
they serve the needs of a UserRole.

CHAPTER 7 IFML extensions146

In summary, a web application can be modeled as a collection of pages logi-
cally grouped into Areas and SiteViews. Pages are presented to the user one at a
time. This is expressed by the disjunctive form of the enclosing ViewContainer. To
express the requirements of a multiuser application, SiteViews, Areas, and Pages can
be treated as resources of a role-based access control (RBAC) system. As such they
can be associated with a ViewPoint, which in turn is associated with a Context, which
is described, for instance, by a UserRole context dimension. The SiteView consti-
tutes the typical item referenced by a ViewPoint. Appropriate activation rules can be
defined for specifying that the SiteView is enabled for a given UserRole.

The definition of activation rules upon a SiteView/Area/Page denotes the access
permission to that particular object for the specified UserRole. A SiteView/Area/
Page not associated with any role is treated as public and can be accessed even
when the UserRole is undetermined. In an e-commerce application, for example,
different SiteViews could be associated with the UserRoles named “registered cus-
tomer,” “product content manager,” and “sales manager.” A public SiteView could
be addressed to nonregistered customers.

A SiteView/Area/Page has the following characteristics, which extend the stan-
dard properties of IFML ViewContainers to cope with specific web application
features:

 • URL label: A string denoting the (fixed part of) the SiteView/Area/Page

address. If the page is implemented with a dynamic template, the URL label is
typically concatenated with the parameters for the computation of its content.
The URLs of a SiteView and of an Area are an alias for the home page of the
SiteView and the default page of the Area.

 • Security: If the property value is “secured,” all the pages of the Area or Site-
View, or the individual Page, are served under the secure HTTPS protocol.

 • Protection: If the property value is “protected,” all the pages of the Area or
SiteView, or the individual Page, are subject to access control. The access con-
trol rule is expressed by the association of the SiteView/Area/Page with one or
more UserRoles through an ActivationExpression.

Notice that the association of a UserRole with multiple levels of nesting

 components—such as Pages, Areas, and SiteViews—is purposely redundant and
enables the incremental expression of access control rules. For example, access to a
SiteView could be granted in general to the UserRoles Role1 and Role2. However, an
Area or Page of the SiteView could be associated with a more restrictive ViewPoint
that overrides the general one (e.g., to grant access only to Role1).

An important concept in a Web application is that of the home page, the page
served to a user when accessing the application without requesting a specific resource.

Figure 7.7 reconsiders an example of web application interface organiza-
tion already specified in chapter 4 using only the standard IFML concepts, and
illustrates it with the concrete syntax of the described web extensions. Stereo-
types are used to denote SiteViews and Pages and to identify the home page
of a SiteView, as well as to determine whether the ViewContainer is Public

7.2 Web Extensions 147

or Protected. An ActivationExpression (e.g., Context.UserRole=”Editor”) is
employed to specify that a SiteView is accessible only by a specific UserRole.

7.2.2 EVENT AND INTERACTION FLOW EXTENSIONS
Interaction in web applications occurs in two ways: by submitting the content of a
form and by clicking on hypertext anchors. The standard IFML extensions Forms
and SubmitEvent already capture the essential characteristics of web forms. The
IFML NavigationFlow faithfully mirrors the concept of hypertext link but may be
extended to reflect the terminology and properties of web links.

A WebNavigationFlow can be endowed with properties specific to web navigation:

 • Rel: specifies the relationship between the current document and the linked

document; its values are codified by the HTML standard.
 • Target: specifies where to open the linked document, typically in a browser

window; the browser window can be the same one as the original document or a
new window.

FIGURE 7.7

An IFML model of a typical web application for e-commerce.

LINK
A WebNavigationFlow is an extension of a NavigationFlow that incorporates additional properties
specific to hypertext links on the web.

CHAPTER 7 IFML extensions148

Figure 7.8 shows as example of usage of the WebNavigationFlow extension used
to open the licensing information in a new browser window. It also informs search
engines of the nature of the linked document via the WebNavigationFlow outgoing
from the technical manual to the licensing information.

The WebNavigationFlow extension shows a typical issue in the design of
extensions: the tradeoff between platform independence and utility. The Rel and
Target properties are clearly dependent on the version of HTML, which is an
implementation language. However, a code generator could exploit the additional
platform-dependent information to inject the proper attribute values in possibly
thousands of automatically generated HTML links, which is an extremely use-
ful feature. An alternative approach would factor out implementation-dependent
properties from the model extensions and weave them into the code generator.
However, since the values of the properties can be set by each WebNavigation-
Flow, in this example we prefer utility over purity and make them definable
directly in the model extensions.

7.2.3 COMPONENT EXTENSIONS
The List component in the IFML standard offers a minimalistic functionality that can
be extended to support more realistic interfaces.

FIGURE 7.8

Example of usage of WebNavigationFlow.

7.2 Web Extensions 149

7.2.3.1 Dynamically-sorted list
As illustrated in chapter 5, the OrderBy ViewComponentPart can be used to enable
sorting of the items in a List ViewComponent. This compenent defines the sorting
criteria (attribute plus sort direction).

Figure 7.9 shows an example taken from the running case.
The “MailBoxes” List ViewComponent has an OrderBy part that sorts instances

by name, whereas the “MessageList” ViewComponent sorts its DataBinding
instances by date.

The OrderBy ViewComponentPart is specified at design time and thus does
not model a situation in which the user can change the sorting of data at run-
time. This additional behavior, popular in both web and desktop applications,
can be achieved by introducing an extension of the List ViewComponent called
DynamicSortedList.

FIGURE 7.9

Example of usage of sorted list.

CHAPTER 7 IFML extensions150

Figure 7.10 shows a variant of the pattern of Figure 7.9, which uses a Dynamic-
SortedList for displaying the list of messages. Note that the default ordering of
instances can be defined through an OrderBy ViewComponentPart, which the user
can override by exploiting the SortAttributes specified in the component.

7.2.3.2 Scrollable list
A very popular behavior in web applications is the paging of long lists of elements
into fixed-size blocks, with commands for scrolling. This is often used, for example,

DYNAMICSORTEDLIST
The DynamicSortedList is an extension of the List ViewComponent that allows the user to sort
data using visualization attributes. The DynamicSortedList has a one-to-many association, named
“SortAttributes,” with the metaclass “VisualizationAttribute,” which denotes the subset of the visu-
alization attributes usable for sorting.

FIGURE 7.10

Example of usage of the DynamicSortedList.

7.2 Web Extensions 151

as the base of search engine interfaces. A variant is the scrolling of blocks consisting
of individual objects, as found, for instance, in image galleries.

Figure 7.11 revises the search pattern introduced in chapter 5 to cater to the
scrolling of paged results.

7.2.3.3 Nested list
The multilevel master detail pattern illustrated in chapter 5 can be compacted into a
ViewComponent, by nesting one list inside another.

SCROLLABLELIST
The ScrollableList is an extension of the List ViewComponent that allows the user access ordered
DataBinding instances grouped in blocks. The ScrollableList ViewComponent has an attribute
called “block size” that specifies how many instances constitute a block. It also has an implicit
parameter (named current), which holds the block currently in view, and implicit events for moving
to the first, last, i-th, next, and previous block.

FIGURE 7.11

Example of usage of the ScrollableList.

CHAPTER 7 IFML extensions152

The data model of the NestedList comprises one top-level DataBinding, which
typically refers to a class of the domain model. Within the top level DataBinding,
one or more first-level NestedDataBindings can be specified that refer to one of the
association roles of the class referenced in the top-level DataBinding. Each first-level
NestedDataBinding in turn can comprise one or more second-level NestedDataBi-
nding. A second-level NestedDataBinding refers to one of the association roles of
the class target of the association role used in the first-level NestedDataBinding.
Figure 7.12 shows an example of usage of the NestedList ViewComponent.

The product catalog consists of a three-level nested list. At the top level, catego-
ries are displayed. At the next level, the products of each category are listed. At the
innermost level, two separate nested lists are presented: the accessories of a product
and the other products frequently sold with it. When the user selects a product at the
second or third level and an accessory at the third level, the chosen object is displayed
either in the “ProductDescription” or in the “AccessoryDescription” ViewContainer.

7.3 MOBILE EXTENSIONS
Mobile applications have rich interfaces that resemble on a smaller scale those of
full-fledged desktop applications. Mobility and the availability of sensors, such as
cameras and GPS, introduce features that are best captured by providing extensions
of the IFML core specialized for mobile application development.

NESTEDLIST
The NestedList is an extension of the List ViewComponent that denotes the nesting of multiple
lists, one inside another.

FIGURE 7.12

Example of usage of NestedList.

7.3 Mobile Extensions 153

7.3.1 CONTEXT EXTENSIONS
The context assumes a particular relevance in mobile applications, which must
exploit all the available information to deliver the most efficient interface. Therefore,
the context must gather all the dimensions that characterize the user intent, the capac-
ity of the access device and of the communication network, and the environment
surrounding the user.

Various dimensions of the context relevant to mobile applications have been
catalogued and characterized in several standards and standard proposals, briefly
overviewed in the bibliographic notes at the end of this chapter. In this section, we
exemplify the most interesting ContextDimensions and ContextVariables that char-
acterize mobile application usage. The illustration is not meant to be exhaustive.
Rather, its aim is exemplifying how the contextual features can be represented as
IFML extensions and used to model the effect of context on the user interface. The
main aspects of the Context are listed below. Some of them have to be considered
as ContextDimensions (and thus allow the selection of a Context or another), while
other are ContextVariables (thus enabling the use of their value as parameters within
the IFML models).

 • Device: this family of context features can be exploited to specify the adap-

tation of the interface to different device characteristics, most notably the
size and resolution of the screen. These features are usually exploited as
ContextDimensions:

 • DiagonalSize: the physical size of the screen, measured as the screen’s
diagonal;

 • SizeCategory: for convenience, screen sizes can be grouped in classes that
can be treated homogenously (e.g., SMALL, NORMAL, LARGE, EXTRA
LARGE); and

 • DensityCategory: for convenience, screen density measures can also be
grouped in classes treated homogenously (e.g., LOW, MEDIUM, HIGH,
EXTRA HIGH).

The following information becomes handy as ContextVariables, so as to calibrate

precisely the UI rendering based on some calculation over the size data:

 • PixelSize: the actual horizontal and vertical size of the screen, measured in

pixels;
 • Density: the quantity of pixels per unit area measured in dpi (dots per inch).

Other characteristics of the device may be considered, such as internal memory
size, processing power, and battery status. However, they are less frequently used in
the design of applications.

 • Network connectivity: this dimension can be used to adapt the quantity or

quality of content published in the interface, based on the capacity of the
network link (e.g., replacing the display of a large media file with a lighter
preview when bandwidth is limited). The relevant ContextDimension is

CHAPTER 7 IFML extensions154

ConnectivityType, which denotes the kind of network available; it can have
such values as NONE, BLUETOOTH, NFC, ETHERNET, MOBILE (E, G, 3G,
4G, …), WIFI, and WIMAX;

 • Position: this family of features can be used to adapt the interface to the
 presumed activity of the user (e.g., simplifying the interaction commands when
the user is moving) or to publish content that depends on the location (e.g., local
news or alerts). The ContextDimensions related to position are:

 • SensorStatus: denotes the activity status of the position engine of the
device. It can have values such as: ACTIVE, INACTIVE.

 • Activity: denotes the physical user’s activity inferred by the sensor data;
possible values are: still, walking, running, cycling, and in-vehicle.

The ContextVariables that can be exploited when the SensorStatus is ACTIVE are:

 • Location: denotes the position of the device, expressed in latitude and longitude

coordinates;
 • Accuracy: denotes the accuracy of the position.
 • Speed: denotes the ground speed of the device.
 • Altitude: denotes the altitude above sea level of the device.

7.3.2 CONTAINERS EXTENSIONS
As shown in chapter 4, the composition of mobile application interfaces can be
expressed properly with the core IFML concepts of ViewContainers and ViewCom-
ponents. However, a characteristic trait of mobile interfaces—also present in desktop
applications although less pervasively—is the utilization of predefined ViewContain-
ers devoted to specific functionalities. These system-level containers provide econ-
omy of space and enforce a consistent usage of common features. Examples are the
“Notifications” area or the “Settings” panel. These special ViewContainers can be
distinguished (e.g., by stereotyping them as «system»).

Figure 7.13 shows an example of the usage of system ViewContainers by
revisiting the e-mail application running example with a simplified composition
of the interface more suited to a small screen. A system-level ViewContainers
is employed to deliver notifications, which are typically placed in a fixed posi-
tion within the header region of the interface. Another system ViewContainer,
“ Settings,” is also used to denote that the standard “Settings” command and win-
dow of the operating system are exploited to open the configuration functionality
of the e-mail application in the interface region normally devoted to this task for
all the applications.

SYSTEM VIEWCONTAINER
A ViewContainer stereotyped as «system» denotes a fixed region of the interface, managed by the
operating system or by another interface framework in a cross-application way.

7.3 Mobile Extensions 155

Flexible layouts, another pattern using ViewContainers, are very useful for mobile
applications. These are illustrated at the end of this section.

7.3.3 COMPONENT AND EVENT EXTENSIONS
Like ViewContainers, ViewComponents can be predefined in the system as default
interface elements that provide basic functionality in a consistent manner to the
application developer. An example is the media gallery present in most mobile plat-
forms. The «system» stereotype can be applied also to ViewComponents to highlight
that the interface uses the components built into the system.

7.3.4 CAMERAS AND SENSORS
Mobile applications can interact with one or more cameras onboard the device. The
basic interaction with the camera requires modeling the ViewContainer for visual-
izing the camera image and commands, the invocation of an Action for taking the
picture, the asynchronous event that notifies that the photo has been taken, and the
visualization of the image in the system-level media gallery.

Figure 7.14 shows an example of usage of the camera and of the system-level
media gallery. The “PhotoShooter” ViewContainer comprises a system ViewCon-
tainer “CameraCanvas,” which denotes the camera image viewer. The “Settings”
event opens a modal window for editing the camera parameters, and the “Shoot”
event permits the user to take a picture. When the image becomes available, a viewer
is activated, from which an event permits the user to open the photo in the system
media gallery. The internal viewer is modeled as a scrollable list, with block size = 1
to show one image at a time, and an OrderBy ViewComponentPart with a sorting
criterion by timestamp to present the most recent photo first.

FIGURE 7.13

Example of «system» ViewContainers.

CHAPTER 7 IFML extensions156

7.3.5 COMMUNICATION
Mobile devices communicate in a variety of ways with other fixed or mobile devices
that can be discovered dynamically. The aspects of communication that may affect
the interface are:

 • Connectivity update notifications: they signal the change of the available

communication channels and can be captured as system events that express an
update of one or more ContextDimensions; and

 • Devices in range: other devices can enter or leave the communication range.
This feature can be modeled as a system event that signals the discovery of a
device. Data transfer activities can be modeled as Actions that encapsulate the
details of the protocol used to manage the conversation.

Figure 7.15 shows an example of communication-enabled interface: the usage of

near field communication (NFC) for exchanging the contact details of the user.
The application consists of two parts, a sender and a receiver. The “NFCCard-

Sender” interface is minimal, because NFC normally requires the communicating
devices to be very close and thus there is little space for user’s interaction. The
interface presents the personal data to the user who can confirm his intent to make
them available to NFC devices in range. The “SendViaNFC” Action abstracts the
steps necessary to build up the NFC record and notify the device that it is ready to
be dispatched.

The “NFCCardReceiver” ViewContainer models the application on the side of the
receiver. The reception of the NFC payload is modeled as an asynchronous event that
abstracts the system process of parsing NFC messages and triggering the registered

FIGURE 7.14

Example of usage of the camera and media gallery.

7.3 Mobile Extensions 157

applications that handle them. The interface is again very basic: the user can confirm
and save the data or discard the message.

Figure 7.16 shows an example of adaptation of the interface composition to the
network type.

The interface for reading a message is implemented in two versions. One version
presents a message with all its attachments downloaded automatically. The second
interface requires an explicit user command for downloading an attachment, and the
attachments are downloaded and shown one at a time using a ScrollableList. The
choice of which alternative interface to use is conditioned by means of an Activation-
Expression, illustrated in chapter 5, that tests the type of connectivity available based
on the ContextVariable ConnectivityType. On-demand attachment visualization is
selected when the connection type is “MOBILE” to reduce bandwidth consumption
and interface latency.

7.3.6 POSITION
Location awareness enables devices to establish their position so that mobile appli-
cations can provide users with location-specific services and information, set alerts
when other devices enter or leave a determined region, and adapt the interface to the
current user’s physical activity, such as walking, running, or driving.

Figure 7.17 shows an example of the usage of the position sensor.
The “Start” event in the “Tracker” ViewContainer allows the user to activate

the continuous position tracking system of the device. The Form ViewComponent
enables the specification of the position tracking parameters, such as accuracy and
frequency, which are communicated to the system service via the “ActivatePosition-
Updates” Action. After activating the tracking system, the application starts listen-
ing to incoming asynchronous SystemEvents, which provide updates of the current

FIGURE 7.15

Example of usage of NFC data exchange

C
H

A
P

TE
R

 7
 IFM

L extensions
1

5
8

FIGURE 7.16

example of interface adaptation to network capacity

7
.3

 M
obile Extensions

1
5

9

FIGURE 7.17

Example of usage of the position

CHAPTER 7 IFML extensions160

position at the established frequency. Such events carry parameters indicating the
timestamp of the recording and the geographical coordinates, and trigger a back-
ground action that stores such data as “Point” objects. The list of recorded points is
visualized in the “TrackingPoints” List ViewComponent. At any moment, the user
can clear the list of recordings, save the recorded points as a track object, or stop the
position tracking system.

7.3.7 MAPS
Maps are a powerful interface over geographic data. The integration of digital maps into
user interfaces has become very popular with the advent of the web. Mobile applications
add a special flavor to map-based interfaces by combining the dynamic position of the
user with the representation of topographic data. Digital maps have become a commod-
ity supported by many proprietary and open-source services. This rich offer boosts the
development of map-enabled applications on top of off-the-shelf functionality, for:

 • connecting to the mapping service and downloading map tiles for display on

the device screen with controls such as pan and zoom for moving the map and
zooming in or out;

 • setting the map type, choosing among several alternatives, such as normal, satel-
lite, hybrid, and 3D; and

 • initializing and changing the viewpoint over the map (also called “camera,”
to highlight that the map view is modeled as a camera looking down on a flat
plane); the rendering of the map is governed by such properties as location,
zoom, bearing, and tilt.

A simple way of modeling the map view is to extend the concept of ViewCon-

tainer to denote an off-the-shelf map visualization interface. Application-specific
content and events can then be added to such an extended ViewContainer as further
ViewElements and Events.

Content—both static and interactive—overlaid on the map can be modeled by
extending the ViewComponent concept. For example, the «marker» stereotype can
be added to Details and List to denote that the DataBinding instances have a position
and are rendered on the map as interactive markers.

MAPVIEW
A MapView is an extension of ViewContainer that denotes a map view. It supports the events for
panning and zooming and for changing the map type and the camera parameters.

MARKER
A Marker is an extension of ViewComponent usable in MapView containers that denotes that the
underlying DataBinding instances possess a location attribute that is displayable in a map view. It
supports the events for selecting, dragging, and dropping.

7.4 Multiscreen Extensions 161

Another useful way to present an ordered set of locations is the path visualization.

Figure 7.18 elaborates the example of Figure 7.17 to show the usage of the MapView
ViewContainer and of the map-specific extensions of the List ViewComponent.

The plain visualization of the tracked points exemplified in Figure 7.17 is replaced
by two alternative map-based displays modes. The recorded points are viewable
either as a set of markers or as path on the map.

7.3.8 GESTURES
Touch screens enable the use of gestures for the direct manipulation of screen objects.
The gestures supported by touch devices include touch, double touch, press, swipe,
fling, drag, pinch in and out, and several more. These gestures have well-defined
semantics and consolidated conventions to which the interface design must conform
to provide a consistent user experience. They can be represented in IFML by extend-
ing the core Event concept.

Figure 7.19 shows an example that uses the touch and press events. The distinc-
tion between these two gestures allow a finer control over the effect of acting upon
the screen objects, much in the same way as mouse click and double click do in
desktop applications.

Figure 7.19 revisits the master detail pattern to highlight the usage of touch ges-
tures. The conventions illustrated in the example adhere to the best practices in popu-
lar mobile operating systems, such as Android 4. In a master detail interface, the
touch gesture activates the default action on the object (in this case, the opening of
the details view). The press gesture instead activates the selection mode, whereby
one or more objects can be chosen with a touch event, and a toolbar of commands is
displayed to act upon the selected object(s). This behavior is represented in Figure
7.19 by using the «press» and «touch» event extensions and by conditioning the
effect of the touch event based on the existence of at least one previously selected
object. Other gestural conventions can be represented in a similar way.

7.4 MULTISCREEN EXTENSIONS
Single screen applications are conceived to work for a single class of access devices,
with homogeneous capabilities. They define the composition of the interface at
design time by specifying the hierarchy of ViewContainers and the disjunctive or
conjunctive nesting of containers. Multiscreen applications are instead designed to

PATH
A Path is an extension of the List ViewComponent usable in MapView containers that presents
underlying DataBinding instances (that must possess a location attribute) as a polyline in a map
view. It supports events for selecting the entire path or a single point on it.

C
H

A
P

TE
R

 7
 IFM

L extensions
1

6
2

FIGURE 7.18

Example of usage of the MapView ViewContainer.

7.4 Multiscreen Extensions 163

work on different devices, possibly with different screen characteristics. A goal for
their development is to define the interface layout in a flexible way so that it can
adapt dynamically to the size, orientation, and density of the screen.

Figure 7.20 shows an application for updating the device settings, designed to
adapt to cellular phone small screens and to tablet wider screens. The interface sup-
ports two main tasks: picking the desired preference from a list, with the “Prefer-
ences” List ViewComponent, and editing its value, with the “PreferenceEditor” Form
ViewComponent. The two ViewComponents that address such tasks communicate
parameters to the “UpdatePreference” Action through their outgoing Navigation-
Flows and the ParameterBindingGroups associated with them.

The flexible interface composition is expressed by means of the “Settings” View-
Container, which hosts two distinct subcontainers: “Tablet Settings,” in which the
two ViewComponents are kept together, and “Phone Settings,” in which they are
visualized one at a time. The ActivationExpression of the subcontainers ensures that
the proper composition pattern is activated based on the device information taken
from the Context.

Figure 7.21 shows a mock-up of the interface composition adapted to the type of
the screen.

FIGURE 7.19

Example of touch and press event handling.

CHAPTER 7 IFML extensions164

Note that the model of Figure 7.20 duplicates the ViewComponents, Events,
InteractionFlows, and Actions that specify the content and behavior of the interface
in the two configurations. This duplication, which puts an unnecessary burden on
the designer and may result in misalignment errors, can be avoided with the use of
modules (explained in chapter 8).

7.5 SUMMARY OF THE CHAPTER
In this chapter we have illustrated the role of the extension mechanism natively pro-
vided by IFML. The basic constructs of the language can be extended to adhere to the
terminology and concepts of a specific class of applications and to improve model
checking and code generation. We have shown the extension mechanism at work in
the definition of several specializations of ViewContainers, ViewComponents, and
Events tailored for desktop, web, and mobile applications.

7.6 BIBLIOGRAPHIC NOTES
Example of containers and components for desktop interfaces are found in the librar-
ies of most operating systems and programming languages. For instance, the Java
development environment defines the classes for building containers and component
in the Package javax.swing [JavaSwing].

FIGURE 7.20

Example of flexible interface composition.

7
.6

 B
ibliographic N

otes
1

6
5

FIGURE 7.21

Mock-up of the adaptable composition of Figure 7.20.

CHAPTER 7 IFML extensions166

Mobile design best practices and patterns are fundamental chapters in the devel-
opment guidelines of the most popular mobile environments. The iOS and Android
developers’ sites provide excellent examples of such materials [Android, iOS].

Device properties are mapped in several standard vocabularies and capability
models, such as W3C’s Device Description Repository Core Vocabulary [Rabin10]
and the Composite Capabilities/Preference Profile (CC/PP) [Klyne04, Kiss07].

167Interaction Flow Modeling Language. http://dx.doi.org/10.1016/B978-0-12-800108-0.00008-4
Copyright © 2015 Elsevier Inc. All rights reserved.

CHAPTER

Modeling patterns 8
This chapter presents IFML under a problem-oriented perspective and thus comple-
ments the construct-oriented perspective of the preceding chapters. It introduces a
number of patterns that can be used to tackle typical problems in the design of the
interface, with a twofold aim: showing IFML at work in situations of practical use and
exemplifying interface design practices in a technology-independent way, so that they
can be applied to different development scenarios. The order of presentation is by type
of problem, rather than by class of application, because many patters have a general
utility that spans more than one type of application. Where appropriate, we will empha-
size when a certain pattern is more helpful in desktop, web, or mobile applications.

8.1 INTERFACE ORGANIZATION
In this chapter we complete the discussion about interface organization patterns
started in chapter 4 and continued in chapter 7 by illustrating two patterns focused on
improving the reuse of submodels within and across projects.

8.1.1 REUSABLE MODULES
In chapter 7, we introduced an example of multiscreen interface design that benefits
from the ability of placing the same interface content in different composition lay-
outs to be dynamically adapted at runtime to the screen characteristics. However, as
can be seen from the model of figure 7.19, the actual interface content is repeated
twice, once for each of the layouts. This solution is unsatisfactory because it forces
an unnecessary duplication of model elements and obliges the designer to update
each copy after a modification of the requirements.

A better way to organize the model is to factor out the definition of the common
part, in the form of a reusable fragment, and reference it from the part of the model
where it must be reused. This capability is granted by the notions of Module and
Module Definition.

MODULE DEFINITION
A ModuleDefinition is a portion of IFML model, comprising IFML model elements, that may be
reused for improving IFML model maintainability.

If needed, ModuleDefinitions can be aggregated in a hierarchical structure of ModulePackages.
ModuleDefinitions can exchange Parameters by means of input and output PortDefinitions.

CHAPTER 8 Modeling patterns168

Figure 8.1 shows the ModuleDefinition “PreferenceSetter” for encapsulating the
functionality of updating the value of a preference received in input.

The ModuleDefinition has one input PortDefinition, to acquire the preference
object to be updated, and one output PortDefinition. The input PortDefinition is con-
nected to the UpdatePreference Action inside the Module, which permits the actual
modification of the value attribute of the preference object based the user’s input.
Note that this quite trivial example could be made more realistic by modeling dif-
ferent ways to edit the value of a property depending on its nature, as customary
in mobile interfaces. Such complex interaction logic would be factored out in the
 ModuleDefinition and thus would become reusable in multiple projects.

Figure 8.2 shows how to reuse the ModuleDefinition of Figure 8.1 in the multi-
screen design pattern discussed in chapter 7, obtained by placing two Modules that
reference the ModuleDefinition “PreferenceSetter.”

Another example of reusable functionality that can be encapsulated in a module
is the payment process of an e-commerce application. After filling a shopping cart,
the user proceeds to the check out and payment process, which typically consists of
the three steps exemplified in Figure 8.3.

When the user decides to order, a Customer Information Form is displayed, where
the user can provide personal information. Next, a Payment Information form lets
the user enter the bank account details. Finally, the transaction is executed, and its
outcome is presented as a final message.

PORTDEFINITION
PortDefinitions represent interaction points with a ModuleDefinition. They hold Parameters for
transferring values to and from the ModuleDefinition. An input PortDefinition has outgoing Interac-
tionFlows to the inside of the ModuleDefinition. An output PortDefinition has incoming Interaction-
Flows from the inside of the ModuleDefinition.

ModuleDefinitions can be reused by adding Modules referencing them in IFML models. Mod-
ules that reference a ModuleDefinition may comprise Ports, which in turn reference the correspond-
ing PortDefinitions.

MODULE
A Module is a named reference to a ModuleDefinition that allows reuse of the model portion speci-
fied in the ModuleDefinition.

PORT
A Port is an interaction point between a Module and the surrounding model within which it is
defined. A Module is associated with a set of Ports, which in turn reference the corresponding
 PortDefinitions. For every PortDefinition in the ModuleDefinition, each corresponding Module
must contain 0 or 1 Ports. An input Port has incoming InteractionFlows from the outside of the
Module for receiving input Parameters. An output Port has outgoing InteractionFlows to the outside
of the Module for shipping output Parameters.

8.1 Interface Organization 169

This recurrent functionality can be encapsulated in a reusable ModuleDefinition,
as shown in Figure 8.4.

ModuleDefinition PaymentExecution can be referenced in the interface model of
an e-commerce application by a Module, as shown in Figure 8.5.

8.1.2 MASTER PAGES
Another form of reuse occurs frequently in web applications, where the interface
is modeled as a set of independent pages. In this case, it is possible that the various
pages of the application share a common section, such as the header, the footer, or a
cross-site search form.

Modules do not address this situation properly, because even if the shared con-
tent or function is encapsulated within a Module, a reference to the Module must be
inserted into each page to denote its repeated appearance.

FIGURE 8.1

Definition of a module for setting preference values.

C
H

A
P

TE
R

 8
 M

odeling patterns
1

7
0

FIGURE 8.2

Multiscreen design pattern reformulated with the help of a reusable module.

8
.1

 Interface O
rganization

1
7

1

FIGURE 8.3

Mock-up of the checkout process in a typical e-commerce application.

C
H

A
P

TE
R

 8
 M

odeling patterns
1

7
2

FIGURE 8.4

Reusable module definition encapsulating the payment process.

8.2 Navigation and Orientation 173

A modeling shortcut for avoiding the replication of the reference to the shared
functionality relies on the notion of a MasterPage, which further refines the Page
ViewContainer extension introduced in chapter 7.

Figure 8.6 shows an example of MasterPage, which we assume to be defined
within the SiteView of a web application offering both public and protected pages.
The MasterPage contains the functionality for logging-in and out and for displaying
the name of a logged-in user, which repeat identically in all the pages of the Site-
View. The use of a MasterPage centralizes the definition of the shared functionality
and eases both the initial specification and the evolutive maintenance.

The use of the Login and Logout Actions and of the Context to identify a logged-
in user is explained later in this chapter.

8.2 NAVIGATION AND ORIENTATION
Designing an effective access to the application content and functionality is prob-
ably one of the most challenging tasks in interface design. The idea is simple: the
user should always be able to understand what can be done in the current interaction
context and how to “jump” to another context. Next, we discuss some design patterns
that have the common goal of helping users find their way in the interface.

FIGURE 8.5

Module PaymentExecution placed inside the model of an e-commerce application.

MASTERPAGE
A MasterPage extends the Page ViewContainer to denote that its content is replicated in a set of
target pages. The target pages of MasterPage are, by default, those contained in the SiteView or
Area where the MasterPage belongs.

CHAPTER 8 Modeling patterns174

8.2.1 TOOLBARS AND MENUS
The standard widgets for orienting the user during navigation are toolbars and menus,
used in different flavors in desktop, web, and mobile applications.

Two major categories of toolbars can be distinguished: content-dependent and
content-independent. These correspond to the two navigational categories discussed
in chapter 4 and 5. Content-dependent toolbars and menus group commands for
accessing or acting on objects, whereas content-independent toolbars and menus
group commands for navigating from one place to another in the interface.

In IFML, toolbars and menus are modeled as ViewContainers and/or View-
Components associated with the events representing the executable navigations and
actions.

8.2.1.1 PATTERN CN-SOT: Single object toolbar
Content-dependent toolbars are always modeled explicitly. Their role is to show the
user all the actions and navigations that are possible starting from the object(s) in
view. The basic case occurs when only a single object is in view.

In a first variant, the toolbar is modeled as a set of events associated directly
with the Details ViewComponent that displays the object. In such a realization, the
object and the commands for acting on it are displayed together synchronously. This
solution is normally employed in web applications, where pop-up menus are used

FIGURE 8.6

Example of MasterPage.

8.2 Navigation and Orientation 175

sparingly and the available commands are embedded as hypertext anchors in the
page that shows the target object. Figure 8.7a demonstrates an example of this design.

A second variant decouples the appearance of the object from that of the toolbar.
An event is shown together with the object, which can be used to display a menu
with content-dependent commands. This latter solution is viable when screen space
is scarce and the commands numerous, or the object demands all the available space
for a better visualization, as in an image or document viewer. Space economy is
obviously at the price of an extra interaction, so the tradeoff should be considered
carefully. Figure 8.7b shows an example of this solution.

In platforms endowed with multiple ways for selecting objects, such as left, right,
and double click, keyboard accelerators, and select and press touch gestures, the
basic pattern can be enhanced by assigning some of the Actions to a context menu
and some other Actions to dedicated events. Figure 8.7c exemplifies this enhance-
ment, where the right-click event opens a command menu and the double-click event
causes the navigation to the full screen view.

Hybrid designs between detached and in situ command placement are also pos-
sible, as well as multiple, logically equivalent realizations of the same set of com-
mands. Figure 8.8 shows an extreme case in which the commands for acting on an
image are embodied in three ViewContainers: the window menu bar, a toolbar placed
below the image, and the menu associated with the right click of the mouse.

Whatever the design pattern adopted—which may depend on the class of the
application—the general recommendation of all usability guidelines and textbooks
is consistency. The adopted interaction scheme should be repeated consistently
throughout the application.

IFML allows representing the chosen design patterns at a level higher than the
source code. This makes it possible to automatically check the model of a large
application for the consistent usage of patterns and even to apply model refactoring
automatically to improve uniformity. An example of these techniques is described in
[FLMM04].

8.2.1.2 PATTERN CN-MOT: Multiple objects toolbar
To speed up the interaction, commands can be applied to multiple objects (e.g., to
move or delete them). In this case, the design of the toolbar must be coordinated with
that of the object selection mechanism. Different solutions are possible.

No choice. The commands are applied to all the objects indiscriminately. This
may happen, for example, when the set of target objects is identified by a categori-
cal entity, as explained in chapter 3. The toolbar can be modeled as a set of events
associated with the categorical object, using any one of the single object patterns dis-
cussed before. Particular care should be placed in mixing commands that refer to the
categorical object itself (such as renaming a whole photo collection) and commands
that apply to the individual members of the set implied by the categorical object
(such as setting one image of the collection as the background). A good practice
with bulk commands is to provide feedback to the user on the fact that the command
is applied to multiple objects (e.g., requiring confirmation or explicitly showing the

C
H

A
P

TE
R

 8
 M

odeling patterns
1

7
6

FIGURE 8.7

Content-dependent toolbar for a single object instance.

8.2 Navigation and Orientation 177

number of objects that will be affected). Figure 8.9 shows an exemplary solution
applied to bulk commands for image collections. Each command for acting on all
the images of a collection is split in two steps: the selection of the target collection,
which visualizes the toolbar containing the name and the number of photos that will
be acted upon, and the actual bulk commands (RotateAll, MoveAllTo, DeleteAll),
which are triggered from the events associated with the toolbar of the “categorical”
collection object.

Preselection. The target object(s) are selected first and then the command is
applied to them. This pattern is ubiquitous in desktop and web applications, where
checkbox lists are used for the purpose. When multiple selections are allowed, the
events to be modeled are two: the selection items from the list and the triggering of
an Action on the selected objects. If the selection is single, these two events could
either be disjoint and asynchronous or collapse into an atomic interaction. Also in
the case of preselection, if space restrictions apply and the commands are numerous,
the display of the toolbar listing the available commands can be detached from the
container allowing the selection of the objects.

Figure 8.10 illustrates these aspects by revisiting the e-mail running example,
which contains an instance of the preselection design pattern applied to the “Mes-
sageList” ViewComponent. The two event schemes exploited for the selection are
clearly visible. On one side, the user can click on the message header, and this inter-
action immediately opens the “MessageReader” ViewComponent. In this case, the
selection and action triggering events coincide. On the other side, ticking a check box
only selects an item from the list. This event (“MessageSelection”) opens the toolbar,
where the actual commands that can be applied to the selected messages become

FIGURE 8.8

Multiple realizations of the content-dependent commands on a single object.

C
H

A
P

TE
R

 8
 M

odeling patterns
1

7
8

FIGURE 8.9

Content-dependent toolbar for multiple images, associated with the categorical class Collection. When a collection is selected, the number of
corresponding images is shown, together with the available actions. A double click on a collection opens the details of the first image.

8.2 Navigation and Orientation 179

available. In this case, the selection and the action are asynchronous and performed
in two separate interactions.

Postselection. The command is selected first, followed by the object(s) to which
it must be applied. This pattern is suitable to applications that comprise general pur-
pose commands (such as deletion and sharing), which apply to different classes of
objects. Figure 8.11 shows an example of postselection.

8.2.1.3 PATTERN CN-DT: Dynamic toolbars
The commands listed in a toolbar or menu may vary at runtime, based on the status
of the interaction. For example, the command “SetAsBackground” could be enabled
only when the selected object is an image.

The dynamic addition of commands to a toolbar is modeled in IFML with the
ActivationExpression element associated with the events of the toolbar. The Activa-
tionExpression denotes the condition that must be satisfied by the current interaction
context for the event that triggers an action to become active.

Figure 8.12 recalls two examples of dynamic toolbar from the e-mail application.
First, the “ReplyToAll” command appears in the toolbar (represented by the

events associated with the “MessageReader” ViewComponent) only when the user
has selected a message with more than one recipient. Second, the toolbar of the
“MessageWriter” ViewComponent (represented by the events associated with the

FIGURE 8.10

Content-dependent toolbar for the preselection of instances.

C
H

A
P

TE
R

 8
 M

odeling patterns
1

8
0

FIGURE 8.11

Content-dependent toolbar for the postselection of instances.

8.2 Navigation and Orientation 181

“MessageWriter” Form) comprises several events dynamically activated based on
the status of the interaction. For example, the “EditSubject” command is active only
when replying to a message and not when forwarding.

8.2.1.4 PATTERN CN-MSC: Multistep commands
As a corollary to the content-dependent toolbar patterns, we discuss the case of mul-
tistep commands, which are often found in toolbars and menus. These commands
involve multiple steps. For example, a content sharing command requires the user to
select the connection method or application and then the recipient of the shared object.

Figure 8.13 shows the model of a three-step command for sharing a piece of
content over a network connection. The command sequence is modeled as a chain
of modal windows that can be triggered open when one object is in view. The user
is asked to select the network service (e.g., Bluetooth or DLNA) and then to choose
among the recipients that are in range.

Note that the interaction is stateful, and thus the user’s choice in all the interme-
diate steps must be represented as parameters associated with the appropriate View-
Containers, as shown in Figure 8.13.

Composite commands can be rather complex—even dynamic—especially in desktop
applications, because external applications or plugins can register themselves as provid-
ers or recipients of services. To illustrate the case, Figure 8.14 models the command menu
(which is a contextual menu) for working with images in the Windows explorer interface.

FIGURE 8.12

Dynamic addition of commands to a toolbar.

C
H

A
P

TE
R

 8
 M

odeling patterns
1

8
2

FIGURE 8.13

Three-step command for sharing a file over a network connection.

8
.2

 N
avigation and O

rientation
1

8
3

FIGURE 8.14

Command menus for working with images in a typical window-based explorer.

CHAPTER 8 Modeling patterns184

In desktop applications, commands contextual to an object are normally rendered
using menus that provide a compact representation and allow the nesting of multistep
command chains. Figure 8.14 shows the nested structure of the menu for sending an
image to a target destination. A right-click event triggers the display of a ViewCon-
tainer that represents the first-level menu (ImageMenu). It contains both statically
defined events (SendTo, Cut, Copy) and a List ViewComponent (ExtraCommands),
which denotes a further list of commands that are dynamically added by exter-
nal applications. Selecting the SendTo command from the first-level menu opens
a second-level submenu represented as a nested ViewContainer (SendToMenu).
This in turn may contain statically defined subcommands (Mail Recipient, Folder,
Bluetooth) and dynamically registered subcommands. In the example, selecting the
Bluetooth subcommand triggers the display of a window containing a full-fledged
microapplication (a wizard) for configuring the transfer.

8.2.1.5 PATTERN CN-CII: Commands with inline input
A pattern that helps shorten user interaction consists of collapsing in the toolbar
several steps needed to perform an action. The typical case occurs when a command
sequence requires a short input by the user, as shown in Figure 8.15.

The search pattern of the e-mail application is revised to collapse the search input
box within the command toolbar. In this variant, the toolbar is always in view when
messages are accessed. The ActivationExpression associated with the “Delete,”
“Archive,” “Report,” and “MoveTo” events makes the command active only when
at least one message is selected. Conversely, the keyword input form and its submit
event are permanently pinned to the toolbar.

8.2.1.6 PATTERN CN-CIM&B: Content-independent navigation bars
and menus

Content-independent toolbars, although apparently similar in the rendition to their
content-dependent counterparts, express quite a distinct aspect of the interface. They
group commands that do not act upon specific objects but shortcut the navigation or
help the user go back quickly to the most important view elements, possibly from a
deeply nested part of the interface. For this reason, they are often called navigation
menus or bars.

In IFML, content-independent navigation menus can be modeled in two ways.
The first way, discussed in chapters 4 and 7, is implicit through the concept of land-
mark. When a ViewContainer is tagged as landmark, a navigation link to it is con-
sidered part of an implicit navigation menu ViewContainer. Such a ViewContainer
is again implicitly nested within all the ViewContainers where the landmark is vis-
ible. In this way, an explicit toolbar does not need to be modeled for the purpose.
It is left to the implementation (e.g., to a code generator) to insert the navigation
menu with appropriate navigation commands wherever it is appropriate according
to the landmark visibility rules. This way of modeling is practical in web applica-
tion specification, in which the lack of a top-level ViewContainer would force the
designer to replicate the same navigation bar in all the pages. Moreover, the implicit

8
.2

 N
avigation and O

rientation
1

8
5

FIGURE 8.15

An input field collapsed with the related command in the toolbar.

CHAPTER 8 Modeling patterns186

representation supported by landmark is also more resilient to changes in the model.
If the navigation commands are explicitly listed in the navigation bar, a change in the
visibility of areas and pages requires updating the model. Conversely, if the content
of the global navigation bar is inferred by the landmark specifications, the model
does not need to be updated after a change of visibility of pages and areas.

The second modeling option is to have the navigation bar represented explicitly
by means of a toolbar-like ViewContainer. This solution is suited to cases in which
some extra semantics must be conveyed that are not captured by the specification of
the landmark property of ViewContainers.

Examples in which the explicit modeling could be appropriate are:

 • When the navigation bar should exploit a predefined region of the screen, such

as a «system» ViewContainer, for enforcing uniformity of navigation across
applications or take advantage of system-provided capabilities, such as the auto-
matic splitting of the toolbar or the management of commands overflow based
on the screen size and orientation.

