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   Praise for  

WebGL Programming Guide   

  “WebGL provides one of the final features for creating applications that deliver ‘the desk-
top application experience’ in a web browser, and the  WebGL Programming Guide  leads the 
way in creating those applications. Its coverage of all aspects of using WebGL—JavaScript, 
OpenGL ES, and fundamental graphics techniques—delivers a thorough education on ev-
erything you need to get going. Web-based applications are the wave of the future, and this 
book will get you ahead of the curve!”  

  Dave Shreiner , Coauthor of  The OpenGL Programming Guide, Eighth Edition ; Series Editor, 
 OpenGL Library  (Addison Wesley)  

  “HTML5 is evolving the Web into a highly capable application platform supporting beauti-
ful, engaging, and fully interactive applications that run portably across many diverse 
systems. WebGL is a vital part of HTML5, as it enables web programmers to access the 
full power and functionality of state-of-the-art 3D graphics acceleration. WebGL has been 
designed to run securely on any web-capable system and will unleash a new wave of devel-
oper innovation in connected 3D web-content, applications, and user interfaces. This book 
will enable web developers to fully understand this new wave of web functionality and 
leverage the exciting opportunities it creates.”  

  Neil Trevett , Vice President Mobile Content, NVIDIA; President, The Khronos Group  

  “With clear explanations supported by beautiful 3D renderings, this book does wonders in 
transforming a complex topic into something approachable and appealing. Even without 
denying the sophistication of WebGL, it is an accessible resource that beginners should 
consider picking up before anything else.”  

  Evan Burchard , Author,  Web Game Developer’s Cookbook  (Addison Wesley)  

  “Both authors have a strong OpenGL background and transfer this knowledge nicely over 
to WebGL, resulting in an excellent guide for beginners as well as advanced readers.”  

  Daniel Haehn , Research Software Developer, Boston Children’s Hospital  

  “ WebGL Programming Guide  provides a straightforward and easy-to-follow look at the me-
chanics of building 3D applications for the Web without relying on bulky libraries or wrap-
pers. A great resource for developers seeking an introduction to 3D development concepts 
mixed with cutting-edge web technology.”  

  Brandon Jones , Software Engineer, Google  
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  “This is more great work from a brilliant researcher. Kouichi Matsuda shows clear and con-
cise steps to bring the novice along the path of understanding WebGL. This is a complex 
topic, but he makes it possible for anyone to start using this exciting new web technology. 
And he includes basic 3D concepts to lay the foundation for further learning. This will be a 
great addition to any web designer’s library.”  

  Chris Marrin , WebGL Spec. Editor  

  “ WebGL Programming Guide  is a great way to go from a WebGL newbie to a WebGL expert. 
WebGL, though simple in concept, requires a lot of 3D math knowledge, and  WebGL Pro-
gramming Guide  helps you build this knowledge so you’ll be able to understand and apply 
it to your programs. Even if you end up using some other WebGL 3D library, the knowl-
edge learned in  WebGL Programming Guide  will help you understand what those libraries 
are doing and therefore allow you to tame them to your application’s specific needs. Heck, 
even if you eventually want to program desktop OpenGL and/or DirectX,  WebGL Program-
ming  Guide  is a great start as most 3D books are outdated relative to current 3D technology. 
 WebGL Programming Guide  will give you the foundation for fully understanding modern 3D 
graphics.”  

  Gregg Tavares , An Implementer of WebGL in Chrome     
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The OpenGL graphics system is a software interface to graphics hardware.  

(“GL” stands for “Graphics Library”.) It allows you to create interactive programs 

that produce color images of moving, three-dimensional objects. With OpenGL, 

you can control computer-graphics technology to produce realistic pictures, or 

ones that depart from reality in imaginative ways. 

The OpenGL Series from Addison-Wesley Professional comprises tutorial and 

reference books that help programmers gain a practical understanding of OpenGL 

standards, along with the insight needed to unlock OpenGL’s full potential.

Visit informit.com/opengl for a complete list of available products.

Make sure to connect with us! 
informit.com/socialconnect

OpenGL Series
from Addison-Wesley
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xviiPreface  

   Preface  

 WebGL is a technology that enables drawing, displaying, and interacting with sophis-
ticated interactive three-dimensional computer graphics (“3D graphics”) from within 
web browsers. Traditionally, 3D graphics has been restricted to high-end computers or 
dedicated game consoles and required complex programming. However, as both personal 
computers and, more importantly, web browsers have become more sophisticated, it has 
become possible to create and display 3D graphics using accessible and well-known web 
technologies. This book provides a comprehensive overview of WebGL and takes the 
reader, step by step, through the basics of creating WebGL applications. Unlike other 
3D graphics technologies such as OpenGL and  Direct3D, WebGL applications can be 
constructed as web pages so they can be directly executed in the browsers without install-
ing any special plug-ins or libraries. Therefore, you can quickly develop and try out a 
sample program with a standard PC environment; because everything is web based, you 
can easily publish the programs you have constructed on the web. One of the promises 
of WebGL is that, because WebGL applications are constructed as web pages, the same 
program can be run across a range of devices, such as smart phones, tablets, and game 
consoles, through the browser. This powerful model means  that WebGL will have a signif-
icant impact on the developer community and will become one of the preferred tools for 
graphics programming.  

  Who the Book Is For  
 We had two main audiences in mind when we wrote this book: web developers looking 
to add 3D graphics to their web pages and applications, and 3D graphics programmers 
wishing to understand how to apply their knowledge to the web environment. For web 
developers who are familiar with standard web technologies such as HTML and JavaScript 
and who are looking to incorporate 3D graphics into their web pages or web applica-
tions, WebGL offers a simple yet powerful solution. It can be used to add 3D graphics to 
enhance web pages, to improve the user interface (UI) for a web application  by using a 3D 
interface, and even to develop more complex 3D applications and games that run in web 
browsers.  

 The second target audience is programmers who have worked with one of the main 3D 
application programming interfaces (APIs), such as Direct3D or OpenGL, and who are 
interested in understanding how to apply their knowledge to the web environment. We 
would expect these programmers to be interested in the more complex 3D applications 
that can be developed in modern web browsers.  

 However, the book has been designed to be accessible to a wide audience using a step-by-
step approach to introduce features of WebGL, and it assumes no background in 2D or 3D 
graphics. As such, we expect it also to be of interest to the following:  
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    •   General programmers seeking an understanding of how web technologies are evolv-
ing in the graphics area   

   •   Students studying 2D and 3D graphics because it offers a simple way to begin to ex-
periment with graphics via a web browser rather than setting up a full programming 
environment   

   •   Web developers exploring the “bleeding edge” of what is possible on mobile devices 
such as Android or iPhone using the latest mobile web browsers     

  What the Book Covers  
 This book covers the WebGL 1.0 API along with all related JavaScript functions. You will 
learn how HTML, JavaScript, and WebGL are related, how to set up and run WebGL appli-
cations, and how to incorporate sophisticated 3D program “shaders” under the control 
of JavaScript. The book details how to write vertex and fragment shaders, how to imple-
ment advanced rendering techniques such as per-pixel lighting and shadowing, and basic 
interaction techniques such as selecting 3D objects. Each chapter develops a number of 
working, fully functional WebGL applications and explains key WebGL features through 
these examples. After finishing the book, you will  be ready to write WebGL applications 
that fully harness the programmable power of web browsers and the underlying graphics 
hardware.   

  How the Book Is Structured  
 This book is organized to cover the API and related web APIs in a step-by-step fashion, 
building up your knowledge of WebGL as you go.  

  Chapter 1—Overview of WebGL  

 This chapter briefly introduces you to WebGL, outlines some of the key features and 
advantages of WebGL, and discusses its origins. It finishes by explaining the relationship 
of WebGL to HTML5 and JavaScript and which web browsers you can use to get started 
with your exploration of WebGL.   

  Chapter 2—Your First Step with WebGL  

 This chapter explains the  <canvas>  element and the core functions of WebGL by taking 
you, step-by-step, through the construction of several example programs. Each example 
is written in JavaScript and uses WebGL to display and interact with a simple shape on 
a web page. The example WebGL programs will highlight some key points, including: 
(1) how WebGL uses the  <canvas>  element object and how to draw on it; (2) the linkage 
between HTML and WebGL using JavaScript; (3) simple WebGL drawing functions; and 
(4) the role of shader programs within WebGL.   
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  Chapter 3—Drawing and Transforming Triangles  

 This chapter builds on those basics by exploring how to draw more complex shapes and 
how to manipulate those shapes in 3D space. This chapter looks at: (1) the critical role of 
triangles in 3D graphics and WebGL’s support for drawing triangles; (2) using multiple 
triangles to draw other basic shapes; (3) basic transformations that move, rotate, and 
scale triangles using simple equations; and (4) how matrix operations make transforma-
tions simple.   

  Chapter 4—More Transformations and Basic Animation  

 In this chapter, you explore further transformations and begin to combine transformations 
into animations. You: (1) are introduced to a matrix transformation library that hides the 
mathematical details of matrix operations; (2) use the library to quickly and easily combine 
multiple transformations; and (3) explore animation and how the library helps you 
animate simple shapes. These techniques provide the basics to construct quite complex 
WebGL programs and will be used in the sample programs in the following chapters.   

  Chapter 5—Using Colors and Texture Images  

 Building on the basics described in previous chapters, you now delve a little further into 
WebGL by exploring the following three subjects: (1) besides passing vertex coordinates, 
how to pass other data such as color information to the vertex shader; (2) the conver-
sion from a shape to fragments that takes place between the vertex shader and the frag-
ment shader, which is known as the rasterization process; and (3) how to map images (or 
textures) onto the surfaces of a shape or object. This chapter is the final chapter focusing 
on the key functionalities of WebGL.   

  Chapter 6—The OpenGL ES Shading Language (GLSL ES)  

 This chapter takes a break from examining WebGL sample programs and explains the core 
features of the OpenGL ES Shading Language (GLSL ES) in detail. You will cover: (1) data, 
variables, and variable types; (2) vector, matrix, structure, array, and sampler; (3) opera-
tors, control flow, and functions; (4) attributes, uniforms, and varyings; (5) precision 
qualifier; and (6) preprocessor and directives. By the end of this chapter you will have a 
good understanding of GLSL ES and how it can be used to write a variety of shaders.   

  Chapter 7—Toward the 3D World  

 This chapter takes the first step into the 3D world and explores the implications of 
moving from 2D to 3D. In particular, you will explore: (1) representing the user’s view 
into the 3D world; (2) how to control the volume of 3D space that is viewed; (3) clipping; 
(4) foreground and background objects; and (5) drawing a 3D object—a cube. All these 
issues have a significant impact on how the 3D scene is drawn and presented to viewers. 
A mastery of them is critical to building compelling 3D scenes.   



ptg11539634

WebGL Programming Guidexx

  Chapter 8—Lighting Objects  

 This chapter focuses on lighting objects, looking at different light sources and their effects 
on the 3D scene. Lighting is essential if you want to create realistic 3D scenes because it 
helps to give the scene a sense of depth.  

 The following key points are discussed in this chapter: (1) shading, shadows, and different 
types of light sources including point, directional, and ambient; (2) reflection of light in 
the 3D scene and the two main types: diffuse and ambient reflection; and (3) the details of 
shading and how to implement the effect of light to make objects look three-dimensional.   

  Chapter 9—Hierarchical Objects  

 This chapter is the final chapter describing the core features and how to program with 
WebGL. Once completed, you will have mastered the basics of WebGL and will have 
enough knowledge to be able to create realistic and interactive 3D scenes. This chapter 
focuses on hierarchical objects, which are important because they allow you to progress 
beyond single objects like cubes or blocks to more complex objects that you can use for 
game characters, robots, and even modeling humans.   

  Chapter 10—Advanced Techniques  

 This chapter touches on a variety of important techniques that use what you have learned 
so far and provide you with an essential toolkit for building interactive, compelling 3D 
graphics. Each technique is introduced through a complete example, which you can reuse 
when building your own WebGL applications.   

  Appendix A—No Need to Swap Buffers in WebGL  

 This appendix explains why WebGL programs don’t need to swap buffers.   

  Appendix B—Built-In Functions of GLSL ES 1.0  

 This appendix provides a reference for all the built-in functions available in the OpenGL 
ES Shading Language.   

  Appendix C—Projection Matrices  

 This appendix provides the projection matrices generated by  Matrix4.setOrtho()  and 
 Matrix4.setPerspective() .   

  Appendix D—WebGL/OpenGL: Left or Right Handed?  

 This appendix explains how WebGL and OpenGL deal internally with the coordi-
nate system and clarify that technically, both WebGL and OpenGL are agnostic as to 
handedness.   



ptg11539634

xxiPreface

  Appendix E—The Inverse Transpose Matrix  

 This appendix explains how the inverse transpose matrix of the model matrix can deal 
with the transformation of normal vectors.   

  Appendix F—Loading Shader Programs from Files  

 This appendix explains how to load the shader programs from files.   

  Appendix G—World Coordinate System Versus Local Coordinate System  

 This appendix explains the different coordinate systems and how they are used in 3D 
graphics.   

  Appendix H—Web Browser Settings for WebGL  

 This appendix explains how to use advanced web browser settings to ensure that WebGL 
is displayed correctly, and what to do if it isn’t.    

  WebGL-Enabled Browsers  
 At the time of writing, WebGL is supported by Chrome, Firefox, Safari, and Opera. Sadly, 
some browsers, such as IE9 (Microsoft Internet Explorer), don’t yet support WebGL. In 
this book, we use the Chrome browser released by Google, which, in addition to WebGL 
supports a number of useful features such as a console function for debugging. We have 
checked the sample programs in this book using the following environment ( Table   P.1   ) 
but would expect them to work with any browser supporting WebGL.  

  Table P.1   PC Environment  

 Browser   Chrome (25.0.1364.152 m)  

 OS   Windows 7 and 8  

 Graphics boards   NVIDIA Quadro FX 380, NVIDIA GT X 580, NVIDIA GeForce GTS 450, 
Mobile Intel 4 Series Express Chipset Family, AMD Radeon HD 
6970  

 Refer to the  www.khronos.org/webgl/wiki/BlacklistsAndWhitelists  for an updated list of 
which hardware cards are known to cause problems.  

 To confirm that you are up and running, download Chrome (or use your preferred 
browser) and point it to the companion website for this book at  https://sites.google.com/
site/webglbook/   

 Navigate to  Chapter   3    and click the link to the sample file  HelloTriangle.html . If you can 
see a red triangle as shown in  Figure   P.1    in the browser, WebGL is working.  

http://www.khronos.org/webgl/wiki/BlacklistsAndWhitelists
https://sites.google.com/site/webglbook/
https://sites.google.com/site/webglbook/
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 Figure P.1   Loading  HelloTriangle  results in a red triangle         

 If you don’t see the red triangle shown in the figure, take a look at  Appendix   H   , which 
explains how to change your browser settings to load WebGL.   

  Sample Programs and Related Links  
 All sample programs in this book and related links are available on the compan-
ion websites. The official site hosted by the publisher is  www.informit.com/
title/9780321902924  and the author site is hosted at  https://sites.google.com/site/
webglbook/ .  

 The latter site contains the links to each sample program in this book. You can run each 
one directly by clicking the links.  

 If you want to modify the sample programs, you can download the zip file of all the 
samples, available on both sites, to your local disk. In this case, you should note that 
the sample program consists of both the HTML file and the associated JavaScript file 
in the same folder. For example, for the sample program  HelloTriangle , you need 
both  HelloTriangle.html  and  HelloTriangle.js . To run  HelloTriangle , double-click 
 HelloTriangle.html .   

http://www.informit.com/title/9780321902924
http://www.informit.com/title/9780321902924
https://sites.google.com/site/webglbook/
https://sites.google.com/site/webglbook/
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  Style Conventions  
 These style conventions are used in this book:  

    •    Bold —First occurrences of key terms and important words   

   •    Italic —Parameter names and names of references   

   •    Monospace —Code examples, methods, functions, variables, command options, 
JavaScript object names, fi lenames, and HTML tags       
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  Chapter 1 

 Overview of WebGL  

    WebGL is a technology that   enables drawing, displaying, and interacting with sophisticated 
interactive three-dimensional computer graphics (“3D graphics”) from within web browsers. 
Traditionally, 3D graphics has been restricted to high-end computers or dedicated game consoles 
and has required complex programming. However, as both personal computers and, more impor-
tantly, web browsers, have become more sophisticated, it has become possible to create and 
display 3D graphics using accessible and well-known web technologies. WebGL, when combined 
with HTML5 and JavaScript, makes 3D graphics accessible to web developers and will play an 
important role in the development of next generation, easy-to-use and intuitive user  interfaces 
and web content. Some examples of this are shown in  Figure   1.1   . Over the next few years, you 
can expect to see WebGL used on a range of devices from standard PCs to consumer electronics, 
smart phones, and tablets.  
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 Figure 1.1   Complex 3D graphics within a browser. © 2011 Hiromasa Horie (left), 2012 
Kouichi Matsuda (right)         

  HTML5, the latest evolution of the HTML standard, expands traditional HTML with 
features covering 2D graphics, networking, and local storage access. With the advent of 
HTML5, browsers are rapidly evolving from simple presentation engines to sophisticated 
application platforms. With this evolution comes a need for interface and graphics capa-
bilities beyond 2D. WebGL has been designed for that central role of creating the visual 
layer for new browser-based 3D applications and experiences.  

 Traditionally, creating compelling 3D graphics required you to create a stand-alone appli-
cation using a programming language such as C or C++ along with dedicated computer 
graphics libraries such as OpenGL and Direct3D. However, with WebGL, you can now 
realize 3D graphics as part of a standard web page using familiar HTML and JavaScript—
with a little extra code for the 3D graphics.  

 Importantly, because WebGL is supported as the browser’s default built-in technology for 
rendering 3D graphics, you can use WebGL directly without having to install special plug-
ins or libraries. Better still, because it’s all browser based, you can run the same WebGL 
applications on various platforms, from sophisticated PCs down to consumer electronics, 
tablets, and smart phones.  

 This chapter briefly introduces you to WebGL, outlines some of the key features and 
advantages of WebGL, and discusses its origins. It also explains the relationship of WebGL 
to HTML5 and JavaScript and the structure of WebGL programs.   
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     Advantages of WebGL  
 As HTML   has evolved, web developers have been able to create increasingly sophisticated 
web-based applications. Originally, HTML offered only static content, but the introduc-
tion of scripting support like JavaScript enabled more complex interactions and dynamic 
content. HTML5 introduced further sophistication, including support for 2D graphics via 
the canvas tag. This allowed a variety of graphical elements on a web page, ranging from 
dancing cartoon characters to map animations that respond to user input by updating the 
maps in real time.  

 WebGL takes this one step further, enabling the display and manipulation of 3D graphics 
on web pages by using JavaScript. Using WebGL, it becomes possible to create rich user 
interfaces and 3D games and to use 3D to visualize and manipulate a variety of informa-
tion from the Internet. Although the technical capabilities of WebGL are impressive, it is 
perhaps the ease of use and accessibility that differentiate it from other technologies and 
that will ensure its impact. In particular:  

    •   You can start developing 3D graphics applications using only a text editor and 
browser.   

   •   You can easily publish the 3D graphics applications using standard web technolo-
gies, making them available to your friends or other web users.   

   •   You can leverage the full functionality of the browser.   

   •   Learning and using WebGL is easy because a lot of material is already available for 
study and development.    

  You Can Start Developing 3D Graphics Applications Using Only 

a Text Editor  

 One handy   and convenient point in developing applications using WebGL is that you 
don’t need to set up an application developing environment for WebGL. As explained 
earlier, because WebGL is built into the browser, there is no need for special applica-
tion development tools such as compilers and linkers to create 3D graphics applications. 
As a minimum, to view the sample programs explained in this book, you only need a 
WebGL-enabled browser. If you want to edit them or create your own, a standard text 
editor (for example, Notepad or TextEdit) is enough. In  Figure   1.2   , you can see a WebGL  
application running in Chrome and the HTML file opened in Notepad. The JavaScript file 
( RotateObject.js ) that uses WebGL is loaded by the HTML file and could also be edited 
using a simple text editor.  
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 Browser (Chrome) Notepad

 Figure 1.2   The only tools needed for developing 3D graphics applications using WebGL          

  Publishing Your 3D Graphics Applications Is Easy  

 Traditionally,   3D graphics applications have been developed using a programming 
language such as C or C++ and then compiled into an executable binary for a specific plat-
form. This meant, for example, the version for a Macintosh wouldn’t work on Windows or 
Linux. Additionally, users often needed to install not only the applications themselves but 
also libraries required by the applications to run, which meant another level of complexity 
when you wanted to share your work.  

 In contrast, because WebGL applications are composed of HTML and JavaScript files, 
they can be easily shared by simply putting them on a web server just like standard web 
pages or distributing the HTML and JavaScript files via email. For example,  Figure   1.3    
shows some sample WebGL applications published by Google and available at  http://code.
google.com/p/webglsamples/ .  

 
 Figure 1.3   WebGL sample applications published by Google (with the permission of Gregg 
Tavares, Google)          

http://code.google.com/p/webglsamples/
http://code.google.com/p/webglsamples/
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  You Can Leverage the Full Functionality of the Browser  

 Because   WebGL applications are created as part of a web page, you can utilize the full 
functionality of the browser such as arranging buttons, displaying dialog boxes, drawing 
text, playing video or audio, and communicating with web servers. These advanced 
features come for free, whereas in traditional 3D graphics applications they would need to 
be programmed explicitly.   

  Learning and Using WebGL Is Easy  

 The   specification of WebGL is based on the royalty-free open standard, OpenGL, which 
has been widely used in graphics, video games, and CAD applications for many years. In 
one sense, WebGL is “OpenGL for web browsers.” Because OpenGL has been used in a 
variety of platforms over the past 20 years, there are many reference books, materials, and 
sample programs using OpenGL, which can be used to better understand WebGL.    

  Origins of WebGL  
 Two of    the most widely used technologies for displaying 3D graphics on personal comput-
ers are Direct3D and OpenGL.  Direct3D, which is part of Microsoft’s DirectX technologies, 
is the 3D graphics technology primarily used on Windows platforms and is a proprietary 
application programming interface (API) that Microsoft controls. An alternative, OpenGL 
has been widely used on various platforms due to its open and royalty-free nature. 
 OpenGL is available for Macintosh, Linux, and a variety of devices such as smart phones, 
tablet computers, and game consoles (PlayStation and Nintendo). It is also well supported 
on Windows and provides an alternative to Direct3D.  

 OpenGL was originally developed by Silicon Graphics Inc. and published as an open 
standard in 1992. OpenGL has evolved through several versions since 1992 and has had a 
profound effect on the development of 3D graphics, software product development, and 
even film production over the years. The latest version of OpenGL at the time of writing 
is version 4.3 for desktop PCs. Although WebGL has its roots in OpenGL, it is actually 
derived from a version of OpenGL designed specifically for embedded computers such as 
smart phones and video game consoles. This version, known as  OpenGL ES (for Embedded 
Systems),  was originally developed in 2003–2004 and was updated in 2007 (ES 2.0) and 
again in 2012 (ES 3.0). WebGL is based on the ES 2.0 version. In recent years, the number 
of devices and processors that support the specification has rapidly increased and includes 
smart phones (iPhone and Android), tablet computers, and game consoles. Part of the 
reason for this successful adoption has been that OpenGL ES added new features but also 
removed many unnecessary or old-fashioned features from OpenGL, resulting in a light-
weight specification that still had enough visual expressive power to realize attractive 3D 
graphics.  

  Figure   1.4    shows the relationship among OpenGL, OpenGL ES 1.1/2.0/3.0, and WebGL. 
Because OpenGL itself has continued to evolve from 1.5, to 2.0, to 4.3, OpenGL ES 
have been standardized as a subset of specific versions of OpenGL (OpenGL 1.5 and 
OpenGL 2.0).  
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 Figure 1.4   Relationship among OpenGL, OpenGL ES 1.1/2.0/3.0, and WebGL         

 As shown in  Figure   1.4   , with the move to OpenGL 2.0, a significant new capability, 
  programmable shader functions , was introduced. This capability has been carried 
through to OpenGL ES 2.0 and is a core part of the WebGL 1.0 specification.  

 Shader functions or   shaders  are computer programs that make it possible to program 
sophisticated visual effects by using a special programming language similar to C. This 
book explains shader functions in a step-by-step manner, allowing you to quickly master 
the power of WebGL. The programming language that is used to create shaders is called 
a   shading language . The shading language used in OpenGL ES 2.0 is based on the 
   OpenGL shading language  (GLSL) and referred to as    OpenGL ES shading language  
(GLSL ES). Because WebGL is based on OpenGL ES 2.0, it also uses GLSL ES for creating 
shaders.  

 The  Khronos Group (a non-profit industry consortium created to develop, publish, and 
promote various open standards) is responsible for the evolution and standardization of 
OpenGL. In 2009, Khronos established the WebGL working group and then started the 
standardization process of WebGL based on OpenGL ES 2.0, releasing the first version of 
WebGL in 2011. This book is written based primarily on that specification and, where 
needed, the latest specification of WebGL published as an Editor’s Draft. For more infor-
mation, please refer to the specification.  1      

  Structure of WebGL Applications  
 In HTML, dynamic    web pages can be created by using a combination of HTML and 
JavaScript. With the introduction of WebGL, the shader language GLSL ES needs to 
be added to the mix, meaning that web pages using WebGL are created by using three 

 1     WebGL 1.0:  www.khronos.org/registry/webgl/specs/1.0/  and Editor’s draft:  www.khronos.org/

registry/webgl/specs/latest/  

http://www.khronos.org/registry/webgl/specs/1.0/
http://www.khronos.org/registry/webgl/specs/latest/
http://www.khronos.org/registry/webgl/specs/latest/
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languages: HTML5 (as a Hypertext Markup Language), JavaScript, and GLSL ES.  Figure   1.5    
shows the software architecture of  traditional dynamic web pages (left side) and web pages 
using WebGL (right side).  
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 Figure 1.5   The software architecture of dynamic web pages (left) and web pages using 
WebGL (right)         

 However, because GLSL ES is generally written within JavaScript, only HTML and 
JavaScript files are actually necessary for WebGL applications. So, although WebGL does 
add complexity to the JavaScript, it retains the same structure as standard dynamic web 
pages, only using HTML and JavaScript files.    

     Summary  
 This chapter briefly overviewed WebGL, explained some key features, and outlined 
the software architecture of WebGL applications. In summary, the key takeaway from 
this chapter is that WebGL applications are developed using three languages: HTML5, 
JavaScript, and GLSL ES—however, because the shader code (GLSL ES) is generally embed-
ded in the JavaScript, you have exactly the same file structure as a traditional web page. 
The next chapter explains how to create applications using WebGL, taking you step by 
step through a set of simple WebGL examples.     
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  Chapter 2 

 Your First Step with WebGL  

    As explained in  Chapter   1   , “Overview of WebGL,” WebGL applications use both HTML and 
JavaScript to create and draw 3D graphics on the screen. To do this, WebGL utilizes the new 
   <canvas>  element, introduced in HTML5, which defines a drawing area on a web page. Without 
WebGL, the  <canvas>  element only allows you to draw two-dimensional graphics using 
JavaScript. With WebGL, you can use the same element for drawing three-dimensional graphics.  

 This chapter explains the  <canvas>  element and the core functions of WebGL by taking you, 
step-by-step, through the construction of several example programs. Each example is written in 
JavaScript and uses WebGL to display and interact with a simple shape on a web page. Because of 
this, these JavaScript programs are referred to as  WebGL applications .  

 The example WebGL applications will highlight some key points, including:  

    •   How WebGL uses the  <canvas>  element and how to draw on it   

   •   The linkage between HTML and WebGL using JavaScript   

   •   Simple WebGL drawing functions   

   •   The role of shader programs within WebGL    

 By the end of this chapter, you will understand how to write and execute basic WebGL applica-
tions and how to draw simple 2D shapes. You will use this knowledge to explore further the 
basics of WebGL in  Chapters   3   , “Drawing and Transforming Triangles,”    4   , “More Transformations 
and Basic Animation,” and    5   , “Using Colors and Texture Images.”   

     What Is a Canvas?  
 Before HTML5, if you wanted to display an image in a web page, the only native HTML approach 
was to use the    <img>  tag. This tag, although a convenient tool, is restricted to still images and 
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doesn’t allow you to dynamically draw and display the image on the fly. This is one of the 
reasons that non-native solutions such as Flash Player have been used.  

 However, HTML5, by introducing the  <canvas>  tag, has changed all that, offering a conve-
nient way to draw computer graphics dynamically using JavaScript.  

 In a similar manner to the way artists use paint canvases, the  <canvas>  tag defines a 
drawing area on a web page. Then, rather than using brush and paints, you can use 
JavaScript to draw anything you want in the area. You can draw points, lines, rectangles, 
circles, and so on by using JavaScript methods provided for  <canvas> .  Figure   2.1    shows an 
example of a drawing tool that uses the  <canvas>  tag.  

 
 Figure 2.1   A drawing tool using the <canvas> element ( http://caimansys.com/painter/ )         

 This drawing tool runs within a web page and allows you to interactively draw lines, rect-
angles, and circles and even change their colors.  

 Although you won’t be creating anything as sophisticated just yet, let’s look at the core 
functions of  <canvas>  by using a sample program,  DrawRectangle , which draws a filled 
blue rectangle on a web page.  Figure   2.2    shows  DrawRectangle  when it’s loaded into a 
browser.  

http://caimansys.com/painter/
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 Figure 2.2   DrawRectangle         

  Using the <canvas> Tag  

 Let’s look at    how  DrawRectangle  works and explain how the  <canvas>  tag is used in the 
HTML file.  Listing   2.1    shows  DrawingTriangle.html . Note that all HTML files in this book 
are written in HTML5.  

  Listing 2.1    DrawRectangle.html  

  1  <!DOCTYPE html>

   2  <html lang="en">

   3    <head>

   4      <meta charset="utf-8" />

   5      <title>Draw a blue rectangle (canvas version)</title>

   6    </head>

   7

   8    <body onload="main()">

    9     <canvas id="example" width="400" height="400"> 

   10     Please use a browser that supports "canvas" 

   11     </canvas> 

  12     <script src="DrawRectangle.js"></script>

  13    </body>

  14  </html>   
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 The  <canvas>  tag is defined at line 9. This defines   the drawing area as a 400 × 400 pixel 
region on a web page using the  width  and  height  attributes in the tag. The canvas is given 
an identifier using the  id  attribute, which will be used later:  

  <canvas id="example" width="400" height="400"></canvas>   

 By default, the canvas is invisible (actually transparent) until you draw something into it, 
which we’ll do with JavaScript in a moment. That’s all you need to do in the HTML file to 
prepare a  <canvas>  that the WebGL program can use. However, one thing to note is that 
this line only works in a  <canvas> -enabled browser.    However, browsers that don’t support 
the  <canvas>  tag will ignore this line, and nothing will be displayed on the screen. To 
handle this, you can display an error message by adding the message into the tag as 
follows:  

   9     <canvas id="example" width="400" height="400">

   10     Please use a browser that supports "canvas" 

  11     </canvas>   

 To draw into the canvas, you need some associated JavaScript code that performs the 
drawing operations. You can include that JavaScript code in the HTML or write it as a 
separate JavaScript file. In our examples, we use the second approach because it makes the 
code easier to read. Whichever approach you take, you need to tell the browser where the 
JavaScript code starts. Line 8 does that by telling the browser that when it loads the sepa-
rate JavaScript code it should use the function  main()  as the entry point for the JavaScript 
program. This is specified for the      <body>  element using  its  onload  attribute that tells the 
browser to execute the JavaScript function  main()  after it loads the  <body>  element:  

  8    <body onload="main()">   

 Line 12 tells the browser to import the JavaScript file  DrawRectangle.js  in which the 
function  main()  is defined:  

  12     <script src="DrawRectangle.js"></script>   

 For clarity, all sample programs in this book use the same filename for both the HTML file 
and the associated JavaScript file, which is imported in the HTML file (see  Figure   2.3   ).  
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 Figure 2.3   DrawRectangle.html and DrawRectangle.js          

  DrawRectangle.js  

  DrawRectangle.js  is a        JavaScript program that draws a blue rectangle on the drawing area 
defined by the  <canvas>  element (see  Listing   2.2   ). It has only 16 lines, which consist of 
the three steps required to draw two-dimensional computer graphics (2D graphics) on the 
canvas:  

    1.   Retrieve the  <canvas>  element.   

   2.   Request the rendering “context” for the 2D graphics from the element.   

   3.   Draw the 2D graphics using the methods that the context supports.    

 These three steps are the same whether you are drawing a 2D or a 3D graphic; here, you 
are drawing a simple 2D rectangle using standard JavaScript. If you were drawing a 3D 
graphic using WebGL, then the rendering context in step (2) at line 11 would be for a 3D 
rendering context; however, the high-level process would be the same.  

  Listing 2.2    DrawRectangle.js  

  1  // DrawRectangle.js

   2  function main() {

   3   // Retrieve <canvas> element                                   <- (1)

   4    var canvas = document.getElementById('example');

   5    if (!canvas) {

   6      console.log('Failed to retrieve the <canvas> element');

   7      return;

   8    }

   9

  10   // Get the rendering context for 2DCG                          <- (2)

  11    var ctx = canvas.getContext('2d');
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  12

  13   // Draw a blue rectangle                                       <- (3)

  14   ctx.fillStyle = 'rgba(0, 0, 255, 1.0)';  // Set a blue color

  15   ctx.fillRect(120, 10, 150, 150); // Fill a rectangle with the color

  16  }   

 Let us look at each step in order.  

  Retrieve the <canvas> Element  

 To    draw something on a  <canvas> , you must first retrieve the  <canvas>  element from the 
HTML file in the JavaScript program. You can get the element by using the method   docu-
ment.getElementById() , as shown at line 4. This method has a single parameter, which is 
the string specified in the attribute  id  in the  <canvas>  tag in our HTML file. In this case, 
the string is  'example'  and it was defined back in  DrawRectangle.html  at line 9 (refer to 
 Listing   2.1   ).  

 If the return value of this method is not  null , you have successfully retrieved the element. 
However, if it is  null , you have failed to retrieve the element. You can check for this 
condition using a simple  if  statement like that shown at line 5. In case of error, line 6 is 
executed. It uses the method  console.log()  to display the parameter as a string in the 
browser’s console.  

  Note     In Chrome, you      can show the console by going to Tools, JavaScript Console or 
pressing Ctrl+Shift+J (see  Figure   2.4   ); in Firefox, you can show it by going to Tools, Web 
Developer, Web Console or pressing Ctrl+Shift+K.   

 

Console

 Figure 2.4   Console in Chrome          
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  Get the Rendering Context for the 2D Graphics by Using the Element  

 Because the  <canvas>  is   designed to be flexible and supports both 2D and 3D, it does not 
provide drawing methods directly and instead provides a mechanism called a  context , 
which supports the actual drawing features. Line 11 gets that context:  

  11    var ctx = canvas.getContext('2d');   

 The method   canvas.getContext()  has a parameter that specifies which type of drawing 
features you want to use. In this example you want to draw a 2D shape, so you must 
specify 2d (case sensitive).  

 The result of this call, the context, is stored in the variable  ctx  ready for use. Note, for 
brevity we haven’t checked error conditions, which is something you should always do in 
your own programs.   

  Draw the 2D Graphics Using the Methods Supported by the Context  

 Now that we have a drawing context, let’s look at the code for drawing a blue rectangle, 
which is a two-step process. First,  set the color to be used when drawing. Second, draw (or 
fill) a rectangle with the color.  

 Lines 14 and 15 handle these steps:  

  13   // Draw a blue rectangle                        <- (3)

  14   ctx.fillStyle = 'rgba(0, 0, 255, 1.0)';  // Set color to blue

  15   ctx.fillRect(120, 10, 150, 150); // Fill a rectangle with the color   

 The  rgba  in the string  rgba(0, 0, 255, 1.0)  on line 14 indicate r (red), g (green), b 
(blue), and a (alpha: transparency), with each RGB parameter taking a value from 0 
(minimum value) to 255 (maximum value) and the alpha parameter from 0.0 (transpar-
ent) to 1.0 (opaque). In general, computer systems represent a color by using a combina-
tion of red, green, and blue (light’s three primary colors), which is referred to as   RGB 
format . When alpha (transparency) is added, the format is called   RGBA format .  

 Line 15 then uses the  fillStyle  property to specify the fill color when drawing  the rect-
angle. However, before going into the details of the arguments on line 15, let’s look at the 
coordinate system used by the  <canvas>  element (see  Figure   2.5   ).  



ptg11539634

CHAPTER 2  Your First Step with WebGL16

 

x

y

>savnac<
aera gniward

)0 ,0(

)004 ,004(

)01 ,021(

 Figure 2.5   The coordinate system of <canvas>         

 As you can see    in the figure, the coordinate system of the  <canvas>  element has the hori-
zontal direction as the x-axis (right-direction is positive) and the vertical direction as the 
y-axis (down-direction is positive). Note that the origin is located at the upper-left corner 
and the down direction of the y-axis is positive. The rectangle drawn with a dashed line 
is the original  <canvas>  element in our HTML file (refer to  Listing   2.1   ), which we speci-
fied as being 400 by 400 pixels. The dotted line is the rectangle that the sample program 
draws.  

 When we use   ctx.fillRect()  to draw a rectangle, the first and second parameters of this 
method are the position of the upper-left corner of the rectangle within the  <canvas> , and 
the third and fourth parameters are the width and height of the rectangle (in pixels):  

  15   ctx.fillRects(120, 10, 150, 150);// Fill a rectangle with the color   

 After loading  DrawRectangle.html  into your browser, you will see the rectangle that was 
shown in  Figure   2.2   .  

 So far, we’ve only looked at 2D graphics. However, WebGL also utilizes the same  <canvas>  
element to draw 3D graphics on a web page, so let’s now enter into the WebGL world.     

  The World’s Shortest WebGL Program: 
Clear Drawing Area  
 Let’s start by constructing the     world’s shortest WebGL program,  HelloCanvas , which 
simply clears the drawing area specified by a  <canvas>  tag.  Figure   2.6    shows the result of 
loading the program, which clears (by filling with black) the rectangular area defined by a 
 <canvas> .  
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 Figure 2.6   HelloCanvas         

  The HTML File (HelloCanvas.html)  

 Take a look    at  HelloCanvas.html , as shown in  Figure   2.7   ). Its structure is simple and starts 
by defining the drawing area using the  <canvas>  element at line 9 and then importing 
 HelloCanvas.js  (the WebGL program) at line 16.  

 Lines 13 to 15 import several other JavaScript files, which provide useful convenience 
functions that help WebGL programming. These will be explained in more detail later. For 
now, just think of them as libraries.  
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 Figure 2.7     HelloCanvas.html          

 You’ve set up the canvas (line 9) and then imported the  HelloCanvas  JavaScript file (line 
16), which actually uses WebGL commands to access the canvas and draw your first 3D 
program. Let us look at the WebGL program defined in  HelloCanvas.js .   

  JavaScript Program (HelloCanvas.js)  

  HelloCanvas.js      (see  Listing   2.3   ) has only 18 lines, including comments and error 
handling, and follows the same steps as explained for 2D graphics: retrieve the  <canvas>  
element, get its rendering context, and then begin drawing.  

  Listing 2.3    HelloCanvas.js  

  1 // HelloCanvas.js

   2 function main() {

   3   // Retrieve <canvas> element

   4   var canvas = document.getElementById('webgl');

   5

   6   // Get the rendering context for WebGL

    7   var gl = getWebGLContext(canvas); 

   8   if (!gl) {

   9     console.log('Failed to get the rendering context for WebGL');

  10     return;

  11   }
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  12

  13   // Specify the color for clearing <canvas>

  14   gl.clearColor(0.0, 0.0, 0.0, 1.0);

  15

  16   // Clear <canvas>

   17   gl.clear(gl.COLOR_BUFFER_BIT); 

  18 }   

 As in the previous example, there is only one function,   main() , which is the link between 
the HTML and the JavaScript and set at  <body>  element using its  onload  attribute (line 8) 
in  HelloCanvas.html  (refer to  Figure   2.7   ).  

  Figure   2.8    shows the processing flow of the  main()  function of our WebGL program and 
consists of four steps, which are discussed individually next.  

 

L G b e W r o f t x e t n o c g n i r e d n e r e h t t e G 
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 Figure 2.8   The processing flow of the main() function         

  Retrieve the <canvas> Element  

 First,  main()  retrieves the     <canvas>  element from the HTML file. As explained in 
 DrawRectangle.js , it uses the   document.getElementById()  method specifying  webgl  as the 
argument. Looking back at  HelloCanvas.html  (refer to  Figure   2.7   ), you can see that attri-
bute  id  is set at the  <canvas>  tag at line 9:  

  9    <canvas id="webgl" width="400" height="400">   

 The return value of this method is stored in the  canvas  variable.   
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  Get the Rendering Context for WebGL  

 In the next step,    the program uses the variable  canvas  to get the rendering context 
for WebGL. Normally, we would use  canvas.getContext()  as described earlier to 
get the rendering context for WebGL. However, because the argument specified in  
canvas.getContext()  varies between browsers,  1   we have written a special function  
get WebGLContext()  to hide the differences between the browsers:   

   7        var gl = getWebGLContext(canvas);    

 This is one of the convenience functions mentioned earlier that was written specially for 
this book and is defined in   cuon-utils.js , which is imported at line 15 in  HelloCanvas.
html . The functions defined in the file become available by specifying the path to the file 
in the attribute  src  in the  <script>  tag and loading the file. The following is the specifica-
tion of  getWebGLContext() .     

  getWebGLContext(element [, debug])   

 Get the rendering context for WebGL, set the debug setting for WebGL, and display any 
error message in the browser console in case of error.  

  Parameters    element   Specifies  <canvas>  element to be queried.  

 debug (optional)   Default is  true . When set to  true , JavaScript errors 
are displayed in the console. Note: Turn off after 
debugging; otherwise, performance is affected.  

  Return value    non-null   The rendering context for WebGL.  

 null   WebGL is not available.  

 The processing flow to retrieve the  <canvas>  element and use the element to get the 
rendering context is the same as in  DrawRectangle.js  shown earlier, where the rendering 
context was used to draw 2D graphics on the  <canvas> .  

 In a similar way, WebGL uses the rendering context returned by  getWebGLContext()  to 
draw on the  <canvas> . However, now the context is for 3D rather than 2D, so 3D (that is, 
WebGL) methods are available. The program stores the context in the variable  gl  at line 
7. You can use any name for the variable. We have intentionally used  gl  throughout this 
book, because it aligns the names of the WebGL-related methods to that of OpenGL ES 
2.0, which is the base specification of WebGL. For example,   gl.clearColor()  at line 14 
corresponds to  glClearColor()  in OpenGL ES 2.0 or OpenGL:  

  14   gl.clearColor(0.0, 0.0, 0.0, 1.0);   

 1     Although most browsers are settling on “experimental-webgl” for this argument, not all do. 

Additionally, over time, this will evolve to plain ‘webgl,’ so we have chosen to hide this. 
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 This book explains all WebGL-related methods assuming that the rendering context is 
held in the variable  gl .  

 Once you have the rendering context for WebGL, the next step is to use the context to set 
the color for clearing the drawing area specified by the  <canvas> .   

  Set the Color for Clearing the <canvas>  

 In the    previous section,  DrawRectangle.js  set the drawing color before drawing the rect-
angle. In a similar way, with WebGL you need to set the color before actually clearing the 
drawing area. Line 14 uses   gl.clearColor()  to set the color in RGBA format.    

   gl.clearColor (red, green, blue, alpha)  

 Specify the clear color for a drawing area:  

  Parameters    red   Specifies the red value (from 0.0 to 1.0).  

 green   Specifies the green value (from 0.0 to 1.0).  

 blue   Specifies the blue value (from 0.0 to 1.0).  

 alpha   Specifies an alpha (transparency) value (from 0.0 to 1.0).  

 0.0 means transparent and 1.0 means opaque.  

 If any of the values of these parameters is less than 0.0 or more than 1.0, it 
is truncated into 0.0 or 1.0, respectively.  

  Return value    None  

  Errors   2  None  

 The sample program calls  gl.clearColor (0.0, 0.0, 0.0, 1.0) at line 14, so black is specified 
as the clear color. The followings are examples that specify other colors:  

  (1.0, 0.0, 0.0, 1.0)     red

  (0.0, 1.0, 0.0, 1.0)     green

  (0.0, 0.0, 1.0, 1.0)     blue

  (1.0, 1.0, 0.0, 1.0)     yellow

  (1.0, 0.0, 1.0, 1.0)     purple

  (0.0, 1.0, 1.0, 1.0)     light blue

  (1.0, 1.0, 1.0, 1.0)     white   

2   In this book, the item “errors” is shown for all specifi cations of WebGL-related methods. This 

indicates errors that cannot be represented by the return value of the method when the method will 

result in as error. By default, the errors are not displayed, but they can be displayed in a JavaScript 

console by specifying  true  as the second argument of  getWebGLContext() . 
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 You might have noticed that in our 2D programming example in this chapter, 
 DrawRectangle , each value for color is specified from 0 to 255. However, because WebGL 
is based on OpenGL, it uses the traditional OpenGL values from 0.0 to 1.0. The higher the 
value is, the more intense the color becomes. Similarly, for the alpha parameter (fourth 
parameter), the higher the value, the less transparent the color.  

 Once you specify the clear color, the color is retained in the  WebGL system  and not 
changed until another color is specified by a call to  gl.clearColor() . This means you 
don’t need to specify the clear color again if at some point in the future you want to clear 
the area again using the same color.   

  Clear <canvas>  

 Finally, you can use   gl.clear()  to clear the drawing area with the specified clear color:  

   17    gl.clear(gl.COLOR_BUFFER_BIT);    

 Note that the argument of this method is  gl.COLOR_BUFFER_BIT , not, as you might expect, 
the  <canvas>  element that defines the drawing area to be cleared. This is because the 
WebGL method  gl.clear()  is actually relying on OpenGL, which uses a more sophisti-
cated model than simple canvases, instead using multiple underlying buffers. One such 
buffer , the  color buffer, is used in this example. By using  gl.COLOR_BUFFER_BIT , you are 
telling WebGL to use the color buffer when clearing the canvas. WebGL uses a number of 
buffers in addition to the color buffer, including a  depth buffer and a  stencil buffer. The 
color buffer will  be covered in detail later in this chapter, and you’ll see the depth buffer 
in action in  Chapter   7   , “Toward the 3D World.” The stencil buffer will not be covered in 
this book because it is seldom used.  

 Clearing the color buffer  will actually cause WebGL to clear the  <canvas>  area on the web 
page.     

  gl.clear(buffer)   

 Clear the specified buffer to preset values. In the case of a color buffer, the value (color) 
specified by  gl.clearColor()  is used.  

  Parameters    buffer   Specifies the buffer to be cleared. Bitwise  OR  ( | ) operators are used 
to specify multiple buffers.  

  gl.COLOR_BUFFER_BIT    Specifies the color buffer.  

  gl.DEPTH_BUFFER_BIT    Specifies the depth buffer.  

  gl.STENCIL_BUFFER_BIT    Specifies the stencil buffer.  

  Return value    None  

  Errors    INVALID_VALUE    buffer  is none of the preceding three values.  
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 If no color has been specified (that is, you haven’t made a call to  gl.clearColor() ), then 
the following default value is used (see  Table   2.1   ).  

  Table 2.1   Default Values to Clear Each Buffer and Associated Methods  

  Buffer Name     Default Value     Setting Method   

 Color buffer   (0.0, 0.0, 0.0, 0.0)    gl.clearColor(red, green, blue, alpha)   

 Depth buffer   1.0    gl.clearDepth(depth)   

 Stencil buffer   0    gl.clearStencil(s)   

 Now that you’ve read through and understand this simple WebGL example, you should 
load  HelloCanvas  into your browser to check that the drawing area is cleared to black. 
Remember, you can run all the examples in the book directly from the companion 
website. However, if you want to experiment with any, you need to download the exam-
ples from the book’s website to a location on your local disk. If you’ve done that, to load 
the example, navigate to that location on your disk and load  HelloCanvas.html  into your 
browser.    

  Experimenting with the Sample Program  

 Let’s experiment a little with the sample program to become familiar with the way you 
specify colors in WebGL by trying some other colors for the clear operation. Using your 
favorite editor, rewrite Line 14 of  HelloCanvas.js  as follows and save your modification 
back to the original file:  

  14   gl.clearColor(0.0, 0.0, 1.0, 1.0);   

 After reloading  HelloCanvas.html  into your browser,  HelloCanvas.js  is also reloaded, 
and then  main()  is executed to clear the drawing area to blue. Try to use other colors and 
check the result. For example,  gl.clearColor(0.5, 0.5, 0.5, 1.0)  clears the area to 
gray.    

  Draw a Point (Version 1)  
 In the    previous section, you saw how to initialize WebGL and use some simple WebGL-
related methods. In this section, you are going to go one step further and construct a 
sample program to draw the simplest shape of all: a point. The program will draw a red 
point using 10 pixels at (0.0, 0.0, 0.0). Because WebGL deals with three-dimensional 
graphics, three coordinates are necessary to specify the position of the point. You’ll be 
introduced to coordinates    later, but for now simply accept that a point drawn at (0.0, 0.0, 
0.0) is displayed at the center of the  <canvas>  area.  
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 The sample program name is  HelloPoint1  and, as shown in  Figure   2.9   , it draws a red 
point (rectangle) at the center of the  <canvas> , which has been cleared to black.  3   You will 
actually be using a filled rectangle as a point instead of a filled circle because a rectangle 
can be drawn faster than a circle. (We will deal with how to draw a rounded point in 
 Chapter   9   , “Hierarchical Objects.”)   

 
 Figure 2.9   HelloPoint1         

 Just like clearing the color in the previous section, the color of a point must be specified 
in RGBA. For red, the value of R is 1.0, G is 0.0, B is 0.0, and A is 1.0. You will remember 
that  DrawRectangle.js  earlier in the chapter specifies the drawing color and then draws a 
rectangle as follows:  

  ctx.fillStyle='rgba(0, 0, 255, 1.0)';

  ctx.fillRect(120, 10, 150, 150);   

 So you are probably thinking that WebGL would do something similar, perhaps some-
thing like this:  

  gl.drawColor(1.0, 0.0, 0.0, 1.0);

  gl.drawPoint(0, 0, 0, 10); // The position of center and the size of point   

3      The sample programs in  Chapter   2    are written in the simplest way possible so the reader can focus 

on understanding the functionality of shaders. In particular, they don’t use “buffer objects” (see 

 Chapter   3   ), which are generally used in WebGL. Although this helps by simplifying the explanation, 

some browsers (especially Firefox) expect buffer objects and may fail to display correctly any 

examples without them. In later chapters, and in actual application development, this  will not 

cause problems because you will be using “buffer objects.” However, if you are having problems, try 

another browser. You can switch back in the next chapter. 
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 Unfortunately, this is not possible. WebGL relies on a new type of drawing mechanism 
called a   shader , which offers a flexible and powerful mechanism for drawing 2D and 3D 
objects and must be used by all WebGL applications. Shaders, although powerful, are 
more complex, and you can’t just specify a simple draw command.  

 Because the shader is a critical core mechanism in WebGL programming that you will use 
throughout this book, let’s examine it one step at a time so that you can understand it 
easily.  

  HelloPoint1.html  

  Listing   2.4    shows  HelloPoint1.html , which is functionally equivalent to  HelloCanvas.
html  (refer to  Figure   2.7   ). The title of the web page and the JavaScript filename were 
changed (lines 5 and 16), but everything else remains the same. From now on, unless 
the HTML file is different from this example, we’ll skip showing the HTML files for the 
examples.  

  Listing 2.4       HelloPoint1.html  

  1  <!DOCTYPE html>

   2  <html lang="en">

   3    <head>

   4      <meta charset="utf-8" />

    5         <title>Draw a point (1)</title> 

   6    </head>

   7

   8    <body onload="main()">

   9      <canvas id="webgl" width="400" height="400">

  10      Please use the browser supporting "canvas".

  11      </canvas>

  12

  13      <script src="../libs/webgl-utils.js"></script>

  14      <script src="../libs/webgl-debug.js"></script>

  15      <script src="../libs/cuon-utils.js"></script>

   16      <script src="HelloPoint1.js"></script> 

  17    </body>

  18  </html>    

  HelloPoint1.js  

  Listing   2.5    shows      HelloPoint1.js . As you can see from the comments in the listing, 
two “shader programs” are prepended to the JavaScript (lines 2 to 13). Glance through 
the shader programs, and then go to the next section, where you’ll see more detailed 
explanations.  
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  Listing 2.5    HelloPoint1.js  

  1 // HelloPoint1.js

    2 // Vertex shader program 

    3 var VSHADER_SOURCE = 

    4   'void main() {\n' + 

    5   '  gl_Position = vec4(0.0, 0.0, 0.0, 1.0);\n' + // Coordinates 

    6   '  gl_PointSize = 10.0;\n' +             // Set the point size 

    7   '}\n'; 

    8 

    9 // Fragment shader program 

   10 var FSHADER_SOURCE = 

   11   'void main() {\n' + 

   12   '  gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);\n' + // Set the color 

   13   '}\n'; 

  14

  15 function main() {

  16   // Retrieve <canvas> element

  17   var canvas = document.getElementById('webgl');

  18

  19   // Get the rendering context for WebGL

  20   var gl = getWebGLContext(canvas);

  21   if (!gl) {

  22     console.log('Failed to get the rendering context for WebGL');

  23      return;

  24   }

  25

   26   // Initialize shaders 

   27   if (!initShaders(gl, VSHADER_SOURCE, FSHADER_SOURCE)) { 

  28     console.log('Failed to initialize shaders.');

  29     return;

  30   }

  31

  32   // Set the color for clearing <canvas>

  33   gl.clearColor(0.0, 0.0, 0.0, 1.0);

  34

  35   // Clear <canvas>

  36   gl.clear(gl.COLOR_BUFFER_BIT);

  37

   38   // Draw a point 

   39   gl.drawArrays(gl.POINTS, 0, 1); 

  40 }    
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  What Is a Shader?  

  HelloPoint1.js  is    our first WebGL program that uses shaders. As mentioned earlier, 
shader programs are necessary when you want to draw something on the screen in 
WebGL. Essentially, shader programs are “embedded” in the JavaScript file and, in this 
case, set up at the start. This seems at first sight to be complicated, but let’s take it one 
step at a time.  

 WebGL needs the following two types of shaders, which you saw at line 2 and line 9:  

    •    Vertex shader:     Vertex shaders   are programs that describe the traits (position, colors, 
and so on) of a vertex. The   vertex  is a point in 2D/3D space, such as the corner or 
intersection of a 2D/3D shape.   

   •    Fragment shader:     A   program that deals with per-fragment processing such as light-
ing (see  Chapter   8   , “Lighting Objects”). The   fragment  is a WebGL term that you can 
consider as a kind of pixel (picture element).    

 You’ll explore shaders in more detail later, but simply put, in a 3D scene, it’s not enough 
just to draw graphics. You have to also account for how they are viewed as light sources 
hit them or the viewer’s perspective changes. Shading does this with a high degree of flex-
ibility and is part of the reason that today’s 3D graphics are so realistic, allowing them to 
use new rendering effects to achieve stunning results.  

 The shaders are read from     the JavaScript and stored in the WebGL system ready to be used 
for drawing.  Figure   2.10    shows the basic processing flow from a JavaScript program into 
the WebGL system, which applies the shader programs to draw shapes that the browser 
finally displays.  
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 You can see two browser windows on the left side of the figure. These are the same; the 
upper one shows the browser before executing the JavaScript program, and the lower one 
shows the browser after execution. Once the WebGL-related methods are called from the 
JavaScript program, the vertex shader in the WebGL system is executed, and the fragment 
shader is executed to draw the result into the color buffer. This is the clear part—that is, 
step 4 in  Figure   2.8   , described in the original  HelloCanvas  example. Then the content in 
the color buffer is automatically displayed on the drawing area  specified by the  <canvas>  
in the browser.  

 You’ll be seeing this figure frequently in the rest of this book. So we’ll use a simplified 
version to save space (see  Figure   2.11   ). Note that the flow is left to right and the right-
most component is a color buffer, not a browser, because the color buffer is automatically 
displayed in the browser.  
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 Figure 2.11   The simplified version of  Figure   2.9            

 Getting back to our example, the goal is to draw a 10-pixel point on the screen. The two 
shaders are used as follows:  

    •   The vertex shader specifies the position of a point and its size. In this sample 
program, the position is (0.0, 0.0, 0.0), and the size is 10.0.   

   •   The fragment shader specifies the color of fragments displaying the point. In this 
sample program, the color is red (1.0, 0.0, 0.0, 1.0).     

  The Structure of a WebGL Program that Uses Shaders  

 Based on   what   you’ve learned so far, let’s look at  HelloPoint1.js  again (refer to  Listing 
  2.5   ). This program has 40 lines and is a little more complex than  HelloCanvas.js  (18 
lines). It consists of three parts, as shown in  Figure   2.12   . The  main()  function in JavaScript 
starts from line 15, and shader programs are located from lines 2 to 13.  
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 Figure 2.12   The basic structure of a WebGL program with embedded shader programs         

 The vertex shader program is located in lines 4 to 7, and the fragment shader is located in 
lines 11 to 13. These programs are actually the following shader language programs but 
written  as a JavaScript string to make it possible to pass the shaders to the WebGL system:  

  // Vertex shader program

  void main() {

    gl_Position = vec4(0.0, 0.0, 0.0, 1.0);

    gl_PointSize = 10.0;

  }

  // Fragment  shader program

  void main() {

    gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);

  }   
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 As you learned in  Chapter   1   , shader programs must be written in the    OpenGL ES shading 
language (GLSL ES)  , which is similar to the C language. Finally, GLSL ES comes onto the 
stage! You will get to see the details of GLSL ES in  Chapter   6   , “The OpenGL ES Shading 
Language (GLSL ES),” but in these early examples, the code is simple and should be under-
standable by anybody with a basic understanding of C or JavaScript.  

 Because these programs must be treated as a single string, each line of the shader is 
concatenated using the  +  operator into a single string. Each line has  \n  at the end because 
the line number is displayed when an error occurs in the shader. The line number is 
helpful to check the source of the problem in the codes. However, the  \n  is not manda-
tory, and you could write the shader without it.  

 At lines 3 and 10, each shader program is stored in the variables  VSHADER_SOURCE  and 
 FSHADER_SOURCE  as a string:  

   2 // Vertex   shader program

   3 var VSHADER_SOURCE =

   4   'void main() {\n' +

   5   '  gl_Position = vec4(0.0, 0.0, 0.0, 1.0);\n' +

   6   '  gl_PointSize = 10.0;\n' +

   7   '}\n';

   8

   9 // Fragment shader program

  10 var FSHADER_SOURCE =

  11   'void main() {\n' +

  12   '  gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);\n' +

  13   '}\n';   

 If you are interested in loading the shader programs from files, refer to  Appendix   F   , 
“Loading Shader Programs from Files.”   

  Initializing Shaders  

 Before   looking   at the details of each shader, let’s examine the processing flow of  main()  
that is defined from line 15 in the JavaScript (see  Figure   2.13   ). This flow, shown in  Figure 
  2.13   , is the basic processing flow of most WebGL applications. You will see the same flow 
throughout this book.  
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 This flow is similar to that shown in  Figure   2.8    except that a third step (“Initialize 
Shaders”) and a sixth step (“Draw”) are added.  

 The third step “Initialize Shaders” initializes and sets up the shaders that are defined at 
line 3 and line 10 within the WebGL system. This step is done using the convenience 
function   initShaders()  that is defined in  cuon-util.js . Again, this is one of those special 
functions we have provided for this book.     

  initShaders(gl, vshader, fshader)   

 Initialize shaders and set them up in the WebGL system ready for use:  

  Parameters    gl   Specifies a rendering context.  

 vshader   Specifies a vertex shader program (string).  

 fshader   Specifies a fragment shader program (string).  

  Return value    true   Shaders successfully initialized.  

 false   Failed to initialize shaders.  

  Figure   2.14    shows how the convenience function  initShaders()  processes the shaders. 
You will examine in detail what this function is doing in  Chapter   8   . For now, you just 
need to understand that it sets up the shaders in the WebGL system and makes them 
ready for use.  



ptg11539634

CHAPTER 2  Your First Step with WebGL32

 

metsySLGbeW

metsySLGbeW

redahSxetreV tnemgarF
redahS

noitarepotnemgarf-rePnoitarepoxetrev-reP reffuBroloC

tpircSavaJ

redahSxetreV tnemgarF
redahS

gl
_P

os
iti

on
gl

_P
oi

nt
S

iz
e gl
_F

ra
gC

ol
or

{)(niamdiov
;)...(4cev=noitisoP_lg

;0.01=eziStnioP_lg
}

{)(niamdiov
;)...(4cev=roloCgarF_lg

}

tpircSavaJ

{)(niamdiov
;)...(4cev=noitisoP_lg

;0.01=eziStnioP_lg
}

{)(niamdiov
;)...(4cev=roloCgarF_lg

}

{)(niamnoitcnuf
…LGbeWteg=lgrav

…
;)…(sredahStini

…
}

 Figure 2.14   Behavior of initShaders()         

 As you can see in the upper figure in  Figure   2.14   , the WebGL system has two containers: 
one for a vertex shader and one for a fragment shader. This is actually a simplification, 
but helpful at this stage. We return to the details in  Chapter   10   . By default, the contents 
of these containers are empty. To make the shader programs, written as JavaScript strings 
and ready for use in the WebGL system, we need something to pass these strings to the 
system and then set them up in the appropriate containers;  initShaders()  performs this 
operation. Note that the shader programs are  executed within the WebGL system, not the 
JavaScript program.  

 The lower portion in  Figure   2.14    shows that after executing  initShaders() , the shader 
programs that are passed as a string to the parameters of  initShaders()  are set up in the 
containers in the WebGL system and then made ready for use. The lower figure schemati-
cally illustrates that a vertex shader is passing  gl_Position  and  gl_PointSize  to a frag-
ment shader and that just after assigning values to these variables in the vertex shader, the 
fragment shader is executed. In actuality, the fragments that are generated after process-
ing these values are passed to the fragment shader.  Chapter   5    explains this mechanism in 
detail, but for now you  can consider the attributes to be passed.  
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 The important point here is that  WebGL applications consist of a JavaScript program executed 
by the browser and shader programs that are executed within the WebGL system .  

 Now, having completed the explanation of the second step “Initialize Shaders” in  Figure 
  2.13   , you are ready to see how the shaders are actually used to draw a simple point. As 
mentioned, we need three items of information for the point: its position, size, and color, 
which are used as follows:  

    •   The vertex shader specifies the position of a point and its size. In this sample 
program, the position is (0.0, 0.0, 0.0), and the size is 10.0.   

   •   The fragment shader specifies the color of the fragments displaying the point. In this 
sample program, they are red (1.0, 0.0, 0.0, 1.0).     

  Vertex Shader  

 Now,     let us start by examining the vertex shader program listed in  HelloPoint1.js  (refer 
to  Listing   2.5   ), which sets the position and size of the point:  

  2  // Vertex shader program

  3  var VSHADER_SOURCE =

  4    'void main() {\n' +

  5    '  gl_Position = vec4(0.0, 0.0, 0.0, 1.0);\n' +

  6    '  gl_PointSize = 10.0;\n' +

  7    '}\n';   

 The vertex shader program itself starts from line 4 and must contain a single  main()  func-
tion in a similar fashion to languages such as C. The keyword  void  in front of  main()  
indicates that this function does not return a value. You cannot specify other arguments 
to  main() .  

 Just like JavaScript, we can use the  =  operator to assign a value to a variable in a shader. 
Line 5 assigns the position of the point to the variable  gl_Position , and line 6 assigns its 
size to the variable  gl_PointSize . These two variables are built-in variables available only 
in a vertex shader and have a special meaning:  gl_Position  specifies a position of a vertex 
(in this case, the position of the point), and  gl_PointSize  specifies the size of the point 
(see  Table   2.2   ).  

  Table 2.2   Built-In Variables  Available in a Vertex Shader  

  Type and Variable Name     Description   

 vec4  gl_Position    Specifies the position of a vertex  

 float  gl_PointSize    Specifies the size of a point (in pixels)  
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 Note that  gl_Position  should always be written. If you don’t specify it, the shader’s 
behavior is implementation dependent and may not work as expected. In contrast,  gl_
PointSize  is only required when drawing points and defaults to a point size of 1.0 if you 
don’t specify anything.  

 For those of    you mostly familiar with JavaScript, you may be a little surprised when you 
see “type” specified in  Table   2.2   . Unlike JavaScript, GLSL ES is a “typed” programming 
language; that is, it requires the programmer to specify what type of data a variable holds. 
C and Java are examples of typed languages. By specifying “type” for a variable, the 
system can easily understand what type of data the variable holds, and then it can opti-
mize its processing based on that information.  Table   2.3    summarizes the “type” in GLSL 
ES used in  the shaders in this section.  

  Table 2.3   Data Types in GLSL ES  

  Type     Description   

 float   Indicates a floating point number  

 vec4   Indicates a vector of four floating point numbers  

  float     float     Float     float   

 Note that an error will occur when the type of data that is assigned to the variable is 
different from the type of the variable. For example, the type of  gl_PointSize  is float, and 
you must assign a floating point number to it. So, if you change line 6 from  

  gl_PointSize = 10.0;   

 to  

  gl_PointSize = 10;   

 it will generate an error simply because  10  is interpreted as an integer number, whereas 
 10.0  is a floating point number in GLSL ES.  

 The type of the variable  gl_Position , the built-in variable for specifying the position of 
a point, is  vec4 ;  vec4  is a vector made up of three floats. However, you only have three 
floats (0.0, 0.0, 0.0) representing X, Y, and Z. So you need to convert these to a  vec4  
somehow. Fortunately, there is a built-in function,   vec4() , that will do this for you and 
return a value of type  vec4  –, which is just what you need!     
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  vec4 vec4(v0, v1, v2, v3)   

 Construct a  vec4  object from  v0 ,  v1 ,  v2 , and  v3 .  

  Parameters    v0, v1, v2, v3   Specifies floating point numbers.  

  Return value    A  vec4  object made from  v0 ,  v1 ,  v2 , and  v3.   

 In this sample program,   vec4()  is used at line 5 as follows:  

  gl_Position = vec4(0.0, 0.0, 0.0, 1.0);   

 Note that the value that is assigned to  gl_Position  has 1.0 added as a fourth component. 
This four-component coordinate is called a    homogeneous coordinate  (see the boxed 
article below) and is often used in 3D graphics for processing three-dimensional informa-
tion efficiently. Although the homogeneous coordinate is a four-dimensional coordinate, 
if the last component of the homogeneous coordinate is 1.0, the coordinate indicates the 
same position as a three-dimensional one. So, you can supply 1.0 as the last component if 
you need to specify four components as a vertex coordinate.     

  Homogeneous Coordinates   

 The homogeneous coordinates use the following coordinate notation: (x, y, z, w). The 
homogeneous coordinate (x, y, z, w) is equivalent to the three-dimensional coordinate 
(x/w, y/w, z/w). So, if you set w to 1.0, you can utilize the homogeneous coordinate 
as a three-dimensional coordinate. The value of w must be greater than or equal to 
0. If w approaches zero, the coordinates approach infinity. So we can represent the 
concept of  infinity in the homogeneous coordinate system. Homogeneous coordinates 
make it possible to represent vertex transformations described in the next chapter as a 
multiplication of a matrix and the  coordinates. These coordinates are often used as an 
internal representation of a vertex in 3D graphics systems.    

  Fragment Shader  

 After specifying the     position and size of a point, you need to specify its color using a frag-
ment shader. As explained earlier, a   fragment  is a pixel displayed on the screen, although 
technically the fragment is a pixel along with its position, color, and other information.  

 The fragment shader is a program that processes this information in preparation for 
displaying the fragment on the screen. Looking again at the fragment shader listed in 
 HelloPoint1.js  (refer to  Listing   2.5   ), you can see that just like a vertex shader, a fragment 
shader is executed from  main() :  
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  9 // Fragment shader program

  10 var FSHADER_SOURCE =

  11   'void main() {\n' +

  12   '  gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);\n' +

  13   '}\n';   

 The job of the shader is to set the color of the point as its per-fragment operation, which 
is carried out at line 12.  gl_FragColor  is a built-in variable only available in a fragment 
shader; it controls the color of a fragment, as shown in  Table   2.4   .  

  Table 2.4   The Built-In Value Available  in a Fragment Shader  

  Type and Variable Name     Description   

 vec4  gl_FragColor    Specify the color of a fragment (in RGBA)  

 When we assign a color value to the built-in variable, the fragment is displayed using 
that color. Just like the position in the vertex shader, the color value is a  vec4  data type 
consisting of four floating point numbers representing the RGBA values. In this sample 
program, a red point will be displayed because you assign (1.0, 0.0, 0.0, 1.0) to the 
variable.   

  The Draw Operation  

 Once    you set up the shaders, the remaining task is to draw the shape, or in our case, a 
point. As before, you need to clear the drawing area in a similar way to that described 
in  HelloCanvas.js . Once the drawing area is cleared, you can draw the point using  gl.
drawArrays() , as in line 39:  

  39 gl.drawArrays(gl.POINTS, 0, 1);   

  gl.drawArrays()  is a powerful function that is capable of drawing a variety of basic 
shapes, as detailed in the following box.     
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  gl.drawArrays(mode, first, count)   

 Execute a vertex shader to draw shapes specified by the  mode  parameter.  

  Parameters    mode   Specifies the type of shape to be drawn. The following symbolic 
constants are accepted:  gl.POINTS ,  gl.LINES ,  gl.LINE_STRIP , 
 gl.LINE_LOOP ,  gl.TRIANGLES ,  gl.TRIANGLE_STRIP , and  gl.
TRIANGLE_FAN.   

 first   Specifies which vertex to start drawing from (integer).  

 count   Specifies the number of vertices to be used (integer).  

  Return value    None  

  Errors    INVALID_ENUM  mode  is none of the preceding values.  

 INVALID_VALUE  first  is negative or  count  is negative.  

 In this sample program, because you are drawing a point, you specify  gl.POINTS  as the 
 mode  in the first parameter. The second parameter is set to 0 because you are starting from 
the first vertex. The third parameter,  count , is 1 because you are only drawing 1 point in 
this sample program.  

 Now, when the program makes a call to  gl.drawArrays() , the vertex shader is executed 
 count  times, each time working with the next vertex. In this sample program, the shader 
is executed once ( count  is set to 1) because we only have one vertex: our point. When 
the shader is executed, the function  main()  in the shader is called, and then each line 
in the function is executed sequentially, resulting in (0.0, 0.0, 0.0, 1.0) being assigned to 
 gl_Position  (line 5) and then 10.0 assigned to  gl_PointSize  (line 6).  

 Once the vertex shader executes, the fragment shader is executed by calling its  main()  
function which, in this example, assigns the color value (red) to  gl_FragColor  (line 12). 
As a result, a red point of 10 pixels is drawn at (0.0, 0.0, 0.0, 1.0), or the center of the 
drawing area (see  Figure   2.15   ).  
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 Figure 2.15   The behavior of shaders         

 At this stage, you should have a rough understanding of the role of a vertex shader and a 
fragment shader and how they work. In the rest of this chapter, you’ll build on this basic 
understanding through a series of examples, allowing you to become more accustomed to 
WebGL and shaders. However, before that, let’s quickly look at how WebGL describes the 
position of shapes using its coordinate system.   

  The WebGL Coordinate System  

 Because     WebGL deals with 3D graphics, it uses a three-dimensional coordinate system 
along the x-, y-, and z-axis. This coordinate system is easy to understand because our 
world has the same three dimensions: width, height, and depth. In any coordinate system, 
the direction of each axis is important. Generally, in WebGL, when you face the computer 
screen, the horizontal direction is the x-axis (right direction is positive), the vertical direc-
tion is the y-axis (up direction is positive), and the direction from the screen to the viewer 
is the z-axis (the left side of  Figure   2.16   ). The viewer’s eye is located  at the origin (0.0, 0.0, 
0.0), and the line of sight travels along the negative direction of the z-axis, or from you 
into the screen (see the right side of  Figure   2.16   ). This coordinate system is also called the 
  right-handed coordinate system  because it can be expressed using the right hand (see 
 Figure   2.17   ) and is the one normally associated with WebGL. Throughout this book, we’ll 
use the right-handed coordinate system as the default for WebGL. However, you should 
note that it’s actually more complex than this. In fact, WebGL is neither left handed nor 
right handed. This is explained in  detail in  Appendix   D   , “WebGL/OpenGL: Left or Right 
Handed?,” but it’s safe to treat WebGL as right handed for now.  
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 Figure 2.16   WebGL coordinate system         
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 Figure 2.17   The right-handed coordinate system         

 As you have already seen,   the   drawing area specified for a  <canvas>  element in JavaScript 
is different from WebGL’s coordinate system, so a mapping is needed between the two. 
By default, as you see in  Figure   2.18   , WebGL maps the coordinate system to the area as 
follows:  

    •   The center position of a  <canvas> : (0.0, 0.0, 0.0)   

   •   The two edges of the x-axis of the  <canvas> : (–1.0, 0.0, 0.0) and (1.0, 0.0, 0.0)   

   •   The two edges of the y-axis of the  <canvas> : (0.0, –1.0, 0.0) and (0.0, 1.0, 0.0)    
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 Figure 2.18   The <canvas> drawing area and WebGL coordinate system         

 As previously discussed, this is the default. It’s possible to use another coordinate 
system, which we’ll discuss later, but for now this default coordinate system will be used. 
Additionally, to help you stay focused on the core functionality of WebGL, the example 
programs will mainly use the x and y coordinates and not use the z or depth coordinate. 
Therefore, until  Chapter   7   , the z-axis value will generally be specified as 0.0.   
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  Experimenting with the Sample Program  

 First, you can modify line 5 to change the position of the point and gain a better under-
standing of the WebGL coordinate system. For example, let’s change the x coordinate 
from 0.0 to 0.5 as follows:  

  5    '  gl_Position = vec4( 0.5 , 0.0, 0.0, 1.0);\n' +   

 Save the modified  HelloPoint1.js  and click the Reload button on your browser to reload 
it. You will see that the point has moved and is now displayed on the right side of the 
 <canvas>  area (see  Figure   2.19   , left side).  

