Object Representations

Object Representation

What Objects?

- Solids (sphere, cube, cone, torus, ...)
- Flat Surfaces (plane, polygon, discs, paraboloid, hyperboloid, ...)
- Curved Surfaces (bicubic, nurbs)
- Soft or deformable (liquids, smoke, cloth, hair)

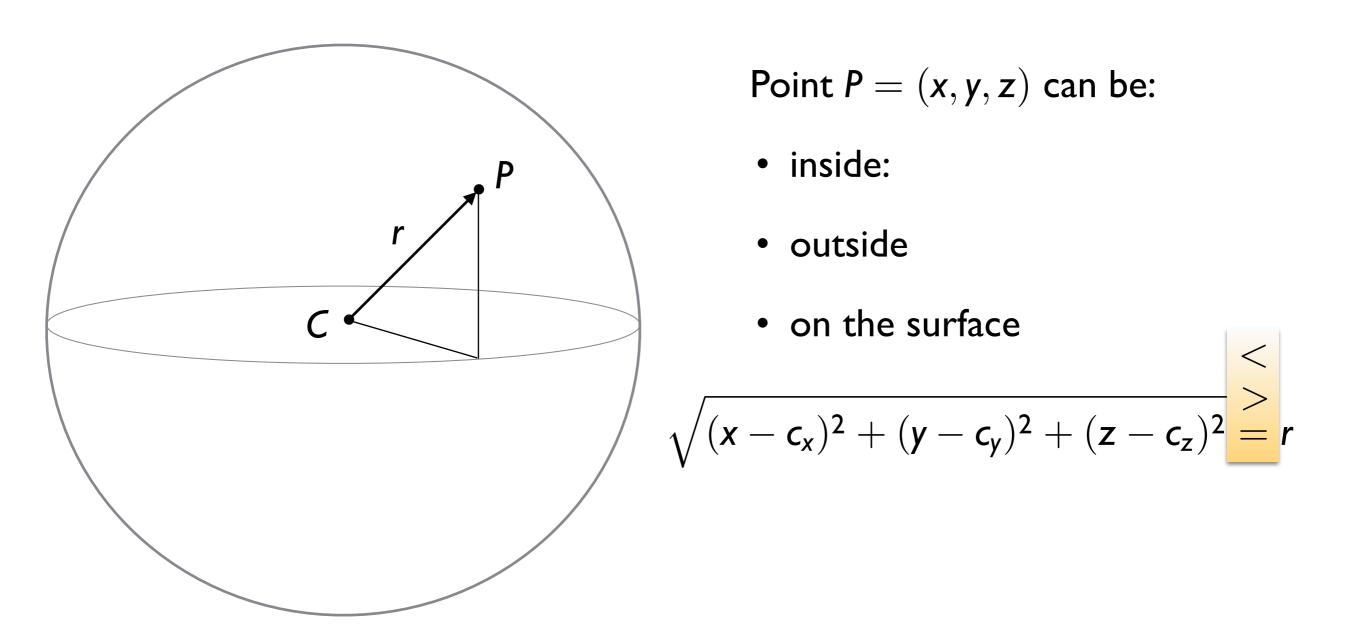
What Operations?

- Rendering on a raster engine
- Rendering on a ray tracing engine
- Compute features such as volumes, areas, etc.
- intersection, difference, union
- Distinguish between inside, outside and surface