 • When the content-independent navigation bar should be merged with the
content-dependent toolbarfor economy of space or for enforcing a unique place-
ment and style of all the commands, irrespective of their nature.

8.2.2 PATTERN CN-UP AND CN-BACK: UP AND BACK NAVIGATION
The “Up” and “Back” links are classic orientation aids, present in many navigational
interfaces, most notably in web and mobile applications. Their semantics are distinct:

 • The “Up” link refers to some hierarchical structure associated with the inter-

face; it leads the user to the superior ViewElement in the View hierarchy.
 • The “Back” link refers to the chronology of the user’s interaction; it leads back

in time to the last visited ViewElement. When the previously visited ViewEle-
ment coincides with the parent of the current ViewElement, “Back” and “Up”
lead to the same target. However, based on the navigation history, the “Back”
button can return the user to a screen not logically related to the current one or
even to a different application.

The “Up” link can be represented in IFML either implicitly or explicitly. The

implicit representation relies on the nesting structure of ViewContainers. Since the
parent ViewContainer can be inferred from the composition, there is no need to
explicitly represent the “Up” link, and one can delegate its insertion in the interface
to the implementation (e.g., to a code generator). However, the “Up” link is not
necessarily confined to the content-independent navigation across ViewContainers.
Many applications, especially mobile apps where the data navigation patterns are
quite repetitive, also associate a meaningful “Up” event to some content-depen-
dent navigation patterns, such as master detail navigation (recall the pattern from
chapter 5). In these cases, the implicit representation of the “Up” link requires a
clear definition of the content-dependent design pattern where the “Up” link is
presumed.

8.2 Navigation and Orientation 187

Alternatively, the “Up” link can be represented explicit by means of an Event and a
NavigationFlow. For example, Figure 8.16 reconsiders the master detail design pattern
of chapter 5 and makes evident the “Up” nature of the link from the detail to the master.

Using an extension to qualify the event, as done in Figure 8.16, helps in the
implementation. For example, a code generator could produce code where both the
content- independent and the content-dependent “Up” NavigationFlows are rendered
homogeneously.

A word of caution is warrented for situations in which a ViewContainer can be
accessed using multiple navigation paths. Such a situation is frequent in both web
and mobile applications. For example, a web page with the details of a product could
be reached both by a direct link from the home page, where some products are high-
lighted for promotion, or at the end of a sequence of navigations traversing the cat-
egory–product hierarchy. In these cases, the semantics of the “Up” command is not
well defined, and most usability guidelines suggest to give the “Up” link the seman-
tics of “Back” or even to disable it to avoid confusion.

The “Back” navigation can be represented in IFML with a stereotyped event, as
shown in Figure 8.17.

The extension is necessary because the event has extra semantics that cannot be
inferred from the rest of the model. The destination ViewElement is not specified
by means of an InteractionFlow but is defined as the last accessed ViewElement in
reverse chronological order.

8.2.3 PATTERN CN-BREAD: BREADCRUMBS
A breadcrumb (or breadcrumb trail) is a navigation aid that shows the user’s location
in the application interface. The term derives from the Hansel and Gretel fairytale
in which the two children drop breadcrumbs to mark the trail back to their home.
Breadcrumb navigation is used especially in large web applications endowed with
a hierarchical organization of pages or content items (e.g., in e-commerce websites
where products are structured hierarchically).

Three types of breadcrumb navigation can be distinguished:

 • Topological: the trail represents the position of the current ViewContainer

within the static hierarchy of the ViewContainers. With reference to the e-mail
application use case, when the user is composing a message, the trail could be
something like “Email>Messages>MessageComposer.”

UP
The Up Event extends the Event to denote navigation upward in a hierarchy.

BACK
The Back Event extends the Event to denote navigation in reverse chronological order.

C
H

A
P

TE
R

 8
 M

odeling patterns
1

8
8

FIGURE 8.16

Master detail pattern with “Up” navigation.

8
.2

 N
avigation and O

rientation
1

8
9

FIGURE 8.17

Example of ViewContainer with multiple access paths and “Up” and “Back” navigation.

CHAPTER 8 Modeling patterns190

 • Content-based: the trail represents a path of access classes that index the core
object currently in view. For example, in a online computer hardware shop, the
trail appearing in the page of a product could look like “Products>Laptops>Aspi
re>AspireE.”

 • Dynamic: in applications that do not provide a notion of a “Back” link, history-
based navigation is sometimes provided by a breadcrumb trail constructed by
chaining the last few visited ViewContainers. This variant should be used spar-
ingly, because it overlaps with the usual “Back” navigation and may confuse
users accustomed to the structural interpretation of this navigation aid.

Breadcrumb links can be modeled in IFML in different ways depending on their

nature. Topological breadcrumbs can be inferred from the composition of the inter-
face, so in principle they could be left implicit in the model and their insertion could
be delegated to the implementation. Content-based breadcrumbs, by contrast, can-
not be inferred from the model because the designer must specify the path of access
classes and the core class to use for their construction. For homogeneity of design, it
may thus be convenient to extend the ViewComponent concept to denote the inser-
tion of the breadcrumb links trail in a ViewContainer.

Figure 8.18 shows an example of content-based breadcrumb navigation, situated
in the “ProductCatalog” Area of a web application.

The “Catalog” Breadcrumb specifies the path of association roles that support the
construction of the trail: from the access class “Category” to the access class “Fam-
ily,” and from “Family” to the core class “Product.” Note that the ViewComponent is
placed inside a MasterPage within the Area container, which is equivalent to repeat-
ing the Breadcrumb ViewComponent inside all the pages of the Area.

8.3 CONTENT PUBLISHING, SCROLLING, AND PREVIEWING
In this section, we illustrate a few more patterns to complete the gallery of content
and navigation patterns started in chapter 5.

8.3.1 PATTERN CN-MMD: MASTER MULTIDETAIL
The master multidetail pattern is an extension of the basic master detail pattern
introduced in chapter 5. It occurs when the class providing the detail is internally

BREADCRUMB
The Breadcrumb is an extension of ViewComponent that denotes a breadcrumb trail. It has a
property type, which can have the values Topological and Content-based. If the type is Content-
based, the Breadcrumb incorporates nested DataBinding elements that specify the path of classes
and association roles that support the creation of the content-based trail.

8
.3

 C
ontent P

ublishing, Scrolling, and P
review

ing
1

9
1

FIGURE 8.18

Content-based breadcrumb navigation.

CHAPTER 8 Modeling patterns192

substructured with further components and associations. The pattern provides a
compact representation of the salient aspects of the core class and of its internal
organization.

Figure 8.19 shows an example of master multidetail pattern.
Notice the use of DataFlows to provide the Product OID to the ViewComponents

that publish the accessories and the guarantee, which constitute the multidetail parts
together with the product information.

8.3.2 PATTERN CN-PG: PAGING
Another pattern of content publication occurs when multiple objects form a sequence
that has a meaningful sense to the user (e.g., they are sorted by date or by relevance)
and the screen space is too limited for displaying all the objects simultaneously. The
paging pattern displays a block of objects at a time and allows the user to scroll rap-
idly back and forth in the collection.

A popular instance of this pattern is provided by the “swipe view” of mobile
applications: one object is shown, and the swipe gesture is used to scroll over the col-
lection. Figure 8.20 shows an example of the paging pattern applied to a collection
of multimedia objects.

Notice that the pattern specifies the ParameterBinding associated with the ges-
ture events explicitly, because the choice of the left (right) swipe for accessing the
previous (next) object cannot be inferred from the model. The “next” and “previ-
ous” parameters are shortcuts for the previous and next block with respect to the
current one, which is a default parameter of the ScrollableList ViewComponent (see
chapter 7).

The pattern is adequate when the objects to display cannot be easily summarized,
and thus the display of one exemplary instance is a good way to start user interaction.
However, the pattern requires the collection to contain objects grouped according
to a meaningful criterion (e.g., images pertaining to the same photo album) sorted
in a way that anticipates user intention (such as sorting by date). The next pattern
provides a way to highlight the context of the current object within the collection to
which it belongs.

8.3.3 PATTERN CN-PR: COLLECTION PREVIEW
When the paging pattern is used to show one object at a time, the user may lose the
notion of the logical placement of the object in the collection to which it belongs.
Having a preview of the object’s position in the sequence and of what comes before
and after it may greatly help the user locate the content of interest quickly. This func-
tionality is granted by the collection preview pattern, shown in Figure 8.21, which
is essentially the synchronization of two ScrollableList ViewComponents: one for
scrolling one object at a time (represented by the Photos ViewComponent) and one
for having a preview of the objects that are close in the collection to the one in view
(represented by the Blocks ViewComponent).

8
.3

 C
ontent P

ublishing, Scrolling, and P
review

ing
1

9
3

FIGURE 8.19

Example of master multidetail pattern.

C
H

A
P

TE
R

 8
 M

odeling patterns
1

9
4

FIGURE 8.20

Example of paging pattern.

8
.3

 C
ontent P

ublishing, Scrolling, and P
review

ing
1

9
5

FIGURE 8.21

Example of the collection preview pattern.

CHAPTER 8 Modeling patterns196

Notice that two DataFlows are used to communicate the value of the current
block and current image between the two ScrollableList ViewComponents. The
Blocks ViewComponent communicates the first object of the current block to the
Photos ViewComponent. The Photos ViewComponent in turn communicates the
 current image to the Blocks ViewComponent. When one gesture event occurs, the
ViewComponent that has changed the value of its “current” parameter communi-
cates the new value to the other ViewComponent, which may in turn synchronize the
object or block in view.

8.3.4 PATTERN CN-ALPHA: ALPHABETICAL FILTER
When the objects to be accessed are numerous but possess a meaningful attribute (for
instance, Title) that allows them to be accessed alphabetically, a useful access pattern
consists of providing an alphabetic filter to partition the collection into chunks. Fig-
ure 8.22: Example of the alphabetical filter shows an example. The personnel list of a
company is split into subcollections using the first letter of the surname of employees
as the indexing criterion.

Note that the DataBinding of the AlphabeticalFilter ViewComponent is defined
as an enumeration of all the letters of the alphabet (called LettersOfAlphabet).

The pattern can be improved by making the filter display the number of objects
in each chunk. This also allows the removal of characters from the display that do
not correspond to any object. Figure 8.23 shows the improved pattern, which exploit
a DynamicBehavior content binding: the reference to the Employees::getGroupCou
ntsBySurname() operation of class Employee, which returns a collection of objects
of type GroupCount, each of which contains the group name (i.e., one alphabetic
character) and a count of the objects in the group.

FIGURE 8.22

Example of the alphabetical filter pattern.

8.4 Data Entry 197

8.4 DATA ENTRY
IFML is not meant to express the purely visual or platform-dependent properties of
ViewComponents and their parts, which are better delegated to the implementation,
be it manual or tool supported. However, the designer may want to adorn the IFML
diagram with stereotypes that provide hints to the implementation about fundamental
usability issues to ensure that the final application will incorporate the best inter-
action practices. Data entry is surely an aspect of the application where usability
concerns are prominent. Entering data is a cumbersome procedure. Facilitating the
user’s task is a key factor in ensuring the acceptance and success of the application.
In the following, we extend the list of data entry patterns initiated in chapter 5 with
more examples that can be used to improve the usability of form-based application
interfaces.

8.4.1 PATTERN DE-TDFP: TYPE-DEPENDENT FIELD PROPERTIES
Best-of-breed desktop, web, and mobile applications exploit a wealth of widgets and
techniques for accelerating user input. These can be suggested in the IFML model
by adequately stereotyping the Field element. Table 1 exemplifies a number of fre-
quently used data entry facilitation patterns. The list is by no means exhaustive but
aims at illustrating the kind of model extensions that are worth expressing to address
data entry usability requirements in the IFML model.

shows an example of a form for uploading and captioning an image that exploits
a Field of type image enhanced with the capabilities to drag and preview the file to
be submitted Figure 8.24.

8.4.2 PATTERN DE-RTE: RICH TEXT EDITING
As shown in chapter 6, the editing of text could be specified in an even more detailed
way by modeling a microapplication that embodies the commands applicable to the
text. The model of such a microapplication could be encapsulated within a Module
and be reused. Figure 8.25 shows the definition of such a Module.

FIGURE 8.23

Example of alphabetical filter with preview of the number of objects.

CHAPTER 8 Modeling patterns198

8.4.3 PATTERN DE-AUTO: INPUT AUTO-COMPLETION
Auto-completion is the procedure of automatically providing suggestions for completing
input based on what the user has already typed in a field. Functionally, the pattern is simi-
lar to a SelectionField, but its ubiquitous presence in data entry and search applications
make it worth a dedicated pattern and an extension of the SelectionField ViewElement.

The auto-completion design pattern is preferred over a simple form with a Selec-
tionField when the list of values from which the user should select is very long.

Figure 8.26 shows an example of the auto-completion pattern.

Table 1 Stereotypes for Type-Dependent Field Properties.

Type Stereotype / Input parameters Behavior

Date «Calendar» The user can pick a date from a
perennial calendar

Date «ConstrainedCalendar»
startDate, endDate

Choice is restricted to dates in a
given calendar interval

Date range «DateRange» choice of a start date and an
end date to represent a range of
dates.

String «Password» Input is masked
Boolean «ToggleButton» The user can toggle a two-states

button, a checkbox or a two-
options radio button

Text «FormattedText» Text is displayed with format (e.g.,
CCS-style properties)

Text «RichTextEditor» Text is displayed with format that
can be changed in the editor

Blob «Draggable» A blob can be dragged onto the
input field

Blob/Image «Preview» Image is previewed before
submission

Blob/Image «Crop» Image is previewed and can be
cropped

Blob/Image «RichImageEditor» Image is previewed and can be
edited with a rich image editor

AUTOCOMPLETION
AutoCompletion is an extension of SelectionField that denotes the dynamic formation of a
 suggestion list from the attribute values of objects. It has a parameter UserInput, which denotes the
input progressively inserted by the user. The property ConditionalExpression is used for retrieving
the DataBinding instances to match the user’s input. The property VisualizationAttributes identifies
the attributes of the matching DataBinding instances used
to construct the selection list.

8.4 Data Entry 199

FIGURE 8.24

Example of image uploader with preview. The “upload photo” button and the image
 preview represent the rendition of the type-dependent field “Photo.”

FIGURE 8.25

A Module encapsulating a rich text editing microapplication.

C
H

A
P

TE
R

 8
 M

odeling patterns
2

0
0

FIGURE 8.26

Example of auto-completion pattern.

8.4 Data Entry 201

8.4.4 PATTER DE-DYN: DYNAMIC SELECTION FIELDS
Dynamic selection fields are used when the application requires the user to input
data that have dependencies. In this case, the choice of one object in a Selection-
Field may affect the options available for filling another SelectionField. The typi-
cal case occurs with hierarchical data. For example, when filling one’s address, the
choice of the country determines the list of available states or provinces, which
in turn determines the list of available cities. Figure 8.27 shows a form with three
SelectionField elements. The first one, Country, is preloaded from the database, as
shown by the DataBinding associated with it. It displays the list of country names
extracted from the Country entity. The second SelectionField, StateProvince, is
dynamic; it extracts the state or province names related to the currently chosen
country. The dependency is expressed by the parametric ConditionalExpression,
which exploits the country relationship role between class Country and StateProv-
ince. The parameter is supplied to the dynamic SelectionField by means of a Data-
Flow associated with the appropriate ParameterBinding element. When the country
is not selected, the Selected parameter is undefined and thus the StateProvince
SelectionField has an empty list of options. After a user’s selection in the Country
SelectionField, the parameter becomes defined and the StateProvince Selection-
Field displays the provinces or states of the selected country. The third Selection-
Field (City) is also dynamic and has a behavior similar to that of the StateProvince
SelectionField.

8.4.5 PATTERN DE-INPL: IN-PLACE EDITING
In-place editing allows the user to edit content without abandoning the current
view to access a data entry form. The pattern is useful when the user only needs to
specify a few values in a simple format, such as a text string or a selection from a
list of options. It is applicable when authentication is not necessary or the user is
already authenticated. In-place content editing requires extending the Visualiza-
tionAttribute ViewComponentPart, to denote a piece of content that is displayed
and edited.

Figure 8.28 shows an example of the in-place editing pattern. The Photo View-
Component displays an image, with its timestamp, name, and description. These two
latter attributes are also editable in-place.

In this way, the user can quickly update the title or the description of an image
while looking at it and without the need of being redirected to an edit form.

EDITABLEVISUALIZATIONATTRIBUTE
EditableVisualizationAttribute extends VisualizationAttribute to denote a piece of content that is
at the same time displayed and edited. To capture the termination of the editing, the element can be
associated with events triggered by the completion of the editing, such as OnFocusLost.

C
H

A
P

TE
R

 8
 M

odeling patterns
2

0
2

FIGURE 8.27

Example of dynamic selection field.

8.4 Data Entry 203

8.4.6 PATTERN DE-VAL: INPUT DATA VALIDATION
A recurrent pattern associated with data entry is the validation of the input provided
by the user to ensure that it meets the application requirements. When the data are
submitted to a business operation, a simple way to model this functionality is to
exploit the termination events of the Action to signal the receipt of incorrect data
from the user. Alternatively, data validation can be modeled explicitly as an Action.
This solution is shown in Figure 8.29.

The “DocuSearch” Form includes three search fields for retrieving documents.
A constraint requires that at least one of the three values is supplied. This is checked
by the “Validate” Action. If the “Validate” Action terminates normally, it forwards the
input to the “Results” ViewComponent, which shows the results of the search. It the
Action terminates abnormally, this signals a validation error, which can be displayed
in the “Search Documents” ViewContainer to instruct the user about the missing

FIGURE 8.28

Example of in-place editing pattern.

CHAPTER 8 Modeling patterns204

values. For better readability of the model, an annotation is associated with the “Vali-
date” action, expressing the constraint that must be respected by the input values.

8.5 SEARCH
The basic search patterns illustrated in chapter 5 can be refined with further function-
ality to improve the effectiveness of information retrieval.

8.5.1 PATTERN CS-RSRC: RESTRICTED SEARCH
Search over large collections of objects can be made more efficient by restricting the
focus to specific subcollections. This can be done by a mixed pattern that exploits
both content search and access categories. Figure 8.30 shows an example of the
restricted search pattern.

The user can search the product repository by providing a keyword and selecting
a product category. The search keyword is only matched to the name and description
of the products of the specified category.

8.5.2 PATTERN CS-SRCS: SEARCH SUGGESTIONS
The use of popular search engines has made it customary for users to expect search
hints in the form of suggested keywords that complete the partial input they provide.
The search suggestion pattern exploits the autocomplete pattern and requires the log-
ging of keywords previously inserted by the user along with their frequency. The log
data can then be used to construct a list of matching keywords, sorted by frequency,
as shown in Figure 8.31.

FIGURE 8.29

Example of input data validation.

8.6 Content Management 205

8.6 CONTENT MANAGEMENT
Content management patterns allow the user to manipulate the objects of the applica-
tion. They were overviewed in chapter 5 when introducing Actions. Content manage-
ment patterns require a mix of data publication to ensure the user is always aware of
the object(s) being manipulated and of data entry, which enables the insertion of new
or replacement data. After the completion of a content update action, the user should
be given a confirmation of the action’s effects, which can be achieved by displaying
the modified status of the affected object(s).

8.6.1 PATTERN CM-CBCM: CLASS-BASED CONTENT MANAGEMENT
A typical content management pattern addresses the creation, modification, and dele-
tion of an object and its association instances. Figure 8.32 shows an example of the
content management pattern in a situation in which the user is requested to manage the
entire lifecycle of instances, including creation, modification, and deletion. The illus-
trated design allocates the content management commands in as few ViewContainers
as possible and strives to keep the context of the ongoing modification always in view.

FIGURE 8.30

Example of restricted search pattern.

C
H

A
P

TE
R

 8
 M

odeling patterns
2

0
6

FIGURE 8.31

Example of search suggestions.

8
.6

 C
ontent M

anagem
ent

2
0

7

FIGURE 8.32

Example of class-based content management pattern.

CHAPTER 8 Modeling patterns208

The pattern displays the objects to be managed in the “ProductList” ViewCompo-
nent, where the user can select multiple instances for deletion. The “Choose” event
causes a modal confirmation window to appear, which previews the objects to delete
and giving the user the option either to trigger or to cancel the delete action. The
“CreateNew” event starts a content-independent navigation that accesses the “Pro-
ductEditor” ViewContainer, which by default displays the “DataEntry” ViewCon-
tainer. The user can enter the data for a new product in the Form and submit them
to the “CreateOrModifyProduct” Action, which creates a new object (if no OID is
supplied) or modifies an existing object (if an OID is provided in input). Upon suc-
cessful termination, the new product’s details are displayed in the “ProductDetails”
ViewComponent to confirm the effect of the action to the user. The two “Modify”
events available in the “Products” ViewContainer (for selecting the product to update
from the list) and in the “ProductDisplay” ViewContainer (for updating the specific
product in view) allow the user to edit the data of a product. Note the ParameterBind-
ing Oid→ProductOid associated with the InteractionFlow emanating from both the
“Modify” events, which makes the identity of the product available in the Form to
enable the preloading of the fields with existing attribute values of the identified
object (not shown for brevity; refer to chapter 5). For simplicity, Figure 8.32 omits
the specification of the error page displayed when any of the invoked actions fails.

8.6.2 PATTERN CM-PBCM: PAGE-BASED CONTENT MANAGEMENT
Another popular content management pattern occurs in blogs and page-based content
management systems. These applications have a fixed schema consisting of a hierar-
chical collection of pages and offer the user an intuitive interface for adding pages,
editing their content, organizing pages in hierarchies, defining the pages’ order in
menus, and setting the graphical properties and visibility of pages.

Figure 8.33 shows a simplified example inspired by a popular blog platform.
The “AllPages” ViewContainer shows all the existing pages and supports an event
(“Trash”) for deleting one or more pages. The “Edit” and “AddNew” events open the
“PageEditor” ViewContainer, where a form allows the user to define all the attributes
of the page: the title, the body content (created with a rich text editor), the parent page
in the hierarchy, the menu order, the visibility and publication status, and the graphic
template. The temporary modifications can be previewed in the “PageView” ViewCon-
tainer or made persistent with the “Save” event. The basic example of Figure 8.33 can
be enriched with more functionality, such as the addition of widgets, the creation of a
new page from a clone of an existing page, and the management of the revision history.

8.7 PERSONALIZATION, IDENTIFICATION,
AND AUTHORIZATION

Personalization is the adaptation of the interface to the user’s characteristics. It may
assume an elementary form, such as the insertion of the user’s name into a welcome
page, or employ sophisticated patterns such as the display of content that depends on

8.7 Personalization, Identification, and Authorization 209

the user’s context. The personalization of the interface requires the user to be identi-
fied, so the personalization patterns are treated together with the identification and
authentication ones. In chapter 3, we discussed the Context and UserRole classes and
showed examples of the personalization domain model, which allow the designer to
represent the information needed for adapting the interface to the individual user. In
this chapter, we show how to exploit such features to build interface models that take
into account the user’s identity and role. The patterns in this category are identified
by the acronym IA (Identification and Authorization).

8.7.1 PATTERN IA-LOGIN: LOGIN
The identification and authentication of the user are the procedures whereby the
application recognizes and checks a user-provided identity for validity. The most

FIGURE 8.33

Example of page based content management pattern.

CHAPTER 8 Modeling patterns210

common means to achieve this functionality is the login process. The user enters
credentials using a Form in a public access ViewContainer, and such input is verified
against the content of an identity repository. Upon success, the «NormalTermina-
tion» ActionEvent is raised by the login Action, the user is authenticated, and this
information is preserved in the Context. Upon failure, the «ExceptionalTermination»
ActionEvent is raised, which can be trapped by the application to give the user an
appropriate warning message.

Figure 8.34 illustrates the simplest login pattern. The “Login” form models the
mask for entering the user’s credentials, and the “Login” Action triggered by the sub-
mit event denotes the process of identification and authentication, which has two pos-
sible outcomes. Upon the successful completion of the Action, the Context object
becomes initialized with the identity of the user, represented by the unique username.
As we will see, this information allows exploiting the Context to build several person-
alization patterns. Figure 8.34 shows a basic one in which the source ViewContainer—
reaccessed after a successful login—displays the username of the authenticated user.
Upon unsuccessful termination, the pattern of Figure 8.34 simply redisplays the
source ViewContainer. This time, however, the identity information of the Context is
undefined, and thus the “UserName” ViewComponent displays no content.

8.7.2 PATTERN IA-LOGOUT: LOGOUT
The information about the user’s authenticated identity preserved in the Context can
be cleared by the initiative of the user by means of a “Logout” Action, as shown in
Figure 8.35.

The typical pattern comprises an event that triggers the “Logout” Action, which
normally terminates without exceptions. In Figure 8.35, after the Logout Action is
completed, the user is shown the same source ViewContainer, but, as a side effect of
the logout process, the identity information in the Context is no longer defined, and
thus the “UserName” ViewComponent has no content.

8.7.3 PATTERN IA-CEX: CONTEXT EXPIRATION NOTIFICATION
The Context information holding the authenticated identity of the user can also be
cleared by the system (e.g., for security reasons). This pattern is frequently used
in web applications where storage of the Context information associated with an
authenticated user is implemented by means of a session object in the server. Irre-
spective of how the Context is implemented, the update of the interface after the
expiry of the authentication information can be modeled with a system event, as
shown in Figure 8.36. In this pattern, the interface is notified by the “expiration”
system event, which causes the redisplay of the “SourceViewContainer,” expunged
of the content that depends on the Context.

Note that the Context is more abstract than the Session object of a web applica-
tion, which is implementation level. The example implies no commitment as to the
way in which the Context is preserved. It could be stored in the data-tier or in the

8
.7

 P
ersonalization, Identification, and A

uthorization
2

1
1

FIGURE 8.34

Example of the login pattern.

CHAPTER 8 Modeling patterns212

FIGURE 8.35

Example of the logout pattern.

FIGURE 8.36

Example of the authentication expiration pattern.

8.7 Personalization, Identification, and Authorization 213

middle-tier of a web application, in the model objects of a desktop application, or in
a “fat” client of a mobile or rich Internet application.

8.7.4 PATTERN IA-SPLOG: LOGIN TO A SPECIFIC VIEWCONTAINER
The examples of Figure 8.34 and Figure 8.35 assume that the login and logout actions
redisplay to the user the same source ViewContainer from which the action has been
triggered. This is not always the case, because in many applications—especially on
the web—the authentication is performed in one ViewContainer to obtain access to
another ViewContainer. This is the case, for example, in a web content management
system, where the authentication is provided in a public page, and then the authen-
ticated user accesses the collection of private pages. A simple model that represents
such a situation is shown in Figure 8.37.

The “Login” and “Logout” Actions now have an explicit InteractionFlow that
specifies the destination ViewContainers.

8.7.5 PATTERN IA-ROLE: USER ROLE DISPLAY AND SWITCHING
As discussed in chapter 3, the role played by the user in a role-based access control
system can be modeled with the UserRole extension of the Context. The Login pat-
tern has a second side effect in addition to identification: if users are classified in
roles, the Login Action defines the default role of the logged-in user by initializing
the content of the UserRole object. Again, notice that the Login Action is an abstract
concept, which can be implemented in several ways (e.g., using RBAC data stored in

FIGURE 8.37

Example of the login pattern with an explicit destination ViewContainer.

CHAPTER 8 Modeling patterns214

a relational database with a directory service such as LDAP). For IFML, its essence
of the Action is the authentication of the user and the assignment of a default role (if
defined) to the verified identity.

Figure 8.38 illustrates the publication of the role information in addition to the
username after a successful login.

Figure 8.38 shows also an example of the role switching pattern, usable in RBAC
systems that enable users to embody multiple roles (e.g., a conference management
system where the user could be both an author or a reviewer).

The “CurrentRole” ViewComponent has a DataBinding to the UserRole
object, the extension of the Context object that stores the current role imperson-
ated by the authenticated user. The list of potential rules is instead displayed by
the “ PossibleRoles” List ViewComponent. This component determines the list of
allowed roles for the user thanks to a ParamaterBinding that makes available the
identity of the logged-in user held in the “CurrentUser” ViewComponent.

Notice that the ConditionalExpression users.username->exists(name)exploits
the “users” association end of the “Membership” association between the User and
the Group classes, introduced in chapter 3. The content of the “PossibleRoles”
List ViewComponent could be determined in other ways (e.g., with a Dynamic-
Behavior element denoting the call to a role lookup method of an RBAC system).

FIGURE 8.38

Example of role switching pattern.

8.7 Personalization, Identification, and Authorization 215

The SelectionEvent associated with the “PossibleRoles” List ViewComponent
triggers the “SwitchRole” Action, which assigns to the user the role specified in
input. After the successful completion of the Action, the source ViewContainer
is reaccessed (by default) and the updated role is displayed in the “CurrentRole”
ViewComponent.

8.7.6 PATTERN IA-RBP: ROLE-BASED PERMISSIONS FOR VIEW
ELEMENTS

When the user is authenticated, the Context information can be used to implement
access permissions that depend on the user’s role. The access control rules presented
here should not be confused with those implemented at the back end to control the
access to the data by applications. We use the term “access control rules” with a
slight extension to denote the interface design pattern that shows in the interface only
the ViewElements that the user is entitled to see or the objects the user can see and
manipulate. However, bypassing the user interface to access the data tier is possible
in multitier applications, and thus the access control rules embodied in the front end
descend from, reinforce, and do not substitute for those specified in the role-based
access control policies and implemented in the back-end tiers.

Access control at the level of ViewElements is typical of web applications, where
the interface is split into distinct pages. Since pages are addressable and their address
could be “forged,” they should be treated as resources under role-based access con-
trol. As noted in chapter 7, the level of accessibility of pages can be expressed in
the interface model with the «protected» stereotype to distinguish pages that require
user authentication from public pages that are freely accessible. The «protected»
access requirement can be associated also with logical containers such as Area and
SiteView, with the meaning that the property applies recursively to all the contained
ViewElements.

The ViewPoint concept, which identifies a set of interrelated InteractionFlow-
ModelElements defining a functional portion of the system, can be used to express
the access rights to protected resources. Role X is associated with ViewPoint Y to
denote that users in the role X are authorized to access the resources of the ViewPoint
Y. In practice, web user roles are associated—through ViewPoints—with SiteViews.
For example, an authenticated user with content manager role would be granted per-
mission to access the protected SiteView containing the content management pages.
Figure 8.39 shows an example of RBAC applied to the SiteViews of a web applica-
tion. The Login Action has multiple termination events, one for each defined User-
Role. An ActivationCondition associated with each event tests the default role of the
authenticated user and activates the corresponding NavigationFlow, which specifies
the SiteView to be accessed. Notice that specifying the NavigationFlow is equivalent
to associating the destination SiteView with the ViewPoint of the UserRole men-
tioned in the event’s ActivationCondition (e.g., SiteViewRole1 with the ViewPoint of
the UserRole named “role1” and SiteViewRole2 with the ViewPoint of the UserRole
named “role2”).

CHAPTER 8 Modeling patterns216

Notice that the “Logout” action invalidates the authentication and thus clears the
permissions to access a protected resource, which entails that the SiteView accessed
after its successful completion should be public. If the “Logout” Action can be trig-
gered from any page of the application, as customary in web applications, it can be
denoted as landmark, as shown in Figure 8.39.

8.7.7 PATTERN IA-NRBP: NEGATIVE ROLE-BASED PERMISSIONS FOR
VIEW ELEMENTS

When the access rights for a role are a subset of those of another role, separating the
ViewPoints in two segregated SiteView is improper because it results in SiteViews
sharing most of their ViewElements, with consequent design and maintenance inef-
ficiency. In this case, an alternative design pattern may be more adequate: designing
a unique SiteView for both roles and enforcing “negative” permissions (denials) for

FIGURE 8.39

Example of the role-based access control pattern applied to the pages of a web application.

8.7 Personalization, Identification, and Authorization 217

the role with stricter access rules. Figure 8.40 shows how to express the pattern using
ActivationConditions.

After the successful login, the “PrivateZone” ViewContainer is accessed. The
“UserName” and “Role1&2 Content” ViewComponents are visible to users with
both “role1” and “role2.” The ActivationCondition UserRole.roleName=”role1”
expresses an access restriction: the ViewComponent is displayed only to users of
“role1.” This clause is actually a denial of access for all roles different from “role1.”

8.7.8 PATTERN IA-OBP: OBJECT-BASED PERMISSIONS
Another complementary kind of access control is expressed over the content objects
using the concept of personalization associations introduced in chapter 3.

The “MyBlog” ViewContainer displays the user’s identity and the list of his blog
articles, determined by means of the personalization association end “author.” One
article can be selected for modification, or a new article can be edited, using the “Arti-
cleEditor” Form. Submitting the form data triggers the “CreateOrModify Article”
Action, which either creates a new article and associates it with the authenticated
user or updates an existing article owned by the user. Therefore, the “author” asso-
ciation end acts as a kind of permission, which dictates the articles that a specific user
is entitle to update.Figure 8.41

8.7.9 PATTERN IA-PRO: USER PROFILE DISPLAY AND MANAGEMENT
The user profile is the application-dependent information associated with the identity
of an authenticated user. Such information can be represented explicitly in the data

FIGURE 8.40

Role-based access control over ViewElements with denial conditions.

C
H

A
P

TE
R

 8
 M

odeling patterns
2

1
8

FIGURE 8.41

Example of the access control pattern applied to content objects.

8.7 Personalization, Identification, and Authorization 219

model, as shown in chapter 3. The key to personalization is associating the identity
of the authenticated user with the attributes in the user profile. This can be achieved
simply by using the same identifier (e.g., the unique username or e-mail address) as
a key attribute both in the Context object and in the User class that stores the profile
information. Figure 8.42 shows a very simple pattern for displaying the user profile
and changing its data.

FIGURE 8.42

Example of profile display and editing.

CHAPTER 8 Modeling patterns220

Figure 8.42 applies the class-based content management pattern to the profile
information. The “ProfileEditor” ViewContainer displays the essential context infor-
mation (the user’s identity and current role) and retrieves the list of available roles.
The identity information (username) is propagated to the ViewComponents and
Action through appropriate DataBinding elements to enable the display of the profile
attributes in the “CurrentProfile” ViewComponent, the preloading of field values in
the “ProfileEditor” Form, and the identification of the object to modify in the
“ ModifyProfile” Action.

8.7.10 PATTERN IA-IPSI: IN-PLACE SIGN-IN
The in-place sign-in pattern, typical of web applications, occurs when a user who is
not currently authenticated in the application wants to perform an action that requires
identification. When the user attempts to trigger the action, he must be warned of the
need to sign in first and be routed to the login form. When the user has successfully
signed in, he must be returned to the interface element from which he requested the
initial action. When handling the submission of information, any data entered prior
to the login procedure must also be preserved.

Figure 8.43 shows an example of the in-place sign-in pattern applied to the com-
ment section of a blog article. The Blog ViewContainer comprises a Details View-
Component displaying the article’s text, a list of comments, and a form for entering
a new comment. When an unauthenticated user submits a comment, the Navigation-
Flow guarded by the Context.username.oclIsUndefined() ActivationExpression
is followed, which causes the display of the InPlaceLogin modal windows whereby
the user can enter credentials. Upon submission, the Login&CreateCommand Action
is executed, which authenticates the user and creates the comment (if the credentials
are valid). Conversely, when an already authenticated user submits a comment, the
NavigationFlow guarded by the NOT Context.username.oclIsUndefined() Activa-
tionExpression is followed, which simply creates the comment.

8.8 SESSION DATA
Session data management is an issue arising in some online applications, whereby
users can produce temporary information lasting only for the duration of their inter-
action with the system. The interface model of an application that exploits session
data is similar to that of a general purpose content management application. IFML
is neutral with respect to policies for managing data and thus does not represent the
way information is preserved or aligned between different architecture tiers. This is
apparent from the initial example of chapter 2, where we introduced the model of
the bookstore toy application, which dealt with a shopping trolley, a data structure
typically endowed with session duration. The “AddToCart” Action of Figure 8.2.16
encapsulates the business logic for inserting an item into the trolley at an abstract
level that hides the actual data management policy.

8
.8

 Session D
ata

2
2

1

FIGURE 8.43

Example of the in-place sign-in pattern.

CHAPTER 8 Modeling patterns222

One aspect in which session data management interfaces differ from generic data
management is in the necessity of handling the asynchronous invalidation of the ses-
sion by the system. In this case, the interface must handle a user request referring to
session data in a safe way by showing alternative content with respect to what is no
longer available. Another aspect is the possibility for the user to change the duration
of session data by making it persistent.

8.8.1 PATTERN SES-CR: CREATING SESSION DATA FROM
PERSISTENT DATA

Figure 8.44 shows an example of session data creation from persistent informa-
tion. The “FlightSearch” form allows the user to enter the usual flight selec-
tion criteria. The submit event triggers the “RetrieveFlight” Action, encapsulates
the business logic for extracting the flights that match the user’s need, and uses

FIGURE 8.44

Example of session data creation from persistent data.

8.8 Session Data 223

such data to create instances of the FlightSolution class in the session. The ses-
sion objects are displayed in the “Matches” List ViewComponent, which initially
shows all objects. Another form in the SearchResult ViewContainer allows
the user to narrow the displayed session objects based on further restrictive
conditions.

8.8.2 PATTERN SES-PER: PERSISTING SESSION DATA
Figure 8.45 exemplifies a pattern that is the reverse of that of Figure 8.44: the cre-
ation of persistent data from session data. From the “Matches” List ViewComponent,
the user can pick one flight option and activate the book event. This triggers the Cre-
ateBooking Action, which inserts the data of the booking into the persistent store. To
complete the example, the in-place sign-in pattern could be added to have the user
login prior to creating the persistent booking.

FIGURE 8.45

Example of the pattern for persisting session data.

CHAPTER 8 Modeling patterns224

8.8.3 PATTERN SES-EXC: SESSION DATA EXPIRATION CATCHING
PATTERN IA-CEX, discussed earlier in this chapter, handles the asynchronous noti-
fication of the expiry of the Context to the user interface by causing an automatic
refresh of the content that expunges the parts that depend on the Context object (e.g.,
the user’s identity). We now show an alternative way of handling the expiration of
the Context or of the session data based on a “lazy” policy. Instead of refreshing
the interface based on a system event, the pattern conditions the effect of a user-
generated event on the validity of the Context object, which is assumed to be silently
invalidated by the expiration of the session.

Figure 8.46 shows that ActivationConditions trapping the invalidation of the
 session are added to the NavigationFlows associated with the events of the View-
Container publishing session data. If the Context is still valid, the interaction proceeds
normally; otherwise, the effect of the events is redefined (e.g., to display a page that
does not contain session-dependent data).

FIGURE 8.46

Example of lazy management of session expiration.

8.9 Social Functions 225

8.9 SOCIAL FUNCTIONS
Social networks are applications popular with both web and mobile users. They
focus on the social activity performed by users, such as posting, rating, liking, com-
menting, and sharing. Such activities are made visible to a specific user based on
friendship connections and the privacy rules set by the originator.

8.9.1 PATTERN SOC-AW: ACTIVITY WALL
Figure 8.47 shows the pattern for modeling the log of social activity typical of a
social network platform. The interface model corresponds to a protected appli-
cation, which entails that the user’s identity is known and accessible via the
Context object. The “PersonalActivityWall” ViewContainer models the interface
for accessing the log of the social activities in the user’s circles. The log is split
into two ViewComponents. The “AllVisible” ViewComponent displays the com-
plete stream of activities that are visible to the user via a compact visualiza-
tion: only the author’s username and the activity description are shown. A system
event “activityNotification” signals the arrival of a new activity, which causes
the ViewComponent to refresh its content. The “onMouseOver” event associated
with the “AllVisible” List allows the user to see a preview of the full details of
each activity in a modal ViewContainer. The “Activity” Details ViewComponent
shows all the attributes of the activity, the comments made about it by other users,
and the likes received. The likes are displayed differently depending on their
number, using two separate «NestedDataBinding» elements. If only one like is
present (as specified by the ActivationCondition likes->size()=1), the Visual-
izationAttributes comprise the name of the user who liked the activity (not shown
in Figure 8.47 for simplicity); otherwise, only the number of likes is displayed
(againm Figure 8.47 omits the VisualizationAttributes ViewComponentPart, for
space reasons).

The events “comment,” “like,” and “share” associated with each activity allow
the user to perform the corresponding social action on one activity. The “like” event
is also associated with each comment of the activity.

The “Selected” NestedList ViewComponent displays only the activities flagged
as highlighted for the user. For each activity, the username of the author, image,
and description are shown. Also in the “Selected” ViewComponent, each activity is
accompanied by the list of comments and likes and by several events that allow the
user to act on both the activities and their comments. Finally, the “PersonalActivity-
Wall” ViewContainer also contains a Form whereby the user can post status updates
and media elements, such as images or a videos.

The “post,” “comment,” “like,” and “share events all create activity instances
that are then displayed on the walls of other users based on the visibility rules set
by the author and on the social network platform internal activity highlighting
algorithm.

CHAPTER 8 Modeling patterns226

8.9.2 PATTERN SOC-SH: SHARING, LIKING, AND COMMENTING
The activity stream typical of social networks is the result of the user’s interactions,
such as posting, commenting, liking, and sharing content produced by other com-
munity members.

Figure 8.48 exemplifies the design pattern for the sharing action. Posting, com-
menting, and liking are similar.

FIGURE 8.47

Example of the activity wall pattern.

8.9 Social Functions 227

The “share” event in the “PersonalActivityWall” causes the opening of the
“ChooseTarget” modal ViewContainer. This container preserves as parameters the
identity of the authenticated user and contains a summary of the content to be shared
in the “Activity” Details ViewComponent, as well as a Form for inserting a comment.
The user can choose among three modalities of sharing: the “shareOnWall” event
causes the activity to be shared as if it were a post by the user; the “shareToFriend”
and “shareToGroup” events cause the activity to be shared on the activity wall of a
selected friend or group, respectively.

FIGURE 8.48

Example of the sharing pattern.

CHAPTER 8 Modeling patterns228

For supporting the selection of the target friend or group, the “ChooseTarget”
modal ViewContainer comprises two nested alternative subcontainers, which in
turn host two Forms. Each form enables the choice of a friend or group with an
auto-completion field. When the user selects a friend, he can also decide to share
the content as a private message (using the “private” SimpleField of the “ToFriend”
Form).

8.9.3 PATTERN SOC-FR: FRIENDSHIP MANAGEMENT
The dynamics of social networks revolve around the links between members, which
descend from asymmetric (follow) or symmetric (friendship) associations.