 Now change the y coordinate to move the point toward the top of the  <canvas>  as 
follows:  

  5   '  gl_Position = vec4(0.0,  0.5 , 0.0, 1.0);\n' +   

 Again, save the modified  HelloPoint1.js  and reload it. This time, you can see the point 
has moved and is displayed in the upper part of the canvas (see  Figure   2.19   , right side).  

 
 Figure 2.19   Modifying the position of the point         

 As another experiment, let’s try changing the color of the point from red to green by 
modifying line 12, as follows:  

  12    '  gl_FragColor = vec4(0.0,  1.0 , 0.0, 1.0);\n' +   

 Let’s conclude this section with a quick recap. You’ve been introduced to the two basic 
shaders we use in WebGL—the vertex shader and the fragment shader—and seen how, 
although they use their own language, they can be executed from within JavaScript. 
You’ve also seen that the basic processing flow of a WebGL application using shaders is 
the same as in other types of WebGL applications. A key lesson from this section is that 
a WebGL program consists of a JavaScript program executing in conjunction with shader 
programs.  
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 For those of you with experience in using OpenGL, you may feel that something is 
missing; there is no code to swap color buffers. One of the significant features of WebGL 
is that it does not need to do that. For more information, see  Appendix   A   , “No Need to 
Swap Buffers in WebGL.”    

  Draw a Point (Version 2)  
 In the    previous section, you explored drawing a point and the related core functions of 
shaders. Now that you understand the fundamental behavior of a WebGL program, let’s 
examine how to pass data between JavaScript and the shaders.  HelloPoint1  always draws 
a point at the same position because its position is directly written (“hard-coded”) in the 
vertex shader. This makes the example easy to understand, but it lacks flexibility. In this 
section, you’ll see how a WebGL program can pass a vertex position from JavaScript to 
the vertex shader and then draw a point at that position. The name of the  program is 
 HelloPoint2 , and although the result of the program is the same as  HelloPoint1 , it’s a 
flexible technique you will use in future examples.  

  Using Attribute Variables  

 Our       goal is to pass a position from the JavaScript program to the vertex shader. There 
are two ways to pass data to a vertex shader: attribute variable and uniform variable (see 
 Figure   2.20   ). The one you use depends on the nature of the data. The  attribute variable  
passes data that differs for each vertex, whereas the  uniform variable  passes data that is 
the same (or uniform) in each vertex. In this program, you will use the attribute variable 
because each vertex generally has different coordinates.  
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 Figure 2.20   Two ways to pass data to a vertex shader         

 The attribute variable is a GLSL ES variable which is used to pass data from the world 
outside a vertex shader into the shader and is only available to vertex shaders.  
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 To use the attribute variable, the sample program involves the following three steps:  

    1.   Prepare the attribute variable for the vertex position in the vertex shader.   

   2.   Assign the attribute variable to the  gl_Position  variable.   

   3.   Pass the data to the attribute variable.    

 Let’s look at the sample program in more detail to see how to carry out these steps.   

  Sample Program (HelloPoint2.js)  

 In       HelloPoint2  (see  Listing   2.6   ), you draw a point at a position the JavaScript program 
specifies.  

  Listing 2.6   HelloPoint2.js  

  1 // HelloPoint2.js

   2 // Vertex shader program

   3 var VSHADER_SOURCE =

    4   'attribute vec4 a_Position;\n' + 

   5   'void main() {\n' +

    6   '  gl_Position = a_Position;\n' + 

   7   '  gl_PointSize = 10.0;\n' +

   8   '}\n';

   9

  10 // Fragment shader program

       ... snipped because it is the same as HelloPoint1.js

  15

  16 function main() {

  17   // Retrieve <canvas> element

  18   var canvas = document.getElementById('webgl');

  19

  20   // Get the rendering context for WebGL

  21   var gl = getWebGLContext(canvas);

          ...

  26

  27   // Initialize shaders

  28   if (!initShaders(gl, VSHADER_SOURCE, FSHADER_SOURCE)) {

              ...

  31   }

  32

   33   // Get the storage location of attribute variable 

   34   var a_Position = gl.getAttribLocation(gl.program, 'a_Position'); 

  35   if (a_Position < 0)  {

  36      console.log('Failed to get the storage location of a_Position');

  37      return;
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  38   }

  39

   40     // Pass vertex position to attribute variable 

   41     gl.vertexAttrib3f(a_Position, 0.0, 0.0, 0.0); 

  42

  43   // Set the color for clearing <canvas>

  44   gl.clearColor(0.0, 0.0, 0.0, 1.0);

  45

  46   // Clear <canvas>

  47   gl.clear(gl.COLOR_BUFFER_BIT);

  48

  49   // Draw a point

  50   gl.drawArrays(gl.POINTS, 0, 1);

  51  }   

 As you can see, the attribute variable is prepared within the shader on line 4:  

   4    'attribute vec4 a_Position;\n' +    

 In this line, the keyword  attribute  is called a   storage qualifier , and it indicates that the 
following variable (in this case,  a_Position ) is an attribute variable. This variable must 
be declared as a global variable because data is passed to it from   outside the shader. The 
variable must be declared following a standard pattern  <Storage Qualifier> <Type> 
<Variable Name> , as shown in  Figure   2.21   .  

 ;noitisoP_a4cevetubirtta

emaNelbairaVepyTreifilauQegarotS

 Figure 2.21   The declaration of the attribute variable         

 In line 4, you declare  a_Position  as an attribute variable with data type  vec4  because, 
as you saw in  Table   2.2   , it will be assigned to  gl_Position , which always requires a  vec4  
type.  

 Note that throughout this   book, we have adopted a programming convention in which 
all attribute variables have the prefix  a_ , and all uniform variables have the prefix  u_  to 
easily determine the type of variables from their names. Obviously, you can use your own 
convention when writing your own programs, but we find this one simple and clear.  

 Once  a_Position  is declared, it is assigned to  gl_Position  at line 6:  

   6   '  gl_Position = a_Position;\n' +    

 At this point, you have completed the preparation in the shader for receiving data from 
the outside. The next step is to pass the data to the attribute variable from the JavaScript 
program.   
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  Getting the Storage Location of an Attribute Variable  

 As      you saw previously, the vertex shader program is set up in the WebGL system using 
the convenience function  initShaders() . When the vertex shader is passed to the 
WebGL system, the system parses the shader, recognizes it has an attribute variable, and 
then prepares the location of its attribute variable so that it can store data values when 
required. When you want to pass data to  a_Position  in the vertex shader, you need to 
ask the WebGL system to give you the location it has prepared, which can be done using 
  gl.getAttribLocation() , as shown in line 34:  

   33   // Get the location of attribute variable 

   34   var a_Position = gl.getAttribLocation(gl.program, 'a_Position'); 

  35   if (a_Position < 0) {

  36     console.log('Fail to get the storage location of a_Position');

  37     return;

  38   }   

 The first argument of this method specifies a   program object  that holds the vertex shader 
and the fragment shader. You will examine the program object in  Chapter   8   , but for 
now, you can just specify  gl.program  as the argument here. Note that you should use 
 gl.program  only after  initShaders()  has been called because  initShaders()  assigns the 
program object to the variable. The second parameter specifies the attribute variable name 
(in this case  a_Position ) whose location you want to know.  

 The return value of this method is the storage location of the specified attribute variable. 
This location is then stored in the JavaScript variable,  a_Position , at line 34 for later use. 
Again, for ease of understanding, this book uses JavaScript variable names for attribute 
variables, which are the same as the GLSL ES attribute variable name. You can, of course, 
use any variable name.  

 The specification of  gl.getAttribLocation()  is as follows:     

  gl.getAttribLocation(program, name)   

 Retrieve the storage location of the attribute variable specified by the  name  parameter.  

  Parameters    program   Specifies the program object that holds a vertex 
shader and a fragment shader.  

 name   Specifies the name of the attribute variable 
whose location is to be retrieved.  

  Return value    greater than or equal to 0   The location of the specified attribute variable.  

 -1   The specified attribute variable does not exist or 
its name starts with the reserved prefix  gl_  or 
 webgl_ .  
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  Errors    INVALID_OPERATION    program  has not been successfully linked (See 
 Chapter   9   .)  

 INVALID_VALUE   The length of  name  is more than the maximum 
length    (256 by default) of an attribute variable 
name.  

  Assigning a Value to an Attribute Variable  

 Once      you have the attribute variable location, you need to set the value using the  
a_Position  variable. This is performed at line 41 using the   gl.vertexAttrib3f()  method.  

  40     // Set vertex position to attribute variable 

  41     gl.vertexAttrib3f(a_Position, 0.0, 0.0, 0.0);    

 The following is the specification of  gl.vertexAtrrib3f() .     

  gl.vertexAttrib3f(location, v0, v1, v2)   

 Assign the data ( v0 ,  v1 , and  v2 ) to the attribute variable specified by  location .  

  Parameters    location   Specifies the storage location of an attribute variable to be modified.  

 v0   Specifies the value to be used as the first element for the attribute 
variable.  

 v1   Specifies the value to be used as the second element for the attri-
bute variable.  

 v2   Specifies the value to be used as the third element for the attribute 
variable.  

  Return value    None  

  Errors    INVALID_OPERATION   There is no current program object.  

 INVALID_VALUE    location  is greater than or equal to the maximum 
number of attribute variables (8, by default).  

 The first argument of the method call specifies the location returned by  gl.getAttrib-
Location()  at line 34. The second, third, and fourth arguments specify the floating point 
number to be passed to  a_Position  representing the x, y, and z coordinates of the point. 
After calling the method, these three values are passed as a group to  a_Position , which 
was prepared at line 4 in the vertex shader.  Figure   2.22    shows the processing flow of 
getting the location of the attribute variable and then writing a value to it.  



ptg11539634

CHAPTER 2  Your First Step with WebGL46

 
metsySLGbeW

gl
_P

os
iti

on
gl

_P
oi

nt
S

iz
e

tpircSavaJ

redahSxetreV

{)(niamdiov

;noitisoP_a=noitisoP_lg

;0.01=eziStnioP_lg

}

{)(niamnoitcnuf

;)(txetnoCLGbeWteg=lgrav

…

;)…,ECRUOS_REDAHSV,lg(sredahStini

=noitisoP_a

;)’noitisoP_a‘,…(noitacoLetubirttAteg.lg

…

P_a(f3etubirttAxetrev.lg ;)0.0,0.0,0.0,noitiso

…

}

metsySLGbeW

gl
_P

os
iti

on
gl

_P
oi

nt
S

iz
e

tpircSavaJ

redahSxetreV

{)(niamdiov

;noitisoP_a=noitisoP_lg

;0.01=eziStnioP_lg

}

{)(niamnoitcnuf

;)(txetnoCLGbeWteg=lgrav

…

;)…,ECRUOS_REDAHSV,lg(sredahStini

=noitisoP_a

;)’noitisoP_a‘,…(noitacoLetubirttAteg.lg

…

P_a(f3etubirttAxetrev.lg ;)0.0,0.0,0.0,noitiso

…

}

noitisoP_a

noitisoP_a

 Figure 2.22   Getting the storage location of an attribute variable and then writing a value to 
the variable         

  a_Position  is then assigned to  gl_Position  at line 6 in the vertex shader, in effect passing 
the x, y, and z coordinates from your JavaScript, via the attribute variable into the shader, 
where it’s written to  gl_Position . So the program has the same effect as  HelloPoint1 , 
where  gl_Position  is used as the position of a point. However,  gl_Position  has now been 
set dynamically from JavaScript rather than statically in the vertex shader:  

   4    'attribute vec4 a_Position;\n' + 

  5    'void main() {\n' +

   6    '  gl_Position = a_Position;\n' + 

  7    '  gl_PointSize = 10.0;\n' +

  8    '}\n';   

 Finally, you clear the  <canvas>  using  gl.clear()  (line 47) and draw the point using  
gl.drawArrays()  (line 50) in the same way as in  HelloPoint1.js .  
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 As a final note, you can see  a_Position  is prepared as  vec4  at line 4 in the vertex shader. 
However,  gl.vertexAttrib3f()  at line 41 specifies only three values (x, y, and z), not 
four. Although you may think that one value is missing, this method automatically 
supplies the value 1.0 as the fourth value (see  Figure   2.23   ). As you saw earlier, a default 
fourth value of 1.0 for a color ensures it is fully opaque, and a default fourth value of 1.0 
for a homogeneous coordinate maps a 3D coordinate into a homogenous coordinate, so 
essentially the method is supplying a “safe” fourth  value.  
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 Figure 2.23   The missing data is automatically supplied          

  Family Methods of gl.vertexAttrib3f()  

      gl.vertexAttrib3f()       is part of a family of methods that allow you to set some or all of 
the components of the attribute variable.  gl.vertexAttrib1f()  is used to assign a single 
value (v0),  glvertexAttrib2f()  assigns two values (v0 and v1), and  gl.vertexAttrib4f()  
assigns four values (v0, v1, v2, and v3).     

  gl.vertexAttrib1f(location, v0)   
  gl.vertexAttrib2f(location, v0, v1)   
  gl.vertexAttrib3f(location, v0, v1, v2)   
  gl.vertexAttrib4f(location, v0, v1, v2, v3)   

 Assign data to the attribute variable specified by  location .  gl.vertexAttrib1f()  indicates 
that only one value is passed, and it will be used to modify the first component of the 
attribute variable. The second and third components will be set to 0.0, and the fourth 
component will be set to 1.0. Similarly,  gl.vertexAttrib2f()  indicates that values are 
provided for the first two components, the third component will be set to 0.0, and the 
fourth component will be set to 1.0.  gl.vertexAttrib3f()  indicates that values are 
provided for the first three components, and the fourth component will be set to 1.0, 
whereas  gl.vertexAttrib4f()  indicates that values  are provided for all four components.  
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  Parameters    location   Specifies the storage location of the attribute variable.  

 v0, v1, v2, v3   Specifies the values to be assigned to the first, second, 
third, and fourth components of the attribute variable.  

  Return value    None  

  Errors    INVALID_VALUE    location  is greater than or equal to the maximum number 
of attribute variables (8 by default).  

 The vector versions of  these methods are also available. Their name contains “v” (vector), 
and they take a typed array (see  Chapter   4   ) as a parameter. The number in the method 
name indicates the number of elements in the array. For example,  

  var position = new Float32Array([1.0, 2.0, 3.0, 1.0]);

  gl.vertexAttrib4fv(a_Position, position);   

 In this case,  4  in the method name indicates that the length of the array is 4.     

  The Naming Rules for WebGL-Related Methods   

 You may be      wondering what  3f  in  gl.vertexAttrib3f()  actually means. WebGL bases 
its method names on the function names in OpenGL ES 2.0, which as you now know, 
is the base specification of WebGL. The function names in OpenGL comprise the three 
components:  <base function name> <number of parameters> < parameter type> . 
The name of each WebGL method also uses the same components:  <base method name> 
<number of parameters> <parameter type>  as shown in  Figure   2.24   .  

 

.lg birttAxetrev 3f( 2v,1v,0v,noitacol )
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 Figure 2.24   The naming rules of WebGL-related methods         

 As you can see in the example, in the case of  gl.vertexAttrib3f() , the base method 
name is  vertexAttrib , the number of parameters is 3, and the parameter type is f (that 
is, float or floating point number). This method is a WebGL version of the function 
 glVertexAttrib3f()  in OpenGL. Another character for the parameter type is i, which 
indicates integer. You can use the following notation to represent all methods from  gl.
vertexAttrib1f()  to  gl.vertexAttrib4f() :  gl.vertexAttrib[1234]f() .  

 Where  []  indicates that one of the numbers in it can be selected.  
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 When v is appended to the name, the methods take an array as a parameter. In this case, 
the number in the method name indicates the number of elements in the array.  

   var positions = new Float32Array([1.0, 2.0, 3.0, 1.0]);

   gl.vertexAttrib4fv(a_Position, positions);     

  Experimenting with the Sample Program  

 Now that you have the program to pass the position of a point from a JavaScript program 
to a vertex shader, let’s change that position. For example, if you wanted to display a 
point at (0.5, 0.0, 0.0), you would modify the program as follows:  

  33    gl.vertexAttrib3f(a_Position,  0.5 , 0.0, 0.0);   

 You could use other family methods of  gl.vertexAttrib3f()  to perform the same task in 
the following way:  

  gl.vertexAttrib1f(a_Position, 0.5);

  gl.vertexAttrib2f(a_Position, 0.5, 0.0);

  gl.vertexAttrib4f(a_Position, 0.5, 0.0, 0.0, 1.0);   

 Now that you are comfortable using attribute variables, let’s use the same approach to 
change the size of the point from within your JavaScript program. In this case, you will 
need a new attribute variable for passing the size to the vertex shader. Following the 
naming rule used in this book, let’s use  a_PointSize . As you saw in  Table   2.2   , the type of 
 gl_PointSize  is  float , so you need to prepare the variable using the same type as follows:  

  attribute float a_PointSize;   

 So, the vertex shader becomes:  

  2  // Vertex shader program

  3  var VSHADER_SOURCE =

  4    'attribute vec4 a_Position;\n' +

  5     'attribute float a_PointSize; \n' + 

  6    'void main() {\n' +

  7    '  gl_Position = a_Position;\n' +

  8     '  gl_PointSize = a_PointSize;\n' + 

  9    '}\n';   

 Then, after you get the storage location of  a_PointSize , to pass the size of the point to the 
variable, you can use  gl.vertexAttrib1f() . Because the type of  a_PointSize  is  float , you 
can use  gl.vertexAttrib1f()  as follows:  

  33  // Get the storage location of attribute variable

  34  var a_Position = gl.getAttribLocation(gl.program, 'a_Position');

      ...
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  39   var a_PointSize = gl.getAttribLocation(gl.program, 'a_PointSize'); 

  40  // Set vertex position to attribute variable

  41  gl.vertexAttrib3f(a_Position, 0.0, 0.0, 0.0);

  42   gl.vertexAttrib1f(a_PointSize, 5.0);    

 At this stage, you might want to experiment a little with the program and make sure you 
understand how to use these attribute variables and how they work.    

  Draw a Point with a Mouse Click  
 The    previous program  HelloPoint2  can pass the position of a point to a vertex shader 
from a JavaScript program. However, the position is still hard-coded, so it is not so differ-
ent from  HelloPoint1 , in which the position was also directly written in the shader.  

 In this section, you add a little more flexibility, exploiting the ability to pass the position 
from a JavaScript program to a vertex shader, to draw a point at the position where the 
mouse is clicked.  Figure   2.25    shows the screen shot of  ClickedPoint .  4     

 
 Figure 2.25   ClickedPoint         

 This program uses an event handler to handle mouse-related events, which will be famil-
iar to those of you who have written JavaScript programs.  

  Sample Program (ClickedPoints.js)  

  Listing   2.7    shows       ClickedPoints.js . For brevity, we have removed code sections that are 
the same as the previous example and replaced these with ....  

 4  ©   2012 Marisuke Kunnya 
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  Listing 2.7    ClickedPoints.js  

  1  // ClickedPoints.js

   2  // Vertex shader program

   3  var VSHADER_SOURCE =

   4    'attribute vec4 a_Position;\n' +

   5    'void main() {\n' +

   6    '  gl_Position = a_Position;\n' +

   7    '  gl_PointSize = 10.0;\n' +

   8    '}\n';

   9

  10  // Fragment shader program

       ...

  16  function main() {

  17    // Retrieve <canvas> element

  18    var canvas = document.getElementById('webgl');

  19

  20    // Get the rendering context for WebGL

  21    var gl = getWebGLContext(canvas);

       ...

  27    // Initialize shaders

  28    if (!initShaders(gl, VSHADER_SOURCE, FSHADER_SOURCE)){

       ...

  31    }

  32

  33    // Get the storage location of a_Position variable

  34    var a_Position = gl.getAttribLocation(gl.program, 'a_Position');

       ...

  40    // Register function (event handler) to be called on a mouse press

  41      canvas.onmousedown = function(ev) { click(ev, gl, canvas, a_Position); }; 

       ...

  47    gl.clear(gl.COLOR_BUFFER_BIT);

  48  }

  49

  50   var g_points = []; // The array for a mouse press 

  51   function click(ev, gl, canvas, a_Position) { 

  52     var x = ev.clientX; // x coordinate of a mouse pointer 

  53     var y = ev.clientY; // y coordinate of a mouse pointer 

  54     var rect = ev.target.getBoundingClientRect(); 

  55

  56     x = ((x - rect.left) - canvas.height/2)/(canvas.height/2); 

  57     y = (canvas.width/2 - (y - rect.top))/(canvas.width/2); 

  58    // Store the coordinates to g_points array

  59     g_points.push(x); g_points.push(y); 

  60
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  61    // Clear <canvas>

  62     gl.clear(gl.COLOR_BUFFER_BIT); 

  63

  64     var len = g_points.length; 

  65     for(var i = 0; i < len; i+=2) { 

  66      // Pass the position of  a point to a_Position variable

  67       gl.vertexAttrib3f(a_Position, g_points[i], g_points[i+1], 0.0); 

  68

  69      // Draw a point

  70       gl.drawArrays(gl.POINTS, 0, 1); 

  71     } 

  72   }     

  Register Event Handlers  

 The      processing flow from lines 17 to 39 is the same as  HelloPoint2.js . These lines get the 
WebGL context, initialize the shaders, and then retrieve the location of the attribute vari-
able. The main differences from  HelloPoint2.js  are the registration of an event handler 
(line 41) and the definition of the function  click()  as the handler (from line 51).  

 An event handler is an asynchronous callback function that handles input on a web page 
from a user, such as mouse clicks or key presses. This allows you to create a dynamic web 
page that can change the content that’s displayed according to the user’s input. To use an 
event handler, you need to register the event handler (that is, tell the system what code to 
run when the event occurs). The  <canvas>  supports special properties for registering event 
handlers for a specific user input, which you will use here.  

 For example, when you want to handle mouse clicks, you can use the  onmousedown  prop-
erty of the  <canvas>  to specify the event handler for a mouse click as follows:  

  40    // Register function (event handler) to be called on a mouse press

  41     canvas.onmousedown = function(ev) { click(ev, gl, canvas, a_Position); };    

 Line 41 uses the statement  function(){ ... }  to register the handler:  

  function(ev){ click(ev, gl, canvas, a_Position); }   

 This mechanism is called an    anonymous function , which, as its name suggests, is a 
convenient mechanism when you define a function that does not need to have a name.  

 For those of you unfamiliar with this type of function, let’s explain the mechanism using 
an example. Next, we define the variable  thanks  as follows using the form:  

  var thanks = function () { alert(' Thanks a million!'); }   

 We can execute the variable as a function as follows:  

  thanks(); // 'Thanks a million!' is displayed   
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 You can see that the variable  thanks  can be operated as a function. These lines can be 
rewritten as follows:  

  function thanks() { alert('Thanks a million!'); }

  thanks(); // 'Thanks a million!' is displayed   

 So why do you need to use an anonymous function? Well, when you draw a point, you 
need the following three variables:  gl ,  canvas , and  a_Position . These variables are local 
variables that are prepared in the function  main()  in the JavaScript program. However, 
when a mouse click occurs, the browser will automatically call the function that is regis-
tered to the  <canvas> ’s  onmousedown  property with a   predefined single parameter  (that is, 
an event object that contains information about the mouse press. Therefore, usually, you 
will register the event handler and define the function for it as follows:  

  canvas.onmousedown = mousedown; // Register "mousedown" as event handler

  ...

  function mousedown(ev) { // Event handler: It takes one parameter "ev"

    ...

  }   

 However, if you define the function in this way, it cannot access the local variables  gl , 
 canvas , and  a_Position  to draw a point. The anonymous function at line 41 provides the 
solution to make it possible to access them:  

  41     canvas.onmousedown = function(ev) { click(ev, gl, canvas, a_Position); };    

 In this code, when a mouse click occurs, the anonymous function  function(ev)  is called 
first. Then it calls  click(ev, gl, canvas, a_Position)  with the local variables defined 
in  main() . Although this may seem a little complicated, it is actually quite flexible and 
avoids the use of global variables, which is always good. Take a moment to make sure 
you understand this approach, because you will often see this way of registering event 
handlers in this book.   

  Handling Mouse Click Events  

 Let’s  look     at what the function  click()  is doing. The processing flow follows:  

    1.   Retrieve the position of the mouse click and then store it in an array.   

   2.   Clear  <canvas>.    

   3.   For each position stored in the array, draw a point.    

  50   var g_points = [];  // The array for mouse click positions 

  51   function click(ev, gl, canvas, a_Position) { 

  52     var x = ev.clientX; // x coordinate of a mouse pointer 

  53     var y = ev.clientY; // y coordinate of a mouse pointer 

  54     var rect = ev.target.getBoundingClientRect(); 
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  55

  56     x = ((x - rect.left) - canvas.height/2)/(canvas.height/2); 

  57     y = (canvas.width/2 - (y - rect.top))/(canvas.width/2); 

  58    // Store the coordinates to a_points array                              <- (1)

  59     g_points.push(x); g_points.push(y); 

  60

  61    // Clear <canvas>

  62     gl.clear(gl.COLOR_BUFFER_BIT);                                          <- (2) 

  63

  64     var len = g_points.length; 

  65     for(var i = 0; i < len; i+=2) { 

  66      // Pass the position of a point to a_Position variable                <- (3)

  67        gl.vertexAttrib3f(a_Position, g_points[i], g_points[i+1], 0.0); 

  68

  69      // Draw a point

  70       gl.drawArrays(gl.POINTS, 0, 1); 

  71     } 

  72   }    

 The information about the position of a mouse click is stored as an event object and 
passed by the browser using the argument  ev  to the function  click() .  ev  holds the posi-
tion information, and you can get the coordinates by using  ev.clientX  and  ev.clientY , 
as shown in lines 52 and 53. However, you cannot use the coordinates directly in this 
sample    program  for two reasons:  

    1.   The coordinate is the position in the “client area” in the browser, not in the 
 <canvas>  (see  Figure   2.26   ).  
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 Figure 2.26   The coordinate system of a browser’s client area and the position of the 
<canvas>          

   2.   The coordinate system of the  <canvas>  is different from that of WebGL (see  Figure 
  2.27   ) in terms of their origin and the direction of the y-axis.    



ptg11539634

Draw a Point with a Mouse Click 55

 

x)0,0(
y )0.0,0.1,0.0(

>savnac<
aeragniward

)0.0,0.0,0.1()0.0,0.0,0.1-(

)0.0,0.1-,0.0(

)0.0,0.0,0.0(

x

y )004,004(

>savnac<
aeragniward

 Figure 2.27   The coordinate system of <canvas> (left) and that of WebGL on <canvas> (right)         

 First you need to transform the coordinates from the browser area to the canvas, and then 
you need to transform them into coordinates that WebGL understands. Let’s look at how 
to do that.  

 These transformations are performed at lines 56 and 57 in the sample program:  

  52     var x = ev.clientX; 

  53     var y = ev.clientY; 

  54     var rect = ev.target.getBoundingClientRect(); 

  55    ...

  56    x = ((x - rect.left) - canvas.width/2)/(canvas.width/2);

  57    y = (canvas.height/2 - (y - rect.top))/(canvas.height/2);   

 Line 54 gets the position of the  <canvas>  in the client area. The  rect.left  and  rec.top  
indicate the position of the origin of the  <canvas>  in the browser’s client area (refer to 
 Figure   2.26   ). So,  (x – rect.left)  at line 56 and  (y – rect.top)  at line 57 slide the posi-
tion (x, y) in the client area to the correct position on the  <canvas>  element.  

 Next, you need to transform the  <canvas>  position into the WebGL coordinate system 
shown in  Figure   2.27   . To perform the transformation, you need to know the center posi-
tion of the  <canvas> . You can get the size of the  <canvas>  by  canvas.height  (in this case, 
400) and  canvas.width  (in this case, 400). So, the center of the element will be  (canvas.
height/2, canvas.width/2) .  

 Next, you can  implement this transformation by sliding the origin of the  <canvas>  
into the origin of the WebGL coordinate system located at the center of  <canvas> . The  
((x - rect.left) - canvas.width/2)  and  (canvas.height/2 - (y -rect.top))  perform 
the transformation.  

 Finally, as shown in  Figure   2.27   , the range of the x-axis in the  <canvas>  goes from 0 to 
 canvas.width  (400), and that of the y-axis goes from 0 to  canvas.height  (400). Because 
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the axes in WebGL range from –1.0 to 1.0, the last step is to map the range of the 
 <canvas>  coordinate system to that of the WebGL coordinate system by dividing the x 
coordinate by  canvas.width/2  and the y coordinate by  canvas.height/2 . You can see this 
division in lines 56 and 57.  

 Line 59 stores the resulting position of the mouse click in the array  g_points  using the 
 push()  method, which appends the data to the end of the array:  

  59    g_points.push(x); g_points.push(y);   

 So every time a mouse click occurs, the position of the click is appended to the array, as 
shown in  Figure   2.28   . (The length of the array is automatically stretched.) Note that the 
index of an array starts from 0, so the first position is  g_points[0] .  
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 Figure 2.28   The content of g_points         

 You may be wondering why you need to store all the positions rather than just the most 
recent mouse click. This is because of the way WebGL uses the color buffer. You will 
remember from  Figure   2.10    that in   the WebGL system, first the drawing operation is 
performed to the color buffer, and then the system displays its content to the screen. After 
that, the color buffer is reinitialized and its content is lost. (This is the default behavior, 
which you’ll investigate in the next section.) Therefore, it is necessary to save all the posi-
tions of the clicked points in the  array, so that on each mouse click, the program can 
draw all the previous points as well as the latest. For example, the first point is drawn at 
the first mouse click. The first and second points are drawn at the second mouse click. The 
first, second, and third points are drawn on the third click, and so on.  

 Returning to the program, the  <canvas>  is cleared at line 62. After that, the  for  statement 
at line 65 passes each position of the point stored in  g_points  to  a_Position  in the vertex 
shader. Then  gl.drawArrays()  draws the point at that position:  

  65     for(var i = 0; i < len; i+=2) { 

  66      // Pass the position of a point to a_Position variable

  67      gl.vertexAttrib3f(a_Position, g_points[i], g_points[i+1], 0.0);   

 Just like in  HelloPoint2.js , you will use  gl.vertexAttrib3f()  to pass the point position 
to the attribute variable  a_Position , which was passed as the fourth parameter of  click()  
at line 51.  
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 The array  g_points  holds the x coordinate and y coordinate of the clicked points, as 
shown in  Figure   2.28   . Therefore,  g_points[i]  holds the x coordinate, and  g_points[i+1]  
holds the y coordinate, so the loop index  i  in the  for  statement at line 65 is incremented 
by 2 using the convenient  +  operator.  

 Now that you have completed the preparations for drawing the point, the remaining task 
is just to draw it using  gl.drawArrays() :  

  69    // Draw a point

  70    gl.drawArrays(gl.POINTS, 0, 1);   

 Although it’s a little complicated, you can see that the use of event handlers combined 
with attribute variable provides a flexible and generic means for user input to change what 
WebGL draws.   

  Experimenting with the Sample Program  

 Now let’s experiment a little with this sample program  ClickedPoints . After loading 
 ClickedPoints.html  in your browser, every time you click, it draws a point at the clicked 
position, as shown in  Figure   2.26   .  

 Let’s examine what will happen when you stop clearing the  <canvas>  at line 62. 
Comment out the line as follows, and then reload the modified file into your browser.  

  61    // Clear <canvas>

  62     // gl.clear(gl.COLOR_BUFFER_BIT); 

  63

  64    var len = g_points.length;

  65    for(var i = 0; i < len; i+=2) {

  66      // Pass the position of a point to a_Position variable

  67      gl.vertexAttrib3f(a_Position, g_points[i], g_points[i+1], 0.0);

  68

  69      // Draw a point

  70      gl.drawArrays(gl.POINTS, 0, 1);

  71    }

  72  }   

 After running the program, you initially see a black background, but at the first click, 
you see a red point on a white background. This is because WebGL reinitializes the color 
buffer to the default value (0.0, 0.0, 0.0, 0.0) after drawing the point (refer to  Table   2.1   ). 
The alpha component of the default value is 0.0, which means the color is transparent. 
Therefore, the color of the  <canvas>  becomes transparent, so you see the background color 
of the web page (white, in this case) through the  <canvas>  element. If you don’t want this 
behavior, you should use  gl.clearColor()  to specify the clear  color and then always call 
 gl.clear()  before drawing something.  
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 Another interesting experiment is to look at how to simplify the code. In  ClickedPoints.
js , the x and y coordinates are stored separately in the  g_points  array. However, you can 
store the x and y coordinates as a group into the array as follows:  

  58    // Store the coordinates to a_points array          <- (1)

  59     g_points.push([x, y]);    

 In this case, the new two-element array  [x, y]  is stored as an element in the array  
g_points . Conveniently, JavaScript can store an array in an array.  

 You can retrieve the x and y coordinates from the array as follows. First, you retrieve an 
element from the array by specifying its index (line 66). Because the element itself is an 
array containing (x, y), you can retrieve the first element and the second element as the 
x and y coordinate of each point from the array (line 67):  

  65  for(var i = 0; i < len; i++) {

  66     var xy = g_points[i]; 

  67    gl.vertexAttrib3f(a_Position, xy[0], xy[1], 0.0);

        ...

  71  }   

 In this way, you can deal with the x and y coordinates as a group, simplifying your 
program and increasing the readability.    

  Change the Point Color  
 By now you    should have a good feel for how the shaders work and how to pass data to 
them from your JavaScript program. Let’s build on your understanding by constructing a 
more complex program that draws points whose colors vary depending on their position 
on the  <canvas> .  

 You already studied how to change the color of a point when you looked at  HelloPoint1 . 
In that example, you modified the fragment shader program directly to embed the color 
value into the shader. In this section, let’s construct the program so that you can specify 
the color of a point from JavaScript. This is similar to  HelloPoint2  earlier, where you 
passed the position of a point from a JavaScript program to the vertex shader. However, 
in this sample program, you need to pass the data to a “fragment shader,” not to a vertex 
shader.  

 The name of the sample program is  ColoredPoints . If you load the example into your 
browser, the result is the same as  ClickedPoints  except that each point’s color varies 
depending on its position (see  Figure   2.29   ).  
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 Figure 2.29   ColoredPoints         

 To pass data to a fragment shader, you can use a uniform variable and follow the same 
steps that you used when working with attribute variables. However, this time the target is 
a fragment shader, not a vertex shader:  

    1.   Prepare the uniform variable for the color in the fragment shader.   

   2.   Assign the uniform variable to the  gl_FragColor  variable.   

   3.   Pass the color data to the uniform variable from the JavaScript program.    

 Let’s look at the sample program and see how these steps are programmed.  

  Sample Program (ColoredPoints.js)  

 The     vertex shader of this sample program is the same as in  ClickedPoints.js . However, 
this time, the fragment shader plays a more important role because the program changes 
the color of the point dynamically and, as you will remember, fragment shaders handle 
colors.  Listing   2.8    shows  ColoredPoints.js .  

  Listing 2.8    ColoredPoints.js  

  1 // ColoredPoints.js

   2 // Vertex shader program

   3 var VSHADER_SOURCE =

   4   'attribute vec4 a_Position;\n' +

   5   'void main() {\n' +

   6   '  gl_Position = a_Position;\n' +

   7   '  gl_PointSize = 10.0;\n' +
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   8   '}\n';

   9

  10 // Fragment shader program

  11 var FSHADER_SOURCE =

  12   'precision mediump float;\n' +

  13    'uniform vec4 u_FragColor;\n' + // uniform variable                      <- (1) 

  14   'void main() {\n' +

  15    '  gl_FragColor = u_FragColor;\n' +                                      <- (2) 

  16   '}\n';

  17

  18 function main() {

       ...

  29   // Initialize shaders

  30   if (!initShaders(gl, VSHADER_SOURCE, FSHADER_SOURCE)) {

       ...

  33   }

  34

  35   // Get the storage location of a_Position variable

  36   var a_Position = gl.getAttribLocation(gl.program, 'a_Position');

       ...

  42   // Get the  storage location of u_FragColor variable

  43    var u_FragColor = gl.getUniformLocation(gl.program, 'u_FragColor'); 

       ...

  49   // Register function (event handler) to be called on a mouse press

  50    canvas.onmousedown = function(ev){ click(ev, gl, canvas, a_Position, 

                                                                   ➥u_FragColor) }; 

       ...

  56   gl.clear(gl.COLOR_BUFFER_BIT);

  57 }

  58

  59 var g_points = [];  // The array for a mouse press

  60  var g_colors = [];  // The array to store the color of a point 

  61  function click(ev, gl, canvas, a_Position, u_FragColor) { 

  62   var x = ev.clientX; // x coordinate of a mouse pointer

  63   var y = ev.clientY; // y coordinate of a mouse pointer

  64   var rect = ev.target.getBoundingClientRect();

  65

  66   x = ((x - rect.left) - canvas.width/2)/(canvas.width/2);

  67    y = (canvas.height/2 - (y - rect.top))/(canvas.height/2);

  68

  69   // Store the coordinates to g_points array

  70   g_points.push([x, y]);

  71   // Store the color to g_colors array

  72    if(x >= 0.0 && y >= 0.0) {            // First quadrant

  73      g_colors.push([1.0, 0.0, 0.0, 1.0]);  // Red 
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  74    } else if(x < 0.0 && y < 0.0) {         // Third quadrant

  75      g_colors.push([0.0, 1.0, 0.0, 1.0]);  // Green 

  76    } else {                        // Others 

  77      g_colors.push([1.0, 1.0, 1.0, 1.0]);  // White 

  78   }

  79

  80   // Clear <canvas>

  81   gl.clear(gl.COLOR_BUFFER_BIT);

  82

  83   var len = g_points.length;

  84   for(var i = 0; i < len; i++) {

  85      var xy = g_points[i]; 

  86     var rgba = g_colors[i];

  87

  88     // Pass the position of a  point to a_Position variable

  89     gl.vertexAttrib3f(a_Position, xy[0], xy[1], 0.0);

  90     // Pass the color of a point to u_FragColor variable

  91      gl.uniform4f(u_FragColor, rgba[0],rgba[1],rgba[2],rgba[3]);             <-(3) 

  92     // Draw a point

  93     gl.drawArrays(gl.POINTS, 0, 1);

  94   }

  95 }    

  Uniform Variables  

 You likely       remember how to use an attribute variable to pass data from a JavaScript 
program to a vertex shader. Unfortunately, the attribute variable is only available in a 
vertex shader, and when using a fragment shader, you need to use a uniform variable. 
There is an alternative mechanism, a varying variable (bottom of  Figure   2.30   ); however, 
it is more complex, so you won’t use it until  Chapter   5   .  
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 Figure 2.30   Two ways of passing a data to a fragment shader         
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 When you were introduced to attribute variables, you saw that a uniform variable is a 
variable for passing “uniform” (nonvariable) data from a JavaScript program to all vertices 
or fragments in the shader. Let’s now use that property.  

 Before using a uniform variable, you need to declare the variable using the form  <Storage 
Qualifier> <Type> <Variable name>  in the same way (see  Figure   2.31   ) as declaring an 
attribute variable. (See the section “Sample Program (HelloPoint2.js).”)  5     

 ;roloCgarF_u4cevmrofinu
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 Figure 2.31   The declaration of the uniform variable         

 In this sample program, the uniform variable  u_FragColor  is named after the variable  
gl_FragColor  because you will assign the uniform variable to the  gl_FragColor  later. 
The  u_  in  u_FragColor  is part of our programming convention and indicates that it is a 
uniform variable. You need to specify the same data type as  gl_FragColor  for  u_FragColor  
because you can only assign the same type of variable to  gl_FragColor . Therefore, you 
prepare  u_FragColor  at line 13, as follows:  

  10  // Fragment shader program

  11  var FSHADER_SOURCE =

  12    'precision mediump float;\n' +

  13     'uniform vec4 u_FragColor;\n' + // uniform variable 

  14    'void main() {\n' +

  15     '  gl_FragColor = u_FragColor;\n' + 

  16    '}\n';   

 Note that line 12 specifies the range and precision of variables by using a   precision quali-
fier , in this case medium precision, which is covered in detail in  Chapter   5   .  

 Line 15 assigns the color in the uniform variable  u_FragColor  to  gl_FragColor , which 
causes the point to be drawn in whatever color is passed. Passing the color through the 
uniform variable is similar to using an attribute variable; you need to retrieve the storage 
location of the variable and then write the data to the location within the JavaScript 
program.   

  Retrieving the Storage Location of a Uniform Variable  

 You       can use the following method to retrieve the storage location of a uniform variable.     

 5     In GLSL ES, you can only specify  float  data types for an attribute variable; however, you can 

specify any type for a uniform variable. (See  Chapter   6    for more details.) 
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   gl.getUniformLocation(program, name)   

 Retrieve the storage location of the uniform variable specified by the  name  parameter.  

  Parameters    program   Specifies the program object that holds a vertex 
shader and a fragment shader.  

 name   Specifies the name of the uniform variable whose loca-
tion is to be retrieved.  

  Return value    non-null   The location of the specified uniform variable.  

 null   The specified uniform variable does not exist or its 
name starts with the reserved prefix  gl_  or  webgl_ .  

  Errors    INVALID_OPERATION    program  has not been successfully linked  

 (See  Chapter   9   .)  

 INVALID_VALUE   The length of  name  is more than the maximum length 
(256 by default) of a uniform variable.  

 The functionality and parameters of this method are the same as in  gl.getAttribLoca-
tion() . However, the return value of this method is  null , not –1, if the uniform variable 
does not exist or its name starts with a reserved prefix. For this reason, unlike attribute 
variables, you need to check whether the return value is  null . You can see this error 
checking line 44. In JavaScript,  null  can be treated as  false  when checking the condition 
of an  if  statement, so you can use the  !  operator to check the result:  

  42   // Get the storage location of uniform variable

  43    var u_FragColor = gl.getUniformLocation(gl.program, 'u_FragColor'); 

  44    if (!u_FragColor) { 

  45      console.log('Failed to get u_FragColor variable'); 

  46      return; 

  47    }     

  Assigning a Value to a Uniform Variable  

 Once you      have the location of the uniform variable and the WebGL method,   gl.
uniform4f()  is used to write data to it. It has the same functionality and parameters as 
those of  gl.vertexAttrib[1234]f() .    
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   gl.uniform4f (location, v0, v1, v2, v3)  

 Assign the data specified by  v0 ,  v1 ,  v2 , and  v3  to the uniform variable specified by 
 location .  

  Parameters    location   Specifies the storage location of a uniform variable to 
be modified.  

 v0   Specifies the value to be used as the first element of 
the uniform variable.  

 v1   Specifies the value to be used as the second element 
of the uniform variable.  

 v2   Specifies the value to be used as the third element of 
the uniform variable.  

 v3   Specifies the value to be used as the fourth element of 
the uniform variable.  

  Return value    None  

  Errors    INVALID_OPERATION   There is no current program object.  

  location  is an invalid uniform variable location.  

 Let’s look at the portion of the sample program where the  gl.uniform4f()  method is used 
to assign the data (line 91). As you can see, several processing steps are needed in advance:  

  71    // Store the color to g_colors array

  72    if(x >= 0.0 && y >= 0.0) {              // First quadrant

  73      g_colors.push([1.0, 0.0, 0.0, 1.0]);  // Red

  74    } else if(x < 0.0 && y < 0.0) {         // Third quadrant

  75      g_colors.push([0.0, 1.0, 0.0, 1.0]);  // Green

  76    } else {                                // Other quadrants

  77      g_colors.push([1.0, 1.0, 1.0, 1.0]);  // White

  78    }

         ...

  83    var len = g_points.length;

  84    for(var i = 0; i < len; i++) {

  85      var xy = g_points[i];

  86      var rgba = g_colors[i];

            ...

  91       gl.uniform4f(u_FragColor, rgba[0], rgba[1], rgba[2], rgba[3]);    

 To understand this program logic, let’s return to the goal of this program, which is to vary 
the color of a point according to where on the  <canvas>  the mouse is clicked. In the first 
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quadrant, the color is set to red; in the third quadrant, the color is green; in the other 
quadrants, the color is white (see  Figure   2.32   ).  
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 Figure 2.32   The name of each quadrant in a coordinate system and its drawing colors         

 The code from lines 72 to 78 simply determines which quadrant the mouse click was in 
and then, based on that, writes the appropriate color into the array  g_colors . Finally, at 
line 84, the program loops through the points, passing the correct color to the uniform 
variable  u_FragColor  at line 91. This causes WebGL to write all the points stored so far to 
the color buffer, which then results in the browser display being updated.  

 Before finishing this chapter, let’s take a quick look at the rest of the family methods for 
 gl.uniform[1234]f() .   

  Family Methods of gl.uniform4f()  

      gl.uniform4f()  also has a family of methods.  gl.uniform1f()  is a method to assign a 
single value (v0),  gl.uniform2f()  assigns two values (v0 and v1), and  gl.uniform3f()  
assigns three values (v0, v1, and v2).     

  gl.uniform1f(location, v0)   
  gl.uniform2f(location, v0, v1)   

  gl.uniform3f(location, v0, v1, v2)   
  gl.uniform4f(location, v0, v1, v2, v3)   

 Assign data to the uniform variable specified by  location .  gl.uniform1f()  indicates 
that only one value is passed, and it will be used to modify the first component of 
the uniform variable. The second and third components will be set to 0.0, and the 
fourth component will be set to 1.0. Similarly,  gl.uniform2f()  indicates that values are 
provided for the first two components, the third component will be set to 0.0, and the 
fourth component will be set to 1.0.  gl.uniform3f()  indicates that values are provided 
for the first three components and the fourth component will be set to 1.0, whereas 
 gl.unifrom4f()  indicates that values  are provided for all four components.  
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  Parameters    location   Specifies the storage location of a uniform variable.  

 v0, v1, v2, v3   Specifies the values to be assigned to the first, 
second, third, and fourth component of the uniform 
variable.  

  Return value    None  

  Errors    INVALID_OPERATION   There is no current program object.  

  location  is an invalid uniform variable location.  

     Summary  
 In this chapter, you saw the core functions of WebGL and how to use them. In particu-
lar, you learned about shaders, which are the main mechanism used in WebGL to draw 
graphics. Based on this, you constructed several sample programs starting with a simple 
program to draw a red point, and then you added complexity by changing its position 
based on a mouse click and changed its color. In both cases, these examples helped you 
understand how to pass data from a JavaScript program to the shaders, which will be criti-
cal for future examples.  

 The shapes found in this chapter were still just two-dimensional points. However, you can 
apply the same knowledge of the use of the core WebGL functions and shaders to more 
complex shapes and to three-dimensional objects.  

 A key learning point in this chapter is this: A vertex shader performs per-vertex opera-
tions, and a fragment shader performs per-fragment operations. The following chapters 
explain some of the other functions of WebGL, while slowly increasing the complexity of 
the shapes that you manipulate and display on the screen.     
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  Chapter 3 

 Drawing and Transforming Triangles  

     Chapter   2   , “Your First Step with WebGL,” explained the basic approach to drawing WebGL 
graphics. You saw how to retrieve the WebGL context and clear a  <canvas>  in preparation for 
drawing your 2D/3DCG. You then explored the roles and features of the vertex and fragment 
shaders and how to actually draw graphics with them. With this basic structure in mind, you 
then constructed several sample programs that drew simple shapes composed of points on the 
screen.  

 This chapter builds on those basics by exploring how to draw more complex shapes and how to 
manipulate those shapes in 3D space. In particular, this chapter looks at  

    •   The critical role of triangles in 3DCG and WebGL’s support for drawing triangles   

 •   Using multiple triangles to draw other basic shapes   

   •   Basic transformations that move, rotate, and scale triangles using simple equations   

   •   How matrix operations make transformations simple    

 By the end of this chapter, you will have a comprehensive understanding of WebGL’s support for 
drawing basic shapes and how to use matrix operations to manipulate those shapes.  Chapter   4   , 
“More Transformations and Basic Animation,” then builds on this knowledge to explore simple 
animations.   
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     Drawing Multiple Points  
 As you are probably aware   , 3D models     are actually made from a simple building block: 
the humble triangle. For example, looking at the frog in  Figure   3.1   , the figure on the right 
side shows the triangles used to make up the shape, and in particular the three vertices 
that make up one triangle of the head. So, although this game character has a complex 
shape, its basic components are the same as a simple one, except of course for many more 
triangles and their associated vertices. By using smaller and smaller triangles, and there-
fore more and more vertices, you can  create more complex or smoother objects. Typically, 
a complex shape or game character will consist of tens of thousands of triangles and 
their associated vertices. Thus, multiple vertices used to make up triangles are pivotal for 
drawing 3D objects.  

 
 Figure 3.1   Complex characters are also constructed from multiple triangles         

 In this section, you explore the process of drawing shapes using multiple vertices. 
However, to keep things simple, you’ll continue to use 2D shapes, because the technique 
to deal with multiple vertices for a 2D shape is the same as dealing with them for a 3D 
object. Essentially, if you can master these techniques for 2D shapes, you can easily under-
stand the examples in the rest of this book that use the same techniques for 3D objects.  

 As an example of handling multiple vertices, let’s create a program,  MultiPoint , that 
draws three red points on the screen; remember, three points or vertices make up the 
triangle.  Figure   3.2    shows a screenshot from  Multipoint .  
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 Figure 3.2    MultiPoint          

 In the previous chapter, you created a sample program,  ClickedPoints , that drew multi-
ple points based on mouse clicks.  ClickedPoints  stored the position of the points in a 
JavaScript array ( g_points[] ) and used the  gl.drawArrays()  method to draw each point 
( Listing   3.1   ). To draw multiple points, you used a loop that iterated through the array, 
drawing each point in turn by passing one vertex at a time to the shader.  

  Listing 3.1   Drawing Multiple Points as Shown in ClickedPoints.js ( Chapter   2   )  

  65   for(var i = 0; i<len; i+=2) {

  66     // Pass the position of a point to a_Position variable

  67     gl.vertexAttrib3f(a_Position, g_points[i], g_points[i+1], 0.0);

  68

  69     // Draw a point

  70     gl.drawArrays(gl.POINTS, 0, 1);

  71   }   

 Obviously, this method is useful only for single points. For shapes that use multiple verti-
ces, you need a way to simultaneously pass multiple vertices to the vertex shader so that 
you can draw shapes constructed from multiple vertices, such as triangles, rectangles, and 
cubes.  

 WebGL provides a convenient way to pass multiple vertices and uses something called a 
 buffer object  to do so. A  buffer object is a memory area that can store multiple vertices in 
the WebGL system. It is used both as a staging area for the vertex data and a way to simul-
taneously pass the vertices to a vertex shader.  

 Let’s examine a sample program before explaining the buffer object so you can get a feel 
for the processing flow.  
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  Sample Program (MultiPoint.js)  

 The  processing  flowchart for  MultiPoint.js  (see  Figure   3.3   ) is basically the same as for 
 ClickedPoints.js  ( Listing   2.7   ) and  ColoredPoints.js  ( Listing   2.8   ), which you saw in 
 Chapter   2   . The only difference is a new step, setting up the positions of vertices, which is 
added to the previous flow.  
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 Figure 3.3   Processing flowchart for MultiPoints.js         

 This step is implemented at line 34, the function  initVertexBuffers() , in  Listing   3.2   .  

  Listing 3.2   MultiPoint. js  

 1 // MultiPoint.js

  2 // Vertex shader program

  3 var VSHADER_SOURCE =

  4   'attribute vec4 a_Position;\n' +

  5   'void main() {\n' +

  6   '  gl_Position = a_Position;\n' +

  7   '  gl_PointSize = 10.0;\n' +

  8   '}\n';

  9

  10 // Fragment shader program

      ...

  15

  16 function main() {

      ...
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  20   // Get the rendering context for WebGL

  21   var gl = getWebGLContext(canvas);

          ...

  27   // Initialize shaders

  28   if (!initShaders(gl, VSHADER_SOURCE, FSHADER_SOURCE)) {

          ...

  31   }

  32

  33   // Set the positions of vertices

  34   var n = initVertexBuffers(gl);

  35   if (n < 0) {

  36     console.log('Failed to set the positions of the vertices');

  37     return;

  38   }

  39

  40   // Set the color for clearing <canvas>

          ...

  43   // Clear <canvas>

  ...

  46   // Draw three points

  47    gl.drawArrays(gl.POINTS, 0, n); // n is 3

  48 }

  49

  50 function initVertexBuffers(gl) {

  51   var vertices = new Float32Array([

  52     0.0, 0.5,   -0.5, -0.5,   0.5, -0.5

  53   ]);

  54   var n = 3; // The number of vertices

  55

  56   // Create a buffer object

  57   var vertexBuffer = gl.createBuffer();

  58   if (!vertexBuffer) {

  59     console.log('Failed to create the buffer object ');

  60     return -1;

  61   }

  62

  63   // Bind the buffer object to target

  64   gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);

  65   // Write date into the buffer object

  66   gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);

  67

  68   var a_Position = gl.getAttribLocation(gl.program, 'a_Position');

      ...

  73   // Assign the buffer object to a_Position variable

  74   gl.vertexAttribPointer(a_Position, 2, gl.FLOAT, false, 0, 0);
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  75

  76   // Enable the assignment to a_Position variable

  77    gl.enableVertexAttribArray(a_Position);

  78

  79   return n;

  80 }   

 The new function   initVertexBuffers()  is defined at line 50 and used at line 34 to set 
up the vertex buffer object. The function stores multiple vertices in the buffer object and 
then completes the preparations for passing it to a vertex shader:  

   33 // Set the positions of vertices 

  34   var n = initVertexBuffers(gl);    

 The return value of this function is the number of vertices being drawn, stored in the vari-
able  n . Note that in case of error,  n  is negative.  

 As in the previous examples, the drawing operation is carried out using a single call to 
  gl.drawArrays()  at Line 48. This is similar to  ClickedPoints.js  except that  n  is passed as 
the third argument of  gl.drawArrays()  rather than the value 1:  

  46   // Draw three points

  47   gl.drawArrays(gl.POINTS, 0, n); // n is 3   

 Because you are using a buffer object to pass multiple vertices to a vertex shader in  init-
VertexBuffers() , you need to specify the number of vertices in the object as the third 
parameter of  gl.drawArrays()  so that WebGL then knows to draw a shape using all the 
vertices in the buffer object.   

  Using Buffer Objects  

 As indicated    earlier, a buffer object is a mechanism provided by the WebGL system that 
provides a memory area allocated in the system (see  Figure   3.4   ) that holds the vertices you 
want to draw. By creating a buffer object and then writing the vertices to the object, you 
can pass multiple vertices to a vertex shader through one of its attribute variables.  
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 In the sample program, the data (vertex coordinates) written into a buffer object is defined 
as a special JavaScript array ( Float32Array ) as follows. We will explain this special array in 
detail later, but for now you can think of it as a normal array:  

   51   var vertices = new Float32Array([ 

   52     0.0, 0.5,   -0.5, -0.5,   0.5, -0.5 

   53   ]);    

 There are five steps needed to pass multiple data values to a vertex shader through a buffer 
object. Because WebGL uses a similar approach when dealing with other objects such as 
texture objects ( Chapter   4   ) and framebuffer objects ( Chapter   8   , “Lighting Objects”), let’s 
explore these in detail so you will be able to apply the knowledge later:  

    1.   Create a buffer object ( gl.createBuffer() ).   

   2.   Bind the buffer object to a target ( gl.bindBuffer() ).   

   3.   Write data into the buffer object ( gl.bufferData() ).   

   4.   Assign the buffer object to an attribute variable ( gl.vertexAttribPointer() ).   

   5.   Enable assignment ( gl.enableVertexAttribArray() ).    

  Figure   3.5    illustrates the five steps.  
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 Figure 3.5   The five steps to pass multiple data values to a vertex shader using a buffer object         

 The code performing the steps in the sample program in  Listing   3.2    is as follows:  

   56   // Create a buffer object                                      <- (1) 

   57   var vertexBuffer = gl.createBuffer(); 

  58   if (!vertexBuffer) {

  59     console.log('Failed to create a buffer object');

  60     return -1;

  61   }

  62

   63   // Bind the buffer object to a target                          <- (2) 
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   64   gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer); 

   65   // Write date into the buffer object                           <- (3) 

   66   gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW); 

  67

  68   var a_Position = gl.getAttribLocation(gl.program, 'a_Position');

      ...

   73   // Assign the buffer object to a_Position variable             <- (4) 

   74   gl.vertexAttribPointer(a_Position, 2, gl.FLOAT, false, 0, 0); 

  75

   76   // Enable the assignment to a_Position variable                <- (5) 

   77   gl.enableVertexAttribArray(a_Position);    

 Let’s start with the first three steps (1–3), from creating a buffer object to writing data 
(vertex coordinates in this example) to the buffer, explaining the methods used within 
each step.   

  Create a Buffer Object (gl.createBuffer())  

 Before you    can use a buffer object, you obviously need to create the buffer object. This is 
the first step, and it’s carried out at line 57:  

   57   var vertexBuffer = gl.createBuffer();    

 You use the   gl.createBuffer()  method to create a buffer object within the WebGL 
system.  Figure   3.6    shows the internal state of the WebGL system. The upper part of the 
figure shows the state before executing the method, and the lower part is after execution. 
As you can see, when the method is executed, it results in a single buffer object being 
created in the WebGL system. The keywords  gl.ARRAY_BUFFER  and  gl.ELEMENT_ARRAY_
BUFFER  in the figure will be explained in the next section, so you can ignore them for 
now.  
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 Figure 3.6   Create a buffer object         
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 The following shows the specification of   gl.createBuffer() .    

   gl.createBuffer ()  

 Create a buffer object.  

 Return value   non-null   The newly created buffer object.  

 null   Failed to create a buffer object.  

 Errors   None  

 The corresponding method   gl.deleteBuffer()  deletes the buffer object created by 
 gl.createBuffer() .    

   gl.deleteBuffer (buffer)  

 Delete the buffer object specified by  buffer.   

 Parameters   buffer   Specifies the buffer object to be deleted.  

 Return Value   None  

 Errors   None  

  Bind a Buffer Object to a Target (gl.bindBuffer())  

 After creating      a buffer object, the second step is to bind it to a “target.” The target tells 
WebGL what type of data the buffer object contains, allowing it to deal with the contents 
correctly. This binding process is carried out at line 64 as follows:  

  64 gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);   

 The specification of  gl.bindBuffer()  is as follows.    

   gl.bindBuffer(target, buffer)   

 Enable the buffer object specified by  buffer  and bind it to the  target.   

  Parameters    Target can be one of the following:  

                      gl.ARRAY_BUFFER    Specifies that the buffer object contains vertex data.  
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                          gl.ELEMENT_
ARRAY_BUFFER   

 Specifies that the buffer object contains index values 
pointing to vertex data. (See  Chapter   6   , “The OpenGL 
ES Shading Language [GLSL ES].)  

 buffer   Specifies the buffer object created by a previous call to 
 gl.createBuffer() .  

 When  null  is specified, binding to the  target  is 
disabled.  

  Return Value    None  

  Errors    INVALID_ENUM    target  is none of the above values. In this case, the 
current binding is maintained.  

 In the sample program in this section,  gl.ARRAY_BUFFER  is specified as the  target  to store 
vertex data (positions) in the buffer object. After executing line 64, the internal state in 
the WebGL system changes, as shown in  Figure   3.7   .  
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 Figure 3.7   Bind a buffer object to a target         

 The next step is to write data into the buffer object. Note that because you won’t be using 
the  gl.ELEMENT_ARRAY_BUFFER  until  Chapter   6   , it’ll be removed from the following figures 
for clarity.   

  Write Data into a Buffer Object (gl.bufferData())  

 Step 3 allocates      storage and writes data to the buffer. You use  gl.bufferData()  to do this, 
as shown at line 66:  

  66    gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);    

 This method writes the data specified by the second parameter ( vertices ) into the buffer 
object bound to the first parameter ( gl.ARRAY_BUFFER ). After executing line 66, the inter-
nal state of the WebGL system changes, as shown in  Figure   3.8   .  



ptg11539634

Drawing Multiple Points 77

 

redahSxetreV{)(niamnoitcnuf
=secitrevrav

[(yarrA23taolFwen
,5.0,0.0
,5.0-,5.0-

5.0-,5.0
;)]

;),secitrev,..(

tcejbOreffuB

5.0,0.0
5.0-,5.0-
5.0-,5.0

. atareffublg D

tpircSavaJ

LGbeW
metsyS

attribute variable

 Figure 3.8   Allocate storage and write data into a buffer object         

 You can see in this figure that the vertex data defined in your JavaScript program is 
written to the buffer object bound to  gl.ARRAY_BUFFER . The following table shows the 
specification of  gl.bufferData() .    

   gl.bufferData(target, data, usage)   

 Allocate storage and write the data specified by  data  to the buffer object bound to  target.   

  Parameters    target   Specifies  gl.ARRAY_BUFFER  or  gl.ELEMENT_ARRAY_BUFFER.   

 data   Specifies the data to be written to the buffer object (typed 
array; see the next section).  

 usage   Specifies a hint about how the program is going to use 
the data stored in the buffer object. This hint helps WebGL 
optimize performance but will not stop your program from 
working if you get it wrong.  

  gl.STATIC_
DRAW   

 The buffer object data will be specified once 
and used many times to draw shapes.  

  gl.STREAM_
DRAW   

 The buffer object data will be specified once 
and used a few times to draw shapes.  

  gl.DYNAMIC_
DRAW   

 The buffer object data will be specified repeat-
edly and used many times to draw shapes.  

  Return value    None  

  Errors    INVALID_ENUM    target  is none of the preceding constants  

 Now, let us examine what data is passed to the buffer object using  gl.bufferData() . 
This method uses the special array  vertices  mentioned earlier to pass data to the vertex 
shader. The array is created at line 51 using the  new  operator with the data arranged as 
<x coordinate and y coordinate of the first vertex>, <x coordinate and y coordinate of the 
second vertex>, and so on:  
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   51   var vertices = new Float32Array([ 

   52     0.0, 0.5,   -0.5, -0.5,   0.5, -0.5 

   53   ]); 

  54   var n = 3; // The number of vertices   

 As you can see in the preceding code snippet, you are using the   Float32Array  object 
instead of the more usual JavaScript Array object to store the data. This is because the 
standard array in JavaScript is a general-purpose data structure able to hold both numeric 
data and strings but isn’t optimized for large quantities of data of the same type, such as 
 vertices . To address this issue, the typed array, of which one example is  Float32Array , 
has been introduced.   

  Typed Arrays  

 WebGL often    deals with large quantities of data of the same type, such as vertex coordi-
nates and colors, for drawing 3D objects. For optimization purposes, a special type of array 
( typed array ) has been introduced for each data type. Because the type of data in the 
array is known in advance, it can be handled efficiently.  

  Float32Array  at line 51 is an example of a typed array and is generally used to store 
vertex coordinates or colors. It’s important to remember that a typed array is expected 
by WebGL and is needed for many operations, such as the second parameter  data  of  
gl.bufferData() .  

  Table   3.1    shows the different typed arrays available. The third column shows the corre-
sponding data type in C as a reference for those of you familiar with the C language.  

  Table 3.1   Typed Arrays Used in WebGL  

  Typed Array     Number of Bytes per Element     Description (C Types)   

  Int8Array    1   8-bit signed integer (signed char)  

  Uint8Array    1   8-bit unsigned integer (unsigned char)  

  Int16Array    2   16-bit signed integer (signed short)  

  Uint16Array    2   16-bit unsigned integer (unsigned short)  

  Int32Array    4   32-bit signed integer (signed int)  

  Uint32Array    4   32-bit unsigned integer (unsigned int)  

  Float32Array    4   32-bit floating point number (float)  

  Float64Array    8   64-bit floating point number (double)  

 Like JavaScript, these typed arrays have a set of methods, a property, and a constant avail-
able that are shown in  Table   3.2   . Note that, unlike the standard  Array  object in JavaScript, 
the methods  push()  and  pop()  are not supported.  
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  Table 3.2   Methods, Property, Constant of Typed Arrays     

  Methods, Properties, and Constants     Description   

  get(index)    Get the  index -th element  

  set(index, value)    Set  value  to the  index -th element  

  set(array, offset)    Set the elements of  array  from  offset -th element  

  length    The length of the array  

  BYTES_PER_ELEMENT    The number of bytes per element in the array  

 Just like standard arrays, the  new  operator creates a typed array and is passed the array 
data. For example, to create  Float32Array  vertices, you could pass the array  [0.0, 0.5, 
-0.5, -0.5, 0.5, -0.5] , which represents a set of vertices. Note that the only way to 
create a typed array is by using the  new  operator. Unlike the  Array  object, the  []  operator 
is not supported:  

  51   var vertices = new Float32Array([

  52     0.0, 0.5,   -0.5, -0.5,   0.5, -0.5

  53   ]);   

 In addition, just like a normal JavaScript array, an empty typed array can be created by 
specifying the number of elements of the array as an argument. For example:  

   var vertices = new Float32Array(4);    

 With that, you’ve completed the first three steps of the process to set up and use a buffer 
(that is, creating a buffer object in the WebGL system, binding the buffer object to a 
target, and then writing data into the buffer object). Let’s now look at how to actually use 
the buffer, which takes place in steps 4 and 5 of the process.   

  Assign the Buffer Object to an Attribute Variable 

(gl.vertexAttribPointer())  

 As explained       in  Chapter   2   , you can use  gl.vertexAttrib[1234]f()  to assign data to an 
attribute variable. However, these methods can only be used to assign a single data value 
to an attribute variable. What you need here is a way to assign an array of values—the 
vertices in this case—to an attribute variable.  

  gl.vertexAttribPointer()  solves this problem and can be used to assign a buffer object 
(actually a reference or handle to the buffer object) to an attribute variable. This can be 
seen at line 74 when you assign a buffer object to the attribute variable  a_Position :  

   74   gl.vertexAttribPointer(a_Position, 2, gl.FLOAT, false, 0, 0);    

 The specification of  gl.vertexAttribPointer()  is as follows.    
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   gl.vertexAttribPointer(location, size, type, normalized, stride, 
offset)   

 Assign the buffer object bound to  gl.ARRAY_BUFFER  to the attribute variable specified by 
 location .  

  Parameters    location   Specifies the storage location of an attribute variable.  

 size   Specifies the number of components per vertex in the buffer object 
(valid values are 1 to 4). If  size  is less than the number of compo-
nents required by the attribute variable, the missing components 
are automatically supplied just like  gl.vertexAttrib[1234]f() .  

 For example, if  size  is 1, the second and third components will be 
set to 0, and the fourth component will be set to 1.  

 type   Specifies the data format using one of the following:  

  gl.UNSIGNED_BYTE    unsigned byte   for  Uint8Array   

  gl.SHORT    signed short integer   for  Int16Array   

  gl.UNSIGNED_SHORT    unsigned short integer   for  Uint16Array   

  gl.INT    signed integer   for  Int32Array   

  gl.UNSIGNED_INT    unsigned integer   for  Uint32Array   

  gl.FLOAT    floating point number   for  Float32Array   

 normalized   Either  true  or  false  to indicate whether nonfloating data should 
be normalized to [0, 1] or [–1, 1].  

 stride   Specifies the number of bytes between different vertex data 
elements, or zero for default stride (see  Chapter   4   ).  

 offset   Specifies the offset (in bytes) in a buffer object to indicate what 
number-th byte the vertex data is stored from. If the data is stored 
from the beginning,  offset  is 0.  

  Return value    None  

  Errors    INVALID_OPERATION   There is no current program object.  

 INVALID_VALUE    location  is greater than or equal to the maximum 
number of attribute variables (8, by default).  stride  or 
 offset  is a negative value.  



ptg11539634

Drawing Multiple Points 81

 So, after executing this fourth step, the preparations are nearly completed in the WebGL 
system for using the buffer object at the attribute variable specified by  location . As you can 
see in  Figure   3.9   , although the buffer object has been assigned to the attribute variable, 
WebGL requires a final step to “enable” the assignment and make the final connection.  

 

redahSxetreV

tpircSavaJ

{)(niamnoitcnuf
…LGbeWteg=lgrav

…
;)…(retnioPbirttAxetrev.lg

…

tcejbOreffuB

REFFUB_YARRA.lg

5 . 0 , 0 . 0 
5 . 0 - , 5 . 0 - 

attribute variable

 Figure 3.9   Assign a buffer object to an attribute variable         

 The fifth and final step is to enable the assignment of the buffer object to the attribute 
variable.   

  Enable the Assignment to an Attribute Variable 

(gl.enableVertexAttribArray())  

 To make       it possible to access a buffer object in a vertex shader, we need to enable the 
assignment of the buffer object to an attribute variable by using  gl.enableVertexAttrib-
Array()  as shown in line 77:  

   77   gl.enableVertexAttribArray(a_Position);    

 The following shows the specification of  gl.enableVertexAttribArray() . Note that we are 
using the method to handle a buffer even though the method name suggests it’s only for 
use with “vertex arrays.” This is not a problem and is simply a legacy from OpenGL.    

   gl.enableVertexAttribArray(location)   

 Enable the assignment of a buffer object to the attribute variable specified by  location .  

  Parameters    location   Specifies the storage location of an attribute variable.  

  Return value    None  

  Errors    INVALID_VALUE    location  is greater than or equal to the maximum number 
of attribute variables (8 by default).  

 When you execute  gl.enableVertexAttribArray()  specifying an attribute variable that 
has been assigned a buffer object, the assignment is enabled, and the unconnected line is 
connected as shown in  Figure   3.10   .  
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 Figure 3.10   Enable the assignment of a buffer object to an attribute variable         

 You can also break this assignment (disable it) using the method  
 gl.disableVertexAttribArray() .    

   gl.disableVertexAttribArray(location)   

 Disable the assignment of a buffer object to the attribute variable specified by  location .  

  Parameters    location   Specifies the storage location of an attribute variable.  

  Return Value    None  

  Errors    INVALID_VALUE    location  is greater than or equal to the maximum number 
of attribute variables (8 by default).  

 Now, everything is set! All you need to do is run the vertex shader, which draws the 
points using the vertex coordinates specified in the buffer object. As in  Chapter   2   , you 
will use the method  gl.drawArrays , but because you are drawing multiple points, you will 
actually use the second and third parameters of  gl.drawArrays() .  

 Note that after enabling the assignment, you can no longer use  gl.vertexAttrib[1234]
f()  to assign data to the attribute variable. You have to explicitly disable the assignment 
of a buffer object. You can’t use both methods simultaneously.   

  The Second and Third Parameters of gl.drawArrays()  

 Before entering    into a detailed explanation of these parameters, let’s take a look at the 
specification of  gl.drawArrays()  that was introduced in  Chapter   2   . Following is a recap of 
the method with only the relevant parts of the specification shown.    
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   gl.drawArrays(mode, first, count)   

 Execute a vertex shader to draw shapes specified by the  mode  parameter.  

  Parameters    mode   Specifies the type of shape to be drawn. The following symbolic 
constants are accepted:  gl.POINTS ,  gl.LINES ,  gl.LINE_STRIP ,  gl.
LINE_LOOP ,  gl.TRIANGLES ,  gl.TRIANGLE_STRIP , and  gl.TRIANGLE_
FAN .  

 first   Specifies what number-th vertex is used to draw from (integer).  

 count   Specifies the number of vertices to be used (integer).  

 In the sample program this method is used as follows:  

   47   gl.drawArrays(gl.POINTS, 0, n); // n is 3    

 As in the previous examples, because you are simply drawing three points, the first param-
eter is still  gl.POINTS . The second parameter  first  is set to 0 because you want to draw 
from the first coordinate in the buffer. The third parameter  count  is set to 3 because you 
want to draw three points (in line 47,  n  is 3).  

 When your program runs line 47, it actually causes the vertex shader to be executed  count  
(three) times, sequentially passing the vertex coordinates stored in the buffer object via 
the attribute variable into the shader ( Figure   3.11   ).   

 Note that for each execution of the vertex shader, 0.0 and 1.0 are automatically supplied 
to the z and w components of  a_Position  because  a_Position  requires four components 
( vec4 ) and you are supplying only two.  

 Remember that at line 74, the second parameter  size  of g l.vertexAttribPointer()  is set 
to 2. As just discussed, the second parameter indicates how many coordinates per vertex 
are specified in the buffer object and, because you are only specifying the x and y coordi-
nates in the buffer, you set the size value to 2:  

   74   gl.vertexAttribPointer(a_Position, 2, gl.FLOAT, false, 0, 0);    

 After drawing all points, the content of the color buffer is automatically displayed in the 
browser (bottom of  Figure   3.11   ), resulting in our three red points, as shown in  Figure   3.2   .   
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  Experimenting with the Sample Program  

 Let’s experiment with the sample program to better understand how  gl.drawArrays()  
works by modifying the second and third parameters. First, let’s specify 1 as the third 
argument for  count  at line 47 instead of our variable  n  (set to 3) as follows:  

  47  gl.drawArrays(gl.POINTS, 0,  1 );   

 In this case, the vertex shader is executed only once, and a single point is drawn using the 
first vertex in the buffer object.  

 If you now specify 1 as the second argument, only the second vertex is used to draw 
a point. This is because you are telling WebGL that you want to start drawing from 
the second vertex and you only want to draw one vertex. So again, you will see only a 
single point, although this time it is the second vertex coordinates that are shown in the 
browser:  

  47  gl.drawArrays(gl.POINTS,  1 , 1);   
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 Figure 3.11   How the data in a buffer object is passed to a vertex shader during execution        
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 This gives you a quick feel for the role of the parameters  first  and  count . However, what 
will be happen if you change the first parameter  mode ? The next section explores the first 
parameter in more detail.    

  Hello Triangle  
 Now that      you’ve learned the basic techniques to pass multiple vertex coordinates to a 
vertex shader, let’s try to draw other shapes using multiple vertex coordinates. This section 
uses a sample program  HelloTriangle , which draws a single 2D triangle.  Figure   3.12    
shows a screenshot of  HelloTriangle .  

 
 Figure 3.12   HelloTriangle         

  Sample Program (HelloTriangle.js)  

  Listing   3.3    shows      HelloTriangle.js , which is almost identical to  MultiPoint.js  used in 
the previous section with two critical differences.  