Algebraic Representations

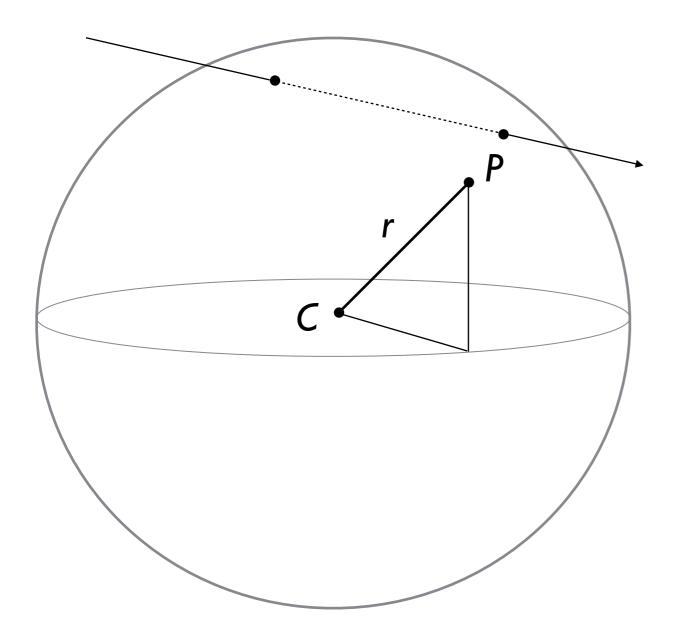
Example

Consider a sphere centred in $C = (c_x, c_y, c_z)$, with radius r.



Algebraic Representations

Example

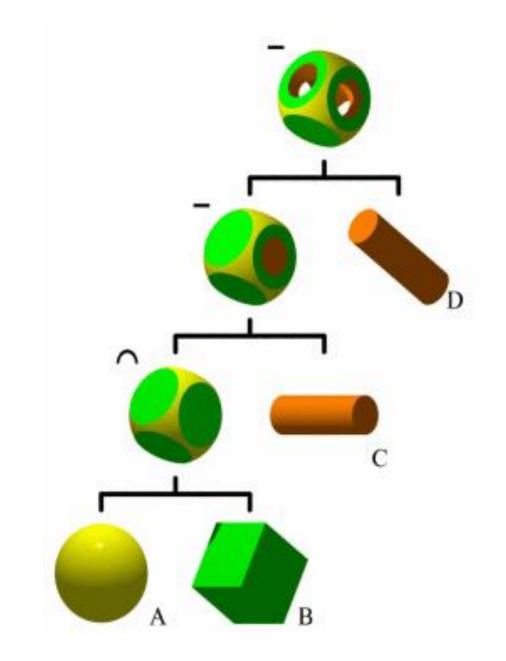


Appropriate for:

 Ray tracing: compute intersections of rays with object's surface to determine entry and exit points

Algebraic Representations

Example



Appropriate for:

Boolean set

 operations to
 build solids from
 others using
 Constructive
 Solid Geometry
 (CSG).

Spatial-Occupancy Enumeration Representation

An object is a list of voxels (3D pixels).

Each voxel may be occupied (belongs to some object) or empty

Appropriate in CAT/MRI visualisation applications

- + adjacency test
- + inside/outside test
- + boolean set operations
- no partial occupancy
- accuracy
- data structure size

Spatial-Occupancy Enumeration Representation

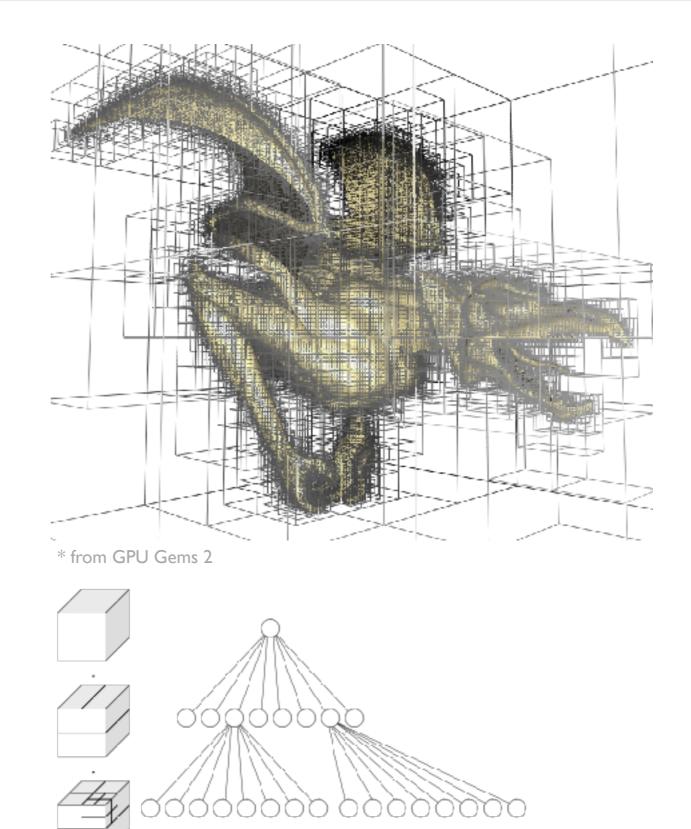
Octree based representations were introduced to reduce storage needed by regular grids of voxels.