Figure 8.49 shows an example of a pattern for managing a symmetric association
between users by means of friendship requests. A friendship request can be modeled
as an object connecting a requestor to a target user, with such properties as the time-
stamp of the request creation and the number of friends common to both the requestor
and the target of the request. The actual friends in common between the requestor
and the target of the request can be computed with the OCL expression: request.
requestor.friends->intersection(request.target.friends). Accordingly, the
(derived) attribute “numberOfCommonFriends” of class Request can be computed
with the OCL expression: request.requestor.friends->intersection(request.target.
friends)-> size().

The “Friends” ViewContainer displays the list of the friendship requests of the
logged-in user. For each request, the timestamp and number of friends in common
between the requestor and the target user are shown. A nested data binding also
allows the display of the username and a photo of the requestor. The user can accept
or decline the request. The “accept” event creates an instance of friendship connecting
the two involved users. The “decline” event deletes the request. The “onMouseOver”
event causes the display of a modal window that lists the names of the friends in com-
mon between the current user and the requestor.

8.10 GEO PATTERNS
We conclude this chapter with a last a design pattern, which exploits the geographical
position of the user embodied in the Context object.

8.10.1 PATTERN GEO-LAS: LOCATION-AWARE SEARCH
Figure 8.50 exemplifies a location-aware geo-search pattern. The “ProximitySe-
arch” ViewContainer contains a form for specifying the restaurant requirements
and a ViewComponent with the position of the user taken from the context. Sub-
mitting the form retrieves the restaurants in range and displays them on the map
as markers. A selection event allows the user to see a window with the restaurant’s
essential details.

8
.1

0
 G

EO
 P

atterns
2

2
9

FIGURE 8.49

Example of the friendship management pattern.

CHAPTER 8 Modeling patterns230

8.11 SUMMARY OF THE CHAPTER
This chapter addressed typical problems of UI design by providing a reasoned cat-
egorization of classical user interaction patterns in modern interfaces. Each pattern
was described by the IFML model, an exemplary UI rendering, and a textual expla-
nation of its behavior. Some of the patterns described here will be shown at work in
chapter 9, where realistic examples of applications are presented.

8.12 BIBLIOGRAPHIC NOTES
Pattern-based design is a typical way of addressing user experience problems and
software engineering problems at large. Patterns can be exploited in a generative way
(as in [VM10]), where portions of existing models are identified and reinstantiated

FIGURE 8.50

The location-aware search pattern.

8.12 Bibliographic Notes 231

in new problem settings. Usability guidelines themselves can be considered design
patterns. A specific workshop on UI patterns has been held at CHI 2003 [FFG+03].
Many different sources of UI design patterns exist today [Borchers01, Erickson14,
Fincher14] and a Pattern Language Markup Language (PLML) has been specified
too [FFG+03]. Some efforts to bridge software engineering patterns and user inter-
action patterns are also ongoing [FVB06]. Social network patterns have also been
investigated [Brambilla11].

This page intentionally left blank

233Interaction Flow Modeling Language. http://dx.doi.org/10.1016/B978-0-12-800108-0.00009-6
Copyright © 2015 Elsevier Inc. All rights reserved.

CHAPTER

IFML by examples 9
Chapter 8 illustrated a gallery of IFML design patterns that occur frequently in appli-
cations. In this chapter, we take the reverse approach, considering how a sample
of realistic applications—inspired by popular real-world ones—can be modeled in
IFML with the help of the language constructs and design patterns introduced so far.

9.1 MEDIA SHARING APP
The first example we consider is a mobile app for smartphones providing an online
photo- and video-sharing service. The service allows people to take pictures and
videos, to apply digital effects to them, and to share them on several social networks.

Figure 9.1 shows the initial screen of the app, which permits the user to register
or sign in.

9.1.1 DOMAIN MODEL
The main assets of the application are users, comments, media object (images and
videos), and tags, which can be represented with their associations as shown in the
domain model of Figure 9.2.

The “Media” entity includes attributes describing an image or a video: a textual
description, the upload timestamp, the location, and the media type, which can be
video or photo. Attribute “numLikes” is calculated as the sum of all “likes” cast by
users.

Users have a number of profile attributes and can be connected with other users,
with the association characterized by the “follower” and ”followedBy” 0..* roles.
Users can be associated with “Media” and “Comment.” The association with roles
“posting”/”postedBy” represents the ownership of a media asset by a user. The asso-
ciation with roles “like”/”likedBy” records the expression of preference for a media
asset by a user. The association “mention”/”taggedIn” denotes that a user has been
tagged in a media item.

Comments are produced by users (associated with roles “publisher”/”publishedBy”),
refer to a media asset (associated with roles “comment”/”attachedTo”), and can men-
tion other users (associated with roles “mention”/”taggedIn”). Comments can be
associated with a tag, which denotes that the text actually contains the tag (associated
with roles “taggedBy”/”comprisedIn”). A tag can also qualify a media object to help
retrieve objects of interest (associated with roles “annotation”/”taggedBy”).

CHAPTER 9 IFML by examples234

Some activities (e.g., posting and liking an object) are logged: entity “Activity”
records, with the time of occurrence, the operations performed by the user (associa-
tion with roles “performer”/”action”), which may optionally refer to a media asset
(association with roles “performedUpon”/”action”).

Finally, the attribute “numLikes” of the media object is derived. Its value is the
sum of the preferences received from the users (i.e., the number of users connected
by the “likedBy” association role). Similarly, the “Comment” entity contains another
derived attribute, “userName,” which enriches the comment with the name of its
author.

9.1.2 IFML MODEL
We now proceed to modeling the interface of the media sharing app, following a
few usage scenarios that demonstrate the main functions. Figure 9.1 shows the start
ViewContainer of the application, displayed when the application is accessed by the
user or when a session is closed. The interface offers two options: a new user can
sign up, while an already registered user can sign in. The IFML model of the start
ViewContainer and of the events it supports is shown in Figure 9.3.

The IFML model for registering a new user exploits a common object creation
pattern (such as the PATTERN AG-OCR discussed in chapter 6), and thus is not
further elaborated. The “Sign In” ViewContainer follows the PATTERN IA-LOGIN,
shown in chapter 8. When a registered user logs in successfully, the “Media Sharing
Top” ViewContainer is displayed. Yhis is the principal interface container, which
comprises five landmark subcontainers embodying the main functionalities shown in
alternative but always reachable by the user. This general organization of the inter-
face is represented by the IFML model of Figure 9.4.

The Landmark stereotype on the “Home,” “Explore,” “Take Picture,” “News”
and “Profile” subcontainers models the main menu (shown in Figure 9.5), which is
visible in all the pages of the application. The “Home” ViewContainer is also marked

FIGURE 9.1

Initial screen of the media sharing app.

9.1 Media Sharing App 235

FIGURE 9.2

Domain model of the media sharing app.

FIGURE 9.3

IFML model of the start page.

CHAPTER 9 IFML by examples236

as Default to specify that is the one displayed when entering the “Media SharingTop”
ViewContainer.

The model of Figure 9.4 also contains the “Refresh” event, which triggers an
action for updating the content of the application. In the interface, the event is fired
by touching the icon in the top-right corner of the screen (shown in Figure 9.8). The
event is associated with the top-level container because it is always visible to the
user. When the user tries to reload the page without having the connection, the Action
“UpdatePage” triggers a modeless window that signals the failure of the action, as
shown in Figure 9.6.

Introducing the “Media Sharing Top” View Container makes the model more
concise and avoids repeating common elements, such as the “Refresh” event, in mul-
tiple ViewContainers. For the sake of illustration, Figure 9.7 contrasts the model with
and without the “Media SharingTop” ViewContainer.

The “Home” ViewContainer, displayed when the user enters the application,
contains a vertically scrollable list of the recent photos and videos posted by users,

FIGURE 9.4

General organization of the interface of media sharing app.

FIGURE 9.5

Menu for Landmark navigation.

9.1 Media Sharing App 237

ordered by time of publication. For each media object, the interface displays the
name and photo of the author, the content, upload timestamp, location, users who
“like” the object, and the associated comments, as shown in Figure 9.8.

9.1.2.1 MediaViewer module
The presentation of media objects in the “Home” ViewContainer appears identically
in several other places of the interface. It is therefore convenient to represent it as
a module definition (“MediaViewer,” shown in Figure 9.9). The module definition
can be referenced in the interface model whenever the same presentation is reused.
The input port of the “MediaViewer” module definition is associated with a data-
flow carrying a ParameterBindingGroup denoting the collection of identifiers of the
media objects to display (“MediaOIDs”). When the input collection contains mul-
tiple objects, the data of each instance are presented sequentially in a vertical scrol-
lable layout. When the input consists of only one object, one photo or video is shown
with its associated data.

Since the content displayed in the module belongs to multiple entities connected
hierarchically, a «NestedList» ViewComponent is used. Each photo or a video acts
as a top-level item in the list, and several nested levels specify the data of the objects
depending on it, such as the user who posted it, referenced users, comments, and tags
with the users mentioned in them.

The three-level “MediaViewer” «NestedList» comprises at the top level a
DataBinding that refers to the “Media” entity and displays the “postTime,” “loca-
tion,” and “file” attributes. A conditional expression filters the data binding instances
to display only the object(s) whose identifiers are passed in input to the module:
 MediaOIDs->includes (oid). Instances are ordered by time of posting according to
the clause «OrderBy» postTime DESC.

A nested data binding, built on the association role “postedBy,” visualizes the
“profilePhoto” and the “userName” of the user who posted the video or photo.

The “numLikes” visualization attribute of the media objects is modeled sepa-
rately, because the number of “likes” is visible only when greater than ten, as

FIGURE 9.6

Modeless window showing the message for connection failure.

C
H

A
P

TE
R

 9
 IFM

L by exam
ples

2
3

8

FIGURE 9.7

(a) ViewContainers nested within a XOR top-level ViewContainer. (b) Model with independent ViewContainers.

9.1 Media Sharing App 239

expressed by the «ActivationExpression» numLikes > 10. In this case, the user can
trigger the “SeeLikers” event by clicking on the number of “likes,” which displays
a separate ViewContainer showing the list of all the users who “like” the photo or
video. Conversely, the NestedDataBinding built on the association role “likedBy,”

FIGURE 9.8

Content shown on the home page.

FIGURE 9.9

Initial model of the “MediaViewer” module.

CHAPTER 9 IFML by examples240

which displays the usernames of the people that like the media asset, is shown only
when number of “likes” is fewer than eleven, as expressed by the «ActivationExpres-
sion» likedBy->size() < 11. These different forms of visualization and interaction
are contrasted in Figure 9.10.

The “MediaViewer” NestedList also displays the received comments (as shown in
Figure 9.10) modeled as NestedDataBinding built on the association role “contains.”
This displays a maximum number of objects (six, in this case) as denoted by the «block»
ViewComponentPart associated with the NestedDataBinding. If the object has more
comments than the maximum number displayable, an event is activated that lets the
user access all the comments in a separate ViewContainer. This is expressed by the “see-
AllComments” event and by the size()>6 «ActivationExpression» associated with it.1

The NestedDataBinding that displays the comments has another nested level,
built on the association role “comprises,” which displays the names of the tags found
in a comment. Note than this nested level is rendered in a specific way, because the
tags are actually embedded within the text comment (see Figure 9.11). Similarly,
another NestedDataBinding, built on the association role “mentions,” displays the
names of the users mentioned in a comment.

Each object in the “MediaViewer” nested list supports a rich set of interaction
events, summarized in the refined model of Figure 9.12.

FIGURE 9.10

Visualization of the likers and of the number of likers. Interface when likers are fewer than
11 (left) and greater than 10 (right).

9.1 Media Sharing App 241

Most events cause the display of a distinct interface. For convenience, we encap-
sulate each interface into a separate reusable module, as shown by the «Module»
elements in Figure 9.12.

From the “MediaViewer” NestedList, one can access the profile of the user who
uploaded, liked, commented on, or was mentioned in one of the comments. All these
interactions are represented by multiple “SeeUser” events, triggered by clicking on
the username or photo of the owner of the media element currently under view or
on the username of the author of a comment, the person who cast a like, or a person
mentioned in a comment. All these options are visible in Figure 9.8 and modeled by
the “SeeUser” events in Figure 9.12.

The “See Location” event corresponds to selecting the location of a media object
(visible in Figure 9.8) and permits one to access a separate module with a map show-
ing the place where the photo or video was shot, together with the positions of other
photos or videos nearby.

As shown in Figure 9.11, tags in a comment are rendered as navigation anchors.
By clicking on one of them, users can see other videos or photos with the same tag.
The “SeeSameTag” event of the “MediaViewer” NestedList shown in Figure 9.12
models this interaction.

Two icons (highlighted in Figure 9.13) let the user post a comment and tog-
gle appreciation (liking and unliking an object). A double touch on the media
object is equivalent to casting a like. These interactions are represented by the
“ TogglePreference,” «DoubleTouch» “Like,” and “Comment” events in the model
of Figure 9.12.

When the media object is a video, a single touch toggles the play/pause status.
When it is a photo, the single touch shows the list of tagged uses, if any. The corre-
sponding events appear in Figure 9.12.

FIGURE 9.11

Visualization of the tags as clickable anchors within the text of the comment.

C
H

A
P

TE
R

 9
 IFM

L by exam
ples

2
4

2

FIGURE 9.12

Refined model of the content and interactions of the “MediaViewer” module.

9.1 Media Sharing App 243

Finally, each media object has a menu of further actions that apply to it. The menu
differs if the photo or video belongs to the logged-in user or to another user. This
behavior is represented in Figure 9.12 with two distinct events (“SeeMediaMenu”
and “SeeMediaLoggedMenu”). Such events are activated alternatively thanks to two
mutually exclusive ActivationExpressions that test if the owner of the media object is
the logged-in user, using a pattern similar to the object-based permission (PATTERN
IA-OBP) discussed in chapter 8.2 The condition exploits the fact that the identity
of the logged-in user is preserved in the Context object (userName = Context.
username).

9.1.2.2 Comments module
The “Comments” module, accessed from the “SeeAllComments” and “Comment”
events of the “MediaViewer” ViewComponent of Figure 9.12, specifies the interface
elements for managing the comments of a media object. The interface contains a
simple list of comments, shown in Figure 9.14.

The model of the “Comments” module is shown in Figure 9.15. The input to the
module is the identifier of the media object to which the comments belong, as speci-
fied by the ParameterBindingGroup. The content of the module is a «NestedList»
ViewComponent (“Comments”), bound to the instances of the Comment entity asso-
ciated with the media object passed in input, as represented by the ConditionalEx-
pression belongsTo = media.

As in the “MediaViewer” module, the “SeeUser” events can be triggered to dis-
play the profile of users who posted or are mentioned in a comment. Also, clicking
a tag name triggers the “SeeSameTag” event, which allows one to see other media
objects qualified by that Tag.

The “Comments” module also contains a Form ViewComponent with a Simple-
Field (“text”) and an event “CreateComment “ for adding a comment to the media
object. The action triggered by the event saves the comment, creates the association
instance with the media object, and possibly extracts the tags and mentioned users
and links them to the comment.

FIGURE 9.13

Command for toggling the “like” status and commenting. A double touch on the object
casts a like on it.

CHAPTER 9 IFML by examples244

Selecting an entry in the “Comments” NestedList displays a menu, based on the
owner of the comment and of the media object, as illustrated in Figure 9.16.

If the comment belongs to the logged user (independently of the owner
of the media object to which the comment refers), the menu comprises the
“ DeleteComment,” “ViewProfile,” and “CopyText” events. If the media object
belongs to the logged user and the comment belongs to a different user, the menu
comprises the “ DeleteComment,” “Delete&Report,” “ViewProfile,” and “Copy-
Text” events. Finally, if both the media object and the comment belong to another
user, the menu comprises the “Report,” “ViewProfile,” and “CopyText” events.
These different menu configurations are modeled in Figure 9.15 by means of Activa-
tionExpressions that condition the activation of the event to the relationship between
the comment, the media, and the user objects.

As visible in the screenshot of Figure 9.17, the Action that copies the text of the
comment ends with a notification event, displayed in a pop-up window. This is mod-
eled by the “CopyNotification” ViewContainer of Figure 9.15.

9.1.2.3 User module
The “SeeUser” and “ViewProfile” events, available in such modules as the “Media-
Viewer” and “Comments,” trigger the display of an interface with the essential data of
a user. Such an interface is used in various situations: to show the profile of the logged
user, of the author of a post, or of the person mentioned in a comment. Figure 9.18
shows how the user profile appears for a logged-in user and for a generic one.

The interface comprises an upper section showing the essential user’s data, with
a menu in the upper right corner enabling various actions on the user’s profile, and a
lower section dedicated to the posts. Four icons below the user’s profile data supports
commands for displaying media objects with a tiled layout, displaying media objects

FIGURE 9.14

Interface for accessing and manipulating comments of a media object.

9
.1

 M
edia Sharing A

pp
2

4
5

FIGURE 9.15

Model of the interface for accessing and manipulating comments of a media object.

CHAPTER 9 IFML by examples246

with a vertical layout, displaying media objects on a map, and showing images where
the user has been tagged. The latter two commands open separate ViewContainers
that take the entire space of the screen, as visible in Figure 9.19.

Figure 9.20 illustrates the model. The “User” module definition has an input
parameter (the identifier of the user) and organizes the interface with a top-level
XOR ViewContainer, which alternatively displays the “ProfileData,” “MediaMap,”
or “PhotosOfUser” sub-ViewContainers. The “ProfileData” ViewContainer is pre-
sented by default and comprises a Details ViewComponent (“UserInfo”) publishing
the essential user’s data (photo, name, bio, web site, and social and activity statistics)
and a sub-ViewContainer (“UserPosts”), which displays the media objects, either
tiled or scrollable vertically. The two alternative visualizations are supported by the
“MediaViewer” and “MediaTiled” modules. The former has been already described
in Figure 9.12. The latter has a simpler and more compact structure consisting of a
List ViewComponent publishing only the “file” attribute of the media objects with

FIGURE 9.16

Menu when the comment belongs to the logged user (left) or to another user (middle,
right).

FIGURE 9.17

Pop-up window triggered by the system event for the notification of the “CopyText” Action.

9.1 Media Sharing App 247

a “Select” event for accessing a separate full-screen instance of the “MediaViewer”
module (see Figure 9.21). Note that the “PostOIDs” List ViewComponents in the
“UserPosts” ViewContainer has no VisualizationAttributes. It simply extracts the
identifiers of the relevant media and supplies them as parameters to the “MediaTiled”
and “MediaViewer” reusable modules. In this way, the modules do not depend on
the objects extraction criterion and can be employed wherever the interface displays
a set of photos or videos.

The bottom part of Figure 9.20 represents the reuse of the module “User” and its
integration within the rest of the application model.

Clicking on the number of followers and following users triggers the “See Followers”
and “SeeFollowing” events, which cause the display of separate ViewContainers.
Clicking on the number of posts hides the “UserInfo” ViewComponent and allocates

FIGURE 9.18

Interface of the user profile: logged-in (left) and not logged-in (right).

MediaMap PhotosOfUser

FIGURE 9.19

Full-screen display of the posts on the map (left) and of the media objects where the user
has been tagged (right).

CHAPTER 9 IFML by examples248

all the screen space to the default ViewContainer of “UserPosts” (the tiled collection
of posts).3

When the interface shows the logged-in user, it permits the editing of the profile
data. The events “EditPhoto” (activated touching the user’s picture) and “Edit Your
Profile” (triggered with the button visible in the screen on the left of Figure 9.22)
open two ViewContainers for setting the image options and for editing the profile
data, respectively. When the interface shows a generic user, the profile editing events
are not active. Instead, an event “Toggle” allows one to toggle the status of the
“ follow” relationship with the user on display.

A global menu, reachable by clicking on the vertical dots icon in the upper-right
corner of the interface (see Figure 9.22Figure 9.18), gives access to several profile
management options. The available events and actions differ when the interface dis-
plays the logged-in user or a generic user. This dual behavior is represented by the
“Options” events and their ActivationExpressions in the model of Figure 9.20.

FIGURE 9.20

Specification of the “User” ModuleDefinition and its reuse as “User” Module.

9
.1

 M
edia Sharing A

pp
2

4
9

FIGURE 9.21

Model of the “MediaTiled” module showing a compact representation of a set of media objects.

CHAPTER 9 IFML by examples250

9.1.2.4 Search users and tags
The magnifying lens icon in the upper-right corner of the interface, visible in Figure
9.22 when the profile belongs to the logged-in user, allows one to open a “Search”
interface, shown in Figure 9.23 and modeled in Figure 9.24.

The search function consists of an input form with the usual submit button, but
the target of the search can be either a user or a tag. This is implemented by means
of the tabbed interface visible in Figure 9.23. Selecting the “User” tab matches the
input keyword to user names. Opening the “Tag” tab matches it to the tags. When a
user types in the string to be searched, the application presents a list of suggestions
matching the inserted characters. Switching from the “User” tab to the “Tag” tab
preserves the input but modifies the suggestions displayed, as well as the target of
the search.

The search interface is modeled as shown in Figure 9.24. The “Search”
XOR View Container comprises two sub-ViewContainers: “UserSearch” and
“TagSearch.” The former is the default, shown when the user opens the search

FIGURE 9.22

Alternative commands when the interface displays the logged-in or a generic user.

(a) (b) (c) (d)

FIGURE 9.23

Interface for people and tag searchs: empty search for users (a); suggested users
 matching the input (b); suggested tags matching the same characters (c); and the result
of the search for users (d).

9
.1

 M
edia Sharing A

pp
2

5
1

FIGURE 9.24

Model of the search interface for users and tags.

CHAPTER 9 IFML by examples252

interface. Both ViewContainers repeat the same pattern: an input form permits
the user to insert the keyword to match. The «onChange» event reacts to the
insertion of each character, saves the current input into the “key” Parameter, and
displays a list of suggestions (users or tags) that match the current input. The
value of the “key” parameter is made available to the “RecommendedUsers” and
“RecommendedTags” List ViewComponents by means of a DataFlow. For brev-
ity, we omit the formula of the ConditionalExpression needed for retrieving the
recommendations. The data extraction query filters the users and tags that have
been accessed recently and match the value of the “key” Parameter. The “Select”
events in the “RecommendedUsers” and “RecommendedTags” List ViewCompo-
nents allow the user to pick a search keyword from the recommended ones and
perform the search with that.

The user can bypass the recommendations and perform the search directly by
submitting a keyword using the “Search” event. In this case, the entered keyword is
used to extract the full list of matching users (or tags) displayed in a List ViewCom-
ponent (“UserList” or “TagList”). From the “UserList” and “TagList” ViewCom-
ponents, the user can select an item and access its details in the “User” and “Tag”
modules, depending on the type of object selected.

Note that the value of the “key” parameter is remembered when one switches
from the “User” tab to the “Tag” tab and vice versa. This behavior is supported
by two NavigationFlows between the XOR sub-ViewContainers associated with a
ParameterBindingGroup that represents the explicit transfer of the parameter value.
This design replaces the use of landmarks, which cannot express the fact that the
value of the “key” Parameter is passed from one ViewContainer to the other at every
switch of the search target.

9.1.2.5 Tag module
The Tag module displays the media objects annotated by a given tag. It can be acti-
vated from various places in the interface, such as the “Home,” “Comments,” and
“Search” ViewContainers. Figure 9.25 shows the interface presented after selecting a
tag and Figure 9.26 the corresponding IFML model.

The “Tag” ModuleDefinition takes as input parameter the tag name. It comprises
a XOR ViewContainer (“TaggedMedia”) and a Details ViewComponent (“TagInfo”)
displaying the name of the tag and the number of posts associated with it. The “Medi-
aOIDs” List ViewComponent extracts the identifiers of the media objects to display.
These are passed in as input by a DataFlow to the “MediaTiled” and “MediaViewer”
modules, which are displayed in alternative.

9.2 ONLINE AUCTIONS
As a second example, we illustrate the interface of an online auction site inspired by
some popular web applications where people and businesses buy and sell a broad
variety of goods and services from all around the world. Auctions are also held where

9.2 Online Auctions 253

buyers can get bargains on a wide variety of items or even find rare items. This
example complements the media sharing app case with the modeling of an interfact
with a different organization.

9.2.1 DOMAIN MODEL
The domain model is illustrated in the class diagram of Figure 9.27. The application
deals with three principal assets: listings, users, and bids. Listings are the central
objects. As such they are correlated by a number of attributes: an identifier (“id”), a
title (”title”), the description of the condition of the item on sale (”itemCondition”),
a descriptive text (”description”), the validity period of (“startDate” and ”endDate”),
the number of articles available (“availability”), the acceptance of returns (“return-
sAccepted”), the location of the item (“location”), delivery options (“shipping”),
sales currency (“currency”), and the guarantee terms (“guarantee”). A listing may
be sold directly at a value set by the seller (entity “DirectSale” and association roles
“selling” and “soldIn”). Alternatively, it may be associated with an auction (entity
“Auction” and association roles “selling” and “soldIn”), characterized by an initial
price (“startPrice”) and the minimum price accepted by the seller (“reservePrice”).
The listing belongs to a user (association roles “sales” and “seller”), can be bought or
watched by another user (association roles “purchases” and “buyer,” “watches” and
“watchedBy”), and can be illustrated with one or more photos or videos (association
roles “illustrations” and “listings”).

MediaViewer
MediaTiled

FIGURE 9.25

Interface for the media objects qualified by a tag: tiled (left) and vertically scrolled display
(right).

C
H

A
P

TE
R

 9
 IFM

L by exam
ples

2
5

4

FIGURE 9.26

Model of the interface for accessing the media objects qualified by a tag.

9
.2

 O
nline A

uctions
2

5
5

FIGURE 9.27

Domain model of the online auctions application.

CHAPTER 9 IFML by examples256

Users create bids (association roles “bids” and “bidder”). Each bid has a value
(“value”), is published at a given point in time (“time”), and refers to a listing (asso-
ciation roles “currentBid” and “listing”). Users have some profile variables (e.g.,
“userName” and “photo”), can publish feedback about other users— characterized
by a graded mark (“classification”) and a commentary (“comment”)—and receive
notifications (entity “Notification” with association roles “notification,” and “recipi-
ent”). They are assigned a feedback score (“score”), which represent their trust as
buyers or sellers.

A “Cart” entity represents the shopping trolley of a user (association roles “cart”
and “owner”) with its content (associations roles “content” and “cart”). Listings are
classified by category (association roles “category” and “content”) and have specific
attributes depending on the category to which they belong. Categories are organized
into a hierarchy of subcategories. They are also organized by other taxonomies, such
as by brands and by special sale events. Finally, listings can be grouped into col-
lections (association roles “content” and “category”), characterized by a name and
a description, created by users (association roles “collections” and “author”), and
illustrated with one or more photos or videos (association roles “illustrations” and
“collections”).

9.2.2 IFML MODEL
We model the online auctions web interface with the help of the IFML web exten-
sions introduced in Chapter 7. For space reasons, we limit the example to a few
significant elements of the SiteView: the home page, the search functionality, and
the most important listing pages. For the search and product pages, we focus on the
electronic and fashion categories and only model the most relevant interactions.

The general organization of the front end is captured by a SiteView, which com-
prises several pages clustered within areas. Figure 9.28 shows the “Home” page,
which acts as the entry point to the application. The content-independent navigation
among the pages of the front end is supported by the menus present in the header and
footer of pages, partially visible in Figure 9.28 and highlighted in Figure 9.29. Such
menus allow the navigation to the landmark areas and pages shown in Figure 9.30.4

Each link in the menu bar leads either to an individual page (e.g., “Home,”
“ DailyDeals”) or to the default page of a group of correlated pages (e.g., “Customer-
Support”). Correspondingly, in the IFML model of Figure 9.30, landmarks are either
individual pages or areas (i.e., groups of correlated pages). Navigating to a landmark
area leads to the default page of that area. As an example, Figure 9.30 expands the
content of the “Sell” area and shows the three wizard-like pages contained in it, of
which the default one is the “Tell us what you’re selling” page. The “Home” page of
the SiteView is marked with the [H] qualifier to express that it is displayed by default
when the application is accessed using its top-level address.

The SiteView also contains the “Listing Categories & Collections” area, which
clusters the most important pages of the application for searching and navigating
the database of listings. This area is not defined as a landmark because its pages are

9
.2

 O
nline A

uctions
2

5
7

FIGURE 9.28

Home page of the online auctions web application, with landmark links and repeated view elements.

CHAPTER 9 IFML by examples258

accessed only with content-dependent navigation, either by searching or by browsing
the hierarchy of goods and the available collections.

Note that the header shown in Figure 9.29 contains more elements: the personal-
ized welcome message, the sign-in and register links, and the summary of the shop-
ping cart content. Such view elements are not plain navigation flows but have a more
elaborate behavior. They are modeled as explained in the next section.

9.2.2.1 Repeated content element
Figure 9.28 shows the “Home” page, which comprises both specific content and
some view elements that appear identically in multiple pages of the SiteView.
These are visible in Figure 9.29: the search bar, the sign-in and register links, the
personalized welcome message, and the shopping cart item count. Such recurring
elements add up to the landmark links in the navigation bar in the footer of the
pages.

To avoid duplicating the model of the common view elements in all the pages
where they appear, we exploit the concept of a Master Page, discussed in Chap-
ter 8. The Master Page models the view elements common to a set of other pages

FIGURE 9.29

Landmark menus in the header (top) and footer (bottom) of the online auctions web
 application pages.

FIGURE 9.30

SiteView of the online auctions web interface, with top level landmark areas and pages.

9.2 Online Auctions 259

(by default, the pages of the same Area or SiteView where the Master Page belongs).
Such elements are implicitly assumed to be included in the model of each page asso-
ciated with the Master Page. The recurring view elements are included in the Master
Page model of Figure 9.35.

The register and sign-in links are displayed in alternative to the user’s personal-
ized welcome message. The two options are contrasted in Figure 9.31.

The personalized welcome message displays the name of the user and provides a
link that opens a window with the user’s name, feedback score, and photo, and links
to sign out, edit account settings, and access the personal collections. The sign-in and
register links, displayed when no user is logged in, lead to separate ViewContain-
ers where the user can provide login credentials or register for the online auctions
web application. The cart summary shows the number of items currently present in
the trolley of a logged-in user or a fixed message if the cart is empty or the user is
unknown. The header also contains a “Shop by category” link to facilitate access to
the listings. It opens a window with the first two levels of the category hierarchy,
visible in Figure 9.32.

FIGURE 9.31

Personalized message, with an event opening a window of commands (left), versus sign-in
and register links (right).

FIGURE 9.32

Modeless window opened with the “Shop by category” link.

CHAPTER 9 IFML by examples260

Listings can also be accessed by searching. The header presents a search bar
enriched with an auto-completion function, which can be switched on and off explic-
itly, and a drop down list of categories to restrict the search to the chosen category
(respectively PATTERN CS-SRCS: Search suggestions and PATTERN CS-RSRC:
Restricted search, both discussed in chapter 8). These two usability widgets are
shown in Figure 9.33 and in Figure 9.34.

The model of the Master Page, with all the described common features present in
the header of multiple web application pages, is represented in Figure 9.35.

The personalized welcome message is modeled as a Details ViewComponent
(“UserName”), which exploits the Context object recording the identity of the
logged-in user (as exemplified in the PATTERN IA-LOGIN discussed in Chapter
8). The ViewComponent is visible only when the user is logged in, as expressed
by the ActivationExpression associated with it. An “onMouseOver” event opens a
ViewContainer with the “Sign out,” “Settings,” and “MyCollection” events. The
“Sign out” event supports the user’s logout, modeled according to PATTERN IA-
LOGOUT explained in Chapter 8.

FIGURE 9.33

The category selection functionality of the search bar.

FIGURE 9.34

The auto-completion functionality of the search bar.

9.2 Online Auctions 261

A DataFlow binds the identity of the user to the “Shopping Cart” Details View-
Component, which displays the number of items in the user’s trolley. The Conditio-
nalExpression of the ViewComponent exploits the “owner” association role between
entity User and Cart (see the domain model of Figure 9.27).

9.2.2.2 Home page
Besides the common content elements modeled in the Master Page, the Home page—
shown in Figure 9.28—also contains specific view elements. These are a list of the
most important categories (shown in Figure 9.36), the links to collections and feeds
(also visible in Figure 9.36), the advertisement of special features (shown in
F igure 9.37), a top collection (visible in Figure 9.38), a list of promoted collections,
and a second list of “trending” collections (shown in Figure 9.39).

The features published on the home page are special objects. They may adver-
tise a set of listings of a certain product or brand (e.g., Apple iPads), a limited-
time sale (e.g., today’s deals), or even content explaining some important aspect
of the business (e.g., a money back guarantee). As visible in Figure 9.37, a feature
may group several subfeatures (e.g., several groups of correlated listings). In the
domain model, features can be represented as composite objects, as shown in
Figure 9.40.

The domain model specifies that a feature is a composite object with one or more
subfeatures (the minimum cardinality of the association role “components” is one).

FIGURE 9.35

The model of the Master Page, representing the content that appears on multiple pages.

CHAPTER 9 IFML by examples262

Each feature (and subfeature) has an image, a title, a description, and a link storing
the address of the web page where the content of the feature is published.

Figure 9.41 shows the IFML model of the home page. This is a typical example
of the use of the access subschema of the domain model for indexing the content of

FIGURE 9.36

The list of most important categories in the home page and the links to feeds and
collections.

FIGURE 9.37

Special features, shown in a scrollable list.

FIGURE 9.38

Top collection of the day, shown individually.

9.2 Online Auctions 263

a large application (discussed in chapter 3). The home page essentially contains view
elements that publish the content of categorizing classes and specialized subclasses.
The “MainCategories” List ViewComponent models the menu of the most important
categories (visible in Figure 9.36). This is the starting point of a hierarchical naviga-
tion toward the listings of interest, which are described next. The home page also
contains three sub-ViewContainers (“Top collection,” “Promoted Collections,” and
“Trending Collections”), each containing an instance of the “Collections” reusable
module (modeled in Figure 9.42).

The “Collections” module publishes the essential information about one or more
collections. It is instantiated in the home page with three distinct parameter bindings
that identify different groups of collections. The “type” attribute of the “Collection”
entity defines a subclass consisting of all the objects with a given value of the attri-
bute. The module is also reused with another parameter binding in the “AllTrending”

FIGURE 9.39

Home page collections, shown as a list, and a link to access all the trending collections
(bottom).

FIGURE 9.40

Domain model extended to represent features.

C
H

A
P

TE
R

 9
 IFM

L by exam
ples

2
6

4

FIGURE 9.41

IFML model of the home page.

9.2 Online Auctions 265

ViewContainer, which is accessed by means of the “allTrendingCollection” event,
implemented as the link visible at the bottom of Figure 9.39.

The model of the “Collections” module is illustrated in Figure 9.42. It comprises
a NestedList ViewComponent bound to the entity “Collection.” The actual objects
displayed depend on the input parameter “type,” which is used in the ActivationEx-
pression of the NestedList to select one or more collections of the given type. For
each matching collection, the name, payoff, and main image are shown. Two nested
data bindings also publish the name and photo of the creator and the other images
associated with the collection (see the rendition of one collection in Figure 9.38 and
of multiple collections in Figure 9.39). When the type is “top,” which identifies only
one collection, the description is also displayed. Otherwise, two events («onFocus»
and «OnFocusLost») toggle the visibility of the description.

9.2.2.3 Category pages
On the home page, the menu of the most important categories (shown in Figure 9.36)
allows two different hierarchical navigation paths toward the listings of interest.

When the user hovers on a category name in the home page menu of Figure 9.36,
a modeless window (“CategoryOverview”) appears (see Figure 9.43), which offers
an overview of that category.

The “CategoryOverview” ViewContainer displays an illustrative image and two
lists of significant subcategories of the selected category (labeled “Top categories”
and “Shop for” in Figure 9.43). Selecting one subcategory leads to the page of that

FIGURE 9.42

The “Collections” reusable module.

CHAPTER 9 IFML by examples266

category. Figure 9.44 shows the model of the “CategoryOverview” page, accessed
from the “MainCategories” List ViewComponent in the home page.

The second navigation path is activated by clicking on the category name in the
home page menu. This event causes the display of the page of the selected category,
as exemplified in Figure 9.45.

The model of the “Category” page is shown in Figure 9.46.
The model comprises a Details ViewComponent for displaying the category name,

accompanied by a number of List ViewComponents that publish content depending
on the current category. Selecting an item from one of the lists permits the user to
proceed with the navigation within the category by focusing on its events, brands,
special features, subcategories, and listing groups. By contrast, the “PeerCategories”
ViewComponent allows the exploitation of other “sibling” categories (i.e., children
of the same super-category of the one displayed). Finally, the “Category” page also
contains an instance of the PATTERN CN-BREAD discussed in chapter 8: a bread-
crumb ViewComponent “Categories” is defined over the (recursive) association
between categories and subcategories, which is rendered as the trail of breadcrumb
links visible in Figure 9.45.

FIGURE 9.43

The top category overview page.

FIGURE 9.44

Model of the top category overview page.

9
.2

 O
nline A

uctions
2

6
7

FIGURE 9.45

Category page for computers and tablets.

C
H

A
P

TE
R

 9
 IFM

L by exam
ples

2
6

8

FIGURE 9.46

Model of the “Category” page.

9.2 Online Auctions 269

9.2.2.4 Search results
As an alternative to the hierarchical navigation along the category taxonomy, the user
can locate a listing by performing a keyword search using the input box at the top of
the home page. After submitting the keyword(s), the listings with a matching name
or description are presented, as shown in Figure 9.47.

The search result page contains the listings returned in response to the query. The
list of results is dynamically sortable according to multiple criteria (relevance, price,
distance, and expiry).

The page contains an instance of the faceted search pattern (PATTERN CS-FSR:
faceted search), discussed in chapter 8. The left column and the three links at the top
of the result list present a set of facets that the user can select to restrict the result
list. The facets include the hierarchy of the categories where the matched listings
belong, the price range, the sale formats (displayed in the left column and in the links
above the list), the locations, the delivery options, and other refinements. The count
of the relevant results is displayed, both for the entire result set and for the number of
objects that possess a given value of each facet. The search suggestions pattern (PAT-
TERN CS-SRCS: search suggestions) is also exploited, using a variant in which the
suggested keywords are listed as links below the search box rather than used to build

FIGURE 9.47

Search result page for the keywords “iPad battery recharger.”

CHAPTER 9 IFML by examples270

an input auto-completion pattern. The page also contains a number of recommended
listings related to the user’s query.

For brevity, we do not model some of the other features of the search result page,
including the switch between the list view of Figure 9.47 and a tiled view, and the
customization of the result display options (number of objects per page, shown
attributes).

Figure 9.48 shows the model of the “Search Results” page. The design is based
on the faceted search pattern, which relies on the retrieval and caching of the search
results and of collateral information about them, such as the result count, the values
of the facets (in this case, the attribute values of the found listings and the associated
object count), and the queries correlated to the current search keywords. The results
of the query are represented by a set of additional entities in the domain model.
The entity “ListingResult” identifies the instances of the “Listing” entity that satisfy
the query. It has a “count” static attribute that represents the number of matching
result. Entities “CategoryResult,” “Format,” “Condition,” “Location,” Delivery,”
and “Options” represents the values of attributes or the associated category objects
that are found in the relevant listings, which can be used as facets. Each value of a
facet is accompanied by the attribute count of the objects that possess that value.
Entity “RelatedQuery” displays queries (i.e., set of keywords) that are similar to the
submitted query.

The facets are published on the page thought suitable ViewComponents that let
the user select or input values and thus restrict the visualized results to those that
match the specified constraints.

The faceted search pattern is at the core of the model in Figure 9.48. The “List-
ing” ViewComponent displays the result set. It is a dynamically sorted, scrollable
list (these extensions are illustrated in chapter 7) that shows the listings that match
the user’s query and satisfy the current restrictions. The block size is variable, with
a default of fifty, which can be overridden by the user activating the “View options”
event and its associated window (not shown).

The restrictions are specified by selecting the facet values from the List View-
Components “Format” (values: “AllListings,” “Auction,” “BuyItNow”), “Condi-
tion” (values: “New,” “Used”), “Location” (values: “onlineauctions.com” and
geographical areas), “Delivery” (value: “free shipping”), and “Options” (values:
“Returns accepted,” “Completed,” “Sold”). The price facet is represented by a
Form ViewComponent because the user can input any value rather than selecting
from a list of precomputed values. For brevity, we show the DataBinding and the
VisualizationAttributes for only the “Format” component. The other List View-
Components are similar, and the “Form” view component comprises two Simple-
Field elements.

The categories to which the results belong along with their nesting are repre-
sented by the “Categories” Tree ViewComponent (described in chapter 7), which has
a DataBinding with the “CategoryResult” entity and the “sub” association describing
the recursive nesting between a category and its subcategories.

9
.2

 O
nline A

uctions
2

7
1

FIGURE 9.48

Model of the “Search Result” page.

CHAPTER 9 IFML by examples272

The DataBinding of the “Listing” ViewComponent specifies that the component
publishes content from the entity that represents the original query results (“Listin-
gResult”). The ConditionalExpression exploits the facet values provided by the user
and restricts the instances shown in the “Listing” ViewComponent accordingly. The
condition is:

(category.oclIsUndefined() OR self.category=category) AND
(format=”AllListings” OR self.PurchaseFormat=format) AND
(itemCond.oclIsUndefined() OR self.itemCondition=itemCond) AND
(maxPrice.oclIsUndefined() OR self.price<=maxPrice) AND
(minPrice.oclIsUndefined() OR self.price>=minPrice) AND
(location.oclIsUndefined() OR self.location=location) AND
(delivery.oclIsUndefined() OR self.delivery=delivery) AND
(option.oclIsUndefined() OR self->options->includes(option))

The ConditionalExpression tests for the nullity of each parameter or for the facet
value to be equal to or included in the corresponding attribute value of the result
listing. Nullity means that the user has not selected a value for the facet. The sale
format is handled differently. The explicit “All Listings” value expresses the “no
choice” of the user instead of the null value implied when the user does not pro-
vide a constraint. The parameters mentioned in the ConditionalExpression are con-
veyed by the DataBinding associated with the navigation from the ViewComponents
“ Format,” “Condition,” “Price,” “Location,” “Delivery,” and “Options,” as visible in
Figure 9.48.

The “Search Results” page also comprises the “Popular” and “Related” List
ViewComponents, respectively displaying popular listings and previous queries cor-
related with the user’s search. It also includes the “Count” Detail ViewComponent,
publishing the number of retrieved results. The selection of a listing from the result
set or from the popular listings yields to the “Listing” page.

9.2.2.5 Listings
When the user selects a listing, the page shown in Figure 9.49 is displayed. The page
content is centered on the information about the listing, which comprises the values
of the attributes mentioned in the domain model of Figure 9.27. The article is illus-
trated by an interactive gallery of images. Hovering with the mouse on one image
thumbnail changes the currently highlighted image. Hovering on the current image
zooms in, and clicking on it opens a modal window with the entire gallery enlarged
to the full screen, as visible in Figure 9.50.