  Listing 3.3   HelloTriangle.js  

   1 // HelloTriangle.js

   2 // Vertex shader program

   3 var VSHADER_SOURCE =

   4   'attribute vec4 a_Position;\n' +

   5   'void main() {\n' +

   6   '  gl_Position = a_Position;\n' +

   7   '}\n';

   8
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   9 // Fragment shader program

  10 var FSHADER_SOURCE =

  11   'void main() {\n' +

  12   '  gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);\n' +

  13   '}\n';

  14

  15 function main() {

      ...

  19   // Get the rendering context for WebGL

  20   var gl = getWebGLContext(canvas);

       ...

  26   // Initialize shaders

  27   if (!initShaders(gl, VSHADER_SOURCE, FSHADER_SOURCE)) {

       ...

  30   }

  31

  32   // Set the positions of vertices

  33   var n = initVertexBuffers(gl);

  ...

  39   // Set the color for clearing <canvas>

       ...

  45   // Draw a triangle

  46    gl.drawArrays(gl.TRIANGLES, 0, n);

  47 }

  48

  49 function initVertexBuffers(gl) {

  50   var vertices = new Float32Array([

  51     0.0, 0.5,   -0.5, -0.5,   0.5, -0.5

  52   ]);

  53   var n = 3; // The number of vertices

       ...

  78   return n;

  79 }   

 The two differences from  MultiPoint.js  are  

    •   The line to specify the size of a point  gl_PointSize = 10.0 ; has been removed from 
the vertex shader. This line only has an effect when you are drawing a point.   

   •   The first parameter of  gl.drawArrays()  has been changed from  gl.POINTS  to 
 gl.TRIANGLES  at line 46.    

 The first parameter,  mode,  of  gl.drawArrays()  is powerful and provides the ability to draw 
various shapes. Let’s take a look.   
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  Basic Shapes  

 By changing the argument we use for the first parameter,  mode,  of   gl.drawArrays() , we 
can change the meaning of line 46 into “execute the vertex shader three times ( n  is 3), 
and draw a triangle using the three vertices in the buffer, starting from the first vertex 
coordinate”:  

   46   gl.drawArrays(gl.TRIANGLES, 0, n);    

 In this case, the three vertices in the buffer object are no longer individual points, but 
become three vertices of a triangle.  

 The WebGL method  gl.drawArrays()  is both powerful and flexible, allowing you to 
specify seven different types of basic shapes as the first argument. These are explained in 
more detail in  Table   3.3   . Note that v0, v1, v2 ... indicates the vertices specified in a buffer 
object. The order of vertices affects the drawing of the shape.  

 The shapes in the table are the only ones that WebGL can draw directly, but they are the 
basics needed to construct complex 3D graphics. (Remember the frog at the start of this 
chapter.)  

  Table 3.3   Basic Shapes Available in  WebGL  

  Basic 

Shape     Mode     Description   

 Points    gl.POINTS    A series of points. The points are drawn at v0, v1, v2 ...  

 Line 
segments  

  gl.LINES    A series of unconnected line segments. The individual lines 
are drawn between vertices given by (v0, v1), (v2, v3), (v4, 
v5)... If the number of vertices is odd, the last one is ignored.  

 Line strips    gl.LINE_STRIP    A series of connected line segments. The line segments are 
drawn between vertices given by (v0, v1), (v1, v2), (v2, v3), ... 
The first vertex becomes the start point of the first line, the 
second vertex becomes the end point of the first line and the 
start point of the second line, and so on. The  i -th ( i > 1) vertex 
becomes the start point of the  i -th line and the end point of 
the  i-1 -th line. (The last vertex becomes the end point of the 
last line.)  

 Line loops    gl.LINE_LOOP    A series of connected line segments. In addition to the lines 
drawn by  gl.LINE_STRIP , the line between the last vertex and 
the first vertex is drawn. The line segments drawn are (v0, v1), 
(v1, v2), ..., and (v n , v0). v n  is the last vertex.  

 Triangles    gl.TRIANGLES    A series of separate triangles. The triangles given by vertices 
(v0, v1, v2), (v3, v4, v5), ... are drawn. If the number of verti-
ces is not a multiple of 3, the remaining vertices are ignored.  
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  Basic 

Shape     Mode     Description   

 Triangle 
strips  

  gl.TRIANGLE_
STRIP   

 A series of connected triangles in strip fashion. The first three 
vertices form the first triangle and the second triangle is 
formed from the next vertex and one of the sides of the first 
triangle. The triangles are drawn given by (v0, v1, v2), (v2, v1, 
v3), (v2, v3, v4) ... (Pay attention to the order of vertices.)  

 Triangle 
fans  

  gl.TRIANGLE_
FAN   

 A series of connected triangles sharing the first vertex in fan-
like fashion. The first three vertices form the first triangle and 
the second triangle is formed from the next vertex, one of the 
sides of the first triangle, and the first vertex. The triangles are 
drawn given by (v0, v1, v2), (v0, v2, v3), (v0, v3, v4), ...  

  Figure   3.13    shows these basic shapes.  
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 Figure 3.13   Basic shapes available in WebGL         

 As you can see from the figure, WebGL can draw only three types of shapes: a point, a 
line, and a triangle. However, as explained at the beginning of this chapter, spheres to 
cubes to 3D monsters to humanoid characters in a game can be constructed from small 
triangles. Therefore, you can use these basic shapes to draw anything.   
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  Experimenting with the Sample Program  

 To examine what will happen when using  gl.LINES ,  gl.LINE_STRIP , and  gl.LINE_LOOP , 
let’s change the first argument of  gl.drawArrays( ) as shown next. The name of each 
sample program is  HelloTriangle _ LINES ,  HelloTriangle_LINE_STRIP , and  HelloTriangle_
LINE_LOOP , respectively:  

  46   gl.drawArrays( gl.LINES , 0, n);

  46   gl.drawArrays( gl.LINE_STRIP , 0, n);

  46   gl.drawArrays( gl.LINE_LOOP , 0, n);   

  Figure   3.14    shows a screenshot of each program.  

 
 Figure 3.14   gl.LINES, gl.LINE_STRIP, and gl.LINE_LOOP         

 As you can see,  gl.LINES  draws a line using the first two vertices and does not use the 
last vertex, whereas  gl.LINE_STRIP  draws two lines using the first three vertices. Finally, 
 gl.LINE_LOOP  draws the lines in the same manner as  gl.LINE_STRIP  but then “loops” 
between the last vertex and the first vertex and makes a triangle.   

  Hello Rectangle (HelloQuad)  

 Let’s use   this basic way of drawing triangles to draw a rectangle. The name of the sample 
program is  HelloQuad , and  Figure   3.15    shows a screenshot when it’s loaded into your 
browser.   

  Figure   3.16    shows the vertices of the rectangle. Of course, the number of vertices is four 
because it is a rectangle. As explained in the previous section, WebGL cannot draw a rect-
angle directly, so you need to divide the rectangle into two triangles (v0, v1, v2) and (v2, 
v1, v3) and then draw each one using  gl.TRIANGLES ,  gl.TRIANGLE_STRIP , or  gl.TRIANGLE_
FAN . In this example, you’ll use  gl.TRIANGLE_STRIP  because it only requires you to specify 
four vertices. If you were to use  gl.TRIANGLES , you would need to specify a total of six.  
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 Figure 3.16   The four vertex coordinates of the rectangle         

 Basing the example on  HelloTriangle.js , you need to add an extra vertex coordinate 
at line 50. Pay attention to the order of vertices; otherwise, the draw command will not 
execute correctly:  

  50   var vertices = new Float32Array([

  51     -0.5, 0.5,   -0.5, -0.5,   0.5, 0.5,   0.5, -0.5

  52   ]);   

 Because you’ve added a fourth vertex, you need to change the number of vertices from 3 
to 4 at line 53:  

  53   var n = 4; // The number of vertices   

 Figure 3.15   HelloQuad        
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 Then, by modifying line 46 as follows, your program will draw a rectangle in the browser:  

  46   gl.drawArrays( gl.TRIANGLE_STRIP , 0, n);    

  Experimenting with the Sample Program  

 Now that you have a feel for how to use  gl.TRIANGLE_STRIP , let’s change the first 
parameter of  gl.drawArrays()  to  gl.TRIANGLE_FAN . The name of the sample program is 
 HelloQuad_FAN :  

  46   gl.drawArrays( gl.TRIANGLE_FAN , 0, n);   

  Figure   3.17    show a screenshot of  HelloQuad_FAN . In this case, we can see the ribbon-like 
shape on the screen.  
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 Figure 3.17   HelloQuad_FAN         

 Looking at the order of vertices and the triangles drawn by  gl.TRIANGLE_FAN  shown on 
the right side of  Figure   3.17   , you can see why the result became a ribbon-like shape. 
Essentially,  gl.TRIANGLE_FAN  causes WebGL to draw a second triangle that shares the first 
vertex (v0), and this second triangle overlaps the first, creating the ribbon-like effect.    

  Moving, Rotating, and Scaling  
 Now that you understand the basics of drawing shapes like triangles and rectangles, let’s 
take another step and try to move (translate), rotate, and scale the triangle and display the 
results on the screen. These operations are called    transformations (affine transforma-
tions) . This section introduces some math to explain each transformation and help you 
to understand how each operation can be realized. However, when you write your own 
programs, you don’t need the math; instead, you can use one of several convenient librar-
ies, explained in the next section, that handle the math for you.  



ptg11539634

CHAPTER 3  Drawing and Transforming Triangles92

 If you find reading this section and in particular the math too much on first read, it’s 
okay to skip it and return later. Or, if you already know that transformations can be 
written using a matrix, you can skip this section as well.  

 First, let’s write a sample program,    TranslatedTriangle , that moves a triangle 0.5 units 
to the right and 0.5 units up. You can use the triangle you drew in the previous section. 
The right direction means the positive direction of the x-axis, and the up direction means 
the positive direction of the y-axis. (See the coordinate system in  Chapter   2   .)  Figure   3.18    
shows  TranslatedTriangle .  

 
 Figure 3.18   TranslatedTriangle         

  Translation  

 Let us examine      what kind of operations you need to apply to each vertex coordinate 
of a shape to translate (move) the shape. Essentially, you just need to add a translation 
distance for each direction (x and y) to each component of the coordinates. Looking at 
 Figure   3.19   , the goal is to translate the point p (x, y, z) to the point p' (x', y', z'), so the 
translation distance for the x, y, and z direction is  Tx ,  Ty , and  Tz , respectively. In this 
figure,  Tz  is 0.   

 To determine the coordinates of p', you simply add the T values, as shown in  
Equation   3.1   .  

Equation 3.1

      x' = x + Tx  

 y' = y + Ty  

 z' = z + Tz     
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 These simple equations can be implemented in a WebGL program just by adding each 
constant value to each vertex coordinate. You’ve probably realized already that because 
they are a   per-vertex operation , you need to implement the operations in a vertex 
shader. Conversely, they clearly aren’t a per-fragment operation, so you don’t need to 
worry about the fragment shader.  

 Once you understand this explanation, implementation is easy. You need to pass the 
translation distances  Tx ,  Ty , and  Tz  to the vertex shader, apply  Equation   3.1    using the 
distances, and then assign the result to  gl_Position . Let’s look at a sample program that 
does this.   

  Sample Program (TranslatedTriangle.js)  

  Listing   3.4    shows         TranslatedTriangle.js , in which the vertex shader is partially modi-
fied to carry out the translation operation. However, the fragment shader is the same as 
in  HelloTriangle.js  in the previous section. To support the modification to the vertex 
shader, some extra code is added to the  main()  function in the JavaScript.  

  Listing 3.4   TranslatedTriangle.js  

   1 // TranslatedTriangle.js

   2 // Vertex shader program

   3 var VSHADER_SOURCE =

   4   'attribute vec4 a_Position;\n' +

    5   'uniform vec4 u_Translation;\n' + 

   6   'void main() {\n' +

    7   '  gl_Position = a_Position + u_Translation;\n' + 

   8   '}\n';

   9

  10 // Fragment shader program

      ...
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 Figure 3.19   Calculating translation distances        
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  16 // The translation distance for x, y, and z direction

   17 var Tx = 0.5, Ty = 0.5, Tz = 0.0; 

  18

  19 function main() {

      ...

  23   // Get the rendering context for WebGL

  24   var gl = getWebGLContext(canvas);

      ...

  30   // Initialize shaders

  31   if (!initShaders(gl, VSHADER_SOURCE, FSHADER_SOURCE)) {

      ...

  34  }

  35

  36   // Set the positions of vertices

  37   var n = initVertexBuffers(gl);

      ...

  43    // Pass the translation distance to the vertex shader

   44   var u_Translation = gl.getUniformLocation(gl.program, 'u_Translation'); 

      ...

   49   gl.uniform4f(u_Translation, Tx, Ty, Tz, 0.0); 

  50

  51   // Set the color for clearing <canvas>

      ...

  57   // Draw a triangle

  58   gl.drawArrays(gl.TRIANGLES, 0, n);

  59 }

  60

  61 function initVertexBuffers(gl) {

  62   var vertices = new Float32Array([

  63     0.0.0, 0.5,   -0.5, -0.5,   0.5, -0.5

  64   ]);

  65   var n = 3; // The number of vertices

      ...

  90   return n;

  93 }   

 First, let’s examine  main()  in JavaScript. Line 17 defines the variables for each translation 
distance of  Equation   3.1   :  

   17 var Tx = 0.5, Ty = 0.5, Tz = 0.0;    

 Because  Tx ,  Ty , and  Tz  are fixed (uniform) values for all vertices, you use the uniform vari-
able  u_Translation  to pass them to a vertex shader. Line 44 retrieves the storage location 
of the uniform variable, and line 49 assigns the data to the variable:  
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   44   var u_Translation = gl.getUniformLocation(gl.program, 'u_Translation'); 

       ... 

   49   gl.uniform4f(u_Translation, Tx, Ty, Tz, 0.0);    

 Note that   gl.uniform4f()  requires a homogenous coordinate, so we supply a fourth argu-
ment (w) of 0.0. This will be explained in more detail later in this section.  

 Now, let’s take a look at the vertex shader that uses this translation data. As you can see, 
the uniform variable  u_Translation  in the shader, to which the translation distances 
are passed, is defined as type  vec4  at line 5. This is because you want to add the compo-
nents of  u_Translation  to the vertex coordinates passed to  a_Position  (as defined by 
 Equation   3.1   ) and then assign the result to the variable  gl_Position , which has type 
 vec4 . Remember, per  Chapter   2   , that the assignment operation in GLSL ES is only allowed 
between variables of the same types:  

  4   'attribute vec4 a_Position;\n' +

   5   'uniform vec4 u_Translation;\n' + 

  6   'void main() {\n' +

   7   '  gl_Position = a_Position + u_Translation;\n' + 

  8   '}\n';   

 After these preparations have been completed, the rest of tasks are straightforward. To 
calculate  Equation   3.1    within the vertex shader, you just add each translation distance 
(Tx, Ty, Tz) passed in  u_Translation  to each vertex coordinate (x, y, z) passed in 
 a_Position .  

 Because both variables are of type  vec4 , you can use the  +  operator, which will actually 
add the four components simultaneously (see  Figure   3.20   ). This easy addition of vectors is 
a feature of GLSL ES and will be explained in more detail in  Chapter   6   .  
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 Figure 3.20   Addition of vec4 variables         

 Now, we’ll return to the fourth element, (w), of the vector. As explained in  Chapter   2   , you 
need to specify the homogeneous coordinate to  gl_Position , which is a four-dimensional 
coordinate. If the last component of the homogeneous coordinate is 1.0, the coordinate 
indicates the same position as the three-dimensional coordinate. In this case, because the 
last component is  w1+w2  to ensure that  w1+w2  is 1.0, you need to specify 0.0 to the value of 
w (the fourth parameter of  gl.uniform4f() ).  
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 Finally, at line 58,  gl.drawArrays(gl.TRIANGLES, 0, n)  executes the vertex shader. For 
each execution, the following three steps are performed:  

    1.   Each vertex coordinate set is passed to  a_Position .   

   2.   u_Translation is added to  a_Position .   

   3.   The result is assigned to  gl_Position .    

 Once executed, you’ve achieved your goal because each vertex coordinate set is modi-
fied (translated), and then the translated shape (in this case, a triangle) is displayed on 
the screen. If you now load  TranslatedTriangle.html  into your browser, you will see the 
translated triangle.  

 Now that you’ve mastered translation (moving), the next step is to look at rotation. The 
basic approach to realize rotation is the same as translation, requiring you to manipulate 
the vertex coordinates in the vertex shader.   

  Rotation  

 Rotation is     a little more complex than translation because you have to specify multiple 
items of information. The following three items are required:  

    •   Rotation axis (the axis the shape will be rotated around)   

   •   Rotation direction (the direction: clockwise or counterclockwise)   

   •   Rotation angle (the number of degrees the shape will be rotated through)    

 In this section, to simplify the explanation, you can assume that the rotation is performed 
around the  z -axis, in a counterclockwise direction, and for β degrees. You can use the 
same approach to implement other rotations around the x-axis or y-axis.  

 In the rotation, if β is positive, the rotation is performed in a counterclockwise direction 
around the rotation axis looking at the shape toward the negative direction of the z-axis 
(see  Figure   3.21   ); this is called   positive rotation . Just as for the coordinate system, your 
hand can define the direction of rotation. If you take your right hand and have your 
thumb follow the direction of the rotation axis, your fingers show the direction of rota-
tion. This is called the   right-hand-rule rotation . As we discussed in  Chapter   2   , it’s the 
default we are using for WebGL in this book.   

 Now let’s find the expression to calculate the rotation in the same way that you did for 
translation. As shown in  Figure   3.22   , we assume that the point p' (x', y', z') is the β degree 
rotated point of p (x, y, z) around the z-axis. Because the rotation is around the z-axis, the 
z coordinate does not change, and you can ignore it for now. The explanation is a little 
mathematical, so let’s take it a step at a time.  
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 Figure 3.22   Calculating rotation around the z-axis         

 In  Figure   3.22   ,  r  is the distance from the origin to the point  p , and α is the rotation angle 
from the x-axis to the point. You can use these items of information to represent the coor-
dinates of  p , as shown in  Equation   3.2   .  

Equation 3.2

      x = r cos α 

 y = r sin α     

 Similarly, you can find the coordinate of p' by using  r , α, and  β  as follows:  

    x' = r cos (α +  β )  

 y' = r sin (α +  β )     

x

y

z

Screen

 Figure 3.21   Positive rotation around the z-axis        
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 Then you can use the addition theorem of trigonometric functions  1   to get the following:   

    x' = r (cos α cos β – sin α sin β)  

 y' = r (sin α cos β + cos α sin β)     

 Finally, you get the following expressions ( Equation   3.3   ) by assigning  Equation   3.2    to the 
previous expressions and removing  r  and α.  

Equation 3.3

      x' = x cos β – y sin β  

 y' = x sin β + y cos β  

 z' = z     

 So by passing the values of sin β and cos β to the vertex shader and then calculating 
 Equation   3.3    in the shader, you get the coordinates of the rotated point. To calculate sin β 
and cos β, you can use the methods of the JavaScript  Math  object.  

 Let’s look at a sample program,   RotatedTriangle , which rotates a triangle around the 
z-axis, in a counterclockwise direction, by 90 degrees.  Figure   3.23    shows  RotatedTriangle .  

 
 Figure 3.23   RotatedTriangle          

 1   sin(a ± b) = sin a cos b ∓ cos a sin b

cos(a ± b) = cos a cos b ∓ sin a sin b             
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  Sample Program (RotatedTriangle.js)  

  Listing   3.5         shows  RotatedTriangle.js  which, in a similar manner to 
 TranslatedTriangle . js , modifies the vertex shader to carry out the rotation operation. 
The fragment shader is the same as in  TranslatedTriangle.js  and, as usual, is not shown. 
Again, to support the shader modification, several processing steps are added to  main()  in 
the JavaScript program. Additionally,  Equation   3.3    is added in the comments from lines 4 
to 6 to remind you of the calculation needed.  

  Listing 3.5   RotatedTriangle.js  

   1  // RotatedTriangle.js

   2  // Vertex shader program

   3  var VSHADER_SOURCE =

   4   // x' = x cos b - y sin b

   5   // y' = x sin b + y cos b                           Equation 3.3

   6   // z' = z

   7   'attribute vec4 a_Position;\n' +

   8    'uniform float u_CosB, u_SinB;\n' + 

   9   'void main() {\n' +

  10    '  gl_Position.x = a_Position.x * u_CosB - a_Position.y *u_SinB;\n'+ 

  11   '  gl_Position.y = a_Position.x * u_SinB + a_Position.y * u_CosB;\n'+ 

  12   '  gl_Position.z = a_Position.z;\n' +

  13   '  gl_Position.w = 1.0;\n' +

  14   '}\n';

  15

  16  // Fragment shader program

       ...

  22  // Rotation angle

  23   var ANGLE = 90.0; 

  24

  25  function  main() {

         ...

  42    // Set the positions of vertices

  43    var n = initVertexBuffers(gl);

         ...

  49     // Pass the data required to rotate the shape to the vertex shader 

  50     var radian = Math.PI * ANGLE / 180.0; // Convert to radians 

  51     var cosB = Math.cos(radian); 

  52     var sinB = Math.sin(radian); 

  53

  54     var u_CosB = gl.getUniformLocation(gl.program, 'u_CosB'); 

  55     var u_SinB = gl.getUniformLocation(gl.program, 'u_SinB'); 

         ...
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  60    gl.uniform1f(u_CosB, cosB); 

  61    gl.uniform1f(u_SinB, sinB); 

  62

  63    // Set the color for clearing <canvas>

         ...

  69    // Draw a triangle

  70    gl.drawArrays(gl.TRIANGLES, 0, n);

  71  }

  72

  73  function initVertexBuffers(gl) {

  74    var vertices = new Float32Array([

  75      0.0, 0.5,   -0.5, -0.5,   0.5, -0.5

  76    ]);

  77    var n = 3; // The number  of vertices

         ...

  105    return n;

  106  }   

 Let’s look at the vertex shader, which is straightforward:  

   2  // Vertex shader program

   3  var VSHADER_SOURCE =

   4   // x' = x cos b - y sin b

   5   // y' = x sin b + y cos b

   6   // z' = z

   7   'attribute vec4 a_Position;\n' +

   8    'uniform float u_CosB, u_SinB;\n' + 

   9   'void main() {\n' +

  10    '  gl_Position.x = a_Position.x * u_CosB - a_Position.y * u_SinB;\n'+ 

  11    '  gl_Position.y = a_Position.x * u_SinB + a_Position.y * u_CosB;\n'+ 

  12   '  gl_Position.z = a_Position.z;\n' +

  13   '  gl_Position.w = 1.0;\n' +

  14   '}\n';   

 Because the goal is to rotate the triangle by 90 degrees, the sine and cosine of 90 need to 
be calculated. Line 8 defines two uniform variables for receiving these values, which are 
calculated in the JavaScript program and then passed to the vertex shader.  

 You could pass the rotation angle to the vertex shader and then calculate the values of 
sine and cosine in the shader. However, because they are identical for all vertices, it is 
more efficient to do it once in the JavaScript.  

 The name of these uniform variables,  u_CosB  and  u_SinB , are defined following the 
naming rule used throughout this book. As you will remember, you use the uniform vari-
able because the values of these variables are uniform (unchanging) per vertex.  
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 As in the previous sample programs, x, y, z, and w are passed in a group to the attribute 
variable  a_Position  in the vertex shader. To apply  Equation   3.3    to x, y, and z, you need 
to access each component in  a_Position  separately. You can do this easily using the .  
operator, such as  a_Position.x ,  a_Position.y , and  a_Position.z  (see  Figure   3.24    and 
 Chapter   6   ).  
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 Figure 3.24   Access methods for each component in a vec4         

 Handily, you can use the same operator to access each component in  gl_Position  to 
which the vertex coordinate is written, so you can calculate x' = x cos β – y sin β from 
 Equation   3.3    as shown at line 10:  

   10   '  gl_Position.x = a_Position.x * u_CosB - a_Position.y * u_SinB;\n'+    

 Similarly, you can calculate y' as follows:  

   11   '  gl_Position.y = a_Position.x * u_SinB + a_Position.y * u_CosB;\n'+    

 According to  Equation   3.3   , you just need to assign the original z coordinate to z' directly 
at line 12. Finally, you need to assign 1.0 to the last component  w   2  :   

  12   '  gl_Position.z = a_Position.z;\n' +

  13   '  gl_Position.w = 1.0;\n' +   

 Now look at  main()  in the JavaScript code, which starts from line 25. This code is mostly 
the same as in  TranslatedTriangle.js . The only difference is passing cos β and sin β to 
the vertex shader. To calculate the sine and cosine of β, you can use the JavaScript  Math.
sin()  and  Math.cos()  methods. However, these methods expect parameters in radians, 
not degrees, so you need to convert from degrees to radians by multiplying the number 
of degrees by pi and then dividing by 180. You can utilize  Math.PI  as the value of pi as 
shown at line 50, where the variable  ANGLE  is defined as  90 (degrees) at line 23:  

   50   var radian = Math.PI * ANGLE / 180.0; // Converts degrees to radians    

 2     In this program, you can also write gl_Position.w = a_Position.w; because a_Position.w 

is 1.0. 
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 Once you have the angle in radians, lines 51 and 52 calculate cos β and sin β, and then 
lines 60 and 61 pass them to the uniform variables in the vertex shader:  

  51     var cosB = Math.cos(radian); 

  52     var sinB = Math.sin(radian); 

  53

  54     var u_CosB = gl.getUniformLocation(gl.program, 'u_CosB'); 

  55     var u_SinB = gl.getUniformLocation(gl.program, 'u_SinB'); 

           ... 

  60     gl.uniform1f(u_CosB, cosB); 

  61     gl.uniform1f(u_SinB, sinB);    

 When you load this program into your browser, you can see the triangle, rotated through 
90 degrees, on the screen. If you specify a negative value to  ANGLE , you can rotate the 
triangle in the opposite direction (clockwise). You can also use the same equation. For 
example, to rotate the triangle in the clockwise direction, you can specify –90 instead of 
90 at line 23, and  Math.cos()  and  Math.sin()  will deal with the remaining tasks for you.  

 For those of you concerned with speed and efficiency, the approach taken here (using two 
uniform variables to pass the values of cos β and sin β) isn’t optimal. To pass the values as 
a group, you can define the uniform variable as follows:  

  uniform vec2  u_CosBSinB ;   

 and then pass the values by:  

  gl.uniform2f( u_CosBSinB,cosB, sinB );   

 Then in the vertex shader, you can access them using  u_CosBSinB.x  and  u_CosBSinB.y .   

  Transformation Matrix: Rotation  

 For      simple transformations, you can use mathematical expressions. However, as your 
needs become more complex, you’ll quickly find that applying a series of equations 
becomes quite complex. For example a “translation after rotation” as shown in  Figure   3.25    
can be realized by using  Equations   3.1    and    3.3    to find the new mathematical expressions 
for the transformation and then implementing them in a vertex shader.  

 
x
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 Figure 3.25   Rotate first and then translate a triangle         
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 However, it is time consuming to determine the mathematical expressions every time 
you need a new set of transformation and then implement them in a vertex shader. 
Fortunately, there is another tool in the mathematical toolbox, the   transformation 
matrix , which is excellent for manipulating computer graphics.  

 As shown  in  Figure   3.26   , a matrix is a rectangular array of numbers arranged in rows (in 
the horizontal direction) and columns (in the vertical direction). This notation makes it 
easy to write the calculations explained in the previous sections. The brackets indicate 
that these numbers are a group.  

 

8 3 0
4 3 6
3 2 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
 Figure 3.26   Example of a matrix         

 Before explaining the details of how to use a transformation matrix to replace the equa-
tions used here, you need to make sure you understand the multiplication of a matrix and 
a vector. A vector is an object represented by an n-tuple of numbers, such as the vertex 
coordinates (0.0, 0.5, 1.0).  

 The multiplication of a    matrix and a vector can be written as shown in  Equation   3.4   . 
(Although the multiply operator × is often omitted, we explicitly write the operator in this 
book for clarity.) Here, our new vector (on the left) is the result of multiplying a matrix 
(in the center) by our original vector (on the right). Note that matrix multiplication is 
noncommutative. In other words, A × B is not the same as B × A. We discuss this further 
in  Chapter   6   .  

Equation 3.4

          

'
'
'

x a b c x
y d e f y
z g h i z

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 This matrix has three rows and three columns and is called a 3×3 matrix. The rightmost 
part of the equation is a vector composed of x, y, and z. (In the case of a multiplication 
of a matrix and vector, the vector is written vertically, but it has the same meaning as 
when it is written horizontally.) This vector has three elements, so it is called a three-
dimensional vector. Again, the brackets on both sides of the array of numbers (vector) 
are also just notation for recognizing that these numbers are a group.  

 In this case, x', y', and z' are defined using the elements of the matrix and the vector, 
as shown by  Equation   3.5   . Note that the multiplication of a matrix and vector can be 
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defined only if the number of columns in a matrix matches the number of rows in a 
vector.  

Equation 3.5

      x' = ax + by + cz  

 y' = dx + ey + fz  

 z' = gx + hy + iz     

 Now, to understand how to use a matrix instead of our original equations, let’s compare 
the matrix equations and  Equation   3.3    (shown again as  Equation   3.6   ).  

Equation 3.6

      x' = x cos β – y sin β  

 y' = x sin β + y cos β  

 z' = z     

 For example, compare the equation for x':  

    x' = ax + by + cz  

 x' = x cos β – y sin β     

 In this case, if you set a = cos β, b = -sin β, and c = 0, the equations become the same. 
Similarly, let us compare the equation for y':  

    y' = dx + ey + fz  

 y' = x sin β + y cos β     

 In this case, if you set d = sin β, e = cos β, and f = 0, you get the same equation. The last 
equation about z' is easy. If you set g = 0, h = 0, and i = 1, you get the same equation.  

 Then, by assigning these results to  Equation   3.4   , you get  Equation   3.7   .  

Equation 3.7
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cos sin 0

sin cos 0

0 0 1

 This matrix is called a  transformation matrix  because it “transforms” the right-side 
vector (x, y, z) to the left-side vector (x', y', z'). The transformation matrix representing a 
rotation is called a   rotation matrix .  
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 You can see that the elements of the matrix in  Equation   3.7    are an array of coefficients in 
 Equation   3.6   . Once you become accustomed to matrix notation, it is easier to write and 
use matrices than to have to deal with a set of transformation equations.  

 As you would expect, because matrices are used so often in 3DCG, multiplication of a 
matrix and a vector is easy to implement in shaders. However, before exploring how, let’s 
quickly look at other types of transformation matrices, and then we will start to use them 
in shaders.   

  Transformation Matrix: Translation  

 Obviously, if we      can use a transformation matrix to represent a rotation, we should be 
able to use it for other types of transformation, such as translation. For example, let us 
compare the equation for x' in  Equation   3.1    to that in  Equation   3.5    as follows:  

 x' = ax + by + cz   - - - from Equation (3.5)  

 x' = x + T x   - - -  from Equation (3.1)  

 Here, the second equation has the constant term T x , but the first one does not, meaning 
that you cannot deal with the second one by using the 3×3 matrix of the first equation. 
To solve this problem, you can use a 4×4 matrix and the fourth components of the coor-
dinate, which are set to 1 to introduce the constant terms. That is to say, we assume that 
the coordinates of point p are (x, y, z, 1), and the coordinates of the translated point p (p') 
are (x', y', z', 1). This gives us  Equation   3.8   .  

Equation 3.8
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 This multiplication is defined as follows:  

Equation 3.9

      x' = ax + by + cz +d  

 y' = ex + fy + gz + h  

 z' = ix + jy + kz +  l   

 1 = mx + ny + oz+ p     
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 From the equation1 = mx + ny + oz + p, it is easy to find that the coefficients are m = 0, 
n = 0, o = 0, and p = 1. In addition, these equations have the constant terms d, h, and l, 
which look helpful to deal with  Equation   3.1    because it also has constant terms. Let us 
compare  Equation   3.9    and  Equation   3.1    (translation), which is reproduced again:  

    x' = x + T x   

 y' = y + T y   

 z' = z + T z      

 When you compare the x' component of both equations, you can see that a=1, b=0, c=0, 
and d=T x . Similarly, when comparing y' from both equations, you find e = 0, f = 1, g = 0, 
and h = T y ; when comparing z' you see i=0, j=0, k=1, and  l =T z . You can use these results 
to write a matrix that represents a translation, called a   translation matrix , as shown in 
 Equation   3.10   .  

Equation 3.10
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  Rotation Matrix, Again  

 At this stage   you have successfully created a rotation and a translation matrix, which are 
equivalent to the two equations you used in the example programs earlier. The final step 
is to combine these two matrices; however, the rotation matrix (3×3 matrix) and trans-
formation matrix (4×4 matrix) have different numbers of elements. Unfortunately, you 
cannot combine matrices of different sizes, so you need a mechanism to make them the 
same size.  

 To do that, you need to change the rotation matrix (3×3 matrix) into a 4×4 matrix. This is 
straightforward and requires you to find the coefficient of each equation in  Equation   3.9    
by comparing it with  Equation   3.3   . The following shows both equations:  

    x' = x cos β – y sin β  

 y' = x sin β + y cos β  

 z' = z  
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 x' = ax + by + cz + d  

 y' = ex + fy + gz + h  

 z' = ix + iy + kz + l  

 1 = mx + ny + oz + p     

 For example, when you compare x' = x cos β – y sin β with x' = ax + by + cz +d, you find 
a = cos β, b = –sin β, c = 0, and d = 0. In the same way, after comparing in terms of y and 
z, you get the rotation matrix shown in  Equation   3.11   :  

Equation 3.11
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 This allows you to represent both a rotation matrix and translation matrix in the same 
4×4 matrix, achieving the original goal!   

  Sample Program (RotatedTriangle_Matrix.js)  

 Having      constructed a 4×4 rotation matrix, let’s go ahead and use this matrix in a WebGL 
program by rewriting the sample program  RotatedTriangle , which rotates a triangle 
90 degrees around the z-axis in a counterclockwise direction, using the rotation matrix. 
 Listing   3.6    shows  RotatedTriangle_Matrix.js , whose output will be the same as  Figure 
  3.23    shown earlier.  

  Listing 3.6    RotatedTriangle_Matrix.js  

   1  // RotatedTriangle_Matrix.js

    2  // Vertex shader program

    3  var VSHADER_SOURCE =

    4    'attribute vec4 a_Position;\n' +

    5     'uniform mat4 u_xformMatrix;\n' + 

    6    'void main() {\n' +

    7     '  gl_Position = u_xformMatrix * a_Position;\n' + 

    8    '}\n';

    9

   10  // Fragment shader program

       ...

   16  // Rotation angle

   17  var ANGLE = 90.0;
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   18

   19  function main() {

         ...

   36    // Set the positions of vertices

   37    var n = initVertexBuffers(gl);

         ...

   43    // Create a rotation matrix

   44    var radian = Math.PI * ANGLE / 180.0; // Convert to radians 

   45    var cosB = Math.cos(radian), sinB = Math.sin(radian); 

   46

    47    // Note: WebGL is column major order

   48    var xformMatrix = new Float32Array([ 

   49       cosB, sinB, 0.0, 0.0, 

   50      -sinB, cosB, 0.0, 0.0, 

   51       0.0,  0.0, 1.0, 0.0, 

   52       0.0,  0.0, 0.0, 1.0 

   53    ]);

   54

   55    // Pass the rotation matrix to the vertex shader 

   56     var u_xformMatrix = gl.getUniformLocation(gl.program, 'u_xformMatrix'); 

         ...

   61    gl.uniformMatrix4fv(u_xformMatrix, false, xformMatrix); 

   62

   63    // Set the color for clearing <canvas>

         ...

   69    // Draw a triangle

   70    gl.drawArrays(gl.TRIANGLES, 0, n);

   71  }

   72

   73  function initVertexBuffers(gl) {

   74    var vertices = new Float32Array([

   75      0.0, 0.5,   -0.5, -0.5,   0.5, -0.5

   76    ]);

   77     var n = 3; // Number of vertices

         ...

  105    return n;

  106  }   

 First, let us examine the vertex shader:  

  2  // Vertex shader program

  3  var VSHADER_SOURCE =

  4    'attribute vec4 a_Position;\n' +

  5    'uniform mat4 u_xformMatrix;\n' +
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  6    'void main() {\n' +

  7    '  gl_Position = u_xformMatrix * a_Position;\n' +

  8    '}\n';   

 At line 7,  u_xformMatrix , containing the rotation matrix described in  Equation   3.11   , and 
 a_Position , containing the vertex coordinates (this is the right-side vector in  Equation 
  3.11   ), are multiplied, literally implementing  Equation   3.11   .  

 In the sample program  TranslatedTriangle , you were able to implement the addition of 
two vectors in one line ( gl_Position  =  a_Position  +  u_Translation ). In the same way, a 
multiplication of a matrix and vector can be written in one line in GLSL ES. This is conve-
nient, allowing the calculation of the four equations ( Equation   3.9   ) in one line. Again, 
this shows how GLSL ES has been designed specifically for 3D computer graphics by 
supporting powerful operations like this.  

 Because the transformation matrix is a 4×4 matrix and GLSL ES requires the data type for 
all variables, line 5 declares  u_xformMatrix  as type  mat4 . As you would expect,  mat4  is a 
data type specifically for holding a 4×4 matrix.  

 Within the main JavaScript program, the rest of the changes just calculate the rotation 
matrix from  Equation   3.11    and then pass it to  u_xformMatrix . This part starts from 
line 44:  

  43    // Create a rotation matrix

  44     var radian = Math.PI * ANGLE / 180.0; // Convert to radians 

  45     var cosB = Math.cos(radian), sinB = Math.sin(radian); 

  46

  47    // Note: WebGL is column major order

  48     var xformMatrix = new Float32Array([ 

  49        cosB, sinB, 0.0, 0.0, 

  50       -sinB, cosB, 0.0, 0.0, 

  51         0.0,  0.0, 1.0, 0.0, 

  52         0.0,  0.0, 0.0, 1.0 

  53     ]); 

  54

  55    // Pass the rotation matrix to the vertex shader

       ...

  61     gl.uniformMatrix4fv(u_xformMatrix, false, xformMatrix);    

 Lines 44 and 45 calculate the values of cosine and sine, which are required in the rota-
tion matrix. Then line 48 creates the matrix  xformMatrix  using a  Float32Array . Unlike 
GLSL ES, because JavaScript does not have a dedicated object for representing a matrix, 
you need to use the  Float32Array . One question that arises is in which order you should 
store the elements of the matrix (which is arranged in rows and columns) in the elements 
of the array (which is arranged in a line). There are two possible orders:    row major order  
and  column major order  (see  Figure   3.27   ).  
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 Figure 3.27   Row major order and column major order         

 WebGL, just like OpenGL, requires you to store the elements of a matrix in the elements 
of an array in column major order. So, for example, the matrix shown in  Figure   3.27    
is stored in an array as follows: [ a, e, i, m, b, f, j, n, c, g, k, o, d, h, l, p ]. In the sample 
program, the rotation matrix is stored in the  Float32Array  in this order in lines 49 to 52.  

 The array created is then passed to the uniform variable  u_xformMatrix  by using  
 gl.uniformMatrix4fv()  at line 61. Note that the last letter of this method name is  v , 
which indicates that the method can pass multiple data values to the variable.    

   gl.uniformMatrix4fv (location, transpose, array)  

 Assign the 4×4 matrix specified by  array  to the uniform variable specified by  location.   

  Parameters    location   Specifies the storage location of the uniform variable.  

 Transpose   Must be  false  in WebGL. 3   

 array   Specifies an array containing a 4×4 matrix in column 
major order (typed array).  

  Return value    None  

  Errors    INVALID_OPERATION   There is no current program object.  

 INVALID_VALUE    transpose  is not  false,  or the length of  array  is less 
than 16.  

 If you load and run the sample program in your browser, you’ll see the rotated triangle. 
Congratulations! You have successfully learned how to use a transformation matrix to 
rotate a triangle.   

3  This parameter specifi es whether to transpose the matrix or not. The transpose operation, which 

exchanges the column and row elements of the matrix (see  Chapter   7   ), is not supported by WebGL’s 

implementation of this method and must always be set to  false . 
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  Reusing the Same Approach for Translation  

 Now,     as you have seen with  Equations   3.10    and    3.11   , you can represent both a translation 
and a rotation using the same type of 4×4 matrix. Both equations use the matrices in the 
form  <new coordinates> = <transformation matrix> * <original coordinates> . This 
is coded in the vertex shader as follows:  

  7     '  gl_Position = u_xformMatrix * a_Position;\n' +    

 This means that if you change the elements of the array  xformMatrix  from those of a 
rotation matrix to those of a translation matrix, you will be able to apply the translation 
matrix to the triangle to achieve the same result as shown earlier but which used an equa-
tion ( Figure   3.18   ).  

 To do that, change line 17 in  RotatedTriangle_Matrix.js  using the translation distances 
from the previous example:  

  17   varTx = 0.5, Ty = 0.5, Tz = 0.0;    

 You need to rewrite the code for creating the matrix, remembering that you need to store 
the elements of the matrix in column major order. Let’s keep the same name for the array 
variable,  xformMatrix , even though it’s now being used to hold a translation matrix, 
because it reinforces the fact that we are using essentially the same code. Finally, you are 
not using the variable  ANGLE , so lines 43 to 45 are commented out:  

  43   // Create a rotation matrix

  44   // var radian = Math.PI * ANGLE / 180.0; // Convert to radians

  45   // var cosB = Math.cos(radian), sinB = Math.sin(radian);

  46

  47    // Note: WebGL is column major order

  48    var xformMatrix = new Float32Array([

  49       1.0, 0.0, 0.0, 0.0,

  50       0.0, 1.0, 0.0, 0.0,

  51       0.0, 0.0, 1.0, 0.0,

  52       Tx, Ty, Tz, 1.0

  53    ]);   

 Once you’ve made the changes, run the modified program, and you will see the same 
output as shown in  Figure   3.18   . By using a transformation matrix, you can apply various 
transformations using the same vertex shader. This is why the transformation matrix is 
such a convenient and powerful tool for 3D graphics, and it’s why we’ve covered it in 
detail in this chapter.   

  Transformation Matrix: Scaling  

 Finally    , let’s define the transformation matrix for scaling using the same assumption that 
the original point is  p  and the point after scaling is  p' .    
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 Figure 3.28   A scaling transformation         

 Assuming the scaling factor for the x-axis, y-axis, and z-axis is S x , S y , and S z  respectively, 
you obtain the following equations:  

    x' = S x  × x

     y' = S y  × y     

z' = S z  × z     

 The following transformation matrix can be obtained by comparing these equations with 
 Equation   3.9   .  
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 As with the previous example, if you store this matrix in  xformMatrix , you can scale the 
triangle by using the same vertex shader you used in  RotatedTriangle_Matrix.js . For 
example, the following sample program will scale the triangle by a factor of 1.5 in a verti-
cal direction, as shown in  Figure   3.29   :  

  17   varSx = 1.0, Sy = 1.5, Sz = 1.0; 

        ... 

  47     // Note: WebGL is column major order 

  48     var xformMatrix = new Float32Array([ 

  49        Sx,  0.0,  0.0,  0.0, 

  50        0.0,  Sy,  0.0,  0.0, 

  51        0.0,  0.0,  Sz,  0.0, 

  52        0.0,  0.0,  0.0,  1.0 

  53     ]    
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 Figure 3.29   Triangle scaled in a vertical direction         

 Note that if you specify 0.0 to  Sx ,  Sy , or  Sz , the scaled size will be 0.0. If you want to keep 
the original size, specify 1.0 as the scaling factor.     

     Summary  
 In this chapter, you explored the process of passing multiple items of information about 
vertices to a vertex shader, the different types of shapes available to be drawn using that 
information, and the process of transforming those shapes. The shapes dealt with in this 
chapter changed from a point to a triangle, but the method of using shaders remained the 
same, as in the examples in the previous chapter. You were also introduced to matrices 
and learned how to use transformation matrices to apply translation, rotation, or scaling 
to 2D shapes. Although it’s a little complicated, you should now have  a good understand-
ing of the math behind calculating the individual transformation matrices.  

 In the next chapter, you’ll explore more complex transformations but will use a handy 
library to hide the details, allowing you to focus on the higher-level tasks.     
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  Chapter 4 

 More Transformations and Basic Animation  

     Chapter   3   , “Drawing and Transforming Triangles,” explained how to use the buffer object to 
draw more complex shapes and how to transform them using simple equations. Because this 
approach is cumbersome for multiple transformations, you were then introduced to matrices and 
their use to simplify transformation operations. In this chapter, you explore further transforma-
tions and begin to combine transformations into animations. In particular, you will  

    •   Be introduced to a matrix transformation library that hides the mathematical details of 
matrix operations   

   •   Use the library to quickly and easily combine multiple transformations   

   •   Explore animation and how the library helps you animate simple shapes    

 These techniques provide the basics to construct complex WebGL programs and will be used in 
the sample programs in the following chapters.   

     Translate and Then Rotate  
 As you saw     in  Chapter   3   , although transformations such as translation, rotation, and scaling can 
be represented as a 4×4 matrix, it is time consuming to specify each matrix by hand whenever 
you write WebGL programs. To simply the task, most WebGL developers use a convenient library 
that automates creating these matrices and hides the details. There are several public matrix 
libraries for WebGL, but in this section, you’ll use a library created for this book and will see how 
the library can be used to combine multiple transformations to achieve results such as “translate 
and then rotate a triangle.”  
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  Transformation Matrix Library: cuon-matrix.js  

 In OpenGL     , the parent specification of WebGL, there’s no need to specify by hand each 
element of the transformation matrix when you use it. Instead, OpenGL supports a set 
of handy functions that make it easy to construct the matrices. For example,   glTrans-
latef() , when called with translation distances for the x-, y-, and z-axes as arguments, 
will create a translation matrix internally and then set up the matrix needed to translate a 
shape (see  Figure   4.1   ).  
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 Figure 4.1   An example of glTranslatef() in OpenGL         

 Unfortunately, WebGL doesn’t provide these functions, so if you wanted to use this 
approach you’d need to look for or write them yourself. Because these functions are 
useful, we’ve created a JavaScript library for you,  cuon-matrix.js , which allows you to 
create transformation matrices in a similar way to those specified in OpenGL. Although 
this library was written specifically for this book, it is general purpose, and you are free to 
use it in your own applications.  

 As you saw in  Chapter   3   , JavaScript provides the sine and cosine function as methods of 
the  Math  object. In the same way, the functions for creating transformation matrices are 
provided as methods of the  Matrix4  object defined in  cuon-matrix.js .  

  Matrix4  is a new object, defined by the library, and as the name suggests, deals with 4×4 
matrices. Internally, these are represented using a typed array,  Float32Array , which you 
saw in  Chapter   3   .  

 To get a feel for the library, let’s rewrite  RotatedTriangle_Matrix  using the  Matrix4  object 
and its methods. The program for this example is called  RotatedTriangle_Matrix4 .  

 Because the  Matrix4  object is defined in the library  cuon-matrix.js , you need to load it 
into your HTML file before using the object. To do this, you simply use the  <script>  tag, 
as shown in  Listing   4.1   .  

  Listing 4.1   RotatedTriangle_Matrix4.html (The Codes for Loading the Library)   

  13      <script src="../lib/webgl-debug.js"></script>

  14      <script src="../lib/cuon-utils.js"></script>

   15      <script src="../lib/cuon-matrix.js"></script> 

  16      <script src="RotatedTriangle_Matrix4.js"></script>   

 Once loaded, let’s examine how to use it by comparing the previous  RotatedTriangle_
Matrix.js  with  RotatedTriangle_Matrix4.js , which uses the new  Matrix4  object.   
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  Sample Program (RotatedTriangle_Matrix4.js)  

 This      sample program is almost the same as  RotatedTriangle_Matrix.js  used in  Chapter 
  3    except for the new steps that create the transformation matrix and pass it to  u_xformMa-
trix  in the vertex shader.  

 In  RotatedTriangle_Matrix.js , you created the transformation matrix as follows:  

  1  // RotatedTriangle_Matrix.js

       ...

  43    // Create a rotation matrix

  44    var radian = Math.PI * ANGLE / 180.0; // Convert to radians

  45    varcosB = Math.cos(radian), sinB = Math.sin(radian);

  46

   47    // Note: WebGL is column major order 

   48    var xformMatrix = new Float32Array([ 

   49       cosB, sinB, 0.0, 0.0, 

   50      -sinB, cosB, 0.0, 0.0, 

   51        0.0,  0.0, 1.0, 0.0, 

   52        0.0,  0.0, 0.0, 1.0 

   53    ]); 

         ... 

   61    gl.uniformMatrix4fv(u_xformMatrix, false, xformMatrix);    

 In this sample program, you need to rewrite this part using a  Matrix4  object and utilize its 
method   setRotate()  to calculate a rotation matrix. The following code snippet shows the 
rewritten part from  RotatedTriangle_Matrix4.js :  

  1  // RotatedTriangle_Matrix4.js

        ...

  47     // Create Matrix4 object for a rotation matrix 

  48     var xformMatrix = new Matrix4(); 

  49    // Set the rotation matrix to xformMatrix

  50     xformMatrix.setRotate(ANGLE, 0, 0, 1); 

        ...

  56     // Pass the rotation matrix to the vertex shader 

  57    gl.uniformMatrix4fv(u_xformMatrix, false,  xformMatrix.elements );   

 You can see that the basic processing flow to create a matrix (line 48 and 50) and then 
pass it to the uniform variable is the same as in the previous sample. A  Matrix4  object is 
created using the  new  operator in the same way that an  Array  or  Date  object is created in 
JavaScript. Line 48 creates the  Matrix4  object, and then line 50 uses  setRotate()  to calcu-
late the rotation matrix and write it to the  xformMatrix  object.  

 The  setRotate()  method takes four parameters: a rotation angle (specified in degrees, not 
radians) and the rotation axis around which the rotation will take place. The rotation axis, 
specified by x, y, and z, and associated direction are defined by the line drawn from 
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(0, 0, 0) to (x, y, z). As you will remember from  Chapter   3    ( Figure   3.21   ), the angle is posi-
tive if the rotation is performed in the clockwise direction around the rotation axis. In this 
example, because the rotation is performed around the z-axis, the axis is set to (0, 0, 1):  

  50     xformMatrix.setRotate(ANGLE, 0, 0, 1);    

 Similarly, for the x-axis, you can specify x = 1, y =0, and z = 0 and for the y-axis, x = 0, 
y = 1, and z = 0. Once you have set up the rotation matrix in the variable  xformMatrix , 
all you need to do is to pass the matrix to the vertex shader using the same method  gl.
uniformMatrix4fv()  as before. Note that you cannot pass a  Matrix4  object directly as 
the last argument of this method because a typed array is required for the parameter. 
However, you can retrieve the elements of the  Matrix4  object as a typed array by  using its 
property  elements , which you can then pass as shown at line 57:  

  57    gl.uniformMatrix4fv(u_xformMatrix, false,  xformMatrix.elements );   

 The  Matrix4  object    supports the methods and properties shown in  Table   4.1   .  

  Table 4.1   The Methods and Properties Supported by Matrix4  

  Methods and Properties     Description   

  Matrix4.setIdentity()    Initialize a matrix (to the identity matrix * ).  

  Matrix4.setTranslate(x, y, 
z)   

 Set  Matrix4  to the translation matrix, which translates  x  
units in the direction of the x-axis,  y  units in the direction of 
the y-axis, and  z  units in the direction of the z-axis.  

  Matrix4.setRotate(angle, 
x, y, z)   

 Set  Matrix4  to the rotation matrix, which rotates  angle  
degrees around the rotation axis ( x ,  y ,  z ). The ( x ,  y ,  z ) coor-
dinates do not need to be  normalized . (See  Chapter   8   , 
“Lighting Objects.”)  

  Matrix4.setScale(x, y, z)    Set  Matrix4  to the scaling matrix with scaling factors  x ,  y , 
and  z .  

  Matrix4.translate (x, y, 
z)   

 Multiply the matrix stored in  Matrix4  by the translation 
matrix, which translates  x  units in the direction of the x-axis, 
 y  units in the direction of the y-axis, and  z  units in the direc-
tion of the z-axis, storing the result back into  Matrix4 .  

  Matrix4.rotate(angle, x, 
y, z)   

 Multiply the matrix stored in  Matrix4  by the rotation matrix, 
which rotates  angle  degrees around the rotation axis ( x ,  y , 
 z ), storing the results back into  Matrix4 . The ( x ,  y ,  z ) coor-
dinates do not need to be normalized. (See  Chapter   8   .)  

  Matrix4.scale(x, y, z)    Multiply the matrix stored in  Matrix4  by the scaling matrix, 
with scaling factors  x ,  y , and  z , storing the results back into 
 Matrix4 .  
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  Methods and Properties     Description   

  Matrix4.set(m)    Set the matrix  m  to  Matrix4 .  m  must be a  Matrix4  object.  

  Matrix4.elements    The typed array ( Float32Array ) containing the elements of 
the matrix stored in  Matrix4 .  

 *  The identity matrix   is a matrix that behaves for matrix multiplication like the scalar value 1 does for 

scalar multiplication. Multiplying by the identity matrix has no effect on the other matrix. The identity 

matrix has 1.0 in its diagonal elements.  

 As can be seen from the table, there are two types of methods supported by  Matrix4 : those 
whose names include  set , and those that don’t. The  set  methods calculate the transfor-
mation matrix using their parameters and then set or write the resulting matrix to the 
 Matrix4  object. In contrast, the methods without  set  multiply the matrix already stored 
in the  Matrix4  object by the matrix calculated using the parameters and then store the 
result back in the  Matrix4  object.  

 As you can see from the table, these methods are both powerful and flexible. More impor-
tantly, it makes it easy to quickly change transformations. For example, if you wanted to 
translate the triangle instead of rotating, you could just rewrite line 50 as follows:  

  50     xformMatrix.setTranslate( 0.5, 0.5, 0.0);    

 The example uses the variable name  xformMatrix  to represent a generic transformation. 
Obviously, you can use an appropriate variable name for the transformations within your 
applications (such as  rotMatrix , as was used in  Chapter   3   ).   

  Combining Multiple Transformation  

 Now that you are         familiar with the basics of the  Matrix4  object, let’s see how it can be 
used to combine two transformations: a translation followed by a rotation. The sample 
program  RotatedTranslatedTriangle  does just that, resulting in  Figure   4.2   . Note that 
the example uses a smaller triangle so that you can easily understand the effect of the 
transformation.  
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 Figure 4.2   RotatedTranslatedTriangle         

 Obviously, this example consists of the following two transformations, shown in 
Figure 4.3:  

    1.   Translate the triangle along the x-axis.   

   2.   Rotate the triangle translated by (1).      

 x

y
)1(

)2(

 Figure 4.3   The triangle translated and then rotated         

 Based on the explanations so far, we can write the equation of the translated triangle from 
(1) as follows:  

Equation 4.1

          

〈 〉 =
〈 〉 × 〈 〉

translated coordinates
translation matrix original coordinates

" " 
   

 Then you just need to rotate the         < >translated coordinates" "  as follows:  

Equation 4.2

          

〈 〉 =
〈 〉 × 〈 〉

translated and then rotated coordinates
rotation matrix translated coordinates

"    " 
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 You can calculate these equations separately, but they can be combined by substituting 
 Equation   4.1    into  Equation   4.2   .  

Equation 4.3

( )
〈 〉 =

〈 〉 × 〈 〉 × 〈 〉
translated and then rotated coordinates

rotation matrix translation matrix original coordinates

”       ” 

                   
 Where  

( )〈 〉 × 〈 〉 × 〈 〉rotation matrix translation matrix original coordinates              
 is equal to  

( )〈 〉 × 〈 〉 × 〈 〉rotation matrix translation matrix original coordinates              
 This final step, calculating 〈 〉 × 〈 〉rotation matrix translation matrix          , can be carried out in a 
JavaScript program and the result passed to the vertex shader. The combination of multi-
ple transformations like this is called   model transformation  (or  modeling transforma-
tion ), and the matrix that performs model transformation is called the   model  matrix .  

 As a refresher, let’s just look at the   multiplication of matrices, which is defined as follows:  
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 Assuming two 3×3 matrices, A and B as shown, the product of A and B is defined as 
follows:  

Equation 4.4
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 We use 3×3 matrices in the example, but the approach scales to the more usual 4×4 matri-
ces. However, note that the multiplication order of matrices is important. The result of 
A * B is not equal to that of B * A.  

 As you would expect,  cuon-matrix.js  supports a method to carry out matrix multiplica-
tion on  Matrix4  objects. Let’s look at how to use that method to combine two matrices to 
support a translation followed by a rotation.   

  Sample Program (RotatedTranslatedTriangle.js)  

  Listing   4.2         shows  RotatedTranslatedTriangle.js . The vertex shader and fragment shader 
are the same as in  RotatedTriangle_Matrix4.js  in the previous section except that the 
name of the uniform variable is changed from  u_xformMatrix  to  u_ModelMatrix .  
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  Listing 4.2   RotatedTranslatedTriangle.js  

    1  // RotatedTranslatedTriangle.js

    2  // Vertex shader program

    3  var VSHADER_SOURCE =

    4    'attribute vec4 a_Position;\n' +

    5     'uniform mat4  u_ModelMatrix;\n' + 

    6    'void main() {\n' +

    7     '  gl_Position =  u_ModelMatrix * a_Position;\n' + 

    8    '}\n';

    9  // Fragment shader program

      ...

   16  function main() {

        ...

   33    // Set the positions of vertices

   34    var n = initVertexBuffers(gl);

        ...

   40     // Create Matrix4 object for model transformation 

   41     var modelMatrix = new Matrix4(); 

   42

   43    // Calculate a model matrix

   44    var ANGLE = 60.0; // Rotation angle

   45    varTx = 0.5; // Translation distance

    46    modelMatrix.setRotate(ANGLE, 0,  0, 1); // Set rotation matrix 

    47    modelMatrix.translate(Tx, 0, 0); // Multiply modelMatrix by the calculated 

                                                                ➥translation matrix 

   48

   49    // Pass the model matrix to the vertex shader

   50    var u_ModelMatrix = gl.getUniformLocation(gl.program, ' u_ModelMatrix');

         ...

   56     gl.uniformMatrix4fv(u_ModelMatrix, false, modelMatrix.elements); 

         ...

   63    // Draw a triangle

   64    gl.drawArrays(gl.TRIANGLES, 0, n);

   65  }

   66

   67  function initVertexBuffers(gl) {

   68    var vertices = new Float32Array([

   69      0.0, 0.3,   -0.3, -0.3,   0.3, -0.3

   70    ]);

   71    var n = 3; // The number of vertices

         ...

   99    return n;

  100  }   
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 The key lines in this listing are lines 46 and 47, which calculate 

< > × < >rotation matrix translation matrix            :  

  46     modelMatrix.setRotate(ANGLE, 0, 0, 1);  // Set rotation matrix 

  47     modelMatrix.translate(Tx, 0, 0);  // Multiply modelMatrix by the calculated

                                                              ➥translation matrix    

 Because line 46 uses a method with  set  ( setRotate()) , the rotation matrix that is calcu-
lated using the parameters is written to the variable  modelMatrix . The next line, 47, 
uses a method without  set  ( translate()) , which, as explained earlier, calculates the 
translation matrix using the parameters and then multiplies the matrix in  modelMa-
trix  by the newly calculated translation matrix and writes the result back into  model-
Matrix . So, if  modelMatrix  already contains a rotation matrix, this method calculates 
〈 〉 × 〈 〉rotation matrix translation matrix             and stores the result back into  modelMatrix .  

 You may have noticed that the order of “translate first and then rotate” is the opposite of 
the order of the matrices in the calculation 〈 〉 × 〈 〉rotation matrix translation matrix            . As shown in 
 Equation   4.3   , this is because the transformation matrix is multiplied by the original vertex 
coordinates of the triangle.  

 The result of this calculation is passed to  u_ModelMatrix  in the vertex shader at line 
56, and then the drawing operation (line 64) is the same as usual. If you now load this 
program into your browser, you can see a red triangle, which has been translated and then 
rotated.   

  Experimenting with the Sample Program  

 Let’s rewrite      the sample program to first rotate the triangle and then translate it. This 
simply requires you to exchange the order of the rotation and translation. In this 
case, you should note that the translation is performed first by using the  set  method, 
 setTranslate() :  

  46  modelMatrix.setTranslate(Tx, 0, 0);

  47  modelMatrix.rotate(ANGLE, 0, 0, 1);   

  Figure   4.4    shows this sample program.  



ptg11539634

CHAPTER 4  More Transformations and Basic Animation124

 
 Figure 4.4   A triangle “rotated first and then translated”         

 As you can see, by changing the order of a rotation and translation, you get a different 
result. This becomes obvious when you examine  Figure   4.5   .  
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 Figure 4.5   The order of transformations will show different results         

 That concludes the initial explanation of the use of methods defined in  cuon-matrix.js  
to create transformation matrices. You’ll be using them throughout the rest of this book, 
so you’ll have plenty of chance to study them further.    

  Animation  
 So far, this chapter   has explained how to transform shapes and use the matrix library to 
carry out transformation operations. You now have enough knowledge of WebGL to start 
on the next step of applying this knowledge to animate shapes.  
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 Let’s start by constructing a sample program,  RotatingTriangle , which continually rotates 
a triangle at a constant rotation speed (45 degrees/second).  Figure   4.6    shows multiple over-
laid screenshots of  RotatingTriangle  so that you can see the rotation.  

 
 Figure 4.6   Multiple overlaid screenshots of RotatingTriangle         

  The Basics of Animation  

 To animate a rotating triangle, you simply need to redraw the triangle at a slightly differ-
ent angle each time it draws.  

  Figure   4.7    shows individual triangles that are drawn at times t0, t1, t2, t3, and t4. Each 
triangle is a still image, but you can see that each has a slightly different rotation angle. 
When you see a series of these triangles sequentially, your mind interpolates the changes 
between them and then puts them together as a smooth flow of animation, just like a flip 
book. Of course, you need to clear the previous triangle before drawing a new one. (This is 
why you must call   gl.clear()  before drawing something.) You can apply this animation 
method to both 2D shapes and 3D  objects.  
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 Figure 4.7   Draw a slightly different triangle for each drawing         
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 Achieving animation in this way requires two key mechanisms:  

    Mechanism 1:       Repeatedly calls a function to draw a triangle at times t0, t1, t2, t3, and 
so on.   

   Mechanism 2:       Clears the previous triangle and then draws a new one with the specified 
angle each time the function is called.    

 The second mechanism is just a simple application of the knowledge you’ve learned so far. 
However, the first mechanism is new, so let’s take it step by step by examining the sample 
program.   

  Sample Program (RotatingTriangle.js)  

  Listing   4.3    shows       RotatingTriangle.js . The vertex shader and fragment shader are the 
same as in the previous sample program. However, the vertex shader is listed to show the 
multiplication of a matrix and vertex coordinates.  

 The following three points differ from the previous sample program:  

    •   Because the program needs to draw a triangle repeatedly, it’s been modified to 
specify the clear color at line 44, not just before the drawing operation. Remember, 
the color stays in the WebGL system until it’s overwritten.   

   •   The actual mechanism [Mechanism 1] to repeatedly call a drawing function has been 
added (lines 59 to 64).   

   •   [Mechanism 2] The operations to clear and draw a triangle were defined as a func-
tion ( draw()  at line 102).    

 These differences are highlighted in  Listing   4.3    (lines 1 to 3). Let’s look at them in more 
detail.  

  Listing 4.3    RotatingTriangle.js  

   1  // RotatingTriangle.js

    2  // Vertex shader program

    3  var VSHADER_SOURCE =

    4    'attribute vec4 a_Position;\n' +

    5    'uniform mat4  u_ModelMatrix;\n' +

    6    'void main() {\n' +

    7    '  gl_Position =  u_ModelMatrix * a_Position;\n' +

    8    '}\n';

    9  // Fragment shader program

       ...

   16  // Rotation angle (degrees/second)

   17   var ANGLE_STEP = 45.0; 

   18
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   19  function main() {

        ...

   36    // Set the positions of vertices

   37    var n = initVertexBuffers(gl);

       ...

   43     // Set the color for clearing <canvas>                                  <- (1)

   44     gl.clearColor(0.0, 0.0, 0.0, 1.0); 

   45

   46    // Get the storage location of u_ModelMatrix variable

   47    var u_ModelMatrix =  gl.getUniformLocation(gl.program, ' u_ModelMatrix');

        ...

   53    // Current rotation angle of a triangle

   54     varcurrentAngle = 0.0; 

   55    // Matrix4 object for model transformation

   56     var modelMatrix = new Matrix4(); 

   57

   58    // Start to draw a triangle                                            <- (2)

   59     var tick = function() { 

   60       currentAngle = animate(currentAngle);// Update the rotation angle 

   61       draw(gl, n, currentAngle, modelMatrix, u_ModelMatrix); 

   62       requestAnimationFrame(tick);// Request that the browser calls tick 

   63     }; 

   64     tick(); 

   65  }

   66

   67  function initVertexBuffers(gl) {

   68    var vertices = new Float32Array ([

   69      0.0, 0.5,   -0.5, -0.5,   0.5, -0.5

   70    ]);

   71    var n = 3;   //  The number of vertices

        ...

   96    return n;

   97  }

   98

   99  function draw(gl,n, currentAngle, modelMatrix, u_ModelMatrix){              <-(3)

  100   // Set up rotation matrix

  101    modelMatrix.setRotate(currentAngle, 0, 0, 1); 

  102

  103   // Pass the rotation matrix to the vertex shader

  104    gl.uniformMatrix4fv( u_ModelMatrix, false, modelMatrix.elements); 

  105

  106   // Clear <canvas>

  107    gl.clear(gl.COLOR_BUFFER_BIT); 

  108

  109   // Draw a triangle
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  110    gl.drawArrays(gl.TRIANGLES, 0, n); 

  111 }

  112

  113 // Last time when this function was called

  114  var g_last = Date.now(); 

  115  function animate(angle) { 

  116   // Calculate the elapsed time

  117   v ar now = Date.now(); 

  118    var elapsed = now - g_last; // milliseconds 

  119    g_last = now; 

  120   // Update the current rotation angle (adjusted by the elapsed time)

  121    var newAngle =  angle + (ANGLE_STEP * elapsed) / 1000.0; 

  122    return newAngle %= 360; 

  126  }    

 Line 7 in the vertex shader is just a multiplication of a matrix and the vertex coordinates 
in the same way as  RotatedTranslatedTriangle.js ).  u_ModelMatrix  is a uniform variable, 
and the rotation matrix is passed to the variable from a JavaScript program:  

  7    '  gl_Position =  u_ModelMatrix * a_Position;\n' +   

 The variable  ANGLE_STEP  at line 17 defines the rotation angles per second and is set to 45 
degrees/second:  

  17   var ANGLE_STEP = 45.0;    

 The  main()  function starts from line 19, but because the code from lines 19 to 37, which 
specifies the vertex coordinates, is the same as before, it is omitted.  

 The first of the three differences is that you specify the clear color once only: at line 44. 
Line 47 then retrieves the storage location of  u_ModelMatrix  in the vertex shader. Because 
this location never changes, it’s more efficient to do only this once:  

  47    var u_ModelMatrix = gl.getUniformLocation(gl.program, 'u_ModelMatrix');   

 The variable  u_ModelMatrix  is then used in the  draw()  function (line 99) that draws the 
triangle.  

 The value of the variable  currentAngle  starts at 0 degrees and stores how many degrees 
the triangle should be rotated from its original position each time it is drawn. As in the 
simple rotation examples earlier, it calculates the rotation matrix needed for the trans-
formation. The variable  modelMatrix  defined at line 56 is a  Matrix4  object used to hold 
the rotation matrix in  draw() . This matrix could be created within  draw() ; however, that 
would require a new  Matrix4  object to be created each time  draw()  is called, which would 
be inefficient. For this reason, the object is created at line 56 and then passed to   draw()  at 
line 61.  
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 Lines 59 to 64 implement Mechanism 1 as the function  tick , which is repeatedly called 
to draw the triangle. Before you look at how the overall “tick” mechanism actually works, 
let’s look at what happens each time it is called:  

  53    // Current rotation angle of a triangle

  54     varcurrentAngle = 0.0; 

  55    // Matix4 object for model transformation

  56     var modelMatrix = new Matrix4(); 

  57

  58    // Start to draw a triangle                                             <- (2)

  59     var tick = function() { 

  60       currentAngle = animate(currentAngle);  // Update the rotation angle

  61       draw(gl, n, currentAngle, modelMatrix,  u_ModelMatrix); 

  62       requestAnimationFrame(tick); // Request that the browser callstick

  63     }; 

  64    tick();    

 Within  tick , the call to the function   animate()  at line 60 updates the current rotation 
angle of the triangle, and then the call to  draw()  at line 61 draws a triangle using  gl.
drawArrays() .  

  draw()  is  passed the rotation matrix, which rotates the triangle to  currentAngle  degrees. 
In turn, it passes the matrix to the  u_ModelMatrix  variable in the vertex shader before 
calling  gl.drawArrays()  (lines 104 to 110). This code appears quite complex, so let’s 
examine each part in turn.   

  Repeatedly Call the Drawing Function (tick())  

 As described        earlier, to animate the triangle, you need to perform the following two steps 
repeatedly: (1) update the current rotation angle of a triangle ( currentAngle ), and then (2) 
call the drawing function with the angle to draw the triangle. Lines 59 to 64 implement 
these processing steps.  

 In this sample program, these tasks are defined by the three operations of line 60, 61, 
and 62. These operations are grouped in a single anonymous function using  function() , 
and the function is assigned to the variable  tick  (see  Figure   4.8   ). You use an anonymous 
function if you want to pass the local variables defined in  main()  ( gl ,  n ,  currentAngle , 
 modelMatrix , and  u_ModelMatrix ) to  draw()  as arguments when  draw()  is called at line 61. 
If you need a refresher on anonymous functions, refer to  Chapter   2   , “Your First Step with 
WebGL,” where you used one to register an event handler.  
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 Figure 4.8   The operations assigned to “tick”         

 You can use this basic approach for all types of animation. It is a key technique in 3D 
graphics.  

 When you call   requestAnimationFrame()  at line 62, you are requesting the browser to call 
the function specified as the first parameter at some future time when the three opera-
tions assigned to  tick  will be executed again. You’ll look at  requestAnimationFrame()  in a 
moment. For now, let’s finish examining the operations executed in  tick() .   

  Draw a Triangle with the Specified Rotation Angle (draw())  

 The  draw()  function       takes the following five parameters:  

    •    gl:     The context in which to draw the triangle   

   •    n:     The number of vertices   

   •    currentAngle:     The current rotation angle   

   •    modelMatrix:     A Matrix4 object to store the rotation matrix calculated using  curren-
tAngle    

   •    u_ModelMatrix:     The location of the uniform variable to which the  modelMatrix  is 
passed    

 The actual function code is found in lines 99 to 111:  

   99  function draw(gl, n, currentAngle, modelMatrix,  u_ModelMatrix) {

  100    // Set the rotation matrix

  101    modelMatrix.setRotate(currentAngle, 0, 0, 1);

  102

  103    // Pass the rotation matrix to the vertex shader

  104    gl.uniformMatrix4fv( u_ModelMatrix, false, modelMatrix.elements);

  105

  106    // Clear <canvas>

  107    gl.clear(gl.COLOR_BUFFER_BIT);
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  108

  109    // Draw the triangle

  110    gl.drawArrays(gl.TRIANGLES, 0, n);

  111  }   

 First, line 101 calculates the rotation matrix using the   setRotate()  method provided by 
 cuon-matrix.js , writing the resulting matrix to  modelMatrix :  

  101  modelMatrix.setRotate(currentAngle, 0, 0, 1);    

 Next, line 104 passes the matrix to the vertex shader by using  gl.uniformMatrix4fv() :  

  104  gl.uniformMatrix4fv(u_ModelMatrix, false, modelMatrix.elements);    

 After that, line 107 clears the  <canvas>  and then calls   gl.drawArrays()  at line 110 to 
execute the vertex shader to actually draw the triangle. Those steps are the same as used 
before.  

 Now let’s return to the third operation,  requestAnimationFrame() , which requests the 
browser to call the function  tick()  at some future time.   

  Request to Be Called Again (requestAnimationFrame())  

 Traditionally, if       you wanted to repeatedly execute specific tasks (functions) in JavaScript, 
you used the method   setInterval() .    

   setInterval (func, delay)  

 Call the function specified by  func  multiple times with intervals specified by  delay.   

  Parameters    func   Specifies the function to be called multiple times.  

 delay   Specifies the intervals (in milliseconds).  

  Return value    Timer id  

 However, because this JavaScript method was designed before browsers started to support 
multiple tabs, it executes regardless of which tab is active. This can lead to performance 
problems, so a new method,  requestAnimationFrame() , was recently introduced. The 
function scheduled using this method is only called when the tab in which it was defined 
is active. Because  requestAnimationFrame()  is a new method and not yet standardized, 
it is defined in the library supplied by Google,  webgl-utils.js , which handles the differ-
ences among different browsers.    
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   requestAnimationFrame (func)  

 Requests the function specified by  func  to be called on redraw (see  Figure   4.9   ). This 
request needs to be remade after each callback.  

  Parameters    func   Specifies the function to be called later. The function takes a 
“time” parameter, indicating the timestamp of the callback.  

  Return value    Request id  
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 Figure 4.9   The requestAnimationFrame () mechanism          

 By using this method, you avoid animation in inactive tabs and do not increase the load 
on the browser. Note, you cannot specify an interval before the function is called; rather, 
 func  (the first parameter) will be called when the browser wants the web page contain-
ing the  element  (the second parameter) to be painted. In addition, after calling the func-
tion, you need to request the callback again because the previous request is automatically 
removed once it’s fulfilled. Line 62 makes that request again once  tick  is called and 
makes it possible to call  tick()  repeatedly:  

  62       requestAnimationFrame(tick); // Request the browser to call tick    

 If you want to cancel the request to call the function, you need to use 
 cancelAnimationFrame() .    
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   cancelAnimationFrame (requestID)  

  Cancel the function registered by  requestAnimationFrame() .  

  Parameter    requestID   Specifies the return value of  requestAnimationFrame() .  

  Return value    None  

  Update the Rotation Angle (animate())  

 Finally, let’s         see how to update the current rotation angle. The program maintains the 
current rotation angle of the triangle (that is, how many degrees the triangle has been 
rotated from its original position) in the variable  currentAngle  (defined at line 54). It 
calculates the next rotation angle based on this current value.  