Extension to 3D from 2D quad trees.

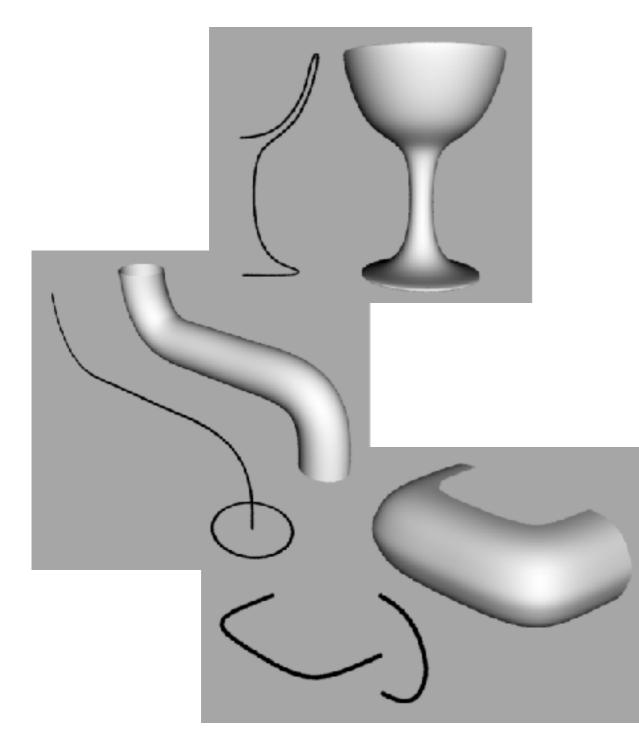
Binary subdivision of a cell along 3 axis gives 8 sub-cells.

Repeated recursively until we get an homogeneous cell or reach recursion limit.

Trees with internal nodes having 8 children.



Sweep Representations



* from <u>http://ayam.sourceforge.net</u>

Obtained by sweeping an object along a trajectory.

Translational and rotational sweeps.

Object may change in size while being swept.

- Not adequate for boolean set operations since the result is normally not a swept object.

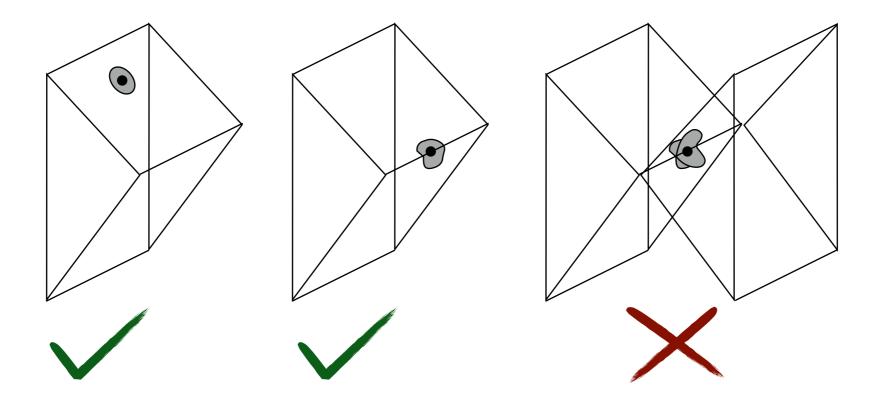
+ Volume/Area calculation may be easy

+ Appropriate for some Computer Aided Manufacturing applications

Boundary Representations (B-REPS)