Besides the list, there is information about the seller, including links to view the
full details of the vendor, see the reputation score, access the history of user feedback
that produced the reputation score, view other articles from the same vendor, and
follow the vendor’s posts.

If the sale format is an auction, the current bid is put in evidence and a form with
a single input field allows the user to enter an offer (as in the case of the article in
Figure 9.49).

9.2 Online Auctions 273

If the sale format is “BuyItNow,” the page publishes the direct sale price instead
of the current bid and a form with an input field with two buttons: one for adding
the item to the shopping cart and one for proceeding immediately to the purchase.
Instances when both formats are associated with the same listing are also possible.
In such cases, both types of forms are displayed. Figure 9.51 contrasts the interfaces
for the three cases.

The model of the “Listing” page is shown in Figure 9.52.
The central element of the page is the “Listing” Details ViewComponent, which

receives the identity of the listing to display as an input parameter (“currentListing”)
associated with the NavigationFlow used to access the page (e.g., the one coming
from the result set of the search, modeled in Figure 9.48).

FIGURE 9.49

The “Listing” page.

FIGURE 9.50

Enlarged image gallery.

CHAPTER 9 IFML by examples274

The “Listing” Details ViewComponent has a set of VisualizationAttributes that
includes the most relevant properties of the listing, which are identified in the domain
model of Figure 9.27. In addition to the generic attributes available for each type of
listing, the page also publishes time-specific information that depends on the cat-
egory of listing. For brevity, we omit this feature, which can be represented with a set
of Details ViewComponents (one for each category that requires specific attributes)
and suitable ActivationExpressions that condition the display of the Details View-
Components to the actual category of the listing.

The “Vendor” Details ViewComponent displays the information about the seller
of the listing, identified with the ParameterBinding id→currentListing and the
ConditionalExpression built on the “sales” association role between the “User” and
the “Listing” entities: Self.sales->includes(currentListing). Suitable events
permit the user to access further information on the seller on separate pages or to
subscribe to the vendor’s posts.

The purchase of the item is supported by the “Buy” Form, the “LastBid” and
“SalePrice” ViewComponents ,and their associated fields, visualization attributes,
and events. Two ActivationExpressions are used to discriminate the sale format and
enable only the fields, attributes, and events relevant for the sale type.

The images of the article on sale are published in a scrollable list of thumbnails,
five by five. The PATTERN CN-DEF: default selection, introduced in chapter 5,
is exploited. It anticipates the interaction of the user (i.e., moving the mouse over
one of the thumbnails) and displays one default image (see Figure 9.49). An event

FIGURE 9.51

The three different sale formats: auction, direct sale (“BuyItNow”), and mixed.

9
.2

 O
nline A

uctions
2

7
5

FIGURE 9.52

Model of the “listing” page.

CHAPTER 9 IFML by examples276

(“fullScreen”), activated with a click from the “MainImage” ViewComponent, opens
the full-screen image gallery shown in Figure 9.50. The “onMouseOver” event in the
main image opens a zoom and pan window, which is superimposed on the same region
of the interface where the listing and vendor details are shown, as visible in Figure 9.53.

This behavior is modeled by the XOR ViewContainer, which includes sub-
ViewContainers visualized in alternative. “Listing&Vendor” displays the details of
the listing and of the seller, as well as the form for submitting an offer. The “Zoom”
ViewContainer comprises a single ViewComponent (not shown for space reasons)
bound to the “Media” entity, which displays the enlargement of the image. The
“onMouseMove” event in the “MainImage” ViewComponent communicates the cur-
rent position of the mouse and allows the panning of the zoom area.

Finally, the “Listing” page also contains an instance of the PATTERN CN-UP: up
navigation and of PATTERN CN-BREAD: breadcrumbs (introduced in chapter 7).

9.3 SUMMARY OF THE CHAPTER
In this chapter we provided two samples of realistic applications, inspired from real-
world popular applications, and describes how they can be modeled in using IFML.
More precisely, the chapter covered two large modeling examples: a mobile app

FIGURE 9.53

Overlay of the image zoom onto the page area that displays the listing and vendor details.

 End Notes 277

tailored to smartphones, providing an online photo and video-sharing service that
allows people to take pictures and videos, apply digital effects to them, and share
them on several social networks; the second one illustrates an online auction site,
inspired by some very popular web applications, where people and businesses buy
and sell a broad variety of goods and even services from all around the world. Both
cases are thoroughly modeled with IFML. Design patterns are applied.

END NOTES
 1. More precisely, if more than six comments exist, the first and last five comments are

shown. This can be modeled with two NestedDataBindings with appropriate block factors
and sorting criteria.

 2. The ActivationExpression in Figure 9.12 uses the “Context” variable name as a shortcut
notation for accessing the properties of the Context object. PATTERN IA-OBP uses a
Detail ViewComponent bound to the Context object.

 3. The effect of the “Posts” event to hide the user’s details can be represented as follows: a
Boolean parameter (“UserInfoVisible”), defaulting to true, is associated with the “User-
Info” ViewComponent with the ActivationExpression (UserInfoVisible=true); the Naviga-
tionFlow of the “Posts” event sets the parameter to false, thus invalidating the condition
and hiding the component.

 4. Some links in the footer refer to separate applications and are not modeled as part of the
SiteView (e.g., “About us,” which leads to the corporation’s site).

This page intentionally left blank

279Interaction Flow Modeling Language. http://dx.doi.org/10.1016/B978-0-12-800108-0.00010-2
Copyright © 2015 Elsevier Inc. All rights reserved.

CHAPTER

Implementation of
applications specified
with IFML 10
The usefulness of modeling an application at a high level is directly proportional to
the ease of implementing the specifications. In this chapter, we discuss a few exem-
plary roadmaps for implementing an application specified in IFML on top of several
technical platforms. The aim is to show that having a high-level model of the front
end helps in the manual coding phase too, because it allows the developer to reason
about the implementation strategy in a systematic way based on the abstract interface
computation semantics illustrated in chapter 6.

Given the platform-independence of IFML, implementation could be illustrated
for any software architecture that supports user interactivity. For space reasons, this
chapter restricts the illustration to four main categories of platforms that represent a
good sample of the current status of the practice: pure HTML with a template-based
approach, pure HTML with a presentation framework, rich Internet applications, and
mobile applications. To be concrete, the illustration is based on four specific platforms
listed in Table 1.

 • PHP and MySQL represent the most widespread web site development plat-

form, hosted on so-called LAMP (Linux, Apache, MySQL, PHP) environments;
we use them to illustrate the template based approach to pure HTML front-end
implementation.

 • Spring is one of the most popular web presentation frameworks, which allows
us to illustrate a different organization of the pure HTML front end, based on
the Model-View-Controller pattern.

 • JavaScript is instrumental to the illustration of rich Internet applications, which
evolve pure HTML front ends towards the handling of more advanced user’s
interactions. Specifically, we discuss the use of Asynchronous JavaScript and
XML (AJAX) for managing partial interface updates and system events and
JQuery for simplifying several recurrent interface programming tasks.

 • Android is chosen as a representative of mobile application development with
a native approach. Other approaches are also possible, including browser-based
approaches (similar to the one for rich Internet applications) and cross-platform
approaches (supported by such mobile development frameworks as Phonegap
and Appcelerator Titanium).

Although the illustration is necessarily limited and focused on specific technolo-

gies, the general line of reasoning for mapping IFML constructs to code artifacts
can be regarded as quite general. The techniques presented in this chapter could

2
8

0
C

H
A

P
TE

R
 1

0
 Im

plem
entation of applications specified w

ith IFM
L

Table 1 Summary of the Model to Implementation Mapping for Four Exemplary Platforms.

Platform Type
Template Based Pure
HTML

Web Presentation
Framework

Rich Internet
Application Native Mobile

Exemplary platform PHP, MySQL Spring AJAX, jQuery Android
Application Set of PHP templates and

scripts
Controller classes, model
objects, business services,
view templates

HTML5 document,
JavaScript functions,
server-side business logic
components

Java classes, XML
configuration files,
resources

ViewContainer PHP template Controller class, request
mapping, model objects,
business service, view
template

HTML document XML layout description,
activity class

Nested View Container PHP template, with HTML
iframes

View template with HTML
iframes and separate
controllers

Nested <div> elements
refreshed independently

Nested layout, with View
and ViewGroup elements

Nested XOR
ViewContainer

PHP template with condi-
tional content production

ViewContainer service and
View with conditional con-
tent extraction/visualization

Nested <div> elements
made visible on demand

Visibility setting of view
elements

Landmark HTML (static) anchors in
PHP template

HTML (static) anchors in
view template

HTML anchors or
 JavaScript menu

Activity with intent filter for
dispatching

List, Details,
DataBinding,
VisualizationAttributes

Select SQL query plus
printout of the markup

ViewComponent service,
model objects, JSP/JSTL
bean content extraction
tags

JavaScript function for
content rendering and
server-side component for
data extraction

Java component
extracting content
and creating view
elements

Form HTML form HTML form with Spring
custom tags

HTML form Layout with nested view
elements

2
8

1
Im

plem
entation of applications specified w

ith IFM
L

Select Event HTTP GET request HTTP GET request HTML DOM event,
processed at the client or
dispatched to the server

Event and event listener

Submit event HTTP POST request HTTP POST request HTML DOM event and
asynchronous server
request

Event and event listener

System event Not available Not available WebSocket or WebRTC
callback

Broadcast intent

NavigationFlow HTML anchor or button HTML anchor or button JavaScript function
execution after event

Intent, event listener

DataFlow Request parameter propa-
gation to query or other
template

Request parameter propa-
gation in ViewContainer or
Action service class

Parameter passing to
JavaScript function

Parameter passing from
event to listener or within
an intent

ParameterBinding Request parameter propa-
gation to query or other
template

Request parameter binding
to parameters of controller
methods

Parameter passing to
event handling JavaScript
function

Data stored inside an
intent object

Action PHP script Controller, business service JavaScript function calling
asynchronously server-
side action component

Java class called by an
activity

Context Session variables Session-scoped model
objects

JavaScript global variables
at the client side

Activity state variables on
the client

CHAPTER 10 Implementation of applications specified with IFML282

be reformulated for other platforms of the same type. Table 1 summarizes how the
essential IFML modeling concepts are mapped into the artifacts of the four platforms
selected for illustration.

10.1 IMPLEMENTATION OF THE FRONT END FOR URE-HTML
PAGE TEMPLATES

Dynamic web sites are a popular type of interactive application in which the front
end allows users to browse content dynamically extracted from a database and per-
form such actions as uploading content and sending e-mails. In the simplest case,
the interface browsed by the user consists of a pure HTML document, dynamically
generated by a server-side program.

As an exemplary platform for illustrating pure HTML web development, we adopt
the PHP server-side scripting language, which is natively coupled to the MySQL
relational database. The PHP code is interpreted by a processor integrated in the web
server. Most frequently, the Apache open source system is used as the HTTP engine.

The basic artifact in PHP is the page template, which is a document, typically
encoded in HTML, with embedded instructions for extracting content dynamically
from a data source and publishing it in the interface.

10.1.1 OVERVIEW OF THE VIEWCONTAINER COMPUTATION STEPS
The typical structure of a PHP web site consists of multiple page templates and
corresponds in IFML to a set of independent, interlinked ViewContainers compris-
ing ViewComponents for dynamic data publication and data entry. The computa-
tion of a ViewContainer is triggered by the user, who sends an HTTP request to the
server hosting the application. Responding to the user’s request entails processing a
dynamic page template according to the execution steps illustrated in Figure 10.1.

In the first step, the HTTP request is analyzed to extract possible parameters, typi-
cally the values to be used in the content extraction queries. In the second step, the
page template establishes a direct connection to the database and assembles and sub-
mits the queries for retrieving the content needed to populate the interface. The exe-
cution of a query may compute some parameter values needed to instantiate another
query. Therefore, query processing is iterated until all the queries needed to retrieve
the content are executed. Finally, when all the necessary pieces of content have been
retrieved, the output is produced and returned as the HTTP response. Specifically, the
dynamic content of the page typically consists of texts, images, and other elements,
and hypertext links expressed as HTML anchor tags.

The translation of IFML ViewContainers and ViewComponents into PHP pro-
duces dynamic page templates with the general structure shown in Figure 10.2.

 • The first step extracts from the HTTP request the parameters for computing the

ViewComponents. Such parameters represent either the “fresh” values produced
by the user’s interaction or “history” values used to preserve past choices made
by the user in previous navigations.

28310.1 Implementation of the Front End for URE-HTML Page Templates

FIGURE 10.1

Computation of a dynamic page template from database content.

FIGURE 10.2

General schema of the PHP template implementing a page.

CHAPTER 10 Implementation of applications specified with IFML284

 • The second step addresses the connection to the database, preliminary to the
execution of the data binding queries necessary to fetch the content of ViewCom-
ponents. PHP has a native interface to the MySQL database and an ODBC-medi-
ated interface to any other data store compliant to such interconnection standard.

 • The third step embodies the ViewContainer execution semantics illustrated in
chapter 12. It processes all the computable ViewComponents, based on the way the
ViewContainer has been accessed, which corresponds to a specific parameter con-
figuration in the HTTP request. First, the initially computable ViewComponents are
determined by means of a suitable conditional statement checking the values of the
request parameters, and ViewComponents data binding queries are evaluated. The
output of such queries the is used as input for executing the query of other depen-
dent ViewComponents. This part of the template must also resolve conflicts caused
by ViewComponents with multiple alternative input parameter values. This requires
further conditional statements for discriminating the most specific values based on
the chosen conflict resolution strategy. At the end of this part of the template, all
the data binding queries of the computable ViewComponents have been performed,
and their results are stored in appropriate data structures from which they can be
extracted to produce the dynamic portion of the HTML markup.

 • The fourth step builds the HTML content of each ViewComponent, mixing the
dynamically generated content with the static HTML markup to achieve the
desired page layout. The construction of the ViewComponents’ markup addresses
two aspects: the rendition of the content and the construction of the anchors and
buttons for triggering events. The latter issue requires the definition of the URL
associated with the HTML hypertext reference, which typically consists of a fixed
part, depending on the target ViewContainer, and a variable part with the neces-
sary output parameters. The relevant parameters passed on the link are determined
according to the navigation history preservation criteria discussed in chapter 12.

 • Finally, the last step simply disposes the temporary objects used in the previous
phases.

We now show progressive examples of PHP dynamic templates built according

to this general scheme.
To show concretely the computation steps of Figure 10.2, we use the master detail

pattern based on the domain model classes shown in Figure 10.3. For convenience,
the figure also shows the mapping of the “NewsCategory” and “NewsItem” classes
into persistent relational tables.

10.1.2 STANDALONE VIEWCONTAINER
Figure 10.4 shows the simplest case of a ViewContainer with dynamic content,
which contains a single nonparametric ViewComponent, the “NewsCategories” List,
which publishes all the news categories. In the example, we assume that each news
category is denoted simply by the category name and the List is ordered by ascending
category name.

10.1 Implementation of the Front End for URE-HTML Page Templates 285

Figure 10.5 shows the PHP page template implementing the ViewContainer of
Figure 10.4.1

With respect to the general schema of Figure 10.2, the extraction of the param-
eters from the HTTP request is not needed because the “NewsCategories” List
ViewComponent has no incoming NavigationFlow. Only the data binding content
extraction and the production of the ViewComponent interface markup are relevant.

The page template starts by creating the connection with the MySQL database
(lines 3–7). This code will remain the same in all the subsequent examples. The
reference to the database connection is assigned to the PHP variable $con, which is
then used for submitting the ViewComponents data binding queries. In the present
example, this task is particularly simple because there is a single ViewComponent
and the code of its associated query is fixed and without input parameters. Obviously,
parameter propagation does not occur inside the ViewContainer, because there is only
one ViewComponent. At line 9, the mysqli_query function is invoked to submit the
query to the database. The function takes as argument the database connection and
the SQL code of the query, and returns the query result in the form of a record set.
In this example, the query is a simple SELECT statement, and the result is assigned to
the PHP variable named $result. Note that no ConditionalExpression is specified in

FIGURE 10.3

News and news categories domain model and equivalent relational tables.

FIGURE 10.4

ViewContainer with a single List ViewComponent.

CHAPTER 10 Implementation of applications specified with IFML286

the List ViewComponent, and thus the SELECT statement does not include the WHERE
condition and extracts from the NEWSCATEGORY table all the existing rows. The SELECT
statement has an attribute list containing the NAME column, which corresponds to the
VisualizationAttributes clause of the List ViewComponent, and an ORDER BY clause,
which mirrors the sorting criterion (ascending by NAME) of the ViewComponent.

The production of the HTML markup starts at line 11. After some static HTML
(lines 11–17), the page template contains the section for computing the dynamic con-
tent of the List ViewComponent (lines 18–22). This portion builds an HTML table
with one row and one cell for each record in the result set. To construct the table, a
while loop is used (lines 18–22), which halts when the mysqli_fetch_array() func-
tion returns false, meaning that there are no more rows to process. Inside the loop, an
HTML row and cell are created containing the value of the NAME attribute of the cur-
rent row, extracted from the PHP variable $row with the expression $row[‘Name’].
Therefore, executing the loop produces as many HTML rows as the number of rows
in the NEWSCATEGORY table. Finally, the last part of the PHP template simply prints the
remaining static markup (lines 23–25) and closes the connection with the database
(line 27).

The example can be generalized to ViewComponents with ConditionalExpres-
sions. If the ViewComponent has a ConditionalExpressions, the SQL statement of
the data binding query includes an appropriate WHERE clause. For example, the List
ViewComponent shown in Figure 10.6 has an attribute-based ConditionalExpression,

FIGURE 10.5

PHP implementation of NewsCategories page.

10.1 Implementation of the Front End for URE-HTML Page Templates 287

which retrieves only the news categories with attribute “approvalStatus” equal to 1,
and corresponds to the following SQL query:

SELECT NAME FROM NEWSCATEGORY WHERE APPROVALSTATUS = 1 ORDER BY
NAME

10.1.3 NAVIGATION ACROSS VIEWCONTAINERS
The next example shows the implementation of Events and NavigationFlows, which
raises two issues:

 • The production of the HTML rendition of the Event triggering the Navigation-

Flow in the source ViewContainer.
 • The retrieval of the parameters associated with the NavigationFlow and the

assignment of their values as the input of ViewComponents in the destination
ViewContainer.

Figure 10.7 shows an IFML model extending the example of Figure 10.4 to a

master detail pattern. The List ViewComponent is now connected to a Details View-
Component defined on class “NewsCategory,” placed in a distinct ViewContainer so
that the selection of one element in the List opens the “CategoryDetails” ViewCon-
tainer on the selected object.

The implementation is extended in two ways. A PHP template for the “Catego-
ryDetails” ViewContainer is introduced. This template is called by means of an HTTP
request holding the identifier of the news category object to show. The template uses
this parameter in the SQL query associated with the “Category” ViewComponent.
The PHP template for the “Categories” ViewContainer is extended by adding one
HTML anchor for each row of the dynamically built list of categories. The href
attribute of each anchor tag contains a different URL, concatenating the name of the

FIGURE 10.6

List with attribute-based selector.

CHAPTER 10 Implementation of applications specified with IFML288

template implementing the “CategoryDetails” ViewContainer and a request param-
eter transporting the primary key of the object in the current row of the list.

Figure 10.8 shows the PHP template of the “Categories” ViewContainer. As a
first extension, the SQL query at line 9 has been augmented to retrieve also the OID
column of table NEWSCATEGORY. The OID is used at lines 20 to construct the URL
associated with each row by wrapping the name of each category inside an HTML
anchor (<a>...) tag. For each row, the HTML anchor tag includes an href

FIGURE 10.7

Two ViewContainers connected by a NavigationFlow.

FIGURE 10.8

PHP implementation of the “Categories” ViewContainer.

10.1 Implementation of the Front End for URE-HTML Page Templates 289

attribute consisting of a fixed part (categoryDetails.php?category=) and a vari-
able part ($row[‘OID’]). The fixed part is the file name of the template associated
with the destination page (categoryDetails.php) followed by the constant part of
the query string, which contains the name of the parameter (category). The variable
part of the URL is built from the value of the OID column of the current row of the
NEWSCATEGORY table, retrieved from the query result. Executing the template pro-
duces a table of news categories, but this time each category name is also the anchor
of an HTML link.

Figure 10.9 shows the JSP code for page CategoryDetails, stored in the file named
categoryDetails.php. The template demonstrates the extraction of parameters from
the HTTP request and the construction of a parametric data binding query. At line 3,
the value of the parameter named category is extracted from the global PHP variable
named $_GET, which represents the content of a GET HTTP request, and stored in
the $category PHP variable. The value fetched from the request is exactly the one
appended to the URL constructed in the “Categories” ViewContainer, as shown by
line 20 of Figure 10.8.

The value of the $category variable is used to prepare the data retrieval query for
the “Category” Details ViewComponent. The source code of the SQL query is not

FIGURE 10.9

PHP implementation of the “CategoryDetails” ViewContainer.

CHAPTER 10 Implementation of applications specified with IFML290

fixed, as in the previous examples, because the value of the OID to use in the WHERE
clause may vary depending on the selection of the user, which determines the value
stored in the HTTP request. Therefore, a different technique is necessary to build
the query, as shown in lines 11–14. At line 11, the connection object is used to cre-
ate a so-called “prepared statement,” which is a partially instantiated SQL query. In
particular, the SQL query “SELECT NAME, DESCRIPTION FROM NEWSCATEGORY WHERE
OID = ?” is prepared, which extracts the name and description of the news category
identified by the OID passed as a parameter to the query. The value of the OID is
represented by the question mark in the source code of the query. The prepared state-
ment is incomplete and must be bound to an actual parameter value before execution.
This is done at line 12, where the instruction $stmt->bind_param(“i”,$category)
supplies the prepared statement object $stmt with the value of the $category vari-
able, as a parameter of type integer (“i”). After this instruction, the prepared state-
ment is ready to execute. This is done at line 13, and its result is bound to variable
$result at line 14.

The rest of the code is devoted to content production. The result of the query is
the single news category having the specified OID, which is used at lines 22–28 to
insert the category name and description into an HTML table. Note that a real exam-
ple would include error-checking code, such as code to cope with HTTP requests
that do not provide a value for the OID parameter or with the failure of the SQL
query. For brevity, we will skip error-checking and exception-handling code in the
examples discussed in this chapter.

10.1.4 NAVIGATION WITHIN THE SAME VIEWCONTAINER
The next example shows the implementation of a ViewContainer containing multiple
ViewComponents connected by NavigationFlows.

Figure 10.10 shows a master detail pattern in a single ViewContainer, which
comprises a List ViewComponent connected to a Details ViewComponent by a

FIGURE 10.10

Master detail pattern contained within a single ViewContainer.

10.1 Implementation of the Front End for URE-HTML Page Templates 291

NavigationFlow and by a DataFlow that expresses the CN-DEF default selection
pattern. The presence of intra-ViewContainer NavigationFlows impacts the imple-
mentation in three ways:

 • The ViewContainer can be accessed in more than one way: by a noncontextual

navigation 2and by using an intra-ViewContainer contextual NavigationFlow.
This implies that the ViewContainer can be called with different HTTP requests
that include different parameters. The template must extract the parameters from
the request and check their values to understand which ViewComponents are
initially computable. Computation propagation then proceeds (as explained in
chapter 12) from the initially computable ViewComponents to their dependent
ones.

 • The destination ViewComponent of the NavigationFlow may be computed
with alternative input values, either from a fresh value transported in the HTTP
request by the navigation of the intra-ViewContainer NavigationFlow, or from
the default value supplied by the ViewComponent linked to it. The template
must contain a suitable conditional statement for deciding which input to use.

 • To cope with the fact that the HTTP request refreshes the entire content of
the page, the HTML construction part must build the anchor tag for an intra-
ViewContainer NavigationFlow by appending to it all the parameters required
to recompute the ViewContainer, which may comprise both the fresh values
determined by the user’s selection and the “history” values necessary to restore
the content of some ViewComponent to the value preceding the navigation.

The PHP template of Figure 10.11 starts from the decoding of the HTTP request

parameter, which is the OID of the category required by the Category Details View-
Component. At line 6, the category parameter is extracted from the request and
assigned to the variable named $category. In contrast to the previous example, this
variable may contain either a null value or a valid object identifier, depending on the
way the page is accessed. If the page is accessed noncontextually, the parameter is
null. If the page is accessed by navigating the intra-ViewContainer flow, the param-
eter stores the identifier of the selected news category to be displayed in the Details
ViewComponent.

In this example, the interaction with the database is implemented using the PHP
Data Object (PDO) interface, an alternative higher-level interface designed to sup-
port better portability across different relational systems.

The List ViewComponent is nonparametric, and its query can be executed irre-
spective of any input, whereas the Details ViewComponent depends on the user’s
selection or on the default value of the list. Therefore, the query for the List View-
Component is executed first, and the query of the Details ViewComponent follows.

At lines 17–20, the template contains the preparation and execution of the query
for extracting the data binding instances of the List ViewComponent. In contrast to
the previous examples, all rows are fetched at once into an array (line 20). This is
required because the first row of the result set of the List ViewComponent may be
accessed twice: once for getting the OID to be used as default input for the Details

CHAPTER 10 Implementation of applications specified with IFML292

FIGURE 10.11

PHP implementation of page “Categories” and “NewsDetails” ViewComponents in a single
ViewContainer.

10.1 Implementation of the Front End for URE-HTML Page Templates 293

ViewComponent (line 23) and once for printing the HTML rendition of the List
ViewComponent (lines 37–42).

After the List ViewComponent query is executed, it is the turn of the Details View-
Component. Before preparing the query, the test at line 22 is performed to ensure that
the most specific value is used to build the component. If the ViewContainer has been
accessed noncontextually, the value of $category variable is null and default parameter
propagation from the List to the Details must take place: the first row of the result of the
List is extracted from the array to get a default input, and the value of the OID column is
assigned to the $category variable (line 23). If the ViewContainer has been accessed by
navigating the intra-ViewContainer flow, the value of the $category variable is not null,
and the default context propagation is skipped. In this case, the OID value that comes
from the HTTP request is used. After this test, the Details query is executed, using as
parameter the most specific value stored in the $category variable (line 26–29).

The HTML code is then built using the results of the two queries. For simplic-
ity, we construct just two tables: one for the List and one for the Details. In a real
example, extra HTML formatting would be needed to obtain a more aesthetic result.

The code of Figure 10.11 can also be adapted to cope with an intra-View Container
NavigationFlow without a default object selection policy. In this case, default param-
eter propagation does not apply. As a consequence, when the ViewContainer is
accessed noncontextually, the Details query is not executed nor its content is shown.
To skip the construction of the Details ViewComponent, it is sufficient to condition
the execution of the query at lines 26–29 and the production of the HTML code at
lines 44–48 with the following test: if ($category != null), which ensures that
the intra-ViewContainer flow has been navigated.

10.1.5 FORMS
The search pattern shown in Figure 10.12 help illustrate the implementation of Form
ViewComponents and demonstrates a second way of building NavigationFlows
based on HTML forms and on the HTTP POST method.

FIGURE 10.12

Search pattern.

CHAPTER 10 Implementation of applications specified with IFML294

Forms are different from List and Details ViewComponent for two reasons:

 • They do not have an associated content retrieval query but are directly translated

into an HTML form in the body of the template3.
 • Their outgoing NavigationFlow, which transports as parameters the values

entered by users, is implemented using the action attribute and submit but-
ton of an HTML form instead of an anchor tag. The parameters transported
by the NavigationFlow are typically submitted using the HTTP POST method
instead of the default GET method. The predefined HTTP $post variable can be
exploited to extract input parameters from the POST request.

The code implementing the search pattern of Figure 10.12 is shown in Figure 10.13.
At lines 2–6, the PHP $_POST variable is exploited to extract the values entered by

the user, which are communicated from the front end as a POST request submitted

FIGURE 10.13

PHP implementation of the basic search pattern.

10.1 Implementation of the Front End for URE-HTML Page Templates 295

with an HTML form. The subsequent part of the template contains the query prepara-
tion and execution code. The only ViewComponent requiring a data binding query is
the List, which has a ConditionalExpression with one input parameter. The code at
lines 12–19 wraps the data binding query with a test for checking if the ViewCompo-
nent is computable: the test verifies that there is a keyword submitted by the user and
is not the empty string. If the test succeeds, the List data binding query is instantiated
and executed. If the ViewContainer has been accessed noncontextually or the user
has left the input field blank, the test fails and the query is skipped.

The content production part follows. First, the Form is rendered as an HTML
form (lines 27–31), which contains an <input> tag of type text, named keyword. The
SubmitEvent and the outgoing NavigationFlow of the Form are implemented as the
form’s action attribute (line 27), which specifies the destination of the Navigation-
Flow, and as an <input> tag of type submit (line 30), which is rendered as a confir-
mation button and implements the SubmitEvent. When the user presses the button,
the input of the keyword field is packaged as a request parameter named keyword,
and the ViewContainer is reinvoked. After the HTML form is the code for construct-
ing the markup of the List ViewComponent from the results of the corresponding
SQL query. Note that the loop for constructing the HTML table is not entered if the
page has been accessed noncontextually or with a null keyword, because in such case
no query was executed and there are no results to display. In a real example, a further
test would be needed in the HTML production part to distinguish the case in which
the query is executed but no results are found. An appropriate message would then
be shown to the user.

The extension to more complex search forms and ConditionalExpressions is
straightforward. The HTML form is extended with as many fields as required, and
the WHERE clause of the SQL query of the List ViewComponent is expanded with suit-
able subclauses using the values of the input fields in comparison predicates.

10.1.6 LANDMARKS AND NESTED VIEWCONTAINERS
Landmarks do not impact implementation in a substantial way because they are
merely devices for noncontextual navigation. In practice, the references to landmarks
are implemented simply by inserting the appropriate noncontextual links in each
template of the front end, using HTML anchor tags.

Conjunctive sub-ViewContainers show various pieces of content in different
regions of the interface and can be realized with HTML inline frames. The PHP
page template is divided into as many independent files as the number of conjunctive
subpages. Then a master template is built, to put the frames together.

Disjunctive sub-ViewContainers show alternative pieces of content in the same
region of the interface, which requires the PHP template code to enable alternative
portions of content selectively. As an example, consider the page of Figure 10.14, in
which the “Category” Details ViewComponent displays a news category, from which
it is possible to visualize either the list of all news of the category or a list of only the
most recent news but with the full details of each piece of news. The “RecentNews”

CHAPTER 10 Implementation of applications specified with IFML296

sub-ViewContainer is the default one, shown when the “News” ViewContainer is
accessed for the first time. Implementing this pattern requires a conditional state-
ment in the template code to establish which sub-ViewContainer must be processed.
The ViewContainer to display is the default one if the enclosing ViewContainer is
accessed from another part of the interface. Otherwise, the one targeted by the flow
explicitly navigated by the user is shown. To ease the implementation of such con-
ditional statements, every NavigationFlow pointing to an alternative ViewContainer
may comprise one extra URL parameter (e.g., target) that explicitly carries the
name of the alternative ViewContainer to display.

The code in Figure 10.15 shows this implementation technique at work.
At lines 3–4, the HTTP request is analyzed to extract the two possible parameters:

the OID of the category to display and the name of the ViewContainer that has been
accessed. Then, after connecting to the database and performing the SQL query for
the Details ViewComponent (line 5–16), a test determines which alternative View-
Container is required (line 18). If the nondefault alternative page (“AllNews”) is
requested, a SQL query is composed to retrieve the content of the “AllNews” List,
that is (i.e., the headings of all the news items of the input category [lines 19–20]).
Otherwise, a SQL query is composed to retrieve the content of the “RecentNews”
List (i.e., the heading and body of the news items issued after 1/1/2014 [lines 21–22]).
The query is executed at lines 23–24.

In the HTML production part of the template, first the Details markup is built from the
result of the SQL query (lines 28–38). After the name and the description of the category,
one HTML anchor is inserted for each of the alternative ViewContainers, distinguished
by the value of the target parameter, which can be all or recent (lines 33–36).

FIGURE 10.14

Example of disjunctive ViewContainers.

10.1 Implementation of the Front End for URE-HTML Page Templates 297

FIGURE 10.15

PHP implementation of disjunctive ViewContainers.

CHAPTER 10 Implementation of applications specified with IFML298

Prior to creating the markup of the list of news, the target request parameter is
tested to determine which ViewContainer must be rendered (lines 39 and 46). If the
parameter’s value is equal to all, the content of the “AllNews” ViewComponent is
produced (lines 40–45). Otherwise the content of the of the “RecentNews” View-
Component is built (lines 47–53).

10.1.7 ACTIONS
IFML does not model the internal organization of Actions but only their interplay
with the user interface. In a PHP pure-HTML architecture, Actions are implemented
by server-side scripts, which may access external systems through suitable APIs,
such as the mysqli interface used in the examples of ViewContainer computation.

An Action is inserted in an IFML diagram by establishing an Event and a Navi-
gationFlow between a ViewElement and the Action, with the meaning that the event
triggers the Action targeted by the NavigationFlow. This basic configuration can be
extended by drawing additional DataFlows from the ViewContainer whereby the
Action is activated, transporting further parameters to the Action. Therefore, the
implementation of an Action deals with how to realize the business logic (not treated
in this book) and how to implement the Event and NavigationFlow that activate it.
In PHP, Actions are implemented by means of a server-side script with the general
structure shown in Figure 10.16.

FIGURE 10.16

General schema of an Action server-side script.

10.1 Implementation of the Front End for URE-HTML Page Templates 299

The first part of the script deals with request parameters fetching, as in the case of
a ViewContainer template. The parameters transported by the NavigationFlow must
be extracted from the request to be used in the execution of the business operations.

The second part of the script deals with execution of the business logic. If the
Action consists of a single operation, the script simply initializes the component with
the input parameters, executes it, and checks the result to determine if the normal or
exceptional termination event must be raised and which NavigationFlow must be fol-
lowed. If the Action consists of a workflow of operations, the script must address the
execution of the operations in the proper order, the passage of parameters between
operations, and—if needed—the atomicity of execution.

The implementation of the Action also affects the coding of the template whereby
the Action is activated. In particular, the HTML implementation of the Navigation-
Flows outgoing from the ViewContainer and pointing to Actions must obey the fol-
lowing rules:

 • Besides the parameters explicitly associated with it, the activating Navigation-

Flow must also carry all the parameters transported by DataFlows reaching the
Action. This can be done in two ways:

 • If the NavigationFlow is implemented as an anchor tag, appropriate param-
eters can be added to the query string of its URL.

 • If the NavigationFlow is implemented as the submit button of an HTML
form, input fields of type hidden can be added to the HTML FORM element.

 • The activating NavigationFlow must also transport the extra parameters needed
to “remember” the history of user choices—as explained in chapter 12—if any
of the outgoing flows of the Action points back to the ViewContainer whereby
the Action is activated.

10.1.8 CONTEXT
Context information requires maintaining information across multiple user inter-
actions. In a pure HTML architecture, this feature is normally implemented at the
server side by means of a transient session data structure. Retention of information
at the client side is also possible with cookies. Cookies, however, support only a
limited storage capacity. Next, we exemplify the most basic usage of the Context: the
storage of the identity and the authentication status of a user. Other Context informa-
tion can be implemented following the same approach. We do so by discussing the
implementation of the Login pattern presented in chapter 6. The login Action verifies
the credentials of the user, forwards the user to the proper ViewContainer if the cre-
dentials are verified or to an error page if verification fails. The Actions also sets the
Context information about the authenticated identity of the user. In RBAC systems,
the default role the user is preserved as part of the context.

Context information, such as the identity of the currently logged-in user and
his default role, can be implemented exploiting the PHP session variables. The
PHP session is created either automatically upon the first request of the user or by
means of an explicit script instruction executed at a specific point of the interaction.

CHAPTER 10 Implementation of applications specified with IFML300

The session is maintained for specified amount of time and is associated with a
unique ID used to identify subsequent HTTP requests pertaining to it. It terminates
either when the application invalidates it explicitly or when a time out defined in
the server’s configuration occurs. Upon termination, all the information stored in
the session is lost. If session information must persist beyond the life of the session
object or survive a server failure, it must be transferred into persistent storage at the
server side.

The script of Figure 10.17 implements the login Action invoked by an HTML
form containing two input fields, one for the username and one for the password.
For the sake of simplicity, the script assumes the user’s credentials are unique
and stored in the database. The user’s session is created automatically upon the
user’s first access to the ViewContainer with the login Form (line 2). The script
retrieves the value of the username and password from the POST HTTP request
(lines 3–4). It then connects to the database and uses these values to instantiate
the prepared statement shown at lines 11–15. The SQL statement verifies that
the given username and password do exist in the USER table and retrieves the
OID of the user associated to the credentials and the OID of his default group.
The outcome of credential verification is examined at line 17. If the SQL query
did not find any object matching the username and password, the connection is
closed and control is transferred (using the PHP header instruction) to the page
template loginError.php, which may request the username and password again.

FIGURE 10.17

PHP implementation of the login Action, which sets Context information.

10.2 Implementation of the Front End for Presentation Frameworks 301

If verification succeeds, the OID of the user and group are stored in two session
variables, uname and urole, (lines 21–22), and control is forwarded to the proper
ViewContainer.

Note that the simple script of Figure 10.17 can be made more realistic and
secure by adding code for checking that the session exists, for regenerating it
at each login to avoid session fixation attacks, and for managing clients such as
robots that do not respect the redirect HTTP directive. In addition, transmission
of the user’s password via a secure protocol such as HTTPS would ensure better
protection at no extra programming effort because the Secure HTTP protocol is
transparent to the programmer.

The Context information can be cleared by the logout Action, which amounts to
invalidating the session and forwarding control a proper ViewContainer.

10.2 IMPLEMENTATION OF THE FRONT END FOR
PRESENTATION FRAMEWORKS

In the last decade, web programming has been supported by several software
frameworks, which are partially instantiated architectures used for accelerating the
development of enterprise class applications. These systems exploit an internal orga-
nization of the components that promotes modularization of the code through separa-
tion of concerns, so that each module addresses only one specific aspect, such as data
access, business logic, interaction handling, or presentation.

10.2.1 MODEL-VIEW-CONTROLLER AND ITS ADAPTATION TO THE
WEB

One of the most widespread software architectures for interface development is the
so-called Model-View-Controller pattern (MVC for short). The MVC is conceived
to separate the three essential parts of an interactive application: the domain objects
and business logic of the application (the model), the rendition of the interface for the
user (the view), and the decision about what to do in response to the user’s interac-
tions (the controller).

In the MVC architecture, the typical flow of control is the one represented in
Figure 10.18.

The computation is activated by a user’s request for some content or service,
addressed through a controller. The controller dispatches a request for action to the
suitable component of the model. The model incorporates the business logic for per-
forming the action and executes such logic, which updates the state of the applica-
tion and produces a result to be communicated to the user. The change in the model
is observed by the interface view components. The affected view components thus
update their presentation status and display the outcome to the user, who can then

CHAPTER 10 Implementation of applications specified with IFML302

prosecute the interaction. The MVC assigns distinct responsibilities to the three types
of components:

 • The model encapsulates the business actions required for answering a user’s

request and keeps the state of the application. It ignores the format in which
requests are issued and responses are presented to the user.

 • The view embodies the presentation of the user interface. An application may
have a single view or multiple views, and a view may be composed of subviews,
relevant to different types of results. The view ignores how its content has been
prepared.

 • The controller interprets the user’s request, produces the appropriate request
for action, examines the result of each action, and decides what to do next. An
application may have a single controller or multiple controllers, one for each
request type or view. A controller is unaware of the business logic of the actions
and of the presentation of the view.

In recent times, the MVC architecture has been exploited for organizing the

architecture of web applications. Examples of web frameworks that take inspiration
from the MVC pattern are the Struts project of the Apache Software Foundation (http
://jakarta.apache.org/struts/) and the Spring MVC Framework (http://spring.io/), part
of a larger tool suite for the development of enterprise applications. Both projects
feature an implementation of the MVC pattern realized on top of the Java platform.

In the web context, the original MVC scheme is adapted to take into account the
specificity of HTTP as a client–server protocol, especially the lack of mechanisms
for maintaining the state of the interaction at the client side and for the server to
notify the client of events. Figure 10.19 shows the adaptation of the classical MVC

FIGURE 10.18

Model View Controller (MVC) architecture.

http://jakarta.apache.org/struts/
http://jakarta.apache.org/struts/
http://spring.io/

10.2 Implementation of the Front End for Presentation Frameworks 303

architecture to the web context, using Java as a reference platform. The illustrated
scheme is sometimes called MVC Model 2 (MVC2, for short), to contrast it with
the Model 1 approach, which merges the view and the controller roles in the page
template, similar to the approach in the PHP examples discussed in the section 10.1.

The emitter of requests in the MVC2 architecture is the web browser. The HTTP
requests of the client are mapped to a single entry point—in Java implemented as a
servlet—acting as the front controller (also called dispatcher). The front controller
delegates the user’s request to a specific controller in charge of deciding the actual
course of action necessary to service the user’s request. The specific controller cre-
ates the model objects necessary to perform the business actions implied by the user’s
request. Examples of actions could be the execution of a database query, the sending
of e-mail, or the authentication of the user. Model objects also record the state of the
application until the request is serviced or even between consecutive requests. For
example, they may store the trolley items of the user or the result of a data binding
query. After completion, the specific controller returns the control and the updated
model objects to the front controller. In the typical flow of a web MVC application,
after an action completes the front controller invokes a view—in Java implemented
as a JSP page template—responsible for presenting the updated state of the applica-
tion to the user. For doing so, the view template accesses the model objects, where
the current state of the application is stored, and builds the HTML page sent back to
the front controller and then to the browser. Examples of views could be the display
of the result of a database query, the notification that an e-mail has been sent, and the
home page of the web site after the successful login of the user.

In a concrete implementation of the MVC2, such as the Spring MVC framework,
further technical components and mechanisms contribute to the architecture. These
components are illustrated in Figure 10.20.

FIGURE 10.19

The MVC architecture applied to web applications.