 The update of  currentAngle  is carried out in the function  animate() , which is called at 
line 60. This function, defined at line 115, takes one parameter,  angle , which represents 
the current rotation angle and returns the new rotation angle:  

   60       currentAngle = animate(currentAngle);// Update the rotation angle 

   61       draw(gl, n, currentAngle, modelMatrix,  u_ModelMatrix); 

             ...

  113  // Last time this function was called

  114  var g_last = Date.getTime();

  115  function animate(angle) {

  116    // Calculate the elapsed time

  117    var now = Date.getTime();

  118    var elapsed = now - g_last;

  119    g_last = now;

  120    // Update the current rotation angle (adjusted by the elapsed time)

  121    var newAngle = angle + (ANGLE_STEP * elapsed) / 1000.0;

  122    return newAngle %= 360;

  123  }   

 The process for updating the current rotation angle is slightly complicated. Let’s look at 
the reason for that by using  Figure   4.10   .  
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 Figure 4.10   The interval times between each tick() vary         

  Figure   4.10    illustrates the following:  

    •    tick()  is called at t0. It calls  draw()  to draw the triangle and then reregisters  tick() .   

   •    tick()  is called at t1. It calls  draw()  to draw the triangle and then reregisters  tick() .   

   •    tick()  is called at t2. It calls  draw()  to draw the triangle and then reregisters  tick() .    

 The problem here is that the interval times between t0 and t1, t1 and t2, and t2 and t3 
may be different because of the load on the browser at that time. That is,  t1 – t0  could 
be different from  t2 – t1 .  

 If the interval time is not constant, then simply adding a fixed amount of angle (degree/
second) to the current rotation angle each time  tick()  is called will result in an apparent 
acceleration or deceleration of the rotation speed.  

 For this reason, the function  animate()  needs to be a little more sophisticated and must 
determine the new rotation angle based on how long it has been since the function was 
last called. To do that, you need to store the time that the function was last called into the 
variable  g_last  and store the current time into the variable  now . Then you can calculate 
how long it has been since the function was last called by subtraction and store the result 
in the variable  elapsed  (line 118). The amount of rotation is then calculated at line 121 
using  elapsed  as follows.  

  121  varnewAngle = angle + (ANGLE_STEP * elapsed) / 1000.0;    

 The variables  g_last  and  now  contain the return value from the method  now()  of a  Date  
object whose units are a millisecond (1/1000 second). Therefore, if you want to rotate 
the triangle by  ANGLE_STEP  (degree/second), you just need to multiply  ANGLE_STEP  by 
 elapsed /1000 to calculate the rotation angle. At line 121, you actually multiply  ANGLE_
STEP  by  elapsed  and then divide the result by 1000 because this is slightly more accurate, 
but both have the same meaning.  

 Finally, line 122 ensures the value of  newAngle  is less than 360 (degrees) and returns the 
result.  
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 If you now load  RotatedTriangle.html  into your browser, you can check that the triangle 
rotates at a constant speed. We will reuse this approach for animation in the following 
chapters, so it’s worthwhile making sure you have mastered the details.   

  Experimenting with the Sample Program  

 In this section       , let’s create an animation that consists of multiple transformations. 
 RotatingTranslatedTriangle  translates a triangle 0.35 units in the positive direction of 
the x-axis first and then rotates the triangle by 45 degrees/second.  

 This is easy to achieve if you remember that multiple transformations can be realized by 
multiplying each transformation matrix together (refer to  Chapter   3   ).  

 To do this, you just need to insert the translation at line 102. Because the variable  model-
Matrix  already contains the rotation matrix, you can use  translate() , rather than 
 setTranslate() , to multiply  modelMatrix  by the translation matrix:  

   99  function draw(gl, n, currentAngle, modelMatrix,  u_ModelMatrix) {

  100    // Set a rotation matrix

  101    modelMatrix.setRotate(currentAngle, 0, 0, 1);

  102     modelMatrix.translate(0.35, 0, 0); 

  103    // Pass the rotation matrix to the vertex shader

  104    gl.uniformMatrix4fv( u_ModelMatrix, false, modelMatrix.elements);   

 If you load the example, you will see the animation shown in  Figure   4.11   .  

 
 Figure 4.11   Multiple overlaid screenshots of RotatingTranslatedTriangle         

 Finally, for those of you wanting a little control, on the companion site for this book is 
a sample program, named  RotatingTriangle_withButtons , that allows dynamic control 
of the rotation speed using buttons (see  Figure   4.12   ). You can see the buttons below the 
 <canvas> .  
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 Figure 4.12   RotatingTriangle_withButtons            

     Summary  
 This chapter explored the process of transforming shapes using the transformation matrix 
library, combining multiple basic transformations to create a complex transformation, and 
animating shapes using the library. There are two key lessons in this chapter: (1) Complex 
transformations can be realized by multiplying a series of basic transformation matrices; 
(2) You can animate shapes by repeating the transformation and drawing steps.  

  Chapter   5   , “Using Colors and Texture Images,” is the last chapter that covers basic tech-
niques. It explores colors and textures. Once you master those, you will have enough 
knowledge to create your own basic WebGL programs and will be ready to begin exploring 
some of the more advanced capabilities of WebGL.     



ptg11539634

  Chapter 5 

 Using Colors and Texture Images  

    The previous chapters explained the key concepts underlying the foundations of 
WebGL through the use of examples based on 2D shapes. This approach has given you 
a good understanding of how to deal with single color geometric shapes in WebGL. 
Building on these basics, you now delve a little further into WebGL by exploring the 
following three subjects:  

    •   Passing other data such as color information to the vertex shader   

   •   The conversion from a shape to fragments that takes place between the vertex 
shader and the fragment shader, which is known as the   rasterization process    

   •   Mapping images (or textures) onto the surfaces of a shape or object    

 This is the final chapter that focuses on the key functionalities of WebGL. After reading 
this chapter, you will understand the techniques and mechanism for using colors 
and textures in WebGL and will have mastered enough WebGL to allow you to create 
sophisticated 3D scenes.   

     Passing Other Types of Information to Vertex 
Shaders  
 In the     previous sample programs, a single buffer object was created first, the vertex 
coordinates were stored in it, and then it was passed to the vertex shader. However, 
beside coordinates, vertices involved in 3D graphics often need other types of infor-
mation such as color information or point size. For example, let us take a look at a 
program you used in  Chapter   3   , “Drawing and Transforming Triangles,” which draws 
three points:  MultiPoint.js . In the shader, in addition to the vertex coordinates, you 
provided the point size as extra information. However, the point size was a fixed value 
and set in  the shader rather than passed from outside:  
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  3 var VSHADER_SOURCE =

  4  'attribute vec4 a_Position;\n' +

  5  'void main() {\n' +

   6  '  gl_Position = a_Position;\n' + 

   7  '  gl_PointSize = 10.0;\n' + 

  8  '}\n'   

 Line 6 assigns the vertex coordinates to  gl_Position , and line 7 assigns a fixed point 
size of 10.0 to  gl_PointSize . If you now wanted to modify the size of that point from 
your JavaScript program, you would need a way to pass the point size with the vertex 
coordinates.  

 Let’s look at an example,  MultiAttributeSize , whose goal is to draw three points of 
different sizes: 10.0, 20.0, and 30.0, respectively (see  Figure   5.1   ).  

 
 Figure 5.1   MultiAttributeSize         

 In the previous chapter, you carried out the following steps to pass the vertex coordinates:  

    1.   Create a buffer object.   

   2.   Bind the buffer object to the target.   

   3.   Write the coordinate data into the buffer object.   

   4.   Assign the buffer object to the attribute variable.   

   5.   Enable the assignment.    

 If you now wanted to pass several items of vertex information to the vertex shader 
through buffer objects, you could just apply the same steps to all the items of information 
associated with a vertex. Let’s look at a sample program that uses multiple buffers to do 
just that.  
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  Sample Program (MultiAttributeSize.js)  

        MultiAttributeSize.js  is shown in  Listing   5.1   . The fragment shader is basically the same 
as in  MultiPoint.js , so let’s omit it this time. The vertex shader is also similar, apart from 
the fact that you add a new attribute variable that specifies the point size. The numbers 1 
through 5 on the right of the listing note the five steps previously outlined.  

  Listing 5.1    MultiAttributeSize.js  

  1 // MultiAttributeSize.js

   2 // Vertex shader program

   3 var VSHADER_SOURCE =

   4   'attribute vec4 a_Position;\n' +

    5   'attribute float a_PointSize;\n' + 

   6   'void main() {\n' +

   7   '  gl_Position = a_Position;\n' +

    8   '  gl_PointSize = a_PointSize;\n' + 

   9   '}\n';

      ...

  17 function main() {

      ...

  34   // Set the vertex information

  35   var n = initVertexBuffers(gl);

      ...

  47   // Draw three points

  48   gl.drawArrays(gl.POINTS, 0, n);

  49 }

  50

  51 function initVertexBuffers(gl) {

  52   var vertices = new Float32Array([

  53     0.0, 0.5,   -0.5, -0.5,   0.5, -0.5

  54   ]);

  55   var n = 3;

  56

   57   var sizes = new Float32Array([ 

   58     10.0, 20.0, 30.0  // Point sizes 

   59   ]); 
  60

  61   // Create a buffer object

  62    var vertexBuffer = gl.createBuffer();                               <-(1)

   63   var sizeBuffer = gl.createBuffer();                                  <-(1')

      ...

  69   // Write vertex coordinates to the buffer object and enable it

  70   gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);                       <-(2)

  71   gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);           <-(3)

  72   var a_Position = gl.getAttribLocation(gl.program, 'a_Position');
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    ...

  77   gl.vertexAttribPointer(a_Position, 2, gl.FLOAT, false, 0, 0);       <-(4)

  78   gl.enableVertexAttribArray(a_Position);                             <-(5)

  79

   80   // Write point sizes to the buffer object and enable it 

   81   gl.bindBuffer(gl.ARRAY_BUFFER, sizeBuffer);                          <-(2')

   82   gl.bufferData(gl.ARRAY_BUFFER, sizes, gl.STATIC_DRAW);               <-(3')

   83   var a_PointSize = gl.getAttribLocation(gl.program, 'a_PointSize'); 

       ... 

   88   gl.vertexAttribPointer(a_PointSize, 1, gl.FLOAT, false, 0, 0);       <-(4')

   89   gl.enableVertexAttribArray(a_PointSize);                             <-(5')

      ...

  94   return n;

  95 }   

 First of all, let us examine the vertex shader in  Listing   5.1   . As you can see, the attribute 
variable  a_PointSize , which receives the point size from the JavaScript program, has been 
added. This variable, declared at line 5 as a  float , is then assigned to  gl_PointSize  at line 
8. No other changes are necessary for the vertex shader, but you will need a slight modi-
fication to the process in   initVertexBuffers()  so it can handle several buffer objects. Let 
us take a more detailed look at it.   

  Create Multiple Buffer Objects  

 The      function  initVertexBuffers()  starts at line 51, and the vertex coordinates are 
defined from lines 52 to 54. The point sizes are then specified at line 57 using the array 
 sizes :  

   57   var sizes = new Float32Array([ 

   58     10.0, 20.0, 30.0  // Point sizes 

   59   ]);    

 A buffer object is created at line 62 for the vertex data, and at line 63 another buffer object 
( sizeBuffer ) is created for storing the array of “point sizes.”  

 From lines 70 to 78, the program binds the buffer object for the vertex coordinates, writes 
the data, and finally assigns and enables the attribute variables associated with the buffer 
object. These tasks are the same as those described in the previous sample programs.  

 Lines 80 to 89 are new additions for handling the different point sizes. However, the steps 
are the same as for a vertex buffer. Bind the buffer object for the point sizes ( sizeBuffer ) 
to the target (line 81), write the data (line 82), assign the buffer object to the attribute 
variable  a_PointSize  (line 88), and enable it.  

 Once these steps in  initVertexBuffers()  are completed, the internal state of the WebGL 
system looks like  Figure   5.2   . You can see that the two separate buffer objects are created 
and then assigned to the two separate attribute variables.  
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 Figure 5.2   Using two buffer objects to pass data to a vertex shader         

 In this situation, when  gl.drawArrays()  at line 48 is executed, all the data stored inside 
the buffer objects is sequentially passed to each attribute variable in the order it was stored 
inside the buffer objects. By assigning this data to  gl_Position  at line 7 and  gl_PointSize  
at line 8, respectively (the vertex shader’s program in  Figure   5.2   ), you are now able to 
draw different size objects located at different positions.  

 By creating a buffer object for each type of data in this way and then allocating it to the 
attribute variables, you can pass several pieces of information about each vertex to the 
vertex shader. Other types of information that can be passed include color, texture coordi-
nates (described in this chapter), and normals ( see Chapter   7   ), as well as point size.   

  The gl.vertexAttribPointer() Stride and Offset Parameters  

 Although      multiple buffer objects are a great way to handle small amounts of data, in a 
complicated 3D object with many thousands of vertices, you can imagine that managing 
all the associated vertex data is an extremely difficult task. For example, imagine needing 
to manually check each of these arrays when the total count of  MultiAttributeSize.js ’s 
vertices and sizes reaches 1000.  1   However, WebGL allows the vertex coordinates and the 
size to be bundled into a single component and provides mechanisms to access the differ-
ent data types. For example, you can group the vertex and size data in the following way 
(refer to  Listing   5.2   ), often referred to as   interleaving .   

  Listing 5.2   An Array Containing Multiple Items of Vertex Information  

  var verticesSizes = new Float32Array([

    // Vertex coordinates and size of a point

      0.0,  0.5, 10.0,   // The 1st point

     -0.5, -0.5, 20.0,  // The 2nd point

      0.5, -0.5, 30.0    // The 3rd point

  ]);   

 1  I  n practice, because modeling tools that create 3D models actually generate this data, there is no 

necessity to either manually input them or visually check their consistency. The use of modeling 

tools and the data they generate will be discussed  in  Chapter   10   . 
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 As just described, once you have stored several types of information pertaining to the 
vertex in a single buffer object, you need a mechanism to access these different data 
elements. You can use the fifth ( stride ) and sixth ( offset ) arguments of  gl.vertexAttrib-
Pointer()  to do this, as shown in the example that follows.   

  Sample Program (MultiAttributeSize_Interleaved.js)  

 Let’s        construct a sample program,  MultiAttributeSize_Interleaved , which passes multi-
ple data to the vertex shader, just like  MultiAttributeSize.js  (refer to  Listing   5.1   ), except 
that it bundles the data into a single array or buffer.  Listing   5.3    shows the program in 
which the vertex shader and the fragment shader are the same as in  MultiAttributeSize.
js .  

  Listing 5.3    MultiAttributeSize_Interleaved.js  

  1 // MultiAttributeSize_Interleaved.js

   2 // Vertex shader program

   3 var VSHADER_SOURCE =

   4   'attribute vec4 a_Position;\n' +

   5   'attribute float a_PointSize;\n' +

   6   'void main() {\n' +

   7   '  gl_Position = a_Position;\n' +

   8   '  gl_PointSize = a_PointSize;\n' +

   9   '}\n';

      ...

  17 function main() {

      ...

  34   // Set vertex coordinates and point sizes

  35   var n = initVertexBuffers(gl);

      ...

  48   gl.drawArrays(gl.POINTS, 0, n);

  49 }

  50

  51 function initVertexBuffers(gl) {

   52   var verticesSizes = new Float32Array([ 

   53     // Vertex coordinates and size of a point 

   54      0.0,  0.5,  10.0,  // The 1st vertex 

   55     -0.5, -0.5,  20.0,  // The 2nd vertex 

   56      0.5, -0.5,  30.0   // The 3rd vertex 

   57   ]); 

  58    var n = 3;

  59

  60   // Create a buffer object

  61   var vertexSizeBuffer = gl.createBuffer();

      ...
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  67   // Write vertex coords and point sizes to the buffer and enable it

  68   gl.bindBuffer(gl.ARRAY_BUFFER, vertexSizeBuffer);

  69   gl.bufferData(gl.ARRAY_BUFFER, verticesSizes, gl.STATIC_DRAW);

  70

   71   var FSIZE = verticesSizes.BYTES_PER_ELEMENT; 

  72   // Get the storage location of a_Position, allocate buffer, & enable

  73   var a_Position = gl.getAttribLocation(gl.program, 'a_Position');

      ...

   78   gl.vertexAttribPointer(a_Position, 2, gl.FLOAT, false, FSIZE * 3, 0); 

  79   gl.enableVertexAttribArray(a_Position);  // Enable allocation

  80

  81   // Get the storage location of a_PointSize, allocate buffer, & enable

  82   var a_PointSize = gl.getAttribLocation(gl.program, 'a_PointSize');

      ...

   87   gl.vertexAttribPointer(a_PointSize, 1, gl.FLOAT, false, FSIZE * 3, FSIZE * 2); 

  88   gl.enableVertexAttribArray(a_PointSize);  // Enable buffer allocation

      ...

  93   return n;

  94  }   

 The processing flow of the  main()  function in JavaScript is the same as 
 MultiAttributeSize.js , and only the  initVertexBuffers()  process is modified this time, 
so let’s take a look at its content.  

 First, a typed array is defined at lines 52 to 57, as previously described in Listing 5.2  . 
Following the usual processing steps, from line 61 to 69, a buffer object is created (line 
61), the object is bound (line 68), and the data is written to the object (line 69). Next, 
at line 71, the size (number of bytes) of the element in the  verticeSizes  array is stored 
in the variable  FSIZE , which will be needed later on. The size (number of bytes) of each 
element of a typed array can be obtained through the property  BYTES_PER_ELEMENT .  

 From line 73 onward, you assign the buffer object to the attribute variable. Retrieving the 
storage location of the attribute variable  a_Position  at line 73 is similar to the previous 
example, but the usage of the arguments of  gl.vertexAttribPointer()  at line 78 is differ-
ent because the buffer now holds two types of data: vertex and point size.  

 You’ve already looked at the specification of  gl.vertexAttribPointer()  in  Chapter   3   , but 
let’s take another look and focus on two parameters:  stride  and  offset .    
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   gl.vertexAttribPointer(location, size, type, normalized, stride, 
offset)   

 Assign the buffer object bound to  gl.ARRAY_BUFFER  to the attribute variable specified by 
 location . The type and format of the data written in the buffer is also specified.  

  Parameters    location   Specifies the storage location of the attribute variable.  

 size   Specifies the number of components per vertex in the buffer 
object (valid values are 1 to 4).  

 type   Specifies the data format (in this case,  gl.FLOAT )  

 normalized    true  or  false . Used to indicate whether non- float  data should 
be normalized to [0, 1] or [–1, 1].  

 stride   Specifies the stride length (in bytes) to get vertex data; that is, 
the number of bytes between each vertex element  

 offset   Specifies the offset (in bytes) in a buffer object to indicate where 
the vertex data is stored from. If the data is stored from the 
beginning. then offset is 0.  

 The  stride  specifies the number of bytes used by a group of related vertex data (in this 
example, vertex coordinates and point size) inside the buffer object.  

 In previous examples, where you had only one type of information in the buffer—
vertices—you set the  stride  to 0. However, in this example, both vertices and point sizes 
are laid out in the buffer, as shown in  Figure   5.3   .  
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 Figure 5.3   Stride and offset         

 As illustrated in  Figure   5.3   , there are three components inside each group of vertex data 
(two coordinates, one size), so you need to set the  stride  equal to three times the size of 
each component in the group (that is, three times  FSIZE  [the number of bytes per element 
of the  Floats32Array ]).  
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 The  offset  parameter indicates the distance to the first element that is being used for this 
call. Because you are using the vertex coordinates that are positioned at the head of the 
verticesSizes array, the  offset  is 0. So, at line 78, you specify them as the fifth ( stride ) and 
sixth ( offset ) arguments of  gl.vertexAttribPointer() :  

   78   gl.vertexAttribPointer(a_Position, 2, gl.FLOAT, false, FSIZE * 3, 0); 

  79   gl.enableVertexAttribArray(a_Position);  // Enable allocation   

 Finally, once the specification of the vertex coordinates has been set up, the assignment to 
 a_Position  is enabled at line 79.  

 Next, from line 82, you need to do the same for the point size data, so assign a buffer 
object to  a_PointSize . However, in this case, you are using the same buffer that you used 
for vertex data, but you want different data from the buffer. You can make use of the sixth 
argument  offset  to achieve this by setting the  offset  to the location at which the data (in 
this case the point size) to be passed to  a_PointSize  is positioned in the buffer. The first 
two elements of the array are vertex coordinates, so the  offset  will accordingly be set to 
 FSIZE  *  2 (refer to  Figure   5.3   ). Line 87 shows both  stride  and  offset  set up correctly:  

   87   gl.vertexAttribPointer(a_PointSize, 1, gl.FLOAT, false, FSIZE * 3, FSIZE * 2); 

  88   gl.enableVertexAttribArray(a_PointSize);  // Enable buffer allocation   

 The assignment to  a_PointSize  is enabled at line 88, and the only remaining task to 
perform is the draw operation using  gl.drawArrays() .  

 Each time a vertex shader is invoked, WebGL will extract data from the buffer object using 
the values specified in  stride  and  offset  and subsequently pass them to the attribute vari-
ables to be used for drawing (see  Figure   5.4   ).  
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 Figure 5.4   Internal behavior when stride and offset are used          
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  Modifying the Color (Varying Variable)  

 Now that       you    have seen how to pass several pieces of information to the vertex shader, 
let’s use the technique to modify the color of each point. You can achieve this using the 
procedure explained previously, substituting color information for point size in the buffer. 
After storing the vertex coordinates and the color in the buffer object, you will assign the 
color to the attribute variable, which handles the color.  

 Let’s construct a sample program,  MultiAttributeColor , that draws red, blue, and green 
points. A screenshot is shown in Figure 5.5. (Because this book is black and white, it might 
be difficult to appreciate the difference between the colors, so load and run the code in 
your browser.)    

 
 Figure 5.5   MultiAttributeColor         

 As you may remember from  Chapter   2   , “Your First Step with WebGL,” the fragment 
shader actually handles attributes like color. Up until this point, you’ve set up color stati-
cally in the fragment shader code and not touched it again. However, although you have 
learned how to pass the point color information to the vertex shader through the attri-
bute variable, the use of the  gl_FragColor  variable, which sets the color information, is 
restricted to the fragment shader. (Refer to the section “Fragment Shader” in  Chapter   2   .) 
Therefore, you need to find a way to communicate to the fragment shader the color infor-
mation  previously passed to the vertex shader ( Figure   5.6   ).  
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 Figure 5.6   Passing data from a vertex shader to a fragment shader         

 In  ColoredPoints  ( Chapter   2   ), a uniform variable was used to pass the color informa-
tion to the fragment shader; however, because it is a “uniform” variable (not varying), 
it cannot be used to pass different colors for each vertex. This is where a new method to 
pass data to the fragment shader through the  varying variable  is needed and relies on a 
mechanism that sends data from the vertex shader to the fragment shader: by using the 
varying variable. Let’s look at a concrete sample program.   

  Sample Program (MultiAttributeColor.js)  

  Listing   5.4    shows the program, which looks similar to the program introduced in the 
previous section,  MultiAttributeSize_Stride.js , but the part related to the vertex and 
fragment shaders is actually slightly different.  

  Listing 5.4     MultiAttributeColor.js  

  1 // MultiAttributeColor.js

   2 // Vertex shader program

   3 var VSHADER_SOURCE =

   4   'attribute vec4 a_Position;\n' +

   5   'attribute vec4 a_Color;\n' +

    6   'varying vec4 v_Color;\n' + // varying variable 
   7   'void main() {\n' +

   8   '  gl_Position = a_Position;\n' +

   9   '  gl_PointSize = 10.0;\n' +

   10   '  v_Color = a_Color;\n' +   // Pass the data to the fragment shader 
  11   '}\n';

  12

  13 // Fragment shader program

  14 var FSHADER_SOURCE =

      ...

   18   'varying vec4 v_Color;\n' + 
  19   'void main() {\n' +
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   20   '  gl_FragColor = v_Color;\n' + // Receive the data from the vertex shader 

  21   '}\n';

  22

  23 function main() {

      ...

  40   // Set vertex coordinates and  color

  41   var n = initVertexBuffers(gl);

      ...

  54   gl.drawArrays(gl.POINTS, 0, n);

  55 }

  56

  57 function initVertexBuffers(gl) {

   58   var verticesColors = new Float32Array([ 

   59     // Vertex coordinates and color 

   60      0.0,  0.5,  1.0,  0.0,  0.0, 

   61     -0.5, -0.5,  0.0,  1.0,  0.0, 

   62      0.5, -0.5,  0.0,  0.0,  1.0, 

   63   ]); 

  64   var n = 3; // The number of vertices

  65

  66   // Create a buffer object

  67   var vertexColorBuffer = gl.createBuffer();

      ...

  73   // Write the vertex coordinates and colors to the buffer object

  74   gl.bindBuffer(gl.ARRAY_BUFFER, vertexColorBuffer);

  75   gl.bufferData(gl.ARRAY_BUFFER, verticesColors, gl.STATIC_DRAW);

  76

  77   var FSIZE = verticesColors.BYTES_PER_ELEMENT;

  78   // Get the storage location of a_Position, allocate buffer, & enable

  79   var a_Position = gl.getAttribLocation(gl.program, 'a_Position');

      ...

   84   gl.vertexAttribPointer(a_Position, 2, gl.FLOAT, false, FSIZE  * 5, 0); 

  85   gl.enableVertexAttribArray(a_Position);  // Enable buffer assignment

  86

  87   // Get the storage location of a_Color, assign buffer, and enable

  88   var a_Color = gl.getAttribLocation(gl.program, 'a_Color');

      ...

   93  gl.vertexAttribPointer(a_Color, 3, gl.FLOAT, false, FSIZE*5, FSIZE*2); 

  94  gl.enableVertexAttribArray(a_Color);  // Enable buffer allocation

      ...

  96   return n;

  97 }   
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 At line 5 of the vertex shader, an attribute variable  a_Color  is declared in order to receive 
the color data. Next, at line 6, a new varying variable  v_Color  is declared that will be used 
to pass its value to the fragment shader. Please note that you can only use float types (and 
related types  vec2 ,  vec3 ,  vec4 ,  mat2 ,  mat3 , and  mat4 ) for varying variables:  

  5   'attribute vec4 a_Color;\n' +

   6   'varying vec4 v_Color;\n' +    

 At line 10, the value of  a_Color  is assigned to the variable  v_Color  declared at line 6:  

   10   '  v_Color = a_Color;\n' +    

 So how can the fragment shader receive the assigned data? The answer is straightforward. 
All that is required is declaring a variable in the fragment shader with the same name and 
types as that in the vertex shader:  

   18   'varying vec4 v_Color;\n' +    

 In WebGL, when varying variables declared inside the fragment shader have identical 
names and types to the ones declared in the vertex shader, the assigned values in the 
vertex shader are automatically passed to the fragment shader (see  Figure   5.7   ).  
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 Figure 5.7   The behavior of a varying variable         

 So, the fragment shader can receive the values assigned to the vertex shader at 
line 10 simply by assigning the varying variable  v_Color  to  gl_FragColor  at line 20. 
As  gl_FragColor  sets the fragment color, the color of each point will be modified:  

   20   '  gl_FragColor = v_Color;\n' +    

 The remaining code is similar to  MultiAttributeSize.js . The only differences are that 
the name of the typed array for vertex information defined at line 58 is modified to 
 verticesColors , and the color information such as (1.0, 0.0, 0.0) is added to the data 
definition at line 60.  
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 As previously explained in  Chapter   2   , the color information is specified using the 0.0–1.0 
range for each component of the RGBA model. Just like  MultiAttributeSize_Stride.
js , you store several different types of data within a single array. The fifth ( stride ) and 
sixth ( offset ) arguments of  gl.vertexAttribPointer()  are modified at lines 84 and 93, 
respectively, based on the content of the  verticesColors  array which, because you have 
introduced some color information in addition to the vertex coordinates, means the  stride  
changes to  FSIZE  * 5.  

 Finally, the draw command at line 54 results in red, blue, and green points being 
displayed in the browser.   

  Experimenting with the Sample Program  

 Let’s modify the first argument of  gl.drawArrays()  at line 54 to  gl.TRIANGLES  and see 
what happens upon execution. Alternatively, you can load the  ColoredTriangle  sample 
program from the book’s website:  

  54   gl.drawArrays(gl.TRIANGLES, 0, n);   

 The execution output is shown in  Figure   5.8   . It might be difficult to grasp the difference 
when seen in black and white, but on your screen, notice that a nice smooth-shaded 
triangle with red, green, and blue corners is drawn.  

 
 Figure 5.8   ColoredTriangle         
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 This significant change from three colored points to a smoothly shaded triangle occurred 
just by changing one parameter value. Let’s look at how that came about.    

  Color Triangle (ColoredTriangle.js)  
 You already    explored the subject of coloring triangles using a single color in  Chapter   3   . 
This section explains how to specify a different color for each of the triangle’s vertices and 
the process within WebGL that results in a smooth color transition between the different 
vertices.  

 To fully comprehend the phenomenon, you need to understand in detail the process 
carried out between the vertex and the fragment shaders, as well as the functionality of 
the varying variable.  

  Geometric Shape Assembly and Rasterization  

 Let’s start      the   explanation using the example program,  HelloTriangle.js , introduced in 
 Chapter   3   , which simply draws a red triangle. The relevant code snippet necessary for the 
explanation is shown in  Listing   5.5   .  

  Listing 5.5     HelloTriangle.js (Code Snippet)  

  1 // HelloTriangle.js

   2 // Vertex shader program

   3 var VSHADER_SOURCE =

   4   'attribute vec4 a_Position;\n' +

   5   'void main() {\n' +

   6   '  gl_Position = a_Position;\n' +

   7   '}\n';

   8

   9 // Fragment shader program

  10 var FSHADER_SOURCE =

  11   'void main() {\n' +

  12   '  gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);\n' +

  13   '}\n';

  14

  15 function main() {

      ...

  32   // Set vertex coordinates

  33   var n = initVertexBuffers(gl);

  ...

  45   // Draw a triangle

   46   gl.drawArrays(gl.TRIANGLES, 0, n); 

  47 }

  48

  49 function initVertexBuffers(gl) {
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  50   var vertices = new Float32Array([

  51     0.0, 0.5,   -0.5, -0.5,   0.5, -0.5

  52   ]);

  53   var n = 3; // The number of vertices

       ...

   74   gl.vertexAttribPointer(a_Position, 2, gl.FLOAT,  false, 0, 0); 

      ...

  81   return n;

  82 }   

 In this program, after writing the vertex coordinates (lines 50 to 52) into the buffer object 
in the function   initVertexBuffers() , the buffer object is assigned to the attribute variable 
 a_Position  at line 74. Following that, when  gl.drawArrays()  invokes the vertex shader at 
line 46, the three vertex coordinates inside the buffer object are passed to  a_Position  at 
line 4 and assigned to  gl_Position  at line 6, thus making them available to the fragment 
shader. In the fragment shader, the RGBA value (1.0, 0.0, 0.0, 1.0) associated with the red 
color is assigned to  gl_FragColor , so a red triangle is displayed.  

 Up until now, you haven’t actually explored how this works, so let’s examine how exactly 
a fragment shader performs per-fragment operations when you only give it the triangle’s 
three vertex coordinates in  gl_Position .  

 In  Figure   5.9   , you can see the problem. The program gives three vertices, but who identi-
fies that the vertex coordinates assigned to  gl_Position  are the vertices of a triangle? In 
addition, to make the triangle look like it is filled with a single color, who decides which 
fragments have to be colored? Finally, who is responsible for invoking the fragment 
shader and how it handles processing for each of the fragments?  
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 Figure 5.9   Vertex coordinate, identification of a triangle from the vertex coordinates, 
rasterization, and execution of a fragment shader         

 Up until now, we have glossed over these details, but there are actually two processes 
taking place between the vertex and the fragment shaders, which are shown in  Figure 
  5.10   .  

    •    The geometric shape assembly process:  In this stage, the geometric shape is assem-
bled from the specified vertex coordinates. The first argument of  gl.drawArray()  
specifies which type of shape should be assembled.   

   •    The rasterization process:  In this stage, the geometric shape assembled in the 
geometric assembly process is converted into fragments.    
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 Figure 5.10   Assembly and rasterization between a vertex shader and a fragment shader         

 As you will have realized from  Figure   5.10   ,  gl_Position  actually acts as the input to the 
 geometric shape assembly  stage. Note that the geometric shape assembly process is also 
called the  primitive assembly process  because the basic shapes previously shown in 
 Chapter   2    are also called  primitives .  

  Figure   5.11    shows the processes between the vertex and fragment shaders, which are actu-
ally performed in assembly and rasterization for  HelloTriangle.js .  

 From  Listing   5.5   , the third argument  n  of  gl.drawArrays()  (line 46) is set to 3, meaning 
that the vertex shader is actually invoked three times.    

  Step 1.   The vertex shader is invoked, and then the first coordinate (0.0, 0.5) inside the 
buffer object is passed to the attribute variable  a_Position . Once this is assigned 
to  gl_Position , this coordinate is communicated to the geometric shape assem-
bly stage and held there. As you will remember, because only the x and y coordi-
nates are passed to  a_Position , the z and w values are supplied, so actually (0.0, 
0.5, 0.0,1.0) is held.   

  Step 2.   The vertex shader is once again invoked, and in a similar way the second coordi-
nate (–0.5, –0.5) is passed to the geometric shape assembly stage and held there.   

  Step 3.   The vertex shader is invoked a third time, passing the third coordinate (0.5, –0.5) 
to the geometric shape assembly stage and holding it there.  

  Now the vertex shader processing is complete, and the three coordinates are 
readily available for the geometric shape assembly stage.   

  Step 4.   The geometric shape assembly processing starts. Using the three vertices 
passed and the information ( gl.TRIANGLES ) contained in the first argument of  
gl.drawArrays() , this stage decides how primitives should be assembled. In this 
case, a triangle is assembled using the three vertices.   

  Step 5.   Because what is displayed on the screen is a triangle consisting of fragments 
(pixels), the geometric shape is converted to fragments. This process is called 
 rasterization . Here, the fragments that make up the triangle will be generated. 
You can see the example of the generated fragments in the box of the rasteriza-
tion stage in  Figure   5.11   .    
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 Figure 5.11   The processing flow of geometric shape assembly and rasterization        

 In this figure, although we show only 10 fragments, the actual number of fragments is 
determined according to the area where the triangle is finally displayed on the screen.  

 If you specify a different geometric shape in the first argument of  gl.drawArrays() , the 
geometric shape assembled in Step 4 is modified accordingly, as are the number of frag-
ments and their position in Step 5. For example, if you specify  gl.LINES , a line will be 
assembled out of the first two coordinates, and the remaining one will be discarded. If you 
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set it to  gl.LINE_LOOP , a connected group of line segments will be generated, and only a 
transparent (no fill color) triangle will be drawn.   

  Fragment Shader Invocations  

 Once     the rasterization stage is completed, the fragment shader is invoked to process each 
of the generated fragments. So in this example, the fragment shader is invoked 10 times, 
as illustrated in  Figure   5.12   . To avoid cluttering the figure, we skip the intermediate steps. 
All of the fragments are fed one by one to the fragment shader, and for each fragment, 
the fragment shader sets the color and writes its output to the color buffer. When the 
last fragment shader process is completed at Step 15, the final output is displayed in the 
browser.  
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 Figure 5.12   Fragment shader invocations         

 The following fragment shader in  HelloTriangle.js  colors each fragment in red. As a 
result, a red filled triangle is written to the color buffer and displayed in the browser.  

   9 // Fragment shader program

  10 var FSHADER_SOURCE =

  11   'void main() {\n' +

  12   '  gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);\n' +

  13   '}\n';    
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  Experimenting with the Sample Program  

 As an experiment,     let’s confirm that the fragment shader is called for each fragment by 
trying to set the color of each fragment based on its location. Each fragment generated by 
the rasterization stage has its coordinates passed to the fragment shader upon invocation. 
These coordinates can be accessed through the built-in variables provided inside the frag-
ment shader ( Table   5.1   ).  

  Table 5.1   Built-In Variables in a Fragment Shade (Input)  

  Type and Variable Name     Description   

 vec4  gl_FragCoord    The first and second component are the coordinates of the frag-
ment in the  <canvas>  coordinate system (window coordinate 
system)  

 To check that the fragment shader is actually executed for each fragment, you can modify 
line 12 in the program, as follows:  

   1 // HelloTriangle_FragCoord.js

      ...

   9 // Fragment shader program

  10 var FSHADER_SOURCE =

  11  'precision mediump float;\n' +

  12  'uniform float u_Width;\n' +

  13  'uniform float u_Height;\n' +

  14  'void main() {\n' +

  15  '  gl_FragColor = vec4(gl_FragCoord.x/u_Width, 0.0, gl_FragCoord.y/u_Height, 

                                                                        ➥1.0);\n' +

  16  '}\n';   

 As you can see, the color components of each fragment, red and blue, are calculated based 
on the fragment’s coordinates on the canvas. Note that the canvas’s y-axis is the inverse 
direction to the WebGL coordinate system, and because it’s in WebGL, the color value 
is expressed in the 0.0 to 1.0 range, you can divide the coordinates by the size of the 
 <canvas>  element (that is, 400 pixels) to get the appropriate color value. As you can see, 
the width and height are passed into the shader using the uniform variables  u_Width  and 
 u_Height  and determined from gl.drawingBufferWidth and gl.drawingBufferHeight. 
You can  see the execution result in  Figure   5.13   , which is a triangle whose fragments are 
colored as a function of their position. Running this sample program  HelloTriangle_
FragCoord , you will see the transition from the left top to the right bottom.  
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 Figure 5.13   Modifying the color per fragment (the figure on the right side shows the <canvas> 
coordinate system)         

 Because you modify the color of each fragment with respect to its coordinates, you will 
notice that the color progressively changes according to the coordinates. Again, if this is 
not clear from the black-and-white image in  Figure   5.13   , run the example from the book’s 
website.   

  Functionality of Varying Variables and the Interpolation Process  

 At this stage,       you have a better understanding of the process flow taking place between 
the vertex and the fragment shaders (that is, the geometric shape assembly process and 
the subsequent rasterization process), as well as the invocation of the fragment shader for 
each of the generated fragments.  

 Returning to  Figure   5.8   , the first  ColoredTriangle , let’s use what you’ve learned to under-
stand better why you get such a nicely shaded triangle when you specify a different color 
for each the triangle’s vertex. Previously, you saw that the value assigned to the varying 
variable inside the vertex shader is passed as a varying variable with identical attributes 
(same name, same type) to the fragment shader (see  Figure   5.14   ). However, to be more 
precise, the value assigned to the varying variable in the vertex shader is interpolated at 
the rasterization stage. Consequently, the value passed to the fragment shader actually  
differs for each fragment based on that interpolation (see  Figure   5.15   ). This is the reason 
the varying variable has the name “varying.”  
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 Figure 5.14   The behavior of a varying variable (reprint of  Figure   5.7   )         
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 Figure 5.15   Interpolation of a varying variable         

 More specifically, in  ColoredTriangle , because we only assign a different value to the 
varying variable for each of the three vertices, each fragment located between vertices 
must have its own color interpolated by the WebGL system.  

 For example, let’s consider the case in which the two end points of a line are specified 
with different colors. One of the vertices is red (1.0, 0.0 0.0), whereas the other one is blue 
(0.0, 0.0, 1.0). After the colors (red and blue) are assigned to the vertex shader’s  v_Color , 
the RGB values for each of the fragments located between those two vertices are calculated 
and passed to the fragment shader’s  v_Color  (see  Figure   5.16   ).  
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 Figure 5.16   Interpolation of color values         
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 In this case, R decreases from 1.0 to 0.0, B increases from 0.0 to 1.0, and all the RGB 
values between the two vertices are calculated appropriately—this is called the  interpola-
tion process . Once the new color for each of the fragments located between the two verti-
ces is calculated in this way, it is passed to the fragment shader’s  v_Color .  

 We follow an identical procedure in the case of the colored triangle, which is reproduced 
in  Listing   5.6   . After the three vertices’ colors are assigned to the varying variable  v_Color  
(line 9), the interpolated color for each fragment is passed to the fragment shader’s  
v_Color . Once this is assigned to the  gl_FragColor  at line 19, a colored triangle is drawn, 
as shown in  Figure   5.8   . This interpolation process is carried out for each of the varying 
variables. If you want to understand more about this process, a good source of informa-
tion is the book  Computer Graphics .  

  Listing 5.6     ColoredTriangle.js  

  1 // ColoredTriangle.js

   2 // Vertex shader program

   3 var VSHADER_SOURCE = '\

     ...

   6 varying vec4 v_Color;\

   7 void main() {\

   8   gl_Position = a_Position;\

   9   v_Color = a_Color;\  <- The color at line 59 is assigned to v_Color

  10 }';

  11

  12 // Fragment shader program

  13 var FSHADER_SOURCE =

     ...

  17  varying vec4 v_Color;\  <- The interpolated color is passed to v_Color

  18  void main() {\

  19    gl_FragColor = v_Color;\  <- The color is assigned to gl_FragColor

  20  }';

  21

  22 function main() {

    ...

  53   gl.drawArrays(gl.TRIANGLES, 0, n);

  54 }

  55

  56 function initVertexBuffers(gl) {

  57   var verticesColors = new Float32Array([

  58     // Vertex coordinates and color

  59      0.0,  0.5,  1.0,  0.0,  0.0,

  60      -0.5, -0.5,  0.0,  1.0,  0.0,

  61      0.5, -0.5,  0.0,  0.0,  1.0,

  62   ]);

     ...

  99 }   
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 In summary, this section has highlighted the critical rasterization process that takes place 
between the vertex and fragment shaders. Rasterization is a key component of 3D graph-
ics and is responsible for taking geometric shapes and building up the fragments that will 
draw those shapes. After converting the specified geometric shape into fragments (raster-
ization), it’s possible to set a different color for each of the fragments inside the fragment 
shader. This color can be interpolated or set directly by the programmer.    

  Pasting an Image onto a Rectangle  
 In the      previous section, you explored how to use color when drawing shapes and how 
interpolation creates smooth color transitions. Although powerful, this approach is limited 
when it comes to reproducing complex visual representations. For example, a problem 
arises if you want to create a wall that has the look and feel of the one shown in  Figure 
  5.17   , you would need many triangles, and determining the color and coordinates for each 
triangle would prove to be daunting.  

 
 Figure 5.17   An example of a complex wall surface         

 As you’d imagine, in 3D graphics, one of the most important processes is actually solving 
this problem. The problem is resolved using a technique called  texture mapping , which 
can re-create the look of real-world materials. The process is actually straightforward and 
consists of pasting an image (like a decal) on the surface of a geometrical shape. By pasting 
an image from a real-world photograph on a rectangle made up of two triangles, you can 
give the rectangle surface an appearance similar to that of a picture. The image is called a 
 texture image  or a  texture .  

 The role of the texture mapping process is to assign the texture image’s pixel colors to the 
fragments generated by the rasterization process introduced in the previous section. The 
pixels that make up the texture image are called   texels  (texture elements), and each texel 
codes its color information in the RGB or RGBA format (see  Figure   5.18   ).  
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 Enlargement

Each square is a texel

 Figure 5.18   Texels         

 Texture mapping involves the following four steps in WebGL:  

    1.   Prepare the image to be mapped on the geometric shape.   

   2.   Specify the image mapping method for the geometric shape.   

   3.   Load the texture image and configure it for use in WebGL.   

   4.   Extract the texels from the image in the fragment shader, and accordingly set the 
corresponding fragment.    

 To understand the mechanisms involved in texture mapping, let’s examine the sample 
program  TextureQuad , which “pastes” an image onto a rectangle. If you run it from the 
book’s website, you’ll see the result as shown in  Figure   5.19    (left).  

  Note     When       you want to run the sample programs that use texture images in Chrome 
from your local disk, you should add the option  --allow-file-access-from-files  to 
Chrome. This is for security reasons. Chrome, by default, does not allow access to local 
files such as  ../resources/sky.jpg . For Firefox, the equivalent parameter, set via 
 about:config , is  security.fileuri.strict_origin_policy , which should be set to 
 false . Remember to set it back when you’re finished because you open a security loop-
hole if local file access is enabled.   

 
sky.jpg

Texture image

 Figure 5.19   TextureQuad (left) and the texture image used (right)         

 Looking in a little more detail at steps (1) to (4) in the following sections, the image 
prepared in (1) can be any format that can be displayed in a browser. For now, you can 
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use any pictures you might have taken yourself or alternatively you can use the images 
located in the  resource  folder of the companion website provided with this book.  

 The mapping method specified in (2) consists of designating “which part of the texture 
image” should be pasted to “which part of the geometric shape”. The part of the geomet-
ric shape meant to be covered with the texture is specified using the coordinates of the 
vertices that compose a surface. The part of the texture image to be used is specified using 
 texture coordinates . These are a new form of coordinates so let’s look at how they work.  

  Texture Coordinates  

 The        texture coordinate system used in WebGL is two-dimensional, as shown in  Figure 
  5.20   . To differentiate the texture coordinates from the widely used x and y axis, WebGL 
changes the denomination to the s and t coordinates (st coordinates system).  2     

 

Texture Image
Text at the texture coordinate
(0.7, 0.4)

(0.0, 1.0)

(0.0, 0.0) (1.0, 0.0)

(1.0, 1.0)

t

s

 Figure 5.20   WebGL’s Texture coordinate system         

 As you can see from Figure 5.20  , the coordinates of the four corners are defined as left 
bottom corner (0.0, 0.0), right bottom corner (1.0, 0.0), right top corner (1.0, 1.0), and 
left top corner (0.0, 1.0). Because these values are not related to the image size, this allows 
a common approach to image handling; for example, whether the texture image’s size is 
128×128 or 128×256, the right top corner coordinates will always be 
(1.0, 1.0).   

  Pasting Texture Images onto the Geometric Shape  

 As         previously mentioned, in WebGL, by defining the correspondence between the texture 
coordinates and the vertex coordinates of the geometric shape, you can specify how the 
texture image will be pasted (see  Figure   5.21   ).  

 2   The  uv  coordinates are often used. However, we are using  st  coordinates because GLSL ES uses the 

component names to access the texture image. 
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 Figure 5.21   Texture coordinates and mapping them to vertices         

 Here, the texture coordinates (0.0, 1.0) are mapped onto the vertex coordinates (–0.5, 0.5, 
0.0), and the texture coordinates (1.0, 1.0) are mapped onto the vertex coordinates (0.5, 
0.5, 0.0). By establishing the correspondence for each of the four corners of the texture 
image, you obtain the result shown in the right part of  Figure   5.21   .  

 Now, given your understanding of how images can be mapped to shapes, let’s look at the 
sample program.   

  Sample Program (TexturedQuad.js)  

 In        TexturedQuad.js  (see  Listing   5.7   ), the texture mapping affects both the vertex and the 
fragment shaders. This is because it sets the texture coordinates for each vertex and then 
applies the corresponding pixel color extracted from the texture image to each fragment. 
There are five main parts to the example, each identified by the numbers to the right of 
the code.  

  Listing 5.7    TexturedQuad.js  

   1 // TexturedQuad.js

    2 // Vertex shader program                               <- (Part1)

    3 var VSHADER_SOURCE =

    4   'attribute vec4 a_Position;\n' +

     5   'attribute vec2 a_TexCoord;\n' + 

     6   'varying vec2 v_TexCoord;\n' + 

    7   'void main() {\n' +

    8   '  gl_Position = a_Position;\n' +

     9   '  v_TexCoord = a_TexCoord;\n' + 

   10   '}\n';

   11

   12 // Fragment shader program                              <- (Part2)

   13 var FSHADER_SOURCE =

      ...

    17   'uniform sampler2D u_Sampler;\n' + 

    18   'varying vec2 v_TexCoord;\n' + 

   19   'void main() {\n' +
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    20   '  gl_FragColor = texture2D(u_Sampler, v_TexCoord);\n' + 

   21   '}\n';

   22

   23 function main() {

       ...

   40   // Set the vertices information                       <- (Part3)

   41    var n = initVertexBuffers(gl);

      ...

    50   // Setting the textures 

    51   if (!initTextures(gl, n)) { 

      ...

   54   }

   55 }

   56

   57 function initVertexBuffers(gl) {

   58   var verticesTexCoords = new Float32Array([

   59     // Vertices coordinates, textures coordinates

   60     -0.5,  0.5,    0.0, 1.0, 

   61     -0.5, -0.5,    0.0, 0.0, 

   62      0.5,  0.5,    1.0, 1.0, 

   63      0.5, -0.5,    1.0, 0.0, 

   64   ]);

   65   var n = 4; // The number of vertices

   66

   67   // Create the buffer object

   68   var vertexTexCoordBuffer = gl.createBuffer();

      ...

    74   // Write the vertex coords and textures coords to the object buffer 

    75   gl.bindBuffer(gl.ARRAY_BUFFER, vertexTexCoordBuffer); 

    76   gl.bufferData(gl.ARRAY_BUFFER,  verticesTexCoords, gl.STATIC_DRAW); 

   77

   78   var FSIZE = verticesTexCoords.BYTES_PER_ELEMENT;

      ...

   85  gl.vertexAttribPointer(a_Position, 2, gl.FLOAT, false, FSIZE * 4, 0);

   86  gl.enableVertexAttribArray(a_Position);   // Enable buffer allocation

   87

   88   // Allocate the texture coordinates to a_TexCoord, and enable it.

    89   var a_TexCoord = gl.getAttribLocation(gl.program, 'a_TexCoord'); 

      ...

   94   gl.vertexAttribPointer(a_TexCoord, 2, gl.FLOAT, false, FSIZE * 4, FSIZE * 2);

   95   gl.enableVertexAttribArray(a_TexCoord);  // Enable buffer allocation

      ...

   97   return n;

   98 }

   99
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   100 function initTextures(gl, n)                              <- (Part4) 

   101   var texture = gl.createTexture();   // Create a texture object 

       ... 

   107   // Get the storage location of the u_Sampler 

   108   var u_Sampler = gl.getUniformLocation(gl.program, 'u_Sampler'); 

       ... 

   114   var image = new  Image();  // Create an image object 

       ... 

   119   // Register the event handler to be called on loading an image 

   120   image.onload = function(){ loadTexture(gl, n, texture, u_Sampler, image); }; 

   121   // Tell the browser to load an image 

   122   image.src = '../resources/sky.jpg'; 

   123 

   124   return true; 

   125 } 

  126

   127 function loadTexture(gl, n, texture, u_Sampler, image){   <- (Part5) 

   128    gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, 1); // Flip the image's y axis 

   129   // Enable the texture unit 0 

   130   gl.activeTexture(gl.TEXTURE0); 

   131   // Bind the texture object to the target 

   132   gl.bindTexture(gl.TEXTURE_2D, texture); 

  133

   134   // Set the texture parameters 

   135   gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR); 

   136   // Set the texture image 

   137   gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGB, gl.RGB, gl.UNSIGNED_BYTE, image); 

  138

   139   // Set the texture unit 0  to the sampler 

   140   gl.uniform1i(u_Sampler, 0); 

      ...

  144   gl.drawArrays(gl.TRIANGLE_STRIP, 0, n); // Draw a rectangle

  145 }   

 This program is structured into five main parts:  

    Part 1:  Receive the texture coordinates in the vertex shader and then pass them to the 
fragment shader.   

   Part 2:  Paste the texture image onto the geometric shape inside the fragment shader.   

   Part 3:  Set the texture coordinates ( initVertexBuffers() ).   

   Part 4:  Prepare the texture image for loading, and request the browser to read it. 
( initTextures() ).   

   Part 5:  Configure the loaded texture so that it can be used in WebGL ( loadTexture() ).    
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 Let’s look at the sequence starting from Part 3: the process to set the texture coordinates 
using  initVertexBuffers() . The shaders are executed after loading the image, so we will 
explain them at the end.   

  Using Texture Coordinates (initVertexBuffers())  

 You          pass texture coordinates to the vertex shader using the same approach you’ve been 
using to pass other vertex data to the vertex shader, by combining vertex coordinates and 
vertex data into a single buffer. Line 58 defines an array  verticesTexCoords  containing 
pairs of vertex coordinates and their associated texture coordinates:  

  58   var verticesTexCoords = new Float32Array([

   59     // Vertex coordinates and texture coordinates 

   60     -0.5,   0.5,  0.0,  1.0, 

   61     -0.5,  -0.5,  0.0,  0.0, 

   62      0.5,   0.5,  1.0,  1.0, 

   63      0.5,  -0.5,  1.0,  0.0, 

  64   ]);   

 As you can see, the first vertex (–0.5, 0.5) is mapped to the texture coordinate (0.0, 1.0), 
the second vertex (–0.5, –0.5) is mapped to the texture coordinate (0.0, 0.0), the third 
vertex (0.5, 0.5) is mapped to the texture coordinate (1.0, 10), and the fourth vertex (0.5, 
–0.5) is mapped to the texture coordinate (1.0, 0.0).  Figure   5.21    illustrates these mappings.  

 Lines 75 to 86 then write vertex coordinates and texture coordinates to the buffer object, 
assign it to  a_Position , and enable the assignment. After that, lines 89 to 94 retrieve the 
storage location of the attribute variable  a_TexCoord  and then assign the buffer object 
containing the texture coordinates to the variable. Finally, line 95 enables the assignment 
of the buffer object to  a_TexCoord :  

  88   // Assign the texture coordinates to a_TexCoord, and enable it.

  89   var a_TexCoord = gl.getAttribLocation(gl.program, 'a_TexCoord');

       ...

  94   gl.vertexAttribPointer(a_TexCoord, 2, gl.FLOAT, false, FSIZE * 4, 

                                                                       ➥FSIZE * 2);

  95   gl.enableVertexAttribArray(a_TexCoord);    

  Setting Up and Loading Images (initTextures())  

 This        process is performed from lines 101 to 122 in  initTextures() . Line 101 creates 
a texture object ( gl.createTexture() ) for managing the texture image in the WebGL 
system, and line 108 gets the storage location of a uniform variable ( gl.getUniformLoca-
tion() ) to pass the texture image to the fragment shader () :  

  101  var texture = gl.createTexture(); // Create a texture object

      ...

  108   var u_Sampler = gl.getUniformLocation(gl.program, 'u_Sampler');   



ptg11539634

Pasting an Image onto a Rectangle 167

 A texture object is created using   gl.createTexture() .    

   gl.createTexture()   

 Create a texture object to hold a texture image.  

  Parameters    None  

  Return value    non-null   The newly created texture object.  

 null   Failed to create a texture object.  

  Errors    None  

 This call creates the texture object in the WebGL system, as shown in Figure 5.22  .  
gl.TEXTURE0  to  gl.TEXTURE7  are texture units for managing a texture image, and each has 
an associated  gl.TEXTURE_2D , which is the texture target for specifying the type of texture. 
This will be explained in detail later.    
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 Figure 5.22   Create a texture object         

 The texture object can be deleted using    gl.deleteTexture() . Note, if this method is called 
with a texture object that has already been deleted, the call has no effect.    

   gl.deleteTexture(texture)   

 Delete the texture object specified by  texture.   

  Parameter    texture   Specifies the texture object to be deleted.  

  Return value    None  

  Errors    None  
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 In the next step, it’s necessary to request that the browser load the image that will be 
mapped to the rectangle. You need to use an  Image  object for this purpose:  

   114   var image = new Image() ;  // Create an Image object

      ...

  119   //  Register an event handler to be called when image loading completes 

   120   image.onload = function(){ loadTexture(gl, n, texture, u_Sampler, image); }; 

  121   // Tell the browser to load an image

   122   image.src = '../resources/sky.jpg';    

 This code snippet creates an  Image  object, registers the event handler ( loadTexture() ) to 
be called on loading the image, and tells the browser to load the image.  

 You need to create an  Image  object (a special JavaScript object that handles images) using 
the  new  operator, just as you would do for an  Array  object or  Date  object. This is done at 
line 114.  

  114   var image = new Image();  // Create an Image object   

 Because loading of images is performed asynchronously (see the boxed article that 
follows), when the browser signals completion of loading, it needs to pass the image 
to the WebGL system. Line 120 handles this, telling the browser that, after loading the 
image, the anonymous function   loadTexture()  should be called.  

  120   image.onload = function(){ loadTexture(gl, n, texture, u_Sampler,  image ); };   

  loadTexture()  takes five parameters, with the newly loaded image being passed via 
the variable ( Image  object) as the last argument  image .  gl  is the rendering context for 
WebGL,  n  is the number of vertices,  texture  is the texture object created at line 101, and 
 u_Sampler  is the storage location of a uniform variable.  

 Just like the  <img>  tag in HTML, we can tell the browser to load the texture image by 
setting the image filename to the property  src  of the  Image  object (line 122). Note that 
WebGL, because of the usual browser security restrictions, is not allowed to use images 
located in other domains for texture images:  

  122   image.src = '../resources/sky.jpg';   

 After executing line 122, the browser starts to load the image asynchronously, so the 
program continues on to the  return  statement at line 124 and then exits. When the 
browser finishes loading the image and wants to pass the image to the WebGL system, the 
event handler  loadTexture()  is called.    
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   Asynchronous Loading Texture Images   

 Usually,  OpenGL applications written in C or C++ load the texture image files straight 
from the hard disk where they are stored. However, because WebGL programs are 
running inside the browser, it is impossible to load images directly. Instead, it is 
necessary to read images indirectly by requesting the browser to do it. (Typically, the 
browser sends a request to the web server to obtain the image.) The advantage is that 
you can use any kind of image a browser can display, but it also makes the process 
more complex because you now have to handle two processes (the browser  loading 
request, and the actual WebGL loading) that behave “asynchronously” (they run in the 
background) and thus do not block execution of the program.  

  Figure   5.23    shows the substeps between [1] tell the browser to load an image and [7] call 
the function  loadTexture()  after completing loading the texture image.  
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 Figure 5.23   Asynchronous loading texture images         

 In  Figure   5.23   , [1] and [2] are executed sequentially, but [2] and [7] are not. After 
requesting the browser to load an image in [2], the JavaScript program doesn’t wait for 
the image to be loaded, but proceeds to the next stage. (This behavior will be explained 
in detail in a moment.) While the JavaScript program is continuing, the browser 
sends a request to the web server for the image [3]. When the image loading process is 
completed [4] and [5], the browser tells the JavaScript program that the image loading 
has completed [6]. This kind of behavior is referred  to as  asynchronous .  

 The image loading process is analogous to the way a web page written in HTML displays 
images. In HTML, an image is displayed by specifying the file URL to the  src  attribute of 
the  <img>  tag (below) causing the browser to load the image from the specified URL. This 
part corresponds to [2] shown in  Figure   5.23   .  

  <img src="../resources/redflower.jpg">   
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 The asynchronous nature of the image loading process can be easily understood by 
considering how a web page that includes numerous images is displayed. Typically, 
the page text and layout are displayed rapidly, and then images appear slowly as 
they are loaded. This is because the image loading and display processes are executed 
asynchronously, allowing you to view and interact with the web page without having to 
wait for all images to load.    

  Make the Texture Ready to Use in the WebGL System (loadTexture())  

 The  function  loadTexture()  is defined as follows:  

   127 function loadTexture(gl, n, texture, u_Sampler, image) {   <- (Part5)

   128    gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, 1); // Flip the image's y axis 

   129   // Enable the texture unit 0 

   130   gl.activeTexture(gl.TEXTURE0); 

   131   // Bind the texture object to the target 

   132   gl.bindTexture(gl.TEXTURE_2D, texture); 

  133

   134   // Set the texture parameters 

   135   gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR); 

   136   // Set the texture image 

   137   gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGB, gl.RGB, gl.UNSIGNED_BYTE, image); 

  138

   139   // Set the texture unit 0 to the sampler 

   140   gl.uniform1i(u_Sampler, 0); 

      ...

  144   gl.drawArrays(gl.TRIANGLE_STRIP, 0, n); // Draw a rectangle

  145 }   

 Its main purpose is to prepare the image for use by the WebGL system, which it does 
using a   texture object  that is prepared and used in a similar manner to a buffer object. 
The following sections explain the code in more detail.   

  Flip an Image’s Y-Axis  

 Before          using the loaded images as a texture, you need to flip the y-axis:  

   128   gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, 1);// Flip the image's y-axis    

 This method flips an image’s Y-axis when it’s loaded. As shown in  Figure   5.24   , the t-axis 
direction of the WebGL texture coordinate system is the inverse of the y-axis direction of 
the coordinate system used by PNG, BMP, JPG, and so on. For this reason, if you flip the 
image’s Y-axis, you can map the image to the shape correctly. (You could also flip the t 
coordinates by hand instead of flipping the image.)  
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 Figure 5.24   The image coordinate system and WebGL texture coordinate system         

 The following explains   gl.pixelStorei() .    

   gl.pixelStorei(pname, param)   

 Perform the process defined by  pname  and  param  after loading an image.  

 Parameters pname Specifies any of the following: 

     gl.UNPACK_FLIP_Y_WEBGL        Flips an image’s Y-axis after loading the 
image. The default value is  false .  

      gl.UNPACK_PREMULTIPLY_
ALPHA_WEBGL   

     Multiplies each component of RGB in an 
image by A in the image. The default value is 
 false .  

 param   Specifies none-zero (means  true ) or zero 
(means  false ). It must be specified in the 
integer.  

  Return value   None  

  Errors   INVALID_ENUM    pname  is none of these values.  

  Making a Texture Unit Active (gl.activeTexture())  

 WebGL         supports multiple texture images (multitexturing) using a mechanism called 
a  texture unit . A texture unit manages texture images by using a unit number for each 
texture. Because of this, even if you only want to use a single texture image, you must 
specify and use a texture unit.  
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 The number of texture units supported varies according to your hardware and WebGL 
implementation, but by default at least eight texture units are supported, and some 
systems will support more. The built-in constants,  gl.TEXTURE0 ,  gl.TEXTURE1 , ..., and  
gl.TEXTURE7 , represent each texture unit (see  Figure   5.25   ).  
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 Figure 5.25   Multiple texture units managed by WebGL         

 Before using a texture unit, it must be made active using a call to  gl.activeTexture()  (see 
 Figure   5.26   ):    

  132   // Make the texture unit 0 active

  133   gl.activeTexture(gl.TEXTURE0);   

   gl.activeTexture(texUnit)   

 Make the texture unit specified by  texUnit  active.  

  Parameters    texUnit   Specifies the texture unit to be made active:  gl.TEXTURE0 , 
 gl.TEXTURE1 , ..., or  gl.TEXTURE7 . The tailing number indi-
cates the texture unit number.  

  Return value    None  

  Errors    INVALID_ENUM:    texUnit  is none of these values  
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 Figure 5.26   Activate texture unit (gl.TEXTURE0)          
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  Binding a Texture Object to a Target (gl.bindTexture())  

 Next,          you need to tell the WebGL system what types of texture image is used in the 
texture object. You do this by binding the texture object to the target in a similar way to 
that of the buffer objects explained in the previous chapter. WebGL supports two types of 
textures, as shown in  Table   5.2   .  

  Table 5.2   Types of Textures  

  Type of Texture     Description   

  gl.TEXTURE_2D    Two-dimensional texture  

  gl.TEXTURE_CUBE_MAP    Cube map texture  

 The sample program uses a two-dimensional image as a texture and specifies  gl.
TEXTURE_2D  at line 132. The cube map texture is beyond the scope of this book. If you are 
interested in more information, please refer to the book  OpenGL ES 2.0 Programming Guide :    

  131   // Bind the texture object to the target

  132   gl.bindTexture(gl.TEXTURE_2D, texture);   

   gl.bindTexture(target, texture)   

 Enable the texture object specified by  texture  and bind it to the  target . In addition, if a 
texture unit was made active by  gl.activeTexture() , the texture object is also bound to 
the texture unit.  

  Parameters    target   Specifies  gl.TEXTURE_2D  or  gl.TEXTURE_CUBE_MAP .  

 texture   Specifies the texture object to be bound.  

  Return value    None  

  Errors    INVALID_ENUM    target  is none of these values.  

 Note that this method performs two tasks: enabling the texture object and binding it 
to target, and binding it to the texture unit. In this case, because the texture unit 0 
( gl.TEXTURE0 ) is active, after executing line 136, the internal state of the WebGL 
system is changed, as shown in  Figure 5.27 .    
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 Figure 5.27   Bind a texture object to the target         

 At this stage, the program has specified the type of texture that is used in the texture 
object ( gl.TEXTURE_2D ) and that will be used to deal with the texture object in the future. 
This is important, because in WebGL, you cannot manipulate the texture object directly. 
You need to do that through the binding.   

  Set the Texture Parameters of a Texture Object (gl.texParameteri())  

 In the         next step, you need to set the parameters (texture parameter) that specify how the 
texture image will be processed when the texture image is mapped to shapes. The generic 
function  gl.texParameteri()  can be used to set texture parameters.          

   gl.texParameteri(target, pname, param)   

 Set the value specified by  param  to the texture parameter specified by  pname  in the 
texture object bound to  target .  

  Parameters    target   Specifies  gl.TEXTURE_2D  or  gl.TEXTURE_CUBE_MAP .  

 pname   Specifies the name of the texture parameter ( Table   5.3   ).  

 param   Specifies the value set to the texture parameter  pname  
( Table   5.4   ,  Table   5.5   ).  

  Return value    None  

  Errors    INVALID_ENUM    target  is none of the preceding values  

 INVALID_OPERATION   no texture object is bound to  target   

 There are four texture parameters available, illustrated in  Figure   5.28   , which you can 
specify to  pname :  
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    •   Magnification method ( gl.TEXTURE_MAG_FILTER ): The method to magnify a texture 
image when you map the texture to a shape whose drawing area is larger than the 
size of the texture. For example, when you map a 16×16 pixel image to a 32×32 pixel 
shape, the texture should be doubled in size. WebGL needs to fill the gap between 
texels due to the magnification, and this parameter specifies the method used to fill 
the gap.   

   •   Minification method ( gl.TEXTURE_MIN_FILTER ): The method of minifying a texture 
image when you map the texture to a shape whose drawing area is smaller than 
the size of the texture. For example, when you map a 32×32 pixel image to a 16×16 
pixel shape, the texture should be reduced in size. To do that, the system needs to 
cull texels to fit the target size. This parameter specifies the method used to cull 
texels.   

   •   Wrapping method on the left and right side ( gl.TEXTURE_WRAP_S ): How to fill the 
remaining regions on the left side and the right side of a subregion when you map a 
texture image to the subregion of a shape.   

   •   Wrapping method on top and bottom ( gl.TEXTURE_WRAP_T ): Similar to (3), the 
method used to fill the remaining regions in the top and bottom of a subregion.    

 

The method to fill this region.

gl.TEXTURE_MAG_FILTER

gl.TEXTURE_WRAP_T

gl.TEXTURE_MIN_FILTER

gl.TEXTURE_WRAP_S

Magnification

Minification

The method to fill this region.

 Figure 5.28   Four texture parameters and their effects         

  Table   5.3    shows each texture parameter and its default value.  
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  Table 5.3   Texture Parameters and Their Default Values  

  Texture Parameter     Description     Default Value   

  gl.TEXTURE_MAG_FILTER    Texture magnification    gl.LINEAR   

  gl.TEXTURE_MIN_FILTER    Texture minification    gl.NEAREST_MIPMAP_LINEAR   

  gl.TEXTURE_WRAP_S    Texture wrapping in s-axis    gl.REPEAT   

  gl.TEXTURE_WRAP_T    Texture wrapping in t-axis    gl.REPEAT   

 We also show the constant values that can be specified to  gl.TEXTURE_MAG_FILTER  and  
gl.TEXTURE_MIN_FILTER  in  Table   5.4    and  gl.TEXTURE_WRAP_S  and  gl.TEXTURE_WRAP_T  in 
 Table   5.5   .  

  Table 5.4   Non-Mipmapped Values, Which Can be Specified to gl.TEXTURE_MAG_FILTER and 
gl.TEXTURE_MIN_FILTER 3   

  Value     Description   

  gl.NEAREST    Uses the value of the texel that is nearest (in Manhattan distance) the center 
of the pixel being textured.  

  gl.LINEAR    Uses the weighted average of the four texels that are nearest the center 
of the pixel being textured. (The quality of the result is clearer than that of 
 gl.NEAREST , but it takes more time.)  

   Table 5.5   Values that Can be Specified to gl.TEXTURE_WRAP_S and gl.TEXTURE_WRAP_T  

  Value     Description   

  gl.REPEAT    Use a texture image repeatedly  

  gl.MIRRORED_REPEAT    Use a texture image mirrored-repeatedly  

  gl.CLAMP_TO_EDGE    Use the edge color of a texture image  

 As shown in  Table   5.3   , each parameter has a default value, and you can generally use the 
default value as is. However, the default value of  gl.TEXTURE_MIN_FILTER  is for a special 
texture format called  MIPMAP . A  MIPMAP is a sequence of textures, each of which is 
a progressively lower resolution representation of the same image. Because a MIPMAP 
texture is not often used, we don’t cover it in this book. For this reason, you set the value 
 gl.LINEAR  to the texture parameter  gl.TEXTURE_MIN_FILTER  at line 135:  

3  Although omitted in this table, other values can be specifi ed for a MIPMAP texture:  gl.NEAREST_

MIPMAP_NEAREST ,  gl.LINEAR_MIPMAP_NEAREST ,  gl.NEAREST_MIPMAP_LINEAR , and  gl.LINEAR_

MIPMAP_LINEAR . See the book  OpenGL Programming Guide  for these values. 
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  134   // Set the texture parameters

  135   gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);   

 After executing line 139, the value is set to the texture object, and then the internal state 
of the WebGL system is modified as shown in  Figure   5.29   .  
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 Figure 5.29   Set texture parameter         

 The next step is to assign a texture image to the texture object.   

  Assigning a Texture Image to a Texture Object (gl.texImage2D())  

 To         assign an image to a texture object, you use the method  gl.texImage2D() . In addition 
to assigning a texture, this method allows you to tell the WebGL system about the image 
characteristics.        

   gl.texImage2D(target, level, internalformat, format, type, image)   

 Set the image specified by  image  to the texture object bound to  target.   

  Parameters    target   Specifies  gl.TEXTURE_2D  or  gl.TEXTURE_CUBE_MAP .  

 level   Specified as 0. (Actually, this parameter is used for a 
MIPMAP texture, which is not covered in this book.)  

 internalformat   Specifies the internal format of the image ( Table   5.6   ).  

 format   Specifies the format of the texel data. This must be 
specified using the same value as  internalformat .  

 type   Specifies the data type of the texel data ( Table   5.7   ).  

 image   Specifies an Image object containing an image to be 
used as a texture.  

  Return value    None  

  Errors    INVALID_ENUM    target  is none of the above values.  

 INVALID_OPERATION   No texture object is bound to  target   
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 This method is used at line 136 in the sample program:  

  137 gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);   

 After executing line 144, the texture image loaded into the Image object  image  in 
JavaScript is passed to the WebGL system (see  Figure   5.30   ).  
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 Figure 5.30   Assign an image to the texture object         

 Let’s take a quick look at each parameter of this method. You must specify 0 to  level  
because you aren’t using a MIPMAP texture. The  format  specifies the format of the texel 
data, with available formats shown in  Table   5.6   . You need to select an appropriate format 
for the image used as a texture. The sample program uses  gl.RGB  format because it uses a 
JPG image in which each pixel is composed of RGB components. For other formats, such 
as PNG, images  are usually specified as  gl.RGBA , and BMP images are usually specified as 
 gl.RGB .  gl.LUMINANCE  and  gl.LUMINANCE_ALPHA  are used for a grayscale image and  so on.  

  Table 5.6   The Format of the Texel Data  

  Format     Components in a Texel   

  gl.RGB    Red, green, blue  

  gl.RGBA    Red, green, blue, alpha  

  gl.ALPHA    (0.0, 0.0, 0.0, alpha)  

  gl.LUMINANCE    L, L, L, 1 L: Luminance  

  gl.LUMINANCE_ALPHA    L, L. L. alpha  

 Here,  luminance is the perceived brightness of a surface. It is often calculated as a 
weighted average of red, green, and blue color values that gives the perceived brightness 
of the surface.  

 As shown in  Figure   5.30   , this method stores the image in the texture object in the WebGL 
system. Once stored, you must tell the system about the type of format the image uses 
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using the  internalformat  parameter. As mentioned, in WebGL,  internalformat  must specify 
the same value as  format .  

 The  type  specifies the data type of the texel data (see  Table   5.7   ). Usually, we specify  gl.
UNSIGNED_BYTE  as the data type. Other data types are also available, such as  gl.UNSIGNED_
SHORT_5_6_5  (which packs RGB components into 16 bits). These types are used for passing 
compressed  images to the WebGL system to reduce loading time.  

  Table 5.7   The Data Type of Texel Data  

  Type     Description   

  gl.UNSIGNED_BYTE    Unsigned byte format. Each color component has 1 byte.  

  gl.UNSIGNED_SHORT_5_6_5    RGB: Each component has 5, 6, and 5 bits, respectively.  

  gl.UNSIGNED_SHORT_4_4_4_4    RGBA: Each component has 4, 4, 4, and 4 bits, respectively.  

  gl.UNSIGNED_SHORT_5_5_5_1    RGBA: Each RGB component has 5 bits, and A has 1 bit.  

  Pass the Texture Unit to the Fragment Shader (gl.uniform1i())  

 Once the          texture image has been passed to the WebGL system, it must be passed to the 
fragment shader to map it to the surface of the shape. As explained before, a uniform vari-
able is used for this purpose because the texture image does not change for each fragment:  

  13 var FSHADER_SOURCE =

      ...

   17   'uniform sampler2D u_Sampler;\n' + 

  18   'varying vec2 v_TexCoord;\n' +

  19   'void main() {\n' +

  20   '  gl_FragColor = texture2D(u_Sampler, v_TexCoord);\n' +

  21   '}\n';   

 This uniform variable must be declared using the special data type for textures shown in 
 Table   5.8   . The sample program uses a two-dimensional texture ( gl.TEXTURE_2D ), so the 
data type is set to  sampler2D .  