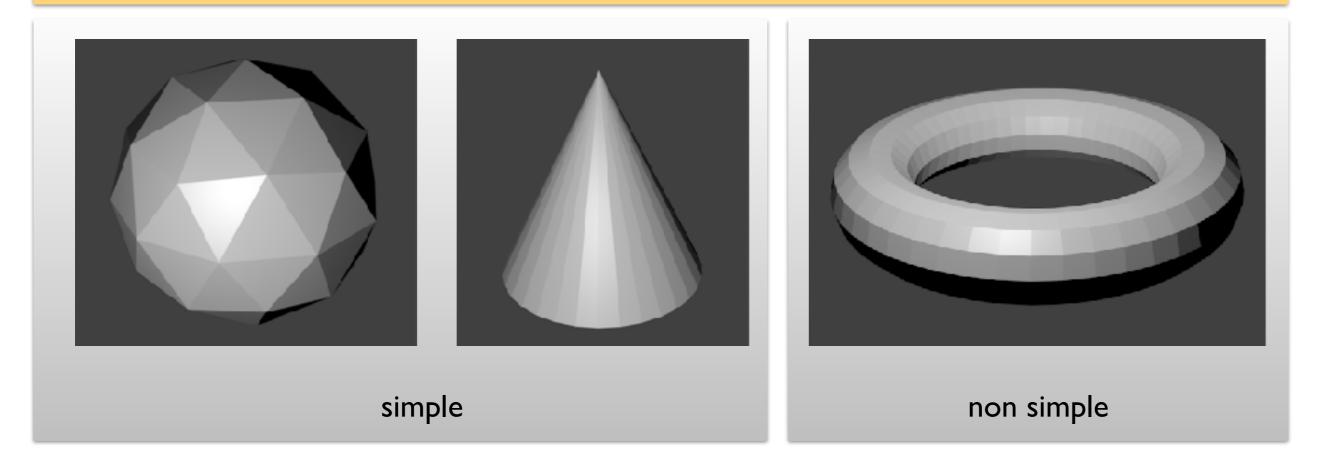
- Objects are described in terms of their surface boundaries: vertices, edges and faces
- Curved surfaces are allowed, but they are mostly approximated with polygons or with patches (bicubic or nurbs)
- Convex polygons are the most common type of face with B-REPs.
- Some systems reduce general polygons to triangles by splitting the faces.
- Many b-rep systems only support 2-manifold objects.

2-Manifold: every point on a 2-manifold has some arbitrarily small neighbourhood of points around it that can be considered topologically the same as a disk in the plane.

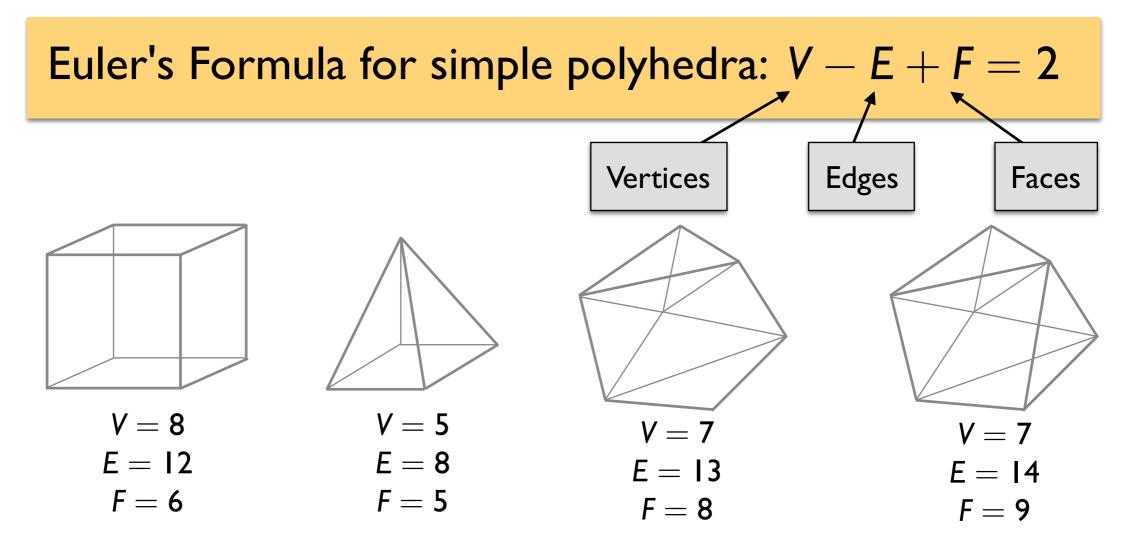


there is a continuous one-to-one correspondence between the neighbourhood of points and the disc.