CHAPTER 10 Implementation of applications specified with IFML304

The entry point of the Spring Architecture is the dispatcher servlet, which is the
orchestrator of the workflow for serving the incoming requests. It maps the client
requests to the controllers that handle them. The controllers are Java classes with
methods for handling the flow of actions implied by a specific request, such as creat-
ing the model objects to display in a view, accepting input, and updating the status of
the application. The request-to-controller mapping logic can be expressed in several
ways: by means of annotations (@RequestMapping) on the classes and methods of the
controller, through encoding in an XML configuration file made available to the dis-
patcher servlet, or even by inference from naming rules with a “convention over con-
figuration approach.” The invocation of the controller by the dispatcher servlet has
also the side effect of initializing the model. Spring implements a default model as a
Java map indexed by symbolic attributes that can be used to store the Java objects that
embody the model content. The dispatcher servlet and its helper classes initialize the
default model map with the user’s input and the request parameters, which are thus
available to the controller. Also, the annotation @ModelAttribute can be attached to
controllers’ methods or to individual parameters in their signature, which causes the
tagged method to be invoked before the actual handling of the request and causes
their return value or parameter values to be added to the default model. These meth-
ods normally prepare additional model objects (e.g., by extracting content from the
data tier). Some of the model objects can be made persistent across multiple requests
by storing them in the session. This requirement can be expressed declaratively by
annotating the signature of a controller’s methods (with @SessionAttribute).

The controller can interact with back-end services deployed in one or more pack-
ages (called WebContexts) connected with the main WebContext that contains the
MVC components. These services can support data access, such as through object
relational mappings of the domain model onto relational data sources and integration
with remote services (e.g., access to REST APIs on the web).

FIGURE 10.20

Spring MVC Framework components.

10.2 Implementation of the Front End for Presentation Frameworks 305

The methods of the controller invoked to handle an incoming request may return to
the dispatcher servlet the indication of the model object (if different from the default one)
and of the view to display next. Spring supports a variety of mechanisms and defaults for
specifying the view to call. In the base mechanism, the controller simply returns a string
denoting the symbolic name of the pertinent view, which is translated by a ViewResolver
utility object into the physical address of the component implementing the view.

The view components can be realized in a variety of ways, including the delega-
tion to external programs or the display of static resources. The typical implemen-
tation employs Java Server Pages (JSP) or JSP Standard Template Library (JSTL)
components. Spring offers utility libraries that can be used in the view to facilitate
the access to the model objects, including the retrieval of form input data associated
with the request and of the errors produced by the server-side validation of such data.

10.2.2 MAPPING IFML TO THE SPRING MVC FRAMEWORK
The mapping of an IFML application onto the Spring architecture is illustrated in Figure
10.21, which fills the generic “boxes” of Figure 10.20 with IFML-specific elements.

In the rest of this section, we discuss how the implementation of the fundamental
IFML primitives (ViewContainers, ViewComponents, InteractionFlows, and Actions)
exploits the components appearing in Figure 10.21. As an example, we show the
implementation of the IFML model illustrated in Figure 10.22, which includes one
ViewContainer with a master detail pattern consisting of two List ViewComponents
and two ViewContainers for a basic search pattern with data entry validation.

10.2.3 MAPPING VIEWCONTAINERS TO SPRING MVC
Each ViewContainer is mapped onto four elements: (1) a ViewContainer controller,
(2) a ViewContainer service in the business tier, (3) a ViewContainer template in

FIGURE 10.21

Mapping IFML concepts to the MVC architecture.

CHAPTER 10 Implementation of applications specified with IFML306

the View, and (4) a @RequestMapping annotation on the responder methods of the
ViewContainer controller—or alternatively a handler mapping specification in the
dispatcher servlet configuration file.

The ViewContainer controller is a Java class. It exposes a “handleRequest”
method that extracts the input from the HTTP request and calls the ViewContainer
service in the business tier, passing to it a reference to the model. When the service
terminates, the ViewContainer controller analyses the outcome and returns the speci-
fication of the View to display to the dispatcher servlet.

The ViewContainer service is a business function that orchestrates the parameter
propagation and ViewComponent execution process illustrated in chapter 12. The
ViewContainer service invokes in the proper order the ViewComponent services,
which embody the business logic of the ViewComponents embedded in the View-
Container. Typically, a ViewComponent service implements the data binding logic
of the component, which extracts the content from the data source and stores it in the
model. At the end of the ViewContainer service execution, all the model objects hold-
ing the result of the content binding queries of the ViewComponents are available to
the view, together with the request parameters and form input stored in the model by
the dispatcher servlet. Finally, the ViewContainer template in the view computes the
HTML page to be sent to the user based on the content of the model. It contains the

FIGURE 10.22

Example of an IFML model implemented using Spring MVC.

10.2 Implementation of the Front End for Presentation Frameworks 307

static HTML needed to define the layout where the ViewComponents are positioned
and custom tags or scripts implementing the dynamic rendition of ViewComponents.

We now illustrate these artifacts in detail, using the “NewsByCategory” ViewCon-
tainer of Figure 10.22. Figure 10.23 shows the code of the ViewContainer Control-
ler that implements the response to requests for the NewsCategories ViewContainer.
We assume that the implementation of the ViewContainers uses the same names as
the IFML model (“NewsByCategory,” “SearchNews,” and “NewsFound”) and that
parameters are passed in the query string4. Therefore, the requests for the “NewsBy-
Category” ViewContainer are formulated with the following URI template:5

http://www.myserver.com/newsByCategory.do&catID=X
If the “catID” parameter is missing, the URI denotes the request for the content

of the “NewsCategories” ViewComponent only. Otherwise, it represents the request
for the news associated with the selected category (“X” in the example). The IFML
model and the Spring implementation can be easily modified to handle the display of
the news of the default category in the “NewsCategories” ViewComponent when the
“catID” parameter is not present.

The controller is implemented by a Java class (“NewsByCategoryController”)
annotated with the @Controller tag (lines 1–2). The controller class declares a pri-
vate member “appContext,” annotated with @Autowired (lines 4–5). As a result, an
object of type “ApplicationContext” is automatically created by Spring and injected
into the controller. Such an object provides access to configuration information and
to the bean factory used for creating or retrieving the application services. The con-
troller “handleRequest” method (lines 7–9) is marked with @RequestMapping(value
=”newsByCategory”) to associate it with the incoming requests matching the speci-
fied URI template. The signature of the method comprises the optional parameter
catID and the default model object. If the request actually contains the ID of a cat-
egory, the value is exploited to initialize the method parameter, as specified by the @
RequestParam annotation.

FIGURE 10.23

Spring controller for the “Categories” ViewContainer.

http://www.myserver.com/newsByCategory.do%26catID=X

CHAPTER 10 Implementation of applications specified with IFML308

The method first stores the (optional) request parameter in the model under the
name “catId” (line 10). It then looks up the application context to retrieve a Java
bean that implements the service for the “NewsByCategory” ViewContainer (lines
11–12). Next, it executes such the service by calling its “computeViewContainer”
method (line 13). The method takes as input the model map, which at the end of the
computation will contain the data binding instances of all the ViewComponents of
the ViewContainer. The “handleRequest” method concludes by returning a string
with the symbolic name of the view to the dispatcher servlet (line 14).6

The ViewContainer service invoked by Controller is illustrated in Figure 10.24. It
addresses the execution of ViewComponents and the propagation of parameters. The
service is a Java class (“NewsByCategoryViewContainerService”) that implements
the method “computeViewContainer” called by the Controller (line 7). That method
takes as input the model map object and creates an instance of the ViewComponent
services according to the order of computation and parameter passing rules explained
in section 6. First, it creates an instance of the service for the “NewsCategories” List
(line 9–10), and calls its “execute” method (line 11), which computes the content
of the list. In such invocation, the model object is passed to the method to store the
result of the data binding query. Then, the method checks the presence of the “catID”
parameter in the model (line 13) and, if a value is present, instantiates and calls the
service for the “NewsItems” List (lines 14–16)7.

The symbolic name returned by the Controller (in our case, “NewsByCategory”)
is translated by a ViewResolver component of the Spring MVC framework into the
physical name of a View template (e.g., NewsByCategory.jsp).

The implementation of the “NewsByCategory” View template is exemplified in
Figure 10.25. The template starts with the inclusion of the JSTL tag library and
the declaration of the content type and character encoding of the HTTP response
(line 1–3). The template then contains regular HTML markup for the static part of
the page, including the hypertext links that implement the implicit navigation to the

FIGURE 10.24

ViewContainer service for the “NewsCategories” ViewContainer.

10.2 Implementation of the Front End for Presentation Frameworks 309

landmark ViewContainers (lines 4–13). Next the content of the “NewsCategories”
List ViewComponent is rendered using the JSTL foreach iterator tag (lines 16–19).
The iteration is performed over the list of news category objects created by the List
ViewComponent service—described next—and stored in the model, bound to the
JSTL variable items. At every iteration, the name of the category is printed, sur-
rounded by an HTML anchor tag pointing back to the same ViewContainer. The URI
of the anchor tag contains as a parameter the identity of the current category. The
ViewContainer template continues with the (optional) rendition of the second View-
Component. If the content of the “NewsItems” ViewComponent is found (checked
with the test at line 21 for the bean variable newsItems), the template prints the
List ViewComponent (lines 22–30). If the content is not found—meaning that no
category has been selected—the rendition of the “NewsItems” ViewComponent is
omitted.

In the simple example of Figure 10.25, the production of the markup code of the
List ViewComponent is directly embedded within the template of the ViewContainer.

FIGURE 10.25

View template of page NewsCategories, using a custom tag library.

CHAPTER 10 Implementation of applications specified with IFML310

In a more elaborate example of a ViewContainer comprising multiple ViewCom-
ponents of different types, a more modular approach would be that of separately
coding the view template of each ViewComponent and then assembling the various
fragments into the template of the ViewContainer (e.g., using the dynamic inclusion
mechanism provided by JSP).

10.2.4 MAPPING VIEWCOMPONENTS TO SPRING MVC
ViewComponents are associated with a ViewComponent service, which implements
the business logic and populates the model with state information. Details and List
ViewComponents contribute a data bean and a list of data beans, respectively. IFML
Forms are associated in the model with a command object (also called a form bean)
constructed by the framework to maintain the values entered by the user. Data beans
and command objects both help the construction of the view but differ in the origin of
their content. Data come from the data layer in the case of data beans and from user
input in the case of command objects.

List and details View components and their extensions map onto Java service
classes for extracting the data binding content and creating one or more JavaBeans,
filled with such content.

Figure 10.26 shows the service for the “NewsCategories” List ViewComponent,
which retrieves the list of all the category objects.

The service class shown in Figure 10.26 encapsulates the business logic for com-
puting the content of the List. It has a private member (“appContext”) storing a ref-
erence to the bean factory, injected by the Spring MVC framework. The “execute”
method exploits the application context to create a data access object (DAO)—an
instance of class “NewsCategoryRepository”—and then invokes the “findAll” finder
method of the DAO to retrieve all the categories. The collection returned by the
finder method is stored in the model under an attribute named “NewsCategories,”
where it is retrieved by the view template shown in Figure 10.25.

The DAO can be implemented in Spring using various technologies, such as Java
DataBase Connectivity (JDBC), Java Persistence API (JPA), and Hibernate. Figure
10.27 and Figure 10.28 show the JPA entity declaration implementing the object

FIGURE 10.26

Business service for a List ViewComponent.

10.2 Implementation of the Front End for Presentation Frameworks 311

FIGURE 10.27

Entity declaration for news category.

FIGURE 10.28

Data access interface for news categories.

CHAPTER 10 Implementation of applications specified with IFML312

relational mapping for class “NewsCategory” of the domain model and the DAO
interface for retrieving the news categories from the persistent store.

Class “NewsCategory” is a JPA entity bean, which defines the object-oriented
counterpart of the relational tables storing the “NewsCategory” instances and of the
relationship between “NewsCategory” and “NewsItem.” The entity declares data
members corresponding to the columns of the relational attributes. The relationship
between “NewsCategory” and “NewsItem” is mapped to the “newsItems” member
of class “NewsCategory” and to the inverse “category” member of class “News-
Item,” using the @OneToMany JPA annotation (lines 8–9).

Figure 10.28 shows the DAO interface for retrieving news categories.
The interface extends the “CrudRepository” Spring Data JPA system interface,

which permits the framework to automatically generate an implementation of the
data access methods. Inside the repository interface the “findAll” method retrieves
all the instances of the entity. These data retrieval methods, called “dynamic finder
methods,” are implemented and resolved automatically by the framework using nam-
ing conventions.

10.2.5 MAPPING FORMS TO SPRING MVC
Form ViewComponents are implemented differently from other components because
they do not require a data retrieval service but accept user input. This function is
normally supported by HTML forms, with a number of limitations. For example, an
HTML form neither buffers the user’s input nor supports validation and error mes-
sages. An implementation with Spring may exploit the automatic binding of input
data to command objects and custom tags, easing the retrieval of user input and of
possible validation errors in the view. As an example, we consider the search pattern
illustrated in Figure 10.22 with the constraints that the search keyword, start date,
and end date must be all supplied by the user.

The JSP template of Figure 10.19, named SearchNews.jsp, implements the View
for the “SearchNews” ViewContainer, using the Spring form tag library.

The template initially declares a custom tag library named “form” (line 2). All tags
of the included library have the form: prefix, which distinguishes them from the regular
HTML tags. Following the markup for landmark navigation, the HTML body of the
template includes a form for submitting the search criteria (lines 16–27). Custom tags
replace the HTML <form> and <input> tags (lines 16, 18, 21, and 24). The form action
attribute specifies that the form input is submitted to the component responding at the
“SearchNews” URI template, and the “commandName” attribute specifies the name of
the model attribute under which the form object is exposed, which is “SearchInput” in the
example (line 16). The form object is created by the framework and stored in the model
for both validation and retrieval by the view template.

The “path” attribute of the input element (lines 18, 21, and 24) identifies the
property of the command object used for data binding. If specified, the content of the
input field is stored with the attribute of the command object and can be fetched by
the view to redisplay the data previously entered by the user.

10.2 Implementation of the Front End for Presentation Frameworks 313

The <form:errors> tags placed after the keyword and date input elements (lines
19, 22, and 25) implement the display of notifications present in the model of Figure
10.22. Each tag retrieves and prints the error message produced by the submission of
a void field. The URI template invoked by the form (“SearchNews”) is mapped to the
controller illustrated in Figure 10.30.

The Controller class exposes the “handleGet” method (lines 3–8), which is
mapped to the HTTP GET request that implements the landmark navigation to the
“SearchNews” ViewContainer. This request does not need a business service for
extracting content from the data source, and thus the “handleGet” method just returns
the symbolic name of the view to show, which is resolved by the framework to the
template of Figure 10.29. The @ModelAttribute annotation on the method causes
the framework to create and insert into the model an empty form bean under the
model attribute named “SearchInput.” This object is filled with the user’s input when
the form in the template of Figure 10.29 is submitted.

The controller class also exposes the “handlePost” method (line 10–21), mapped
to POST requests addressed to the “SearchNews” URI template. Such requests are
emitted upon the submission of the form illustrated in Figure 10.29. The signature
of the method comprises the default model object (“model”), the command object
storing the form input (“formBean”), the framework object holding the result of the
validation of the input data (“result”), and a special argument (“redirectAttributes”)

FIGURE 10.29

View template for the “SearchNews” ViewContainer.

CHAPTER 10 Implementation of applications specified with IFML314

used to exercise fine grain control over the information to be communicated in the
redirection of the request.

The annotation @ModelAttribute(“SearchInput”) specifies that the command
object containing the user’s input is stored in the model under the same attribute
(“SearchInput”) used in the <form:form> element of the view template of Figure
10.29 and in the “handleGet” method.

The controller first tests for the presence of validation errors in the submitted
input (line 14). If such errors are found, the controller returns the symbolic name
of the view to display, which in this case is the same JSP template from which the
request was emitted (“SearchNews”). If no errors are found, the controller stores the
command object in the redirect attributes (line 19), to ensure that the user’s input is
preserved, and returns the symbolic name of the view corresponding to the “News-
Found” ViewContainer. The return statement prefixes the view name with redirect:
so that the framework transfers the control through a redirect mechanism rather than
a forward. This ensures that the browser emits a new request for the specified view
template, so that if the user refreshes the page with the list of news, the browser does
not resend the POST data.

Figure 10.31 show the controller that responds to the request addressed to the
“NewsFound” URI template.

The “handleRequest” method extracts from the request the values of the “key-
word,” “from,” and “to” model attributes (lines 8–10), instantiates the ViewCon-
tainer service needed to extract the content from the data source (line 14), calls its
“computeViewContainer” method—passing to it the model object filled with the
parameter values extracted from the request—and returns the name of the view to
display.

The Controller of Figure 10.30 exemplifies also the support offered by Spring
for validating the input of the form. The @Valid annotation before the “searchBean”

FIGURE 10.30

Controller for the “SearchNews” ViewContainer.

10.2 Implementation of the Front End for Presentation Frameworks 315

parameter specifies that the command object is subjected to declarative field vali-
dation using the Bean Validation standard (also known as JSR-303). For this type
of declarative validation to occur, the definition of the command object must be
enriched with JSR-303 compliant annotations, as shown in Figure 10.32.

The @NotNull annotation at lines 3, 5, and 7 causes the command object to be
checked after creation and an error message to be inserted in the “BindingResult”
object associated with the form bean if a field is null.

10.2.6 MAPPING OPERATIONS TO THE MVC ARCHITECTURE
IFML actions are mapped to Spring MVC similarly to ViewContainers. Each action
requires an action controller and a service. The action controller is analogous to
the ViewContainer controller. It exposes methods that are mapped to the requests
that trigger the action, such as the post of data from a form or the triggering of a
NavigationFlow. The controller possibly prepares the content of the model and then

FIGURE 10.31

Controller for the “NewsItems” ViewContainer.

FIGURE 10.32

Definition of the SearchBean command object class.

CHAPTER 10 Implementation of applications specified with IFML316

instantiates the proper action service in a way similar to that for ViewContainers
(as explained above). The action service implements the business logic. It may pro-
duce and consume the content of the model and terminate with different outcomes
corresponding to the termination events specified in the IFML model. The control-
ler detects the outcome of action service termination and returns the appropriate
view specification based on it, thus implementing the different flows that connect the
action termination events to the target ViewContainers.

10.3 IMPLEMENTATION OF THE FRONT END FOR RICH
INTERNET APPLICATIONS

The term rich Internet application (RIA) was first introduced in 2002 by Jeremy
Allaire in a white paper [Allaire02] to describe a novel generation of online applica-
tions that exploit several technologies to provide a sophisticated user experience on
top of the open architectural standards of the Internet. The most noticeable innova-
tion of RIAs lies in the powerful interaction mechanisms of the interface (such as
native multimedia support, transition effects, animations, widgets, drag and drop,
etc.) coupled to a flexible partition of work between the client and the server, com-
parable to that of preweb client-server applications. The twofold nature (part client-
side, part server-side) of RIAs is one of the main reasons for their success: using the
web as a back-end retains all the advantages of an open, low-cost, installation-free
architecture, while increasing the computation power of the client ensures the quality
of interaction that modern desktop applications and operating systems can offer. The
basic architecture of a RIA is shown in Figure 10.33 and consists of a web applica-
tion server connected with applications running on client machines. These appli-
cations are implemented inside the browser using a variety of technologies, such
as HTML 5, JavaScript, JSON, and XML. Communication between the application
tiers exploits multiple paths: synchronous client-server with HTTP, asynchronous
client-server with AJAX or WebSocket, and peer-to-peer with Web Real Time Com-
munication (WebRTC).

Having an application runtime environment at the client-side grants novel oppor-
tunities with respect to the pure HTML and HTTP architecture: (1) the control logic
can be implemented either at the client or at the server; (2) the business logic can
be partitioned between the client and the server opportunistically; (3) data can be
stored at both tiers; (4) communication can be more flexible: client to server, server
to client, and client to client; and (5) the client-side can work also when disconnected
from the server.

From the developers’ perspective, RIAs introduce a spectrum of new architec-
tural patterns, design decisions, and implementation languages. In essence, any event
(raised by the user or notified by the server or by another client) can be handled
locally at the client, delegated to the server, or treated at both tiers. In summary,
the new RIA architecture enables novel and more efficient web applications, where
data and business logic are distributed between the client and the server and where

10.3 Implementation of the Front End for Rich Internet Applications 317

the client and the server can communicate in both directions. The downside is the
increased complexity of the software and the proliferation of languages, data for-
mats, and communication protocols, which make the model-driven development of
RIAs an interesting possibility.

10.3.1 MAPPING IFML TO THE RIA ARCHITECTURE
The mapping of IFML constructs to the RIA architecture is based on the principle
of separating the management of user events from the invocation of the business
services implementing the ViewComponents. The implementation of the IFML con-
structs exploits HTML DOM events for ensuring a richer user experience, the JavaS-
cript language for event handling, and the XMLHttpRequest object for asynchronous
communication and data exchange with the server.

For space reasons, we limit the illustration to the master detail example of Figure
10.34, under the assumption that the application works online. More specifically, the
management of events and the display of the view are performed at the client side,
whereas the data binding logic of ViewComponents is executed (asynchronously) at
the server side.

Although in recent times there has been a proliferation of libraries and frameworks
for organizing the client-side functionality—including complete MVC frameworks

FIGURE 10.33

Rich Internet application architecture.

CHAPTER 10 Implementation of applications specified with IFML318

implemented in the browser through JavaScript—in the following we exploit only public
or otherwise widely used standards (most notably the jQuery JavaScript library) to avoid
dependency on still not-so-consolidated toolkits.

The mapping of IFML concepts to the RIA architecture assigns a server-side page
template to each ViewContainer. In most cases, the IFML model of a RIA applica-
tion comprises one top-level ViewContainer partitioned into several subcontainers
displayed either in parallel or in alternation.

Figure 10.35 shows the template of the “AllBooks” ViewContainer encoded in
JSP (the PHP implementation would be almost identical).

The head of the template references the JavaScript utility libraries (line 6) and the
JavaScript program that implement the client-side logics of the ViewContainer (line
7). The body contains one empty HTML <div> element for each ViewComponent.
These elements are filled dynamically by the client-side logic, which asynchronously
calls the server-side service for ViewComponent data binding.

FIGURE 10.34

Master detail pattern.

FIGURE 10.35

JSP template of the “AllBooks” ViewContainer.

10.3 Implementation of the Front End for Rich Internet Applications 319

Figure 10.36 shows part of the JavaScript code contained in the “books.js” exter-
nal script, which exploits the jQuery library for simplifying the coding of the View-
Container computation.

The JavaScript code declares the business logic methods within a top-level func-
tion associated with the document ready event (line 1). This practice avoids running
any code before the document is completely loaded. When the document is ready,
function “loadBookList” is executed (line 46), which computes the content of the
“Books” ViewComponent as prescribed by the ViewContainer computation proce-
dure explained in chapter 12. Notice that—in contrast to the server-side implementa-
tions in PHP and Spring—the ViewContainer computation algorithm is embodied
within JavaScript code executed at the client side.

The “loadBookList” function performs an asynchronous call through the
$.ajax() method. The target of the call is the server-side JSP template book-
list.jsp, which contains the data extraction logic of the “BookList” ViewCom-
ponent. The server-side script returns a presentation-independent encoding of the
data in XML, which is then transformed into HTLM markup at the client-side.
For this purpose, the “loadBookList” function associates with the successful
completion of the AJAX request a presentation function called “createBookList”
(lines 8–9). This function (lines 13–23) receives as a parameter the data binding
content of the ViewComponent and creates the corresponding HTML markup for
the view.

FIGURE 10.36

JavaScript functions implementing the business logic of the “AllBooks” ViewContainer.

CHAPTER 10 Implementation of applications specified with IFML320

For example, the data binding content of the “BookList” ViewComponent could
be represented by the following XML document:

<books>
<book>
<id>1</id>
<title>Head First Design Patterns</title>
</book>
<book>
<id>2</id>
<title>Programming Ruby: The Pragmatic Programmers’ Guide, Second
Edition</title>
</book>
<book>
<id>3</id>
<title>CSS Mastery: Advanced Web Standards Solutions</title>
</book>
<book>
<id>4</id>
<title>Beginning PHP 5 and MySQL: From Novice to Professional
</title>
</book>
</books>

The “createBookList” function constructs an initially empty HTML unordered list
(line 14). Next, a loop (lines 15–21) iterates through all the <book> elements pres-
ent in the input data. At each iteration, a function is executed that constructs a list
item from the title and the id of the book data (lines 16–17) and appends it to the
unordered list. For each list item constructed, a function is associated with the user’s
selection event (line 18). The click event triggers the invocation of the “loadBook-
Details” function, with input equal to the selected book element. After each iteration,
the book item is appended to the unordered list (line 20), and at the end of the loop
the entire list is inserted into the ViewContainer as the HTML content of the <div>
element of class “book-list” (line 22).

Notice that in a RIA implementation, the creation of view element for producing
an event and the handling of the event itself are performed at the client side. Con-
versely, in a PHP or Spring implementation, the view element representing the event
is generated at the server side by producing an HTML anchor tag when the view is
rendered. The event handling is also delegated to the server because the navigation
of an HTML hyperlink implies a call to a web server.

The computation of the “BookDetails” ViewComponent proceeds in a similar
manner, using the JavaScript function illustrated in Figure 10.37.

Note that the “createBookDetails” function (lines 37–43) is invoked every time
the user selects a book. Therefore, it starts by emptying the HTML <div> element
that hosted the content of the previously selected book (line 38) before creating and
inserting the content of the newly selected one (lines 39–42).

10.4 Implementation of the Front End for Mobile Applications 321

10.4 IMPLEMENTATION OF THE FRONT END FOR MOBILE
APPLICATIONS

Mobile application development is the perfect playground for the model-driven
specification and implementation of the interface. On the one hand, mobile apps
require an extremely effective user interface, given the interaction constraints
imposed by the usage context and by the device limitations. On the other hand,
they should be deployed across a variety of devices with very different capabili-
ties. Mobile app development faces the dilemma “native versus browser-based
versus cross-platform.” Native app development uses the programming frame-
work of the operating system (e.g., Android, iOS, or Windows), which grants a
better exploitation of the device capabilities and a deeper fine tuning of the inter-
face at the cost of more effort for portability. Browser-based development resorts
to web standards for improving device- and platform-independence and exploits
the same technologies used for RIAs (HTML5, CSS, JavaScript). The resulting
applications are more portable but are less integrated with the device hardware
(e.g., sensors, camera) and cannot be deployed in the mainstream native app
stores. Cross-platform frameworks, such as Phonegap and Appcelerator Tita-
nium, exhibit a variety of architectures and approaches, all aimed at bridging the
gap between native and browser-based development. They allow the programmer
to use one development environment and then port the code to diverse native sys-
tems, either by cross-compiling the source code for the target operating system
or by equipping the operating system with a runtime interpreter.

For space limitations, we illustrate only one approach for mapping IFML to
mobile app code: the development of a native Android app. The browser-based

FIGURE 10.37

JavaScript functions implementing the computation of the “BookDetails” ViewComponent.

CHAPTER 10 Implementation of applications specified with IFML322

approach is similar to that of RIAs, whereas cross-platform frameworks are a hybrid
between native and HTML-based development.

10.4.1 THE ANDROID DEVELOPMENT ENVIRONMENT
Android is an open-source software stack that includes the operating system, middle-
ware, and built-in mobile applications based on a modified version of Linux that
device vendors can further customize to differentiate their products.

Figure 10.38 summarizes the main elements of the Android architecture. The
operating system kernel handles low-level hardware operations, including driv-
ers and memory management, with special attention to power optimization. The
Android runtime supports applications written in Java, executed within a custom
virtual machine. It includes the core Android libraries and incorporates most

FIGURE 10.38

The Android architecture.

10.4 Implementation of the Front End for Mobile Applications 323

of the Java Standard Edition functionality. The runtime mediates the access to
such basic libraries as WebKit, SSL, and OpenGL. The application framework
interacts with the libraries indirectly through the virtual machine and exposes
high level APIs that developers can use in their applications for window manage-
ment, location management, data storage, communication, sensing, and more.
The application layer comprises the standard apps that ship with the Android
devices, such as the phone dialer, the SMS messenger, the contact manager, and
the music player, as well as proprietary apps bundled with the device, such as app
stores and e-mail clients.

Programming an Android application involves writing the business logic code,
supplying the multimedia assets needed by the application, and providing the
resources required for the user interface, such as the layout specification expressed
declaratively in XML, the icons, and the localization strings.

The main concepts that constitute an Android application are:

 • Activities: an activity is a basic user task, such as entering a contact in the

agenda or taking a photo.
 • Views and View Groups: a view is an interface widget, such as a button or a

text input; views are grouped into view groups, which represent hierarchical
organizations of the layout and content.

 • Intents: an intent is the specification of a request for action. Intents allow
communication between activities, either explicitly, by naming the activity the
intent is targeting, or implicitly, by naming the desired action to which activities
capable of performing it can be bound at runtime. Implicit intents are resolved
by associating activities to intent filters, which are conditions that specify
the actions an activity can perform. Intents are also used to send and receive
broadcast messages, which notify system or applications event. Intents can also
contain data to enable parameter passing among activities.

 • Events and event listeners: an event is an intra-activity occurrence, which can
be handled directly by a business method hardwired to the view element that
produced the event. Alternatively, an event can be published so that registered
business methods (called listeners) can intervene.

10.4.2 MAPPING IFML TO NATIVE ANDROID CODE
For the sake of illustration, in the following we discuss how to implement in Android
a simple “ToDo” app, whose IFML model is shown in Figure 10.39. The app sup-
ports a simple interaction for managing to-do lists and alarms.

The application contains two landmark ViewContainers. The “ToDoList” is
shown by default when the application is launched, whereby the user can access the
to-do list for viewing and deleting items. The “AddToDo” container allows the user
to enter a new to-do. Upon creation, a to-do can be enriched with an alarm (date and
time), in which case a pop-up message is displayed when the deadline occurs. The
firing of the alarm pops up another ViewContainer for clearing the alarm.

CHAPTER 10 Implementation of applications specified with IFML324

Each nonmodal ViewContainer is mapped to an activity. The noncontextual Navi-
gationFlow between the “ToDoList” and the “AddToDo” ViewContainers is mapped
to an explicit intent because it denotes a direct communication path between distinct
activities. The system event that triggers the alarm pop-up is mapped to a broadcast
intent, which is received by an alarm handling activity. The IFML events and naviga-
tion flows internal to the boundaries of an activity, such as the selection of a to-do in
the “ToDos” ViewComponent, are mapped into Android events handled by suitable
event listeners.

Figure 10.40 shows the XML manifest file of the “ToDo” app, which contains the
declaration of the principal components and resources.

After a preamble (lines 1–8), the <application> element contains the declara-
tion of the main components of the application: three activities (“ToDoListActivity,”
“AddToDoActivity,” and “ShowAlarmPopupActivity”) and one broadcast intent
receiver (“AlarmReceiver”). The “ToDoListActivity” contains an intent filter (lines
18–21), which specifies that it responds to the implicit intent associated with a sys-
tem action called MAIN (i.e., the launch of the app by the user).

Each activity is associated with an XML resource file, which dictates the inter-
face layout of the activity’s ViewContainer. Figure 10.41 shows the layout specifica-
tion of the “ToDoListActivity.”

The ViewContainer of the activity is mapped into a <ScrollView> ele-
ment containing a vertical <LinearLayout> subelement; this defines an elemen-
tary screen configuration consisting of a vertical scrollable pane where items can
be placed. The XML layout also specifies the static elements that implement the

FIGURE 10.39

The “ToDo” Android app.

10.4 Implementation of the Front End for Mobile Applications 325

FIGURE 10.40

The manifest file of the ToDo Android app.

FIGURE 10.41

The layout specification of the “ToDoListActivity” mapping the “ToDoList” ViewContainer.

CHAPTER 10 Implementation of applications specified with IFML326

content-independent navigation: the “AddToDo” NavigationFlow is mapped to a
<Button> element (lines 10–13). The event triggering the NavigationFlow is mapped
into the “onClick” attribute of the <Button> element, which specifies the activity
target of the NavigationFlow8.

The business logic for building the dynamic content of the ViewContainer maps
onto the implementation code of the activity. The general schema for such a mapping
is as follows:

 • The ViewContainer is mapped to an activity class (i.e., a Java class that extends

Activity).
 • Each ViewComponent is mapped to a helper class, which supports data extrac-

tion and content rendering for the component. The helper class is also respon-
sible of creating the listeners for the events associated with the ViewComponent.

 • The standard “onCreate” method of the activity class implements the busi-
ness logic for populating the activity interface after a noncontextual access.
The method orchestrates the invocation of the ViewComponent helper classes,
according to the execution sequence discussed in chapter 6.

 • The activity class contains one method implementing the refresh of the View-
Container after the navigation of a flow triggered by another activity. The
method extracts the possible parameter values associated with the Naviga-
tionFlow, implemented as data associated with the intent, and orchestrates the
invocation of the ViewComponent helper classes, according to the execution
sequence discussed in chapter 6.

 • The activity class contains one method for each NavigationFlow of the corre-
sponding ViewContainer that triggers the navigation to a distinct ViewContainer.
This method creates an explicit intent, stores in it the data corresponding to the
parameters associated with the NavigationFlow, and fires the intent to start the
target activity.

Figure 10.42 shows the code of the “ToDoListActivity” class. Since the “ToD-

oList” ViewContainer contains only one component (the <<MultiChoice>> List
ViewComponent), the “ToDoListActivity” class exploits only one helper class (the
private data member of class “ToDoListService,” at line 4) for dynamic data retrieval
and rendering. The code of the “ToDoListService” helper class is shown in Figure
10.43. The “ToDoListActivity” class comprises: the “onCreate” method for populat-
ing the content of the ViewContainer after a noncontextual access (lines 7–14); the
“requireNewToDo” method for triggering the “AddToDo” activity (lines 17–20); and
the “onActivityResult” method, for refreshing the content of the ViewContainer after
the completion of the “AddToDo” activity (lines 23–29).

Note that the “requireNewToDo” method initializes the intent with the
REQUIRE_NEW_TODO request code (line 19). The “onActivityResult” method
then checks the “requestCode” and “resultCode” fields of the triggering intent (line
26) to verify that it has been activated by the normal termination of the previously
triggered activity. This mechanism realizes the point-to-point asynchronous com-
munication between activities.

10.4 Implementation of the Front End for Mobile Applications 327

Figure 10.43 shows the code of the “ToDoListService” helper class, which wraps
the business logic for implementing the data binding and the rendition of the “ToD-
oList” multichoice ViewComponent. The “LoadAndRender” method (lines 9–22)
extracts from the database the list of to-dos, creates one check box GUI element for
each to-do, associates a listener method with each check box, and inserts the check
box into the GUI layout. Note that the “onCheckBoxClicked” method implementing
the select event in the “ToDos” ViewComponent (lines 25–37) supports the navi-
gation to the “Confirmation” modal ViewContainer and implements also the con-
struction and rendition of that ViewContainer; specifically, the method creates the
alertDialog object corresponding to the modal ViewContainer (line 30) and attaches
the event listeners corresponding to the “discard” and “confirm” events to it (lines
33–34).

The “LoadAndRender” method exploits the “databaseHandler” utility object
(line 10), which wraps the connection with the data store. For brevity, we omit the
illustration of the code implementing the persistence of the to-do list; we only men-
tion that it can be realized quite simply using the SQLite engine natively supported
by the Android framework and extending the library class “SQLiteOpenHelper” to
obtain a “DatabaseHandler” class exposing the classical CRUD methods.

Figure 10.44 shows the implementation of the listeners for the “confirm” (lines
1–19) and “discard” (lines 21–35) events associated with the “Confirmation” modal
ViewContainer.

FIGURE 10.42

Implementation of the “ToDoListActivity” class.

CHAPTER 10 Implementation of applications specified with IFML328

The “ConfirmDialogListener” implements an “onClick” method (lines 11–19),
which extracts from the clicked checkbox the text of the to-do and passes it to the
“deleteToDo” method of the “databaseHandler” class as the identifier of the object
to delete (line 14). The method also updates the GUI of the ToDoList ViewContainer
by accessing the parent view’s layout and removing the deleted to-do from it (lines
15–16). The “DiscardDialogListener” “onClick” method simply unchecks the view
element corresponding to the selected to-do (lines 29–34).

Note that updating the content of the target “ToDoList” ViewContainer directly
in the “onClick” event handling method, as done at lines 15–16, is convenient only
is simple cases.If the ViewContainer comprises multiple interconnected View-
Components, it is better to delegate the refresh of its content to a method of the
ViewContainer’s activity class, similar to the “onActivityResult” method used for
inter-activity NavigationFlows.

The “AddToDo” ViewContainer is mapped onto an activity whose layout specifi-
cation is shown in Figure 10.45

FIGURE 10.43

Implementation of the “ToDoListService” helper class for the “TodoList” ViewComponent.

10.4 Implementation of the Front End for Mobile Applications 329

The layout is a simple vertical scrollable pane that contains four widgets cor-
responding to the field of the “NewToDo” Form ViewComponent and one button
implementing the submit event.

Figure 10.46 shows the activity class implementing the “AddToDo” ViewContainer.
The “onCreate” method (lines 6–32) constructs and initialized the objects

corresponding to the GUI widgets. In particular, the “dateEnabler” check box is
enriched with an “onClick” event handler that toggles the state of the date and
time picker widgets so that they become visible when the checkbox is selected
(lines 18–26).

The “addToDoToList” method (lines 35–54) implements the submit event. It cre-
ates an intent (line 36), extracts the relevant information from the GUI widgets (lines
37–50), executes the “CreateToDoAndSetAlarm” action (line 51) implemented as
a private method of the activity class, stores the result of the execution in the intent
(line 52), and finishes. The “CreateToDoAndSetAlarm” method also schedules an
alert for the new to-do when the user has provided a deadline. This requires creating
another intent (line 61), targeted to an alarm receiver class, storing in it the identifier
of the to-do, and registering a pending intent with the system alarm manager (lines
67–69).

FIGURE 10.44

Implementation of the listeners for the “confirm” and “discard” events.

CHAPTER 10 Implementation of applications specified with IFML330

Figure 10.47 shows the class implementing the alarm receiver, which maps the “alar-
mDeadline” system event and the “ShowAlarmPopup” ViewContainer of Figure 10.39.

The “AlarmReceiver” class implements the “onReceive” method (lines 6–16),
which extracts from the broadcast intent the message and the identifier of the to-do,
checks if the to-do exists in the database, and creates an intent to start the “Show-
AlarmPopup” activity. Note that setting the FLAG_ACTIVITY_NEW_TASK flag
for the intent causes the pop up alert to be brought to the front of the screen with the
state it was last in.

Finally, Figure 10.48 shows the layout and Figure 10.49 shows the activity class
mapping the “ShowAlarmPopup” ViewContainer.

The layout definition uses a <RelativeLayout> element and the flexible “match_
parent” size qualifier (lines 1–4), to let the pop-up window take all the space occu-
pied by the parent activity, which is the entire screen.

The activity class implements the “onCreate” method, which extracts from the
triggering intent the alarm message and creates a dialog box with one confirmation
button associated with the “ReturnToListListener” class, implementing the outgoing
NavigationFlow of the “ShowAlarmPopup” ViewContainer. This listener, shown in
Figure 10.50, simply declares the termination of the calling activity.

FIGURE 10.45

Layout specification of activity mapping the AddToDo ViewContainer.

10.4 Implementation of the Front End for Mobile Applications 331

FIGURE 10.46

Implementation of the listeners for the “confirm” and “discard” events.

CHAPTER 10 Implementation of applications specified with IFML332

FIGURE 10.47

Implementation of the receiver for the to-do alarm.

FIGURE 10.48

Layout specification of the “ShowAlarmPopup” ViewContainer.

FIGURE 10.49

Implementation of the “ShowAlarmPopup” activity class.

10.6 Bibliographic Notes 333

10.5 SUMMARY OF THE CHAPTER
This chapter discussed on how to map the platform-independent IFML models into
specific technological platforms and provided a set of guidelines on how to gener-
ate running code from IFML diagrams. Ideally, the mapping to the implementation
layer could be illustrated for any software architecture that supports user’s interac-
tivity. For space reasons, this chapter illustrated four main categories of platforms
that represent a good sample of the current status of the practice: pure HTML with
a template based approach (specifically, on so-called LAMP environments compris-
ing Linux, Apache, MySQL and PHP), pure HTML with a presentation a framework
(namely, Spring, one of the most popular web presentation frameworks based on the
Model-View-Controller pattern), rich internet (specifically, Asynchronous JavaScript
and XML - AJAX), and mobile applications (Android is chosen as a representative of
native mobile application development).

10.6 BIBLIOGRAPHIC NOTES
Web programming is a very popular subject for which there are lots of online ref-
erences and textbooks. A popular online resource for beginners is the W3schools
web site (http://www.w3schools.com/), which publishes tutorials and self-evaluation
exercises on the most relevant web technologies.

The programming of web applications with the LAMP architecture is also
the subject of innumerable textbooks ad online resources. The book by Robin
Nixon [Nixon2012] is a good start on the subject. The PHP reference web site
(http://www.php.net/) is a hub for language documentation.

Spring-based development requires a background in Java servlets and possibly
in Java Enterprise Edition (JEE). The official reference for JEE is Oracle’s web
site (http://docs.oracle.com/javaee/), which offers both a tutorial and the reference
documentation of the platform APIs. The official web site of the Spring Project
(http://spring.io/) publishes online reference documentation, getting started guides,

FIGURE 10.50

Implementation of the “CloseListener.”

http://www.w3schools.com/
http://www.php.net/
http://docs.oracle.com/javaee/
http://spring.io/

CHAPTER 10 Implementation of applications specified with IFML334

and advanced tutorials, introducing the reader to several Spring tasks. Among the
many textbooks, Spring in Action by Craig Walls [Walls11] and Spring in Practice by
Willie Wheeler and Joshua White [WW13] offer a comprehensive overview.

Rich Internet applications are developed with a mix of technologies and
approaches, including HTML5, JavaScript, CSS, AJAX, and jQuery. Quick tutorials
on all of these are published in the already mentioned W3School web site. The book
HTML5: Designing Rich Internet Applications (Visualizing the Web) by Matthew
David [David13] addresses RIA development with HTML, from the tag structure
of HTML5 to its multimedia capabilities, and programming with JavaScript and
advanced AJAX patterns. An official introduction to HTML5 is published by the
W3C (http://www.w3.org/TR/html5/introduction.html).

Extensive coverage of jQuery and JavaScript programming can be found in the
Learning jQuery book by Jonathan Chaffer and Karl Swedberg [CS13].

Native, web-based, and cross-platform mobile application development
approaches are discussed and contrasted in [CL11, RB12, PSC12]. The Android
developers’ web site (http://developer.android.com/) is the official source of materi-
als for Android training, featuring the APIs references and development guides. A
popular text on Android development is Professional Android 4 Application Devel-
opment by Reto Meier [Meier12].

END NOTES
 1. For brevity, the examples do not show PHP security practices such as storing sensitive data

in separate include files, masking error logs, interrupting the script upon database con-
nection failure, etc. See http://www.php.net/manual/en/security.php for an introduction to
PHP security.