  Table 5.8   Special Data Types for Accessing a Texture  

  Type     Description   

 sampler2D   Data type for accessing the texture bound to  gl.TEXTURE_2D   

 samplerCube   Data type for accessing the texture bound to  gl.TEXTURE_CUBE_MAP   

 The call to  initTextures()  (line 100) gets the storage location of this uniform variable 
 u_Sampler  at line 108 and then passes it to  loadTexture()  as an argument. The uniform 
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variable  u_Sampler  is set at line 139 by specifying the  texture unit number  (“n” in 
 gl.TEXTURE  n ) of the texture unit that manages this texture object. In this sample program, 
you specify 0 because you are using the texture object bound to  gl.TEXTURE0  in the call to 
 gl.uniformi() :  

  138   // Set the texture unit 0 to the sampler

  139   gl.uniform1i(u_Sampler, 0);   

 After executing line 139, the WebGL system is modified as shown in  Figure   5.31   , thereby 
allowing access to the image in the texture object from the fragment shader.  
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 Figure 5.31   Set texture unit to uniform variable          

  Passing Texture Coordinates from the Vertex Shader to the Fragment 

Shader  

 Because          the texture coordinates for each vertex are passed to the attribute variable 
 a_TexCoord , it’s possible to pass the data to the fragment shader through the varying 
variable  v_TexCoord . Remember that varying variables of the same name and type are 
automatically copied between the vertex shader and the fragment shader. The texture 
coordinates are interpolated between vertices, so you can use the interpolated texture 
coordinates in a fragment shader to specify each texture coordinate for each fragment:  

   2 // Vertex shader program

   3 var VSHADER_SOURCE =

   4   'attribute vec4 a_Position;\n' +

    5   'attribute vec2 a_TexCoord;\n' + 

    6   'varying vec2 v_TexCoord;\n' + 

   7   'void main() {\n' +

   8   '  gl_Position = a_Position;\n' +

    9   '  v_TexCoord = a_TexCoord;\n' + 

  10   '}\n';   

 At this stage, you have completed the preparations for using the texture image in the 
WebGL system.  
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 All that’s left is to read the color of the texel located at the corresponding texture coordi-
nates from the texture image and then use it to set the color of the fragment.   

  Retrieve the Texel Color in a Fragment Shader (texture2D())  

 Retrieving           a color of a texel from the texture image is done at line 20 in the fragment 
shader:  

  20   '  gl_FragColor = texture2D(u_Sampler, v_TexCoord);\n' +   

 It uses the GLSL ES built-in function  texture2D()  to read out the texel color from the 
shader.  texture2D()  is an easy-to-use function that can retrieve the texel color at a texture 
coordinate by specifying the texture unit number in the first parameter and the texture 
coordinates in the second parameter. However, because this function is a built-in function 
of GLSL ES, note the data type of the parameters and the return value of the function.      

   vec4 texture2D(sampler2D sampler, vec2 coord)   

 Retrieve a texel color at the texture coordinates specified by  coord  from the texture image 
specified by  sampler.   

  Parameters    sampler   Specifies the texture unit number.  

 coord   Specifies the texture coordinates.  

  Return value    The texel color ( vec4 ) for the coordinates. The color format changes accord-
ing to the  internalformat  specified by  gl.texImage2D() .  Table   5.9    shows 
the differences. If the texture image is not available for some reason, this 
function returns (0.0, 0.0, 0.0, 1.0).  

  Table 5.9   Return Value of texture2D()  

  Internalformat     Return Value   

  gl.RGB    (R, G, B, 1.0)  

  gl.RGBA    (R, G, B, A)  

  gl.ALPHA    (0.0, 0.0, 0.0, A)  

  gl.LUMINANCE    (L, L, L, 1.0)   L indicates luminance

  gl.LUMINANCE_ALPHA    (L, L, L, A)  

 The texture magnification and minification parameters determine the return value in cases 
where WebGL interpolates the texel. Once this function executes, by assigning the return 
value to  gl_FragColor , the fragment is displayed using the color. As a result of this opera-
tion, the texture image is mapped to the shape to be drawn (in this case, a rectangle).  
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 This is the final step in the process needed for texture mapping. At this stage, your texture 
image has been loaded, set up in the WebGL system and mapped to the shape you are 
drawing.  

 As you have seen, texture mapping in WebGL seems a complex process partly because it 
must deal with an image and request the browser to load it, and partly because you are 
required to use the texture unit even if you use only a single texture. However, once you 
master the basic steps, they are the same each time you want to map a texture.  

 The next section explores the use of textures and will familiarize you with the whole 
process.   

  Experimenting with the Sample Program  

 To        familiarize you with texture mapping, let’s modify the sample program by changing 
the texture coordinates. For example, modify the texture coordinates in  TexturedQuad  as 
follows:  

  var verticesTexCoords = new Float32Array([

    // Vertex coordinates and texture coordinates

    -0.5,  0.5,   -0.3, 1.7,

    -0.5, -0.5,   -0.3, -0.2,

     0.5,  0.5,   1.7, 1.7,

     0.5, -0.5,   1.7, -0.2

  ]);   

 If you load the modified program  TexturedQuad_Repeat , you’ll see an effect like the 
screenshot of  Figure   5.32    (left side). To understand what’s happening here, take a look at 
the figure on the right side, which shows each texture coordinate in the texture coordi-
nate system.  
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 Figure 5.32   Modify the texture coordinate (a screenshot of TexturedQuad_Repeat)         

 The image isn’t sufficient to cover the larger shape, so as you can see, the texture image is 
being repeated. This is driven by the value of  gl.TEXTURE_WRAP_S  and  gl.TEXTURE_WRAP_T , 
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which are set to  gl.REPEAT  in the sample program, telling the WebGL system to repeat the 
texture image to fill the area.  

 Now let’s modify the texture parameters as follows to see what other effects we can 
achieve. The modified program is saved as  TexturedQuad_Clamp_Mirror , and  Figure   5.33    
shows the result when run in your browser:  

  // Set texture parameters

  gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER,  gl.LINEAR );

  gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S,  gl.CLAMP_TO_EDGE );

  gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T,  gl.MIRRORED_REPEAT );   

 You can see that the edge color of the texture is repeated in the s-axis (horizontal axis), 
and the texture image itself is mirrored-repeated in the t-axis (vertical axis).  

 
 Figure 5.33   TexturedQuad_Clamp_Mirror         

 That concludes the explanation of the basic texture mapping technique available in 
WebGL. The next section builds on this basic technique and explores texture mapping 
using multiple texture images.    

  Pasting Multiple Textures to a Shape  
 Earlier        in the chapter, you learned that WebGL can deal with multiple texture images, 
which was the reason for the multiple texture units. The examples so far have used 
only one texture, and thus one element of the unit. This section will construct a sample 
program,  MultiTexture , which pastes two texture images to a rectangle, allowing a 
better examination of the texture unit mechanism.  Figure   5.34    shows a screenshot of 
 MultiTexture . As you can see, the two texture images are “blended” to create the compos-
ite in the figure.  
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 Figure 5.34   MultiTexture         

  Figure   5.35    shows the two separate texture images used in this sample program. To high-
light WebGL’s ability to deal with various image formats, the sample program intention-
ally uses different image formats for each file.  

 
 Figure 5.35   Texture images (sky.jpg on left; circle.gif on right) used in MultiTexture         

 Essentially, you can map multiple texture images to a shape by repeating the process of 
mapping a single texture image to a shape described in the previous section. Let’s examine 
the sample program to see how that is done.  

  Sample Program (MultiTexture.js)  

  Listing   5.8    shows  the basic processing flow of  MultiTexture.js , which is similar to 
 TexturedQuad.js  with three key differences: (1) the fragment shader accesses two textures, 
(2) the final fragment color is calculated from the two texels from both textures, and (3) 
 initTextures()  creates two texture objects.  
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  Listing 5.8   MultiTexture.js   

   1 // TexturedQuad.js

      ...

  13 var FSHADER_SOURCE =

       ...

   17   'uniform sampler2D u_Sampler0;\n' +

    18   'uniform sampler2D u_Sampler1;\n' + 

   19   'varying vec2 v_TexCoord;\n' +

   20   'void main() {\n' +

   21   '  vec4 color0 = texture2D(u_Sampler0, v_TexCoord);\n' +                 <-(1)

    22   '  vec4 color1 = texture2D(u_Sampler1, v_TexCoord);\n' + 

    23   '  gl_FragColor = color0 * color1;\n' +                                  <-(2) 

   24   '}\n';

   25

   26 function main() {

      ...

   53   // Set textures

   54   if (!initTextures(gl, n)) {

      ...

   58 }

   59

   60 function initVertexBuffers(gl) {

   61   var verticesTexCoords = new Float32Array([

   62     // Vertex coordinates and texture coordinates

   63     -0.5,  -0.5,   0.0, 1.0,

   64     -0.5, -0.5,    0.0, 0.0,

   65      0.5,  -0.5,   1.0, 1.0,

   66      0.5, -0.5,   1.0, 0.0,

   67   ]);

   68   var n = 4; // The number of vertices

      ...

  100   return n;

  101 }

  102

  103 function initTextures(gl, n) {

  104   // Create a texture object

  105   var texture0 = gl.createTexture();                                       <-(3)

   106   var texture1 = gl.createTexture(); 

      ...

  112   // Get the storage locations of u_Sampler1 and u_Sampler2

  113   var u_Sampler0 = gl.getUniformLocation(gl.program, 'u_Sampler0');

   114   var u_Sampler1 = gl.getUniformLocation(gl.program, 'u_Sampler1'); 

      ...

  120   // Create Image objects



ptg11539634

CHAPTER 5  Using Colors and Texture Images186

  121   var image0 = new Image();

   122   var image1 = new Image(); 

      ...

  127    // Register the event handler to be called when image loading is completed 

  128   image0.onload = function(){ loadTexture(gl, n,  texture0, u_Sampler0, 

                                                                    ➥image0, 0); };

   129   image1.onload = function(){ loadTexture(gl, n, texture1, u_Sampler1, 

                                                                    ➥image1, 1); }; 

  130   // Tell the browser to load an Image

  131   image0.src = '../resources/redflower.jpg';

   132   image1.src = '../resources/circle.gif'; 

  133

  134   return true;

  135 }

  136 // Specify whether the texture unit is ready to use

   137 var g_texUnit0 = false, g_texUnit1 = false ;

  138 function loadTexture(gl, n, texture, u_Sampler, image, texUnit) {

  139   gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, 1);// Flip the image's y-axis

  140   // Make the texture unit active

   141   if (texUnit == 0) { 

   142     gl.activeTexture(gl.TEXTURE0); 

   143     g_texUnit0 = true; 

   144   } else { 

   145     gl.activeTexture(gl.TEXTURE1); 

   146     g_texUnit1 = true; 

   147   } 

  148   // Bind the texture object to the target

  149   gl.bindTexture(gl.TEXTURE_2D, texture);

  150

  151   // Set texture parameters

  152    gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);

  153   // Set the texture image

  154   gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);

  155    // Set the texture unit number to the sampler 

   156   gl.uniform1i(u_Sampler, texUnit); 

       ... 

   161   if (g_texUnit0 && g_texUnit1) { 

   162     gl.drawArrays(gl.TRIANGLE_STRIP, 0, n); // Draw a rectangle 

   163   } 

  164 }   

 First, let’s examine the fragment shader. In  TexturedQuad.js , because the fragment shader 
used only one texture image, it prepared a single uniform variable,  u_Sampler . However, 
this sample program uses two texture images and needs to define two sampler variables as 
follows:  



ptg11539634

Pasting Multiple Textures to a Shape 187

  17   'uniform sampler2D u_Sampler0;\n' +

   18   'uniform sampler2D u_Sampler1;\n' +    

  main()  in the fragment shader fetches the texel value from each texture image at lines 21 
and 22, storing them to the variables  color0  and  color1 , respectively:  

  21   '  vec4 color0 = texture2D(u_Sampler0, v_TexCoord);\n' +

   22   '  vec4 color1 = texture2D(u_Sampler1, v_TexCoord);\n' + 

   23   '  gl_FragColor = color0 * color1;\n' +    

 There are many possible ways to calculate the final fragment color ( gl_FragColor ) using 
the texels. This sample program uses a component-wise multiplication of both texel colors 
because the result is easy to understand. GLSL ES offers a simple way to write this multipli-
cation in a single line as a multiplication of two vec4 variables at line 23 (see  Figure   5.36   ).  
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 Figure 5.36   Multiplication of two vec4 variables         

 Although this sample program uses two texture images,   initVertexBuffers()  from line 60 
is the same as in  TexturedQuad.js  because it uses the same texture coordinates for both 
texture images.  

 In this sample,   initTextures()  at line 103 has been modified to repeat the process of 
dealing with a texture image twice because now it deals with two images rather than the 
single image of the previous example.  

 Lines 105 and 106 create the two texture objects, one for each texture image. The last 
character of each variable name (“0” in  texture0  and “1” in  texture1 ) indicates which 
texture unit (texture unit 0 or texture unit 1) is used. This naming convention of using 
the unit number also applies to the variable names for the storage location of uniform 
variables (line 113 and 114) and image objects (lines 120 and 121).  

 Registration of the event handler (  loadTexture() ) is the same as in  TexturedQuad.js , with 
the last argument set to indicate the different texture units:  

  128   image0.onload = function() { loadTexture(gl, n, texture0, u_Sampler0, 

                                                                    ➥image0, 0); };

   129   image1.onload = function() { loadTexture(gl, n, texture1,u_Sampler1, 

                                                                    ➥image1, 1); };    

 The request to load the texture images is in lines 131 and 132:  
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  131   image0.src = '../resources/redflower.jpg';

   132   image1.src = '../resources/circle.gif';    

 In this sample program, the function  loadTexture()  has to be modified to deal with two 
textures. The function is defined from line 138 with its core part as follows:  

   137 var g_texUnit0 = false, g_texUnit1 = false; 

  138 function loadTexture(gl, n, texture, u_Sampler, image, texUnit) {

  139   gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, 1);// Flip the image's y-axis

  140   // Make the texture unit active

   141   if (texUnit == 0) { 

   142     gl.activeTexture(gl.TEXTURE0); 

   143     g_texUnit0 = true; 

   144   } else { 

   145     gl.activeTexture(gl.TEXTURE1); 

   146     g_texUnit1 = true; 

   147   } 

  148

  149   gl.bindTexture(gl.TEXTURE_2D, texture); // Bind the texture object

  150

  151   // Set texture parameters

  152   gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);

  153   // Set the texture image

  154   gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, image);

  155    // Set the texture unit number to the sampler 

   156   gl.uniform1i(u_Sampler, texUnit); 

       ... 

   164   if (g_texUnit0 && g_texUnit1) { 

   165     gl.drawArrays(gl.TRIANGLE_STRIP, 0, n); // Draw a rectangle 

   166   } 

  167 }   

 The important difference in  loadTexture()  is that you cannot predict which texture 
image is loaded first because the browser loads them asynchronously. The sample program 
handles this by starting to draw only after loading both textures. To do this, it uses two 
global variables ( g_texUnit0  and  g_texUnit1 ) at line 137 indicating which textures have 
been loaded.  

 These variables are initialized to  false  at line 137 and changed to  true  in the  if  state-
ment at line 141. This  if  statement checks the variable  texUnit  passed as the last param-
eter in  loadTexture() . If it is 0, the texture unit 0 is made active and  g_texUnit0  is set to 
 true ; if it is 1, the texture unit 1 is made active and then  g_texUnit1  is set to  true .  

 Line 156 sets the texture unit number to the uniform variable. Note that the parameter 
 texUnit  of  loadTexture()  is passed to  gl.uniform1i() . After loading two texture images, 
the internal state of the system is changed, as shown in  Figure   5.37   .  
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 Figure 5.37   Internal state of WebGL when handling two texture images         

 Finally, the program invokes the vertex shader after checking whether both texture images 
are available at line 165 using  g_texUnit0  and  g_texUnit1 . The images are then combined 
as they are mapped to the shape, resulting in the screenshot in  Figure   5.34   .     

     Summary  
 In this chapter, you ventured deep into the WebGL world. At this stage you have acquired 
all the basic skills needed to use WebGL to deal with 2D geometric shapes and are ready 
for the next step: 3D objects. Fortunately, when you deal with 3D objects instead of 2D 
shapes, the way you use shaders is surprisingly similar, so you can quickly apply all the 
knowledge you’ve learned so far.  

 The rest of this book focuses mainly on covering the techniques necessary for managing 
3D objects. However, before introducing you to the 3D world, the next chapter will take a 
brief tour of the OpenGL ES shading language (GLSL ES), covering some features and func-
tionality that have been only touched on in the chapters so far.     
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  Chapter 6 

 The OpenGL ES Shading Language (GLSL ES)  

    This chapter takes a break from examining WebGL sample programs and explains the essential 
features of the OpenGL ES Shading Language (GLSL ES) in detail.  

 As you have seen, shaders are the core mechanism within WebGL for constructing 3DCG 
programs, and GLSL ES is the dedicated programming language for writing those shader 
programs. This chapter covers:  

    •   Data, variables, and variable types   

   •   Vector, matrix, structure, array, and sampler types   

   •   Operators, control flow, and functions   

   •   Attributes, uniform, and varying variables   

   •   Precision qualifiers   

   •   Preprocessor and directives    

 By the end of this chapter, you will have a good understanding of GLSL ES and how to use it to 
write a variety of shaders. This knowledge will help you tackle the more complex 3D manipula-
tions introduced in  Chapters   7    through    9   . Note that language specifications can be quite dry, and 
for some of you, this may be more detail than you need. If so, it’s safe to skip this chapter and 
use it as a reference when you look at the examples in the rest of the book.   

     Recap of Basic Shader Programs  
 As you can see from  Listings   6.1    and    6.2   , you can construct shader programs in a similar manner 
to constructing programs using the C programming language.  
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  Listing 6.1   Example of a Simple Vertex Shader    

  // Vertex shader

  attribute vec4 a_Position;

  attribute vec4 a_Color;

  uniform mat4 u_MvpMatrix;

  varying vec4 v_Color;

  void main() {

    gl_Position = u_MvpMatrix * a_Position;

    v_Color = a_Color;

  }   

 Variables are declared at the beginning of the code, and then the  main()  routine defines 
the entry point for the program.  

  Listing 6.2   Example of a Simple Fragment Shader    

  // Fragment shader

  #ifdef GLSL_ES

  precision mediump float;

  #endif

  varying vec4 v_Color;

  void main() {

    gl_FragColor = v_Color;

  }   

 The version of GLSL ES dealt with in this chapter is 1.00. However, you should note that 
WebGL does not support all features defined in GLSL ES 1.00  1  ; rather, it supports a subset 
of 1.00 with core features needed for WebGL.    

  Overview of GLSL ES  
 The   GLSL ES  programming language was developed from the OpenGL Shading Language 
(GLSL) by reducing or simplifying functionality, assuming that the target platforms were 
consumer electronics or embedded devices such as smart phones and game consoles. 
A prime goal was to allow hardware manufacturers to simplify the hardware needed to 
execute GLSL ES programs. This had two key benefits: reducing power consumption by 
devices and, perhaps more importantly, reducing manufacturing costs.  

 GLSL ES supports a limited (and partially extended) version of the C language syntax. 
Therefore, if you are familiar with the C language, you’ll find it easy to understand 
GLSL ES. Additionally, the shading language is beginning to be used for general-purpose 
processing such as image processing and numerical computation (so called GPGPU), 
meaning that GLSL ES has an increasingly wide application domain, thus increasing the 
benefits of studying the language.   

 1     http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specifi cation_1.0.17.pdf  

http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf
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  Hello Shader!  
 By tradition, most programming books begin with a “Hello World!” example, or in our 
case the corresponding shader program. However, because you have already seen several 
shader programs in previous chapters, let’s skip that and take a look at the basics of GLSL 
ES, using  Listing   6.1    and  Listing   6.2    shown earlier.  

  Basics  

 Like many programming languages, you need to pay attention to the following two items 
when you write shader programs using GLSL ES:  

    •   The   programs are case-sensitive ( marina  and  Marina  are different).   

   •   A    semicolon (;) must be specified at the end of each command.     

  Order of Execution  

 Once a    JavaScript program is loaded, program lines are executed in the order in which 
they were written—sequentially starting from the first program line. However, like C, 
shader programs are executed from the function  main()  and therefore must have one (and 
only one)  main()  function that cannot have any parameters. Looking back, you can see 
that each shader program shown in  Listing   6.1    and  Listing   6.2    defines a single  main() .  

 You must prepend the keyword  void  to  main() , which indicates that the function has 
no return value. (See the section “Functions” later in this chapter.) This is different from 
JavaScript, where you can define a function using the keyword  function , and you don’t 
have to worry whether the function returns a value. In GLSL ES, if the function returns a 
value, you must specify its data type in front of the function name, or if it doesn’t return 
a value, specify  void  so that the system doesn’t expect a return value.   

  Comments  

 As with   JavaScript, you can write comments in your shader program, and in fact use the 
same syntax as JavaScript. So, the following two types of comment are supported:  

    •   // characters followed by any sequence of characters up to the end of line:  

  int kp = 496; // kp is a Kaprekar number    

   •   /* characters, followed by any sequence of characters (including new lines), followed 
by the */ characters:  

  /* I have a day off today.

     I want to take a day off tomorrow.

   */       
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  Data (Numerical and Boolean Values)  
 GLSL ES   supports only two data types:  

    •    Numerical value:     GLSL ES  supports integer numbers (for example, 0, 1, 2) and float-
ing point numbers (for example, 3.14, 29.98, 0.23571). Numbers without a decimal 
point (.) are treated as integer numbers, and those with a decimal point are treated 
as floating point numbers.   

   •    Boolean value:     GLSL ES  supports  true  and  false  as boolean constants.    

 GLSL ES does not support character strings, which may initially seem strange but makes 
sense for a 3D graphics language.   

  Variables  
 As you    have seen in the previous chapters, you can use any variable names you want as 
long as the name follows the basic naming rules:  

    •   The character set for variables names contains only the letters a–z, A–Z, the under-
score (_), and the numbers 0–9.   

   •   Numbers are not allowed to be used as the first character of variable names.   

   •   The keywords shown in  Table   6.1    and the reserved keywords shown in  Table   6.2    are 
not allowed to be used as variable names. However, you can use them as part of the 
variable name, so the variable name  if  will result in error, but  iffy  will not.   

   •   Variable names starting with  gl_ ,  webgl_ , or  _webgl_  are reserved for use by OpenGL 
ES. No user-defined variable names may begin with them.    

  Table 6.1   Keywords     Used in GLSL ES  

  attribute     bool     break     bvec2     bvec3     bvec4   

  const     continue     discard     do     else     false   

  float     for     highp     if     in     inout   

  Int     invariant     ivec2     ivec3     ivec4     lowp   

  mat2     mat3     mat4     medium     out     precision   

  return     sampler2D     samplerCube     struct     true     uniform   

  varying     vec2     vec3     vec4     void     while   
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  Table 6.2   Reserved Keywords for Future Version of GLSL ES      

asm cast class default

double dvec2 dvec3 dvec4

enum extern external fixed

flat fvec2 fvec3 fvec4

goto half hvec2 hvec3

hvec4 inline input interface

long namespace noinline output

packed public sampler1D sampler1DShadow

sampler2DRect sampler2DRectShadow sampler2DShadow sampler3D

sampler3DRect short sizeof static

superp switch template this

typedef union unsigned using

volatile

  GLSL ES Is a Type Sensitive Language  

 GLSL ES     does not require the use of  var  to declare variables, but it does require you to 
specify the type of data a variable will contain. As you have seen in the sample programs, 
you declare variables using the form  

  <data type> <variable name>   

 such as  vec4 a_Position .  

 As discussed, when you define a function like  main() , you must also specify the data type 
of the return value of the function. Equally, the type of data on the left side of the assign-
ment operation (=) and that of data on the right side must have the same type; otherwise, 
it will result in an error.  

 For these reasons, GLSL ES is called a  type sensitive language , meaning that it belongs to 
a class of languages that require you to specify and pay attention to types.   

  Basic Types  
 GLSL ES supports the basic data types shown in  Table   6.3   .  
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  Table 6.3   GLSL Basic Types     

  Type     Description   

  float    The    data type for a single floating point number. It indicates the variable will contain 
a single floating point number.  

  int    The data type for a single integer number. It indicates the variable will contain a 
single integer number.  

  bool    The data type for a boolean value. It indicates the variable will contain a boolean 
value.  

 Specifying the data type for variables allows the WebGL system to check errors in advance 
and process the program efficiently. The following are examples of variable declarations 
using basic types.  

  float klimt;  // The variable will contain a single floating number

  int utrillo;  // The variable will contain a single integer number

  bool doga;    // The variable will contain a single boolean value   

  Assignment and Type Conversion  

 Assignments        of values to variables are performed using the assignment operator ( = ). As 
mentioned, because GLSL ES is a type-sensitive language, if the data type of the left-side 
variable is not equal to that of the assigned data (or variable), it will result in an error:  

  int i = 8;       // OK

  float f1 = 8;    // Error

  float f2 = 8.0;  // OK

  float f3 = 8.0f; // Error: Expressions like 8.0f used in C are not allowed.   

 Semantically, 8 and 8.0 are the same values. However, when you assign 8 to a floating 
point variable  f1 , it will result in an error. In this case, you would see the following error 
message:  

  failed to compile shader: ERROR: 0:11: '=' : cannot convert from 'const mediump int' 

to 'float'.   

 If you want to assign an integer number to a floating point variable, you need to convert 
the integer number to a floating point number. This conversion is called  type conversion . 
To convert an integer into a floating point number, you can use the built-in function 
 float() , as follows:  

  int i = 8;

  float f1 = float(i); // 8 is converted to 8.0 and assigned to f1

  float f2 = float(8); // equivalent to the above operation   
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 GLSL ES supports a number of other built-in functions for type conversion, which are 
shown in  Table   6.4   .  

  Table 6.4   The Built-In Functions for Type Conversion   

  Conversion     Function     Description   

 To an integer 
number  

  int(float)    The fractional part of the floating-point value is 
dropped (for example, 3.14 → 3).  

  int(bool)     true  is converted to 1, or  false  is converted to 0.  

 To a floating 
point number  

  float(int)    The integer number is converted to a floating point 
number (for example, 8 → 8.0).  

  float(bool)     true  is converted to 1.0, or  false  is converted to 
0.0.  

 To a boolean 
value  

  bool(int)    0 is converted to  false , or non-zero values are 
converted to  true .  

  bool(float)    0.0 is converted to  false , or non-zero values are 
converted to  true .  

  Operations  

 The     operators applicable to the basic types are similar to those in JavaScript and are shown 
in  Table   6.5   .  

  Table 6.5   The Operators Available for the Basic Types  

  Operator     Operation     Applicable Data Type   

  -    Negation (for example, 
for specifying a negative 
number)  

  int  or  float .  

  *    Multiplication    int  or  float . The data type of the 
result of the operation is the same 
as operands.  

  /    Division  

  +    Addition  

  -    Subtraction  

  ++    Increment (postfix and 
prefix)  

  int  or  float . The data type of the 
result of the operation is the same 
as operands.    --    Decrement (postfix and 

prefix)  

  =    Assignment    int ,  float , or  bool   

  += -= *= /=    Arithmetic assignment    int  or  float .  
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  Operator     Operation     Applicable Data Type   

  < > <= >=    Comparison    int  or  float .  

  == !=    Comparison (equality)    int ,  float , or  bool .  

  !    Not    bool  or an expression that results 
in  bool  [1].    &&    Logical and  

  ||    Logical inclusive or  

  ̂ ^    Logical exclusive or [2]  

  condition? 
expression1:     expression2   

 Ternary selection    condition  is  bool  or an expression 
that results in  bool . Data types 
other than array can be used in 
 expression1  and  expression2 .  

 [1] The second operand in a logical and ( && ) operation is evaluated if and only if the first operand 

evaluates to  true . The second operand in a logical or ( || ) operation is evaluated if and only if the 

first operand evaluates to  false .  

 [2] If either the left-side condition or the right-side one is  true , the result is  true . If both sides are 

 true , the result is  false .  

 The followings are examples of basic operations:  

  int i1 = 954, i2 = 459;

  int kp = i1 - i2; // 495 is assigned to kp.

  float f = float(kp) + 5.5; // 500.5 is assigned to f.     

  Vector Types and Matrix Types  
 GLSL ES supports     vector  and matrix data types which, as you have seen, are useful when 
dealing with computer graphics. Both these types contain multiple data elements. A 
vector type, which arranges data in a list, is useful for representing vertex coordinates or 
color data. A matrix arranges data in an array and is useful for representing transformation 
matrices.  Figure   6.1    shows an example of both types.  

 

)( 351173

704

173

 Figure 6.1   A vector and a matrix         

 GLSL ES supports a variety of vector or matrix types, as shown in Table 6.6  .    
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  Table 6.6   Vector Types and Matrix Types  

  Category     Types in GLSL ES     Description   

  Vector     vec2 ,  vec3 ,  vec4    The data types for 2, 3, and 4 component vectors of 
floating point numbers  

  ivec2 ,  ivec3 ,  ivec4    The data types for 2, 3, and 4 component vectors of 
integer numbers  

  bvec2 ,  bvec3 ,  bvec4    The data types for 2, 3, and 4 component vectors of 
boolean values  

  Matrix     mat2 ,  mat3 ,  mat4    The data type for 2×2, 3×3, and 4×4 matrix of floating 
point numbers (with 4, 9, and 16 elements, respec-
tively)  

 The following examples show the use of the vector and matrix types:  

  vec3 position;  // variable for 3-component vector of float

                  // For example: (10.0, 20.0, 30.0)

  ivec2 offset;   // variable for 2-component vector of integer

                  // For example: (10, 20)

  mat4 mvpMatrix; // the variable for 4×4 matrix of float   

  Assignments and Constructors  

 Assignment     of data to variables    of the type vector or matrix is performed using the  =  
operator. Remember that the type of data on the left side of the assignment operation and 
that of the data/variable on the right side must be the same. In addition, the number of 
elements on the left side of the assignment operation must be equal to that of the data/
variable on the right side. To illustrate that, the following example will result in an error:  

  vec4 position = 1.0; // vec4 variable requires four floating point numbers   

 In this case, because a  vec4  variable requires four floating point numbers, you need to pass 
four floating numbers in some way. A solution is to use the built-in functions with the 
same name of the data type so; for example, in the case of  vec4 , you can use the construc-
tor  vec4() . (See  Chapter   2   , “Your First Step with WebGL.”) For example, to assign 1.0, 2.0, 
3.0, and 4.0 to a variable of type  vec4 , you can use  vec4()  to bundle them into a single 
data element as follows:  

  vec4 position = vec4(1.0, 2.0, 3.0, 4.0);   

 Functions for making a value of the specified data type are called  constructor functions , 
and the name of the constructor is always identical to that of the data type.  
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  Vector Constructors  

 Vectors are critical in GLSL ES so, as you’d imagine, there are multiple ways to specify 
arguments to a vector constructor. For example:  

  vec3 v3 = vec3(1.0, 0.0, 0.5);  // sets v3 to(1.0, 0.0, 0.5)

  vec2 v2 = vec2(v3);  // sets v2 to (1.0, 0.0) using the 1st and 2nd elements of v3

  vec4 v4 = vec4(1.0); // sets v4 to (1.0, 1.0, 1.0, 1.0)   

 In the second example, the constructor ignores the third element of  v3 , and only the 
first and second elements of  v3  are used to create the new vector. Similarly, in the third 
example, if a single value is specified to a vector constructor, the value is used to initialize 
all components of the constructed vector. However, if more than one value is specified 
to a vector constructor but the number of the values is less than the number of elements 
required by the constructor, it will result in an error.  

 Finally, a vector can be constructed from multiple vectors:  

  vec4 v4b = vec4(v2, v4);   // sets (1.0, 0.0, 1.0, 1.0) to v4b   

 The rule here is that the vector is filled with values from the first vector (v2), and then 
any missing values are supplied by the second vector (v4).   

  Matrix Constructors  

 Constructors are also available for matrices and operate in a similar manner to vector 
constructors. However, you should make sure the order of elements stored in a matrix is 
in a column major order. (See  Figure   3.27    for more details of “column-major order.”) The 
following examples show different ways of using the matrix constructor:  

    •   If multiple values are specified to a matrix constructor, a matrix is constructed using 
them in column major order:          

  mat4 m4 = mat4 (   1.0,  2.0,   3.0,   4.0,

                     5.0,  6.0,   7.0,   8.0,

                     9.0, 10.0,  11.0,  12.0,

                    13.0, 14.0,  15.0,  16.0 );    

   •   If multiple vectors are specified to a matrix constructor, a matrix is constructed using 
the elements of each vector in column major order:  

  // two vec2 are used to construct a mat2

  vec2 v2_1 = vec2(1.0, 3.0);

  vec2 v2_2 = vec2(2.0, 4.0);

  mat2 m2_1 = mat2(v2_1, v2_2); // 1.0 2.0

                                // 3.0 4.0

  // vec4 is used to construct mat2

  vec4 v4 = vec4(1.0, 3.0, 2.0, 4.0);

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1.0 5.0 9.0 13.0
2.0 6.0 10.0 14.0
3.0 7.0 11.0 15.0
4.0 8.0 12.0 16.0
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  mat2 m2_2 = mat2(v4);  // 1.0 2.0

                         // 3.4 4.0    

   •   If multiple values and multiple vectors are specified to a matrix constructor, a matrix 
is constructed using them in column major order:  

  // Two floating point numbers and vec2 are used to construct a mat2

  mat2 m2 = mat2(1.0, 3.0, v2_2); // 1.0 2.0

                                  // 3.0 4.0    

   •   If a single value is specified to a matrix constructor, a matrix is constructed using the 
value as its diagonal elements:  

  mat4 m4 = mat4(1.0);  // 1.0 0.0 0.0 0.0

                        // 0.0 1.0 0.0 0.0

                        // 0.0 0.0 1.0 0.0

                        // 0.0 0.0 0.0 1.0     

 Similar to a vector constructor, if an insufficient number of values is specified to the 
constructor (but more than one), it will result in an error.  

  mat4 m4 = mat4(1.0, 2.0, 3.0); // Error. mat4 requires 16 elements.     

  Access to Components  

 To access     the components in a vector or matrix, you can use the operators  .  and  [] , as 
shown in the following subsections.  

  The . Operator  

 An   individual component in a vector can be accessed by the variable name followed by 
period (.) and then the component name, as shown in  Table   6.7   .  

  Table 6.7   Component Names  

  Category     Description   

  x ,  y ,  z ,  w    Useful for accessing vertex coordinates.  

  r ,  g ,  b ,  a    Useful for accessing colors.  

  s ,  t ,  p ,  q    Useful for accessing texture coordinates. (Note that this book uses only  s  and 
 t .  p  is used instead of  r  because  r  is used for colors.)  

 Because vectors are used for storing various types of data such as vertex coordinates, 
colors, and texture coordinates, three types of component names are supported to increase 
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the readability of programs. However, any of the component names  x ,  r , or  s  accesses the 
first component; any of  y ,  g , or  t  accesses the second one; and so on, so you can use them 
interchangeably if you prefer. For example:  

  vec3 v3 = vec3(1.0, 2.0, 3.0);  // sets v3 to(1.0, 2.0, 3.0)

  float f;

  

  f = v3.x; // sets f to 1.0

  f = v3.y; // sets f to 2.0

  f = v3.z; // sets f to 3.0

  

  f = v3.r; // sets f to 1.0

  f = v3.s; // sets f to 1.0   

 As you can see from the comments of these examples,  x ,  r , and  s  have different names 
but always access the first component. Attempting to access a component beyond the 
number of components in the vector will result in an error:  

  f = v3.w; // w requires access to the fourth element, which doesn't exist.   

 Multiple components can be selected by appending their names (from the same name set) 
after the period (.). This is known as   swizzling . In the following example,  x ,  y ,  z , and  w  
will be used, but other sets of component names have the same effect:  

  vec2 v2;

  v2 = v3.xy; // sets v2 to (1.0, 2.0)

  v2 = v3.yz; // sets v2 to (2.0, 3.0). Any component can be omitted

  v2 = v3.xz; // sets v2 to (1.0, 3.0). You can skip any component.

  v2 = v3.yx; // sets v2 to (2.0, 1.0). You can reverse the order.

  v2 = v3.xx; // sets v2 to (1.0, 1.0). You can repeat any component.

  

  vec3 v3a;

  v3a = v3.zyx; // sets v3a to (3.0, 2.0, 1.0). You can use all names.   

 The component name can also be used in the left-side expression of an assignment opera-
tor ( = ):  

  vec4 position = vec4(1.0, 2.0, 3.0, 4.0);

  position.xw = vec2(5.0, 6.0); // position = (5.0, 2.0, 3.0, 6.0)   

 Remember, the component names must come from the same set so, for example,  v3.was  is 
not allowed.   
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  The [ ] Operator  

 In addition   to the  .  operator, the components of a vector or a matrix can be accessed 
using the array indexing operator  [] . Note that the elements in a matrix are also read out 
in column major order. Just like JavaScript, the index starts from 0, so applying  [0]  to a 
matrix selects the first column in the matrix,  [1]  selects the second one,  [2]  selects the 
third one, and so on. The following shows an example:  

  mat4 m4 = mat4 ( 1.0,  2.0,  3.0,  4.0,

                   5.0,  6.0,  7.0,  8.0,

                   9.0, 10.0, 11.0, 12.0,

                  13.0, 14.0, 15.0, 16.0);

  vec4 v4 = m4[0]; // Retrieve the 1st column from m4: (1.0, 2.0, 3.0, 4.0)   

 In addition, two  []  operators can be used to select a column and then a row of a matrix:  

  float m23 = m4[1][2]; // sets m23 to the third component of the second

                        // column of m4 (7.0).   

 A component name can be used to select a component in conjunction with the  []  opera-
tor, as follows:  

  float m32 = m4[2].y; // sets m32 to the second component of the third

                       // column of m4 (10.0).   

 One restriction is that only a   constant index  can be specified as the index number in the 
 []  operator. The constant index is defined as  

    •   A integral literal value (for example, 0 or 1)   

   •   A global or local variable qualified as  const , excluding function parameters (see the 
section “const Variables”)   

   •   Loop indices (see the section “Conditional Control Flow and Iteration”)   

   •   Expressions composed from any of the preceding    

 The following examples use the type  int  constant index:  

  const int index = 0;  // "const" keyword specifies the variable is a

                        // read-only variable.

  vec4 v4a = m4[index]; // is the same as m4[0]   

 The following example uses an expression composed of constant indices as an index.  

  vec4 v4b = m4[index + 1]; // is the same as m4[1]   
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 Remember, you cannot use an  int  variable without the  const  qualifier as an index 
because it is not a constant index (unless it is a loop index):  

  int index2 = 0;

  vec4 v4c = m4[index2]; // Error: because index2 is not a constant index.     

  Operations  

 You    can apply the operators shown in  Table   6.8    to a vector or a matrix. These operators 
are similar to the operators for basic types. Note that the only comparative operators avail-
able for a vector and matrix are  ==  and  != . The  < ,  > ,  <=,  and  >=  operators cannot be used 
for comparisons of vectors or matrices. In such cases, you can use built-in functions such 
as  lessThan() . (See  Appendix   B   , “Built-In Functions of GLSL ES 1.0.”)  

  Table 6.8   The Operators Available for a Vector and a Matrix  

  Operators     Operation     Applicable Data Types   

  *    Multiplication    vec[234]  and  mat[234] . The opera-
tions on  vec[234]  and  mat[234]  will be 
explained below. 
The data type of the result of operation is 
the same as the operands.  

  /    Division  

  +    Addition  

  -    Subtraction  

  ++    Increment (postfix and prefix)    vec[234]  and  mat[234] . The data type of 
the result of this operation is the same as 
the operands.  

  --    Decrement (postfix and prefix)  

  =    Assignment    vec[234]  and  mat[234] .  

  +=, -=, 
*=, /=   

 Arithmetic assignment  vec[234] and  mat[234] .

  ==, !=    Comparison    vec[234]  and  mat[234] . With  == , if all 
components of the operands are equal, 
the result is  true . For  != , if any of compo-
nents of the operands are not equal, then 
the result is  true  [1].  

 [1] If you want component-wise equality, you can use the built-in function  equal()  or  

notEqual().  (See  Appendix   B   .)  

 Note that when an arithmetic operator operates on a vector or a matrix, it is operating 
independently on each component of the vector or matrix in component-wise order.  

  Examples  

 The following examples show frequently used cases. In the examples, we assume that the 
types of variables are defined as follows:  
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  vec3 v3a, v3b, v3c;

  mat3 m3a, m3b, m3c;

  float f;    

  Operations on a Vector and Floating Point Number  

 An example showing the use of the  +  operator:  

  // The following example uses the + operator, but the -, *, and / 

  // operators also have the same effect.

  v3b = v3a + f;   // v3b.x = v3a.x + f;

                   // v3b.y = v3a.y + f;

                   // v3b.z = v3a.z + f;   

 For example,  v3a = vec3(1.0, 2.0, 3.0)  and  f = 1.0  will result in  v3b=(2.0, 3.0, 
4.0) .   

  Operations on Vectors  

 These operators operate on each component of a vector:  

  // The following example uses the + operator, but the -, *, and / 

  // operators also have the same effect.

  v3c = v3a + v3b;  // v3a.x + v3b.x;

                    // v3a.y + v3b.y;

                    // v3a.z + v3b.z;   

 For example,  v3a = vec3(1.0, 2.0, 3.0)  and  v3b = vec3(4.0, 5.0, 6.0)  will result in 
 v3c=(5.0, 7.0, 9.0) .   

  Operations on a Matrix and a Floating Point Number  

 These operators operate on each component of the matrix:  

  // The following example uses the + operator, but the -, *, and / 

  // operators also have the same effect.

  m3b = m3a * f;   // m3b[0].x = m3a[0].x * f; m3b[0].y = m3a[0].y * f;

                   // m3b[0].z = m3a[0].z * f;

                   // m3b[1].x = m3a[1].x * f; m3b[1].y = m3a[1].y * f;

                   // m3b[1].z = m3a[1].z * f;

                   // m3b[2].x = m3a[2].x * f; m3b[2].y = m3a[2].y * f;

                   // m3b[2].z = m3a[2].z * f;    

  Multiplication of a Matrix and a Vector  

 For multiplication,    the result is the sum of products of each element in a matrix and 
vector. This result is the same as  Equation   3.5    that you saw back in  Chapter   3   , “Drawing 
and Transforming Triangles”:  
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  v3b = m3a * v3a;  // v3b.x = m3a[0].x * v3a.x + m3a[1].x * v3a.y

                    //                          + m3a[2].x * v3a.z;

                    // v3b.y = m3a[0].y * v3a.x + m3a[1].y * v3a.y

                    //                          + m3a[2].y * v3a.z;

                    // v3b.z = m3a[0].z * v3a.x + m3a[1].z * v3a.y

                    //                          + m3a[2].z * v3a.z;    

  Multiplication of a Vector and a Matrix  

 Multiplication of a vector and a matrix is possible, as you can see from the following 
expressions. Note that this result is different from that when multiplying a matrix by a 
vector:  

  v3b = v3a * m3a; // v3b.x = v3a.x * m3a[0].x + v3a.y * m3a[0].y

                   //                          + v3a.z * m3a[0].z;

                   // v3b.y = v3a.x * m3a[1].x + v3a.y * m3a[1].y

                   //                          + v3a.z * m3a[1].z;

                   // v3b.z = v3a.x * m3a[2].x + v3a.y * m3a[2].y

                   //                          + v3a.z * m3a[2].z;    

  Multiplication of Matrices  

 This is the same as Equation 4.4 in  Chapter   4   , “More Transformations and Basic 
Animation”:  

  m3c = m3a * m3b; // m3c[0].x = m3a[0].x * m3b[0].x + m3a[1].x * m3b[0].y

                   //                                + m3a[2].x * m3b[0].z;

                   // m3c[1].x = m3a[0].x * m3b[1].x + m3a[1].x * m3b[1].y

                   //                                + m3a[2].x * m3b[1].z;

                   // m3c[2].x = m3a[0].x * m3b[2].x + m3a[1].x * m3b[2].y

                   //                                + m3a[2].x * m3b[2].z;

  

                   // m3c[0].y = m3a[0].y * m3b[0].x + m3a[1].y * m3b[0].y

                   //                                + m3a[2].y * m3b[0].z;

                   // m3c[1].y = m3a[0].y * m3b[1].x + m3a[1].y * m3b[1].y

                   //                                + m3a[2].y * m3b[1].z;

                   // m3c[2].y = m3a[0].y * m3b[2].x + m3a[1].y * m3b[2].y

                   //                                + m3a[2].y * m3b[2].z;

  

                   // m3c[0].z = m3a[0].z *  m3b[0].x + m3a[1].z * m3b[0].y

                   //                                + m3a[2].z * m3b[0].z;

                   // m3c[1].z = m3a[0].z * m3b[1].x + m3a[1].z * m3b[1].y

                   //                                + m3a[2].z * m3b[1].z;

                   // m3c[2].z = m3a[0].z * m3b[2].x + m3a[1].z * m3b[2].y

                   //                                + m3a[2].z * m3b[2].z;      
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  Structures  
 GLSL ES     also supports user-defined types, called  structure s, which aggregate other already 
defined types using the keyword  struct . For example:  

  struct light {   // defines the structure "light"

    vec4 color;

    vec3 position;

  }

  light l1, l2;    // declares variable "l1" and "l2" of the type "light"   

 This example defines the new structure type  light  that consists of two members: the vari-
able  color  and  position . Then two variables  l1  and  l2  of type  light  are declared after the 
definition. Unlike C, the  typedef  keyword is not necessary because, by default, the name 
of the structure becomes the name of the type.  

 In addition, as a convenience, variables of the new type can be declared with the defini-
tion of the structure, as follows:  

  struct light {   // declares structure and its variable all together

    vec4 color;    // color of a light

    vec3 position; // position of a light

  } l1;            // variable "l1" of the structure   

  Assignments and Constructors  

 Structures     support the standard constructor, which has the same name as the structure. 
The arguments to the constructor must be in the same order and of the same type as they 
were declared in the structure.  Figure   6.2    shows an example.  
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 Figure 6.2   A constructor of structure          

  Access to Members  

 Each member    of a structure can be accessed by appending the variable name with a period 
(.) and then the member name. For example:  

  vec4 color = l1.color;

  vec3 position = l1.position;    
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  Operations   

  For each member in the structure, you can use any operators allowed for that member’s 
type. However, the operators allowed for the structure itself are only the assignment ( = ) 
and comparative operators ( ==  and  != ); see Table 6.9.    

  Table 6.9   The Operators Available for a Structure  

  Operator     Operation     Description   

  =    Assignment   The assignment and comparison operators are not allowed for 
the structures that contain arrays or sampler types    ==,!=    Comparison  

 When using the  ==  operator, the result is  true  if, and only if, all the members are 
component-wise equal. When using the !=, the result is  false  if one of the members is 
not component-wise equal.    

  Arrays  
 GLSL ES     arrays have a similar form to the array in JavaScript, with only one-dimensional 
arrays being supported. Unlike arrays in JavaScript, the  new  operator is not necessary to 
create arrays, and methods such as  push()  and  pop()  are not supported. The arrays can be 
declared by a name followed by brackets ( [] ) enclosing their sizes. For example:  

  float floatArray[4]; // declares an array consisting of four floats

  vec4 vec4Array[2];   // declares an array consisting of two vec4s   

 The array size must be specified as an   integral constant expression  greater than zero 
where the integral constant expression is defined as follows:  

    •   A numerical value (for example, 0 or 1)   

   •   A global or local variable qualified as  const , excluding function parameters (see the 
section “const Variables”)   

   •   Expressions composed of both of the above    

 Therefore, the following will result in an error:  

  int size = 4;

  vec4 vec4Array[size]; // Error. If you declare "const int size = 4;"

                        // it will not result in an error   

 Note that arrays cannot be qualified as  const .  
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 Array elements can   be accessed using the array indexing operator ([]). Note that, like C, 
the index starts from 0. For example, the third element of the float Array defined earlier 
can be accessed as follows:  

  float f = floatArray[2];   

 Only an integral constant expression or uniform variable (see the section “Uniform 
Variables”) can be used as an index of an array. In addition, unlike JavaScript or C, an 
array cannot be initialized at declaration time. So each element of the array must be 
initialized explicitly as follows:  

  vec4Array[0] = vec4(4.0, 3.0, 6.0, 1.0);

  vec4Array[1] = vec4(3.0, 2.0, 0.0, 1.0);   

 Arrays support  only  []  operators. However, elements in an array do support the standard 
operators available for their type. For example, the following operator can be applied to 
the elements of  floatArray  or  vec4Array :  

  // multiplies the second element of floatArray by 3.14

  float f = floatArray[1] * 3.14;

  // multiplies the first element of vec4Array by vec4(1.0, 2.0, 3.0, 4.0);

  vec4 v4 = vec4Array[0] * vec4(1.0, 2.0, 3.0, 4.0);    

  Samplers  
 GLSL ES supports     a dedicated type called sampler for accessing textures. (See  Chapter   5   , 
“Using Colors and Texture Images.”) Two types of samplers are available:  sampler2D  and 
 samplerCube . Variables of the  sampler  type can be used only as a uniform variable (see 
the section “Uniform Variables”) or an argument of the functions that can access textures 
such as  texture2D() . (See  Appendix   B   .) For example:  

  uniform sampler2D u_Sampler;   

 In addition, the only value that can be assigned to the variable is a texture unit number, 
and you must use the WebGL method  gl.uniform1i()  to set the value. For example, 
 TexturedQuad.js  in  Chapter   5    uses  gl.uniform1i(u_Sampler, 0)  to pass the texture unit 
0 to the shader.  

 Variables of type  sampler  are not allowed to be operands in any expressions other than  = , 
 == , and  != .  

 Unlike other types explained in the previous sections, the number of  sampler  type vari-
ables is limited depending on the shader type (see Table 6.10  ). In the table, the keyword 
 mediump  is a precision qualifier. (This qualifier is explained in detail in the section 
“Precision Qualifiers,” toward the end of this chapter.)    
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  Table 6.10   Minimum Number of Variables of the Sampler Type  

  Shaders that Use the 

Variable   

  Built-In Constants Representing the 

Maximum Number   

  Minimum Number   

  Vertex shader     const mediump int 
gl_MaxVertexTextureImageUnits   

 0  

  Fragment shader     const mediump int 
gl_MaxTextureImageUnits   

 8  

  Precedence of Operators  
 Operator precedence     is shown in  Table   6.11   . Note the table contains several operators that 
are not explained in this book but are included for reference.  

  Table 6.11   The Precedence of Operators  

  Precedence     Operators   

  1    parenthetical grouping (())  

  2    function calls, constructors (()), array indexing ([]), period (.)  

  3    increment/decrement (++, --), negate (-),  inverse(~) , not(!)  

  4    multiplication (*), division (/),  remainder (%)   

  5    addition (+), subtraction (-)  

  6     bit-wise shift (<<, >>)   

  7    comparative operators (<, <=, >=, >)  

  8    equality (==, !=)  

  9     bit-wise and (&)   

  10     bit-wise exclusive or (^)   

  11     bit-wise or (|)   

  12    and (&&)  

  13    exclusive or (^^)  

  14    or (||)  

  15    ternary selection (? :)  

  16    assignment (=), arithmetic assignments (+=, -=, *=, /=,  %=, 

<<=, >>=, &=, ^=, |= )  

  17    sequence(,)  

 Bold font indicates operators reserved for future versions of GLSL.   
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  Conditional Control Flow and Iteration  
 Conditional control flow    and iteration in the shading language are almost the same as in 
JavaScript or C.  

  if Statement and if-else Statement  

 A conditional control flow   can use either  if  or  if-else . An  if-else  statement follows the 
pattern shown here:  

  if ( conditional-expression1 ) {

     commands here are executed if conditional-expression1 is true. 

  } else if ( conditional-expression2 ) {

      commands here are executed if conditional-expression1 is false but conditional-

expression2 is true. 

  } else {

      commands here are executed if conditional-expression1 is false and conditional-

expression2 is false. 

  }   

 The following shows a code example using the  if-else  statement:  

  if(distance < 0.5) {

    gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0); // red

  } else {

    gl_FragColor = vec4(0.0, 1.0, 0.0, 1.0); // green

  }   

 As shown in this example, the conditional expression in the  if  or  if-else  statement must 
be either a boolean value or an expression that becomes a boolean value. Boolean vector 
types, such as  bvec2 , are not allowed in the conditional expression.  

  Switch  statement are not allowed, and you should note that usage of the  if  or  if-else  
statement will slow down the shaders.   

  for Statement  

 The  for  statement can be  used as follows:  

  for ( for-init-statement ;  conditional-expression ;  loop-index-expression ) {

     the commands which you want to execute repeatedly .

  }   

 For example:  

  for (int i = 0; i < 3; i++) {

    sum += i;

  }   
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 Note that the loop index ( i  in the preceding example) of the  for  statement can be 
declared only in the  for-init-statement . The  conditional-expression  can be omitted, and an 
empty condition becomes true. The  for  statement has the following restrictions:  

    •   Only a single loop index is allowed. The loop index must have the type  int  or 
 float .   

   •    loop-index-expression  must have one of the following forms (supposing that  i  is a 
loop index):  

  i++ ,  i-- ,  i+=  constant-expression ,  i-=  constant-expression    

   •    conditional-expression  is a comparison between a loop index and an integral constant 
expression. (See the section “Array.”)   

   •   Within the body of the loop, the loop index cannot be assigned.    

 These limitations are in place so that the compiler can perform inline expansion of  for  
statements.   

  continue, break, discard Statements  

 Just like    JavaScript or C,  continue  and  break  statements are allowed only within a  for  
statement and are generally used within  if  statements:  

    continue  skips the remainder of the body of the innermost loop containing the 
continue, increases/decreases the loop index, and then moves to the next loop.   

   break  exits the innermost loop containing the break. No further execution of the loop is 
done.    

 The following show examples of the  continue  statement:  

  for (int i = 0; i < 10; i++) {

    if (i == 8) {

       continue; // skips the remainder of the body of the innermost loop

    }

    // When i == 8, this line is not executed

  }   

 The following shows an example of the  break  statement:  

  for (int i = 0; i < 10; i++) {

    if (i == 8) {

      break; // exits "for" loop

    }

    // When i >= 8, this line is not executed.

  }

  // When i == 8, this line is executed.   
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 The  discard  statement is only allowed in fragment shaders and discards the current frag-
ment, abandoning the operation on the current fragment and skipping to the next frag-
ment. The use of  discard  will be explained in more detail in the section “Make a Rounded 
Point” in  Chapter   10   , “Advanced Techniques.”    

  Functions  
 In contrast   to the way functions are defined in JavaScript, the functions in GLSL ES are 
defined in the same manner as in C. For example:  

   returnType functionName ( type0 arg0 ,  type1 arg1 , ...,  typen argn ) {

     do some computation 

    return  returnValue ;

  }   

 Argument  type s must use one of the data types explained in this chapter, and like  main() , 
functions with no arguments are allowed. When the function returns no value, the  return  
statement does not need to be included. In this case,  returnType  must be  void . You can 
also specify a structure as the  returnValue , but the structure returned cannot contain an 
array.  

 The following example shows a function to convert an RGBA value into a luminance 
value:  

  float luma (vec4 color) {

    float r = color.r;

    float g = color.g;

    float b = color.b;

    return 0.2126 * r + 0.7162 * g + 0.0722 * b;

    // The preceding four lines could be rewritten as follows:

    // return 0.2126 * color.r + 0.7162 * color.g + 0.0722 * color.b;

  }   

 You can call the function declared above in the same manner as in JavaScript or C by 
using its name followed by a list of arguments in parentheses:  

  attribute vec4 a_Color; // (r, g, b, a) is passed

  void main() {

    ...

    float brightness = luma(a_Color);

    ...

  }   

 Note that an error will result if, when called, argument types do not match the declared 
parameter types. For example, the following will result in an error because the type of the 
parameter is float, but the caller passes an integer:  
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  float square(float value) {

    return value * value;

  }

  void main() {

    ...

    float x2 = square(10); // Error: Because 10 is integer. 10.0 is OK.

    ...

  }   

 As you can see from the previous examples, functions work just like those in JavaScript 
or C except that you cannot call the function itself from inside the body of the function 
(that is, a recursive call of the function isn’t allowed). For the more technically minded, 
this is because the compilers can in-line function calls.  

  Prototype Declarations  

 When    a function is called before it is defined, it must be declared with a prototype. The 
prototype declaration tells WebGL in advance about the types of parameters and the 
return value of the function. Note that this is different from JavaScript, which doesn’t 
require a prototype. The following is an example of a prototype declaration for  luma() , 
which you saw in the previous section:  

  float luma(vec4); // a prototype declaration

  main() {

  ...

  float brightness = luma(color); // luma() is called before it is defined.

  ...

  }

  

  float luma (vec4 color) {

    return 0.2126 * color.r + 0.7162 * color.g + 0.0722 * color.b;

  }    

  Parameter Qualifiers  

 GLSL ES     supports qualifiers for parameters that control the roles of parameters within a 
function. They can define that a parameter (1) is to be passed into a function, (2) is to be 
passed back out of a function, and (3) is to be passed both into and out of a function. (2) 
and (3) can be used just like a pointer in C. These are shown in  Table   6.12   .  
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  Table 6.12   Parameter Qualifiers  

  Qualifiers     Roles     Description   

  in    Passes a value into the function   The parameter is passed by value. 
Its value can be referred to and 
modified in the function. The caller 
cannot refer to the modification.  

  const in    Passes a value into the function   The parameter is passed by 
constant value. Its value can be 
referred to but cannot be modified.  

  out    Passes a value out of the function   The parameter is passed by refer-
ence. If its value is modified, the 
caller can refer to the modification.  

  inout    Passes a value both into/out of the 
function  

 The parameter is passed by refer-
ence, and its value is copied in the 
function. Its value can be referred 
to and modified in the function. The 
caller can also refer to the modifica-
tion.  

  <none: 
default>   

 Passes a value into the function   Same as  in .  

 For example,  luma()  can return the result of its calculation using a parameter qualified by 
 out  instead of a return value, as follows:  

  void luma2 (in vec3 color, out float brightness) {

    brightness = 0.2126 * color.r + 0.7162 * color.g + 0.0722 * color.b;

  }   

 Because the function itself no longer returns a value, the return type of this function is 
changed from  float  to  void . Additionally, the qualifier  in , in front of the first parameter, 
can be omitted because  in  is a default parameter qualifier.  

 This function can be used as follows:  

  luma2(color, brightness); // the result is stored into "brightness"

                            // same as brightness = luma(color)     

  Built-In Functions  
 In addition    to user-defined functions, GLSL ES supports a number of built-in functions 
that perform operations frequently used in computer graphics.  Table   6.13    gives an over-
view of the built-in functions in GLSL ES, and you can look at  Appendix   B    for the detailed 
definition of each function.  
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  Table 6.13   Built-In Functions in GLSL ES  

  Category     Built-In Functions   

  Angle functions     radians   (converts degrees to radians),  degrees  (converts radians to 
degrees)  

  Trigonometry 
functions   

  sin   (sine function),  cos  (cosine function),  tan  (tangent function),  asin  
(arc sine function),  acos  (arc cosine function), and  atan  (arc tangent 
function)  

  Exponential 
functions   

  pow  (x y ),   exp  (natural exponentiation),  log  (natural logarithm),  exp 2 (2 x ), 
 log2  (base 2 logarithm),  sqrt  (square root), and  inversesqrt  (inverse 
of  sqrt )  

  Common functions     abs   (absolute value),  min  (minimum value),  max  (maximum value),  mod  
(remainder),  sign  (sign of a value),  floor  (floor function),  ceil  (ceil 
function),  clamp  (clamping of a value),  mix  (linear interpolation),  step  
(step function),  smoothstep  (Hermite interpolation), and  fract  (frac-
tional part of the argument)  

 Geometric  functions     length   (length of a vector),  distance  (distance between two points), 
 dot  (inner product),  cross  (outer product),  normalize  (vector with 
length of 1),  reflect  (reflection vector), and  faceforward  (converting 
normal when needed to “faceforward”)  

  Matrix functions      matrixCompMult  (component-wise multiplication)  

  Vector relational 
functions   

  lessThan   (component-wise “<”),  lessThanEqual  (component-wise 
“<=”),  greaterThan  (component-wise “>”),  greaterThanEqual  
(component-wise “>=”),  equal  (component-wise “==”),  notEqual  
(component-wise “!=”),  any  (true if any component is true),  all  (true if 
all components are true), and  not  (component-wise logical complement)  

  Texture lookup 
functions   

  texture2D   (texture lookup in the 2D texture),  textureCube  (texture 
lookup in the cube map texture),  texture2DProj  (projective version of 
texture2D()),  texture2DLod  (level of detail version of texture2D()), 
 textureCubeLod  (lod version of textureCube()), and 
 texture2DProjLod  (projective version of texture2DLod())  

  Global Variables and Local Variables  
 Just like     JavaScript or C, GLSL ES supports both global variables and local variables. Global 
variables can be accessed from anywhere in the program, and local variables can be 
accessed only from within a limited portion of the program.  

 In GLSL ES, in a similar manner to JavaScript or C, variables declared “outside” a function 
become global variables, and variables declared “inside” a function become local variables. 
The local variables can be accessed only from within the function containing them. For 
this reason, the attribute, uniform, and varying variables described in the next section 
must be declared as global variables because they are accessed from outside the function.   
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  Storage Qualifiers  
 As       explained in the previous chapters, GLSL ES supports storage qualifiers for attribute, 
uniform, and varying variables (see  Figure   6.3   ). In addition, a  const  qualifier is supported 
to specify a constant variable to be used in a shader program.  
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 Figure 6.3   Attribute, uniform, and varying variables         

  const Variables  

 Unlike   JavaScript, GLSL ES supports the  const  qualifier to specify a constant variable, or 
one whose value cannot be modified.  

 The  const  qualifier is specified in front of the variable type, just like an attribute vari-
able. Variables qualified by  const  must be initialized at their declaration time; otherwise, 
they are unusable because no data can be assigned to them after their declaration. Some 
examples include:  

  const int lightspeed = 299792458;          // light speed (m/s)

  const vec4 red = vec4(1.0, 0.0, 0.0, 1.0); // red

  const mat4 identity = mat4(1.0);           // identity matrix   

 Assigning data to the variable qualified by  const  will result in an error. For example:  

  const int lightspeed;

  lightspeed = 299792458;   

 will result in the following error message:  

  failed to compile shader: ERROR: 0:11: 'lightspeed' : variables

  with qualifier 'const' must be initialized

  ERROR: 0:12: 'assign': l-value required (can't modify a const variable)    
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  Attribute Variables  

 As  you   have seen in previous chapters, attribute variables are available only in vertex 
shaders. They must be declared as a global variable and are used to pass per-vertex data 
to the vertex shader. You should note that it is “per-vertex.” For example, if there are two 
vertices, (4.0, 3.0, 6.0) and (8.0, 3.0, 0.0), data for each vertex can be passed to an attribute 
variable. However, data for other coordinates, such as (6.0, 3.0, 3.0), which is a halfway 
point between the two vertices and not a specified vertex, cannot be passed to the vari-
able. If you want to  do that, you need to add the coordinates as a new vertex. Attribute 
variables can only be used with the data types  float ,  vec2 ,  vec3 ,  vec4 ,  mat2 ,  mat3 , and 
 mat4 . For example:  

  attribute vec4 a_Color;

  attribute float a_PointSize;   

 There is an implementation-dependent limit on the number of attribute variables avail-
able, but the minimum number is 8. The limits on the number of each type of variable are 
shown in  Table   6.14   .  

  Table 6.14   The Limitation on the Number of Attribute, Uniform, and Varying Variables  

  

Types of Variables   

  The Built-In Constants for the 

Maximum Number   

  Minimum 

Number   

  attribute variables     const mediump int 
gl_MaxVertexAttribs   

 8  

  uniform      variables     Vertex shader     const mediump int 
gl_MaxVertexUniformVectors   

 128  

  Fragment shader     const mediump int 
gl_MaxFragmentUniformVectors   

 16  

  varying variables     const mediump int 
gl_MaxVaryingVectors   

 8  

  Uniform Variables  

  Uniform   variables are allowed to be used in both vertex and fragment shaders and must 
be declared as global variables. Uniform variables are read-only and can be declared as any 
data types other than array and structure. If a uniform variable of the same name and data 
type is declared in both a vertex shader and a fragment shader, it is shared between them. 
Uniform variables contain “uniform” (common) data, so your JavaScript program must 
only use them to pass such data. For example, because transformation matrices contain 
the uniform values for all vertices, they can be passed to uniform  variables:  

  uniform mat4 u_ViewMatrix;

  uniform vec3 u_LightPosition;   
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 There is an implementation-dependent limit on the number of uniform variables that can 
be used ( Table   6.14   ). Note that the limit in a vertex shader is different from that in a frag-
ment shader.   

  Varying Variables  

 The last   type of qualifier is  varying . Varying variables also must be declared as global 
variables and are used to pass data from a vertex shader to a fragment shader by declaring 
a variable with the same type and name in both shaders. (See  v_Color  in  Listing   6.1    and 
 Listing   6.2   .) The following are examples of varying variable declarations:  

  varying vec2 v_TexCoord;

  varying vec4 v_Color;   

 Just like attribute variables, the varying variables can be declared only with the following 
data types:  float ,  vec2 ,  vec3 ,  vec4 ,  mat2 ,  mat3 , and  mat4 . As explained in  Chapter   5   , the 
value of a varying variable written by a vertex shader is not passed to a fragment shader as 
is. Rather, the rasterization process between the vertex and fragment shaders interpolates 
the value according to the shape to be drawn, and then the interpolated value is passed 
per fragment. This interpolation process is the reason for the limitations on the data types 
that can be used with a varying variable.  

 The number of varying variables also has an implementation dependent limit. The 
minimum number is 8 (see  Table   6.14   ).    

  Precision Qualifiers  
 Precision     qualifiers were newly introduced in GLSL ES to make it possible to execute 
shader programs more efficiently and to reduce their memory size. As the name suggests, 
it is a simple mechanism to specify how much precision (the number of bits) each data 
type should have. Simply put, specifying higher precision data requires more memory 
and computation time, and specifying lower precision requires less. By using these quali-
fiers, you can exercise fine-grained control over aspects of performance and size. However, 
precision qualifiers are optional, and a reasonable default compromise can be specified 
using the following lines:  

  #ifdef GL_ES

  precision mediump float;

  #endif   

 Because WebGL is based on OpenGL ES 2.0, which was designed for consumer electronics 
and embedded systems, WebGL programs may end up executing on a range of hardware 
platforms. In some cases, the computation time and memory efficiency could be improved 
by using lower precision data types when performing calculations and operations. Perhaps 
more importantly, this also enables reduced power consumption and thus extended 
battery life on mobile devices.  



ptg11539634

CHAPTER 6  The OpenGL ES Shading Language (GLSL ES)220

 You should note, however, that just specifying lower precision may lead to incorrect 
results within WebGL, so it’s important to balance efficiency and correctness.  

 As shown in  Table   6.15   , WebGL supports three types of precision qualifiers:     highp  (high 
precision),  mediump  (medium precision), and  lowp  (lower precision).  

  Table 6.15   Precision Qualifiers  

  Precision 

Qualifiers   

  

Descriptions   

  

Default Range and Precision   

  Float     int   

  highp    High precision. The minimum precision 
required for a vertex shader.  

 (–2 62 , 2 62 )  

 Precision: 2 –  16   

 (–2 16 , 2 16 )  

  mediump   Medium precision. The minimum precision 
required for a fragment shader. More than 
 lowp , and less than  highp .  

 (–2 14 , 2 14 )  

 Precision: 2 –  10   

 (–2 10 , 2 10 )  

  lowp    Low precision. Less than  mediump , but all 
colors can be represented.  

 (–2, 2)  

 Precision: 2 –  8   

 (–2 8 , 2 8 )  

 There are a couple of things to note. First, fragment shaders may not support  highp  in 
some WebGL implementations; a way to check this is shown later in this section. Second, 
the actual range and precision are implementation dependent, which you can check by 
using  gl.getShaderPrecisionFormat() .  

 The following are examples of the declaration of variables using the precision qualifiers:  

  mediump float size;  // float of medium precision

  highp vec4 position; // vec4 composed of floats of high precision

  lowp vec4 color;     // vec4 composed of floats of lower precision   

 Because specifying a precision for all variables is time consuming, a default for each data 
type can be set using the keyword  precision , which must be specified at the top of a 
vertex shader or fragment shader using the following syntax:  

  precision  precision-qualifier name-of-type ;   

 This sets the precision of the data type specified by  name-of-type  to the precision specified 
by  precision-qualifier . In this case, variables declared without a precision qualifier have this 
default precision automatically set. For example:  

  precision mediump float; // All floats have medium precision

  precision highp int;     // All ints have high precision   



ptg11539634

Preprocessor Directives 221

 This specifies all data types related to float, such as  vec2  and  mat3 , to have medium preci-
sion, and all integers to have high precision. For example, because  vec4  consists of four 
float types, each float of the vector is set to medium precision.  

 You may have noticed that in the examples in previous chapters, you didn’t specify preci-
sion qualifiers to the data types other than  float  in fragment shaders. This is because 
most data types have a default precision value; however, there is no default precision for 
 float  in a fragment shader. See  Table   6.16    for details.  

  Table 6.16   Default Precision of Type  

  Type of Shader     Data Type     Default Precision   

  Vertex shader     int     highp   

  float     highp   

  sampler2D     lowp   

  samplerCube     lowp   

  Fragment shader     int     medium   

  float     None   

  sampler2D     lowp   

  samplerCube     lowp   

 The fact that there is no default precision for float requires programmers to carefully use 
floats in their fragment shaders. So, for example, using a float without specifying the 
precision will result in the following error:  

  failed to compile shader: ERROR: 0:1 : No precision specified for (float).   

 As mentioned, whether a WebGL implementation supports  highp  in a fragment shader is 
implementation dependent. If it is supported, the built-in macro  GL_FRAGMENT_PRECISION_
HIGH  is defined (see the next section).   

  Preprocessor Directives  
 GLSL ES supports   preprocessor directives, which are commands (directives) for the prepro-
cessor stage before actual compilation. They are always preceded by a hash mark ( # ). The 
following example was used in  ColoredPoints.js :  

  #ifdef GL_ES

  precision mediump float;

  #endif   
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 These lines check to see if the macro  GL_ES  is defined, and if so the lines between  #ifde f 
and  #endif  are executed. They are similar to an  if  statement in JavaScript or C.  

 The following three preprocessor directives are available in GLSL ES:  

  #if  constant-expression 

   If the constant-expression is true, this part is executed. 

  #endif

  

  #ifdef  macro 

   If the macro is defined, this part is executed. 

  #endif

  

  #ifndef  macro 

   If the macro is not defined, this part is executed. 

  #endif   

 The   #define  is used to define macros. Unlike C, macros in GLSL ES cannot have macro 
parameters:  

  #define  macro-name string    

 You can use   #undef  to undefine the macro:  

  #undef  macro-name    

 You can use   #else  directives just like an  if  statement in JavaScript or C. For example:  

  #define NUM 100

  #if NUM == 100

   If NUM == 100 then this part is executed. 

  #else

   If NUM != 100 then this part is executed. 

  #endif   

 Macros can use any name except for the predefined macros names shown in  Table   6.17   .  

  Table 6.17   Predefined  Macros  

  Macro     Description   

  GL_ES    Defined and set to 1 in OpenGL ES 2.0  

  GL_FRAGMENT_PRECISION_HIGH     highp  is supported in a fragment shader  
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 So you can use the macro with preprocessor directives as follows:  

  #ifdef GL_ES

  #ifdef GL_FRAGMENT_PRECISION_HIGH

  precision highp float; // highp is supported. floats have high precision

  #else

  precision mediump float; // highp is not supported. floats have medium precision

  #endif

  #endif   

 You can specify which version of GLSL ES is used in the shader by using the   #version  
directive:  

  #version number   

 Accepted versions include 100 (for GLSL ES 1.00) and 101 (for GLSL ES 1.01). By default, 
shaders that do not include a  #version  directive will be treated as written in GLSL ES 
version 1.00. The following example specifies version 1.01:  

  #version 101   

 The  #version  directive must be specified at the top of the shader program and can only be 
preceded by comments and white space.    

     Summary  
 This chapter explained the core features of the OpenGL ES Shading Language (GLSL ES) in 
some detail.  

 You have seen that the GLSL ES shading language has many similarities to C but has 
been specialized for computer graphics and has had unnecessary C features removed. The 
specialized computer graphics features include support for vector and matrix data types, 
special component names for accessing the components of a vector or matrix, and opera-
tors for a vector or matrix. In addition, GLSL ES supports many built-in functions for oper-
ations frequently used in computer graphics, all designed to allow you to create efficient 
shader programs.  

 Now that you have a better understanding of GLSL ES, the next chapter will return to 
WebGL and explore more sophisticated examples using this new knowledge.       
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  Chapter 7 

 Toward the 3D World  

    In the previous chapters, we used examples based on 2D geometrical shapes 
to explain how the WebGL system works and how it supports the behavior 
of shaders, transformations such as translation and rotation, animation, and 
texture mapping. However, the techniques you’ve learned so far can be applied 
not only to 2D shapes but also to 3D objects. In this chapter you’ll take the first 
step into the 3D world and explore the implications of moving from 2D to 3D. 
In particular, you will explore:  

    •   Representing the user’s view into the 3D world   

   •   Controlling the volume of 3D space that is viewed   

   •   Clipping   

   •   Handling foreground and background objects   

   •   Drawing a 3D object (a cube)    

 All these issues have a significant impact on how the 3D scene is drawn and 
presented to viewers, and a mastery of them is critical to building compel-
ling 3D scenes. As usual, we’ll take you step by step so you will quickly master 
the basics and be able to move on to the more complex issues of lighting and 
performance in the final chapters.   

     What’s Good for Triangles Is Good for Cubes  
 So far, you’ve used the humble triangle in  many of the explorations and 
programs. As previously discussed, you’ve seen how 3D objects are composed 
of 2D shapes—in particular the triangle.  Figure   7.1    shows a cube that has been 
built up from 12 triangles.  
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 Figure 7.1   A cube composed of triangles         

 So when you deal with 3D objects, you just need to apply the techniques you have 
learned to each triangle that makes up the objects. The only difference from past exam-
ples, and it’s a significant one, is that you now need to consider the  depth information  
of the triangles in addition to the x and y coordinates. Let’s begin by exploring how you 
specify and control the viewing direction—that is, the view into the 3D scene the user 
has—and then look at the visible range that controls how much of the scene the user sees. 
The explanations focus on the basic  triangle because it simplifies things; however, what’s 
true for triangles is true for 3D objects.   