Polyhedron: solid bounded by a set of polygons whose edges belong to an even number of polygons (2 for 2-manifolds).



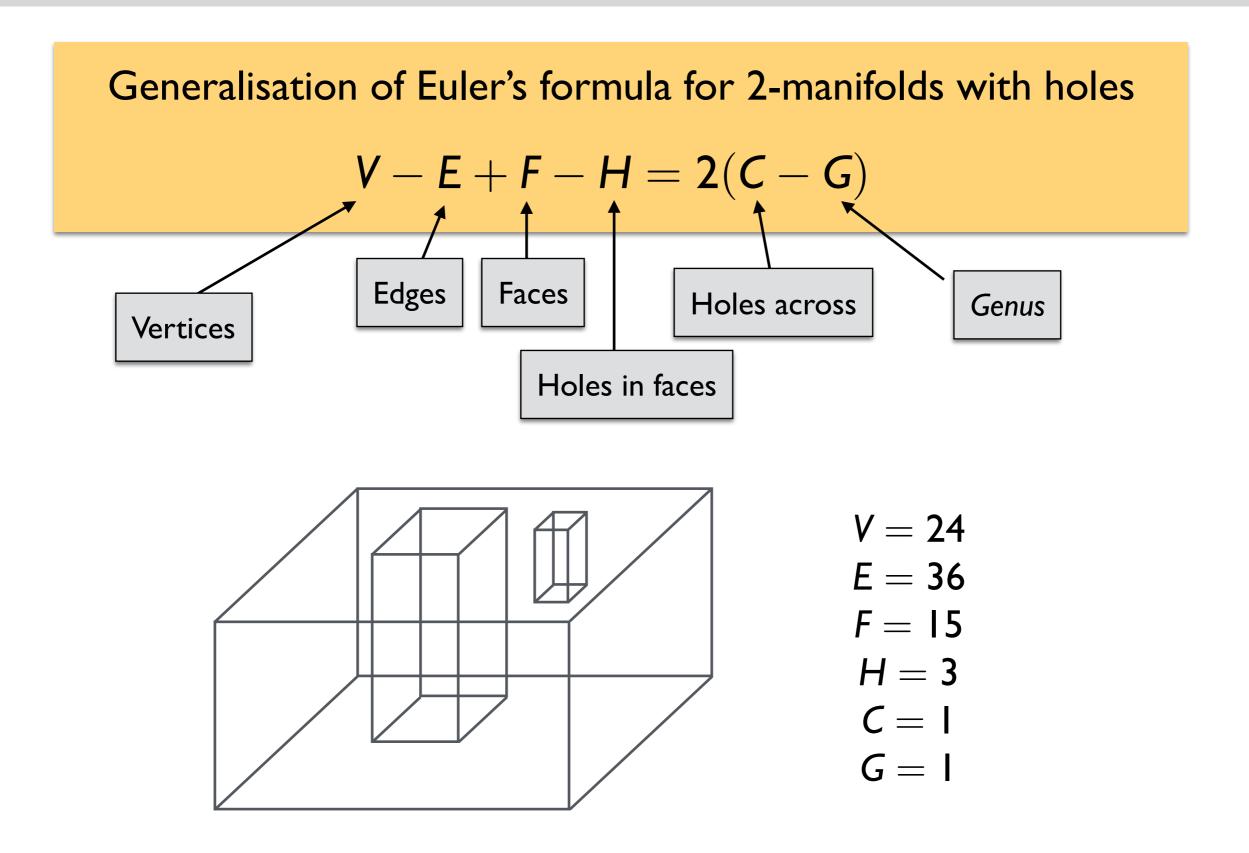
Polyhedra have flat faces, straight edges and sharp vertices. A simple polyhedron can be deformed into a sphere (no holes).