 2. Noncontextual navigation can be based on an explicit InteractionFlow from another View-
Container or on an implicit one if the target ViewContainer is a landmark.

 3. Forms with preloaded fields may have one or more data retrieval queries. In this case, each
preloaded field is treated as a List (preload cardinality = many) or Details (preload cardi-
nality = 1).

 4. An alternative is to use REST-style parameter concatenation in the URI template.
 5. The .do suffix is commonly used in Java web frameworks to distinguish requests addressed

to the dispatcher.
 6. For simplicity, we do not consider failures in the computation of ViewContainers.
 7. The display of the news of the default category requires the extraction of the default

value from the “NewsCategoriesService” and its storage in the model before invoking the
“NewsItemsSearchService.”

 8. In the sequel, we sometimes use the terms activity and ViewContainer interchangeably to
denote the activity that maps a ViewContainer and vice versa.

http://www.w3.org/TR/html5/introduction.html
http://developer.android.com/
http://www.php.net/manual/en/security.php

335Interaction Flow Modeling Language. http://dx.doi.org/10.1016/B978-0-12-800108-0.00011-4
Copyright © 2015 Elsevier Inc. All rights reserved.

CHAPTER

Tools for model-driven
development of
interactive applications 11
The modeling notations, the development process, and the implementation tech-
niques for building interactive applications with IFML have been overviewed in pre-
vious chapters independent of any specific tool. As shown in chapter 10, the domain
model and the IFML models can be manually mapped to executable programs and
structures, such as a relational database and a set of JSP templates and components
of the MVC architecture. The guidelines provided in the previous chapters can help
engineers produce a working application using the coding environment and deploy-
ment platform of their choice. However, when a well-defined software engineering
method is in place, development can be assisted by rapid application development
tools, supporting and documenting the design and automating in part the production
of the implementation code.

To make this discussion concrete, this chapter exemplifies the support to IFML
model-driven development with the help of a specific tool, called WebRatio. WebRa-
tio is a composite application development tool that covers not only the front-end
design, but also domain modeling, business logic modeling, and process modeling,
thus providing an end-to-end approach to model-driven development. In the biblio-
graphic notes we will mention more tools that are either already IFML-ready or can
be customized to model application front ends with IFML.

11.1 INTRODUCTION TO WEBRATIO
WebRatio is a development environment supporting IFML. It was created in 2001
for the model-driven development of applications specified with the Web Modeling
Language.

The tool comprises several modeling perspectives and includes a code generation
framework that automates the production of the software components in all tiers of
the application and the connections between the application and external APIs. More
precisely, WebRatio focuses on the following main aspects:

 • Domain modeling: it supports the design of domain models using the structural

features of the UML class diagram.
 • Front-end design: it assists the design of IFML diagrams, comprising both built-in

IFML constructs and extensions defined by the designer and imported into the tool.

CHAPTER 11 Tools for model-driven development of interactive336

 • Business logic design: it allows the designer to explode and refine an IFML
Action by specifying its internal functioning as a workflow of component invoca-
tions, such as data query and update operations, Web API calls, utility functions,
and—more generally—any piece of user-defined code imported into the tool.

 • Data Mapping: it enables the declaration of JDBC/ODBC-compliant data
sources supporting the application, the automatic translation of the persistent
classes and associations of the domain model into relational schemas, and the
generation of the object-relational mapping (ORM) specifications bridging
the classes and associations of the domain model to the data structures of the
persistent store. If the database is pre-existing, only the ORM specifications are
created.

 • Presentation design: it offers functionality for defining or importing presentation
templates, typically encoded in HTML5, and for mapping the elements of a View-
Containers and ViewComponents to the layout and visual properties of a template.

 • Code generation: it automatically translates IFML models and presentation
templates into applications built in Java and HTML5, with the front end running
on desktop and mobile terminals and the back end running on any Java server,
deployed either on premises or directly on public cloud resources.

The workflow of Figure 11.1 summarizes the design process of WebRatio, high-

lighting the design phases together with their inputs and outputs. The different tasks
will be described in more detail in the next sections.

FIGURE 11.1

Development flow with WebRatio.

11.2 Domain Model Design 337

The software architecture of the applications created by WebRatio exploits the
design principles and techniques described in chapter 10 for web and mobile applica-
tions. In particular, web applications are built using the MVC pattern. Generic com-
ponents implement action in the business tier, while HTML5 and CSS presentation
rules are used for factoring out the look and feel from the page templates.

Mobile applications are built by translating the IFML model into platform-inde-
pendent code that is executed directly or through a wrapper in the target device. Pres-
ently, WebRatio generates code for the PhoneGap mobile development framework.1

In this chapter, we briefly overview the functionalities offered by WebRatio and
discuss some advanced features, such as model checking, model-level debugging,
cooperative work, automatic documentation, and user-defined IFML extensions. The
chapter ends with an annotated bibliograph, overviewing a sample of other tools for
the model-drive design of interactive applications.

11.2 DOMAIN MODEL DESIGN
WebRatio provides a graphical user interface embedded as a plugin in the popular
Eclipse workbench, which allows designers to compose both the domain model and
the IFML diagrams describing the interface of the application.

Figure 11.2 shows a snapshot of the WebRatio user interface, which is organized
into the typical four areas of application development tools:
 • a project tree (upper left frame), organizing all the elements of the application

project;
 • a work area (upper right frame), where the specifications are visually edited;

FIGURE 11.2

Overview of the WebRatio interface.

CHAPTER 11 Tools for model-driven development of interactive338

 • a property frame (lower left frame), where the properties of individual elements
can be set; and

 • a message area (lower right frame), where messages and warnings are
displayed.

A basic WebRatio application project consists of a single class diagram and of

a set of IFML diagrams. In particular, Figure 11.2 shows the WebRatio editor open
on the domain model of one of the sample applications shipped with the tool: the
“Acme” online shop. The work area visualizes the class diagram. The designer can
define classes, attributes, associations, and generalizations. The elements displayed
in the diagram are also presented in the project tree, where they are hierarchically
organized in folders. The properties of the currently selected element of the diagram
are displayed and can be edited in a property frame.

The Acme Domain model comprises both persistent and nonpersistent classes and
associations, as specified by the duration property set in the properties panel. The dif-
ferent duration is also highlighted visually in the diagram by the use of a different color.

Classes and associations can be enclosed within Packages to help the organiza-
tion of large domain models. Furthermore, a default personalization subschema com-
prising the User and Group classes and the associations representing roles (described
in chapter 3) is added by default to the domain model, and the developer can extend
it with additional classes and associations.

11.3 IFML FRONT-END DESIGN
The same general organization of the graphical user interface also supports the edit-
ing of the IFML diagrams. The design of a diagram is accomplished by picking
constructs such as ViewContainers, ViewComponents, Events, InteractionFlows,
Actions, and Context dimensions from the tool palette and arranging them in the
work area according to the IFML diagram formation rules.

Figure 11.3 shows the IFML work area, open on the IFML diagram that specifies
the public site view of the Acme application, which includes multiple ViewContain-
ers, ViewComponents, and Actions. These are also displayed in the project tree, and
the properties of the currently selected ViewComponent (the ProductDetails Module
in Figure 11.3) appear in the properties frame.

The binding of ViewComponents to classes of the domain model can be specified
using the properties frame or a work area menu contextual to the View Component.
The designer can select the DataBinding class, set the VisualizationAttributes, and
define the ConditionalExpression.

Double clinking the icon of a Module brings up the IFML diagram where the
module content is defined, as shown in Figure 11.4. Figure 11.4 also shows that
hovering with the mouse over an InteractionFlow causes the information about the
associated ParameterBindingGroup to be displayed.

1
1

.3
 IFM

L Front-End D
esign

3
3

9

FIGURE 11.3

WebRatio interface for editing IFML diagrams.

C
H

A
P

TE
R

 1
1

 Tools for m
odel-driven developm

ent of interactive
3

4
0

FIGURE 11.4

Interface for defining the content of a Module.

11.4 Data Mapping and Alignment 341

11.4 DATA MAPPING AND ALIGNMENT
WebRatio assists the implementation of the data tier for applications that deal with
persistent data by associating the front end to the data sources where the content
to be published and manipulated resides (Figure 11.5). The data sources supported
natively include any system accessible via JDBC/ODBC. Additional data storage
platforms—such as noSQL databases, XML repositories, and LDAP directories—
can be added by programming and importing within WebRatio the Actions and View-
Components for connecting to such data sources.

WebRatio guides the user in declaring the data sources and in mapping the classes
and association to tables and columns. The mapping information is stored in ORM
mapping files of the underlying ORM system (Java Persistence API and Hibernate
ORM formats are supported).

Derived data can be added to the elements of the domain model with the help
of a wizard. A code generator translates the OCL expressions of the derived ele-
ments into equivalent SQL statements, which can be automatically installed into
the appropriate data source in the form of stored procedures or views (Figure
11.6).

FIGURE 11.5

WebRatio interface for defining the mapping of the domain model onto a persistent data
store.

CHAPTER 11 Tools for model-driven development of interactive342

When an application is bound to some persistent stores, WebRatio can be used
to check the alignment between the domain model and the physical databases and to
reconcile changes made in the model with the database, and vice versa.

All the persistent classes and associations in the domain model and their derived
elements must be correctly mapped before generating the code and running the appli-
cation. Otherwise the code generation may produce incomplete results.

11.5 ACTION DESIGN
IFML treats the application business logic as a black box. The Action, which is modeled
only for its interplay with the user interface in terms of parameters exchange and the
effect on the visualized ViewContainer. WebRatio embeds IFML design within a broader
model-driven development approach and thus permits the designer to define the internal
details of actions in order to generate the complete code of the application. The internal
functionality of an Action can be defined by using the action definition editor, shown in
Figure 11.7, which opens by double clicking on the Action in the IFML diagram.

The action definition consists of a graph of component calls, in which the nodes are
business components and the arcs are InteractionFlows denoting the order of execution
of components. As in IFML, InteractionFlows can be associated with a ParameterBin-
dingGroup to specify input–output dependencies. Also, different InteractionFlows can
exit a component to express different termination conditions, similar the specification
of black-box Actions in the IFML diagram. The components that constitute the action
definition can be chosen from those predefined in WebRatio or developers can use
their own business components, which can be imported into the tool.

FIGURE 11.6

WebRatio interface for aligning the domain model and the schemas of the persistent stores.

1
1

.5
 A

ction D
esign

3
4

3

FIGURE 11.7

WebRatio interface for action definition.

CHAPTER 11 Tools for model-driven development of interactive344

11.6 PRESENTATION DESIGN
An essential aspect of a successful user interface is its graphic design, especially
when the application is targeted to the general public and thus must be as attractive
as possible. IFML purposely ignores the presentation aspects and delegates them to
the implementation, possibly supported by tools.

WebRatio incorporates a presentation design functionality that addresses the defi-
nition of the interface look and feel with a template-based approach. In essence, the
designer can provide an example (a template in WebRatio terminology) for each
IFML ViewElement: ViewContainer; ViewComponents of different kind such as
Details, List and Forms; ViewComponentParts, such as VisualizationAttributes and
Fields; and Events with InteractionFlows.

Presentation templates are created by the graphic designer with the language of
choice, typically HTML5, CSS, and JavaScript. A template contains concrete presen-
tation elements, such as page layout constructs and graphic resources, and abstract
elements, which are placeholders for dynamically generated content.

Examples of concrete elements are layout grids, banners, footers, and graphic
resources. Abstract elements are markers for the different kinds of IFML elements
that could be visualized in a template, such as ViewComponents and landmark navi-
gation menus.

In practice, the graphic designer produces a set of annotated files in a source
presentation language, which specify an “example of rendition” for a given ViewEle-
ment. Such files contain simple directives, expressed as special-purpose XML tags,
that denote the insertion of IFML elements produced by the code generator. WebRa-
tio provides functionalities for importing the mock-ups of the graphic designer into
the tool and for transforming them into layout templates at different granularities
usable for code generation. Figure 11.8 shows the interface of the template import
wizard.

The tool also allows the developer to select and associate already available tem-
plates to IFML ViewElements in a project. The association can be done at different
levels of granularity depending on the generality of the template:

 • A template can be specifically designed for an individual ViewContainer or

ViewComponent. In this case, the code of the template can reference the
individual subelements (e.g., the individual fields or submit events of a Form,
the various attributes of a Details or List ViewComponent, or the specific
ViewComponents within a ViewContainer). A distinct presentation style can be
defined for each of them. This approach is suited to ViewElements with highly
sophisticated presentation requirements, because it can apply fine-grain control
over the look and feel of each visualized element, but the resulting template is
not reusable across projects or different ViewElements of the same project.

 • A template can be designed generically for multiple ViewElements. In this case,
the code of the template cannot reference individual ViewElements but must
express presentation features at a higher level. Usually, the template defines

11.6 Presentation Design 345

the same presentation style for all the ViewElements of the same type (e.g., for
all the List ViewComponents, all the Forms, all the fields of a given type), thus
providing a uniform look and feel across the interface. This approach is effec-
tive for large applications with simple presentation requirements.

 • As an intermediate approach, a set of ViewElements can be associated with the
same template, as in the previous case, but some rules of the default presentation
template can be overridden at the local level of some specific ViewElements.
For example, an application could set a default presentation template for List
ViewComponents, which could then be overridden for specific ViewCompo-
nents. In this way, different presentation styles for the same ViewElement can
coexist in the same application or even in the same ViewContainer, yielding
a good compromise between uniformity and specificity of presentation.
This approach is effective for large applications, with complex presentation
requirements.

FIGURE 11.8

Layout template import wizard.

CHAPTER 11 Tools for model-driven development of interactive346

WebRatio supports all the above-mentioned approaches. In particular, the devel-
oper can assign a template at a coarse level of granularity (e.g., for the entire applica-
tion) and then override such a global default by assigning more specific templates to
finer-grain ViewElements at the individual ViewContainer, ViewComponent, View-
ComponentPart and InteractionFlow level. Figure 11.9 shows the property panel
whereby the developer can assign a specific presentation template to the selected
ViewElement and fine tune such presentation parameters as the positioning of labels
and the usage of icons.

Figure 11.10 shows a page generated by WebRatio that contains three List View-
Components published with three different layout templates.

Another aspect of presentation design is the definition of the relative position-
ing of dynamic content within the interface. An IFML ViewContainer may comprise
multiple nested ViewContainers and ViewComponents. The IFML model does not
prescribe the actual layout of such elements within the rendered interface. This task is
accomplished in WebRatio by means of the dedicated interface shown in Figure 11.11.

The interface consists of a grid- and location-based layout editor. The presentation
template associated with the ViewContainer is analyzed, and the abstract locations
defined in it are identified. An abstract location is a place where dynamic content can
be rendered. The designer can define the positioning system of each location (e.g., by
using a grid) and assign ViewElements to the places of the positioning systems (e.g.,
to the cells of the grid).

Figure 11.12 shows the page generated by WebRatio. The ViewComponents are
laid out as specified in the abstract grid model of Figure 11.11. In the rendition, only
two ViewComponents out of the three shown in the abstract grid are displayed in the
pop-up window, because the user has chosen only one product to be added to the trolley.

11.7 CODE GENERATION
After specifying the domain model and the IFML diagrams, assigning presentation
templates to ViewElements and defining their placement in the abstract positioning
systems, and mapping the persistent classes and associations of domain model to the
data sources, it is possible to launch automatic code generation, which transforms the
application models into components for the selected deployment platform. WebRatio
supports code generation for mobile platforms and for HTML5-CSS-Javascript web
front ends backed by a Java web server architecture.

Before generating the application code, the developer selects the target platform
and the deployment host, which can be a cloud resource.

11.7.1 CODE GENERATION FOR WEB AND RICH INTERNET
APPLICATION

The web code generator adopts the MVC software architecture presented in chapter
10. The simplest configuration exploits a pure-HTML encoding of the presentation

1
1

.7
 C

ode G
eneration

3
4

7

FIGURE 11.9

Assignment of a presentation template (Layout) to the ”Selected Product” Details ViewComponent.

CHAPTER 11 Tools for model-driven development of interactive348

FIGURE 11.10

The same ViewComponent displayed with three different layout templates.

FIGURE 11.11

Interface for relative positioning of ViewElements in ViewContainers.

11.7 Code Generation 349

templates, a Java implementation of the back end, including dynamic page templates
for the view, a controller servlet and plain Java objects for the model, and a relational
implementation of the data tier. In this configuration, the output of code generation
includes:

 • A set of JSP templates for the View, including HTML code and JSP custom

tags. Each JSP template corresponds to a ViewContainer and is obtained by
merging the presentation templates relevant to the ViewContainer itself, the
ViewComponents included in it, and their ViewComponentParts, Events, and
InteractionFlows. The code generator injects code into the resulting assembled
JSP template by replacing the abstract XML elements of the presentation tem-
plate with concrete Java code for retrieving content from the model objects.

 • A set of generic Java components, deployed in the Model, supporting the com-
putation of the content of ViewContainers and ViewComponents and the orches-
tration of the workflow of IFML action definitions. One generic component is
deployed for each type of ViewComponent (e.g., Lists, Details). Such generic
components are instantiated with XML descriptors, which specify their concrete
properties, such as a query realizing the data binding, the parameters required in
input and provided in output, and the visualization attributes. Normally, the devel-
oper is not required to edit descriptors. If this need arises, however, for instance to
optimize a SQL query, the custom descriptor can be stored in a special directory
and will not be overwritten by subsequent invocations of the code generator.

 • The configuration file of the Controller.

FIGURE 11.12

Page generated by WebRatio, with the layout specified in Figure 11.11.

CHAPTER 11 Tools for model-driven development of interactive350

The produced JSP templates are completely agnostic of the rendition language
used, which depends on the presentation template provided by the graphic designer.
Therefore, the code generator can be used to deploy alternative renditions of the
same ViewContainer, such as an HTML page, a spreadsheet, or a PDF document.

For achieving the responsiveness of rich Internet applications, which refresh the
page content selectively upon user interaction, the JSP templates produced at the
server side embody an AJAX controller that manipulates the DOM of the page and
performs simple actions such as hiding and displaying portions of content based on
the page computation logic and pushing requests to the server side when the user
interaction requires content that is not already available.

11.7.2 CODE GENERATION FOR MOBILE APPLICATIONS
One of the main advantages of IFML as a platform-independent language is the capac-
ity of describing cross-platform applications. To exploit this opportunity, WebRatio
also supports the generation of code for mobile apps, starting from IFML diagrams.
The mobile application generator produces cross-platform code by exploiting Cor-
dova/ Phonegap, an open-source framework for mobile applications. Developers
write HTML5, CSS3, and JavaScript code. The framework wraps this code within a
container (essentially a mobile browser). In this way, “native” apps can be deployed
on different mobile platforms (seven platforms are supported as of today). WebRatio
generates the HTML5, CSS3, and JavaScript sources from the IFML models and
automatically packages them as running mobile apps using the Phonegap services.
In contrast to the web and RIA generated applications, the code produced for mobile
applications implements all the logics required for page computation in the HTML
and JavaScript artifacts deployed in the Phonegap environment. This makes it pos-
sible to deploy stand-alone apps that work even when disconnected from the Internet.

11.8 ADVANCED FEATURES
WebRatio includes additional functionalities for model checking, debugging, coop-
erative work, automatic project documentation, and user-defined IFML extensions.

11.8.1 MODEL CHECKING
One of the benefits of conceptual modeling is the possibility of automatically check-
ing the project for errors at the design level. This feature allows the early verification
of the models produced by the designer, saving time in the code generation and in
the debugging of the application. WebRatio provides error checking at three levels:

 • Domain and IFML Model: this function checks the correctness of the domain

model, of the IFML diagrams, and of the action definition workflows; it presents
the detected problems, together with their level of severity and hints on how to
fix them.

11.8 Advanced Features 351

 • Domain Model Mapping: this function checks if the persistent classes and
associations of the domain model are correctly mapped to the data sources and
signals if the databases are misaligned with respect to the domain model due
to changes in the UML specification or in the physical data sources; detected
problems with the associated hints are highlighted.

 • Presentation and publishing: this function checks if all the ViewElements are
associated with a presentation template, if all the elements comprised within a
ViewContainer have been placed in the locations provided by the presentation
templates, and if the deployment server contains all the components needed to
run the application; if anything is missing, appropriate warnings are provided,
with suggestions on how to solve problems.

Figure 11.13 shows an example of the output of the model checking applied to

the IFML diagram. The warnings signal that no ParameterBindingGroup has been
found for the Login flow, which may cause the Login Action to remain without the
mandatory input parameters of username and password.

11.8.2 MODEL DEBUGGING
Code-level debugging is one of the most popular methods in traditional applica-
tion development. WebRatio offers a similar functionality for inspecting the runtime
behavior of an application, but at the conceptual model level.

The developer can set breakpoints on any IFML model element in order to stop
the execution before or after the computation of the element. When a project contains
breakpoints, execution can be performed in debug mode, which permits the devel-
oper to follow the progress of the computation step-by-step, inspecting the input
and output parameter values of ViewComponents as well as the content extracted by
ViewComponent’s ConditionalExpressions.

Figure 11.14 shows the interface of the model debug perspective of WebRatio.
The upper-left frame lists all the pending interaction and internal application events,
such as a user event or the beginning and end of the computation of a ViewCon-
tainer or ViewComponent. The developer can interact with the interface and step
over or into each execution phase and inspect the principal computation variables,
shown in the upper right frame. At the same time, the work area and project tree
display the status of the execution visually, by highlighting the ViewElements under
computation.

11.8.3 COOPERATIVE WORK AND ENTERPRISE SCALE
DEVELOPMENT

WebRatio includes project alignment functions, which facilitate the parallel develop-
ment of an application by a work team. The typical workflow of a WebRatio project
consists in developing the data model first and then adding the specifications of the
site views necessary to fulfill the application requirements. Site views are natural

C
H

A
P

TE
R

 1
1

 Tools for m
odel-driven developm

ent of interactive
3

5
2

FIGURE 11.13

The model checking function detects problems in the IFML diagram.

11.8 Advanced Features 353

units of work, which can be independently developed by separate work teams. There-
fore, WebRatio includes two functions for facilitating parallel development:

 • The import function makes it possible to import the site views of another project

into the current project, merging the two projects together. The import function
performs a number of consistency checks and transformations that ensure the
merged project is the correct union of the two merged subprojects. Consistency
checks and transformations are logged into a file and presented as a report to the
user, who can accept them or undo the import.

 • The export function makes it possible to export from the current project either
the data model alone or the data model together with one or more site views.
The export function creates a new project, consisting of the exported subsche-
mas. The new project can be evolved in parallel with the original project and
then merged back into the original project using the import function.

11.8.4 AUTOMATIC DOCUMENTATION
WebRatio automatically generates project documentation in a format inspired by the
popular JavaDoc documentation layout. The document generator is written as a set of
customizable rules, which the designer can override and extend to obtain a personalized
documentation format. The documentation can be produced in such formats as HTML,
PDF, or RTF, and describes every aspect of the project in an easy-to-browse format.

FIGURE 11.14

The model debug perspective in WebRatio.

CHAPTER 11 Tools for model-driven development of interactive354

Figure 11.15 shows a sample documentation page, which includes a ViewCon-
tainer description. Clicking on each symbol and link opens the documentation page
associated with the selected concept. In the example, by clicking on the “Store-
sList” ViewComponent the user accesses the detailed information of the selected
element.

11.8.5 IFML EXTENSIBILITY
WebRatio exploits the extension mechanism of IFML and allows developers to cre-
ate and integrate into the development tool their own custom IFML extensions, such
as ViewContainers ,ViewComponents, and code generators.

Custom IFML elements permit the designer to reverse-engineer their interface
and business components and make them part of the conceptual modeling and code
generation process. Extending IFML requires defining a plug-in implementation-
level component and deploying it in WebRatio. The model editor and code generator
can then use the new component as any other IFML built-in element.

The definition of a custom component requires addressing both design-time and
runtime issues. Adding a custom ViewElement to WebRatio requires the creation of
the following artifacts:

 • An IFML element definition: this is an XML descriptor file, created with a

wizard provided by WebRatio; it contains information that instructs WebRatio to
build the proper GUI commands for inserting the new IFML element within the
IFML Model, linking it to other elements, and defining the admissible input and
output parameters.

FIGURE 11.15

Example of project documentation generated by WebRatio.

11.9 Summary of the Chapter 355

 • Validation rules: these are optional rules, encoded following a standard template
provided by WebRatio, which enable the tool to validate the usage of the custom
IFML element in the IFML diagram and report errors, warnings, and repair
hints when some correctness rule is not respected.

 • The input, output, and logic templates: if the element is a ViewComponent,
which typically requires some processing at runtime, the developer must fill
in a standard template to describe the admissible (optional and mandatory)
input and output parameters and the optional configuration aspects of the
element’s implementation; this information is then exploited by the actual
implementation code to configure the runtime service that realizes the cus-
tom component.

 • The presentation template(s): if the element must be rendered in the interface
(e.g., a ViewContainer or a ViewComponent), the developer has to provide one
or more examples of its rendition in the presentation language of choice.

 • The implementation code: an IFML extension is normally encoded as a runtime
object, which performs the actual business service for which the extension is
designed. The typical case is a ViewComponent, which is implemented as a Java
class responsible for input acquisition, content extraction and processing, and
output computation.

WebRatio comes with a set of predefined extensions, both general purpose and

specific for the development of web applications. Extensions are of two classes.
IFML extensions specialize the IFML model elements, according to the built-in
mechanism of the language. Action components provide business logic blocks that
can be used in the definition of the internal workflow of an IFML Action.

Figure 11.16 shows the interface for managing the construction of a custom
IFML extension. The project tree on the left organizes all the artifacts constituting
the extension. The work area shows the form for creating the XML descriptor file of
the “Hierarchy” ViewComponent extension.

Once a custom extension is completely defined, it appears in the WebRatio tool
palette of the IFML diagram editor, as shown in Figure 11.17. It can then be used in
the diagram with the standard IFML elements.

11.9 SUMMARY OF THE CHAPTER
This chapter presented an exemplary implementation of IFML built as a model-driven
development environment within the Eclipse framework. The described implementa-
tion, called WebRatio, is a composite application development tool that covers not
only the front-end design, but also domain modeling, business logic modeling, and
process modeling, thus providing an end-to-end approach to model-driven develop-
ment. The chapter also mentions more tools, which are either already IFML-ready,
or can be customized to model application front-ends with IFML, through UML
profiling or metamodeling.

C
H

A
P

TE
R

 1
1

 Tools for m
odel-driven developm

ent of interactive
3

5
6

FIGURE 11.16

Form for editing the XML configuration file of a custom IFML extension.

11.10 Bibliographic Notes 357

11.10 BIBLIOGRAPHIC NOTES
More information on WebRatio can be found at the web site of the product (http://
www.webratio.com/). Usage experience in large scale model-driven development
with WebRatio is reported in [FB2014]. An open-source IFML editor for Eclipse is
also available (https://ifml.github.io/).

Other tools that support the model-driven development paradigm with a philoso-
phy comparable to that of IFML and WebRatio are listed below.

 • Mendix (http://www.mendix.com/) supports the design of multidevice, multi-

channel applications, based on a domain model, business logic components, and
process flows, with a visual modeling approach.

 • Outsystems (http://www.outsystems.com/) exploits business process models,
domain models, and business logic models to specify application designs that
are then mapped to code for mobile and web devices and connected with a vari-
ety of backend platforms.

FIGURE 11.17

The custom IFML ViewComponent extension (Hierarchy) of Figure 11.16 in the IFML
 editor tool palette.

http://www.webratio.com/
http://www.webratio.com/
https://ifml.github.io/
http://www.mendix.com/
http://www.outsystems.com/

CHAPTER 11 Tools for model-driven development of interactive358

 • OrangeScape (http://www.orangescape.com/) focuses on the visual development
of business applications offered in a cloud-based, PaaS mode.

 • LongJump/AgileApps Live (http://www.softwareag.com/special/longjump/)
allows subject matter experts and developers alike to build and deploy process-
driven application solutions visually.

 • Tersus (http://www.tersus.com/) is an open-source tool for editing visual models
and deploying the corresponding web and mobile applications on dedicated server.

 • SoftFluent Entities (http://www.softfluent.com/) maps conceptual entities of the
domain model to interface components for rapid application development.

UML modeling and code generation tools that support UML extensions can

be customized with an IFML profile, exploiting the UML profile representation of
IFML described in the standard.

Cross-platform frameworks for mobile application development have become very
popular, thanks to the advantage of overcoming the burden of developing multiple
versions of applications. Among the most popular ones, we can mention AppCelerator
(http://www.appcelerator.com/), and Apache Cordova (http://cordova.apache. org/)
and its distribution PhoneGap by Adobe (http://phonegap.com/). While, the former
lets developers write native apps in Javascript and then provides a unified Javascript
API for all the platforms, the latter operates by wrapping HTML5, CSS3, and
 JavaScript code into a container (basically consisting in a mobile browser). WebRatio
mobile code generation [BMU14] produces code for Cordova / PhoneGap (http://
phonegap.com/).

END NOTES
 1. http://phonegap.com/.

http://www.orangescape.com/
http://www.softwareag.com/special/longjump/
http://www.tersus.com/
http://www.softfluent.com/
http://cordova.apache.org/
http://phonegap.com/
http://www.appcelerator.com/
http://www.appcelerator.com/
http://www.appcelerator.com/
http://phonegap.com/

359Interaction Flow Modeling Language. http://dx.doi.org/10.1016/B978-0-12-800108-0.00012-6
Copyright © 2015 Elsevier Inc. All rights reserved.

CHAPTER

IFML language design,
execution, and
integration 12
One of the main advantages of IFML is that it is not a stand-alone initiative insulated
from other modeling approaches. On the contrary, IFML is deeply rooted within the
Object Management Group model driven architecture (MDA) and, more in generally,
within the model driven engineering (MDE) development approach.

lFML is designed to be easily used together with other modeling languages, thus
allowing comprehensive system and enterprise modeling.Therefore, to exploit its
expressive power for system design, IFML must be put in context within a broader
modeling perspective. In this chapter, we describe three aspects that contribute to a
deeper understanding of the language:

 • The IFML language definition, which the standard specifies formally in terms

of metamodel, notation, and interchange format, following the OMG’s best
practices;

 • IFML executability, which expresses the execution semantics of the language
and permits implementers to map the conceptual, platform-independent IFML
constructs to actual executable behaviors in the chosen user interface platform;
and

 • IFML integration with other software design languages, through cross-referenc-
ing between model elements in different diagrams.

12.1 IFML LANGUAGE SPECIFICATION THROUGH
METAMODELING

The IFML language is specified within an official, human-readable OMG specifica-
tion document, which in turn is accompanied by some technical artifacts:

 • The IFML metamodel, specifying the structure and relations between the IFML

elements;
 • The IFML UML profile, defining a UML-based syntax for expressing IFML

models, through an extension of the concepts of the class, state machine, and
composite structure diagrams;

 • The IFML visual syntax, offering a graphic notation for expressing IFML
models in a concise and intuitive way, as shown in the examples throughout this
book; and

 • The IFML model serialization and exchange format, for tool portability.

CHAPTER 12 IFML language design, execution, and integration360

Altogether, these artifacts compose the IFML language specification. Each of
them is specified according to the OMG standards:
 • The metamodel is defined through the MOF metamodeling language (an equiva-

lent ECORE definition is available too).
 • The UML profile is defined according to UML 2.4 profiling rules.
 • The visual syntax is defined through Diagram Definition (DD) and Diagram

Interchange (DI) OMG standards.
 • The model serialization and exchange format is defined based on XMI.

A discussion of the complete language specification is outside the scope of this
book, but it can be found in the OMG specification document. In the following, we
report a few excerpts of the specification.

12.1.1 METAMODEL
The IFML metamodel is defined according to the best practices of language defini-
tion, including abstraction, modularization, reuse, and extensibility. The metamodel
is divided in three packages: the Core package, the Extension package, and the
DataTypes package. The Core package contains the concepts that build up the inter-
action infrastructure of the language in terms of InteractionFlowElements, Interac-
tionFlows, and Parameters. Core package concepts are extended by concrete concepts
in the Extension package to cater to more precise behaviors. The DataTypes package
contains the custom data types defined by IFML.

The IFML metamodel reuses the basic data types from the UML metamodel,
specializes a number of UML metaclasses as the basis for IFML metaclasses, and
assumes that a domain model is represented with a UML class diagram or with an
equivalent notation.

Figure 12.1 shows an excerpt of the IFML metamodel that represent some of the
elements at the highest level of abstraction. IFMLModel, as its name suggests, repre-
sents an IFML model and is the top-level container of all the other model elements.
It contains an InteractionFlowModel, a DomainModel, and may optionally contain
ViewPoints.

InteractionFlowModel represents the user’s view of the application, with refer-
ences to sets of InteractionFlowModelElements, which collectively define a fully
functional portion of the system.

NamedElement is an abstract class that specializes the Element class (the most
general class in the model) denoting the elements that have a name. For any Ele-
ment, Constraints and Comments can be specified. InteractionFlowModelElement
is an abstract class that generalizes all the elements of an InteractionFlowModel. As
such, it will not be used directly within IFML diagrams. Instead, it is specialized by
more precise concepts (e.g., InteractionFlow, InteractionFlowElement). In turn, these
subconcepts are abstract, and must be specialized as well. Figure 12.2 shows some
concrete subelements of InteractionFlowElement and InteractionFlow, which are the
ones that we have actually used in the examples of the preceding chapters.

12.1 IFML Language Specification Through Metamodeling 361

All the other concepts of the language and their associations are defined in the
metamodel in a similar way.

12.1.2 EXTENSIBILITY
As seen in chapter 7, IFML can be extended by adding new, more refined concepts. To
this end, IFML uses the native extensibility mechanisms of UML to allow the defini-
tion of stereotypes, tagged values, and constraints on existing concepts, making them

FIGURE 12.1

IFML metamodel excerpt describing the abstract elements of the language.

FIGURE 12.2

IFML metamodel excerpt describing some core elements of the language.

CHAPTER 12 IFML language design, execution, and integration362

more fitting for specific purposes or scenarios. The IFML standard specification docu-
ment already includes an Extensions package, which exemplifies how the extension
mechanism works. In particular, it contains some specializations of the concepts in the
Core package. In the same way, users of the language can define new packages con-
taining new constructs to model platform-independent or platform-specific features.

According to the philosophy of the language, not all possible extensions are
allowed. Valid extensions should refine or adapt the core concepts to specific cases,
specializing their semantics without altering them. The IFML specification explicitly
mentions that only the following concepts (and their specializations) can be extended
while retaining compliance with the standard: ViewContainer (for defining specific
screens or interface containers), ViewComponent (for describing specific widgets
or controls), ViewComponentPart (for specifying particular properties of existing
or new ViewComponents), Event (for covering platform specific events), Domain-
Concept and FeatureConcept (for covering additional content sources), and Behav-
iorConcept and BehavioralFeatureConcept (for covering integration with additional
behavioral models or modeling languages). Extensions of other elements are disal-
lowed by the standard. Any other extended concept will be considered proprietary
and outside the IFML notation.

12.1.3 PROFILE, VISUAL NOTATION, AND INTERCHANGE FORMAT
Besides the core packages and their extensions, the remaining parts of specifications
describe the UML profile, the visual notation, and the interchange format. The IFML
UML profile specifies the IFML elements as stereotypes of UML elements. The dia-
gram notation defines the symbols and graphical rules for the elements that must be
represented graphically in the diagrams. The XMI definition defines an XML syntax
for the serialization of the models.

12.2 IFML MODEL EXECUTION
This section provides an illustration of the execution semantics of IFML (i.e., an
informal description of the kind of computation that an IFML model specifies). Mod-
els, like programs, are meant to represent the execution of a computer-based applica-
tion, so it is important that syntactically correct models, like any program, behave in
ways conforming to the intention and intuition of the designer.

An interface is essentially a device that reacts to stimuli (events) by changing its
state (transition) and possibly emitting output signals. In an interactive application,
the user is the main source of events. A user interacts with the view, which provides
a representation of the current status of the system. An event produced by the user
triggers the reaction of the system, which possibly executes some Action and causes
a transition to a new state, manifested by an update of the view.

The semantics of IFML do not address the internal functioning of the Actions,
which can be described separately. Actions are considered black boxes: they are

12.2 IFML Model Execution 363

started by a triggering event and terminate by signaling another event (e.g., normal
or exceptional termination).

The semantics of a modeling language such as IFML have important applications:
 • They allow checking models for the presence of desired properties and the

absence of anomalies.
 • They drive the construction of model interpreters and code generators, for which

it is imperative to know exactly what the model does.

Completely formalizing the semantics of IFML exceeds the scope of this book.
This section provides some hints on the subject that are meant to let the designer better
understand the meaning of an IFML diagram. For simplicity, we restrict the illustra-
tion to synchronous user interfaces (i.e., we exclude the case of asynchronous system
events). The bibliographic notes contain several sources that discuss at greater length
the semantics of modeling languages, including interaction description languages.

12.2.1 STATE REPRESENTATION
An IFML models describes the state of the user interface and its evolution in response to
events. A state of the interface is the set of visible ViewContainers and active ViewCom-
ponents and Events. Intuitively, a ViewContainer is visible if it is in view according to
the nesting of ViewContainers in the composition model of the interface. A ViewCom-
ponent is active if its content can be determined. An Event is active if it can be triggered.

12.2.2 VIEWCONTAINER STATE
The state of a ViewContainer can be visible or invisible. The set of existing View-
Containers can be represented as an AND-OR tree, that is, a tree where the root is
the top ViewContainer and the internal nodes are unlabeled (if the children nodes are
displayed together) or labeled with OR (if the children nodes are displayed alterna-
tively). The default subview container of a XOR ViewContainer must also be dis-
tinguished (e.g., by marking the corresponding node in the tree). For example, the
interface of Figure 6.17 can be represented as the tree of Figure 12.3. Note that, if the

FIGURE 12.3

AND-OR tree corresponding to the interface of Figure 6.17.

CHAPTER 12 IFML language design, execution, and integration364

interface is page-based, as in a typical web application, it can still be represented as
a single tree by adding a dummy XOR ViewContainer at the top, with all the pages
as first-level children and the home page as the default sub-ViewContainer of the
dummy element.

The tree representation facilitates understanding what is visible when a View-
Container is accessed. When a ViewContainer X is accessed, the set of visible View-
Containers is given by the union of X and its visible ancestors and descendants,
determined according to the following visibility propagation rules:

 • If Y is the default XOR child of X or Y is a conjunctive child of X,

VisibleDescendants(X) = {Y} U VisibleDescendants(Y).
 • If X is a conjunctive child of Z, VisibleAncestors(X) = {Z} U

VisibleDescendants(Z) U VisibleAncestors(Z).
 • If X is a XOR child of Z, VisibleAncestors(X) = {Z} U VisibleAncestors(Z).

For example, considering the tree of Figure 12.3:

 • When “Mail” is accessed, VisibleAncestors(“Mail”) = {} and

VisibleDescendants(“Mail”) = {“Messages”, “MessageManagement”, “Message
Search”, “MailBox”}.

 • When “Settings” is accessed, VisibleAncestors() = {“MessageManagement”,
“Messages”, “MessageSearch”, “Mail”} and VisibleDescendants(“Settings”) ={} .

12.2.3 STATE OF A VIEWCOMPONENT
The state of a ViewComponent can be active or inactive. A ViewComponent is active
when the enclosing ViewContainer is visible and the values of its input parameters
are available.

12.2.4 ACTIVATIONEXPRESSIONS
ActivationExpressions add restrictions on top of the set of visible and active
ViewElements. If they evaluate to false, an otherwise visible/active element is
treated as invisible/inactive. ActivationExpressions can be applied with a finer
grain to individual Events, so it may happen that a ViewElement is visible/active
but loses its interactivity because the ActivationExpressions associated with one of
its Events evaluates to false.

Considering again the model of the running example (repeated for convenience
in Figure 12.4). When accessing the e-mail application, the “MessageList” View-
Component is active because the enclosing ViewContainer (“MailBox”) is visible
and the ViewComponent receives the needed parameter from the DataFlow outgo-
ing from the “MailBoxList” ViewComponent (thanks to the PATTERN CN-DEF:
default selection, introduced in chapter 5). However, the toolbar with the events for
deleting, archiving, reporting, and moving messages remains inactive until at least
one message is selected in the “MessageList” ViewComponent, as conveyed by the
MessageSet->notEmpty() ActivationExpression.

1
2

.2
 IFM

L M
odel Execution

3
6

5

→

FIGURE 12.4

Model of the e-mail application interface for reading a single message, with activation expression.

CHAPTER 12 IFML language design, execution, and integration366

12.2.5 EVENT PROCESSING
The execution semantics of IFML dictate how events are treated. Event process-
ing can be regarded as an algorithm that takes as input the state of the interface
and an occurred event and computes the next state of the interface. The occur-
rence of an event has two main effects. It updates the visibility status of View-
Containers, and it updates the active status of ViewComponents within the visible
ViewContainers.

12.2.6 VIEWCONTAINER VISIBILITY UPDATE
The initial state of the application can be regarded as an initialization event, which
marks as visible the root of the ViewContainer tree. For example, when the applica-
tion initial event occurs, the root of the tree in Figure 12.3 becomes visible, and so do
its descendants according to the visibility propagation rules. During the application
usage, two kinds of events cause the update of the ViewContainer visibility:

 • InteractionFlow navigation: A point-to-point navigation is performed from a

source ViewElement to a target ViewElement. When the actual destination of
the navigation is a ViewComponent, the target ViewContainer is the one directly
enclosing the ViewComponent. When the destination of the NavigationFlow is
an Action, the target ViewContainer is the one reached by the InteractionFlow
exiting from the termination ActionEvent of the Action. As a result of naviga-
tion, the target ViewContainer becomes visible, and the visibility propagation
rules are applied to determine the visibility status of the other containers. Inter-
actionFlow navigation can further be distinguished into:

 • Inter-container navigation flow traversal: The source ViewContainer is
neither among the visible descendants nor among the visible ancestors of the
target ViewContainer. This situation appears to the user as a replacement of
a portion of the view (the source ViewContainer disappears from view and is
replaced by the target ViewContainer plus its visible ancestors/descendants).
For example, the navigation of a web application falls in this category: all
pages are same-level siblings of a (dummy) top XOR ViewContainer, and
navigation flow traversal makes the destination page replace the source page.