  Specifying the Viewing Direction  
 The critical factor when considering 3D objects is that they have depth in a 3D space. 
This means you need to take care of several  issues that you didn’t have to consider when 
using 2D shapes. First, because  of the nature of 3D space, you can look at the object from 
anywhere in the space; that is, your viewpoint can be anywhere. When describing the way 
you view objects, two important points need consideration:  

    •   The viewing direction (where you are looking from, and at which part of the scene 
are you looking?)   

   •   The visible range (given the viewing direction, where can you actually see?)    

 In this first section let’s explore viewing direction and the techniques that allow you to 
place the eye point anywhere in 3D space and then look at objects from various direc-
tions. You’ll take a look at the second item and see how to specify the visible range in the 
next section.  

 As introduced in  Chapter   2   , “Your First Step with WebGL” (refer to  Figure   2.16   ), let’s 
assume that, by default, the eye point is placed at the origin (0, 0, 0), and the line of sight 
extends along the z-axis in the negative direction (inward toward your computer screen). 
In this section, you will move the eye point from the default location to other locations 
and then view a triangle from there.  
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 Let’s construct a sample program,  LookAtTriangles , that locates the eye point at (0.20, 
0.25, 0.25) and then views three triangles from there toward the origin (0, 0, 0). Using 
three triangles makes it easy to understand the depth information in the 3D scene.  Figure 
  7.2    shows a screen shot of  LookAtTriangles  and the color and z coordinate of each 
triangle.  

 
 Figure 7.2   LookAtTriangles (left), and the color and z coordinate of each triangle (right)               

 The program uses softer colors because they are easier on the eyes.  

  Eye Point, Look-At Point, and Up Direction  

 To specify where you are looking from and which part of the scene you are looking at in 
the 3D space, you need two items of position  information: the eye point (where you are 
looking from) and the look-at point (which part of the scene you are looking at). In addi-
tion, in 3DCG, you need to specify which direction is up in the scene. As such, a total of 
three items of information are required to specify the viewing direction (see  Figure   7.3   ).  
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 Figure 7.3   Eye point, look-at point, and up direction         
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    Eye point:  This is the starting point from which the 3D space is viewed. In the following 
sections, the coordinates of this   position are referred to as (eyeX, eyeY, eyeZ).   

   Look-at point:  This is the point at which you are looking and which determines the 
direction of the line of sight from the eye point. As the name suggests, the eye point is a 
point, not a vector, so another point (such as the look-at point) is required to determine 
the direction in which you are looking. The look-at   point is a point on the line of sight 
extending from the eye point. The coordinates of the look-at point are referred to as 
(atX, atY, atZ).   

   Up direction:  This determines the up direction in the scene that is being viewed from 
the eye point to the look-at point. If only   the eye point and the look-at point are deter-
mined, there is freedom to rotate the line of sight from the eye point to the look-at 
point. (In  Figure   7.4   , inclining the head causes the top and bottom of the scene to shift.) 
To define the rotation, you must determine the up direction along the line of sight. The 
up direction is specified by three numbers representing the direction. The coordinates for 
this direction are referred to as  (upX, upY, upZ).    
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 Figure 7.4   Eye point, look-at point, and up direction         

 In WebGL, you can specify the position and direction the eye point faces by converting 
these three items of information in a matrix and passing the matrix to a vertex shader. 
This matrix is called a view transformation matrix or  view matrix , because it changes 
the view of the scene. In  cuon-matrix.js , the method  Matrix4.setLookAt()  is defined 
to calculate the view matrix from the three items of information: eye point, look-at point 
and up direction.    

   Matrix4.setLookAt(eyeX, eyeY, eyeZ, atX, atY, atZ, upX, upY, upZ)   

 Calculate the view matrix derived from the eye point ( eyeX ,  eyeY ,  eyeZ ), the look-at point 
( atX ,  atY ,  atZ ), and the up direction ( upX ,  upY ,  upZ ). This view matrix is set up in the 
Matrix4 object. The look-at point is mapped to the center of the  <canvas> .  

  Parameters    eyeX, eyeY, eyeZ   Specify the position of the eye point  .

 atX, atY, atZ   Specify the position of the look-at point  .
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 upX, upY, upZ   Specify the up direction in the scene. If the up direction is 
along the positive y-axis, then ( upX ,  upY ,  upZ ) is (0, 1, 0).  

  Return value    None  

 In WebGL, the default settings when using  Matrix4.setLookAt()  are defined as follows:  

    •   The eye point is placed at (0, 0, 0) (that is, the origin of the coordinate system).   

   •   The look-at point is along the negative z-axis, so a good value is (0, 0, –1)  .1   The up 
direction is specified along the positive y-axis, so a good value is (0, 1, 0).     

 So, for example, if the up direction is specified as (1, 0, 0), the positive x-axis becomes the 
up direction; in this case, you will see the scene tilted by 90 degrees.  

 A view matrix representing  the default settings in WebGL can be simply produced as 
follows (see  Figure   7.5   ).  
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 Figure 7.5   An example of setLookAt()         

 Now you understand how to use the  method  setLookAt() , so let’s take a look at its use in 
an actual sample program.   

  Sample Program (LookAtTriangles.js)  

  LookAtTriangles.js , shown in  Listing   7.1   , is a program that changes the position of the 
eye point and then draws the    three triangles shown in  Figure   7.2   . Although it is difficult 
to see on paper, the three triangles are, in order of proximity, blue, yellow, and green, 
respectively, all fading to red in the bottom-right corner.  

  Listing 7.1   LookAtTriangles.js  

   1 // LookAtTriangles.js

    2 // Vertex shader program

    3 var VSHADER_SOURCE =

    4   'attribute vec4 a_Position;\n' +

    5   'attribute vec4 a_Color;\n' +

     6   'uniform mat4 u_ViewMatrix;\n' + 

 1    The z component could be any negative value. The value -1 is an example but we could have chosen 

any other negative value. 
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    7   'varying vec4 v_Color;\n' +

    8   'void main() {\n' +

     9   '  gl_Position = u_ViewMatrix * a_Position;\n' + 

   10   '  v_Color = a_Color;\n' +

   11   '}\n';

   12

   13 // Fragment shader program

   14 var FSHADER_SOURCE =

      ...

   18   'varying vec4 v_Color;\n' +

   19   'void main() {\n' +

   20   '  gl_FragColor = v_Color;\n' +

   21   '}\n';

   22

   23 function main() {

       ...

   40   // Set the vertex coordinates and color (blue triangle is in  front)

   41   var n = initVertexBuffers(gl);

       ...

    50   // Get the storage location of u_ViewMatrix variable 

    51   var u_ViewMatrix = gl.getUniformLocation(gl.program,'u_ViewMatrix'); 

       ...

   57   // Set the eye point, look-at point, and up direction

    58   var viewMatrix = new Matrix4(); 

    59   viewMatrix.setLookAt(0.20, 0.25, 0.25, 0, 0, 0, 0, 1, 0); 

   60

      61   // Pass the view matrix to u_ViewMatrix variable 

      62   gl.uniformMatrix4fv(u_ViewMatrix, false, viewMatrix.elements); 

      ...

   67   // Draw a triangle

   68   gl.drawArrays(gl.TRIANGLES, 0, n);

   69 }

   70

   71 function initVertexBuffers(gl) {

   72   var verticesColors = new Float32Array([

   73     // vertex coordinates and color

   74     0.0,  0.5,  -0.4,  0.4  1.0,  0.4, // The back  green triangle

   75    -0.5, -0.5,  -0.4,  0.4  1.0,  0.4,

   76     0.5, -0.5,  -0.4,  1.0,  0.4  0.4,

   77

   78     0.5,  0.4,  -0.2,  1.0,  0.4  0.4, // The middle yellow triangle

   79    -0.5,  0.4,  -0.2,  1.0,  1.0,  0.4,

   80     0.0, -0.6,  -0.2,  1.0,  1.0,  0.4,

   81

   82     0.0,  0.5,   0.0,  0.4  0.4  1.0,  // The front blue triangle
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   83    -0.5, -0.5,   0.0,  0.4  0.4  1.0,

   84  0.5, -0.5,   0.0,  1.0,  0.4  0.4

   85   ]);

   86   var n = 9;

   87

   88   // Create a buffer object

   89   var vertexColorbuffer = gl.createBuffer();

       ...

   96   gl.bindBuffer(gl.ARRAY_BUFFER, vertexColorbuffer);

   97   gl.bufferData(gl.ARRAY_BUFFER, verticesColors, gl.STATIC_DRAW);

       ...

  121   return n;

  122 }   

 This program is based on  ColoredTriangle.js  in  Chapter   5   , “Using Colors and Texture 
Images.” The fragment shader, the method of passing the vertex information, and so on, 
is the same as in  ColoredTriangle.js . The three main differences follow:  

    •   The view matrix is passed to the vertex shader (line 6) and then multiplied by the 
vertex coordinates (line 9).   

   •   The vertex coordinates and color values of the three triangles (line 72 to 85) are set 
up in  initVertexBuffers() , which is called from line 41 of  main()  in JavaScript.   

   •   The view matrix is calculated at lines 58 and 59 in  main()  and passed to the uniform 
variable  u_ViewMatrix  in the vertex shader at line 62. You should note that the posi-
tion of the eye point is (0.2, 0.25, 0.25); the position of the look-at point is (0, 0, 0); 
the up direction is (0, 1, 0).    

 Let’s start by looking at the second difference and the function  initVertexBuffers()  (line 
71). The difference between this program and the original program,  ColoredTriangle.
js , is that  verticesColors  at line 72 (which is the array of vertex coordinates and colors 
for a single triangle) is modified for the three triangles, and the z coordinates are added 
in the array. These coordinates and colors are stored together in the buffer object  vertex-
ColorBuffer  (lines 96 and 97) created at line 89. Because you are now dealing with three 
triangles (each with three vertices), you need to specify 9 as the third argument of  gl.
drawArrays()  at line 68.  

 To specify the view matrix (that is, where you are looking and which part of the scene you 
are looking at [item 3]), you need to set up and  pass the view matrix to the vertex shader. 
To do this, a  Matrix4  object  viewMatrix  is created at line 58, and you use  setLookAt()  to 
calculate and store the view matrix to  viewMatrix  at line 59. This view matrix is passed to 
 u_ViewMatrix  at line 62, which is the uniform variable used in the vertex shader:  

  57   // Set the eye point, look-at point, and up direction

   58   var viewMatrix = new Matrix4(); 

   59   viewMatrix.setLookAt(0.20, 0.25, 0.25, 0, 0, 0, 0, 1, 0); 

  60
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   61   // Pass the view matrix to the u_ViewMatrix variable 

   62   gl.uniformMatrix4fv(u_ViewMatrix, false, viewMatrix.elements);    

 Those are all the changes needed in the JavaScript program. Now let’s examine what is 
happening in the vertex shader:  

   2 // Vertex shader program

   3 var VSHADER_SOURCE =

   4   'attribute vec4 a_Position;\n' +

   5   'attribute vec4 a_Color;\n' +

    6   'uniform mat4 u_ViewMatrix;\n' + 

   7   'varying vec4 v_Color;\n' +

   8   'void main() {\n' +

    9   '  gl_Position = u_ViewMatrix * a_Position;\n' + 

  10   '  v_Color = a_Color;\n' +

  11   '}\n';   

 The vertex shader starts from line 4. The only two lines that differ from  ColoredTriangle.
js  are indicated by boldface: Line 6 defines the  uniform variable  u_ViewMatrix , and line 9 
multiplies the matrix by the vertex coordinates. These modifications seem quite trivial, so 
how do they change the position of the eye point?   

  Comparing  LookAtTriangles.js  with  RotatedTriangle_Matrix4.js   

 Looking at the vertex shader in this sample program, you may notice a similarity 
with that in  RotatedTriangle_Matrix4.js , which was explained in  Chapter   4   , “More 
Transformations and Basic Animation.” That   vertex shader created a rotation matrix using 
a  Matrix4  object and then used the matrix to rotate a triangle. Let’s take a look at that 
shader again:  

  1 // RotatedTriangle_Matrix4.js

  2 // Vertex shader program

  3 var VSHADER_SOURCE =

  4   'attribute vec4 a_Position;\n' +

   5   'uniform mat4 u_rotMatrix;\n' + 

  6   'void main() {\n' +

   7   '  gl_Position = u_rotMatrix * a_Position;\n' + 

  8   '}\n';   

 The vertex shader in this section ( LookAtTriangles.js ) is listed as follows:  

   1 // LookAtTriangles.js

   2 // Vertex shader program

   3 var VSHADER_SOURCE =

   4   'attribute vec4 a_Position;\n' +

   5   'attribute vec4 a_Color;\n' +

    6   'uniform mat4 u_ViewMatrix;\n' + 
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   7   'varying vec4 v_Color;\n' +

   8   'void main() {\n' +

    9   '  gl_Position = u_ViewMatrix * a_Position;\n' + 

  10   '  v_Color = a_Color;\n' +

  11   '}\n';   

 As you can see, the attribute variable for color values ( a_Color ) and the varying variable 
that passes the values to the fragment shader ( v_Color ) were added, and the name of the 
uniform variable was changed from  u_rotMatrix  to  u_ViewMatrix . Despite these differ-
ences, the calculation of the value assigned to  gl_Position  is the same as that in the 
vertex shader of  RotatedTriangle_Matrix4.js : multiplying a  mat4  matrix by  a_Position . 
(Compare line 7 in  RotatedTriangle_Matrix4.js  with line 9 in  LookAtTriangles.js .)  

 This tells you that the operation performing “where you are looking and which part of the 
scene you are looking at” is actually equivalent to transformations such as translating or 
rotating a triangle.  

 Let’s use an example to explain this. Assume that you are looking at a triangle from the 
origin (0, 0, 0) along the negative direction of the z-axis, and then the eye point moves to 
the position (0, 0, 1) (the left-side figure of  Figure   7.6   ). In this case, the distance between 
the eye point and the triangle has increased by 1.0 unit of the z-axis. To achieve the same 
effect, you could leave the eye point alone and instead move the triangle 1.0 unit away 
(the right-side figure of  Figure   7.6   ).  
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 Figure 7.6   Movement of the eye point is identical to that of objects in the scene         

 This is exactly what happens in our sample program. The  setLookAt()  method of the 
 Matrix4  object just calculates the matrix to carry out this transformation using the infor-
mation about the position of the eye point, look-at point, and up direction. So, by then 
multiplying the matrix by the vertex coordinates of the objects in the scene, you obtain 
the same effect as moving the eye point. Essentially, instead of moving the eye point 
in one direction, the objects viewed (that is, the world itself) are moved in the opposite 
direction. You can use the same approach to handle rotation of the eye  point.  

 Because moving the eye point is the same type of transformation as rotating or translating 
a triangle, you can represent both of them as a transformation matrix. Let’s look at how 
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you calculate the matrix when you want to rotate a triangle  and  move the position of the 
eye point.   

  Looking at Rotated Triangles from a Specified Position  

  RotatedTriangle_Matrix4  in  Chapter   4    displayed the triangle rotated around the z-axis. In 
this section, you modify  LookAtTriangles  to display the triangles viewed from a specified 
eye point along the line of sight. In this case, two matrices    are required: a rotation matrix 
to rotate the triangles and a view matrix to specify the view of the scene. The first issue to 
consider is in which order you should multiply them.  

 So far, you know that multiplying a matrix by a vertex coordinate will apply the trans-
formation defined by the matrix to the coordinates. That is to say, multiplying a rotation 
matrix by a vertex coordinate causes it to be rotated.  

 Multiplying a view matrix by a vertex coordinate causes the vertex to be transformed to 
the correct position as viewed from the eye position. In this sample program, we want to 
view the rotated triangles from a specified position, so we need to rotate the triangles and 
then look at them from the specified eye position. In other words, we need to rotate the 
three vertex coordinates comprising the triangle. Then we need to transform the rotated 
vertex coordinates (the rotated triangle) as we look at them from the specified position. 
We can achieve this by carrying out a matrix  multiplication in the order described in the 
previous sentence. Let’s check the equations.  

 As explained previously, if you want to rotate a shape, you need to multiply a rotation 
matrix by the vertex coordinates of the shape as follows:  

        

〈 〉 =
〈 〉 × 〈 〉

rotated vertex coordinates

rotation matrix original vertex coordinates

" "     

     

 By multiplying a view matrix by the rotated vertex coordinates in the preceding equation, 
you can obtain the rotated vertex coordinates that are viewed from the specified position.  

        

〈 〉 =
〈 〉 × 〈 〉

rotated vertex coordinates viewed from specified position

view matrix rotated vertex coordinates

" "     "       "  

  " "   

 If you substitute the first expression into the second one, you obtain the following:  

〈 〉 =
〈 〉 × 〈 〉 × 〈 〉

rotated vertex coordinates viewed from specified position

view matrix rotation matrix original vertex coordinates

" "     "       " 

                

 In this expression, you use a rotation matrix, but you can also apply a translation matrix, 
a scaling matrix, or a combination of them. Such a matrix is generally called a  model 
matrix . Using that term, you can rewrite the expression shown in  Equation   7.1   .  

Equation 7.1

〈 〉 × 〈 〉 × 〈 〉view matrix model matrix vertex coordinates                
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 Now you need to implement this expression in a shader program, but because it is quite 
a simple expression, you can implement it as-is in a vertex shader. The sample program 
 LookAtRotatedTriangles  implements the transformation, and a screen shot is shown in 
 Figure   7.7   . Note, in this figure, that the white dashed line shows the triangle before rota-
tion so that you can easily see the rotation.  

 
 Figure 7.7   LookAtRotatedTriangles          

  Sample Program (LookAtRotatedTriangles.js)  

  LookAtRotatedTriangles.js  is programmed by slightly modifying  LookAtTriangles.js . 
You just need to add the uniform variable  u_ModelMatrix  to pass the model matrix to the 
shader and then add some processing    in JavaScript’s  main()  function to pass the matrix to 
the variable. The relevant code is shown in  Listing   7.2   .  

  Listing 7.2   LookAtRotatedTriangles.js  

  1 // LookAtRotatedTriangles.js

   2 // Vertex shader program

   3 var VSHADER_SOURCE =

   4   'attribute vec4 a_Position;\n' +

   5   'attribute vec4 a_Color;\n' +

   6   'uniform mat4 u_ViewMatrix;\n' +

    7   'uniform mat4 u_ModelMatrix;\n' + 

   8   'varying vec4 v_Color;\n' +

   9   'void main() {\n' +

   10  '  gl_Position = u_ViewMatrix * u_ModelMatrix * a_Position;\n' + 

  11  '  v_Color = a_Color;\n' +

  12  '}\n';

      ...
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  24 function main() {

      ...

  51     // Get the storage locations of u_ViewMatrix and u_ModelMatrix

  52     varu_ViewMatrix = gl.getUniformLocation(gl.program,'u_ViewMatrix');

   53     var u_ModelMatrix = gl.getUniformLocation(gl.program, 'u_ModelMatrix'); 

      ...

  59      // Specify the eye point and line of sight

  60      var viewMatrix = new Matrix4();

  61     viewMatrix.setLookAt(0.20, 0.25, 0.25, 0, 0, 0,  0, 1, 0);

  62

  63      // Calculate the rotation matrix

   64        var modelMatrix = new Matrix4(); 

   65       modelMatrix.setRotate(-10, 0, 0, 1);  // Rotate around z-axis 

  66

  67      // Pass each matrix to each uniform variable

  68     gl.uniformMatrix4fv(u_ViewMatrix, false, viewMatrix.elements);

   69       gl.uniformMatrix4fv(u_ModelMatrix, false, modelMatrix.elements);    

 First, let’s examine the vertex shader. You can see that line 10 simply implements 
 Equation   7.1    as-is by using  u_ModelMatrix  at line 7, which receives data from the 
JavaScript program:  

   10   '  gl_Position = u_ViewMatrix * u_ModelMatrix * a_Position;\n' +    

 In the  main()  function in JavaScript, you already have the code for calculating a view 
matrix, so you just need to add the code for calculating the rotation matrix perform-
ing a –10 degree rotation around the z-axis. Line 53 gets the storage location of the 
 u_ModelMatrix  variable, and line 64 creates  modelMatrix  for the rotation matrix. Then 
line 65 calculates the matrix using  Matrix4.setRotate() , and line 69 passes it to 
 u_ModelMatrix .  

 When you run this sample program, you will see the triangles shown in  Figure   7.6    illus-
trating that the matrices multiplied by the vertex coordinates ( a_Position ) have the 
desired effect. That is, the vertex coordinates were rotated by  u_ModelMatrix , and then 
the resulting coordinates were transformed by  u_ViewMatrix  to the correct position as if 
viewed from the specified position.   

  Experimenting with the Sample Program  

 In  LookAtRotatedTriangles.js , you implemented  Equation   7.1    as- is. However, because 
the multiplication of the view matrix and    model matrix is performed per vertex in the 
vertex shader, this implementation is inefficient when processing many vertices. The 
result of the matrix multiplication in  Equation   7.1    is identical for each vertex, so you can 
calculate it in advance and pass the result to the vertex shader. The matrix obtained by 
multiplying a view matrix by a model matrix is called a  model view matrix . That is,  
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        〈 〉 = 〈 〉 × 〈 〉model view matrix view matrix model matrix         

   Then, you can rewrite the expression in  Equation   7.1    as shown in  Equation   7.2   .    

Equation 7.2

〈 〉 × 〈 〉model view matrix vertex coordinates                

 If you use  Equation   7.2   , you can rewrite the sample program shown in  Listing   7.3   . This 
sample program is  LookAtRotatedTriangles_mvMatrix .  

  Listing 7.3   LookAtRotatedTriangles_mvMatrix.js  

   1 // LookAtRotatedTriangles_mvMatrix.js

   2 // Vertex shader program

   3 var VSHADER_SOURCE =

     ...

    6   'uniform mat4 u_ModelViewMatrix;\n' + 

   7   'varying vec4 v_Color;\n' +

   8   'void main() {\n' +

    9   '  gl_Position = u_ModelViewMatrix * a_Position;\n' + 

  10   '  v_Color = a_Color;\n' +

  11   '}\n';

     ...

  23 function main() {

     ...

  50   // Get the storage locations of u_ModelViewMatrix and u_ModelMatrix

  51   var u_ModelViewMatrix = gl.getUniformLocation(gl.program, 'u_ModelViewMatrix');

     ...

  59   viewMatrix.setLookAt(0.20, 0.25, 0.25, 0, 0, 0, 0, 1, 0);

     ...

  63   modelMatrix.setRotate(-10, 0, 0, 1); // Calculate rotation matrix

  64

  65   // Multiply both matrices

   66   var modelViewMatrix = viewMatrix.multiply(modelMatrix); 

  67

  68   // Pass the model viewmatrix to u_ModelViewMatrix

  69   gl.uniformMatrix4fv(u_ModelViewMatrix, false, modelViewMatrix.elements);   

 In the vertex shader, the name of the uniform variable was modified to  u_
ModelViewMatrix  and calculated in line 9. However, the processing steps in the vertex 
shader are identical to the original  LookAtTriangles.js .  

 Within the JavaScript program, the method of calculating  viewMatrix  and  modelMatrix  
from lines 59 to 63 is identical to that in  LookAtRotatedTriangles.js  and, when multi-
plied, result in  modelViewMatrix  (line 66). The  multiply()  method is used to multiply 
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 Matrix4  objects. It multiplies the matrix on the right side ( viewMatrix ) by the matrix 
specified by the argument ( modelMatrix ) of the method. So this code actually performs 
 modelViewMatrix= viewMatrix * modelMatrix . Unlike with GLSL ES, you need to use a 
method to perform matrix multiplication instead of the  *  operator.  

 Having obtained  modelViewMatrix , you just need to pass it to the  u_ModelViewMatrix  
variable at line 69. Once you run the program, you can see the same result as shown in 
 Figure   7.6   .  

 As a final point, in this sample program, each matrix was calculated piece by piece at lines 
59, 63, and 66 to better show the flow of the calculation. However, this could be rewritten 
in one line for efficiency:  

  var modelViewMatrix = new Matrix4();

  modelViewMatrix.setLookAt(0.20, 0.25, 0.25, 0, 0, 0, 0, 1, 0).rotate(-10, 0, 0, 1);

  // Pass the model view matrix to the uniform variable

  gl.uniformMatrix4fv(u_ModelViewMatrix, false, modelViewMatrix.elements);    

  Changing the Eye Point Using the Keyboard  

 Let’s modify  LookAtTriangles  to change the position of the eye point when the arrow 
keys are pressed.  LookAtTrianglesWithKeys  uses the    right arrow key to increase the x coor-
dinate of the eye point by 0.01 and the left arrow key to decrease the coordinate by 0.01. 
 Figure   7.8    shows a screen shot of the sample program when run. If you hold down the left 
arrow key, the scene changes to that seen on the right side of  Figure   7.8   .  

 
 Figure 7.8   LookAtTrianglesWithKeys          

  Sample Program (LookAtTrianglesWithKeys.js)  

  Listing   7.4    shows the sample code. The vertex shader and the fragment    shader are the 
same as those in  LookAtTriangles.js . The basic processing flow of  main()  in JavaScript 
is also the same. The code for registering the event handler called on a key press is added 
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to the sample program, and the code for drawing the triangles has been moved into the 
function  draw() .  

  Listing 7.4   LookAtTrianglesWithKeys.js  

   1 // LookAtTrianglesWithKeys.js

    2 // Vertex shader program

    3 var VSHADER_SOURCE =

    4   'attribute vec4 a_Position;\n' +

    5   'attribute vec4 a_Color;\n' +

    6   'uniform mat4 u_ViewMatrix;\n' +

    7   'varying vec4 v_Color;\n' +

    8   'void main() {\n' +

    9   '  gl_Position = u_ViewMatrix * a_Position;\n' +

   10   '  v_Color = a_Color;\n' +

   11   '}\n';

      ...

   23 function main() {

      ...

   50   // Get the storage location of the u_ViewMatrix variable

   51   varu_ViewMatrix = gl.getUniformLocation(gl.program,'u_ViewMatrix');

      ...

   57   // Create Matrix4 object for a view matrix

   58   var viewMatrix = new Matrix4();

   59   // Register the event handler to be called on key  press

    60   document.onkeydown = function(ev){ keydown(ev, gl, n, u_ViewMatrix, 

                                                                   ➥viewMatrix); }; 

   61

   62   draw(gl, n, u_ViewMatrix, viewMatrix);  // Draw a triangle

   63 }

      ...

   117 var g_eyeX = 0.20, g_eyeY = 0.25, g_eyeZ = 0.25; // The eye point 

   118 function keydown(ev, gl, n, u_ViewMatrix, viewMatrix) { 

   119     if(ev.keyCode == 39) { // The right arrow key was pressed 

   120       g_eyeX += 0.01; 

   121     } else 

   122     if (ev.keyCode == 37) { // The left arrow key was pressed 

   123       g_eyeX -= 0.01; 

   124     } else { return; } // Prevent unnecessary drawing 

   125     draw(gl, n, u_ViewMatrix, viewMatrix); 

   126 } 

  127

   128 function draw(gl, n, u_ViewMatrix, viewMatrix) { 

   129   // Set the eye  point and line of sight 

   130   viewMatrix.setLookAt(g_eyeX, g_eyeY, g_eyeZ, 0, 0, 0, 0, 1, 0); 
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   131 

   132   // Pass the view matrix to the u_ViewMatrix variable 

   133   gl.uniformMatrix4fv(u_ViewMatrix, false, viewMatrix.elements); 

   134 

   135   gl.clear(gl.COLOR_BUFFER_BIT); // Clear <canvas> 

   136 

   137   gl.drawArrays(gl.TRIANGLES, 0, n); // Draw a triangle 

   138 }    

 In this sample, you are using the event handler to change the position of the eye point 
when the right arrow key or the left arrow key is pressed. Before explaining the event 
handler, let’s look at the function  draw()  that is called from the event handler.  

 The process performed in  draw()  is straightforward. Line 130 calculates the view matrix 
using the global variables  g_eyeX ,  g_eyeY , and  g_eyeZ  defined at line 117, which contain 
0.2, 0.25, and 0.25, respectively. Then the matrix is passed to the uniform variable 
 u_ViewMatrix  in the vertex shader at line 133. Back in  main() , the storage location of 
 u_ViewMatrix  is retrieved at line 51, and a  Matrix4  object ( viewMatrix ) is created at line 
58. These two operations are carried out in advance because it is redundant if you perform 
them for each draw operation, particularly retrieving the storage. After that, line 135 clears 
 <canvas> , and line 137 draws  the triangles.  

 The variables  g_eyeX ,  g_eyeY , and  g_eyeZ  specify the eye position and are recalculated 
in the event handler whenever a key is pressed. To call the event handler on key press, 
you need to register it to the  onkeydown  property of the document object. In this event 
handler, because you need to call  draw()  to draw the triangles, you must pass all argu-
ments that  draw()  requires. This is why an anonymous function registers the handler as 
follows:  

  59   // Register the event handler to be called on key press

  60   document.onkeydown = function(ev){ keydown(ev, gl, n, u_ViewMatrix, 

                                                                   ➥viewMatrix); };   

 This sets up the event handler  keydown()  to be called when the key is pressed. Let’s 
examine how  keydown()  is implemented.  

  118 function keydown(ev, gl, n, u_ViewMatrix, viewMatrix) {

  119   if(ev.keyCode == 39) {  // The right arrow key was pressed

  120     g_eyeX += 0.01;

  121   } else

  122   if (ev.keyCode == 37) { // The left arrow key was pressed

  123     g_eyeX -= 0.01;

  124   } else { return ; }     //  Prevent unnecessary drawing 

  125     draw(gl, n, u_ViewMatrix, viewMatrix);    // Draw a triangle

  126 }   
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 What  keydown()  is doing is also straightforward. When a key is pressed,  keydown()  
is called with the information about the event stored in the first parameter,  ev , of 
 keydown() . Then you just need to check which key was pressed by examining the value of 
 ev.keyCode , modify  g_eyeX , and draw the triangles. When the right arrow key is pressed, 
the code increases  g_eyeX  by 0.01, and when the left arrow key is pressed, it decreases 
 g_eyeX  by 0.01.  

 If you run the sample program, you can see the triangles shift every time you press the 
arrow key.   

  Missing Parts  

 As you play with the sample program, you may notice that as you shift the eye position to 
the extreme right or left, part of the triangle disappears (see  Figure   7.9   ).  

 
 Figure 7.9   Part of the triangle disappears         

 This is because you haven’t specified the  visible range  (the   boundaries of what you can 
actually see) correctly. As mentioned in the first section of this chapter, WebGL does not 
display objects outside the visible range. In the case of  Figure   7.9   , part of the triangle went 
out of the visible range while pressing the arrow keys.    

  Specifying the Visible Range (Box Type)  
 Although WebGL allows you to place 3D objects anywhere in 3D space, it only displays 
those that are in the visible range. In WebGL, this is  primarily a performance issue; there’s 
no point in drawing 3D objects if they are not visible to the viewer. In a way, this mimics 
the way human sight works (see  Figure   7.10   ); we see objects within the visible range based 
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on our line of sight, which is approximately 200 degrees in the horizontal field of view. 
WebGL also has a similar limited range and does not display 3D objects outside of that 
range.  

 
 Figure 7.10   Human visual field         

 In addition to the up/down, left/right range along the line of sight, WebGL has a depth 
range that indicates how far you can see. These ranges are called the  viewing volume . In 
 Figure   7.9   , because the depth range was not sufficient, part of the triangle disappears as it 
moves out of the viewing volume.  

  Specify the Viewing Volume  

 There are two ways of   specifying a viewing volume:  

    •   Using a rectangular parallelepiped, or more informally, a box ( orthographic projec-
tion )   

   •   Using a quadrangular pyramid ( perspective projection )    

 Perspective projection gives more information about depth and is often easier to view 
because you use perspective views in real life. You should use this projection to show 
the 3D scene in perspective, such as a character or a battlefield in a 3D shooting game. 
Orthographic projection makes it much easier to compare two objects, such as two parts 
of a molecule model, because there is no question about how the viewpoint may affect 
the perception of distance. You should use the projection to show 3D objects in an ortho-
graphic view like those in technical drawing.  

 First, we will explain how the viewing volume works based on the box-shaped viewing 
volume.  

 The box-shaped viewing volume is shaped as shown in  Figure   7.11   . This viewing volume 
is set from the eye point toward the line of sight and occupies the space delimited by the 
two planes: the  near clipping plane  and the  far clipping plane . The near clipping plane 
is defined by ( right ,  top , - near ), (- left ,  top , - near ), (- left , - bottom , - near ), and ( right , - bottom , 
- near ). The far clipping plane is defined by ( right ,  top , - far ), (- left ,  top , - far ), (- left , - bottom , 
- far ), and ( right , - bottom , - far ).  
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 Figure 7.11   Box-shaped viewing volume         

 The scene viewed from the near clipping plane toward the line of sight is displayed on the 
 <canvas> . If the aspect ratio of the near clipping plane is different from that of  <canvas> , 
the scene is scaled according to the ratio, and the aspect  ratio of the geometric shapes or 
objects in the scene are distorted. (You will explore this behavior in the last part of this 
section.) The range from the near clipping plane to the far clipping plane defines the 
viewing volume. Only objects inside this volume are displayed. If the objects lie partially 
inside the volume, only  the part inside the volume is displayed.   

  Defining a Box-Shaped Viewing Volume  

 To set the box-shaped   viewing volume, you use the method  setOrtho()  supported by the 
 Matrix4  object defined in  cuon-matrix.js .    

   Matrix4.setOrtho(left, right, bottom, top, near, far)   

 Calculate the matrix (orthographic projection matrix) that defines the viewing volume 
specified by its arguments, and store it in  Matrix4 . However,  left  must not be equal to 
 right ,  bottom  not equal to  top , and  near  not equal to  far .  

  Parameters    left, right   Specify the distances to the left side and right side of the near 
clipping plane.  

 bottom, top   Specify the distances to the bottom and top of the near clipping 
plane.  

 near, far   Specify the distances to the near and far clipping planes along 
the line of sight.  

  Return value    None  
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 Here, you are using a matrix again, which in this case is referred to as the  ortho-
graphic projection matrix . The sample program  OrthoView  will use this type of 
projection matrix to set the box-shaped viewing volume and then draw three trian-
gles—as used in  LookAtRotatedTriangles —to test the effect of the viewing volume. In 
 LookAtRotatedTriangles , you placed the eye point at a different location from that of the 
origin. However, in this sample program, you’ll use the origin (0, 0, 0) and set the line of 
sight along the negative z-axis to make it easy to check the effect of the viewing volume.  
The viewing volume is specified as shown in  Figure   7.12   , which uses  near =0.0,  far =0.5, 
 left =–1.0,  right =1.0,  bottom =–1.0, and  top =1.0 because the triangles lie between 0.0 and –0.4 
along the z-axis (refer to  Figure   7.2   ).  
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 Figure 7.12   The box-shaped viewing volume used in OrthoView         

 In addition, we add key-press event handlers to change the values of  near  and  far  to check 
the effect of changing the size of the viewing volume. The following are the active keys 
and their mappings.  

  Arrow Key     Action   

 Right   Increases  near  by 0.01  

 Left   Decreases  near  by 0.01  

 Up   Increases  far  by 0.01  

 Down   Decreases  far  by 0.01  

 So that you can see the current values of near and far, they are displayed below the 
canvas, as shown in  Figure   7.13   .  
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 Figure 7.13   OrthoView         

 Let’s examine the sample program.   

  Sample Program (OrthoView.html)  

 Because this sample program shows the  near  and  far  value on the web page and not in 
the  <canvas> , you need to add    something to the HTML file listing as shown in  Listing   7.5    
( OrthoView.html) .  

  Listing 7.5   OrthoView.html  

  1 <!DOCTYPE html>

   2 <html>

   3   <head lang="ja">

   4     <meta charset="utf-8" />

   5     <title>Set Box-shaped Viewing Volume</title>

   6   </head>

   7

   8   <body onload="main()">

   9     <canvas id="webgl" width="400" height="400">

  10     Please use a browser that supports <canvas>

  11     </canvas>

   12     <p id="nearFar"> The near and far values are displayed here. </p> 

  13

  14     <script src="../lib/webgl-utils.js"></script>

      ...

  18     <script src="OrthoView.js"></script>
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  19   </body>

  20 </html>   

 As you can see, line 12 was added. This line shows “The near and far values are displayed 
here” and uses JavaScript to rewrite the contents of  nearFar  to show the current near and 
far values.   

  Sample Program (OrthoView.js)  

  Listing   7.6    shows  OrthoView.js . This program is almost the same as 
 LookAtTrianglesWithKeys.js , which changes the position    of the eye point by using the 
arrow keys.  

  Listing 7.6   OrthoView.js  

   1 // OrthoView.js

    2 // Vertex shader program

    3 var VSHADER_SOURCE =

    4   'attribute vec4 a_Position;\n' +

    5   'attribute vec4 a_Color;\n' +

     6   'uniform mat4 u_ProjMatrix;\n' + 

    7   'varying vec4 v_Color;\n' +

    8   'void main() {\n' +

     9   '  gl_Position = u_ProjMatrix * a_Position;\n' + 

   10   '  v_Color = a_Color;\n' +

   11   '}\n';

      ...

   23 function main() {

   24   // Retrieve<canvas> element

   25   var canvas = document.getElementById('webgl');

    26   // Retrieve the nearFar element 

    27   var nf = document.getElementById('nearFar'); 

      ...

   52   // Get the storage location of u_ProjMatrix variable

   53   var u_ProjMatrix = gl.getUniformLocation(gl.program,'u_ProjMatrix');

      ...

   59   // Create the matrix to  set the eye point and line of sight

   60   var projMatrix = new Matrix4();

   61   // Register the event handler to be called on key press

    62   document.onkeydown = function(ev) { keydown(ev, gl, n, u_ProjMatrix, 

                                                               ➥projMatrix, nf); }; 

   63

   64   draw(gl, n, u_ProjMatrix, projMatrix, nf);  // Draw triangles

   65 }

      ...

  116 // The distances to the near and far clipping plane
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  117 var g_near = 0.0, g_far = 0.5;

  118 function keydown(ev, gl, n, u_ProjMatrix, projMatrix, nf) {

  119   switch(ev.keyCode) {

  120     case 39: g_near += 0.01; break; // The right arrow key was pressed

  121     case 37: g_near -= 0.01; break; // The left  arrow key was pressed

  122     case 38: g_far += 0.01;  break; // The up arrow key was pressed

  123     case 40: g_far -= 0.01;  break; // The down arrow key was pressed

  124     default: return; // Prevent the unnecessary drawing

  125   }

  126

  127   draw(gl, n, u_ProjMatrix, projMatrix, nf);

  128 }

  129

   130 function draw(gl, n, u_ProjMatrix, projMatrix, nf) { 

  131   // Set the viewing volume using a matrix

   132   projMatrix.setOrtho(-1, 1, -1, 1, g_near, g_far); 

  133

  134   // Set the projection matrix to u_ProjMatrix variable

  135   gl.uniformMatrix4fv(u_ProjMatrix, false, projMatrix.elements);

  136

  137   gl.clear(gl.COLOR_BUFFER_BIT);  // Clear <canvas>

  138

  139   // Display the current near and far values

   140   nf.innerHTML = 'near: ' + Math.round(g_near * 100)/100 + ', far: '  + 

                                                          ➥ Math.round(g_far*100)/100; 

  141

  142   gl.drawArrays(gl.TRIANGLES, 0, n);  // Draw the triangles

  143 }   

 In a similar way to  LookAtTrianglesWithKeys ,  keydown() , defined at line 118, is called 
on key press, and  draw()  is called at the end of  keydown()  (line 127). The  draw()  func-
tion defined at line 130 sets the viewing volume, rewrites the near and far value on the 
web page, and then draws the three triangles. The key point in this program is the  draw()  
function; however, before explaining the function, let’s quickly show how to rewrite 
HTML elements using JavaScript.   

  Modifying an HTML Element Using JavaScript  

 The method of modifying an HTML element using JavaScript is similar to that of drawing 
in a  <canvas>  with WebGL. That is, after    retrieving the HTML element by using  getEle-
mentById()  and the  id  of the element, you write a message to the element in JavaScript.  

 In this sample program, you modify the following  <p>  element to show the message such 
as “near: 0.0, far: 0.5”:  

  12      <p id="nearFar"> The near and far values are displayed here. </p>    
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 This element is retrieved at line 27 in  OrthoView.js  using  getElementById()  as before. 
Once you’ve retrieved the element, you need to specify the string ( 'nearFar' ) that was 
bound to  id  at line 12 in the HTML file, as follows:  

  26  // Retrieve nearFar element

  27  var nf = document.getElementById('nearFar');   

 Once you retrieve the  <p>  element into the variable  nf  (actually,  nf  is a JavaScript object), 
you just need to change the content of this element. This is straightforward and uses the 
 innerHTML  property of the object. For example, if you write:  

  nf.innerHTML = 'Good Morning, Marisuke-san!';   

 You will see the message “Good Morning, Marisuke-san!” on the web page. You can also 
insert HTML tags in the message. For example, ‘Good Morning, <b>Marisuke</b>-san!’ 
will highlight “Marisuke.”  

 In  OrthoView.js , you use the following equation to display the current  near  and  far  
values. These values are stored in the global variables  g_near  and  g_far  declared at line 
117. When printing them, they are formatted using  Math.round()  as follows:  

  139  // Display the current near and far values

  140  nf.innerHTML = 'near: ' + Math.round(g_near*100)/100 + ', far: ' +

                                                          ➥Math.round(g_far*100)/100;    

  The Processing Flow of the Vertex Shader  

 As you can see with the following code, the processing flow in the vertex shader is almost 
the same as that in  LookAtRotatedTriangles.js    except that the uniform variable name 
( u_ProjMatrix ) at line 6 was changed. This variable holds the matrix used to set the 
viewing volume. So you just need to multiply the matrix ( u_ProjMatrix ) by the vertex 
coordinates to set the viewing volume at line 9:  

   2 // Vertex shader program

   3 var VSHADER_SOURCE =

     ...

    6   'uniform mat4 u_ProjMatrix;\n' + 

   7   'varying vec4 v_Color;\n' +

   8   'void main() {\n' +

    9   '  gl_Position = u_ProjMatrix * a_Position;\n' + 

  10   '  v_Color = a_Color;\n' +

  11   '}\n';   

 Line 62 registers the event handler for the arrow key press. Note that  nf  is passed as the 
last argument to the handler to allow it to access the  <p>  element. The event handler use 
the key press to determine the contents of the element in  draw() , which is called in the 
handler:  
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  61   // Register the event handler to be called on key press

   62   document.onkeydown = function(ev) { keydown(ev, gl, n, u_ProjMatrix, 

                                                               ➥projMatrix, nf); };    

 The  keydown()  at line 121 identifies which arrow key is pressed and then modifies the 
value of  g_near  and  g_far  before calling  draw()  at line 127. Line 117 defines  g_near  and 
 g_far , which are used by the  setOrtho()  method. These are defined as global variables 
because they are used in both  keydown()  and  draw() :  

  116 // The distances to the near and far clipping plane

  117 var g_near = 0.0, g_far = 0.5;

  118 function keydown(ev, gl, n, u_ProjMatrix, projMatrix, nf) {

  119   switch(ev.keyCode) {

  120     case 39: g_near += 0.01; break; // The right arrow key was pressed

      ...

  123     case 40: g_far -= 0.01;  break;  // The down arrow key was pressed

  124     default: return; // Prevent the unnecessary drawing

  125   }

  126

  127   draw(gl, n, u_ProjMatrix, projMatrix, nf);

  128 }   

 Let’s examine the function  draw() . The processing flow  of  draw() , defined at line 130, is 
the same as in  LookAtTrianglesWithKeys.js  except for changing the message on the web 
page at line 140:  

  130 function draw(gl, n, u_ProjMatrix, projMatrix, nf) {

  131   // Set the viewing volume

   132   projMatrix.setOrtho(-1.0, 1.0, -1.0, 1.0, g_near, g_far); 

  133

  134   // Set the projection matrix to u_ProjMatrix variable

  135   gl.uniformMatrix4fv(u_ProjMatrix, false, projMatrix.elements);

      ...

  139   // Display the current near and far values

   140   nf.innerHTML = 'near: ' + Math.round(g_near * 100)/100 + ', far: ' + 

                                                           ➥Math.round(g_far*100)/100; 

  141

  142   gl.drawArrays(gl.TRIANGLES, 0, n); // Draw the triangles

  143 }   

 Line 132 calculates the matrix for the viewing volume ( projMatrix ) and passes it to  
u_ProjMatrix  at line 135. Line 140 displays the current  near  and  far  value on the web 
page. Finally, at line 142, the triangles are drawn.   
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  Changing Near or Far  

 When you run this program and increase the near   value (right-arrow key), the display will 
change, as shown in  Figure   7.14   .  

 
 Figure 7.14   Increase the near value using the right arrow key         

 By default,  near  is 0.0, so all three triangles are displayed. Next, when you increase  near  
using the right arrow key, the blue triangle (the front triangle) disappears because the 
viewing volume moves past it, as shown in  Figure   7.15   . This result is shown as the middle 
figure in  Figure   7.14   .  
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 Figure 7.15   The blue triangle went outside the viewing volume         

 Again, if you continue to increase  near  by pressing the right arrow key, when  near  becomes 
larger than 0.2, the near plane moves past the yellow triangle, so it is outside the viewing 
volume and disappears. This leaves only the green triangle (the right figure in  Figure   7.14   ). 
At this point, if you use the left arrow key to decrease  near  so it becomes less than 0.2, the 
yellow triangle becomes visible again. Alternatively, if you keep on increasing  near , the 
green triangle will also disappear, leaving the black canvas.  
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 As you can imagine, the behavior when you alter the  far  value is similar. As shown in 
 Figure   7.16   , when  far  becomes less than 0.4, the back triangle (the green one) will disap-
pear. Again, if you keep decreasing  far , only the blue triangle will remain.  

 
 Figure 7.16   Decrease the far value using the down arrow key         

 This example should clarify the role of the viewing volume. Essentially, for any object you 
want to display, you need to place it inside the viewing volume.   

  Restoring the Clipped Parts of the Triangles 

(LookAtTrianglesWithKeys_ViewVolume.js)  

 In  LookAtTrianglesWithKeys , when you kept pressing the arrow keys, part of the triangle 
is clipped, as shown in  Figure   7.17   .    From the previous discussion, it’s clear this is because 
some part went outside the viewing volume. In this section, you will modify the sample 
program to display the triangle correctly by setting the  appropriate viewing volume.  

 
 Figure 7.17   A part of the triangle is clipped.         
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 As you can see from the figure, the far corner of the triangle from the eye point is clipped. 
Obviously, the far clipping plane is too close to the eye point, so you need to move the far 
clipping plane farther out than the current one. To achieve this, you can modify the argu-
ments of the viewing volume so that  left =–1.0, right=1.0,  bottom =–1.0,  top =1.0,  near =0.0, 
and  far =2.0.  

 You will use two matrices in this program: the matrix that sets the viewing volume (the 
orthographic projection matrix), and the matrix that sets the eye point and the line of 
sight (view matrix). Because  setOrtho()  sets the viewing volume from the eye point, you 
need to set the position of the eye point and then set the viewing volume. Consequently, 
you will multiply the view matrix by the vertex coordinates to get the vertex coordi-
nates, which are “viewed from the eye position” first, and then multiply the orthographic 
projection matrix by the coordinates. You can calculate them as shown in  Equation   7.3   .  

Equation 7.3

〈 〉 × 〈 〉 × 〈 〉orthographic projection matrix view matrix vertex coordinates                  

 This can be implemented in the vertex shader, as shown in  Listing   7.7   .  

  Listing 7.7   LookAtTrianglesWithKeys_ViewVolume.js  

  1 // LookAtTrianglesWithKeys_ViewVolume.js

   2 // Vertex shader program

   3 var VSHADER_SOURCE =

   4   'attribute vec4 a_Position;\n' +

   5   'attribute vec4 a_Color;\n' +

   6   'uniform mat4 u_ViewMatrix;\n' +

    7   'uniform mat4 u_ProjMatrix;\n' + 

   8   'varying vec4 v_Color;\n' +

   9   'void main() {\n' +

   10   '  gl_Position = u_ProjMatrix * u_ViewMatrix * a_Position;\n' + 

  11   '  v_Color = a_Color;\n' +

  12   '}\n';

      ...

  24 function main() {

      ...

  51   // Get the storage locations of u_ViewMatrix and u_ProjMatrix

  52   varu_ViewMatrix = gl.getUniformLocation(gl.program,'u_ViewMatrix');

   53   var u_ProjMatrix = gl.getUniformLocation(gl.program,'u_ProjMatrix'); 

      ...

  59   // Create the matrix to specify the view matrix

  60   var viewMatrix = new Matrix4();

  61   // Register the event handler to be  called on key press

  62   document.onkeydown = function(ev) { keydown(ev, gl, n, u_ViewMatrix, 

                                                                   ➥viewMatrix); };
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  63

  64   // Create the matrix to specify the viewing volume and pass it to u_ProjMatrix

  65   var projMatrix = new Matrix4();

   66   projMatrix.setOrtho(-1.0, 1.0, -1.0, 1.0, 0.0, 2.0); 

   67   gl.uniformMatrix4fv(u_ProjMatrix, false, projMatrix.elements); 

  68

  69   draw(gl, n, u_ViewMatrix, viewMatrix); // Draw the triangles

  70 }   

 Line 66 calculates the orthographic projection matrix ( projMatrix ) by modifying  far  from 
1.0 to 2.0. The result matrix is passed to  u_ProjMatrix  in the vertex shader at line 67. 
A uniform variable is used because the elements in the matrix are uniform for all vertex 
coordinates. If you run this sample program and move the eye point as before, you can 
see that the triangle no longer gets clipped (see  Figure   7.18   ).  

 
 Figure 7.18   LookAtTrianglesWithKeys_ViewVolume          

  Experimenting with the Sample Program  

 As we explained in the section “Specify the Viewing Volume,” if the aspect ratio of 
 <canvas>  is different from that of the near clipping plane, distorted objects are displayed. 
Let’s explore this. First, in  OrthoView_halfSize  (based on  Listing   7.7   ), you reduce the 
current size of the near clipping plane to half while keeping its aspect ratio:  

  projMatrix.setOrtho(-0.5, 0.5, -0.5, 0.5, 0, 0.5);   

 The result is shown on the left of  Figure   7.19   . As you can see, the triangles appear twice 
as large as those of the previous sample because the size of  <canvas>  is the same as before. 
Note that the parts of the triangles outside the near clipping plane are clipped.  
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 Figure 7.19   Modify the size of the near clipping plane         

 In  OrthoView_halfWidth , you reduce  only the width of the near clipping plane by chang-
ing the first two arguments in  setOrtho()  as follows:  

  projMatrix.setOrtho(-0.3, 0.3, -1.0, 1.0, 0.0, 0.5);   

 You can see the results on the right side of  Figure   7.19   . This is because the near clipping 
plane is horizontally reduced and then horizontally extended (and thus distorted) to fit 
the square-shaped  <canvas>  when the plane is displayed.    

  Specifying the Visible Range Using a Quadrangular 
Pyramid  
  Figure   7.20    shows a tree-lined road scene. In this picture, all the trees on the left and right 
sides are approximately of the same height, but the   farther back they are, the smaller 
they look. Equally, the building in the distance appears smaller than the trees that are 
closer to the viewer, even though the building is actually taller than the trees. This effect 
of distant objects looking smaller gives the feeling of depth. Although our eyes perceive 
reality in this way, it’s interesting to notice that children’s drawings rarely show this kind 
of perspective.  
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 Figure 7.20   Tree-lined road         

 In the case of the box-shaped viewing volume explained in the previous section, identi-
cally sized triangles are drawn the same size, regardless of their distance from the eye 
point. To overcome this constraint, you can use the quadrangular pyramid viewing 
volume, which allows you to give this sense of depth, as seen in  Figure   7.20   .  

 Here you construct the sample program  PerspectiveView , which sets a quadrangular 
pyramid viewing volume that points along the negative z-axis  from the eye point set at 
(0, 0, 5).  Figure   7.21    shows a screen shot of  PerspectiveView  and the location of each 
triangle.  
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 Figure 7.21   PerspectiveView; location of each triangle         
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 As can be seen from the figure on the right, three identically sized triangles are positioned 
on the right and left sides along the coordinate’s axes, in a way similar to the tree-lined 
road. By using a quadrangular pyramid viewing volume, WebGL can automatically display 
remote objects as if they are smaller, thus achieving the sense of depth. This is shown in 
the left side of the figure.  

 To really notice the change in size, as in the real world, the objects need to be located 
at a substantial distance. For example, when looking at the box, to actually make the 
background area looks smaller than the foreground area, this box needs to have consider-
able depth. So this time, you will use a slightly more distant position (0, 0, 0.5) than the 
default value (0, 0, 0) for the eye point.  

  Setting the Quadrangular Pyramid Viewing Volume  

 The quadrangular pyramid viewing volume is shaped as shown in  Figure   7.22   . Just like 
the box-shaped configuration, the viewing   volume is set at the eye point along the line of 
sight, and objects located between the far and near clipping planes are displayed. Objects 
positioned outside the viewing volume are not shown, while those straddling the bound-
ary will only have parts located inside the viewing volume visible.  
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 Figure 7.22   Quadrangular pyramid viewing volume         

 Regardless of whether it is a quadrangular pyramid or a box, you set the viewing volume 
using matrices, but the arguments differ. The  Matrix4 ’s method  setPerspective()  is used 
to configure the quadrangular pyramid viewing volume.    
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   Matrix4.setPerspective(fov, aspect, near, far)   

 Calculate the matrix (the perspective projection matrix) that defines the viewing volume 
specified by its arguments, and store it in  Matrix4 . However, the  near value must be less 
than the far value .  

  Parameters    fov   Specifies field of view, angle formed by the top and bottom 
planes. It must be greater than 0  .

 aspect   Specifies the aspect ratio of the near plane (width/height).  

 near, far   Specify the distances to the near and far clipping planes along the 
line of sight ( near  > 0 and  far  > 0).  

  Return value    None  

 The matrix that sets the quadrangular  pyramid viewing volume is called the  perspective 
projection matrix .  

 Note that the specification for the near plane is different from that of the box type with 
the second argument,  aspect,  representing the near plane aspect ratio. For example, if we 
set the height to 100 and the width to 200, the aspect ratio is 0.5.  

 The positioning of the triangles with regard to the viewing volume we are using is illus-
trated in  Figure   7.23   . It is specified by  near =1.0,  far =100,  aspect =1.0 (the same aspect ratio 
as the canvas), and  fov =30.0.  
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 Figure 7.23   The positions of the triangles with respect to the quadrangular pyramid viewing 
volume         
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 The basic processing flow is similar to that of  LookAtTrianglesWithKeys_ViewVolume.js  in 
the previous section. So let’s take a look at the sample program.   

  Sample Program (PerspectiveView.js)  

 The sample program   is detailed in  Listing   7.8   .  

  Listing 7.8   PerspectiveView.js  

   1 // PerspectiveView.js

    2 // Vertex shader program

    3 var VSHADER_SOURCE =

    4   'attribute vec4 a_Position;\n' +

    5   'attribute vec4 a_Color;\n' +

    6   'uniform mat4 u_ViewMatrix;\n' +

    7   'uniform mat4 u_ProjMatrix;\n' +

    8   'varying vec4 v_Color;\n' +

    9   'void main() {\n' +

   10   '  gl_Position = u_ProjMatrix * u_ViewMatrix * a_Position;\n' +

   11   '  v_Color = a_Color;\n' +

   12   '}\n';

      ...

   24 function main() {

      ...

   41   // Set the vertex coordinates and color (blue triangle is in front)

   42   var n = initVertexBuffers(gl);

      ...

   51   // Get the storage locations of u_ViewMatrix and u_ProjMatrix

   52   varu_ViewMatrix = gl.getUniformLocation(gl.program,'u_ViewMatrix');

   53    var u_ProjMatrix = gl.getUniformLocation(gl.program,'u_ProjMatrix');

      ...

    59   var viewMatrix = new Matrix4();  // The view matrix 

    60   var projMatrix = new Matrix4();  // The projection matrix 

   61

   62   // Calculate the view and projection matrix

   63   viewMatrix.setLookAt(0, 0, 5, 0, 0, -100, 0, 1, 0);

    64   projMatrix.setPerspective(30, canvas.width/canvas.height, 1, 100); 

   65   // Pass The view matrix and projection matrix to u_ViewMatrix and u_ProjMatrix

   66   gl.uniformMatrix4fv(u_ViewMatrix, false, viewMatrix.elements);

    67   gl.uniformMatrix4fv(u_ProjMatrix, false, projMatrix.elements); 

      ...

   72   // Draw the rectangles

   73   gl.drawArrays(gl.TRIANGLES, 0, n);

   74 }

   75
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   76 function initVertexBuffers(gl) {

   77   var verticesColors = new Float32Array([

    78     // Three triangles on the right  side 

   79     0.75,  1.0, -4.0, 0.4,  1.0, 0.4, // The green triangle in back

   80     0.25, -1.0, -4.0, 0.4,  1.0, 0.4,

   81     1.25, -1.0, -4.0, 1.0,  0.4, 0.4,

   82

   83     0.75,  1.0, -2.0, 1.0,  1.0, 0.4, // The yellow triangle in middle

   84     0.25, -1.0, -2.0, 1.0,  1.0, 0.4,

   85     1.25, -1.0, -2.0, 1.0,  0.4, 0.4,

   86

   87     0.75,  1.0,  0.0, 0.4,  0.4, 1.0, // The blue triangle in front

   88     0.25, -1.0,  0.0, 0.4,  0.4, 1.0,

   89     1.25, -1.0,  0.0, 1.0,  0.4, 0.4,

   90

    91     // Three triangles on the left side 

   92    -0.75,  1.0, -4.0, 0.4,  1.0, 0.4,  // The green triangle in back

   93    -1.25, -1.0, -4.0, 0.4,  1.0, 0.4,

   94    -0.25, -1.0, -4.0, 1.0,  0.4, 0.4,

   95

   96    -0.75,  1.0, -2.0, 1.0,  1.0, 0.4, // The yellow triangle in middle

   97    -1.25, -1.0, -2.0, 1.0,  1.0, 0.4,

   98    -0.25, -1.0, -2.0, 1.0,  0.4, 0.4,

   99

  100    -0.75,  1.0,  0.0, 0.4,  0.4, 1.0, // The blue triangle in front

  101    -1.25, -1.0,  0.0, 0.4,  0.4, 1.0,

  102    -0.25, -1.0,  0.0, 1.0,  0.4, 0.4,

  103   ]);

   104   var n = 18; // Three vertices per triangle * 6 

      ...

  138   return n;

  139 }   

 The vertex and fragment shaders are completely identical (including the names of the 
variables) to the ones used in  LookAtTriangles_ViewVolume.js .  

 The processing flow of  main()  in JavaScript is also similar. Calling  initVertexBuffers()  
at line 42 writes the vertex coordinates and colors of the six triangles to be displayed into 
the buffer object. In  initVertexBuffers() , the vertex coordinates and colors for the six 
triangles are specified: three triangles positioned on the right side from line 79 and three 
triangles positioned on the left side from line 92. As a result, the number of vertices to be 
drawn at line 104 is changed to 18 (3×6=18, to handle six triangles).  

 At lines 52 and 53 in  main() , the locations of the uniform variables that store the view 
matrix and perspective projection matrix are retrieved. Then at line 59 and 60, the vari-
ables used to hold the matrices are created.  
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 At line 63, the view matrix is calculated, with the eye point set at (0, 0, 5), the line of 
sight set along the z-axis in the negative direction, and the up direction set along the 
y-axis in the positive direction. Finally at line 64, the projection matrix is set up using a 
quadrangular pyramid viewing volume:  

   64   projMatrix.setPerspective(30, canvas.width/canvas.height, 1, 100);    

 The second argument  aspect  (the horizontal to vertical ratio of the near plane) is derived 
from the  <canvas>  width and height ( width  and  height  property), so any modification of 
the  <canvas>  aspect ratio doesn’t lead to distortion of the objects displayed.  

 Next, as the view and perspective projection matrices are available, you pass them to the 
appropriate uniform variables at lines 66 and 67. Finally, you draw the triangles at line 73, 
and upon execution you get a result including perspective similar to that shown in  Figure 
  7.20   .  

 Finally, one aspect touched on earlier but not fully explained is why matrices are used to 
set the viewing volume. Without using mathematics, let’s explore that a little.   

  The Role of the Projection Matrix  

 Let’s start by examining the perspective projection    matrix. Looking at the screen shot of 
 PerspectiveView  in  Figure   7.24   , you can see that, after applying the projection matrix, the 
objects in the distance are altered in two ways.  

 
 Figure 7.24   PerspectiveView         

 First, the farther away the triangles are, the smaller they appear. Second, the triangles are 
parallel shifted so they look as if they are positioned inward toward the line of sight. In 
comparison to the identically sized triangles that are laid out as shown on the left side 
of  Figure   7.25   , the following two transformations have been applied: (1) triangles farther 
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from the viewer are scaled down (transformed) in proportion to the distance from the 
viewer, and (2) the triangles are then transformed to be shifted toward the line of sight, as 
illustrated on the right side of  Figure   7.25   .  These two transformations, shown on the right 
side of  Figure   7.25   , enable the effect you see in the photograph scene shown in  Figure 
  7.20   .  

 

z x

y

x

y
point at
infinity

z

 Figure 7.25   Conceptual rendering of the perspective projection transformation         

 This means that the specification of the viewing volume can be represented as a combina-
tion of transformations, such as the scaling or translation of geometric shapes and objects, 
in accordance with the shape of the viewing volume. The Matrix4 object’s method 
 setPerspective()  automatically calculates this transformation matrix from the arguments 
of the specified viewing volume. The elements of the matrix are discussed in  Appendix   C   , 
“Projection Matrices.” If you are interested in the mathematical explanation of the coordi-
nate transform related to the viewing volume, please refer to the book  Computer Graphics .  

 To put it another way, the transformation associated with the perspective projection trans-
forms the quadrangular pyramid viewing volume into a box-shaped viewing volume (right 
part of  Figure   7.25   ).  

 Note that the orthographic projection matrix does not perform all the work needed for 
this transformation to generate the required optical effect. Rather, it performs the prelimi-
nary preparation that is required by the post vertex shader processing—where the actual 
processing is done. If you are interested in this, please refer to  Appendix   D   , “WebGL/
OpenGL: Left or Right Handed?”  

 The projection matrix, combined with the model matrix and the view matrix, is able 
to handle all the necessary geometric transformations (translation, rotation, scaling) for 
achieving the different optical effects. The following section will explore how to combine 
these matrices to do that using a simple example.   
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  Using All the Matrices (Model Matrix, View Matrix, and Projection 

Matrix)  

 One of the issues with  PerspectiveView.js  is the amount of code needed to set up the 
vertex coordinates and the color data. Because we  only have to deal with six triangles in 
this case, it’s still manageable, but it could get messy if the number of triangles increased. 
Fortunately, there is an effective drawing technique to handle this problem.  

 If you take a close look at the triangles, you will notice that the configuration is identical 
to that in  Figure   7.26   , where the dashed triangles are shifted along the x-axis in the posi-
tive (0.75) and negative (–0.75) directions, respectively.  

 
z

-0.75

0.75
x

y

 Figure 7.26   Drawing after translation         

 Taking advantage of this, it is possible to draw the triangles in  PerspectiveView  in the 
following way:  

    1.   Prepare the vertex coordinates data of the three triangles that are laid out centered 
along the z-axis.   

   2.   Translate the original triangles by 0.75 units along the x-axis, and draw them.   

   3.   Translate the original triangles by –0.75 units along the x-axis, and draw them.    

 Now let’s try to use this approach in some sample code ( PerspectiveView_mvp) .  

 In the original  PerspectiveView  program the projection and view matrices were used to 
specify the viewer’s viewpoint and viewing volume and  PerspectiveView_mvp , the model 
matrix, was used to perform the translation   of the triangles.  

 At this point, it’s worthwhile to review the actions these matrices perform. To do that, 
let’s refer to  LookAtTriangles , which you wrote earlier to allow the viewer to look at a 
rotated triangle from a specific location. At that time, you used this expression, which is 
identical to  Equation   7.1   :  
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〈 〉 × 〈 〉 × 〈 〉view matrix model matrix vertex coordinates              

 Building on that, in  LookAtTriangles_ViewVolume , which correctly displays the clipped 
triangle, you used the following expression, which, when you use projection matrix 
to include either orthographic projection or perspective projection, is identical to 
Equation 7.3      :  

〈 〉 × 〈 〉 × 〈 〉projection matrix view matrix vertex coordinates              

 You can infer the following from these two expressions:  

Equation 7.4

〈 〉 × 〈 〉 × 〈 〉 × 〈 〉projection matrix view matrix model matrix vertex coordinates                  

 This expression shows that, in WebGL, you can calculate the final vertex coordinates 
by using three types of matrices: the model matrix, the view matrix, and the projection 
matrix.  

 This can be understood by considering that  Equation   7.1    is identical to  Equation   7.4   , in 
which the projection matrix becomes the identity matrix, and  Equation   7.3    is identical 
to  Equation   7.4   , whose model matrix is turned into the identity matrix. As explained in 
 Chapter   4   , the identity matrix behaves for matrix multiplication like the scalar 1 does with 
scalar multiplication. Multiplying by the identity matrix has no effect on the other matrix.  

 So let’s construct the sample program using  Equation   7.4   .   

  Sample Program (PerspectiveView_mvp.js)  

  PerspectiveView_mvp.js  is shown in  Listing   7.9   . The basic processing flow is similar to 
that of  PerspectiveView.js . The only   difference is the modification of the calculation in 
the vertex shader (line 11) to implement  Equation   7.4   , and the passing of the additional 
matrix ( u_ModelMatrix ) used for the calculation.  

  Listing 7.9   PerspectiveView_mvp.js  

   1 // PerspectiveView_mvp.js

    2 // Vertex shader program

    3 var VSHADER_SOURCE =

    4   'attribute vec4 a_Position;\n' +

    5   'attribute vec4 a_Color;\n' +

     6   'uniform mat4 u_ModelMatrix;\n' + 

    7   'uniform mat4 u_ViewMatrix;\n' +

    8   'uniform mat4 u_ProjMatrix;\n' +

    9   'varying vec4 v_Color;\n' +

   10   'void main() {\n' +

    11   '  gl_Position = u_ProjMatrix * u_ViewMatrix * u_ModelMatrix * a_Position;\n' + 

   12   '  v_Color = a_Color;\n' +
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   13   '}\n';

      ...

   25 function main() {

      ...

   42   // Set the vertex coordinates and color (blue triangle is in front)

   43   var n = initVertexBuffers(gl);

      ...

   52   // Get the storage locations of u_ModelMatrix,  u_ViewMatrix, and u_ProjMatrix.

    53   var u_ModelMatrix = gl.getUniformLocation(gl.program, 'u_ModelMatrix'); 

   54   var u_ViewMatrix = gl.getUniformLocation(gl.program,'u_ViewMatrix');

   55   var u_ProjMatrix = gl.getUniformLocation(gl.program,'u_ProjMatrix');

      ...

    61   var modelMatrix = new Matrix4(); // Model matrix 

   62   var viewMatrix = new Matrix4();  // View matrix

   63   var projMatrix = new Matrix4();  // Projection matrix

   64

   65   // Calculate the model matrix, view matrix, and projection matrix

    66   modelMatrix.setTranslate(0.75, 0, 0); // Translate 0.75 units 

   67   viewMatrix.setLookAt(0, 0, 5, 0, 0, -100, 0, 1, 0);

   68   projMatrix.setPerspective(30, canvas.width/canvas.height, 1, 100);

   69   // Pass the model, view, and projection matrix to uniform variables.

    70   gl.uniformMatrix4fv(u_ModelMatrix, false, modelMatrix.elements); 

   71   gl.uniformMatrix4fv(u_ViewMatrix,  false, viewMatrix.elements);

   72   gl.uniformMatrix4fv(u_ProjMatrix, false, projMatrix.elements);

   73

   74   gl.clear(gl.COLOR_BUFFER_BIT);// clear <canvas>

   75

    76   gl.drawArrays(gl.TRIANGLES, 0, n);  // Draw triangles on right 

   77

   78   // Prepare the model matrix for another pair of triangles

    79   modelMatrix.setTranslate(-0.75, 0, 0); // Translate -0.75 

   80   // Modify only the model matrix

    81   gl.uniformMatrix4fv(u_ModelMatrix, false, modelMatrix.elements); 

   82

    83   gl.drawArrays(gl.TRIANGLES, 0, n);// Draw triangles on left 

   84 }

   85

   86 function initVertexBuffers(gl) {

   87   var verticesColors = new Float32Array([

   88     // Vertex coordinates and color

   89     0.0,  1.0,  -4.0, 0.4,  1.0, 0.4, // The back green triangle

   90    -0.5, -1.0,  -4.0, 0.4,  1.0, 0.4,

   91     0.5,  -1.0,  -4.0, 1.0,  0.4, 0.4,

   92

   93     0.0,  1.0,  -2.0, 1.0,  1.0, 0.4, // The middle yellow triangle
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   94    -0.5, -1.0,  -2.0, 1.0,  1.0, 0.4,

   95     0.5, -1.0,  -2.0, 1.0,  0.4, 0.4,

   96

   97     0.0,  1.0,   0.0, 0.4,  0.4, 1.0,  // The front blue triangle

   98    -0.5, -1.0,   0.0, 0.4,  0.4, 1.0,

   99     0.5, -1.0,   0.0, 1.0,  0.4, 0.4,

  100   ]);

      ...

  135   return n;

  136 }   

 This time, you need to pass the model matrix to the vertex shader, so  u_ModelMatrix  is 
added at line 6. The matrix is used at line 11, which implements Equation 7.5:  

   11   '  gl_Position = u_ProjMatrix * u_ViewMatrix * u_ModelMatrix * a_Position;\n' +    

 Next,  main()  in JavaScript calls  initVertexBuffers()  at line 43. In this function, the 
vertex coordinates of the triangles to be passed to the buffer object are defined (line 87). 
This time, you are handling the vertex coordinates of three triangles centered along the 
z-axis instead of the six triangles used in  PerspectiveView.js . As mentioned before, this is 
because you will use the three triangles in conjunction with a translation.  

 At line 53, the storage location of  u_ModelMatrix  in the vertex shader is obtained. At 
line 61, the arguments for the matrix ( modelMatrix ) passed to the  uniform variable are 
prepared, and at line 66, the matrix is calculated. First, this matrix will translate the trian-
gles by 0.75 units along the x-axis:  

  65   // Calculate the view matrix and the projection matrix

   66   modelMatrix.setTranslate(0.75, 0, 0);  // Translate 0.75 

   ... 

   70   gl.uniformMatrix4fv(u_ModelMatrix, false, modelMatrix.elements); 

   ... 

   76   gl.drawArrays(gl.TRIANGLES, 0, n);  // Draw a triangle    

 The matrix calculations, apart from the model matrix at line 66, are the same as in 
 PerspectiveView.js . The model matrix is passed to  u_ModelMatrix  at line 70 and used to 
draw the right side row of   triangles (line 76).  

 In a similar manner, the row of triangles for the left side is translated by –0.75 units along 
the x-axis, and then the model matrix is calculated again at line 79. Because the view 
matrix and projection matrix make use of this model matrix, you only need to assign 
the model matrix to the uniform variable once (line 81). Once the matrix is set up, you 
perform the draw operation at line 83 with  gl.drawArrays() :  

  78   // Prepare the model matrix for another pair of triangles

   79   modelMatrix.setTranslate(-0.75, 0, 0); // Translate -0.75 

  80   // Modify only the model matrix
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   81   gl.uniformMatrix4fv(u_ModelMatrix, false, modelMatrix.elements); 

  82

   83   gl.drawArrays(gl.TRIANGLES, 0, n);  // Draw triangles on left    

 As you have seen, this approach allows you to draw two sets of triangles from a single set 
of triangle data, which reduces the number of vertices needed but increases the number 
of calls to  gl.drawArrays() . The choice of which approach to use for better performance 
depends on the application and the WebGL implementation.   

  Experimenting with the Sample Program  

 In  PerspectiveView_mvp , you calculated  〈 〉 × 〈 〉 × 〈 〉projection matrix view matrix model matrix            
directly inside the vertex shader. This calculation of        is the same for all the vertices, so 
there is no need to recalculate    it inside the shader for each vertex. It can be computed in 
advance inside the JavaScript code, as it was in  LookAtRotatedTriangles_mvMatrix  earlier 
in the chapter, allowing a single matrix to be passed to the vertex shader. This matrix is 
called the  model view projection matrix , and the name of the variable that passes it is  
u_MvpMatrix . The sample program used to show this is  ProjectiveView_mvpMatrix , in 
which the vertex shader is modified as  shown next and, as you can see, is significantly 
simpler:  

   1 // PerspectiveView_mvpMatrix.js

   2 // Vertex shader program

   3 var VSHADER_SOURCE =

   4   'attribute vec4 a_Position;\n' +

   5   'attribute vec4 a_Color;\n' +

    6   'uniform mat4 u_MvpMatrix;\n' + 

   7   'varying vec4 v_Color;\n' +

   8   'void main() {\n' +

    9   '  gl_Position = u_MvpMatrix * a_Position;\n' + 

  10   '  v_Color = a_Color;\n' +

  11   '}\n';   

 In JavaScript,  main() , the storage location of  u_ModelMatrix  is retrieved at line 51, and 
then the matrix to be stored in the uniform variable is calculated at line 57:  

  50   // Get the storage location of u_MvpMatrix

  51   var u_MvpMatrix = gl.getUniformLocation(gl.program, 'u_MvpMatrix');

      ...