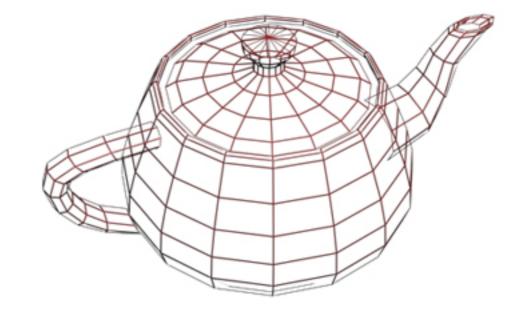
Euler's formula is **necessary** but **not sufficient** for an object to be a simple polyhedron. Other requirements:

- Each edge must connect two vertices and be shared by exactly two faces;
- At least three edges must meet at a vertex.
- Faces cannot cross each other.

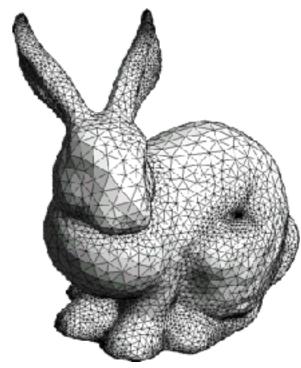
Euler's formula is also valid for curved edges and nonplanar faces (non polyhedra solids)



- To describe a mesh we need:
 - the locations of all vertices (vertex table)
 - all the edges connecting vertices (explicitly or implicitly defined)
 - All the faces that make up the model (built using vertices or edges)



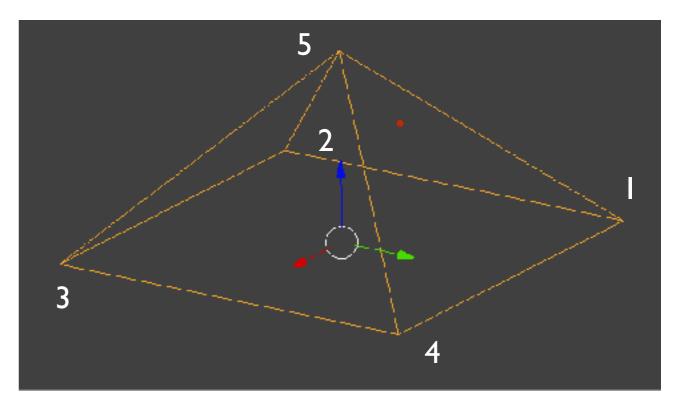
Original teapot by Martin Newell 1975

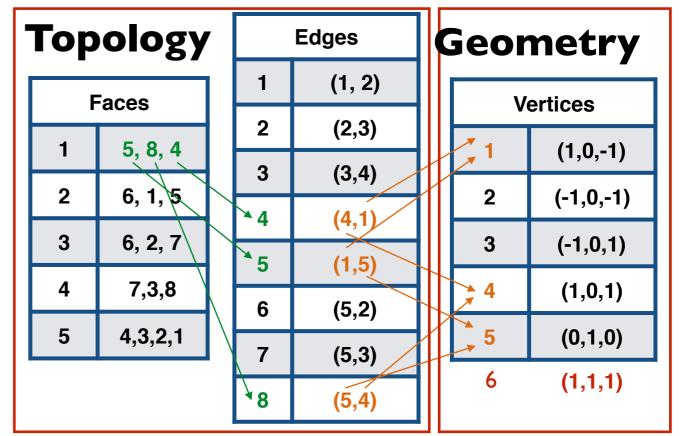


Original Stanford bunny by Greg Turk and Marc Levoy 1994

Pyramid example (explicit edges)

- Faces point to edges and edges point to vertices. Each vertex has two different ways to be reached, coming from the faces.
- This representation doesn't prevent dangling edges (edges not belonging to any face).
- Also, isolated vertices are allowed.