 • Intra-container navigation flow traversal: The source ViewContainer is
either among the visible descendants or among the visible ancestors of the
target ViewContainer. This situation appears to the user as a refresh of the
content of a portion of the view: the source ViewContainer remains in view
but some other part of the view changes. For example, in Figure 12.4, the
selection of a single message from the “MessageList” ViewComponent is an
intra-container flow traversal within the “MessageViewer” ViewContainer.
The container remains in view, but a part of its content changes because the
“MessageDetails” subcontainer replaces the “MessageList” one. Note that
the “MessageToolBar” remains in view because it is a visible descendant of
“MailBox,” which is a visible ancestor of “MessageViewer.”

12.2 IFML Model Execution 367

 • Landmark navigation: A ViewContainer that is reachable due to the Landmark
visibility property is accessed. This is equivalent to the navigation of an implicit
content-independent InteractionFlow from any of the currently visible View-
Containers to the target Landmark ViewContainer.

12.2.7 VIEWCOMPONENT STATUS UPDATE
The status of parameter availability, and thus of the ViewComponents nested within
the ViewContainers, is also updated by the occurrence of events, as exemplified in
Figure 12.5.

When the “Products” ViewContainer is accessed, the “ProductList” ViewCom-
ponent is active. It requires no input, and its content can be computed by evaluating
its ConditionalExpression (which defaults to true in this case) over its DataBind-
ing instances (all the instances of entity “Product”). Conversely, as shown in Figure
12.5.a, the “ProductDetails” ViewComponent is inactive. It lacks an input param-
eter value (the “product” parameter holding the primary key of a Product instance),
and thus its content cannot be computed. When the “SelectProduct” event occurs
(Figure 12.5.b), it updates the status of the “product” parameter of the “ProductDe-
tails” ViewComponent, which then has all the values of its input parameters defined
and becomes active.

The computation of the content of a ViewContainer may be nontrivial. Sev-
eral ViewComponents may be linked in a network of input–output dependencies
expressed through NavigationFlows and DataFlows. Parameter values may be
propagated from one ViewComponents to other ViewComponents through several
ParameterBindings.

The propagation of computation within a ViewContainer can be schematized by
a best-effort rule: everything that can be computed is computed. The best-effort rule
marks as active all ViewComponents for which the needed input parameters can be
determined.

Figure 12.6 shows an example of the best-effort rule. When the “Home” ViewCon-
tainer is accessed, the “ProductDetails” ViewComponent becomes active because its
container is visible and it requires no input. Next, by the best-effort rule, the “Acces-
sories” ViewComponent also becomes active because its input parameter “product”
can be determined from the output of the “ProductDetails” ViewComponent and the
(default) DataBinding associated to its incoming DataFlow. Conversely, the “Acces-
soryDetails” ViewComponent is inactive because its input parameter “selected” can-
not be determined from the output of the “Accessories” List ViewComponent prior
to the occurrence of the “Select” event.

12.2.8 NAVIGATION HISTORY PRESERVATION
When the user triggers an Event, the content of the destination ViewContainer is
refreshed in a way that may depend on the past history of the user interaction. The
alternatives for recomputing a ViewContainer (or a part thereof) depends on the

C
H

A
P

TE
R

 1
2

 IFM
L language design, execution, and integration

3
6

8

FIGURE 12.5

Example of active and inactive ViewComponents.

12.2 IFML Model Execution 369

“degree of memory” used for the computation. Two interaction history policies are
possible:

 • Without history: The contents of the ViewComponents are computed as if the

ViewContainer was accessed for the first time. The computation without context
history may be used to “reset” and forget the choices previously made by the
user in a ViewContainer.

 • With history: The contents of the ViewComponents are computed based on the
input history of the ViewComponents existing prior to the last navigation event.

Figure 12.7 shows an example of the effect of the history management policy.
When the “ProductContentManagement” ViewContainer is accessed for the first

time, the list of categories is displayed and, by virtue of the default selection pat-
tern, a default product is also shown in the “ProductOfCategory” list. When the user
selects a different category, the list of products is updated to reflect the choice. Then
the user can delete one product, by selecting it from the “ProductOfCategory” list.
After the termination of the “Delete” Action, the “ProductContentManagement”
ViewContainer is re-accessed, and the displayed category depends on the history
management policy. It is the default category if the policy is “Without history.”
Otherwise it is the last category selected by the user.

The history preservation policy can be expressed as a general property of the
IFML model, which applies to all NavigationFlows. This choice makes the inter-
pretation of the model simpler and the resulting user experience more consistent.

FIGURE 12.6

Best-effort computation of the content of a ViewContainer.

CHAPTER 12 IFML language design, execution, and integration370

When the need arises to apply different policies, the chosen option can be associated
with the NavigationFlows as a stereotype.

12.2.9 PARAMETER VALUES CONFLICTS
Conflicts may arise in the application of the best-effort rule for computing the con-
tent of a ViewContainer. A conflict arises when a ViewComponent receives more
than one input value for the same Parameter. This could happen due to multiple
incoming flows in a ViewComponent or ViewContainer. Such conflicts could be due
to multiple navigation events that determine the computation of the same component
or to default selection patterns (see chapter 5 and Figure 12.4), which provide values
of a parameter at different times (an initial value and then a subsequent value pro-
duced by the user’s interaction).

A conflict resolution strategy (CRS) specifies which Parameter value is exploited
to compute the content of the ViewComponent. Different strategies are possible:

 • Nondeterministic: One input parameter is chosen nondeterministically at run-

time from the set of available inputs.
 • Priority-based: Priorities are assigned at design-time to the incoming flows

(for the ViewComponent or ViewContainer). When runtime conflict occurs, the
Parameter value associated with the flow with highest priority is chosen.

 • Specificity-based: A mix of priority and nondeterministic choice, which
exploits priority based on specificity. Specificity of a parameter is assessed
according to the following rules:

 • Values which are directly or indirectly derived from the user’s current
choice, expressed by the last navigation event, are the most specific.

 • Values that depend on the user’s previous choices, derived from the history
log, are the second most specific.

 • Values taken from system-generated default choices or from DataFlows
coming from ViewComponents not affected by the last navigation event are
the least specific.

FIGURE 12.7

Example of history-less and history-based ViewComponent computation.

12.2 IFML Model Execution 371

Figure 12.8 shows a case in which the priority-based CSR helps resolve the con-
flict between multiple default selection patterns affecting the same ViewComponent.

The “Home” ViewContainer shows the “ProductOfTheDay” together with a list
of accessories, which could be empty, and the list of products frequently purchased
together with the product of the day. To avoid the effect of leaving the interface space
dedicated to the “OtherProductDetails” ViewComponent empty at the first access,
two default selection patterns are provided: one that selects an accessory and one that
selects a related product, in case no accessory list is available. To enforce that the
default accessory should be displayed when both the accessory and related products
list are available, a priority based policy can be set, giving precedence to the default
DataFlow from the “Accessories” ViewComponent.

Figure 12.9 shows a case in which the specificity-based CSR helps resolve the
conflict between multiple events that cause the computation of the same ViewCom-
ponent in different conditions. The conflict resolution logic requires explaining the
order in which ViewComponents are considered for computation.

12.2.10 VIEWCOMPONENT COMPUTATION PROCESS
The interface content computation process is performed every time an Event arises.
The process applies the best-effort rule to determine the content of the ViewCom-
ponents of the target ViewContainer. Intuitively, the process identifies at each step
the set of computable ViewComponents (i.e., the subset of the ViewComponents
for which the value of the input Parameters is determined). The computation of a
ViewComponent determines the value of its output parameters, which may be men-
tioned in the DataBinding of other components that thus become computable at the
next iteration.

FIGURE 12.8

Example of priority-based conflict resolution policies.

C
H

A
P

TE
R

 1
2

 IFM
L language design, execution, and integration

3
7

2

FIGURE 12.9

Example of specificity-based conflict resolution policies.

12.2 IFML Model Execution 373

The following pseudo-code describes the algorithm:

INPUT:
- The ViewContainer
- The event that triggers the computation and its InteractionFlow
(if any)
- The parameter values associated with the InteractionFlow (if any)
- The conflict resolution strategy CSR (default =
specificity-based)
- The interaction history policy IHP (default = with history)
- The parameter value history log
OUTPUT:
The sequence of computable ViewComponents
The value of their input parameters
PROCEDURE:
ToCompute = all ViewComponents
WHILE (ToCompute is not empty) DO
IF a component C exists such that
(C has no input parameters OR all its parameters have a value AND
All Components potentially providing input to C have been computed)
THEN
Assign to each parameter of C a value according to the CRS and IHP

Compute C and its output parameters using the chosen input values
ToCompute = ToCompute - C
ELSE HALT

END DO

Figure 12.9 shows a ViewContainer on which we illustrate the application of the
algorithm for processing several events.

The content of the ViewContainer can be computed in several ways, depending on
the actual navigation performed by the user. Each ViewComponent exploits param-
eters values that are either “current” (i.e., produced by the user’s navigation action),
“preserved” (i.e., coming from the history of past user’s selections), or “default”
(i.e.,, determined by a default selection pattern).

12.2.10.1 ViewContainer access with landmark navigation (or content-
independent NavigationFlow)

The “Home” ViewContainer is accessed via landmark navigation, and thus no ini-
tial parameter values are available. Therefore, ViewComponent computation starts
from either one of the “Categories” and the “Shops” ViewComponents, which have
no input and are computable. Their content is the entire population of the underly-
ing class. Their output is—by effect of the default selection pattern—a heuristically
chosen object appearing in the List (e.g., the first object). After the computation of
the ViewComponents, both the “Category” and “Shop” ViewComponents have their
input parameter settled and thus become computable. When the “Category” View-
Component is computed, it provides a category object as output to the “Products”
ViewComponent, which becomes computable. After the “Products” ViewComponent

CHAPTER 12 IFML language design, execution, and integration374

has been computed, the default product listed in the “Products” ViewComponent
is available as output and can be used as input for the “Product” ViewComponent,
which becomes computable. No other ViewComponent remain to be computed, so
the algorithm halts.

12.2.10.2 ViewContainer access after the “ChoosePreferredCategory”
event

The “Category” ViewComponent is the destination of the navigated NavigationFlow
and thus the initial assignment of the input parameters includes the object to be shown
in the “Category” ViewComponent, which is a “current” value. Computation can start
from the ViewComponents that do not require input or from the “Category” View-
Component, for which the input parameter is available. Supposing that computation
starts from the ViewComponents that do not require input, everything proceeds as in
the previous case. The only difference occurs in the computation of the “Category”
ViewComponent, which has two possible values for its input parameter: the current
object coming from the triggering event and the object chosen by default from the
“Categories” ViewComponent. According to the specificity rules, the current value
prevails over the default one supplied by the “Categories” ViewComponent. Then the
ViewComponents dependent on the “Category” ViewComponent are computed as
before. The “Products” ViewComponent will contain the products of the (preferred)
category shown in the “Category” ViewComponent, and the “Product” ViewCompo-
nent will contain the default product appearing in the “Products” ViewComponent.

12.2.10.3 ViewContainer access after event “SelectProduct”
The ViewContainer is computed after the user selects a product in the “Products”
ViewComponent. The parameters passed as input to the ViewContainer comprise the
input parameter of the “Product” ViewComponent as a current value plus the input
parameters of ViewComponent “Category” and “Shop,” from the history log as val-
ues to be preserved (by default, we assume the “with history” preservation policy).
Computation starts from the ViewComponents that require no input (“Categories”
and ”Shops”) and proceeds to their dependent ViewComponents. Due to the specific-
ity rule, history values prevail over defaults taken from List ViewComponents, and
thus the “Category,” “Products,” and ”Shop” ViewComponents continue to show
the same content they displayed before the navigation. Current values prevail over
defaults, and thus the “Product” ViewComponent shows the object selected by the
user instead of the default product extracted from the “Products” ViewComponent.
In summary, after the “SelectProduct” event, the “Home” ViewContainer shows con-
tent that depends on new input (the object shown in the “Product” ViewComponent)
and content derived from “old input” (all the remaining ViewComponents). The new
input affects the ViewComponents directly or indirectly depending on the user’s nav-
igation, whereas the old input is preserved for all the ViewComponents not affected
by such navigation, to maximize the “stability” of the ViewContainer.

Note that “old input” does not mean “old content,” as the following example
demonstrates.

12.3 IFML Models Integration with Other System Modeling Perspectives 375

12.2.10.4 ViewContainer access after successful deletion
ViewContainer “Home” is accessed after the successful deletion of a product. The
parameters in input to the ViewContainer comprise the input parameters of View-
Component “Category” and ”Shop” from the history log. Conversely, no input is
preserved for the “Product,” because such input would correspond to an object no
longer existing after the deletion. Computation starts from the ViewComponents that
require no input and proceeds to their dependent ViewComponents, whose input
parameters are set to the preserved values and not to the default values taken from
the List ViewComponents. In particular, the “Products” ViewComponent has the
same input as before, because the category object shown in the “Category” View-
Component has been restored from the history log, but different content, because the
deleted product no longer appears in the List. The default value of the “Products”
ViewComponent is then used as the input of the “Product” ViewComponent, replac-
ing the deleted product.

12.2.10.5 ViewContainer access after unsuccessful deletion
The ViewContainer is accessed after the deletion of the currently displayed product
has failed. The parameters input to the ViewContainer comprise the output of the
Action, which is the OID of the Product object that could not be deleted, plus the
input values of ViewComponents “Category” and ”Shop” from the history log. The
computation starts from the ViewComponents that require no input (“Categories”
and “Shops”) and proceeds to their dependent ViewComponents. These are instanti-
ated according to the parameters passed as input to the ViewContainer and the speci-
ficity rule, which leads to restoring all ViewComponents to their previous content
before the triggering of the delete Action.

As a final remark, in the illustration of the ViewContainer computation algorithm,
we assumed that the content of ViewComponents is calculated from scratch, even if
the ViewContainer is re-accessed with the same input parameters for some View-
Components. In a practical implementation, caching mechanisms and more intel-
ligent ViewComponent computation logics can be used to improve the performance
of ViewContainer computation by avoiding the recomputation of ViewComponents
that have not been affected by the navigation and using the cached results instead of
recalculating the content of ViewComponents.

12.3 IFML MODELS INTEGRATION WITH OTHER SYSTEM
MODELING PERSPECTIVES

Thanks to its integration in the MDA framework, IFML enables a tight integration
with other system modeling perspectives. In particular, three aspects are defined
explicitly in the standard: integration with the content model, integration with busi-
ness logic, and integration with business process models. Further integrations are
possible, for example, with platform-specific models, system deployment models,
and enterprise architecture models Figure 12.10.

C
H

A
P

TE
R

 1
2

 IFM
L language design, execution, and integration

3
7

6

FIGURE 12.10

Examples of integration with requirements and business models.

12.3 IFML Models Integration with Other System Modeling Perspectives 377

12.3.1 INTEGRATION WITH BUSINESS MODELS
AND REQUIREMENTS

In many cases, system development starts from a requirements model, such as UML
use case diagrams, or from a procedural view of the enterprise operations, such as
business process models specified in OMG’s BPMN. IFML enables the traceability
of user interaction models to the requirement specifications that generated them. This
can be done by establishing a reference between the requirements model of interest
and the IFML model derived from it. Figure 12.12 illustrates the case in which an
IFML module specifies the user interaction needed for addressing a use case or a
business process task. Furthermore, the execution of an IFML Action or Module may
induce some internal state change of the system, whose dynamics is specified in a
UML state chart (as also visible in Figure 12.12).

The IFML standard natively provides the possibility of referencing, for instance,
a business process task from an IFML module that specifies its user interface. Analo-
gously, references could be defined toward use case scenarios, goal-oriented specifi-
cation diagrams, state charts, or any other specification model.

12.3.2 INTEGRATION WITH CONTENT MODEL AND BUSINESS LOGIC
The cases of integration of IFML with content models and business logics have been
already illustrated extensively in the examples of the preceding chapters. Every time
a content binding is specified for a ViewComponent, the integration with the content
model is achieved.

As an example, Figure 12.11(a) shows a List ViewComponent that specifies the publi-
cation of some contents through a ContentBinding, which establishes a reference between
the IFML diagram and the UML class diagram where the “Product” class is defined.

The integration with the business logic is specified when a ViewComponent or
Action references a method of a class or a more complex behavior (represented in
the language metamodel with a BehavioralFeatureConcept and a BehaviorConcept,
respectively). IFML includes dedicated extensions of these concepts for integra-
tion with UML. Specifically, BehaviorConcept and BehavioralFeatureConcept are
extended respectively by UMLBehaviorConcept and UMLBehavioralFeatureCon-
cept, which allow the designer to directly reference a UML class method or a UML
dynamic diagram (sequence, activity, or state chart diagram).

Figure 12.12. shows an example of an IFML model referencing simple behavioral
features, such as UML methods from a sequence diagram, and a more complex behavior,
such as an UML activity diagram specifying the internal functioning of an IFML Action.

Figure 12.12 contrasts three different concrete syntaxes for integrating an IFML
element with an external model: (a) a DataBinding referencing a domain model
class,(b) a DynamicBehavior referencing a specific UML method, and (c) a Dynam-
icBehavior referencing an entire UML diagram. The references can be embedded
within both ViewComponents and Actions. Typically, the content of a ViewCom-
ponent is detailed through a DataBinding, as most of the previous examples have
illustrated, but it can also be specified using a DynamicBehavior, which describes the
logic to extract or build the content of the ViewComponent.

CHAPTER 12 IFML language design, execution, and integration378

12.3.3 INTEGRATION WITH IMPLEMENTATION AND DEPLOYMENT
ASPECTS

Finally, one important aspect of IFML is its complementary role with respect to
deployment and implementation-oriented (possibly platform-specific) design models.
Figure 12.13 shows the typical relation of the IFML model to other alternative system
representations. An IFML module is mapped to the elements of an UI mockup, and
it shares a common namespace with a sequence diagram describing the interplay
between the different architectural layers, described in a UML deployment diagram.

FIGURE 12.11

(a) Integration with content model – UML class, (b) Simple behavioral feature - UML
method, and (c) Complex behavior - UML diagram.

FIGURE 12.12

Integration with simple behavioral feature (class methods) and with complex behavior
(UML activity diagram).

1
2

.3
 IFM

L M
odels Integration w

ith O
ther System

 M
odeling P

erspectives
3

7
9

FIGURE 12.13

Integration of the IFML model with implementation-oriented specifications.

CHAPTER 12 IFML language design, execution, and integration380

12.4 SUMMARY OF THE CHAPTER
This chapter discussed some of the aspects of the IFML language design: the formal
definition of the concepts in the IFML metamodel, the notation and model exchange
format, the executability, and the integration with models representing other aspects of
the system. The definition of the IFML metamodel follows the OMG best practices. It
exploits metaclasses and their associations to specify the main aspects of the language.

The IFML execution semantics allow the developer to understand the meaning
and behavior of any IFML diagram as that of a machine that takes as input the stimuli
produced by the user or by the system and updates the visibility status of the View-
Containers and the active status of ViewComponents and Events, thus determining
an updated view for the user to continue the interaction.

Designers can integrate IFML with other modeling languages for obtaining a
comprehensive view of the system, spanning both the front end and the back end, and
for ensuring the traceability between the interaction model and other models built
during the requirement collection phase and the architecture design phase.

12.5 BIBLIOGRAPHIC NOTES
Integration of different modeling perspectives for describing completely an informa-
tion system is one of the most basic practices of model-driven engineering [BCW12].
UML itself supports different diagrams [Fowler03] that complement each other.
Some methodologies, such as Model Driven Enterprise Engineering (MDEE), pro-
pose a pragmatic approach to integration of OMG and non-OMG modeling specifi-
cations, so as to cover all the modeling needs of the enterprise thanks to integrating
and relating together multiple and diverse models, through the definition of a vocabu-
lary (SBVR-based) and integrated metamodel. The related idea of megamodeling
addresses the complexity that has been observed in real-life model-driven solutions
to practical problems. Various experience show how to apply traceability between
models, starting from the early phases of requirements elicitation [Brambilla11].

The semantics of interface modeling language is a subject treated in several aca-
demic articles [CF01]. Among the early works, [SF89] used Petri Nets to describe
static hypertexts, where pages do not access content dynamically. [ZP92] also
addresses the navigation semantics of static hypertexts, using Statecharts instead of
Petri Nets. [FTM01] introduces HMSB (Hypermedia Model Based on Statecharts)
to specify both the structural organization and the browsing semantics of static
hypermedia applications, focusing on synchronization of multimedia data (e.g., text,
audio, animations, images).

Executable specifications of systems can also be expressed with high-level design
approaches like executable UML, initially proposed by Shlaer and Mellor in 1988
[SM88]. The approach is embodied in specifications published by the OMG, specifi-
cally the fUML (Foundational UML) [FUML] and the associated action language
ALF (Action Language for fUML) [ALF].

381

Appendix A: IFML notation
summary
Appendix A lists the core concepts of IFML and the set of extension concepts speci-
fied in the standard, together with their meaning and graphical notation.

A
ppendix A

: IFM
L notation sum

m
ary

3
8

2

Table 1 IFML Core Concepts

Concept Meaning IFML Notation Examples

View Container An element of the interface that
comprises elements displaying
 content and supporting interaction
and/or other ViewContainers

Web page, window, screen,
pane

XOR View Container A ViewContainer comprising child
ViewContainers that are displayed
alternatively

Tabbed panes in Java, frames
in HTML

Landmark View
Container

A ViewContainer that is reachable
from any other element of the user
interface, without explicit incoming
InteractionFlows

A login page in an HTML site
that is reachable through a
link visible on every page.

Default View
Container

A ViewContainer presented by
default to the user when the
 enclosing container is accessed.

The message list pane in a
mail application (as opposed
to the contact list pane shown
on demand)

View Component An element of the interface that
displays content or accepts input

HTML list, image gallery, input
form

A
ppendix A

: IFM
L notation sum

m
ary

3
8

3

Catching Event An occurrence that is captured in
the model and affects the state of
the application

User click, form submission,
device location change

Throwing Event An event that is launched by some
occurrence in the application

Notification after an operation
has finished

Action A reference to a piece of business
logic triggered from the interface

Database update,
sending of an e-mail,
 spell-checking of a text

Navigation Flow Update of the interface elements
in view or triggering of an action
caused by the occurrence of an
event; data may be associated
with the flow through parameter
bindings

Navigation from one web
page to another,change of tab
in a tabbed pane

Data Flow Input–output data dependency
between ViewComponents,
 ViewContainers, or Actions

Default element of a
list (output), displayed
 automatically in another
 ViewComponent (input)

Parameter A typed and named value,
which can be received (input) or
produced (output)

HTTP query string
 parameters, HTTP post
parameters,
JavaScript variables and
 function parameters

Parameter Binding
Group

Set of mappings from
output parameters of a source
 element to input parameters of a
target element associated with a
NavigationFlow or DataFlow

(Continued)

A
ppendix A

: IFM
L notation sum

m
ary

3
8

4

Activation
Expression

Boolean expression associated
with a ViewElement,
 ViewComponentPart, or Event; if
true, the element is enabled

Button enabled or information
shown only if a condition
holds (e.g., if the user has
logged in)

Interaction
Flow Expression

Expression that determines which
InteractionFlow is followed after an
event occurrence

Event triggered after selecting
a given value in a ComboBox.

Module and
ModuleDefinition

Piece of IFML diagram enclosed
in a container (ModuleDefinition),
which may be reused by
referencing it (through a Module)

Checkout procedure on an
e-commerce site

Concept Meaning IFML Notation Examples

Table 1 IFML Core Concepts—cont’d

A
ppendix A

: IFM
L notation sum

m
ary

3
8

5

InputPort and
InputPortDefinition

Interaction points between a
Module and its environment;
it collects InteractionFlows
and parameters arriving at the
 module and associates them with
 ModuleDefinition elements.

In ModuleDefinition

In Module

The user identity in an order
checkout module

Output Port and
OutputPortDefinition

Interaction points between a
Module and its environment; it
 collects InteractionFlows and
parameters within a module and
associates them with the elements
outside the module

In ModuleDefinintion
In Module

The transaction confirmation
code and message in an
order checkout module

ViewComponentPart:
DataBinding,
Conditional-
Expression, …

A part of a ViewComponent that
cannot exist by its own.

Fields in a form, DataBinding
and ConditionalExpression in
a ViewComponent

A
ppendix A

: IFM
L notation sum

m
ary

3
8

6

Table 2 Extension IFML Concepts

Concept Extension
Examples Meaning IFML Notation

Example at Implementation
Level

Select Event Event denoting the selection of items
in a list

Selection of a row in a table or of
multiple elements in a checklist

Submit Event Event that submits information in a
form

A form submission button in
HTML

List ViewComponent used to display
 multiple DataBinding instances

Table with rows of elements of
the same kind.

Form with Fields ViewComponent used to display a
form that is composed of fields

HTML form with fields

Details ViewComponent used to display
details of a specific DataBinding
instance

Information about a product on
an e-commerce web site, profile
of the user

A
ppendix A

: IFM
L notation sum

m
ary

3
8

7

Window (Modal and
Modeless)

A ViewContainer rendered as a
window.

Modal: when displayed, it blocks
 interaction in all other containers.

Modeless: when displayed, it is
 superimposed over containers that
remain active.

Desktop window, modal pop-up
in HTML, modeless pop-up in
HTML

This page intentionally left blank

389

Appendix B: List of IFML design
patterns
Appendix B lists all the design patterns described in the book. The name of a pattern
is structured as XY-Z, where:

 • X is the category of pattern. For instance, interface organization patterns start

with the letter “O,” and content and navigation patterns are prefixed with “CN.”
 • Y is the deployment platform where the pattern originated or is most frequently

found. For instance, desktop patterns are labeled with “D,” web with “W,”
mobile with “M.” The prefix is omitted for patterns that apply equally well to
multiple platforms and for which there is no clearly prevalent platform.

 • Z is a mnemonic label identifying the specific pattern.

Name Title Description Section

Interface Organization Patterns

OD-SWA Simple work area Distinguishes a work area where
the main tasks of the application
are performed along with one or
more service areas

4.8.1.1

OD-MWA Multiview work area Extension of OD-SWA for multiple
alternative views of the item in the
work area

4.8.1.2

OD-CWA Composite work area Splits the work area into
 subregions devoted to different
perspectives of the item,
 presented simultaneously

4.8.1.3

OD-MCWA Multiview composite
work area

Combines the decomposition
of the work area into alternative
perspectives and simultaneous
partial views

4.8.1.4

OW-MFE Multiple front ends on
the same domain model

Provides different interfaces for
different user roles upon the same
information

4.8.2.1

OW-LWSA Large web sites
 organized into areas

Applications that exhibit a
 hierarchical structure, whereby
the pages of the site are clustered
into sections dealing with a homo-
geneous subject

4.8.2.2

OM-MSL Mobile screen layout Maps the interface to a top-level
grid that contains three regions:
the header, the content area, and
the footer

4.8.3.1

(Continued)

Appendix B: List of IFML design patterns390

Name Title Description Section

Content and Navigation Patterns

CN-MD and
CN-MMD

Master detail and Master
multidetail

Presents some items, and a
selection permits the user to
access the details of one instance
at a time

5.6.1
8.3.1

CN-MLMD Multilevel master detail Also called a cascaded index;
consists of a sequence of lists
over distinct classes, such that
each list specifies a change
of focus from one object,
selected from the index to the
set of objects related to it via an
 association role; in the end, a
single object is shown

5.6.2

CN-DEF Default selection Simulates a user choice at
the initial access of a list, thus
 selecting a default instance

5.6.3

CN-SOT Single object toolbar Content-dependent toolbar that
supports commands upon one
object

8.2.1.1

CN-MOT Multiple object toolbar Content-dependent toolbar with
commands that can be applied to
multiple objects

8.2.1.2

CN-DT Dynamic toolbar Toolbar with commands that may
vary at runtime based on the
status of the interaction

8.2.1.3

CN-MSC Multistep commands Commands that involve multiple
interaction steps

8.2.1.4

CN-CII Commands with inline
input

Collapses in the toolbar several
steps needed to perform an
action

8.2.1.5

CN-CIM&B Content-independent
 navigation bar and menu

Groups commands that do not
act upon specific objects but
shortcut the navigation or help the
user go back quickly

8.2.1.6

CN-UP Up navigation Refers to some hierarchical struc-
ture associated with the interface;
it leads the user to the superior
element in the view hierarchy

8.2.2

CN-BACK Back navigation “Back” refers to the chronology of
user interaction; it leads back to
the last visited ViewElement

8.2.2

CN-BREAD Breadcrumbs A navigation aid that shows the
user location in the application
interface

8.2.3

Appendix B: List of IFML design patterns 391

Name Title Description Section

CN-PG Paging Displays a block of objects at a
time and allows the user to scroll
rapidly through the collection

8.3.2

CN-PR Collection preview Used with CN-PG, provides a
preview of the object’s location in
the sequence and of what comes
before and after

8.3.3

CN-ALPHA Alphabetical filter Provides an alphabetic filter to
partition the collection into chunks

8.3.4

Data Entry Patterns

DE-FRM Multifield forms Form for submitting information
through several fields

5.7.1

DE-PLDF Preloaded field Variant of DE-FRM where some
fields are preloaded with an
 existing value

5.7.2

DE-PASF Pre-assigned selection
field

Form where the value of a
 selection field is preselected

5.7.3

DE-DLKP Data lookup Data entry task that involves
 looking up information for filling in
the fields

5.7.4

DE-CSF Cascade selection fields The data entry task involves
entering a set of selections that
have some kind of dependency
on one another

5.7.5

DE-WIZ Wizard Partition of a data entry procedure
into logical steps that must
be followed in a determined
sequence

5.7.6

DE-TDFP Type-dependent field
properties

Provides data entry facilities for
form fields of specific data types

8.4.1

DE-RTE Rich text editing Provides an enriched text field in
the shape of a microapplication
that embodies the commands
applicable to the text

8.4.2

DE-AUTO Input auto-completion Automatically provides
 suggestions for completing the
input based on what the user has
already typed in a field

8.4.3

DE-DYN Dynamic selection fields Occurs when the application
requires the user to input data
that have dependencies

8.4.4

DE-INPL In-place editing Allows the user to edit content
without abandoning the current
view to access a data entry form

8.4.5

(Continued)

Appendix B: List of IFML design patterns392

Name Title Description Section

DE-VAL User input validation Checks the correctness of the
user input against validation
rules and returns appropriate
 notification message(s)

8.4.6

Content Search Patterns

CS-SRC Basic search Keyword search upon a collection
of items

5.8.1

CS-MCS Multicriteria search Composite search criteria upon a
collection of items

5.8.2

CS-FSR Faceted search Allows the progressive refinement
of search results upon struc-
tured multidimensional data, by
restricting the objects that match
the query based on their property
values

5.8.3

CS-RSRC Restricted search Restricts the search focus to
specific subcollections when
searching large collections

8.5.1

CS-SRCS Search suggestions Exploits the auto-completion
pattern and requires the logging
of keywords previously inserted
by the users; logged keywords
matching the current user input
are shown sorted by frequency

8.5.2

GEO-LAS Location-aware search Enables search of items that are
related and close to the current
user position

8.10.1

Content Management Patterns

CM-OCR Object creation Enables the creation of a new
object in a data storage

6.3.2

CM-OACR Object and association
creation

Creates a new object and sets its
associations to other objects

6.3.3

CM-ODL Object deletion Deletes one or more objects of a
given class

6.3.4

CM-CODL Cascaded deletion Removes a specific object and all
the objects associated with it via
one or more associations

6.3.5

CM-OM Object modification Updates one or more objects of a
given class

6.3.6

CM-AM Association
management

Used to create, replace, or delete
instances of an association, by
connecting or disconnecting
some objects of the source and
target classes

6.3.7

Appendix B: List of IFML design patterns 393

Name Title Description Section

CM-NOTIF Notification The interface is updated
 (typically asynchronously) by the
 occurrence of a system generated
event

6.3.8

CM-CBCM Class-based content
management

Addresses the creation,
 modification and deletion of
an object and its association
instances

8.6.1

CM-PBCM Page-based content
management

Supports blogs and page-based
content management systems;
management of whole pages is
allowed

8.6.2.

Identification and Authorization Patterns

IA-LOGIN Login Recognizes and checks the valid-
ity of a user-provided identity

8.7.1

IA-LOGOUT Logout Clears user’s authenticated iden-
tity preserved in the application
navigation context upon explicit
user request

8.7.2

IA-CEX Context expiration
notification

The authenticated identity of the
user is cleared by the system for
security reasons or because of
timeout

8.7.3

IA-SPLOG Login to a specific
ViewContainer

Recognizes and checks the valid-
ity of a user-provided identity and
enables access to a specific part
of the user interface

8.7.4

IA-ROLE User role display and
switching

Displays the user role and allows
change of role

8.7.5

IA-RBP and
IA-NRBP

(Negative) role-based
permissions for view
elements

Implements (possibly negative)
access permissions at the view
level that depend on the user’s
role

8.7.6
8.7.7

IA-OBP Object-based
permissions

Access control is expressed over
the content objects and personal-
ization associations in the content
model

8.7.8

IA-PRO User profile display and
management

Shows and enables the editing of
application-dependent information
associated with the identity of an
authenticated user

8.7.9

IA-IPSI In-place sign-in When the user attempts to trigger
an action, the user is warned
of the need to sign in and then
routed to the login form

8.7.10

(Continued)

Appendix B: List of IFML design patterns394

Name Title Description Section

Session Management Patterns

SES-CR Creating session data
from persistent data

Stores information in the
 navigation session by collecting
them from a persistent data
source

8.8.1

SES-PER Persisting session data Creates persistent data from user
navigation session data

8.8.2

SES-EXC Session data expiration
catching

Handles the asynchronous
notification of the expiry of the
session to the user interface by
causing an automatic refresh of
the content

8.8.3

Social Functions Patterns

SOC-AW Activity wall Logs the social activity typical of a
social network platform

8.9.1

SOC-SH Sharing, liking, and
commenting

Enables posting, comment-
ing, liking, and sharing content
produced by other community
members

8.9.2

SOC-FR Friendship management Manages a symmetric (friendship)
or asymmetric (following) associa-
tion between users

8.9.3

395

References

 [ACM01] Alur D, Crupi J, Malks D. Core J2EE patterns: best practices and design
strategies. Englewood Cliffs, NJ: Prentice Hall; 2001.

 [ALF] Object Management Group. Concrete syntax for a UML action language:
Action Language for Foundational UML [Internet]. [updated 2013; cited
n.d.] Available from: http://www.omg.org/spec/ALF/.

 [Allaire02] Allaire J. Macromedia Flash MX: a next-generation rich client. San Fran-
cisco, CA: Macromedia; 2002.

 [Android] Android Developers [Internet]. [cited 2013 Sep n.d.] Available from:
http://developer.android.com/.

 [Bales01] Bales D. Java Programming with Oracle JDBC. Sebastopol, CA: O’Reilly;
2001.

 [BBC03] Bongio A, Brambilla M, Ceri S, Comai S, Fraternali P, Matera M.
Designing data-intensive web applications. San Francisco, CA: Morgan
Kaufmann; 2003.

 [BCN92] Batini C, Ceri S, Navathe B. Conceptual database design: an entity-
relationship approach. Redwood City, CA: Benjamin-Cummings; 1992.

 [BCW12] Brambilla M, Cabot J, Wimmer M. Model-driven software engineering in
practice. N.p: Morgan & Claypool Publishers; 2012.

 [Bergsten00] Bergsten H. Java server pages. Sebastopol, CA: O’Reilly; 2000.
 [BF14] Brambilla M, Fraternali P. Large-scale model-driven engineering of web

user interaction: the WebML and WebRatio experience. Sci Comput Pro-
gram 2014;89:71–87.

 [BJR98] Booch G, Jacobson I, Rumbaugh J. The Unified Modeling Language user
guide. Reading, MA: Addison-Wesley; 2005.

 [BJV04] J. Bézivin, F. Jouault, P. Valduriez. On the Need for Megamodels. In Best
Practices for Model-Driven Software Development Workshop (co-located
with OOPSLA 2004 and GPCE 2004) Vancouver, Canada October
25, 2004.

 [BLCLNS94] Berners-Lee T, Cailliau R, Luotonen A, Frystyk Nielsen H, Secret A. The
World-Wide Web. Communication of ACM 1994;97:76–82.

 [BMU14] Brambilla M, Mauri A, Umuhoza E. Extending the Interaction Flow Mod-
eling Language (IFML) for model driven development of mobile appli-
cations front end. Mobile Web Information Systems Conference: 11th
International Conference, MobiWIS, 2014 August 27–29. Barcelona,
Spain. Proceedings 8640:176–191. N.p: Springer International Publishing;
2014.

 [Boehm88] Boehm B. A spiral model of software development and enhancement. IEEE
Computer 1988;21:61–72.

 [Booch94] Booch G. Object oriented analysis and desing with applications. 2nd ed.
Redwood City, CA: Benjamin-Cummings; 1994.

 [Borchers01] Borchers J. A pattern approach to interaction design. New York: John Wiley
& Sons; 2001.

 [BR82] Brodie ML, Ridjanovic D. On the design and specification of database trans-
actions. In: Brodie, M.L., Mylopoulos, J., Schmidt, J.W. (eds.) On Concep-
tual Modelling: Perspectives from Artificial Intelligence, Databases, and
Programming Languages, SpringerVerlag, New York 1984: 277–312.

http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0010
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0010
http://www.omg.org/spec/ALF/
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0020
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0020
http://developer.android.com/
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0030
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0030
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0035
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0035
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0035
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0040
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0040
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0045
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0045
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0050
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0055
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0055
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0055
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0060
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0060
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0865
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0865
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0865
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0865
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref8865
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref8865
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0070
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0070
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0070
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0070
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0070
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0070
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0075
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0075
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0080
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0080
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0085
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0085
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0090
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0090
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0090
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0090

References396

 [Brambilla11] Brambilla M. From requirements to implementation of ad-hoc social
web applications: an empirical pattern-based approach. IET Software
2011;6:114–26. http://dx.doi.org/10.1049/iet-sen.2011.0041. IET 2011.

 [Brusilovsky01] Brusilovsky P. Adaptive Hypermedia. User modeling and user-adapted
interaction 2001;11:87–210.

 [CF01] Comai S, Fraternali P. A semantic model for specifying hypermedia
applications using WebML. International Semantic Web Workshop, Infra-
structure and Applications for the Semantic Web. Stanford, CA: Stanford
University; 2001 July 30–31. Available at: http://webml.org/webml/upload/
ent5/1/SemanticWeb01.pdf.

 [CFM02] Ceri S, Fraternali P, Matera M. Conceptual modeling of data-intensive web
applications. IEEE Internet Computing 2002;6:20–30.

 [CFP99] Ceri S, Fraternali P, Paraboschi S. Design principles for data-intensive web
sites. SIGMOD Record 1999;28:84–9.

 [CS13] Chaffer J, Swedberg K. Learning jQuery. 4th ed. Birmingham, UK: Packt
Publishing; 2013.

 [CL11] Charland A, Leroux B. Mobile application development: web vs. native.
Communication of the ACM 2011;54:49–53.

 [Chen76] Chen PP. The entity-relationship model: toward a unified view of data.
ACM TODS 1976;1:9–36.

 [CKLMR97] Colby LS, Kawaguchi A, Lieuwen DF, Mumick IS, Ross KA. Sup-
porting multiple view maintenance policies. ACM SIGMOD Record
1997;26:405–16.

 [Conallen00] Conallen J. Building web applications with UML (2nd Edition). Reading,
MA: Addison Wesley; 2002.

 [Conallen99] Conallen J. Modeling web application architectures with UML. Communi-
cations of the ACM 1999;42:63–70.

 [CY90] Coad P, Yourdon E. Object-oriented design. Englewood Cliffs, NJ: Prentice
Hall International; 1990.

 [Date95] Date C. An introduction to database systems. 7th ed. Reading, MA:
 Addison-Wesley; 1999.

 [David13] David M. HTML5: designing rich internet applications. 2nd ed. Burling-
ton, MA: Focal Press; 2012.

 [DFAB98] Dix A, Finlay J, Abowd G, Beale R. Human–computer interaction. 2nd ed.
Englewood Cliffs, NJ: Prentice Hall; 1998.

 [EN94] El-Masri R, Navathe SB. Fundamentals of database systems. 3rd ed. Read-
ing, MA: Addison-Wesley; 2000.

 [EP00] Eriksson HE, Penker M. Business modeling with UML. New York: John
Wiley & Sons; 2000.

 [Erickson14] Erickson T. The interaction design patterns page [Internet]. [cited 2014
Aug n.d.] Available from: http://www.visi.com/∼snowfall/Interaction
Patterns.html.

 [Fincher14] Fincher S. The pattern gallery [Internet]. [cited 2014 Aug n.d.] Available
from: http://www.cs.kent.ac.uk/people/staff/saf/patterns/gallery.html.

 [FFG+03] Fincher S, Finlay J, Greene S, Jones L, Matchen P, Thomas J, Molina
PJ. Perspectives on HCI patterns: concepts and tools. In Ext. Proc. of
CHI’2003. New York: ACM Press; 2003. p. 1044–5.

http://dx.doi.org/10.1049/iet-sen.2011.0041
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0100
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0100
http://www.visi.com/%7Esnowfall/InteractionPatterns.html
http://www.visi.com/%7Esnowfall/InteractionPatterns.html
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0110
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0110
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0115
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0115
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0120
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0120
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0125
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0125
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0130
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0130
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0135
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0135
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0135
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0140
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0140
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0145
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0145
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0150
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0150
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0155
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0155
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0160
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0160
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0165
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0165
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0170
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0170
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0175
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0175
http://www.visi.com/%7Esnowfall/InteractionPatterns.html
http://www.visi.com/%7Esnowfall/InteractionPatterns.html
http://www.cs.kent.ac.uk/people/staff/saf/patterns/gallery.html
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0190
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0190
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0190

References 397

 [FKH06] Falb J, Kaindl H, Horacek H, Bogdan C, Popp R, Arnautovic E. A dis-
course model for interaction design based on theories of human com-
munication. In: Extended Abstracts on Human Factors in Computing
Systems; 2006 Apr 22–27. Montreal. New York: ACM Press; 2006.
p. 754–9.

 [FLMM04] Fraternali Piero, Luca Lanzi Pier, Matera Maristella, Maurino Andrea.
Exploiting conceptual modeling for web application quality evaluation.
In: Proceedings of the 13th international world wide web confer-
ence on alternate track papers and posters; 2004 n.d., n.p. New York:
ACM Press; 2004. p. 342–3. Available at: https://www.researchgate.
net/ publication/221022826_Exploiting_conceptual_modeling_for_web_
application_quality_evaluation.

 [Fowler03] Fowler M. UML distilled: a brief guide to the Standard Object Modeling
Language. 3rd ed. Reading, MA: Addison-Wesley; 2003.

 [FP00] Fraternali P, Paolini P. Model-driven development of web applications: the
AutoWeb system. ACM Trans. Inf. Syst 2000;18. 323–2.