  57   var modelMatrix = new Matrix4(); // The model matrix

  58   var viewMatrix = new Matrix4();  // The view matrix
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  59   var projMatrix = new Matrix4();  // The projection matrix

   60   var mvpMatrix = new Matrix4();   // The model view projection matrix 

  61

  62   // Calculate the model, view, and projection matrices

  63   modelMatrix.setTranslate(0.75, 0, 0);

  64   viewMatrix.setLookAt(0, 0, 5, 0, 0, -100, 0, 1, 0);

  65   projMatrix.setPerspective(30, canvas.width/canvas.height, 1, 100);

   66   // Calculate the model view projection matrix 

   67   mvpMatrix.set(projMatrix).multiply(viewMatrix).multiply(modelMatrxi); 

  68   // Pass the model view projection matrix to u_MvpMatrix

  69   gl.uniformMatrix4fv(u_MvpMatrix, false, mvpMatrix.elements);

      ...

  73   gl.drawArrays(gl.TRIANGLES, 0, n);  // Draw a rectangle

  74

  75   // Prepare the model matrix for another pair of triangles

  76   modelMatrix.setTranslate(-0.75, 0, 0);

   77   // Calculate the model view projection matrix 

   78   mvpMatrix.set(projMatrix).multiply(viewMatrix).multiply(modelMatrxi); 

  79   // Pass the model view projection matrix to u_MvpMatrix

  80   gl.uniformMatrix4fv(u_MvpMatrix, false, mvpMatrix.elements);

  81

  82   gl.drawArrays(gl.TRIANGLES, 0, n); // Draw a rectangle

  83 }   

 The critical calculation is carried out at line 67. The projection matrix ( projMatrix ) is 
assigned to  mvpMatrix . Then the view matrix ( viewMatrix ) is multiplied by the model 
matrix ( modelMatrix ), and the result is written back to  mvpMatrix , using the  set  version 
of the method. This is in turn assigned to  u_MvpMatrix  at line 69, and the triangles on 
the right side are drawn at line 73. Similarly, the calculation of the model view projec-
tion matrix for the triangles on the left side is performed at line 78. It is then passed to 
 u_MvpMatrix  at line 80, and the triangles are drawn at line  82.  

 With this information, you are now able to write code that moves the eye point, sets the 
viewing volume, and allows you to view three-dimensional objects from various angles. 
Additionally, you have learned how to deal with clipping that resulted in partially missing 
objects. However, one potential problem remains. As you move the eye point to a differ-
ent location, it’s possible for objects in the foreground to be hidden by objects in the 
background. Let’s look at how this problem comes about.    

  Correctly Handling Foreground and Background 
Objects  
 In the real world, if you place two boxes on a desk as   shown in  Figure   7.27   , the fore-
ground box partially hides the background one.  
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 Figure 7.27   The front object partially hides the back object         

 Looking at the sample programs constructed so far, such as the screen shot of 
 PerspectiveView  (refer to  Figure   7.21   ), the green triangle located at the back is partially 
hidden by the yellow and blue triangles. It looks as if WebGL, being designed for display-
ing 3D objects, has naturally figured out the correct order.  

 However, that is unfortunately not the case. By default, WebGL, to accelerate the drawing 
process, draws objects in the order of the vertices specified inside the buffer object. Up 
until now, you have always arranged the order of the vertices so that the objects located 
in the background are drawn first, thus resulting in a natural rendering.  

 For example, in  PerspectiveView_mvpMatrix.js , you specified the coordinates and color 
of the triangles in the following order. Note the z coordinates (bold font):  

  var verticesColors = new Float32Array([

   // vertex coordinates and color

   0.0, 1.0,  -4.0 , 0.4, 1.0, 0.4, // The green one at the back

  -0.5, -1.0,  -4.0 , 0.4, 1.0, 0.4,

   0.5, -1.0,  -4.0 , 1.0, 0.4, 0.4,

   0.0, 1.0,  -2.0 , 1.0, 1.0, 0.4, // The yellow one in the middle

  -0.5, -1.0,  -2.0 , 1.0, 1.0, 0.4,

   0.5, -1.0,  -2.0 , 1.0, 0.4, 0.4,

   0.0, 1.0,  0.0 , 0.4, 0.4, 1.0,  // The blue one in the front

  -0.5, -1.0,  0.0 , 0.4, 0.4, 1.0,

   0.5, -1.0,  0.0 , 1.0, 0.4, 0.4,

   ]);   

 WebGL draws the triangles in the order z in which you specified the vertices (that is, 
the green triangle [back], then the yellow triangle [middle], and finally the blue triangle 
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[front]). This ensures that objects closer to the eye point cover those farther away, as seen 
in  Figure   7.13   .  

 To verify this, let’s modify the order in which the triangles are specified by first drawing 
the blue triangle in the front, then the yellow triangle in the middle, and finally the green 
triangle at the back:  

  var verticesColors = new Float32Array([

    // vertex coordinates and color

     0.0,  1.0,   0.0,  0.4,  0.4,  1.0, // The blue one in the front 

    -0.5, -1.0,   0.0,  0.4,  0.4,  1.0, 

     0.5, -1.0,   0.0,  1.0,  0.4,  0.4 

  

    0.0,  1.0,  -2.0,  1.0,  1.0,  0.4, // The yellow one in the middle

   -0.5, -1.0,  -2.0,  1.0,  1.0,  0.4,

    0.5, -1.0,  -2.0,  1.0,  0.4,  0.4,

  

     0.0,  1.0,  -4.0,  0.4,  1.0,  0.4, // The green one at the back 

    -0.5, -1.0,  -4.0,  0.4,  1.0,  0.4, 

     0.5, -1.0,  -4.0,  1.0,  0.4,  0.4, 

  ]);   

 When you run this, you’ll see the green triangle, which is supposed to be located at the 
back, has been drawn at the front (see  Figure   7.28   ).  

 
 Figure 7.28   The green triangle in the back is displayed at the front         

 Drawing objects in the specified order, the default behavior in WebGL, can be quite 
efficient when the sequence can be determined beforehand and the scene doesn’t 
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subsequently change. However, when you examine the object from various directions by 
moving the eye point, it is impossible to decide the drawing order in advance.  

  Hidden Surface Removal  

 To cope with this problem, WebGL provides a  hidden surface removal  function. This 
function eliminates surfaces hidden behind   foreground objects, allowing you to draw the 
scene so that the objects in the back are properly hidden by those in front, regardless of 
the specified vertex order. This function is already embedded in WebGL and simply needs 
to be enabled.  

 Enabling hidden surface removal and preparing WebGL to use it requires the following 
two steps:  

    1.   Enabling the hidden surface removal function  

  gl.enable(gl.DEPTH_TEST);    

   2.   Clearing the depth buffer used for the hidden surface removal before drawing  

  gl.clear(gl.DEPTH_BUFFER_BIT);     

 The function  gl.enable() , used in step 1, actually enables  various functions in WebGL.    

   gl.enable(cap)   

 Enable the function specified by  cap  (capability).  

  Parameters    cap   Specifies the function to be 
enabled.  

 gl.DEPTH_TEST 2   Hidden surface removal 

  gl.BLEND  Blending (see  Chapter   9   , 
“Hierarchical Objects”) 

  gl.POLYGON_OFFSET_FILL  Polygon offset (see the next 
section), and so on 3  

  Return value    None  

  Errors :   INVALID_ENUM   None of the acceptable values is specified in  cap   

3  Although not covered in this book, you can also specify  gl.CULL_FACE ,  gl.DITHER ,  gl.SAMPLE_

ALPHA_TO_COVERAGE ,  gl.SAMPLE_COVERAGE ,  gl.SCISSOR_TEST , and  gl.STENCIL_TEST . See the 

book  OpenGL Programming Guide  for more information on these. 

2  A “DEPTH_TEST” in the hidden surface removal function might sound strange, but actually its name 

comes from the fact that it decides which objects to draw in the foreground by verifying (TEST) the 

depth (DEPTH) of each object. 
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    The  depth buffer  cleared in the  gl.clear()  statement (step 2) is a buffer used internally 
to remove hidden surfaces. While WebGL draws objects and geometric shapes in the color 
buffer displayed on the  <canvas> , hidden surface removal requires the depth (from the 
eye point) for each geometrical shape and object. The depth buffer holds this information 
(see  Figure   7.29   ). The depth direction is the same as the z-axis direction, so it is sometimes 
called the z-buffer.  
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 Figure 7.29   Depth buffer used in hidden surface removal         

 Because the depth buffer is used whenever a drawing command is issued, it must be 
cleared before any drawing operation; otherwise, you will see incorrect results. You specify 
the depth buffer using  gl.DEPTH_BUFFER_BIT  and proceed as follows to clear it:  

  gl.clear(gl.DEPTH_BUFFER_BIT);   

 Up until now, you only cleared the color buffer. Because you now need to also clear the 
depth buffer, you can clear both buffers simultaneously by taking the bitwise or (|) of  
gl.COLOR_BUFFER_BIT  (which  represents the color buffer) and  gl.DEPTH_BUFFER_BIT  
(which represents the depth buffer) and  specifying it as an argument to  gl.clear() :  

  gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);   

 You can use the bitwise  or  operation this way whenever you need to clear both buffers at 
the same time.  

 To disable the function you enabled with  gl.enable() , you use  gl.disable() .    

   gl.disable(cap)   

  Disable the function specified by  cap  (capability).  

  Parameters    cap   Same as  gl.enable() .  

  Return value    None  

  Errors    INVALID_ENUM   None of the acceptable values is specified in  cap   
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  Sample Program (DepthBuffer.js)  

 Let’s add the hidden surface removal methods from (1) and (2) to  PerspectiveView_
mvpMatrix.js  and change the    name to  DepthBuffer.js . Note that the order of the vertex 
coordinates specified inside the buffer object is not changed, so you will draw from 
front to back the blue, yellow, and green triangles. The result is identical to that of the 
 PerspectiveView_mvpMatrix . We detail the program in  Listing   7.10   .  

  Listing 7.10   DepthBuffer.js  

   1 // DepthBuffer.js

      ...

   23 function main() {

      ...

   41   var n = initVertexBuffers(gl);

      ...

   47   // Specify the color for clearing <canvas>

   48   gl.clearColor(0, 0, 0, 1);

    49   // Enable the hidden surface removal function 

    50   gl.enable(gl.DEPTH_TEST); 

  

    73   // Clear the color and depth buffer 

    74   gl.clear(gl.COLOR_BUFFER_BIT  |  gl.DEPTH_BUFFER_BIT); 

   75

   76   gl.drawArrays(gl.TRIANGLES, 0, n);  // Draw triangles

      ...

   85   gl.drawArrays(gl.TRIANGLES, 0, n);  // Draw triangles

   86 }

   87

   88 function initVertexBuffers(gl) {

   89   var verticesColors = new Float32Array([

   90     //  Vertex coordinates and color

    91     0.0,  1.0,   0.0, 0.4,  0.4, 1.0,  // The blue triangle in front 

     92    -0.5, -1.0,   0.0, 0.4,  0.4, 1.0, 

    93     0.5, -1.0,   0.0, 1.0,  0.4, 0.4, 

   94

   95     0.0,  1.0,  -2.0, 1.0,  1.0, 0.4, // The yellow triangle in middle

   96    -0.5, -1.0,  -2.0, 1.0,  1.0, 0.4,

   97     0.5, -1.0,  -2.0, 1.0,  0.4, 0.4,

   98

    99     0.0,  1.0,  -4.0, 0.4,  1.0, 0.4, // The green triangle in back 

    100   -0.5, -1.0,  -4.0, 0.4,  1.0, 0.4, 

    101    0.5, -1.0,  -4.0, 1.0,  0.4, 0.4, 

   102   ]);

   103   var n = 9;

      ...
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  137   return n;

  138 }   

 If you run  DepthBuffer , you can see that hidden face removal is performed and that 
objects placed at the back are hidden by objects located at the front. This demonstrates 
that the hidden surface removal function can eliminate the hidden surfaces regardless of 
the position of the eye point. Equally, this also shows that in anything but a trivial 3D 
scene, you will always need to enable hidden surface removal and systematically clear the 
depth buffer before any drawing operation.  

 You should note that hidden surface removal requires you to correctly set up the viewing 
volume. If you fail to do this (use WebGL in its default configuration), you are likely 
to see incorrect results. You can specify either a box or a quadrangular pyramid for the 
viewing volume.   

  Z Fighting  

 Hidden surface removal is a sophisticated and powerful feature of WebGL that correctly 
handles most of the cases where surfaces need to     be removed. However, it fails when two 
geometrical shapes or objects are located at extremely close positions and results in the 
display looking a little unnatural. This phenomenon is known as  Z fighting  and is illus-
trated in  Figure   7.30   . Here, we draw two triangles sharing the same z coordinate.  

 
 Figure 7.30   Visual artifact generated by Z fighting (the left side)         

 The Z fighting occurs because of the limited precision of the depth buffer and means the 
system is unable to asses which object is in front and which is behind. Technically, when 
handling 3D models, you could avoid this by paying thorough attention to the z coordi-
nates’ values at the model creation stage; however, implementing this workaround would 
prove to be unrealistic when dealing with the animation of several objects.  
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 To help resolve this problem, WebGL provides a feature known as the  polygon offset . 
This works by automatically adding an offset to the z coordinate, whose value is a func-
tion of each object’s inclination with respect to the viewer’s line of sight. You only need 
to add two lines of code to enable this function.  

   1. Enabling the polygon offset function:  

  gl.enable(gl.POLYGON_OFFSET_FILL);    

  2. Specifying the parameter used to calculate the offset (before drawing):  

  gl.polygonOffset(1.0, 1.0);     

 The same method that enabled the hidden surface removal function is used, but with a 
different parameter. The details for  gl.polygonOffset()  are shown here.    

   gl.polygonOffset(factor, units)   

  Specify the offset to be added to the z coordinate of each vertex drawn afterward. 
The offset is calculated with the formula m *  factor  + r *  units , where m represents the 
inclination of the triangle with respect to the line of sight, and where r is the smallest 
difference between two z coordinates values the hardware can distinguish.  

  Return value    None  

  Errors    None  

 Let’s look at the program  Zfighting , which uses the polygon offset to reduce z fighting 
(see  Listing   7.11   ).  

  Listing 7.11   Zfighting.js  

   1 // Zfighting.js

     ...

  23 function main() {

     ...

   69   // Enable the polygon offset function 

   70   gl.enable(gl.POLYGON_OFFSET_FILL); 

  71   // Draw a rectangle

  72   gl.drawArrays(gl.TRIANGLES, 0, n/2);   // The green triangle

   73   gl.polygonOffset(1.0, 1.0);     // Set the polygon offset 

  74   gl.drawArrays(gl.TRIANGLES, n/2, n/2); // The yellow triangle

  75 }

  76

  77 function initVertexBuffers(gl) {
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  78   var verticesColors = new Float32Array([

  79     // Vertex coordinates and color

  80      0.0,  2.5,   -5.0 ,  0.0,  1.0,  0.0, // The green triangle

  81     -2.5, -2.5,   -5.0 ,  0.0,  1.0,  0.0,

  82      2.5, -2.5,   -5.0 ,  1.0,  0.0,  0.0,

  83

  84      0.0,  3.0,   -5.0 ,  1.0,  0.0,  0.0, // The yellow triangle

  85     -3.0, -3.0,   -5.0 ,  1.0,  1.0,  0.0,

  86      3.0, -3.0,   -5.0 ,  1.0,  1.0,  0.0,

  87   ]);

  88   var  n = 6;   

 If you look at the program from line 80, you can see that the z coordinate for each vertex 
is set to –5.0, so z fighting should occur.  

 Within the rest of the code, the polygon offset function is enabled at line 70. After 
that, the green and yellow triangles are drawn at lines 72 and 74. For ease of reading, 
the program uses only one buffer object, so  gl.drawArrays()  requires the second and 
third arguments to be correctly set. The second argument represents the number of the 
vertex to start from, while the third argument gives the number of vertices to be drawn. 
Once the green triangle has been drawn, the polygon offset parameter is set using  gl.
polygonOffset() . Subsequently, all the vertices drawn will have their z coordinate  offset. 
If you load this program, you will see the two triangles drawn correctly with no z fight-
ing effects, as in  Figure   7.28    (right side). If you now comment out line 73 and reload the 
program, you will notice that z fighting occurs and looks similar to the left side of  Figure 
  7.28   .    

  Hello Cube  
 So far, the explanation of various WebGL features has been illustrated using simple trian-
gles. You now have enough understanding of the  basics to draw 3D objects. Let’s start by 
drawing the cube shown in  Figure   7.31   . (The coordinates for each vertex are shown on the 
right side.) The program used is called  HelloCube , in which the eight vertices that define 
the cube are specified using the following colors: white, magenta (bright reddish-violet), 
red, yellow, green, cyan (bright blue), blue, and black. As was explained in  Chapter   5   , 
“Using Colors and Texture Images,” because colors between the vertices are interpolated, 
the  resulting cube is shaded with an attractive color gradient (actually a “color solid,” an 
analog of the two-dimensional “color wheel”).  
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 Figure 7.31   HelloCube and its vertex coordinates         

 Let’s consider the case where you would like to draw the cube like this with the command 
you’ve been relying upon until now:  gl.drawArrays() . In this case, you need to draw 
using one of the following modes:  gl.TRIANGLES ,  gl.TRIANGLE_STRIP , or  gl.TRIANGLE_FAN . 
The most simple and straightforward method would consist of drawing each face with 
two triangles. In other words, you can draw a face defined by four vertices (v0, v1, v2, v3), 
using two triangles defined by the two sets of three vertices (v0, v1, v2) and (v0, v2, v3), 
respectively, and repeat the same process for all the other  faces. In this case, the vertices 
coordinates specified inside the buffer object would be these:  

  var vertices = new Float32Array([

       1.0, 1.0, 1.0,  -1.0,  1.0, 1.0, -1.0, -1.0,  1.0, // v0, v1, v2

       1.0, 1.0, 1.0,  -1.0, -1.0, 1.0,  1.0, -1.0,  1.0, // v0, v2, v3

       1.0, 1.0, 1.0,   1.0, -1.0, 1.0,  1.0, -1.0, -1.0, // v0, v3, v4

     ...

  ]);   

 Because one face is made up of two triangles, you need to know the coordinates of six 
vertices to define it. There are six faces, so a total of 6×6 = 36 vertices are necessary. After 
having specified the coordinates of each of the 36 vertices, write them in the buffer 
object and then call  gl.drawArrays(gl.TRIANGLES, 0, 36),  which draws the cube. This 
approach requires that you specify and handle 36 vertices, although the cube actually only 
requires 8 unique vertices because several triangles share common vertices.  

 You could, however, take a more frugal approach by drawing a single face with  gl.
TRIANGLE_FAN . Because  gl.TRIANGLE_FAN  allows you to draw a face defined by the 4-vertex 
set (v0, v1, v2, v3), you end up only having to deal with a total of 4×6=24 vertices  4  . 
However, you now need to call  gl.drawArrays()  separately for each face (six faces). So, 
each of these two approaches has both advantages and drawbacks, but neither seems ideal.  

  4    You can cut down on the number of vertices using this kind of representation. It decreases the 

number of necessary vertices to 14, which can be drawn with  gl.TRIANGLE_STRIP .  
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 As you would expect, WebGL has a solution:  gl.drawElements() . It’s an alternative way to 
directly draw a three-dimensional object in WebGL, with a minimum of vertices. To use 
this method, you will need the vertex coordinates of the entire object, which you will use 
to explicitly describe how you want WebGL to draw the shape (the cube).  

 If we break our cube (see the right side of  Figure   7.31   ) into vertices that constitute trian-
gles, we get the structure shown in  Figure   7.32   . Looking at the left side of the figure, 
you can see that Cube points to a Faces list, which, as the name implies, shows that the 
cube is split into six faces: front, right, left, top, bottom, and back. In turn, each face is 
composed of two triangles picked up from the Triangles list. The numbers in the Triangles 
list represent the indices assigned to the Coordinate list. The vertex coordinates’ indices 
are numbered in  order starting from zero.  
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 Figure 7.32   The associations of the faces that make up the cube, triangles, vertex 
coordinates, and colors         

 This approach results in a data structure that describes the way the object (a cube) can be 
built from its vertex and color data.  

  Drawing the Object with Indices and Vertices Coordinates  

 So far, you have been using  gl.drawArrays()  to draw vertices. However, WebGL supports 
an alternative approach,  gl.drawElements() , that looks similar to that of  gl.draw
Arrays() . However, it has some   advantages that we’ll explain later. First, let’s look at 
how to use  gl.drawElements() . You need to specify the indices based, not on  gl.ARRAY_
BUFFER , but on  gl.ELEMENT_ARRAY_BUFFER  (introduced in the explanation of the buffer 
object in  Chapter   4   ). The key difference is that  gl.ELEMENT_ARRAY_BUFFER  handles data 
structured by the indices.    
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   gl.drawElements(mode, count, type, offset)   

 Executes the shader and draws the geometric shape in the specified  mode  using the 
indices specified in the buffer object bound to  gl.ELEMENT_ARRAY_BUFFER .  

  Parameters    mode   Specifies the type of shape to be drawn (refer to  Figure 
  3.17   ).  

 The following symbolic constants are accepted:  

  gl.POINTS, gl.LINE_STRIP, gl.LINE_LOOP, gl.LINES, 
gl.TRIANGLE_STRIP, gl.TRIANGLE_FAN , or  gl.TRIANGLES   

 count   Number of indices to be drawn (integer).  

 type   Specifies the index data type:  gl.UNSIGNED_BYTE  or  gl.
UNSIGNED_SHORT  5   

 offset   Specifies the offset in bytes in the index array where you 
want to start rendering.  

  Return value    None  

  Errors    INVALID_ENUM    mode  is none of the preceding values.  

 INVALID_VALUE   A negative value is specified for  count  or  offset   

   Writing indices to the buffer object bound to  gl.ELEMENT_ARRAY_BUFFER  is done in the 
same way you write the vertex information to the buffer object with  gl.drawArrays() . 
That is to say, you use  gl.bindBuffer()  and  gl.bufferData() , but the only difference is 
that the first argument,  target , is set to  gl.ELEMENT_ARRAY_BUFFER . Let’s take a look at the 
sample program.   

  Sample Program (HelloCube.js)  

 The sample program is shown in  Listing   7.12   . The    vertex and fragment shaders set a quad-
rangular pyramid viewing volume and perform a perspective projection transformation 
like  ProjectiveView_mvpMatrix.js . It’s important to understand that  gl.drawElements()  
doesn’t do anything special. The vertex shader simply transforms the vertex coordinates, 
and the fragment shader sets the color passed by the varying variable to  gl_FragColor . 
The key difference from the previous programs comes down to the processing of the 
buffer object in  initVertexBuffers() .  

5  Even if  type  doesn’t correspond to the type ( Uint8Array  or  Uint16Array ) of the data array specifi ed 

in  gl.ELEMENT_ARRAY_BUFFER , no error is returned. However, if, for example, you specify the index 

with a  Uint16Array  type, and set type to  gl.UNSIGNED_BYTE , in some cases, the object might not 

be completely displayed. 
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  Listing 7.12   HelloCube.js  

   1 // HelloCube.js

    2 // Vertex shader program

    3 var VSHADER_SOURCE =

      ...

    8   'void main() {\n' +

    9   '  gl_Position = u_MvpMatrix * a_Position;\n' +

   10   '  v_Color = a_Color;\n' +

   11   '}\n';

   12

   13 // Fragment shader program

   14 var FSHADER_SOURCE =

      ...

   19   'void main() {\n' +

   20   '  gl_FragColor = v_Color;\n' +

   21   '}\n';

   22

   23 function main() {

      ...

   40   // Set the vertex coordinates and color

    41   var n = initVertexBuffers(gl); 

      ...

   47   // Set the clear color and enable the hidden surface removal

   48   gl.clearColor(0.0, 0.0, 0.0, 1.0);

    49   gl.enable(gl.DEPTH_TEST); 

      ...

   58   //  Set the eye point and the viewing volume

   59   var mvpMatrix = new Matrix4();

   60   mvpMatrix.setPerspective(30, 1, 1, 100);

   61   mvpMatrix.lookAt(3, 3, 7, 0, 0, 0, 0, 1, 0);

   62

   63   // Pass the model view projection matrix to u_MvpMatrix

   64   gl.uniformMatrix4fv(u_MvpMatrix, false, mvpMatrix.elements);

   65

   66   // Clear the color and depth buffer

   67   gl.clear(gl.COLOR_BUFFER_BIT |  gl.DEPTH_BUFFER_BIT); 

   68

   69   // Draw the cube

    70   gl.drawElements(gl.TRIANGLES, n, gl.UNSIGNED_BYTE, 0); 

   71 }

   72

   73 function initVertexBuffers(gl) {

      ...

   82   var verticesColors = new Float32Array([
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   83     // Vertex coordinates and color

   84      1.0,  1.0,  1.0,     1.0,  1.0,  1.0,  // v0 White

   85     -1.0,   1.0,  1.0,     1.0,  0.0,  1.0,  // v1 Magenta

   86     -1.0, -1.0,  1.0,     1.0,  0.0,  0.0,  // v2 Red

      ...

   91     -1.0, -1.0, -1.0,     0.0,  0.0,  0.0   // v7 Black

   92   ]);

   93

   94   // Indices of the vertices

    95   var indices = new Uint8Array([ 

    96     0, 1, 2,   0, 2, 3,    // front 

    97     0, 3, 4,   0, 4, 5,    // right 

    98     0, 5, 6,   0, 6, 1,    // up 

    99     1, 6, 7,   1, 7, 2,    // left 

   100     7, 4, 3,   7, 3, 2,    // down 

   101     4, 7, 6,   4, 6, 5     // back 

   102  ]); 

  103

  104   // Create a  buffer object

  105   var vertexColorBuffer = gl.createBuffer();

   106   var indexBuffer = gl.createBuffer(); 

      ...

  111   // Write the vertex coordinates and color to the buffer object

  112   gl.bindBuffer(gl.ARRAY_BUFFER, vertexColorBuffer);

  113   gl.bufferData(gl.ARRAY_BUFFER, verticesColors, gl.STATIC_DRAW);

  114

  115   var FSIZE = verticesColors.BYTES_PER_ELEMENT;

   116   // Assign the buffer object to a_Position and enable it 

  117   var a_Position = gl.getAttribLocation(gl.program, 'a_Position');

      ...

  122   gl.vertexAttribPointer(a_Position, 3, gl.FLOAT, false, FSIZE * 6, 0);

  123   gl.enableVertexAttribArray(a_Position);

   124   // Assign the buffer object to a_Position  and enable it 

  125   var a_Color = gl.getAttribLocation(gl.program, 'a_Color');

      ...

  130   gl.vertexAttribPointer(a_Color, 3, gl.FLOAT, false, FSIZE * 6, FSIZE * 3);

  131   gl.enableVertexAttribArray(a_Color);

  132

   133   // Write the indices to the buffer object 

   134   gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer); 

   135   gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, indices, gl.STATIC_DRAW); 

  136

   137   return indices.length; 

  138 }   
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 The processing flow in the JavaScript  main()  is the same as in  ProjectiveView_mvpMatrix.
js , but let’s quickly review it. After having written the vertex data in the buffer object 
through a call to  initVertexBuffers()  at line 41, you enable the hidden surface removal 
function at line 49. This is necessary to allow WebGL to correctly draw the cube, taking 
into consideration the relationship between the front and the back faces.  

 You set the eye point and the viewing volume from line 59 to line 61 and pass the model 
view projection matrix to the vertex shader’s uniform variable  u_MvpMatrix .  

 At line 67, you clear the color and depth buffers and then draw the cube using 
 gl.drawElements()  at line 70. The use of  gl.drawElements()  in this program is the 
main difference to  ProjectiveView_mvpMatrix.js , so let’s take a look at that.   

  Writing Vertex Coordinates, Colors, and Indices to the Buffer Object  

 The method to assign the vertex coordinates and the color information to the attribute 
variable using the buffer object in  initVertexBuffers()  is unchanged. This time, because 
you won’t necessarily use the vertex    information in the order specified in the object 
buffer, you need to additionally specify in which order you will use it. For that you will 
use the vertex order specified in  verticesColors  as indices. In short, the vertex informa-
tion specified first in the buffer object will be set to index 0, the vertex information speci-
fied in second place in the buffer object will be set to index 1, and so  on. Here, we show 
the part of the program that specifies the  indices in  initVertexBuffers() :  

   73 function initVertexBuffers(gl) {

      ...

   82   var verticesColors = new Float32Array([

   83     // Vertex coordinates and color

   84      1.0,  1.0,  1.0,     1.0,  1.0,  1.0,  // v0 White

   85     -1.0,  1.0,  1.0,     1.0,  0.0,  1.0,  // v1 Magenta

      ...

   91     -1.0, -1.0, -1.0,     0.0,  0.0,  0.0   // v7 Black

   92   ]);

   93

   94   // Indices of the vertex coordinates

    95   var indices = new Uint8Array([ 

    96     0, 1, 2,   0, 2, 3,    // front 

    97     0, 3, 4,   0, 4, 5,    // right 

    98     0, 5, 6,   0, 6, 1,    // up 

    99     1, 6, 7,   1, 7, 2,    // left 

   100      7, 4, 3,   7, 3, 2,    // down 

   101     4, 7, 6,   4, 6, 5     // back 

   102  ]); 

  103

  104   // Create a buffer object

  105   var vertexColorBuffer = gl.createBuffer();
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  106   var indexBuffer = gl.createBuffer();

      ...

   136   // Write the indices to the buffer object 

   137   gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer); 

   138   gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, indices, gl.STATIC_DRAW); 

  139

   140   return indices.length; 

  141 }   

 As you may have noticed, at line 106, you create the buffer object ( indexBuffer ) in which 
to write the indices. These indices are stored in the array  indices  at line 95. Because the 
indices are integers (0, 1, 2, ...), you use an  integer typed array  Uint8Array  (unsigned 
8-bit encoded integer). If there are more than 256 indices, use  Uint16Array  instead. The 
content of this array is the triangles list of  Figure   7.33   , where each grouping of three 
indices points to the three vertex coordinates for that triangle. Generally, this index 
doesn’t need to be manually created because 3D modeling tools, introduced in  the next 
chapter, usually generate it along with the vertices information.  
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 Figure 7.33   Contents of gl.ELEMENT_ARRAY_BUFFER and gl.ARRAY_BUFFER         

 The setup for the specified indices is performed at lines 134 and 135. This is similar to the 
way buffer objects have been written previously, with the difference that the first argu-
ment is modified to  gl.ELEMENT_ARRAY_BUFFER . This is to let the WebGL system know that 
the contents of the buffer are indices.  

 Once executed, the internal state of the WebGL system is as detailed in  Figure   7.34   .  
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 Figure 7.34   gl.ELEMENT_ARRAY_BUFFER and gl.ARRAY_BUFFER         

 Once set up, the call to  gl.drawElements()  at line 70 draws the cube:  

  69   // Draw the cube

   70   gl.drawElements(gl.TRIANGLES, n, gl.UNSIGNED_BYTE, 0);    

 You should note that the second argument of  gl.drawElements() , the number of indices, 
represents the number of vertex coordinates involved in the drawing, but it is not identi-
cal to the number of vertices coordinates written to  gl.ARRAY_BUFFER .  

 When you call  gl.drawElements() , the indices are extracted from the buffer object 
( indexBuffer ) bound to  gl.ELEMENT_ARRAY_BUFFER , while the associated vertex informa-
tion is retrieved from the buffer object ( vertexColorBuffer ) bound to  gl.ARRAY_BUFFER . 
All these pieces of information are then passed to the attribute variable. The process is 
repeated for each index, and then the whole cube gets drawn by a single call to  
gl.drawElements() . With this approach, because you refer to the vertex information 
through indices, you can recycle the vertex information. Although  gl.drawElements()  
allows you to curb memory usage by sharing the vertex information, the cost is a process 
to convert  the indices to vertex information (that is, a level of indirection). This means 
that the choice between  gl.drawElements()  and  gl.drawArrays() , because they both 
have pros and cons, will eventually depend on the system implementation.  

 At this stage, although it’s clear that  gl.drawElements()  is an efficient way to draw 3D 
shapes, one key feature is missing. There is no way to control color, so it is helpful to draw 
a cube using a single solid color, as shown in  Figure   7.31   .  

 For example, let’s consider the case where you would like to modify the color of each face 
of the cube, as shown in  Figure   7.35   , or map textures to the faces. You need to know the 
color or texture information for each face, yet you cannot implement this with the combi-
nation of indices, triangle list, and vertex coordinates shown in  Figure   7.33   .  
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 Figure 7.35   Cube with differently colored faces         

 In the following section, we will examine how to address this problem and specify the 
color information for each face.   

  Adding Color to Each Face of a Cube  

 As discussed before, you can only pass per-vertex information to the vertex shader. This 
implies that you need to pass the face’s    color and the vertices of the triangles as vertex 
information to the vertex shader. For instance, to draw the “front” face in blue, made up 
of v0, v1, v2, and v3 ( Figure   7.33   ), you need to specify the same blue color for each of the 
vertices.  

 However, as you may have noticed, v0 is also shared by the “right” and “top” faces as well 
as the “front” face. Therefore, if you specify the color blue for the vertices that form the 
“front” face, you are then unable to choose a different color for those vertices that also 
belong to another face. To cope with this problem, although this might not seem as effi-
cient, you must create duplicate entries for the shared vertices in the vertices coordinates 
listing, as illustrated in  Figure   7.36   . Doing so, you will have to handle common vertices 
with identical coordinates in the  face’s triangle list as separate entities.  6     

 6    If you break down all the faces into triangles and draw using  gl.drawArrays() , you have 

to process 6 vertices * 6 faces = 36 vertices, so the difference  between  gl.drawArrays()  and  

gl.drawElements()  in memory usage is negligible. This is because a cube or a cuboid is a special 

3D object whose faces are connected vertically; therefore, each vertex needs to have three colors. 

However, in the case of complex 3D models, specifying several colors to a single vertex would be rare. 
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 Figure 7.36   The faces that constitute the cube, the triangles, and the relationship between 
vertices coordinates (configured so that you can choose a different color for each face)         

 When opting for such a configuration, the contents of the index list, which consists of 
the face’s triangle list, will differ from face to face, thus allowing you to modify the color 
for each face. This approach can also be used if you want to map a texture to each face. 
You would need to specify the texture coordinates for each vertex, but you can actually 
deal with this by rewriting the color list ( Figure   7.36   ) as texture coordinates. The sample 
program in the section “Rotate Object” in  Chapter   10    covers this approach in more detail.  

 Let’s take a look at the sample program  ColoredCube , which displays a cube with each face 
painted a different color. The screen shot of  ColoredCube  is identical to  Figure   7.35   .   

  Sample Program (ColoredCube.js)  

 The sample program is shown in  Listing   7.13   .    Because the only difference from 
 HelloCube.js  is the method of storing vertex information into the buffer object, let’s look 
in more detail at the code related to the  initVertexBuffers() . The main differences to 
 HelloCube.js  are  

    •   In  HelloCube.js , the vertex coordinates and color are stored in a single buffer 
object, but because this make the array unwieldy, the program has been modified so 
that they are now stored in separate buffer objects.   

   •   The respective contents of the vertex array (which stores the vertex coordinates), the 
color array (which stores the color information), and the index array (which stores 
the indices) are modified in accordance with the configuration described in  Figure 
  7.36    (lines 83, 92, and 101).   
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   •   To keep the sample program as compact as possible, the function 
 initArrayBuffer()  is defined, which bundles the buffer object creation, binding, 
writing of data, and enabling (lines 116, 119, and 129).    

 As you examine the program, take note of how the second bullet is implemented to match 
the structure shown in  Figure   7.36   .  

  Listing 7.13   ColoredCube.js  

   1 // ColoredCube.js

      ...

   23 function main() {

      ...

   40   // Set the vertex information

   41   var n = initVertexBuffers(gl);

      ...

   69   // Draw the cube

   70   gl.drawElements(gl.TRIANGLES, n, gl.UNSIGNED_BYTE, 0);

   71 }

   72

   73 function initVertexBuffers(gl) {

      ...

   83   var vertices = new Float32Array([   // Vertex coordinates

    84      1.0, 1.0, 1.0,  -1.0, 1.0, 1.0,  -1.0,-1.0, 1.0,   1.0,-1.0, 1.0, 

    85      1.0, 1.0, 1.0,   1.0,-1.0, 1.0,   1.0,-1.0,-1.0,   1.0, 1.0,-1.0, 

    86      1.0, 1.0, 1.0,   1.0, 1.0,-1.0,  -1.0, 1.0,-1.0,  -1.0, 1.0, 1.0, 

       ... 

    89      1.0,-1.0,-1.0,  -1.0,-1.0,-1.0,  -1.0, 1.0,-1.0,   1.0, 1.0,-1.0 

    90   ]); 

   91

    92   var colors = new Float32Array([   // Colors 

    93     0.4,  0.4, 1.0,  0.4, 0.4, 1.0,  0.4, 0.4, 1.0,  0.4, 0.4, 1.0, 

    94     0.4, 1.0, 0.4,  0.4, 1.0, 0.4,  0.4, 1.0, 0.4,  0.4, 1.0, 0.4, 

    95     1.0, 0.4, 0.4,  1.0, 0.4, 0.4,  1.0, 0.4, 0.4,  1.0, 0.4, 0.4, 

       ... 

    98     0.4, 1.0, 1.0,  0.4, 1.0, 1.0,  0.4, 1.0, 1.0,  0.4, 1.0, 1.0 

    99   ]); 

  100

   101   var indices = new Uint8Array([       // Indices of the vertices 

   102      0, 1, 2,   0, 2, 3,    // front 

   103      4, 5, 6,   4, 6, 7,    // right 

   104      8, 9,10,   8,10,11,    // up 

       ... 

   107     20,21,22,  20,22,23     // back 

   108   ]); 
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  109

  110   // Create a buffer object

  111   var indexBuffer = gl.createBuffer();

      ...

  115    // Write the vertex coordinates and color to the buffer object

   116   if (!initArrayBuffer(gl, vertices, 3, gl.FLOAT, 'a_Position')) 

  117     return -1;

  118

  119   if (!initArrayBuffer(gl, colors, 3, gl.FLOAT, 'a_Color'))

  120     return -1;

      ...

  122   // Write the indices to the buffer object

  123   gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);

  124   gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, indices, gl.STATIC_DRAW);

  125

  126   return indices.length;

  127 }

  128

   129 function initArrayBuffer(gl, data, num, type, attribute) { 

   130   var buffer = gl.createBuffer();   // Create a buffer object 

       ... 

   135   // Write date into the buffer object 

   136   gl.bindBuffer(gl.ARRAY_BUFFER, buffer); 

   137   gl.bufferData(gl.ARRAY_BUFFER, data, gl.STATIC_DRAW); 

   138   // Assign the buffer object to the attribute variable 

   139   var a_attribute =  gl.getAttribLocation (gl.program, attribute); 

       ... 

   144   gl.vertexAttribPointer(a_attribute, num, type, false, 0, 0); 

   145   // Enable the assignment of the buffer  object to the attribute variable 

   146   gl.enableVertexAttribArray(a_attribute); 

   147 

   148   return true; 

   149 }     

  Experimenting with the Sample Program  

 In  ColoredCube , you specify a     different color for each face. So what happens when you 
choose an identical color for all the faces? For example, let’s try to set the color infor-
mation in  ColoredCube.js ’s  colors  array to “white,” as shown next. We will call this 
program  ColoredCube_singleColor.js :  

   1  // ColoredCube_singleColor.js

      ...

  92  var colors = new Float32Array([

  93    1.0, 1.0, 1.0,  1.0, 1.0, 1.0,  1.0, 1.0, 1.0,  1.0, 1.0, 1.0,
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  94    1.0, 1.0, 1.0,  1.0, 1.0, 1.0,  1.0, 1.0, 1.0,  1.0, 1.0, 1.0,

      ...

  98    1.0, 1.0, 1.0,  1.0, 1.0, 1.0,  1.0, 1.0, 1.0,  1.0, 1.0, 1

  99  ]);   

 When you execute the program, you see an output like the screenshot shown in  Figure 
  7.37   . One result of using a single color is that it becomes difficult to actually recognize 
the cube. Up until now you could differentiate each face because they were differently 
colored; therefore, you could recognize the whole shape as a solid. However, when you 
switch to a unique color, you lose this three-dimensional impression.  

 
 Figure 7.37   Cube with its faces being identically colored         

 In contrast, in the real world, when you put a white box on a table, you can identify it as 
a solid (see  Figure   7.38   ). This is because each face, although the same white color, presents 
a slightly different appearance because each is lit slightly differently. In  ColoredCube_
singleColor , such an effect is not programmed, so the cube is hard to recognize. We will 
explore how to correctly light 3D scenes in the next chapter.  
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 Figure 7.38   White box in the real world            

     Summary  
 In this chapter, through the introduction of the depth information, you have examined 
setting the viewer’s eye point and viewing volume, looked at how to draw real 3D objects, 
and briefly examined the local and world coordinate system. Many of the examples were 
similar to those previously explained for the two-dimensional world, except for the intro-
duction of the z-axis to handle depth information.  

 The next chapter explains how to light 3D scenes and how to draw and manipulate 
three-dimensional shapes with complex structures. We will also return to the function 
 initShaders() , which has hidden a number of complex issues that you now have enough 
understanding to explore.     
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  Chapter 8 

 Lighting Objects  

    This chapter focuses on lighting objects, looking at different light sources and 
their effects on the 3D scene. Lighting is essential if you want to create realistic 
3D scenes because it helps to give the scene a sense of depth.  

 The following key points are discussed in this chapter:  

    •   Shading, shadows, and different types of light sources including point, 
directional, and ambient   

   •   Reflection of light in the 3D scene and the two main types: diffuse and 
ambient   

   •   The details of shading and how to implement the effect of light to make 
objects, such as the pure white cube in the previous chapter, look three-
dimensional    

 By the end of this chapter, you will have all the knowledge you need to create 
lighted 3D scenes populated with both simple and complex 3D objects.   

     Lighting 3D Objects  
 When light hits an object in the real world, part of the light is reflected by the 
surface of the object. Only after this reflected light enters your eyes can you see 
the object and distinguish   its color. For example, a white box reflects white light 
which, when it enters your eyes, allows you to tell that the box is white.  
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 In the real world, two important phenomena occur when light hits an object 
(see  Figure   8.1   ):  

    •   Depending on the light source and direction, surface color is shaded.   

   •   Depending on the light source and direction, objects “cast” shadows on the ground 
or the floor.    

 

Shadowing

Shading

 Figure 8.1   Shading and shadowing         

 In the real world, you usually notice shadows, but you quite often don’t notice shading, 
which gives 3D objects their feeling of depth. Shading   is subtle but always present. As 
shown in  Figure   8.1   , even surfaces of a pure white cube are distinguishable because each 
surface is shaded differently by light. As you can see, the surfaces hit by more light are 
brighter, and the surfaces hit by less light are darker, or more shaded. These differences 
allow you to distinguish each surface and ensure that the cube looks cubic.  

 In 3D graphics, the term  shading   1   is used to describe the process that re-creates this 
phenomenon where the colors differ from surface to surface due to light. The other 
phenomenon, that the shadow of an object falls on the floor or ground, is re-created using 
a process called  shadowing . This section discusses shading. Shadowing is discussed in 
 Chapter   10   , which focuses on a set of useful techniques that  build on your basic knowl-
edge of WebGL.   

 1    Shading is so critical to 3D graphics that the core language, GLSL ES, is a shader language, the 

OpenGL ES Shading Language. The original purpose of shaders was to re-create the phenomena of 

shading. 
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 When discussing shading, you need to consider two things:  

    •   The type of light source that is emitting light   

   •   How the light is reflected from surfaces of an object and enters the eye    

 Before we begin to program, let’s look at different types of light sources and how light is 
reflected from different surfaces.  

  Types of Light Source  

 When light illuminates an object, a light source emits the light. In the real world, light 
sources are divided into two main categories:  directional light , which is something like 
the sun that emits light    naturally, and  point light , which is something like a light bulb 
that emits light artificially. In addition, there is  ambient light  that represents indirect 
light (that is, light emitted from all light sources and reflected by walls or other objects 
(see  Figure   8.2   ). In 3D graphics, there are additional types of light sources. For example, 
there is a spot light representing flashlights, headlamps, and so on. However,  in this book, 
we don’t address these more specialized light sources. Refer to the book  OpenGL ES 2.0 
Programming Guide  for further information on these specialized light sources.  

 thgiltneibmAthgiltnioPthgillanoitceriD

 Figure 8.2   Directional light, point light, and ambient light         

   Focusing on the three main types of light source covered in this book:   

   Directional light:       A directional   light represents a light source whose light rays are paral-
lel. It is a model of light whose source is considered to be at an infinite distance, such 
as the sun. Because of the distance travelled, the rays are effectively parallel by the time 
they reach the earth. This light source is considered the simplest, and because its rays are 
parallel can be specified using only direction and color.   

   Point light:       A point light represents   a light source that emits light in all directions from 
one single point. It is a model of light that can be used to represent light bulbs, lamps, 
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flames, and so on. This light source is specified by its position and color.  2   However, the 
light direction  is determined from the position of the light source and the position at 
which the light strikes a surface. As such, its direction can change considerably within 
the scene.    

   Ambient light:       Ambient light (indirect light) is a model of light that is emitted from 
the other light source (directional or point), reflected   by other objects such as walls, and 
reaches objects indirectly. It represents light that illuminates an object from all directions 
and has the same intensity.  3   For example, if you open the refrigerator door  at night, the 
entire kitchen becomes slightly lighter. This is the effect of the ambient light. Ambient 
light does not have position and direction and is specified only by its color.     

 Now that you know the types of light sources that illuminate objects, let’s discuss how 
light is reflected by the surface of an object and then enters the eye.   

  Types of Reflected Light  

 How light is reflected by the surface of an object and thus what color the surface will 
become is determined by two things: the     type of the light and the type of surface of the 
object. Information about the type of light includes its color and direction. Information 
about the surface includes its color and orientation.  

 When calculating reflection from a surface, there are two main types:  diffuse reflection  
and  environment  (or  ambient )  reflection . The remainder of this section describes how to 
calculate the color due to reflection using the two pieces of information described earlier. 
There is a little bit of math to be considered, but it’s not complicated.  

  Diffuse Reflection  

 Diffuse reflection is the reflection of   light from a directional light or a point light. In 
diffuse reflection, the light is reflected (scattered) equally in all directions from where 
it hits (see  Figure   8.3     ). If a surface is perfectly smooth like a mirror, all incoming light 
is reflected; however, most surfaces are rough like paper, rock, or plastic. In such cases, 
the light is scattered in random directions from the rough surface. Diffuse reflection is a 
model of this phenomenon.  

 2    This type of light actually attenuates; that is, it is strong near the source and becomes weaker farther 

from the source. For the sake of simplicity of the description and sample programs, light is treated 

as nonattenuating in this book. For attenuation, please refer to the book  OpenGL ES 2.0 Programming 

Guide . 

 3    In fact, ambient light is the combination of light emitted from light sources and refl ected by various 

surfaces. It is approximated in this way because it would otherwise need complicated calculations to 

take into account all the many light sources and how and where they are refl ected. 



ptg11539634

Lighting 3D Objects 295

 

θ

orientation of 
the surface

A B C

orientation of 
the surface

diffuse reflection

light
direction

light
source

light
source

diffuse reflection (reflection differs by light direction)

 Figure 8.3   Diffuse reflection         

 In diffuse reflection, the color of the surface is determined by the color and the direction 
of light and the base color and orientation of the surface. The angle between the light 
direction and the orientation of the surface is defined by the angle formed by the light 
direction and the direction “perpendicular” to the surface. Calling this angle  θ , the surface 
color by diffuse reflection is calculated using the following formula.  

Equation 8.1

          θ
〈 〉 =

〈 〉 × 〈 〉 ×
surface color by diffuse reflection

light color base color of surface

       

        cos  

   where < light color > is the color of light emitted from a directional light or a point light. 
Multiplication with the <base color of the surface> is performed for each RGB component 
of the color. Because light by diffuse reflection is scattered equally in all directions from 
where it hits, the intensity of the reflected light at a certain position is the same from 
any angle (see  Figure   8.4   ).    

 

ecafrusehtfonoitatneiro

 Figure 8.4   The intensity of light at a given position is the same from any angle          

  Ambient Reflection  

 Ambient reflection is the reflection of light   from another light source. In ambient reflec-
tion, the light is reflected at the same angle as its incoming angle. Because an ambient 
light illuminates an object equally from all directions with the same intensity, its bright-
ness is the same at any position (see  Figure   8.5   ). It can be approximated as follows.  
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Equation 8.2

          

〈 〉 =
〈 〉 × 〈 〉

surface color by ambient reflection

light color base color of surface

       

         

 where <light color> is the color of light emitted from other light source.  

 eflectionrtneibma eflectionr eflectionrtneibma emaseht( )noitisopynata

orientation of the surface

 Figure 8.5   Ambient reflection         

 When both diffuse reflection and ambient reflection are present, the color of the surface is 
calculated by adding, as follows.  

Equation 8.3

          

〈 〉 =
〈 〉 + 〈 〉

surface color by diffuse and ambient reflection

surface color by diffuse reflection surface color by ambient reflection

           

               

 Note that it is not required to always use both light sources, or use the formulas exactly 
as mentioned here. You are free to modify each formula to achieve the effect you require 
when showing the object.  

 Now let’s construct some sample programs that perform shading (shading and coloring 
the surfaces of an object by placing a light source at an appropriate position). First let’s try 
to implement shading due to directional light and its diffuse reflection.    

  Shading Due to Directional Light and Its Diffuse Reflection  

 As described in the previous section, surface color is determined by light direction and the 
orientation of the surface it strikes when considering    diffuse reflection. The calculation of 
the color due to directional light is easy because its direction is constant. The formula for 
calculating the color of a surface by diffuse reflection ( Equation   8.1   ) is shown again here:  

        θ
〈 〉 =

〈 〉 × 〈 〉 ×
surface color by diffuse reflection

light color base color of surface

       

        cos  

 The following three pieces of information are used:  

    •   The color of the light source (directional light)   

   •   The base color of the surface   

   •   The angle  (θ ) between the light and the surface    
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 The color of a light source may be white, such as sunlight, or other colors, such as the 
orange of lighting in road tunnels. As you know, it can be represented by RGB. White 
light such as sunlight has an RGB value of (1.0, 1.0, 1.0). The base color of a surface 
means the color that the surface was originally defined to have, such as red or blue. To 
calculate the color of a surface, you need to apply the formula for each of the three RGB 
components; the calculation is performed three times.  

 For example, assume that the light emitted from a light source is white (1.0, 1.0, 1.0), and 
the base color of the surface is red (1.0, 0.0, 0.0). From  Equation   8.1   , when  θ  is 0.0 (that is, 
when the light hits perpendicularly), cos θ   becomes 1.0. Because the R component of the 
light source is 1.0, the R component of the base surface color is 1.0, and the cos  θ  is 1.0, 
the R component of the surface color by diffuse reflection is calculated as follows:  

   R = 1.0 * 1.0 * 1.0 = 1.0    

 The G and B components are also calculated in the same way, as follows:  

   G = 1.0 * 0.0 * 1.0 = 0.0   

  B = 1.0 * 0.0 * 1.0 = 0.0    

 From these calculations, when white light hits perpendicularly on a red surface, the 
surface color by diffuse reflection turns out to be (1.0, 0.0, 0.0), or red. This is consistent 
with real-world experience. Conversely, when the color of the light source is red and the 
base color of a surface is white, the result is the same.  

 Let’s now consider the case when  θ  is 90 degrees, or when the light does not hit the 
surface at all. From your real-world experience, you know that in this case the surface will 
appear black. Let’s validate this. Because cos  θ  is 0 when θ   is 90 degrees, and anything 
multiplied by zero is zero, the result of the formula is 0 for R, G, and B; that is, the surface 
color becomes (0.0, 0.0, 0.0), or black, as expected. Equally, when  θ  is 60 degrees, you’d 
expect that a small amount of light falling on a red surface would result in a  darker red 
color, and because cos  θ  is 0.5, the surface color is (0.5, 0.0, 0.0), which is dark red, as 
expected.  

 These simple examples have given you a good idea of how to calculate surface color due 
to diffuse reflection. To allow you to factor in directional light, let’s transform the preced-
ing formula to make it easy to handle so you can then explore how to draw a cube lit by 
directional light.   

  Calculating Diffuse Reflection Using the Light Direction and the 

Orientation of a Surface  

 In the previous     examples, an arbitrary value for θ was chosen. However, typically it is 
complicated to get the angle θ between the light direction and the orientation of a surface. 
For example, when creating a model, the angle at which light hits each surface cannot 
be determined in advance. In contrast, the orientation of each surface can be determined 
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regardless of where light hits from. Because the light direction is also determined when 
its light source is determined, it seems convenient to try to use these two pieces of 
information.  

 Fortunately, mathematics tells us that cos  θ  is derived by calculating the dot product of 
the light direction and the orientation of a surface. Because the dot product is so often 
used, GLSL ES provides a function to calculate it.  4   (More details can be found in  Appendix 
  B   , “Built-In Functions of GLSL ES 1.0.”) When representing the dot product by “ · ”, cos θ   is 
defined as follows:   

        θ = 〈 〉 〈 〉light direction orientation of a surfacecos        i

 From this,  Equation   8.1    can be transformed as following  Equation   8.4   :  

Equation 8.4          

( )

〈 〉 =
〈 〉 × 〈 〉 ×

〈 〉 〈 〉

surface color by diffuse reflection

light color base color of surface

light direction orientation of a surface

       

       

       i

 Here, there are two points to be considered: the length of the vector and the light direc-
tion. First, the length of vectors that represent light direction and orientation of the 
surface, such as (2.0, 2.0, 1.0), must be 1.0,  5   or the color of the surface may become too 
dark or bright. Adjusting the components of a vector so that its length becomes 1.0 is 
called  normalization .  6   GLSL ES provides functions for normalizing vectors that you can 
use directly.    

 The second point to consider concerns the light direction for the reflected light. The light 
direction is the opposite direction from that which the light rays travel (see  Figure   8.6   ).  

 4    Mathematically, the dot product of two vectors  n  and  l  is written as follows: 

 n •   1 = | n | x |1| x cos θ 

  where  ||  means the length of the vector. From this equation, you can see that when the lengths of  n  

and  l  are 1.0, the dot product is equal to cos  θ . If  n  is ( n  x ,  n  y ,  n  z ) and  l  is ( l  x ,  l  y ,  l  z ), then n l  =  n  x  *  l  x  +   n  y * 

 l  y +  n  z  *  l  z  from the law of cosines. 

 5    If the components of the vector n are (n x , n y , n z ), its length is as follows:         

 6    Normalized n is (n x /m, n y /m, n z /m), where m is the length of n. |n| = sqrt(9) = 3. The vector (2.0,  2.0, 

1.0) above is normalized into (2.0/3.0, 2.0/3.0, 1.0/3.0). 

= = + +n n nlength of n    | n |     x y z
2 2 2



ptg11539634

Lighting 3D Objects 299

 

θ

orientation of 
the surface

diffuse reflection

light
direction

light
source

 Figure 8.6   The light direction is from the reflecting surface to the light source         

 Because we aren’t using an angle to specify the orientation of the surface, we need another 
mechanism to do that. The solution is to use normal vectors.   

  The Orientation of a Surface: What Is the Normal?  

 The orientation of a surface is specified by the direction perpendicular to the surface and 
is called a  normal  or a  normal vector . This direction is represented by a triple number, 
which is the direction of a line from the   origin (0, 0, 0) to (n x , n y , n z ) specified as the 
normal. For example, the direction of the normal (1, 0, 0) is the positive direction of the 
x-axis, and the direction of the normal (0, 0, 1) is the positive direction of the z-axis. 
When considering surfaces and their normals, two properties are important for our 
discussion.  

  A Surface Has Two Normals  

 Because a surface has a front face and a back face, each side has its own normal; that is, 
the surface has two normals. For example, the surface perpendicular to the z-axis has a 
front face that is facing toward the positive direction of the z-axis and a back face that is 
facing the negative direction of the z-axis, as shown in  Figure   8.7   . Their normals are (0, 0, 
1) and (0, 0, –1), respectively.  

 

x 

y 

z 

x 

y 

z 

)1,0,0(lamroneht , 1)0,0(lamroneht

0v
1v

2v

3v

 Figure 8.7   Normals         
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 In 3D graphics, these two faces are distinguished by the order in which the vertices are 
specified when drawing the surface. When you draw a surface specifying vertices in the 
order  7   v0, v1, v2, and v3, the front face is the one whose vertices are arranged in a clock-
wise fashion when you look along the direction of the normal of the face (same as the 
right-handed rule determining the positive direction of rotation  in  Chapter   3   , “Drawing 
and Transforming Triangles”). So in  Figure   8.7   , the front face has the normal (0, 0, –1) as 
in the right side of the figure.    

  The Same Orientation Has the Same Normal  

 Because a normal just represents   direction, surfaces with the same orientation have the 
same normal regardless of the position of the surfaces.  

 If there is more than one surface with the same orientation placed at different positions, 
the normals of these surfaces are identical. For example, the normals of a surface perpen-
dicular to the z-axis, whose center is placed at (10, 98, 9), are still (0, 0, 1) and (0, 0, –1). 
They are the same as when it is positioned at the origin (see  Figure   8.8   ).  
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 Figure 8.8   If the orientation of the surface is the same, the normal is identical regardless of 
its position         

 The left side of  Figure   8.9    shows the normals that are used in the sample programs in this 
section. Normals are labeled using, for example “n(0, 1, 0)” as in this figure.  

 7    Actually, this surface is composed of two triangles: a triangle drawn in the order v0, v1, and v2, and a 

triangle drawn in the order v0, v2, and v3. 
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 Figure 8.9   Normals of the surfaces of a cube         

 Once you have calculated the normals for a surface, the next task is to pass that data to 
the shader programs. In the previous chapter, you passed color data for a surface to the 
shader as “per-vertex data.” You can pass normal data using the same approach: as per-
vertex data stored in a buffer object. In this section, as shown in  Figure   8.9    (right side), 
the normal data is specified for each vertex, and in this case there are three normals per 
vertex, just as there are three color data specified per vertex.  8     

 Now let’s construct a sample program  LightedCube  that displays a red cube lit by a white 
directional light. The result is shown in  Figure   8.10   .  

 
 Figure 8.10   LightedCube           

 8    Cubes or cuboids are simple but special objects whose  three surfaces are connected perpendicularly. 

They have three different normals per   vertex. On the other hand, smooth objects such as game 

characters have one normal per vertex. 
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  Sample Program (LightedCube.js)  

 The sample program is shown in  Listing   8.1   . It is based on  ColoredCube  from the previous 
chapter, so the basic processing   flow of this program is the same as  ColoredCube .  

 As you can see from  Listing   8.1   , the vertex shader has been significantly modified so that 
it calculates  Equation   8.4   . In addition, the normal data is added in  initVertexBuffers()  
defined at line 89, so that they can be passed to the variable  a_Normal . The fragment 
shader is the same as in  ColoredCube , and unmodified. It is reproduced so that you can 
see that no fragment processing is needed.  

  Listing 8.1   LightedCube.js  

   1 // LightedCube.js

    2 // Vertex shader program

    3 var VSHADER_SOURCE =

    4   'attribute vec4 a_Position;\n' +

    5   'attribute vec4 a_Color;\n' +

     6   'attribute vec4 a_Normal;\n' +       // Normal 

    7   'uniform mat4 u_MvpMatrix;\n' +

     8   'uniform vec3 u_LightColor;\n' +     // Light color 

     9   'uniform vec3 u_LightDirection;\n' + // world coordinate, normalized 

   10   'varying vec4 v_Color;\n' +

   11   'void main() {\n' +

   12   '  gl_Position = u_MvpMatrix * a_Position ;\n' +

    13      // Make the length of the normal 1.0 

    14   '  vec3 normal = normalize(vec3(a_Normal));\n' + 

    15      // Dot product of light direction and orientation of a surface 

    16   '   float nDotL = max(dot(u_LightDirection, normal), 0.0);\n' + 

    17      // Calculate the color due to diffuse reflection 

    18   '  vec3 diffuse = u_LightColor * vec3(a_Color) * nDotL;\n' + 

   19   '  v_Color = vec4(diffuse, a_Color.a);\n' +

   20   '}\n';

   21

   22 // Fragment shader program

      ...

   28   'void main() {\n' +

   29   '  gl_FragColor = v_Color;\n' +

   30   '}\n';

   31

   32 function main() {

      ...

   49   // Set the vertex coordinates, the color, and the normal

   50   var n = initVertexBuffers(gl);

      ...
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   61   var u_MvpMatrix = gl.getUniformLocation(gl.program, 'u_MvpMatrix');

    62   var u_LightColor = gl.getUniformLocation(gl.program, 'u_LightColor'); 

    63   var u_LightDirection = gl.getUniformLocation(gl.program, 'u_LightDirection'); 

       ... 

    69   //  Set the light color (white) 

    70   gl.uniform3f(u_LightColor, 1.0, 1.0, 1.0); 

    71   // Set the light direction (in the world coordinate) 

    72   var lightDirection = new Vector3([0.5, 3.0, 4.0]); 

    73   lightDirection.normalize();     // Normalize 

    74   gl.uniform3fv(u_LightDirection, lightDirection.elements); 

   75

   76   // Calculate the view projection matrix

   77   var mvpMatrix = new Matrix4();   // Model view projection matrix

   78   mvpMatrix.setPerspective(30, canvas.width/canvas.height, 1, 100);

   79   mvpMatrix.lookAt(3, 3, 7, 0, 0, 0, 0, 1, 0);

   80   // Pass the model view projection matrix to the variable u_MvpMatrix

   81   gl.uniformMatrix4fv(u_MvpMatrix, false, mvpMatrix.elements);

      ...

   86   gl.drawElements(gl.TRIANGLES, n, gl.UNSIGNED_BYTE, 0);// Draw a cube

   87 }

   88

   89 function initVertexBuffers(gl)  {

      ...

   98   var vertices = new Float32Array([ // Vertices

   99      1.0, 1.0, 1.0,  -1.0, 1.0, 1.0,  -1.0,-1.0, 1.0,   1.0,-1.0, 1.0,

  100      1.0, 1.0, 1.0,   1.0,-1.0, 1.0,   1.0,-1.0,-1.0,   1.0, 1.0,-1.0,

      ...

  104      1.0,-1.0,-1.0,  -1.0,-1.0,-1.0,  -1.0, 1.0,-1.0,   1.0, 1.0,-1.0

  105   ]);

      ...

   117 

   118   var normals = new Float32Array([ // Normals 

   119     0.0, 0.0, 1.0,   0.0, 0.0, 1.0,   0.0, 0.0, 1.0,   0.0, 0.0, 1.0, 

   120     1.0, 0.0, 0.0,   1.0, 0.0, 0.0,   1.0, 0.0, 0.0,   1.0, 0.0, 0.0, 

       ... 

   124     0.0, 0.0,-1.0,   0.0, 0.0,-1.0,   0.0, 0.0,-1.0,   0.0, 0.0,-1.0 

   125   ]); 

       ... 

   140   if(!initArrayBuffer(gl,'a_Normal', normals, 3, gl.FLOAT)) return -1; 

      ...

  154   return indices.length;

  155 }   
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 As a reminder, here is the calculation that the vertex shader performs ( Equation   8.4   ):  

( )

〈 〉 =
〈 〉 × 〈 〉 ×

〈 〉 〈 〉

surface color by diffuse reflection

light color base color of surface

light direction orientation of a surface

       

       

       i         

 You can see that four pieces of information are needed to calculate this equation: (1) light 
color, (2) a surface base color, (3) light direction, and (4) surface orientation. In addition, 
<light direction> and <surface orientation> must be normalized (1.0 in length).  

  Processing in the Vertex Shader  

 From the four pieces of information necessary for  Equation   8.4   , the base color of a 
surface is passed as  a_Color  at line 5 in the following code, and the surface orientation is 
passed as  a_Normal  at line 6. The light color   is passed using  u_LightColor  at line 8, and 
the light direction is passed as  u_LightDirection  at line 9. You should note that only 
 u_LightDirection  is passed in the world coordinate  9   system and has been normalized in 
the JavaScript code for ease of handling. This avoids the overhead of normalizing it every 
time it’s used in the vertex shader:   

   4  'attribute vec4 a_Position;\n' +

   5  'attribute vec4 a_Color;\n' +               <-(2) surface base color

    6  'attribute vec4 a_Normal;\n' +   // Normal   <-(4) surface orientation

   7  'uniform mat4 u_MvpMatrix;\n' +

    8  'uniform vec3 u_LightColor;\n' +   // Light color                    <-(1)

    9  'uniform vec3 u_LightDirection;\n' + // world coordinate,normalized  <-(3)

  10  'varying vec4 v_Color;\n' +

  11  'void main() {\n' +

  12  '  gl_Position = u_MvpMatrix * a_Position ;\n' +

   13     // Make the length of the normal 1.0 

   14  '  vec3 normal = normalize(vec3(a_Normal));\n' + 

   15     // Dot product of light direction and orientation of a surface 

   16  '  float nDotL = max(dot(u_LightDirection, normal), 0.0);\n' + 

   17     // Calculate the color due to diffuse  reflection 

   18  '  vec3 diffuse = u_LightColor * vec3(a_Color) * nDotL;\n' + 

  19  '  v_Color = vec4(diffuse, a_Color.a);\n' +

  20  '}\n';   

 Once the necessary information is available, you can carry out the calculation. First, the 
vertex shader normalizes the vector at line 14. Technically, because the normal used in 
this sample program is 1.0 in length, this process is not necessary. However, it is good 
practice, so it is performed here:  

 9    In this book, the light effect with shading is calculated in the world coordinate system (see  Appendix 
  G   , “World Coordinate System Versus Local Coordinate System”) because it is simpler to program and 
more intuitive with respect to the  light direction. It is also safe to calculate it in the view coordinate 
system but more complex. 
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   14   '  vec3 normal = normalize(vec3(a_Normal));\n' +    

 Although  a_Normal  is of type  vec4 , a normal represents a direction and uses only the x, y, 
and z components. So you extract these components with . xyz  and then normalize. If you 
pass the normal using a type  vec3 , this process is not necessary. However, it is passed as 
a type  vec4  in this code because a  vec4  will be needed when we extend the code for the 
next example. We will explain the details in a later sample program. As you can see, GLSL 
ES provides  normalize() , a built-in function to normalize a vector specified as its argu-
ment. In the program, the normalized  normal is stored in the variable  normal  for use later.  

 Next, you need to calculate the dot product 〈 〉 〈 〉light direction surface orientation   i        from 
 Equation   8.4   . The light direction is stored in  u_LightDirection . Because   it is already 
normalized, you can use it as is. The orientation of the surface is the  normal  that was 
normalized at line 14. The dot product “ · ” can then be calculated using the built-in 
function  dot() , which again is provided by GLSL ES and returns the dot product of the 
two vectors specified as its arguments. That is, calling  dot(u_LightDirection, normal)  
performs 〈 〉 〈 〉light direction surface orientation   i       . This calculation is performed at line 16.  

   16   '  float nDotL = max(dot(u_LightDirection, normal), 0.0);\n' +    

 Once the dot product is calculated, if the result is positive, it is assigned to  nDotL . If it is 
negative then 0.0 is assigned. The function  max()  used here is a GLSL ES built-in function 
that returns the greater value from its two arguments.  

 A negative dot product means that  θ  in cos θ is more than 90 degrees. Because  θ  is the 
angle between the light direction and the surface orientation, a value of  θ  greater than 90 
degrees means that light hits the surface on its back face (see  Figure   8.11   ). This is the same 
as no light hitting the front face, so 0.0 is assigned to  nDotL .  
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 Figure 8.11   A normal and light in case θ   is greater than 90 degrees         

 Now that the preparation is completed, you can calculate  Equation   8.4   . This is performed 
at line 18, which is a direct implementation of  Equation   8.4   .  a_Color , which is of type 
 vec4  and holds the RGBA values, is converted to a  vec3     ( .rgb ) because its transparency 
(alpha value) is not used in lighting.  
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 In fact, transparency of an object’s surface has a significant effect on the color of the 
surface. However, because the calculation of the light passing through an object is compli-
cated, we ignore transparency and don’t use the alpha value in this program:  

   18   '  vec3 diffuse = u_LightColor * vec3(a_Color) * nDotL;\n' +    

 Once calculated, the result,  diffuse , is assigned to the varying variable  v_Color  at line 19. 
Because  v_Color  is of type  vec4 ,  diffuse  is also converted to  vec4  with  1.0 :  

  19   '  v_Color = vec4(diffuse, 1.0);\n' +   

 The result of the processing steps above is that a color, depending on the direction of 
the vertex’s normal, is calculated, passed to the fragment shader, and assigned to  gl_
FragColor . In this case, because you use a directional light, vertices that make up the same 
surface are the same color, so each surface will be a solid color.  

 That completes the vertex shader code. Let’s now take a look at how the JavaScript 
program passes the data needed for  Equation   8.4    to the vertex shader.   

  Processing in the JavaScript Program  

 The light color ( u_LightColor ) and the   light direction ( u_LightDirection ) are passed to 
the vertex shader from the JavaScript program. Because the light color is white (1.0, 1.0, 
1.0), it is simply written to  u_LightColor  using  gl.uniform3f() :  

   69   // set the Light color (white) 

   70   gl.uniform3f(u_LightColor, 1.0, 1.0, 1.0);    

 The next step is to set up the light direction, which must be passed after normalization, as 
discussed before. You can normalize it with the  normalize()  function for  Vector3  objects 
that is provided in  cuon-matrix.js . Usage is simple: Create the  Vector3  object that speci-
fies the vector you want to normalize as its argument (line 72), and invoke the  normal-
ize()  method on the object. Note that the notation in JavaScript is different from that of 
GLSL ES:  

   71   // Set the light direction (in the world coordinate) 

   72   var lightDirection = new Vector3([0.5, 3.0, 4.0]); 

   73   lightDirection.normalize();     // Normalize 

   74   gl.uniform3fv(u_LightDirection, lightDirection.elements);    

 The result is stored in the  elements  property of the object in an array of type 
 Float32Array  and then assigned to  u_LightDirection  using  gl.uniform3fv()  (line 74).  

 Finally, the normal data is written in  initVertexBuffers(),  defined at line 89. Actual 
normal data is stored in the array  normals  at line 118 per vertex along with the color 
data, as in  ColoredCube.js . Data is assigned to  a_Normal  in the vertex shader by invoking 
 initArrayBuffer()  at line 140:  

   140 if(!initArrayBuffer(gl, 'a_Normal', normals, 3, gl.FLOAT)) return -1;    
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  initArrayBuffer() , which was also used in  ColoredCube , assigns the array specified by 
the third argument ( normals ) to the attribute variable that has the name specified by the 
second argument ( a_Normal ).    

  Add Shading Due to Ambient Light  

 Although at this stage you have successfully added lighting to the scene, as you can see 
from  Figure   8.9   , when you run  LightedCube , the cube is a little different from the box in 
the real world. In particular, the surface on    the opposite side of the light source appears 
almost black and not clearly visible. You can see this problem more clearly if you animate 
the cube. Try the sample program  LightedCube_animation  (see  Figure   8.12   ) to see the 
problem more clearly.  

 
 Figure 8.12   The result of LightedCube_animation         

 Although the scene is correctly lit as the result of  Equation   8.4   , our real-world experiences 
tells us that something isn’t right. It is unusual to see such a sharp effect because, in the 
real world, surfaces such as the back face of the cube are also lit by diffuse or reflected 
light. The ambient light described in the previous section represents this indirect light 
and can be used to make the scene more lifelike. Let’s add that to the scene and see if the 
effect is more realistic. Because ambient light models the light that hits an object from all  
directions with constant intensity, the surface color due to the reflection is determined 
only by the light color and the base color of the surface. The formula that calculates this 
was shown as  Equation   8.2   . Let’s see it again:  

〈 〉 =
〈 〉 × 〈 〉

surface color by ambient reflection

light color base color of surface
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 Let’s try to add the color due to ambient light described by this formula to the sample 
program  LightedCube . To do this, use  Equation   8.3    shown here:  

        

〈 〉 =
〈 〉 + 〈 〉

surface color by diffuse and ambient reflection

surface color by diffuse reflection surface color by ambient reflection

           

               

 Ambient light is weak because it is the light reflected by other objects like the walls. For 
example, if the ambient light color is (0.2, 0.2, 0.2) and the base color of a surface is red, 
or (1.0, 0.0, 0.0), then, from  Equation   8.2   , the surface color due to the ambient light is 
(0.2, 0.0, 0.0). For example, if there is a white box in a blue room—that is, the base color 
of the surface is (1.0, 1.0, 1.0) and the ambient light is (0.0, 0.0, 0.2)—the color becomes 
slightly blue (0.0, 0.0, 0.2).  

 Let’s implement the effect of ambient reflection in the sample program  LightedCube_
ambient , which results in the cube shown in  Figure   8.13   . You can see that the surface that 
the light does not directly hit is now also slightly colored and more closely resembles the 
cube in the real world.  

 
 Figure 8.13   LightedCube_ambient          

  Sample Program (LightedCube_ambient.js)  

  Listing   8.2    illustrates the sample program. Because it is almost   the same as  LightedCube , 
only the modified parts are shown.  

  Listing 8.2   LightedCube_ambient.js  

  1 // LightedCube_ambient.js

   2 // Vertex shader program

    ...
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   8   'uniform vec3 u_LightColor;\n' +     // Light color

   9   'uniform vec3 u_LightDirection;\n' + // World coordinate, normalized

   10   'uniform vec3 u_AmbientLight;\n' +   // Color of an ambient light 

  11   'varying vec4 v_Color;\n' +

  12   'void main() {\n' +

    ...

  16      // The dot product of the light direction and the normal

  17   '  float nDotL = max(dot(lightDirection, normal), 0.0);\n' +

  18      // Calculate the color due to diffuse reflection

  19   '  vec3 diffuse = u_LightColor * a_Color.rgb * nDotL;\n' +

   20      // Calculate the color due to ambient reflection 

   21   '  vec3 ambient = u_AmbientLight * a_Color.rgb;\n' + 

   22      // Add  surface colors due to diffuse and ambient reflection 

   23   '  v_Color = vec4(diffuse + ambient, a_Color.a);\n' + 

  24   '}\n';

     ...

  36 function main() {

     ...

  64   // Get the storage locations of uniform variables and so on

     ...

   68   var u_AmbientLight = gl.getUniformLocation(gl.program, 'u_AmbientLight'); 

     ...

  80   // Set the ambient light

   81   gl.uniform3f(u_AmbientLight, 0.2, 0.2, 0.2); 

     ...