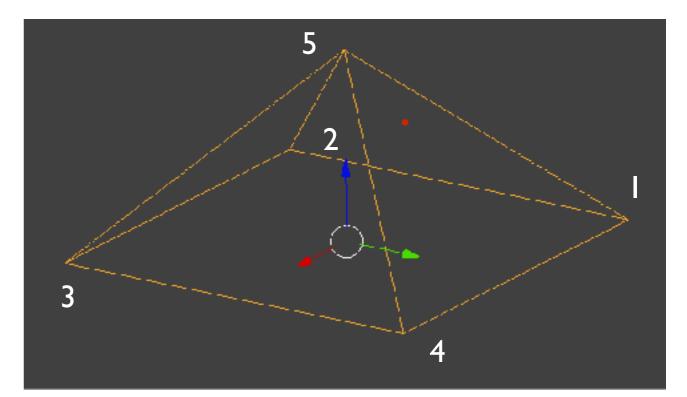


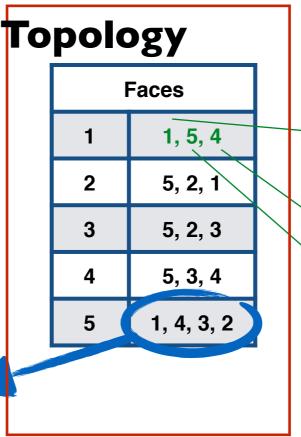


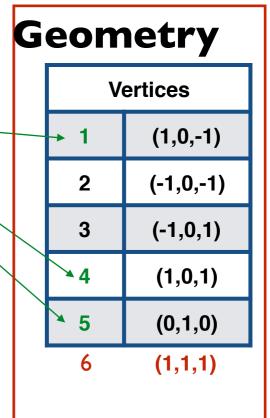
Pyramid example (implicit edges)

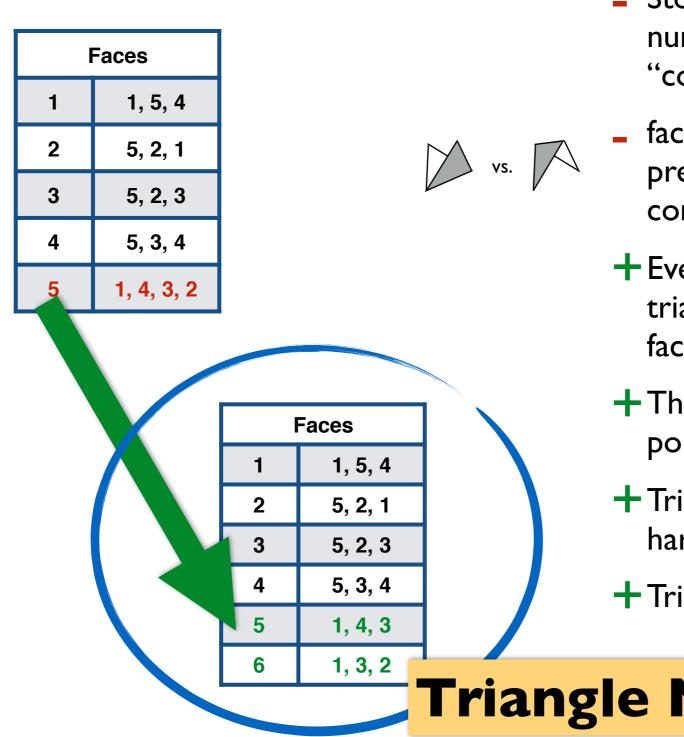
- Faces point to vertices. There is no explicit edge information.
- Edges can be retrieved from faces.
- No dangling edges are possible: all edges are those encoded in faces!
- Still, it is possible to have isolated vertices.

edges: (1,4); (4,3); (3,2); (2,1)









CIENCIAS E TECNOLOGIA

- Storing faces with an arbitrary number of vertices is not very "computer" friendly.
- faces with more than 3 vertices can present problems (non planar, non convex)
- + Every face can be subdivided into triangles (no ambiguity for planar faces)
- + The triangle is the most simple polygon (always planar)
- + Triangles are usually supported in hardware
- + Triangles are always convex

Triangle Mesh!