 [FCBT10] Fraternali P, Comai S, Bozzon A, Toffetti Carughi G. Engineering rich
internet applications with a model-driven approach. TWEB 2010:4. n.p.

 [FTM01] Ferreira De Oliveira MC, Turine MAS, Masiero PC. A statechart-
based model for modeling hypermedia applications. ACM TOIS
2001;19:28–52.

 [fUML] OMG. Semantics of a foundational subset for executable UML
models [Internet]. [updated 2011; cited n.d.] Available from:
http://www.omg.org/spec/FUML/.

 [FVB06] Folmer E, van Welie M, Bosch J. Bridging patterns: an approach to
bridge gaps between SE and HCI. Information and Software Technology
2006;48:69–89.

 [GBM86] Greenspan SJ, Borgida A, Mylopoulos J. A requirements modeling lan-
guage and its logic. IS 1986;11:9–23.

 [GHJV95] Gamma E, Helm R, Johnson R, Vlissedes J. Design patterns: elements of
reusable object oriented software. Reading, MA: Addison-Wesley; 1995.

 [GLM01] Génova G, Llorens J, Martínez P. Semantics of the minimum multiplicity
in ternary associations in UML. In: Gogolla M, Kobryn C, editors. The
Unified Modeling Language: modeling languages, concepts, and tools:
Proceedings of the 4th International Conference; 2001 Oct 1–5. Toronto,
Canada. Berlin: Springer; 2001. p. 329–41.

 [GPS93] Garzotto F, Paolini P, Schwabe DHDM. a model-based approach to
hypertext application design. ACM Transactions on Information Systems
1993;11:1–26.

 [GP99] Gulutzan P, Pelzer T. SQL-99 complete, really. Lawrence, KS: R&D
Books; 1999.

 [GR93] Gray J, Reuter A. Transaction processing: concepts and techniques. San
Mateo, CA: Morgan Kaufmann; 1993.

 [GVBA99] Grefen PWPJ, Vonk J, Boertjes E, Apers PMG. Semantics and architecture
of global transaction support in workflow environments. In: Proceedings
of CoopIS ‘99 1999:348–59. Available at: http://www.informatik.uni-trier.
de/~ley/db/conf/coopis/coopis99.html.

http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0195
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0195
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0195
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0195
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0195
https://www.researchgate.net/publication/221022826_Exploiting_conceptual_modeling_for_web_application_quality_evaluation
https://www.researchgate.net/publication/221022826_Exploiting_conceptual_modeling_for_web_application_quality_evaluation
https://www.researchgate.net/publication/221022826_Exploiting_conceptual_modeling_for_web_application_quality_evaluation
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0205
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0205
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0210
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0210
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0215
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0215
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0220
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0220
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0220
http://www.omg.org/spec/FUML/
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0230
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0230
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0230
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0235
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0235
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0240
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0240
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0245
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0245
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0245
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0245
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0245
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0250
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0250
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0250
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0255
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0255
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0260
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0260
http://www.informatik.uni-trier.de/%7eley/db/conf/coopis/coopis99.html%20
http://www.informatik.uni-trier.de/%7eley/db/conf/coopis/coopis99.html%20

References398

 [HB11] Hoober S, Berkman E. Designing mobile interfaces. Sebastopol, CA:
O’Reilly Media; 2011.

 [HBR94] Hardman L, Bulterman D, van Rossum G. The Amsterdam hypermedia
model: adding time and context to the dexter model. Communications of
the ACM 1994;97:50–62.

 [iOS] iOS Dev Center [Internet]. [cited 2013 Sep n.d.] Available from:
https://developer.apple.com /devcenter/ios/index.action.

 [ISB95] Isakowitz T, Sthor EA, Balasubranian P. RMM a methodology for struc-
tured hypermedia design. Communications of the ACM 1995;38:34–44.

 [Jacobson94] Jacobson I. Object-oriented software engineering: a use case driven
approach. Reading, MA: Addison-Wesley; 1994.

 [JavaSwing] Package javax.swing [Internet]. [cited 2013 Sep n.d.] Available from:
http://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html.

 [JBR99] Jacobson I, Booch G, Rumbaugh J. The unified software development pro-
cess. Reading, MA: Addison-Wesley; 1999.

 [Kelly08] Kelly S, Tolvanen J-P. Domain-specific modeling: enabling full code gen-
eration. New York: Wiley-IEEE Computer Society Press; 2008.

 [Kiss07] Kiss C. Composite capability/preference profiles (CC/PP): struc-
ture and vocabularies 2.0, W3C working draft [Internet]. [updated
2007 Apr 30; cited 2013 Sep n.d.] Available from: http://www.w3.org/
TR/2007/WD-CCPP-struct-vocab2-20070430.

 [Klyne04] Klyne G, Reynolds F, Woodrow C, Ohto H, Hjelm J, Butler MH, Tran L.
Composite capability/preference profiles (CC/PP): structure and vocabular-
ies 1.0, W3C recommendation [Internet]. [updated 2004 Jan n.d.; cited 2013
Sep n.d.] Available from: http://www.w3.org/TR /CCPP-struct-vocab/.

 [Kobsa01] Kobsa A. Generic user modeling systems. User modeling and user-adapted
interaction 2011;11:49–63.

 [Kopparapu02] Kopparapu C. Load balancing servers, firewalls, and caches. New York:
John Wiley & Sons; 2002.

 [Kruchten99] Kruchten P. The rational unified process: an introduction. Reading, MA:
Addison-Wesley; 1999.

 [Laurent01] St. Laurent S. XML: a primer. 3rd ed. New Jersey: John Wiley & Sons; 2001.
 [LVM04] Limbourg Q, Vanderdonckt J, Michotte B, Bouillon L, Florins MUSIXML.

a user interface description language supporting multiple levels of indepen-
dence. In: Matera M, Comai S, editors. Engineering advanced web applica-
tions: proceedings of workshops in connection with the 4th international
conference on web engineering (ICWE 2004); 2004 July 28–30. Munich,
Germany. Princeton, NJ: Rinton Press; 2004. p. 325–38.

 [MR92] Mannila H, Räihä KJ. The design of relational databases. Reading, MA:
Addison-Wesley; 1992.

 [MA01] Menasce DA, Almeida VAF. Scaling for e-business: technologies, models,
performance, and capacity planning. Englewood Cliffs, NJ: Prentice Hall;
2001.

 [Meier12] Meier R. Professional Android 4 application development. 3rd ed. New
York: Wrox; 2012.

 [MBS11] Meixner G, Breiner K, Seissler M. Model-driven useware engineering. In:
Hussmann H, Meixner G, Zuehlke D, editors. Model-driven development
of advanced user interfaces studies. Heidelberg: Springer; 2011. p. 1–26.

http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0270
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0270
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0275
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0275
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0275
http://https://developer.apple.com%20/devcenter/ios/index.action
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0280
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0280
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0285
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0285
http://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0290
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0290
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0295
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0295
http://www.w3.org/TR/2007/WD-CCPP-struct-vocab2-20070430
http://www.w3.org/TR/2007/WD-CCPP-struct-vocab2-20070430
http://www.w3.org/TR%20/CCPP-struct-vocab/
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0310
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0310
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0315
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0315
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0320
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0320
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0325
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0330
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0330
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0330
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0330
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0330
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0330
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0335
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0335
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0340
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0340
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0340
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0345
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0345
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0350
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0350
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0350

References 399

 [MBW80] Mylopoulos J, Bernstein PA, Wong HKT. A language facility for design-
ing database-intensive applications. Transactions on Database Systems
1980;5:185–207.

 [Meyer88] Meyer B. Object-oriented software construction. 2nd ed. Englewood Cliffs,
NJ: Prentice Hall; 2000.

 [MPS04] Mori G, Paternò F, Santoro C. Design and development of multidevice
user interfaces through multiple logical descriptions. IEEE Transactions on
Software Engineering 2004;30:507–20.

 [NB12] Nielsen J, Bodiu R. Mobile usability. San Francisco, CA: New Riders;
2012.

 [Neil12] Neil T. Mobile design pattern gallery. Sebastopol, CA: O’Reilly; 2012.
 [Nielsen00] Nielsen J. Designing web usability: the practice of simplicity. San Fran-

cisco, CA: New Riders; 1999.
 [Nixon12] Nixon R. Learning PHP, MySQL, JavaScript, and CSS: a step-by-step guide

to creating dynamic websites. 2nd ed. Sebastopol, CA: O’Reilly; 2012.
 [NM01] Naiburg EJ, Maximchuck RA. UML for database design. Reading, MA:

Addison-Wesley; 2001.
 [PSC12] Palmieri M, Singh I, Cicchetti A. Comparison of cross-platform mobile

development tools. In: 16th International Conference on Intelligence in Next
Generation Networks; 2012 Oct 8–11. Berlin. N.p: IEEE; 2012. p. 179–86.
Available at: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6376
023&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%
3Farnumber%3D6376023.

 [Popescu12] Popescu A. Geolocation API specification, editor’s draft (for W3C pro-
posed recommendation) [Internet]. [updated2012 May n.d.; cited 2013 Sep
n.d.] Available from: http://dev.w3.org/geo/api/spec-source.html.

 [PSS09] Paternò F, Santoro C, Spano LD. Maria: A universal, declarative, mul-
tiple abstraction-level language for service-oriented applications in ubiq-
uitous environments. ACM Transactions on Computer-Human Interaction
2009;16(19):1–19. 30.

 [Rabin10] Rabin J, Trasatti A, Hanrahan R, eds. Device description repository core
vocabulary, W3C working group note [Internet]. [updated 2008 Apr 14;
cited n.d.] Available from: http://www.w3.org/TR/ddr-core-vocabulary/.

 [RB12] Raj R, Babu Tolety S. A study on approaches to build cross-platform
mobile applications and criteria to select appropriate approach. Kochi,
Kerala, India: IEEE INDICON Conference; 2012 Dec 7–9. Available at:
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6410222.

 [RBPEL91] Rumbaugh J, Blaha M, Premerlani W, Eddy F, Lorenson W. Object-
oriented modeling and design. Englewood Cliffs, NJ: Prentice Hall;
1991.

 [RMB13] Raneburger D, Meixner G, Brambilla M. Platform-independence in
model-based multi-device UI development. In: Proceedings of ICSOFT.
2013. p. 265–72. Available at: http://link.springer.com/chapter/10.1007
%2F978-3-662-44920-2_12.

 [RPK11] Raneburger D, Popp R, Kavaldjian S, Kaindl H, Falb J. Optimized GUI
generation for small screens. In: Hussmann H, Meixner G, Zuehlke D, edi-
tors. Model-driven development of advanced user interfaces studies; 2011.
Heidelberg: Springer; 2011. p. 107–22.

http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0355
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0355
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0355
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0360
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0360
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0365
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0365
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0365
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0370
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0370
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0375
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0380
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0380
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0385
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0385
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0390
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0390
http://ieeexplore.ieee.org/xpl/login.jsp?tp=%26arnumber=6376023%26url=http%253A%252F%252Fieeexplore.ieee.org%252Fxpls%252Fabs_all.jsp%253Farnumber%253D6376023
http://ieeexplore.ieee.org/xpl/login.jsp?tp=%26arnumber=6376023%26url=http%253A%252F%252Fieeexplore.ieee.org%252Fxpls%252Fabs_all.jsp%253Farnumber%253D6376023
http://ieeexplore.ieee.org/xpl/login.jsp?tp=%26arnumber=6376023%26url=http%253A%252F%252Fieeexplore.ieee.org%252Fxpls%252Fabs_all.jsp%253Farnumber%253D6376023
http://dev.w3.org/geo/api/spec-source.html
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0405
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0405
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0405
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0405
http://www.w3.org/TR/ddr-core-vocabulary/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6410222
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0415
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0415
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0415
http://link.springer.com/chapter/10.1007%252F978-3-662-44920-2_12
http://link.springer.com/chapter/10.1007%252F978-3-662-44920-2_12
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0425
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0425
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0425
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0425

References400

 [RS02] Rabinovich M, Spatscheck O. Web caching and replication. Reading, MA:
Addison-Wesley; 2002.

 [Sano96] Sano D. Designing large scale web sites: a visual design methodology. New
York: John Wiley & Sons; 1996.

 [SF89] Stotts P, Furuta R. Petri-net-based hypertext: document structure with
browsing semantics. TOIS 1989;7:3–29.

 [Shackel91] Shackel B. Usability: context, framework, definition, design, and evalua-
tion. In: Shackel B, Richardson S, editors. Human factors for informatics
usability. Cambridge, UK: Cambridge University Press; 1991. p. 21–38.

 [Shasha92] Shasha D. Database tuning: a principled approach. Englewood Cliffs, NJ:
Prentice Hall; 1992.

 [SM88] Schlaer S, Mellor S. Object oriented system analysis: modeling the world
in data. Englewood Cliffs, NJ: Prentice Hall; 1988.

 [SPCJ10] Shneiderman B, Plaisant C, Cohen M, Jacobs S. Designing the user inter-
face: strategies for effective human-computer interaction. 5th ed. Reading,
MA: Addison-Wesley; 2010.

 [SR95] Schwabe D, Rossi G. The object-oriented hypermedia design model. Com-
munication of ACM 1995;38:45–6.

 [Starr02] Starr L. Executable UML: how to build class models. Englewood Cliffs,
NJ: Prentice-Hall; 2002.

 [SWJ98] Schneider G, Winters JP, Jacobson I. Applying use cases: a practical guide.
Reading, MA: Addison-Wesley; 1998.

 [VM10] Vanderdonckt J, Simarro FM. Generative pattern-based design of user
interfaces. In: PEICS ‘10 Proceedings of the 1st International Workshop on
Pattern-Driven Engineering of Interactive Computing Systems; 2010 June
20. Berlin, Germany. New York: ACM; 2010. p. 12–9.

 [Voelter13] Voelter M. DSL engineering: designing, implementing, and using domain-
specific languages. N.p.: CreateSpace 2013.

 [WK03] Warmer J, Klepp A. The Object Constraint Language: getting your models
ready for MDA. 2nd ed. Reading, MA: Addison-Wesley; 2003.

 [Walls11] Walls C. Spring in action. 3rd ed. Shelter Island, NY: Manning Publica-
tions; 2011.

 [WW13] Wheeler W. White J. Spring in practice. Shelter Island, NY: Manning Pub-
lications; 2013.

 [ZP92] Zheng Y, Pong M. Using statecharts to model hypertext. ECHT
1992;1992:242–50.

http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0430
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0430
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0435
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0435
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0440
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0440
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0445
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0445
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0445
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0450
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0450
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0455
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0455
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0460
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0460
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0460
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0465
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0465
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0470
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0470
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0475
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0475
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0480
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0480
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0480
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0480
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0485
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0485
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0490
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0490
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0495
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0495
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0500
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0500
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0505
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0505

401

Index

Note: Page numbers followed by “b”, “f” and “t” indicate boxes, figures and tables respectively.

A
Access objects, 38–39
Access subschema designing, 41–43
Acme Domain model, 338
Action design, 342
Action Language for fUML (ALF), 380
Action server-side script, 298f
ActionEvent, 117b
Actions, 116–118, 116b
ActivationExpression, 59b, 364

e-mail application interface, 365f
Activity wall (AW), 225
ALF. See Action Language for fUML
Alphabetical filter pattern (ALPHA filter pattern),

196, 196f
AM pattern. See Association management pattern
AND-OR tree, 363–364, 363f
Android, 279
Android development environment,

322–323, 322f
IFML mapping, 323–330

Application implementation. See also Interaction
Flow Modeling Language (IFML)

bibliographic notes, 333–334
IFML platform-independence, 279
mapping for exemplary platforms, 280t–281t
mobile application, 321–330
presentation frameworks, 301–316
RIA, 316–320, 317f
URE-HTML page templates, 282–301

Architecture design, 17
Area, 145b
Association management pattern (AM pattern),

128–129
Association roles. See Associations—ends
Associations, 32–34

ends, 33
Attributes, 26–27

built-in data types, 29t
graphic notation, 29f
type and visibility, 29–30

Auto-completion pattern, 198
Automatic documentation, 353–354
AW. See Activity wall

B
Basic search pattern, 99
Best-effort rule, 367

Binary association, 33
Breadcrumb, 187–190, 191f
Business action modeling, 115

actions, 116–118
business action patterns, 119–131
e-mail application example, 131–136
notification, 119

Business action patterns, 119
AM pattern, 128–129
CODL pattern, 123–125
content management patterns, 119
NOTIF pattern, 130–131
OACR pattern, 120–122
OCR pattern, 120
ODL pattern, 122–123
OM pattern, 125–128

Business logic, 377
design, 336
implementation, 17–18
modeling, 17

Business models, 377

C
“CameraCanvas”, 155
Cameras, 155
Cascade selection field pattern (CSF pattern), 98
Cascaded deletion pattern (CODL pattern),

123–125
Cascaded index. See Multilevel master detail

(MLMD pattern)
Categorizing class, 42
CBCM. See Class-based content management
CEX. See Context expiration notification
CII. See Commands with inline input
CIM&B. See Content-independent navigation bars

and menus
Class instances. See Objects
Class-based content management (CBCM),

205–208, 207f
Classes, 25–26
CMS. See Content management systems
CMWA. See Composite work area
Code generation, 346

for mobile applications, 350
for rich internet application, 346–350
for web application, 346–350

Code-level debugging, 351
CODL pattern. See Cascaded deletion pattern

Index402

Collection PR pattern. See Collection preview
pattern

Collection preview pattern (Collection PR pattern),
192–196, 195f

Commands with inline input (CII), 184
Comments module, 243–244
Common Warehouse Metamodel diagram (CWM

diagram), 4
Component extensions, 140, 148–152, 155

dynamically-sorted list, 149–150
Nested list, 151–152, 152b
Scrollable list, 150–151, 151b
table, 141–144
tree explorer, 140

ComponentPart extensions, 144
Composite work area (CMWA), 63
Conflict resolution strategy (CRS), 370

priority-based, 371f
specificity-based, 372f

Container extensions, 145–147, 154–155
Content

content-dependent navigation, 77
ContentBinding, 81b
dependencies, 81–83
management patterns, 119, 205

CBCM, 205–208, 207f
PBCM, 208, 209f

model, 377
pattern, 190

ALPHA filter pattern, 196, 196f
Collection PR pattern, 192–196, 195f
MMD pattern, 190–192, 193f
PG pattern, 192, 194f

previewing, 190–196
publishing, 190–196
scrolling, 190–196

Content management systems (CMS), 68
Content-independent

NavigationFlow, 373–374
toolbars, 184

Content-independent navigation bars and menus
(CIM&B), 184–186

Context, 59–61, 59b
extensions, 153–154

Context expiration notification (CEX),
210–213

ContextDimension, 59b
ContextVariable object, 47, 60, 60b
Cooperative work, 351–353
Core objects, 38
Core package, 360
Core subschema designing, 40–41
CRS. See Conflict resolution strategy

CSF pattern. See Cascade selection field pattern
CWM diagram. See Common Warehouse

Metamodel diagram

D
Data access object (DAO), 310
Data entry, 197. See also Search patterns

extensions, 89–91
input data validation, 203–204
patterns, 93

Auto-completion, 198, 200f
CSF, 98
DLKP, 97–98
DYN selection fields, 201, 202f
FRM, 93–94
INPL, 201, 203f
PASF, 96–97
PLDF, 94
wizard design, 99

RTE, 197
TDFP, 197, 198t

Data implementation, 17–18
Data lookup pattern (DLKP pattern),

97–98
Data mapping, 336

and alignment, 341–342
Data publishing extensions, 86–87
DataBinding, 81–83, 81b
DataFlow, 85b
DD. See Diagram definition
Default selection pattern, 92–93
Default viewcontainers, 55b
Deployment, 18
Derived association, 38f
Derived attributes, 36–37, 37f
Desktop extensions, 138. See also Web

extensions
component extensions, 140–144
componentpart extensions, 144
event extensions, 138–140

Desktop interface organization patterns, 62.
See also Mobile interface organization
patterns

CMWA, 63, 66f
MCWA, 63, 67f
MWA, 63, 65f
SWA, 62–63, 64f

Details ViewComponent, 86b
Device, 59b
DI. See Diagram interchange
Diagram definition (DD), 360
Diagram interchange (DI), 360
Dispatcher. See Front controller

Index 403

DLKP pattern. See Data lookup pattern
Domain modeling, 16–17, 25

access subschema designing, 41–43
associations, 32–34
attributes, 26–27
classes, 25–26
core subschema designing, 40–41
derived information, 36–38
design, 337–338
e-mail management application, 48f
generalization hierarchies, 31–32
identification and primary key, 27–29
interconnection subschema designing, 41
media sharing app, 233–234
OCL, 36–38
online auctions, 253–256, 255f
operations, 30
patterns and practices, 38–39
personalization subschema designing, 44–47
process of, 39–47

DT pattern. See Dynamic toolbars pattern
Dynamic finder methods, 312
Dynamic selection field pattern (DYN selection

field pattern), 201, 202f
Dynamic toolbars pattern (DT pattern), 179–181
Dynamically-sorted list, 149–150
DynamicBehavior, 83b
DynamicSortedList, 150b

E
EditableSelectionField, 144b
EditableVisualizationAttribute, 201b
Enterprise scale development, 351–353
Entity–Relationship model (E–R model), 25
Event, 52b
Event extensions, 138–139, 155

Drag and Drop, 140
flow extensions, 147–148
OnFocusLost event, 139b

Exclusive containers (XOR containers), 11–12

F
Faceted search pattern (FSR pattern),

101–103
Facets, 101
Field, 89b
Flexible interface composition, 163, 164f
Form, 89b
Foundational UML (fUML), 380
Friendship management, 228, 229f
FRM pattern. See Multi-field form pattern
Front controller, 303
Front-end modeling, 17

G
Generalization hierarchies, 31–32
GEO patterns, 228
Gestures, 161

H
“handleRequest” method, 314
“Home Page”, 53
Hypermedia Model Based on Statecharts (HMSB), 380

I
Identification and Authorization (IA), 208–209. See

also Personalization
IFML. See Interaction Flow Modeling Language
IFML in nutshell, 9. See also Interaction Flow

Modeling Language (IFML)
development process, 15–16, 16f

architecture design, 17
business logic modeling, 17
deployment, 18
domain modeling, 16–17
front-end modeling, 17
implementation, 17–18
maintenance and evolution, 18
requirements specification, 16
testing and evaluation, 18

events triggering business actions, 15f
mutually exclusive subcontainers, 12f
parameter bindings, 15f
scope and perspectives, 9–11
top-level interface structures, 12f
use cases

Bookstore application, 19f, 21f
Browse books, 20f
Browse Products, 22f–23f
“Manage cart”, 21f

ViewComponents
interaction flow, 14f
within view containers, 13f

IFML language. See also Interaction Flow
Modeling Language (IFML)

model execution, 362
ActivationExpressions, 364, 365f
active and inactive ViewComponents, 368f
event processing, 366
navigation history preservation, 367–370
parameter values conflicts, 370–371
state representation, 363
ViewComponent state, 364, 367
ViewContainer state, 362–364
ViewContainer visibility, 366–367

model integration, 375–378, 376f
specification through metamodeling, 359–362

Index404

Implementation, 17–18
In-place editing pattern (INPL pattern), 201, 203f
In-place sign-in pattern (IPSI pattern), 220, 221f
Input data validation, 203–204
Input-output dependencies, 83–85
Inter-container navigation flow traversal, 366
Interaction flow extensions, 147–148

Interaction Flow Diagram, 10
InteractionFlow navigation, 366
InteractionFlowModel, 360

Interaction Flow Modeling Language (IFML), 2,
233

design principles, 3–4
extensibility, 354–355
extensions, 137

desktop extensions, 138–144
mobile extensions, 152–161
multiscreen extensions, 161–164
web extensions, 145–152

front-end modeling, 2
mapping to RIA, 317–320
media sharing app, 233, 234f

domain model, 233–234
IFML model, 234–252, 235f
“Media SharingTop” ViewContainer, 238f

online auctions, 252–276
technical artifacts, 3

Interconnection
objects, 38
subschema designing, 41

Interface content and navigation modeling, 77
content dependencies, 81–83
data entry patterns, 93–99
e-mail application interface, 103–112
input-output dependencies, 83–85
patterns and practices, 91–93
search patterns, 99–103
ViewContainers, 78

Interface implementation, 17–18
Interface organization, 167. See also User interface

modeling
MasterPage, 169–173, 174f
mock-up of checkout process, 171f
multiscreen design pattern, 170f
pattern, 62

desktop, 62–63
mobile, 70–71
web, 63–69

reusable modules, 167–169, 172f
Intra-container navigation flow traversal, 366
IPSI pattern. See In-place sign-in pattern
Is-a hierarchy. See Generalization hierarchies

J
Java DataBase Connectivity (JDBC), 310–312
Java Enterprise Edition (JEE), 333–334
Java Persistence API (JPA), 310–312
Java Server Pages (JSP), 305
JSP Standard Template Library (JSTL), 305

L
Landmark navigation, 367
Landmark viewcontainers, 55b
Large web sites organized into areas (LWSA), 69
Linux, Apache, MySQL, PHP (LAMP), 279
List ViewComponent, 86b
Location-aware search (LAS), 228
Login to specific viewcontainer pattern (SPLOG

pattern), 213

M
Maps, 160–161
MapView, 160b
Marker, 160b
Master detail pattern (MD pattern), 92
Master multidetail pattern (MMD pattern),

190–192, 193f
MCS. See Multicriteria search pattern
MCWA. See Multiview composite work area
MD pattern. See Master detail pattern
MDA. See Model driven architecture
MDE. See Model driven engineering
Media sharing app, 233

domain model, 233–234, 235f
IFML model, 234, 235f

Comments module, 243–244
“MediaTiled” module, 249f
MediaViewer module, 237–243, 239f
search users and tags, 250–252
Tag module, 252
User module, 244–248, 248f

“Media SharingTop” ViewContainer, 238f
MediaViewer module, 237–243, 239f

refined model, 242f
“MessageWriter” ViewComponent, 135
Meta Object Facility (MOF), 3
Metamodeling, 359

extensibility, 361–362
interchange format, 362
metamodel, 360–361, 361f
profile, 362
visual notation, 362

MFE. See Multiple front-ends
MLMD pattern. See Multilevel master detail
MMD pattern. See Master multidetail pattern

Index 405

Mobile application, 321–330
Mobile extensions, 152. See also Desktop

extensions
cameras, 155
communication, 156–157
component and event extensions, 155
containers extensions, 154–155
context extensions, 153–154
gestures, 161
maps, 160–161
position, 157–160
sensors, 155

Mobile interface organization patterns, 70. See also
Web interface organization patterns

Mobile screen layout (MSL), 70–71
Modal window, 57b
Model checking, 350–351, 352f
Model debugging, 351, 353f
Model driven architecture (MDA), 3, 359
Model driven engineering (MDE), 359
Model-driven development, 335. See also

WebRatio
Modeless window, 57b
Modeling patterns. See also Interaction Flow

Modeling Language (IFML)
content

management pattern, 205–208
previewing, 190–196
publishing, 190–196
scrolling, 190–196

data entry, 197–204
GEO patterns, 228
IA, 208–220
interface organization, 167–173
navigation and orientation, 173

breadcrumb, 187–190
toolbars and menus, 174–186
up and back navigation, 186–187, 189f

personalization, 208–220
search pattern, 204
session data management, 220–224
social networks, 225–228

Model–View–Controller (MVC), 9, 10f, 301–305,
302f

mapping operations, 315–316
spring components, 304f

Module, 168b
ModuleDefinition, 167b
MOF. See Meta Object Facility
MOT pattern. See Multiple objects toolbar pattern
MSC. See Multistep commands
MSL. See Mobile screen layout

Multi-field form pattern (FRM pattern), 93–94
MultiChoice List, 87b
Multicriteria search pattern (MCS), 101
Multilevel master detail (MLMD pattern), 92
Multiple front-ends (MFE), 68–69
Multiple objects modification pattern, 128f
Multiple objects toolbar pattern (MOT pattern),

174–175
content-dependent toolbar, 178f

Multiscreen
applications, 161–163
extensions, 161–164

Multistep commands (MSC), 181–184
Multiview composite work area (MCWA), 63
Multiview work area (MWA), 63
MVC. See Model–View–Controller

N
N-ary associations, 33–36
NamedElement, 360
NavigationFlow, 52b, 366
Near field communication (NFC), 156
Negative role-based permissions pattern (NRBP

pattern), 216–217. See also Role-based
permissions pattern (RBP pattern)

Nested list, 151–152, 152b
Nested ViewContainer, 295–298
“NewsCategory” Class, 312

data access interface for, 311f
entity declaration, 311f

NFC. See Near field communication
“NFCCardReceiver” interface, 156–157
“NFCCardSender” interface, 156
Notification pattern (NOTIF pattern), 130–131
NRBP pattern. See Negative role-based permissions

pattern

O
OACR pattern. See Object and association creation

pattern
Object and association creation pattern (OACR

pattern), 120–122
Object constraint language (OCL), 36–38
Object creation pattern (OCR pattern), 120
Object deletion pattern (ODL pattern), 122–123
Object identifier (OID), 28
Object Management Group (OMG), 2
Object modification pattern (OM pattern), 125–128
Object-based permissions pattern (OBP pattern),

217
Object-relational mapping (ORM), 336
Objects, 25–26

Index406

OBP pattern. See Object-based permissions pattern
OCL. See Object constraint language
OCR pattern. See Object creation pattern
ODL pattern. See Object deletion pattern
OID. See Object identifier
OM pattern. See Object modification pattern
OMG. See Object Management Group
On-line resources, 6–7
OnDragStart event, 140b
OnDrop event, 140b
OnFocusLost event, 139b
Online auctions, 252–253

domain model, 253–256, 255f
IFML model, 256

category pages, 265–266, 267f–268f
“Collections” reusable module, 265f
home page, 261–265, 263f–264f
listings, 272–276, 273f, 275f
repeated content element, 258–261
search results, 269–272, 271f

Operations, 30, 31f
ORM. See Object-relational mapping

P
Page, 145b
Page template, 282
Page-based content management (PBCM),

208, 209f. See also Class-based content
management (CBCM)

Paging pattern (PG pattern), 192, 194f
ParameterBinding, 84b
ParameterBindingGroup, 84b
PASF pattern. See Preassigned selection field

pattern
Path, 161b
PBCM. See Page-based content management
PDO. See PHP Data Object
Personalization, 208–209

associations, 44
authentication expiration pattern, 212f
CEX, 210–213
IPSI pattern, 220, 221f
login pattern, 209–210, 211f
logout pattern, 210, 212f
NRBP pattern, 216–217
OBP pattern, 217
RBP pattern, 215–216
SPLOG pattern, 213
subschema designing, 44–47
switching pattern, 213–215, 214f
user profile display and management, 217–220,

219f
user role display, 213–215

PG pattern. See Paging pattern
“PhotoShooter” ViewContainer, 155
PHP code, 282
PHP Data Object (PDO), 291
PHP implementation

“Categories” ViewContainer, 288f
“CategoryDetails” ViewContainer, 289f
disjunctive ViewContainers, 297f
login Action, 300f
NewsCategories page, 286f
search pattern, 294f

Platform independent model (PIM), 1, 13
Platform-specific model (PSM), 13
PLDF pattern. See Preloaded field pattern
Port, 168b
PortDefinitions, 168b
Position, 59b
Preassigned selection field pattern (PASF pattern),

96–97
Preloaded field pattern (PLDF pattern), 94
Presentation design, 336, 344–346
Presentation frameworks, 301

IFML mapping, 305
mapping forms, 312–315
MVC, 301–305, 302f
MVC mapping operations, 315–316
ViewComponents mapping, 310–312
ViewContainer mapping, 305–310

Primary key, 27–29
Profile data, 44
PSM. See Platform-specific model

R
Requirements specification, 16
Restricted search pattern (RSRC pattern), 204
Reusable modules, 167–169
Rich Internet application (RIA), 316–320, 317f
Rich text editing (RTE), 197
Role-based access control system (RBAC system),

39, 60, 146
Role-based permissions pattern (RBP pattern),

215–216

S
Scrollable list, 150–151, 151b
Search interface, 250–252, 251f
Search patterns, 99, 204

basic search pattern, 99
FSR pattern, 101–103
MCS, 101
RSRC pattern, 204
search suggestions, 206f
SRCS pattern, 204

Index 407

Search suggestions pattern (SRCS pattern), 204
SelectEvent, 87b
SelectionField, 89b
Sensors, 155
Session data management, 220

creation, 222–223
expiration catching, 224
persistance, 223, 223f

Simple work area (SWA), 62–63
SimpleField, 89b
Single object modification pattern, 127f
Single object toolbar pattern (SOT pattern),

174–175
content-dependent commands, 177f
content-dependent toolbar, 176f, 179f

Single screen applications, 161–163
SiteView, 145b
Social networks, 225

AW, 225
friendship management, 228, 229f
sharing, liking, and commenting, 226–228

SOT pattern. See Single object toolbar pattern
Specialized subclass, 42
SPLOG pattern. See Login to specific viewcon-

tainer pattern
Spring architecture, 304
Spring MVC framework

IFML mapping, 305
mapping forms, 312–315
ViewComponents mapping, 310–312
ViewContainer mapping, 305–310

SRCS pattern. See Search suggestions pattern
SubmitEvent, 90b
SWA. See Simple work area
Switching pattern, 213–215, 214f
System ViewContainer, 154b, 155f
SystemEvent, 119b
SystemFlow, 119b

T
Table ViewComponent, 142b
Tag module, 252
Tree explorer, 140, 141b
TriggeringExpression, 119b
Type-dependent field properties (TDFP), 197, 198t

U
Unified Modeling Language (UML), 3
Uniform resource locator (URL), 145
Unique value, 27–28
Up and back navigation, 186–187, 189f
URE-HTML page templates, 282

actions, 298–299

attribute-based selector, 287f
context information, 299–301
dynamic page template, 283f
forms, 293–295
landmarks, 295–298
navigation across ViewContainer, 287–290
navigation within same ViewContainer, 290–293
nested ViewContainer, 295–298
PHP template, 283f
standalone ViewContainer, 284–287
ViewContainer computation steps, 282–284

URL. See Uniform resource locator
User groups, 44
User interface modeling, 51

context, 59–61
e-mail management application, 71–76
interface organization, 51–53
user interaction patterns, 62
view container

navigation, 55
nesting, 53–54
relevance and visibility, 55–57

viewpoint, 59–61
windows, 57

User module, 244–248, 248f
UserRole, 59b

V
Validation rules, 355
View container

navigation, 55
nesting, 53–54
relevance and visibility, 55–57

ViewComponents, 78, 78b, 364
computation process, 371–375
events and navigation flows, 79
extending IFML, 85–91
ViewComponentPart, 78b

ViewContainers, 51, 51b, 363–364
best-effort computation, 369f
ChoosePreferredCategory event, 374
computation steps, 282–284
controller, 306
deletion of product, 375
with landmark navigation, 373–374
navigation across, 287–290
by NavigationFlow, 288f
SelectProduct event, 374
service, 306–307, 308f
standalone, 284–287
unsuccessful deletion, 375

ViewElementEvent, 52
ViewElements, 77

Index408

ViewPoint, 59–61, 60b
Visibility propagation rules, 364
Visual notation, 362

W
Web extensions, 145

component extensions, 148–152
container extensions, 145–147
event and interaction flow extensions, 147–148

Web interface organization patterns, 63–68
LWSA, 69
MFE, 68–69

Web Modelling Language (WebML), 7
Web programming, 333
Web Real Time Communication (WebRTC), 316
WebContexts, 304
WebML. See Web Modelling Language
WebNavigationFlow, 147b
WebRatio, 335–337, 336f

Action design, 342
bibliographic notes, 357–358
code generation, 346–350
data mapping and alignment, 341–342

domain model design, 337–338
features, 350

automatic documentation, 353–354
cooperative work, 351–353
enterprise scale development,

351–353
IFML extensibility, 354–355
model checking, 350–351, 352f
model debugging, 351, 353f

IFML ViewComponent extension, 357f
interface, 337f

for action definition, 343f
content of Module, 340f
for editing IFML diagrams, 339f

page generated by, 349f
Presentation design, 344–346
project documentation generation, 354f

WebRTC. See Web Real Time Communication
Windows, 57, 57b
Wizard design pattern, 99

X
XOR containers. See Exclusive containers

	FrontCover
	Interaction FlowModeling Language
	Copyright
	Contents
	Foreword
	Chapter1 - Introduction
	1.1 WHAT IFML IS ABOUT
	1.2 THE IFML DESIGN PRINCIPLES
	1.3 HOW TO READ THIS BOOK
	1.4 ON-LINE RESOURCES
	1.5 BACKGROUND
	1.6 ACKNOWLEDGMENT
	END NOTES

	Chapter2 - IFML in a Nutshell
	2.1 SCOPE AND PERSPECTIVES
	2.2 OVERVIEW OF IFML MAIN CONCEPTS
	2.3 ROLE OF IFML IN THE DEVELOPMENT PROCESS
	2.4 A COMPLETE EXAMPLE
	2.5 SUMMARY OF THE CHAPTER
	2.6 BIBLIOGRAPHIC NOTES
	END NOTES

	Chapter3 - Domain modeling
	3.1 CLASSES
	3.2 ATTRIBUTES
	3.3 IDENTIFICATION AND PRIMARY KEY
	3.4 ATTRIBUTE TYPE AND VISIBILITY
	3.5 OPERATIONS
	3.6 GENERALIZATION HIERARCHIES
	3.7 ASSOCIATIONS
	3.8 N-ARY ASSOCIATIONS AND ASSOCIATIONS WITH ATTRIBUTES
	3.9 DERIVED INFORMATION AND THE OBJECT CONSTRAINT LANGUAGE (OCL)
	3.10 DOMAIN MODELING PATTERNS AND PRACTICES
	3.11 THE PROCESS OF DOMAIN MODELING
	3.12 RUNNING EXAMPLE
	3.13 SUMMARY OF THE CHAPTER
	3.14 BIBLIOGRAPHIC NOTES
	END NOTES

	Chapter 4 - Modeling the composition of the user interface
	4.1 INTERFACE ORGANIZATION
	4.2 VIEW CONTAINER NESTING
	4.3 VIEW CONTAINER NAVIGATION
	4.4 VIEW CONTAINER RELEVANCE AND VISIBILITY
	4.5 WINDOWS
	4.6 CONTEXT AND VIEWPOINT
	4.7 USER INTERACTION PATTERNS
	4.8 INTERFACE ORGANIZATION PATTERNS AND PRACTICES
	4.9 RUNNING EXAMPLE
	4.10 SUMMARY OF THE CHAPTER
	4.11 BIBLIOGRAPHIC NOTES

	Chapter5 - Modeling interface content and navigation
	5.1 WHAT VIEWCONTAINERS CONTAIN: VIEWCOMPONENTS
	5.2 EVENTS AND NAVIGATION FLOWS WITH VIEWCOMPONENTS
	5.3 CONTENT DEPENDENCIES: DATA BINDING
	5.4 INPUT-OUTPUT DEPENDENCIES: PARAMETER BINDING
	5.5 EXTENDING IFML WITH SPECIALIZED VIEWCOMPONENTS AND EVENTS
	5.6 CONTENT AND NAVIGATION PATTERNS AND PRACTICES
	5.7 DATA ENTRY PATTERNS
	5.8 SEARCH PATTERNS
	5.9 RUNNING EXAMPLE
	5.10 SUMMARY OF THE CHAPTER
	5.11 BIBLIOGRAPHIC NOTES
	END NOTES

	Chapter 6 - Modeling business actions
	6.1 ACTIONS
	6.2 NOTIFICATION
	6.3 BUSINESS ACTION PATTERNS
	6.4 RUNNING EXAMPLE
	6.5 SUMMARY OF THE CHAPTER
	6.6 BIBLIOGRAPHIC NOTES

	Chapter 7 - IFML extensions
	7.1 DESKTOP EXTENSIONS
	7.2 WEB EXTENSIONS
	7.3 MOBILE EXTENSIONS
	7.4 MULTISCREEN EXTENSIONS
	7.5 SUMMARY OF THE CHAPTER
	7.6 BIBLIOGRAPHIC NOTES

	Chapter 8 - Modeling patterns
	8.1 INTERFACE ORGANIZATION
	8.2 NAVIGATION AND ORIENTATION
	8.3 CONTENT PUBLISHING, SCROLLING, AND PREVIEWING
	8.4 DATA ENTRY
	8.5 SEARCH
	8.6 CONTENT MANAGEMENT
	8.7 PERSONALIZATION, IDENTIFICATION, AND AUTHORIZATION
	8.8 SESSION DATA
	8.9 SOCIAL FUNCTIONS
	8.10 GEO PATTERNS
	8.11 SUMMARY OF THE CHAPTER
	8.12 BIBLIOGRAPHIC NOTES

	Chapter9 - IFML by examples
	9.1 MEDIA SHARING APP
	9.2 ONLINE AUCTIONS
	9.3 SUMMARY OF THE CHAPTER
	END NOTES

	Chapter10 - Implementation of applications specified with IFML
	10.1 IMPLEMENTATION OF THE FRONT END FOR URE-HTML PAGE TEMPLATES
	10.2 IMPLEMENTATION OF THE FRONT END FOR PRESENTATION FRAMEWORKS
	10.3 IMPLEMENTATION OF THE FRONT END FOR RICH INTERNET APPLICATIONS
	10.4 IMPLEMENTATION OF THE FRONT END FOR MOBILE APPLICATIONS
	10.5 SUMMARY OF THE CHAPTER
	10.6 BIBLIOGRAPHIC NOTES
	END NOTES

	Chapter11 - Tools for model-driven development of interactive applications
	11.1 INTRODUCTION TO WEBRATIO
	11.2 DOMAIN MODEL DESIGN
	11.3 IFML FRONT-END DESIGN
	11.4 DATA MAPPING AND ALIGNMENT
	11.5 ACTION DESIGN
	11.6 PRESENTATION DESIGN
	11.7 CODE GENERATION
	11.8 ADVANCED FEATURES
	11.9 SUMMARY OF THE CHAPTER
	11.10 BIBLIOGRAPHIC NOTES
	END NOTES

	Chapter 12 - IFML language design, execution, and integration
	12.1 IFML LANGUAGE SPECIFICATION THROUGH METAMODELING
	12.2 IFML MODEL EXECUTION
	12.3 IFML MODELS INTEGRATION WITH OTHER SYSTEM MODELING PERSPECTIVES
	12.4 SUMMARY OF THE CHAPTER
	12.5 BIBLIOGRAPHIC NOTES

	Appendix A - IFML notation summary
	Appendix B: - List of IFML design patterns
	References
	Index