  95 }   

  u_AmbientLight  at line 10 is added to the vertex shader to pass in the color of ambient 
light. After  Equation   8.2    is calculated using it and the base color of the surface ( a_Color ), 
the result is stored in the variable ambient (line 21). Now that both  diffuse  and  ambient  
are determined, the surface color is calculated at line 23 using  Equation   8.3   . The result is 
passed to  v_Color , just like in  LightedCube , and the surface is painted with this color.  

 As you can see, this program simply adds  ambient  at line 23, causing the whole cube to 
become brighter. This implements the effect of the ambient light hitting an object equally 
from all directions.  

 The examples so far have been able to handle static objects. However, because objects are 
likely to move within a scene, or the viewpoint changes, you have to be able to handle 
such transformations. As you will recall from  Chapter   4   , “More Transformations and Basic 
Animation,” an object can be translated, scaled, or rotated using coordinate transforma-
tions. These transformations may also change the normal direction and require a recalcu-
lation of lighting as the scene changes. Let’s take a look at how to achieve that.    
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  Lighting the Translated-Rotated Object  
 The program  LightedTranslatedRotatedCube  uses a directional light source to light a cube 
that is rotated 90 degrees clockwise around the z-axis and translated 0.9 units in the y-axis 
direction. A part from a directional   light as described in the previous section, the sample, 
 LightedCube_ambient , uses diffuse reflection and ambient reflection and rotates and trans-
lates the cube. The result is shown in  Figure   8.14   .  

 
 Figure 8.14   LightedTranslatedRotatedCube         

 You saw in the previous section that the normal direction may change when coordinate 
transformations are applied.  Figure   8.15    shows some examples of that. The leftmost figure 
in  Figure   8.15    shows the cube used in this sample program looking along the negative 
direction of the z-axis. The only normal (1, 0, 0), which is toward the positive direction of 
the x-axis, is shown. Let’s perform some coordinate transforms on this figure, which are 
the three figures on the right.  
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 Figure 8.15   The changes of the normal direction due to coordinate transformations         
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 You can see the following from  Figure   8.15   :  

    •   The normal direction is  not changed  by a translation because the orientation of the 
object does not change.   

   •   The normal direction is  changed  by a rotation according to the orientation of the 
object.   

   •   Scaling has a more complicated effect on the normal. As you can see, the object in 
the rightmost figure is rotated i and then scaled two times only in the y-axis. In 
this case, the normal direction is  changed  because the orientation of the surface 
changes. On the other hand, if an object is scaled equally in all axes the normal 
direction is  not changed.  Finally,  even if  an object is scaled unequally, the normal 
direction may  not change . For example, when the leftmost figure (the original 
normal) is scaled two times only in the y-axis direction, the normal direction does 
not change.    

 Obviously, the calculation of the normal under various transformations is complex, partic-
ularly when dealing with scaling. However, a mathematical technique can help.  

  The Magic Matrix: Inverse Transpose Matrix  

 As described in  Chapter   4   , the matrix   that performs a coordinate transformation on an 
object is called a model matrix. The normal direction can be calculated by multiplying the 
normal by the  inverse transpose matrix  of a model matrix. The inverse transpose matrix 
is the matrix that transposes the inverse of a matrix.  

 The inverse of the matrix M is the matrix R, where both R*M and M*R become the iden-
tity matrix. The term  transpose  means the operation that exchanges rows and columns of 
a matrix. The details of this are explained in  Appendix   E   , “The Inverse Transpose Matrix.” 
For our purposes, it can be summarized simply using the following rule:  

  Rule: You can calculate the normal direction if you multiply the normal by the 
inverse transpose of the model matrix.   

 The inverse transpose matrix is calculated as follows:  

    1.   Invert the original matrix.   

   2.   Transpose the resulting matrix.    

 This can be carried out using convenient methods supported by the  Matrix4  object (see 
 Table   8.1   ).  
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  Table 8.1   Matrix4 Methods for an Inverse Transpose Matrix  

  Method     Description   

  Matrix4.setInverseOf(m)    Calculates the inverse of the matrix stored in  m  and stores the 
result in the  Matrix4  object, where  m  is a  Matrix4  object  

  Matrix4.transpose()    Transposes the matrix stored in the  Matrix4  object and writes 
the result back into the  Matrix4  object  

 Assuming that a model matrix is stored in  modelMatrix , which is a  Matrix4  object, the 
following code snippet will get its inverse transpose matrix. The result is stored in the vari-
able named  normalMatrix , because it performs the coordinate transformation of a normal:  

  Matrix4 normalMatrix = new Matrix4();

  // Calculate the model matrix

  ...

  // Calculate the matrix to transform normal according to the model matrix

  normalMatrix.setInverseOf(modelMatrix);

  normalMatrix.transpose();   

 Now let’s see the program  LightedTranslatedRotatedCube.js  that lights the cube, which 
is rotated 90 degrees clockwise around the z-axis and translated 0.9 along the y-axis, all 
using directional light. You’ll use the cube that was transformed by the model matrix in 
 LightedCube_ambient  from the previous section.   

  Sample Program (LightedTranslatedRotatedCube.js)  

  Listing   8.3    shows the sample program. The changes   from  LightedCube_ambient  are that 
 u_NormalMatrix  is added (line 8) to pass the matrix for coordinate transformation of the 
normal to the vertex shader, and the normal is transformed at line 16 using this matrix. 
 u_NormalMatrix  is calculated within the JavaScript.  

  Listing 8.3   LightedTranslatedRotatedCube.js  

   1 // LightedTranslatedRotatedCube.js

    2 // Vertex shader program

    3 var VSHADER_SOURCE =

      ...

    6   'attribute vec4 a_Normal;\n' +

    7   'uniform mat4 u_MvpMatrix;\n' +

     8   'uniform mat4 u_NormalMatrix;\n'+    // Transformation matrix of normal 

    9   'uniform vec3 u_LightColor;\n' +     // Light color

   10   'uniform vec3 u_LightDirection;\n' + // World coordinate, normalized

   11   'uniform vec3 u_AmbientLight;\n' +   // Ambient light color

   12   'varying vec4 v_Color;\n' +
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   13   'void main() {\n' +

   14   '  gl_Position = u_MvpMatrix * a_Position;\n' +

    15      // Recalculate normal with normal matrix and make its length 1.0 

    16   '  vec3 normal = normalize(vec3(u_NormalMatrix * a_Normal));\n' + 

   17      // The  dot product of the light direction and the normal

   18   '  float nDotL = max(dot(u_LightDirection, normal), 0.0);\n' +

   19      // Calculate the color due to diffuse reflection

   20   '  vec3 diffuse = u_LightColor * a_Color.rgb * nDotL;\n' +

   21      // Calculate the color due to ambient reflection

   22   '  vec3 ambient = u_AmbientLight * a_Color.rgb;\n' +

   23      // Add the surface colors due to diffuse and ambient reflection

   24   '  v_Color = vec4(diffuse + ambient, a_Color.a);\n' +

   25   '}\n';

      ...

   37 function main() {

      ...

   65   // Get the storage locations of uniform variables and so on

   66   var u_MvpMatrix  = gl.getUniformLocation(gl.program, 'u_MvpMatrix');

    67   var u_NormalMatrix = gl.getUniformLocation(gl.program, 'u_NormalMatrix'); 

       ... 

    85   var modelMatrix = new Matrix4();  // Model matrix 

   86   var mvpMatrix = new Matrix4();    // Model view projection matrix

    87   var normalMatrix = new Matrix4(); // Transformation matrix for normal 

   88

    89   // Calculate the model matrix 

    90   modelMatrix.setTranslate(0, 1, 0); // Translate to y-axis direction 

    91   modelMatrix.rotate(90, 0, 0, 1);   // Rotate around the z-axis 

   92   // Calculate the view projection matrix

   93   mvpMatrix.setPerspective(30, canvas.width/canvas.height, 1, 100);

   94   mvpMatrix.lookAt(-7, 2.5, 6, 0, 0, 0, 0, 1, 0);

   95   mvpMatrix.multiply(modelMatrix);

   96   // Pass the model view projection matrix to  u_MvpMatrix

   97   gl.uniformMatrix4fv(u_MvpMatrix, false, mvpMatrix.elements);

   98

    99   // Calculate matrix to transform normal based on the model matrix 

   100   normalMatrix.setInverseOf(modelMatrix); 

   101   normalMatrix.transpose(); 

   102   // Pass the transformation matrix for normal to u_NormalMatrix 

   103   gl.uniformMatrix4fv(u_NormalMatrix, false, normalMatrix.elements); 

      ...

  110 }   
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 The processing in the vertex shader is almost the same as in  LightedCube_ambient . The 
difference, in line with the preceding rule, is that you multiply  a_Normal  by the inverse 
transpose of the model matrix at line 16 instead of using it as-is:  

   15    // Recalculate normal with normal matrix and make its length 1.0 

   16   '  vec3 normal = normalize(vec3(u_NormalMatrix * a_Normal));\n' +    

 Because you passed  a_Normal  as type  vec4 , you can multiply it by  u_NormalMatrix , which 
is of type  mat4 . You only need the x, y, and z components of the result of the multiplica-
tion, so the result is converted into type  vec3  with  vec3() . It is also possible to use . xyz  
as before, or write  (u_NormalMatrix * a_Normal).xyz . However,  vec3()  is used here for 
simplicity. Now that you understand how the shader calculates the normal direction 
resulting from the rotation and translation of the object, let’s move on to the explanation 
of the JavaScript program. The key point here is the calculation of the matrix  that will be 
passed to  u_NormalMatrix  in the vertex shader.  

  u_NormalMatrix  is the inverse transpose of the model  matrix, so the model matrix is first 
calculated at lines 90 and 91. Because this program rotates an object around the z-axis 
and translates it in the y-axis direction, you can use the  setTranslate()  and  rotate()  
methods of a  Matrix4  object as described in  Chapter   4   . It is at lines 100 and 101 that the 
inverse transpose matrix is actually calculated. It is passed to  u_NormalMatrix  in the vertex 
shader at line 103, in the same way as  mvpMatrix  at line 97. The second argument of  gl.
uniformMatrix4f()  specifies whether to transpose the matrix ( Chapter   3   ):  

    99   // Calculate matrix to transform normal based on the model matrix 

   100   normalMatrix.setInverseOf(modelMatrix); 

   101   normalMatrix.transpose(); 

   102   // Pass the normal transformation matrix to u_NormalMatrix 

   103   gl.uniformMatrix4fv(u_NormalMatrix, false, normalMatrix.elements);    

 When run, the output is similar to  Figure   8.14   . As you can see, the shading is the same as 
 LightedCube_ambient  with the cube translated in the y-axis direction. That is because (1) 
the translation doesn’t change the normal direction, (2) neither does the rotation by 90 
degrees, because the rotation simply switches the surfaces of the cube, (3) the light direc-
tion of the directional light does not change regardless of the position of the object, and 
(4) diffuse reflection reflects the light in all directions with equal intensity.  

 You now have a good understanding of the basics of how to implement light and shade in 
3D graphics. Let’s build on this by exploring another type of light source: the point light.    

  Using a Point Light Object  
 In contrast to a directional light, the direction of the   light from a point light source differs 
at each position in the 3D scene (see  Figure   8.16   ). So, when calculating shading, you need 
to calculate the light direction at the specific position on the surface where the light hits.  
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 Figure 8.16   The direction of a point light varies by position         

 In the previous sample programs, you calculated the color at each vertex by passing the 
normal and the light direction for each vertex. You will use the same approach here, but 
because the light direction changes, you need to pass the position of the light source and 
then calculate the light direction at each vertex position.  

 Here, you construct the sample program  PointLightedCube  that displays a red cube lit 
with white light from a point light source. We again use diffuse reflection and ambient 
reflection. The result is shown in  Figure   8.17   , which is a version of  LightedCube_ambient  
from the previous section but now lit with a point light.  

 
 Figure 8.17   PointLightedCube         

  Sample Program (PointLightedCube.js)  

  Listing   8.4    shows the sample program in   which only the vertex shader is changed from 
 LightedCube_ambient . The variable  u_ModelMatrix  for passing the model matrix and the 
variable  u_LightPosition  representing the light position are added. Note that because you 
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use a point light in this program, you will use the light position instead of the light direc-
tion. Also, to make the effect easier to see, we have enlarged the cube.  

  Listing 8.4   PointLightedCube.js  

  1 // PointLightedCube.js

   2 // Vertex shader program

   3 var VSHADER_SOURCE =

   4   'attribute vec4 a_Position;\n' +

      ...

    8   'uniform mat4 u_ModelMatrix;\n' +  // Model matrix 

   9   'uniform mat4 u_NormalMatrix;\n' + // Transformation matrix of normal

  10   'uniform vec3 u_LightColor;\n' +   // Light color

   11   'uniform vec3 u_LightPosition;\n' +  // Position of the light source (in the 

                                                           ➥world coordinate system) 

  12   'uniform vec3 u_AmbientLight;\n' +   // Ambient light color

  13   'varying vec4 v_Color;\n' +

  14   'void main() {\n' +

  15   '  gl_Position = u_MvpMatrix * a_Position;\n' +

  16      // Recalculate normal with normal matrix and make its length 1.0

  17   '  vec3 normal = normalize(vec3(u_NormalMatrix * a_Normal));\n' +

   18      // Calculate the world coordinate of the vertex 

   19   '  vec4 vertexPosition = u_ModelMatrix * a_Position;\n' + 

   20      // Calculate the light direction and make it 1.0 in length 

   21   '  vec3 lightDirection = normalize(u_LightPosition – vec3(vertexPosition));\n' + 

  22      // The dot product of the light direction and the normal

  23   '  float nDotL = max(dot( lightDirection, normal), 0.0);\n' +

  24      // Calculate the color due to diffuse reflection

  25   '  vec3 diffuse = u_LightColor * a_Color.rgb * nDotL;\n' +

  26      // Calculate the color due to ambient reflection

  27   '  vec3 ambient = u_AmbientLight * a_Color.rgb;\n' +

  28      // Add surface colors due to diffuse and ambient reflection

  29   '   v_Color = vec4(diffuse + ambient, a_Color.a);\n' +

  30   '}\n';

      ...

  42 function main() {

      ...

  70   // Get the storage locations of uniform variables and so on

   71   var u_ModelMatrix = gl.getUniformLocation(gl.program, 'u_ModelMatrix'); 

      ...

  74   var u_LightColor = gl.getUniformLocation(gl.program,'u_LightColor');

   75   var u_LightPosition = gl.getUniformLocation(gl.program, 'u_LightPosition'); 

      ...

  82   // Set the light color (white)
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  83   gl.uniform3f(u_LightColor, 1.0, 1.0, 1.0);

  84   // Set the position of the light source (in the world coordinate)

   85   gl.uniform3f(u_LightPosition, 0.0, 3.0, 4.0); 

      ...

   89   var modelMatrix = new Matrix4();  // Model matrix 

  90   var mvpMatrix = new Matrix4();    // Model view projection matrix

  91   var normalMatrix = new Matrix4(); // Transformation matrix for normal

  92

  93   // Calculate the model matrix

  94    modelMatrix.setRotate(90, 0, 1, 0); // Rotate around the y-axis

  95   // Pass the model matrix to u_ModelMatrix

  96   gl.uniformMatrix4fv(u_ModelMatrix, false, modelMatrix.elements);

      ...   

 The key differences in the processing within the vertex shader are at line 19 and 21. At 
line 19, you transform the vertex coordinates into world coordinates in order to calculate 
the light direction at the vertex coordinates. Because a point light emits light in all direc-
tions from its position, the light direction at a vertex is the result of subtracting the vertex 
position from the light source position. Because the light position is passed to the variable 
 u_LightPosition  using world coordinates at line 11, you also have to convert the vertex 
coordinates into world coordinates to calculate the light direction.  The light direction 
is then calculated at line 21. Note that it is normalized with  normalize()  so that it will 
be 1.0 in length. Using the resulting light direction ( lightDirection ), the dot product is 
calculated at line 23 and then the surface color at each vertex is calculated based on this 
light direction.  

 If you run this program, you will see a more realistic result, as shown in  Figure   8.17   . 
Although this result is more realistic, a closer look reveals an artifact: There are unnatural 
lines of shade on the cube’s surface (see  Figure   8.18   ). You can see this more easily if the 
cube rotates as it does when you load  PointLightedCube_animation .  
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 Figure 8.18   The unnatural appearance when processing the point light at each vertex         

 This comes about because of the interpolation process discussed in  Chapter   5   , “Using 
Colors and Texture Images.” As you   will remember, the WebGL system interpolates the 
colors between vertices based on the colors you supply at the vertices. However, because 
the direction of light from a point light source varies by position to shade naturally, you 
have to calculate the color at every position the light hits instead of just at each vertex. 
You can see this problem more clearly using a sphere illuminated by a point light, as 
shown in  Figure   8.19   .  

 
per-vertex
calculation

per-position
calculation

 Figure 8.19   The spheres illuminated by a point light         

 As you can see, the border between the brighter parts and darker parts is unnatural in the 
left figure. If the effect is hard to see on the page, the left figure is  PointLightedSphere , 
and the right is  PointLightedSphere_perFragment . We will describe how to draw them 
correctly in the next section.   
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  More Realistic Shading: Calculating the Color per Fragment  

 At first glance, it may seem daunting    to have to calculate the color at every position on a 
cube surface where the light hits. However, essentially it means calculating the color  per 
fragment,  so the power of the fragment shader can now be used.  

 This sample program you will use is  PointLightedCube_perFragment , and its result is 
shown in  Figure   8.20   .  

 
 Figure 8.20   PointLightedCube_perFragment          

  Sample Program (PointLightedCube_perFragment.js)  

 The sample program, which is based on  PointLightedCube.js , is shown in  Listing   8.5   . 
Only the shader code has been   modified and, as you can see, there is less processing in the 
vertex shader and more processing in the fragment shader.  

  Listing 8.5   PointLightedCube_perFragment.js  

  1 // PointLightedCube_perFragment.js

   2 // Vertex shader program

   3 var VSHADER_SOURCE =

   4   'attribute vec4 a_Position;\n' +

      ...

    8   'uniform mat4 u_ModelMatrix;\n' +  // Model matrix 

   9   'uniform mat4 u_NormalMatrix;\n' + // Transformation matrix of normal

  10   'varying vec4 v_Color;\n' +

   11   'varying vec3 v_Normal;\n' + 

   12   'varying vec3 v_Position;\n' + 

  13   'void main() {\n' +
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  14   '  gl_Position = u_MvpMatrix * a_Position;\n' +

   15      // Calculate the vertex position in the world coordinate 

   16   '  v_Position = vec3(u_ModelMatrix * a_Position);\n' + 

   17   '  v_Normal = normalize(vec3(u_NormalMatrix * a_Normal));\n' + 

   18   '  v_Color = a_Color;\n' + 

  19   '}\n';

  20

  21 // Fragment shader program

  22 var FSHADER_SOURCE =

      ...

   26   'uniform vec3 u_LightColor;\n' +      // Light color 

   27   'uniform vec3 u_LightPosition;\n' +  // Position of the light source 

   28   'uniform vec3 u_AmbientLight;\n' +   // Ambient light color 

  29   'varying vec3 v_Normal;\n' +

   30   'varying vec3 v_Position;\n' + 

   31   'varying vec4 v_Color;\n' + 

  32   'void main() {\n' +

   33      // Normalize normal because it's interpolated and not 1.0 (length) 

   34   '  vec3 normal = normalize(v_Normal);\n' + 

   35      // Calculate the light direction and make it 1.0 in length 

   36   '  vec3 lightDirection = normalize(u_LightPosition - v_Position);\n' + 

   37      // The dot product of the light direction and the normal 

   38   '  float nDotL = max(dot( lightDirection, normal), 0.0);\n' + 

   39      // Calculate the final color from diffuse and  ambient reflection 

   40   '  vec3 diffuse = u_LightColor * v_Color.rgb * nDotL;\n' + 

   41   '  vec3 ambient = u_AmbientLight * v_Color.rgb;\n' + 

   42   '  gl_FragColor = vec4(diffuse + ambient, v_Color.a);\n' + 

  43   '}\n';   

 To calculate the color per fragment when light hits, you need (1) the position of the frag-
ment in the world coordinate system and (2) the normal direction at the fragment posi-
tion. You can utilize interpolation ( Chapter   5   ) to obtain these values per fragment by just 
calculating them per vertex in the vertex shader and passing them via varying variables to 
the fragment shader.  

 These calculations are performed at lines 16 and 17, respectively, in the vertex shader. At 
line 16, the vertex position in world coordinates is calculated by multiplying each vertex 
coordinate by the model matrix. After assigning the vertex position to the varying vari-
able  v_Position , it will be interpolated between vertices and passed to the corresponding 
variable ( v_Position ) in the fragment shader as the world coordinate of the fragment. The 
normal calculation at line 17 is carried out for the same purpose.  10   By assigning the result 
to  v_Normal , it is also interpolated and passed to the corresponding variable ( v_Normal ) in 
the fragment shader as the normal of the fragment.   
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 Processing in the fragment shader is the same as that in the vertex shader of 
 PointLightedCube.js . First, at line 34, the interpolated normal passed from the vertex 
shader is normalized. Its length may not be 1.0 anymore because of the interpolation. 
Next, at line 36, the light direction is calculated and normalized. Using these results, the 
dot product of the light direction and the normal is calculated at line 38. The colors due 
to the diffuse reflection and ambient reflection are calculated at lines 40 and 41 and added 
to get the fragment color, which is assigned to  gl_FragColor  at line  42.  

 If you have more than one light source, after calculating the color due to diffuse reflec-
tion and ambient reflection for each light source, you can obtain the final fragment color 
by adding all the colors. In other words, you only have to calculate  Equation   8.3    as many 
times as the number of light sources.     

     Summary  
 This chapter explored how to light a 3D scene, the different types of light used, and how 
light is reflected and diffused through the scene. Using this knowledge, you then imple-
mented the effects of different light sources to illuminate a 3D object and examined 
various shading techniques to improve the realism of the objects. As you have seen, a 
mastery of lighting is essential to adding realism to 3D scenes, which can appear flat and 
uninteresting if they’re not correctly lit.     

 10    In this sample program, this normalization is not necessary because all normals are passed to 

 a_Normal  with a length of 1.0.  However, we normalize them here as good programming practice so 

the code is more generic. 



ptg11539634

This page intentionally left blank 



ptg11539634

    This chapter is the final one that describes the core features and how to program 
with WebGL. Once you’ve read it, you will have mastered the basics of WebGL 
and will have enough knowledge to create realistic and interactive 3D scenes. 
This chapter focuses on hierarchical objects, which are important because 
they allow you to progress beyond single objects like cubes or blocks to more 
complex objects that you can use for game characters, robots, and even humans.  

 The following key points are discussed in this chapter:  

    •   Modeling complex connected structures such as a robot arm using a hierar-
chical structure.   

   •   Drawing and manipulating hierarchical objects made up of multiple 
simpler objects.   

   •   Combining model and rotation matrices to mimic joints such as elbow or 
wrist joints   

   •   Internally implementing  initShaders() , which you’ve used but not exam-
ined so far.    

 By the end of this chapter, you will have all the knowledge you need to create 
compelling 3D scenes populated by both simple and complex 3D objects.   

  Chapter 9 

 Hierarchical Objects  
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     Drawing and Manipulating Objects Composed of 
Other Objects  
 Until now, we have described how to translate and rotate a single object, such as a two-
dimensional triangle or a three-dimensional cube. But many of the objects in 3D graphics, 
game characters, robots, and so on, consist of more     than one object (or segment). For a 
simple example, a robot arm is shown in  Figure   9.1   . As you can see, this consists of multi-
ple boxes. The program name is  MultiJointModel . First, let’s load the program and experi-
ment by pressing the arrow, x, z, c, and v keys to understand what you will construct in 
the following sections.  

 
 Figure 9.1   A robot arm consisting of multiple objects         

 One of the key issues when drawing an object consisting of multiple objects (segments) 
is that you have to program to avoid conflicts when the segments move. This section will 
explore this issue by describing how to draw and manipulate a robot arm that consists 
of multiple segments. First, let’s consider the structure of the human body from the 
shoulder to the fingertips to understand how to model our robot arm. An arm consists of 
multiple segments, such as the upper arm, lower arm, palm, and fingers, each of which is 
connected by a joint, as shown on the left  of  Figure   9.2   .  
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 Figure 9.2   The structure and movement from the arm to the fingers         

 Each segment moves around a  joint as follows:  

    •   When you move the upper arm by rotating around the shoulder joint, depending 
on the upper arm movement, the lower arm, palm, and fingers move (the middle of 
 Figure   9.2   ) accordingly.   

   •   When you move the lower arm using an elbow joint, the palm and fingers move but 
the upper arm does not.   

   •   When you move the palm using the wrist joint, both palm and fingers move but the 
upper and lower arm do not (the right of  Figure   9.2   ).   

   •   When you move fingers, the upper arm, lower arm, and palm do not move.    

 To summarize, when you move a segment, the segments located below it move, while the 
segments located above are not affected. In addition, all movement, including twisting, is 
actually rotation around a joint.  

  Hierarchical Structure  

 The typical method used to draw and manipulate the object with such features is to draw 
each part object (such as a box) in the   order of the object’s hierarchical structure from 
upper to lower, applying each model matrix (rotation matrix) at every joint. For example, 
in  Figure   9.2   , shoulder, elbow, wrist, and finger joints all have respective rotation matrices.  

 It is important to note that, unlike humans or robots, segments in 3D graphics are not 
physically joined. So if you inadvertently rotate the object corresponding to an upper arm 
at the shoulder joint, the lower parts would be left behind. When you rotate the shoulder 
joint, you should explicitly make the lower parts follow the movement. To do this, you 
need to rotate the lower elbow and wrist joints through the same angle that you rotate the 
shoulder joint.  
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 It is straightforward to program so that the rotation of one segment propagates to the 
lower segments and simply requires that you use the same model matrix for the rotation 
of the lower segments. For example, when you rotate a shoulder joint through 30 degrees 
using one model matrix, you can draw the lower elbow and wrist joints rotated through 
30 degrees using the same model matrix (see  Figure   9.3   ). Thus, by changing only the angle 
of the shoulder rotation, the lower segments are automatically rotated to follow the move-
ment of the shoulder joint.  

 

30 degrees

30 degrees

rotate the shoulder joint

 Figure 9.3   The lower segments following the rotation of the upper segment         

 For more complex cases, such as when you want to rotate the elbow joint 10 degrees after 
rotating the shoulder joint 30 degrees, you can rotate the elbow joint by using the model 
matrix and rotating 10 degrees more than the shoulder-joint model matrix. This can be 
calculated by multiplying the shoulder-joint model matrix by a 10-degree rotation matrix, 
which we refer to as the “elbow-joint model matrix.” The parts below the elbow will 
follow the movement of the elbow when drawn using this elbow-joint model matrix.  

 By programming in such a way, the upper segments are not affected by rotation of the 
lower segments. Thus, the upper segments will not move no matter how much the lower 
segments move.  

 Now that you have a good understanding of the principles involved when moving multi-
segment objects, let’s look at a sample program.   

  Single Joint Model  

 Let’s begin with a simple single joint model. You will construct    the program  JointModel  
that draws a robot arm consisting of two parts that can be manipulated with the arrow 
keys. The screen shot and the hierarchy structure are shown on the left and right of  Figure 
  9.4   , respectively. This robot arm consists of arm1 and arm2, which are joined by joint1. 
You should imagine that the arm is raised above the shoulder and that arm1 is the upper 
part and arm2 the lower part. When you add the hand later, it will become clearer.  
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 Figure 9.4   JointModel and the hierarchy structure used in the program         

 If you run the program, you will see that arm1 is rotated around the y-axis using the right 
and left arrow keys, and joint1 is rotated around the z-axis with the up and down arrow 
keys ( Figure   9.5   ). When pressing the down arrow key, joint1 is rotated and arm2 leans 
forward, as shown on the left of  Figure   9.5   . Then if you press the right arrow key, arm1 is 
rotated, as shown on the right of  Figure   9.5   .  

 

arm2

 Figure 9.5   The display change when pressing the arrow keys in JointModel         

 As you can see, the movement of arm2 by rotation of joint1 does not affect arm1. In 
contrast, arm2 is rotated if you rotate arm1.   

arm1
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  Sample Program (JointModel.js)  

  JointModel.js  is shown in  Listing   9.1   . The actual vertex shader is a little complicated 
because of the shading process and has been removed from the listing here to save space. 
However, if you are interested in how the lessons     learned in the earlier part of the chapter 
are applied, please look at the full listing available by downloading the examples from the 
book website. The lighting used is a directional light source and simplified diffuse reflec-
tion, which makes the robot arm look more three-dimensional. However, as you can see, 
there are no special lighting calculations needed for this joint model, and  all the code 
required to draw and manipulate the joint model is in the JavaScript program.  

  Listing 9.1   JointModel.js  

   1 // JointModel.js

    2 // Vertex shader program

    3 var VSHADER_SOURCE =

    4   'attribute vec4 a_Position;\n' +

    5   'attribute vec4 a_Normal;\n' +

    6   'uniform mat4 u_MvpMatrix;\n' +

       ...

    9   'void main() {\n' +

   10   '  gl_Position = u_MvpMatrix * a_Position;\n' +

   11   // Shading calculation to make the arm look three-dimensional

      ...

   17   '}\n';

      ...

   29 function main() {

      ...

   46   // Set the vertex coordinate.

   47   var n = initVertexBuffers(gl);

      ...

   57   // Get the storage locations of uniform variables

   58   var u_MvpMatrix = gl.getUniformLocation(gl.program, 'u_MvpMatrix');

   59   var u_NormalMatrix = gl.getUniformLocation(gl.program, 'u_NormalMatrix');

      ...

   65   // Calculate the view projection  matrix

   66   var viewProjMatrix = new Matrix4();

   67   viewProjMatrix.setPerspective(50.0, canvas.width / canvas.height, 1.0, 100.0);

   68   viewProjMatrix.lookAt(20.0, 10.0, 30.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

   69

   70   // Register the event handler to be called when keys are pressed

    71   document.onkeydown = function(ev){ keydown(ev, gl, n, viewProjMatrix, 

                                                  ➥u_MvpMatrix, u_NormalMatrix); }; 

   72   // Draw robot arm

   73   draw(gl, n, viewProjMatrix, u_MvpMatrix, u_NormalMatrix);

   74 }
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   75

    76 var ANGLE_STEP = 3.0;    // The increments of rotation angle (degrees) 

    77 var g_arm1Angle = 90.0;  // The rotation angle of arm1 (degrees) 

    78 var g_joint1Angle = 0.0; // The rotation angle of joint1 (degrees) 

   79

    80 function keydown(ev, gl, n, viewProjMatrix, u_MvpMatrix, u_NormalMatrix) {

    81   switch (ev.keyCode) { 

    82     case 38: // Up arrow key -> positive rotation of joint1 (z-axis) 

    83       if (g_joint1Angle < 135.0) g_joint1Angle += ANGLE_STEP; 

    84       break; 

    85     case 40: // Down arrow key -> negative rotation of joint1 (z-axis) 

    86       if (g_joint1Angle > -135.0) g_joint1Angle -= ANGLE_STEP; 

    87       break; 

       ... 

    91     case 37: // Left arrow key -> negative rotation of arm1 (y-axis) 

    92       g_arm1Angle = (g_arm1Angle - ANGLE_STEP) % 360; 

    93       break; 

    94     default: return; 

    95   } 

   96   // Draw the robot arm

   97   draw(gl, n, viewProjMatrix, u_MvpMatrix, u_NormalMatrix);

    98 }

   99

  100 function initVertexBuffers(gl) {

  101   // Vertex coordinates

      ...

  148 }

      ...

   174 // Coordinate transformation matrix 

   175 var g_modelMatrix = new Matrix4(), g_mvpMatrix = new Matrix4(); 

   176 

   177 function draw(gl, n, viewProjMatrix, u_MvpMatrix, u_NormalMatrix) { 

       ... 

   181   // Arm1 

   182   var arm1Length = 10.0; // Length of arm1 

   183   g_modelMatrix.setTranslate(0.0, -12.0, 0.0); 

   184   g_modelMatrix.rotate(g_arm1Angle, 0.0, 1.0, 0.0);   // Rotate y-axis 

   185   drawBox(gl, n, viewProjMatrix, u_MvpMatrix, u_NormalMatrix); // Draw 

   186 

   187   // Arm2 

   188   g_modelMatrix.translate(0.0, arm1Length, 0.0);     // Move to joint1 

   189   g_modelMatrix.rotate(g_joint1Angle, 0.0, 0.0, 1.0);// Rotate z-axis 

   190   g_modelMatrix.scale(1.3, 1.0, 1.3); // Make it a little thicker 

   191   drawBox(gl, n, viewProjMatrix, u_MvpMatrix, u_NormalMatrix); // Draw 

  192 }
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  193

  194 var g_normalMatrix = new Matrix4(); // Transformation matrix  for normal

  195

  196 // Draw a cube

  197 function drawBox(gl, n, viewProjMatrix, u_MvpMatrix, u_NormalMatrix) {

  198   //Calculate the model view project matrix and pass it to u_MvpMatrix

  199   g_mvpMatrix.set(viewProjMatrix);

  200   g_mvpMatrix.multiply(g_modelMatrix);

  201   gl.uniformMatrix4fv(u_MvpMatrix, false, g_mvpMatrix.elements);

  202   // Calculate the normal transformation matrix and pass it to u_NormalMatrix

  203   g_normalMatrix.setInverseOf(g_modelMatrix);

  204   g_normalMatrix.transpose();

  205   gl.uniformMatrix4fv(u_NormalMatrix, false, g_normalMatrix.elements);

  206   // Draw

  207   gl.drawElements(gl.TRIANGLES, n, gl.UNSIGNED_BYTE, 0);

  208 }   

 The function  main()  from line 29 follows the same structure as before, with the first major 
difference being the  initVertexBuffers()  function call at line 47. In  initVertexBuf-
fers() , the vertex data for arm1 and arm2 are written into the appropriate buffer objects. 
Until now, you’ve been using cubes, with each side being 2.0 in length and the origin 
at the center of the cube. Now, to better model the arm, you will use a cuboid like that 
shown in the left side of  Figure   9.6   . The cuboid has its origin at the center of the bottom 
surface and is 3.0 by 3.0 and  10.0 units in height. By setting the origin at the center of the 
bottom surface, its rotation around the z-axis is the same as that of joint1 in  Figure   9.5   , 
making it convenient to program. Both arm1 and arm2 are drawn using this cuboid.  
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 Figure 9.6   A cuboid for drawing the robot arm         
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 From lines 66 to 68, a view projection matrix ( viewProjMatrix ) is calculated with the 
specified viewing volume, the eye position, and the view direction.  

 Because the robot arm in this program is moved by using the arrow keys, the event 
handler  keydown()  is registered at line 71:  

   70   // Register the event handler to be called when keys are pressed 

   71   document.onkeydown = function(ev){ keydown(ev, gl, n, viewProjMatrix, 

                                                  ➥u_MvpMatrix, u_NormalMatrix); }; 

  72   // Draw the robot arm

  73   draw(gl, n, viewProjMatrix, u_MvpMatrix, u_NormalMatrix);   

 The  keydown()  function itself is defined at line 80. Before that, at lines 76, 77, and 78, the 
definition of global variables used in  keydown()  is defined:  

  76  var ANGLE_STEP = 3.0;     // The increments of rotation angle (degrees)

  77  var g_arm1Angle = -90.0;  // The rotation angle of arm1 (degrees)

  78  var g_joint1Angle = 0.0;  // The rotation angle of joint1 (degrees)

  79

  80 function keydown(ev, gl, n, u_MvpMatrix, u_NormalMatrix) {

  81   switch (ev.keyCode) { 

  82   case 38:  // Up arrow key -> the positive rotation of joint1 (z-axis)

  83      if (g_joint1Angle < 135.0) g_joint1Angle += ANGLE_STEP; 

  84      break; 

  ...

  88   case 39:  // Right arrow key -> the positive rotation of arm1 (y-axis)

  89     g_arm1Angle = (g_arm1Angle + ANGLE_STEP) % 360; 

  90     break; 

  ...

  95   } 

  96   // Draw the robot arm

  97   draw(gl, n, u_MvpMatrix, u_NormalMatrix);

  98 }   

  ANGLE_STEP  at line 76 is used to control how many degrees arm1 and joint1 are rotated 
each time the arrow keys are pressed and is set at 3.0 degrees.  g_arm1Angle  (line 77) and 
 g_joint1Angle  (line 78) are variables that store the current rotation angle of arm1 and 
joint1, respectively (see  Figure   9.7   ).  
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 Figure 9.7   g_joint1Angle and g_arm1Angle         

 The  keydown() function , from line 80, increases or decreases the value of the rotation 
angle of arm1 ( g_arm1Angle ) or joint1 ( g_joint1Angle ) by  ANGLE_STEP , according to which 
key is pressed. joint1 can only be rotated through the range from –135 degrees to 135 
degrees so that arm2 does not interfere with arm1. Then the whole robot arm is drawn at 
line 97 using the function  draw() .   

  Draw the Hierarchical Structure (draw())  

 The  draw()  function draws the robotic arm according to its hierarchical   structure and is 
defined at line 177. Two global variables,  g_modelMatrix  and  g_mvpMatrix , are created at 
line 175 and will be used in both  draw()  and  drawBox() :  

   174 // Coordinate transformation matrix 

   175 var g_modelMatrix = new Matrix4(), g_mvpMatrix = new Matrix4(); 

  176

   177 function draw(gl, n, viewProjMatrix, u_MvpMatrix, u_NormalMatrix) { 

      ...

  181   // Arm1

   182   var arm1Length = 10.0; // Length of arm1 

   183   g_modelMatrix.setTranslate(0.0, -12.0, 0.0); 

   184   g_modelMatrix.rotate(g_arm1Angle, 0.0, 1.0, 0.0); // Rotate y-axis 

   185   drawBox(gl, n, viewProjMatrix, u_MvpMatrix, u_NormalMatrix); // Draw 

  186

  187   // Arm2

   188   g_modelMatrix.translate(0.0, arm1Length, 0.0); // Move to joint1 

   189   g_modelMatrix.rotate(g_joint1Angle, 0.0, 0.0, 1.0); // Rotate z-axis 

   190   g_modelMatrix.scale(1.3, 1.0, 1.3);      // Make it a little thicker 

   191   drawBox(gl, n, viewProjMatrix, u_MvpMatrix, u_NormalMatrix); // Draw 

  192 }   
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 As you can see,  draw()  draws the segments by using  drawBox() , starting with the upper 
part (arm1) followed by the lower part (arm2).  

 When drawing each part, the same process is repeated: (1) translation ( setTranslate() , 
 translate() ), (2) rotation ( rotate() ), and (3) drawing the part ( drawBox() ).  

 When drawing a hierarchical model performing a rotation, typically you will process from 
upper to lower in the order of (1) translation, (2) rotation, and (3) drawing segments.  

 arm1 is translated to (0.0, –12.0, 0.0) with  setTranslate()  at line 183 to move to an easily 
visible position. Because this arm is rotated around the y-axis, its model matrix ( g_model-
Matrix ) is multiplied by the rotation matrix around the y-axis at line 184.  g_arm1Angle  
is used here. Once arm1’s coordinate transformation has been completed, you then draw 
using the  drawBox()  function.  

 Because arm2 is connected to the tip of arm1, as shown in  Figure   9.7   , it has to be drawn 
from the tip of arm1. This can be achieved by translating it along the y-axis in the posi-
tive direction by the length of arm1 ( arm1Length ) and applying the translation to the 
model matrix, which is used when drawing arm1 ( g_modelMatrix ).  

 This is done as shown in line 188, where the second argument of  translate()  is 
 arm1Length . Also notice that the method uses  translate()  rather than  setTranslate()  
because arm2 is drawn at the tip of arm1:  

   187   // Arm2 

   188   g_modelMatrix.translate(0.0, arm1Length, 0.0); // Move to joint1 

   189   g_modelMatrix.rotate(g_joint1Angle, 0.0, 0.0, 1.0); // Rotate z-axis 

   190   g_modelMatrix.scale(1.3, 1.0, 1.3); // Make it a little thicker 

   191   drawBox(gl, n, viewProjMatrix, u_MvpMatrix, u_NormalMatrix); // Draw    

 Line 189 handles the rotation of arm2 which, as can be seen, uses  g_joint1Angle . You 
make arm2 a little thicker at line 190 by scaling it along the x and z direction. This makes 
it easier to distinguish between the two arm segments but is not essential to the robotic 
arm’s movement.  

 Now, by updating  g_arm1Angle  and  g_joint1Angle  in  keydown()  as described in the previ-
ous section and then invoking  draw() , arm1 is rotated by  g_arm1Angle  and arm2 is, in 
addition, rotated by  g_joint1Angle .  

 The  drawBox()  function is quite simple. It calculates a model view project matrix and 
passes it to the  u_MvpMatrix  variable at lines 199 and 200. Then it just calculates the 
normal transformation matrix for shading from the model matrix, sets it to 
 u_NormalMatrix  at lines 203 and 204, and draws the cuboid in  Figure   9.6    at line 207.  

 This basic approach, although used here for only a single joint, can be used for any 
complex hierarchical models simply by repeating the process steps used earlier.  
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 Obviously, our simple robot arm, although modeled on a human arm, is more like a 
skeleton than a real arm. A more realistic model of a real arm would require the skin to 
be modeled, which is beyond the scope of this book. Please refer to the  OpenGL ES 2.0 
Programming Guide  for more information about skinning.   

  A Multijoint Model  

 Here, you will extend  JointModel  to create  MultiJointModel , which draws a multijoint 
robot arm consisting of two arm segments, a palm, and two fingers, all of which you can 
manipulate using the keyboard. As shown in  Figure   9.8   , we call the arm    extending from 
the base arm1, the next segment arm2, and the joint between the two arms joint1. There 
is a palm at the tip of arm2. The joint between arm2 and the palm is called joint2. The 
two fingers attached at the end of the palm are respectively finger1 and finger2.  
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 Figure 9.8   The hierarchical structure of MultiJointModel         

 Manipulation of arm1 and joint1 using the arrow keys is the same as  JointModel . In addi-
tion, you can rotate joint2 (wrist) with the X and Z keys and move (rotate) the two fingers 
with the C and V keys. The variables controlling the rotation angle of each part are shown 
in  Figure   9.9   .  
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 Figure 9.9   The variables controlling the rotation of segments          

  Sample Program (MultiJointModel.js)  

 This program is similar to  JointModel , except for extensions to  keydown()  to handle the 
additional control keys, and  draw() , which draws     the extended hierarchical structure. First 
let’s look at  keydown()  in  Listing   9.2   .  

  Listing 9.2   MultiJointModel.js (Code for Key Processing)  

   1 // MultiJointModel.js

      ...

  76 var ANGLE_STEP = 3.0;     // The increments of rotation angle (degrees)

   77 var g_arm1Angle = 90.0;   // The rotation angle of arm1 (degrees) 

   78 var g_joint1Angle = 45.0; // The rotation angle of joint1 (degrees) 

   79 var g_joint2Angle = 0.0;  // The rotation angle of joint2 (degrees) 

   80 var g_joint3Angle = 0.0;  // The rotation angle of joint3 (degrees) 

  81

  82 function keydown(ev, gl, n, viewProjMatrix, u_MvpMatrix, u_NormalMatrix) {

  83   switch (ev.keyCode) {

  84     case 40: //  Up arrow key -> positive rotation of joint1 (z-axis) 

      ...

  95       break;

   96     case 90: // Z key -> the positive rotation of joint2 

   97       g_joint2Angle = (g_joint2Angle + ANGLE_STEP)  % 360; 

   98       break; 

   99     case 88: // X key -> the negative rotation of joint2 

   100       g_joint2Angle = (g_joint2Angle - ANGLE_STEP) % 360; 

   101       break; 
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   102     case 86: // V key -> the positive rotation of joint3 

   103       if (g_joint3Angle < 60.0)  g_joint3Angle = (g_joint3Angle + 

                                                                ➥ANGLE_STEP) % 360; 

   104       break; 

   105     case 67: // C key -> the negative rotation of joint3 

   106       if (g_joint3Angle > -60.0) g_joint3Angle = (g_joint3Angle – 

                                                                ➥ANGLE_STEP) % 360; 

   107       break; 

  108     default: return;

  109   }

  110   // Draw the robot arm

  111   draw(gl, n, viewProjMatrix, u_MvpMatrix, u_NormalMatrix);

  112 }   

  keydown()  is basically the same as that of  JointAngle , but in addition to changing  
g_arm1Angle  and  g_joint1Angle  based on key presses, it processes the Z, X, V, and C 
keys at lines 96, 99, 102, and 105. These key presses change  g_joint2Angle , which is the 
rotation angle of joint2, and  g_joint3Angle , which is the rotation angle of joint3, respec-
tively. After changing them, it calls  draw()  at line 111 to draw the hierarchy structure. 
Let’s take a look at  draw()  in  Listing   9.3   .  

 Although you are using the same cuboid for the base, arm1, arm2, palm, finger1, and 
finger2, the segments are different in width, height, and depth. To make it easy to draw 
these segments, let’s extend  drawBox()  with three more arguments than that used in the 
single-joint model:  

  function drawBox(gl, n,  width, height, depth , viewProjMatrix,  u_MvpMatrix , 

                                                                   ➥u_NormalMatrix)   

 By specifying the width, height, and depth using the third to fifth argument, this function 
draws a cuboid of the specified size with its origin at the center of the bottom surface.  

  Listing 9.3   MultiJointModel.js (Code for Drawing the Hierarchy Structure)  

  188 // Coordinate transformation matrix 

   189 var g_modelMatrix = new Matrix4(), g_mvpMatrix = new Matrix4(); 

   190 

   191 function draw(gl, n, viewProjMatrix, u_MvpMatrix, u_NormalMatrix) { 

  192   // Clear color buffer and depth buffer

  193   gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

  194

   195   // Draw a base 

   196   var baseHeight = 2.0; 

   197   g_modelMatrix.setTranslate(0.0, -12.0, 0.0); 

   198   drawBox(gl, n, 10.0, baseHeight, 10.0, viewProjMatrix, u_MvpMatrix, 

                                                                  ➥u_NormalMatrix); 
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  199

   200   // Arm1 

   201   var arm1Length = 10.0; 

   202   g_modelMatrix.translate(0.0, baseHeight, 0.0); // Move onto the base 

   203   g_modelMatrix.rotate(g_arm1Angle, 0.0, 1.0, 0.0);  // Rotation 

   204   drawBox(gl, n, 3.0, arm1Length, 3.0, viewProjMatrix, u_MvpMatrix, 

                                                          ➥u_NormalMatrix); // Draw 

  295

   206   // Arm2 

      ...

   212   // A palm 

   213   var palmLength = 2.0; 

      ...

   218   // Move to the center of the tip of  the palm 

   219   g_modelMatrix.translate(0.0, palmLength, 0.0); 

  220

   221   // Draw finger1 

   222   pushMatrix(g_modelMatrix); 

  223     g_modelMatrix.translate(0.0, 0.0, 2.0);

  224     g_modelMatrix.rotate(g_joint3Angle, 1.0, 0.0, 0.0);  // Rotation

  225     drawBox(gl, n, 1.0, 2.0, 1.0, viewProjMatrix, u_MvpMatrix, u_NormalMatrix);

   226   g_modelMatrix = popMatrix(); 

  227

   228   // Draw finger2 

   229   g_modelMatrix.translate(0.0, 0.0, -2.0); 

   230   g_modelMatrix.rotate(-g_joint3Angle, 1.0, 0.0, 0.0);  // Rotation 

   231   drawBox(gl, n, 1.0, 2.0, 1.0, viewProjMatrix, u_MvpMatrix, u_NormalMatrix); 

   232 } 

  233

   234 var g_matrixStack = []; // Array for storing a matrix 

   235 function pushMatrix(m) { // Store the specified matrix to the array 

   236   var m2 = new Matrix4(m); 

   237   g_matrixStack.push(m2); 

   238 } 

  239

   240 function popMatrix() { // Retrieve the matrix from the array 

   241   return g_matrixStack.pop(); 

   242 }    

 The  draw()  function operates in the same way as in  JointModel ; that is, each part 
is handled following the order of (1) translation, (2) rotation, and (3) draw (using 
 drawBox() ). First, because the base is not rotated, after moving to the appropriate posi-
tion at line 197, it draws a base there with  drawBox() . The third to fifth arguments of 
 drawBox()  specify a width of 10, height of 2, and depth of 10, which cause a flat stand to 
be drawn.  
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 The arm1, arm2, and palm are each drawn following the same order of (1) translation, 
(2) rotation, and (3) draw and by moving down the object hierarchy toward the lower 
level in the same manner as  JointModel .  

 The main difference in this sample program is the drawing of finger1 and finger2 from 
line 222. Because they do not have a parent-child relationship, a little more care is needed. 
In particular, you have to pay attention to the contents of the model matrix. First, let’s 
look at finger1, whose position is translated 2.0 along the z-axis direction from the center 
of the tip of the palm and rotated around the x-axis. finger1 can be drawn in the order of 
(1) translating, (2) rotating, and (3) drawing segments as before. The program is as follows:  

  g_modelMatrix.translate(0.0, 0.0, 2.0);

  g_modelMatrix.rotate(g_joint3Angle, 1.0, 0.0, 0.0); // Rotation

  drawBox(gl, n, 1.0, 2.0, 1.0, u_MvpMatrix, u_NormalMatrix);   

 Next, looking at finger2, if you follow the same procedure a problem occurs. finger2’s 
intended position is a translation of –2.0 units along the z-axis direction from the center 
of the tip of the palm and rotated around the x-axis. However, because the model matrix 
has changed, if you draw finger2, it will be drawn at the tip of finger1.  

 Clearly, the solution is to restore the model matrix to its state before finger1 was drawn. A 
simple way to achieve this is to store the model matrix before drawing finger1 and retriev-
ing it after drawing finger1. This is actually done at lines 222 and 226 and uses the func-
tions  pushMatrix()  and  popMatrix()  to store the specified matrix and retrieve it. At line 
222, you store the model matrix specified as  pushMatrix() ’s argument ( g_modelMatrix ). 
Then, after drawing finger1 at lines 223 to 225, you retrieve the old model matrix at line 
226, with  popMatrix() , and assign it to  g_modelMatrix . Now, because the  model matrix 
has reverted back, you can draw finger2 in the same way as before.  

  pushMatrix()  and  popMatrix()  are shown   next.  pushMatrix()  stores the matrix specified 
as its argument in an array named  g_matrixStack  at line 234.  popMatrix()  retrieves the 
matrix stored in  g_matrixStack  and returns it:  

   234 var g_matrixStack = [];  // Array for storing matrices 

   235 function pushMatrix(m) { // Store the specified matrix 

   236   var m2 = new Matrix4(m); 

   237   g_matrixStack.push(m2); 

   238 } 

  239

   240 function popMatrix() { // Retrieve a matrix from the array 

   241   return g_matrixStack.pop(); 

   242 }    

 This approach can be used to draw an arbitrarily long robot arm. It will scale when new 
segments are added to the hierarchy. You only need to use  pushMatrix()  and  popMatrix()  
when the hierarchy structure is a sibling relation, not a parent-child relation.   
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  Draw Segments (drawBox())  

 Finally, let’s take a look at  drawBox() , which draws the segments  of the robot arm using 
the following   arguments:  

  247 function drawBox(gl, n, width, height, depth, viewMatrix, u_MvpMatrix, 

                                                                 ➥u_NormalMatrix) {   

 The third to fifth arguments,  width ,  height,  and  depth , specify the width, height, and depth 
of the cuboid being drawn. As for the remaining argument,  viewMatrix  is a view matrix, 
and  u_MvpMatrix  and  u_NormalMatrix  are the arguments for setting the coordinate trans-
formation matrices to the corresponding uniform variables in the vertex shader, just like 
 JointModel.js . The model view projection matrix is passed to  u_MvpMatrix , and the 
matrix for transforming the coordinates of the normal, described in the previous section, 
is passed to  u_NormalMatrix .  

 The three-dimensional object used here, unlike JointModel, is a cube whose side is 1.0 
unit long. Its origin is located at the center of the bottom surface so that you can easily 
rotate the arms, the palm, and the fingers. The function  drawBox()  is shown here:  

  244 var g_normalMatrix = new Matrix4();// Transformation matrix for normal

  245

  246 // Draw a cuboid

  247 function drawBox(gl, n, width, height, depth, viewProjMatrix, 

                                                    ➥u_MvpMatrix, u_NormalMatrix) {

   248   pushMatrix(g_modelMatrix);   // Save the model matrix 

  249     // Scale a cube and draw

  250     g_modelMatrix.scale(width, height, depth);

  251     // Calculate model view project matrix and pass it to u_MvpMatrix

  252     g_mvpMatrix.set(viewProjMatrix);

  253     g_mvpMatrix.multiply(g_modelMatrix);

  254     gl.uniformMatrix4fv(u_MvpMatrix, false, g_mvpMatrix.elements);

  255     // Calculate transformation matrix for normals and pass it to u_NormalMatrix

      ...

  259     // Draw

  260     gl.drawElements(gl.TRIANGLES, n, gl.UNSIGNED_BYTE, 0);

   261   g_modelMatrix = popMatrix();   // Retrieve the model matrix 

  262 }   

 As you can see, the model matrix is multiplied by a scaling matrix at line 250 so that 
the cube will be drawn with the size specified by  width ,  height,  and  depth . Note that you 
store the model matrix at line 248 and retrieve it at line 261 using  pushMatrix()  and 
 popMatrix() . Otherwise, when you draw arm2 after arm1, the scaling used for arm1 is left 
in the model matrix and affects the drawing of arm2. By retrieving the model matrix at 
line 261, which is saved at line 248, the model matrix reverts to the state before scaling 
was applied at  line 250.  
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 As you can see, the use of  pushMatrix()  and  popMatrix()  adds an extra degree of 
complexity but allows you to specify only one set of vertex coordinates and use scaling 
to create different cuboids. The alternative approach, using multiple objects specified by 
different sets of vertices, is also possible. Let’s take a look at how you would program that.   

  Draw Segments (drawSegment())  

 In this section, we will explain how to draw segments by switching between buffer objects 
in which the vertex coordinates representing the shape of each segment are stored. 
Normally, you would need to specify the vertex   coordinates, the normal, and the indices 
for each segment. However, in this example, because all segments are cuboids, you can 
share the normals and indices and simply specify the  vertices for each segment. For each 
segment (the base, arm1, arm2, palm, and fingers), the vertices are stored in their respec-
tive object buffers, which are then switched when drawing the arm parts.  Listing   9.4    
shows the  sample program.  

  Listing 9.4   MultiJointModel_segment.js  

   1 // MultiJointModel_segment.js

      ...

   29 function main() {

        ...

   47   var n = initVertexBuffers(gl);

      ...

   57  // Get the storage locations of attribute and uniform variables

   58  var a_Position = gl.getAttribLocation(gl.program, 'a_Position');

      ...

   74   draw(gl, n, viewProjMatrix, a_Position, u_MvpMatrix, u_NormalMatrix);

   75 }

      ...

   115 var g_baseBuffer = null;     // Buffer object for a base 

   116 var g_arm1Buffer = null;     // Buffer object for arm1 

   117 var g_arm2Buffer = null;     // Buffer object for arm2 

   118 var g_palmBuffer = null;     // Buffer object for a palm 

   119 var g_fingerBuffer = null;   // Buffer object for fingers 

  120

  121 function initVertexBuffers(gl){

  122   // Vertex coordinate (Coordinates of cuboids for all  segments)

   123   var vertices_base = new Float32Array([ // Base(10x2x10) 

   124      5.0, 2.0, 5.0, -5.0, 2.0, 5.0, -5.0, 0.0, 5.0,  5.0, 0.0, 5.0, 

   125      5.0, 2.0, 5.0,  5.0, 0.0, 5.0,  5.0, 0.0,-5.0,  5.0, 2.0,-5.0, 

       ... 

   129      5.0, 0.0,-5.0, -5.0, 0.0,-5.0, -5.0, 2.0,-5.0,  5.0, 2.0,-5.0 

   130   ]); 

  131
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  132   var vertices_arm1 = new Float32Array([  // Arm1(3x10x3)

   133      1.5, 10.0, 1.5, -1.5, 10.0, 1.5, -1.5,  0.0, 1.5,  1.5,  0.0, 1.5, 

   134      1.5, 10.0, 1.5,  1.5,  0.0, 1.5,  1.5,  0.0,-1.5,  1.5, 10.0,-1.5, 

       ... 

   138      1.5,  0.0,-1.5, -1.5,  0.0,-1.5, -1.5, 10.0,-1.5,  1.5, 10.0,-1.5 

   139   ]); 

      ...

  159   var vertices_finger = new Float32Array([  // Fingers(1x2x1)

      ...

  166   ]);

  167

  168   // normals

  169   var normals = new Float32Array([

      ...

  176   ]);

  177

  178   // Indices  of vertices

  179   var indices = new Uint8Array([

  180      0, 1, 2,   0, 2, 3,    // front

  181      4, 5, 6,   4, 6, 7,    // right

      ...

  185     20,21,22,  20,22,23     // back

  186   ]);

  187

  188   // Write coords to buffers, but don't assign to attribute variables

   189   g_baseBuffer = initArrayBufferForLaterUse(gl, vertices_base, 3, gl.FLOAT); 

   190   g_arm1Buffer = initArrayBufferForLaterUse(gl, vertices_arm1, 3, gl.FLOAT); 

       ... 

   193   g_fingerBuffer = initArrayBufferForLaterUse(gl, vertices_finger, 3, gl.FLOAT); 

      ...

  196   // Write normals to a buffer, assign it to a_Normal, and enable it

  197   if (!initArrayBuffer(gl, 'a_Normal', normals, 3, gl.FLOAT)) return null;

  198

  199   // Write indices to a buffer

  200   var indexBuffer = gl.createBuffer();

      ...

  205   gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);

  206   gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, indices, gl.STATIC_DRAW);

  207

  208   return indices.length;

  209 }

       ...

  255 function draw(gl, n, viewProjMatrix, a_Position, u_MvpMatrix, u_NormalMatrix) {

      ...
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  259   // Draw a base

  260   var baseHeight = 2.0;

  261   g_modelMatrix.setTranslate(0.0, -12.0, 0.0);

   262   drawSegment(gl, n, g_baseBuffer, viewProjMatrix, a_Position, 

                                                     ➥u_MvpMatrix, u_NormalMatrix); 

  263

  264   // Arm1

  265   var arm1Length = 10.0;

  266   g_modelMatrix.translate(0.0, baseHeight, 0.0); // Move to the tip of the base

  267   g_modelMatrix.rotate(g_arm1Angle, 0.0, 1.0, 0.0);  // Rotate y-axis

   268   drawSegment(gl, n, g_arm1Buffer, viewProjMatrix, a_Position, 

                                                     ➥u_MvpMatrix, u_NormalMatrix); 

  269

  270   // Arm2

      ...

  292   // Finger2

      ...

   295   drawSegment(gl, n, g_fingerBuffer, viewProjMatrix, a_Position, 

                                                     ➥u_MvpMatrix, u_NormalMatrix); 

  296 }

      ...

  310 // Draw segments

  311 function drawSegment(gl, n, buffer, viewProjMatrix, a_Position, 

                                                    ➥u_MvpMatrix, u_NormalMatrix) {

   312   gl.bindBuffer(gl.ARRAY_BUFFER, buffer); 

   313  // Assign the buffer object to the attribute variable 

   314  gl.vertexAttribPointer(a_Position, buffer.num, buffer.type,  false, 0, 0); 

   315   // Enable the assignment 

   316   gl.enableVertexAttribArray(a_Position); 

  317

  318   // Calculate the model view project matrix and set it to u_MvpMatrix

      ...

  322   // Calculate matrix for normal and pass it to u_NormalMatrix

      ...

  327   gl.drawElements(gl.TRIANGLES, n, gl.UNSIGNED_BYTE, 0);

  328 }   

 The key points in this program are (1) creating the separate buffer objects that contain the 
vertex coordinates for each segment, (2) before drawing each segment, assigning the corre-
sponding buffer object to the attribute variable  a_Position , and (3) enabling the buffer 
and then drawing the segment.  

 The  main()  function from line 29 in the JavaScript code follows the same steps as before. 
Switching between buffers for the different segments is added to  initVertexBuffers() , 
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called at line 47. The stored location of  a_Position  is retrieved at line 58, and then  draw()  
is called at line 73.  

 Let’s examine  initVertex() , defined at line 121. Lines 115 to 119 declare the buffer 
objects as global variables, used to store the vertex coordinates of each segment. Within 
the function, one of the main differences from  MultiJointModel.js  is the definition of 
the vertex coordinates from line 123. Because you are not using a single cuboid trans-
formed differently for the different segments, you need to define the vertex coordinates 
for all the parts separately (for example, the base ( vertices_base ) at line 123, coordinates 
for arm1 ( vertices_arm1 ), at line 132. The actual creation of the buffer objects for each 
part occurs in the  function  initArrayBufferForLaterUse()  from line 189 to 193. This 
function is shown here:  

  211 function initArrayBufferForLaterUse(gl, data, num, type){

  212   var buffer = gl.createBuffer();   // Create a buffer object

      ...

  217   // Write data to the buffer object

  218   gl.bindBuffer(gl.ARRAY_BUFFER, buffer);

  219   gl.bufferData(gl.ARRAY_BUFFER, data, gl.STATIC_DRAW);

  220

  221   // Store information to assign it to attribute variable later

   222   buffer.num = num; 

   223   buffer.type = type; 

  224

  225   return buffer;

  226 }   

  initArrayBufferForLaterUse()  simply creates a buffer object at line 212 and writes data 
to it at lines 218 and 219. Notice that assigning it to an attribute variable ( gl.vertex
AttribPointer() ) and enabling the assignment ( gl.enableVertexAttribAray() ) are not 
done within the function but later, just before drawing. To assign the buffer object to the 
attribute variable  a_Position  later, the data needed is stored as properties of the buffer 
object at lines 222 and 223.  

 Here you take advantage of an interesting feature of JavaScript that allows you to freely 
add new properties of an object and assign data to them. You can do this by simply 
appending the  .property-name  to the object name and assigning a value. Using this 
feature, you store the number of items in the  num  property (line 222), and the type in the 
 type  property (line 223). Of course, you can access the contents of the newly made prop-
erties using the same name. Note, you must be careful when referring to properties created 
in this way, because JavaScript gives no error indications even  if you misspell only one 
character in the property name. Equally, be aware that, although convenient, appending 
properties has a performance overhead. A better approach, user-defined types, is explained 
in  Chapter   10   , “Advanced Techniques,” but let’s stick with this approach for now.  
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 Finally, the  draw()  function, invoked at line 255, is the same as used in  MultiJointModel  
in terms of drawing parts according to the hierarchical structure, but it’s different in 
terms of using  drawSegment()  to draw each segment. In particular, the third argument of 
 drawSegment() , shown next, is the buffer object in which the vertex coordinates of the 
parts are stored.  

   262   drawSegment(gl, n, g_baseBuffer, viewProjMatrix, u_MvpMatrix, u_NormalMatrix);    

 This function is defined at line 311 and operates as follows. It assigns a buffer object to 
the attribute variable  a_Position  and enables it at lines 312 to 316 before drawing at line 
327. Here,  num  and  type , which are just stored as buffer object properties, are used.  

  310  // Draw segments

  311  function drawSegment(gl, n, buffer, viewProjMatrix, a_Position, 

                                                    ➥u_MvpMatrix, u_NormalMatrix) {

  312    gl.bindBuffer(gl.ARRAY_BUFFER, buffer);

  313    // Assign the buffer object to the attribute variable

  314    gl.vertexAttribPointer(a_Position, buffer.num, buffer.type, false, 0, 0);

  315    // Enable the assignment

  316    gl.enableVertexAttribArray(a_Position);

  317

  318    // Calculate model view project matrix and set it to u_MvpMatrix

      ...

  322    // Calculate transformation matrix for normal and set it to u_NormalMatrix

      ...

  327    gl.drawElements(gl.TRIANGLES, n, gl.UNSIGNED_BYTE, 0);

  328  }   

 This time you don’t need to scale objects with the model matrix because you have 
prepared the vertex coordinates per part, so there is no need to store and retrieve the 
matrix. Therefore,  pushMatrix()  and  popMatrix()  are not necessary.    

  Shader and Program Objects: The Role of 
initShaders()  
 Finally, before we wrap up this chapter,   let’s examine one of the convenience functions 
defined for this book:  initShaders() . This function has been  used in all the sample 
programs and has hidden quite a lot of complex detail about setting up and using shaders. 
We have deliberately left this explanation to the end of this chapter to ensure you have a 
good understanding of the basics of WebGL before tackling some of these complex details. 
We should note that it’s not actually necessary to master these details. For some readers 
it will be sufficient to simply reuse the  initShaders()  function we  supply and skip this 
section. However, for those who are interested, let’s take a look.  
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  initShaders()  carries out the routine work to make shaders available in WebGL. It 
consists of seven steps:  

    1.   Create shader objects ( gl.createShader() ).   

   2.   Store the shader programs (to avoid confusion, we refer to them as “source code”) in 
the shader objects ( g.shaderSource() ).   

   3.   Compile the shader objects ( gl.compileShader() ).   

   4.   Create a program object ( gl.createProgram() ).   

   5.   Attach the shader objects to the program object ( gl.attachShader() ).   

   6.   Link the program object ( gl.linkProgram() ).   

   7.   Tell the WebGL system the program object to be used ( gl.useProgram() ).    

 Each step is simple but when combined can appear complex, so let’s take a look at them 
one by one. First, as you know from earlier, two types of objects are necessary to use 
shaders: shader objects and program objects.  

  Shader object    A shader object manages a vertex shader or a fragment shader. One 
shader object is created per shader.  

  Program object    A program object is a container that manages the shader objects. A vertex 
shader object and a fragment shader object (two shader objects in total) 
must be attached to a program object in WebGL.  

 The relationship between a program object and shader objects is shown in  Figure   9.10   .  

 

A program object

shader object
(vertex shader)

shader object
(fragment shader)

 Figure 9.10   The relationship between a program object and shader objects         

 Using this information, let’s discuss the preceding seven steps sequentially.  

  Create Shader Objects (gl.createShader())  

 All shader   objects have to be created with a call to  gl.createShader()  before using them.    
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   gl.createShader(type)   

 Create a shader of the specified  type .  

  Parameters    type   Specifies the type of shader object to be created: either 
 gl.VERTEX_SHADER  (a vertex shader) or  gl.FRAGMENT_
SHADER  (a fragment shader).  

  Return value    Non-null   The created shader object.  

 null   The creation of the shader object failed.  

  Errors    INVALID_ENUM   The specified type is none of the above.  

  gl.createShader()  creates a vertex shader or a fragment shader according to the specified 
 type . If you do not need the shader any more, you can delete it with  gl.deleteShader() .    

   gl.deleteShader(shader)   

 Delete the shader    object.  

  Parameters    shader   Specifies the shader object to be deleted.  

  Return value    None  

  Errors    None  

 Note that the specified shader object is not deleted immediately if it is still in use (that is, 
it is attached to a program object using  gl.attachShader() , which is discussed in a few 
pages). The shader object specified as an argument of  gl.deleteShader()  will be deleted 
when a program object no longer uses it.   

  Store the Shader Source Code in the Shader Objects 

(g.shaderSource())  

 A shader object has storage to    store the shader source code (written as a string in the 
JavaScript program or in the separate file; see   Appendix   F   , “Loading Shader Programs from 
Files”). You use  gl.shaderSource()  to store the source code in a shader object.    
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   gl.shaderSource(shader, source)   

 Store the source code specified by  source  in the shader object specified by  shader . If any 
source code was previously stored in the shader object, it is replaced by new source code.  

  Parameters    shader   Specifies the shader object in which the program is stored.  

 source   Specifies the shader source code (string)  

  Return value    None  

  Errors    None  

  Compile Shader Objects (gl.compileShader())  

 After storing the shader source code in the shader object, you have to compile it so that 
it can be used in the WebGL    system. Unlike JavaScript, and like C or C++, shaders need 
to be compiled before use. In this process, the source code stored in a shader object is 
compiled to executable format (binary) and kept in the WebGL system. Use  gl.compile-
Shader()  to compile. Note, if you replace the source code in the shader object with a call 
to  gl.shaderSource()  after compiling, the compiled binary kept in the shader object is 
not replaced. You have to recompile it explicitly.    

   gl.compileShader(shader)   

 Compile the source code stored in the shader object specified by  shader .  

  Parameters    shader   Specifies the shader object in which the source code to be 
compiled is stored.  

  Return Value    None  

  Errors    None  

 When executing  gl.compileShader() , it is possible a compilation error occurs due to 
mistakes in the source code. You can check for such errors, as well as the status of the 
shader object, using  gl.getShaderParameter() .    
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   gl.getShaderParameter(shader, pname)   

 Get the information specified by  pname  from the shader object specified by  shader .  

  Parameters    shader   Specifies the shader object.  

 pname   Specifies the information to get from the shader:  

  gl.SHADER_TYPE ,  gl.DELETE_STATUS , or  

  gl.COMPILE_STATUS .  

  Return value    The following depending on  pname :  

  gl.SHADER_TYPE    The type of shader ( gl.VERTEX_SHADER  or  gl.FRAGMENT_
SHADER )  

  gl.DELETE_
STATUS   

 Whether the deletion has succeeded ( true  or  false )  

  gl.COMPILE_
STATUS   

 Whether the compilation has succeeded ( true  or  false )  

  Errors    INVALID_ENUM    pname  is none of the above values.  

 To check whether the compilation succeeded, you can call  gl.getShaderParameter()  with 
 gl.COMPILE_STATUS  specified in  pname .  

 If the compilation has failed,  gl.getShaderParameter()  returns  false , and the error infor-
mation is written in the  information log  for the shader in the WebGL system. This infor-
mation can be retrieved with  gl.getShaderInfoLog() .    

   gl.getShaderInfoLog(shader)   

  Retrieve the information log from the shader object specified by  shader .  

  Parameters    shader   Specifies the shader object from which the information log is 
retrieved.  

  Return value    non-null   The string containing the logged information  .

 null   Any errors are generated.  

  Errors    None  

 Although the exact details of the logged information is implementation specific, almost 
all WebGL systems return error messages containing the line numbers where the compiler 
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has detected the errors in the program. For example, assume that you compiled a fragment 
shader program as follows:  

  var FSHADER_SOURCE =

    'void main() {\n' +

    '  gl.FragColor = vec4(1.0, 0.0, 0.0, 1.0);\n' +

    '}\n';   

 Because the second line is incorrect in this case ( gl.  must be  gl_ ), the error messages 
displayed in the JavaScript console of Chrome will be similar to those shown in  Figure   9.11   .  

 
 Figure 9.11   A compile error in a shader         

 The first message indicates that  gl  at line 2 is undeclared.  

  failed to compile shader: ERROR: 0: 2 : 'gl' : undeclared identifier

                                                      cuon-utils.js:88   

 The reference to  cuon-utils.js:88  on the right means that the error has been detected in 
 gl.getShaderInfoLog() , which was invoked at line 88 of the  cuon-utils.js  file, where 
 initShaders()  is defined.   

  Create a Program Object (gl.createProgram())  

 As mentioned before, a program object is a container to store the shader objects and is 
created by  gl.createProgram() . You are already familiar with this program object because 
it is the object you pass as the first    argument of  gl.getAttribLocation()  and 
 gl.getUniformLocation() .    

   gl.createProgram()   

 Create a program object.  

  Parameters    None  

  Return value    non-null   The newly created program object.  

 null   Failed to create a program object.  

  Errors    None  
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 A program object can be deleted by using  gl.deleteProgram() .    

   gl.deleteProgram(program)   

 Delete the program object specified by   program . If the program object is not referred to 
from anywhere, it is deleted immediately. Otherwise, it will be deleted when it is no 
longer referred to.  

  Parameters    program   Specifies the program object to be deleted.  

  Return value    None  

  Errors    None  

 Once the program object has been created, you attach the two shader objects to it.   

  Attach the Shader Objects to the Program Object (gl.attachShader())  

 Because you always    need two shaders in WebGL—a vertex shader and a fragment shader—
you must attach both of them to the program object with  gl.attachShader() .    

   gl.attachShader(program, shader)   

 Attach the shader object specified by  shader  to the  program object specified by  program .  

  Parameters    program   Specifies the program object.  

 shader   Specifies the shader object to be attached to 
 program .  

  Return value    None  

  Errors    INVALID_OPERATION    Shader  had already been attached to  program .  

 It is not necessary to compile or store any source code before it is attached to the program 
object. You can detach the shader object with  gl.detachShader() .    
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   gl.detachShader(program, shader)   

 Detach the shader object specified  by  shader  from the program object specified by 
 program .  

  Parameters    program   Specifies the program object.  

 shader   Specifies the shader object to be detached from 
program.  

  Return value    None  

  Errors    INVALID_OPERATION    shader  is not attached to  program .  

  Link the Program Object (gl.linkProgram())  

 After attaching shader objects to a program object, you need to link the shader objects. 
You use  gl.linkProgram()  to link     the shader objects in the program object.    

   gl.linkProgram(program)   

 Link the program object specified by  program.   

  Parameters    program   Specifies the program object to be linked.  

  Return value    None  

  Errors    None  

 During linking, various constraints of the WebGL system are checked: (1) when  varying  
variables are declared in a vertex shader, whether  varying  variables with the same names 
and types are declared in a fragment shader, (2) whether a vertex shader has written data 
to  varying  variables used in a fragment shader, (3) when the same  uniform  variables 
are used in both a vertex shader and a fragment shader, whether their types and names 
match, (4) whether the numbers of  attribute  variables,  uniform  variables, and  varying  
variables does not exceed an upper limit, and so on.  

 After linking the program object, it is always good programming practice to check whether 
it succeeded. The result of linking can be confirmed with  gl.getProgramParameters() .    



ptg11539634

CHAPTER 9  Hierarchical Objects352

   gl.getProgramParameter(program, pname)   

 Return information about  pname  for the program object  specified by  program . The return 
value differs depending on  pname .  

  Parameters    program   Specifies the program object.  

 pname   Specifies any one of  gl.DELETE_STATUS ,  gl.LINK_STATUS , 
 gl.VALIDATE_STATUS ,  gl.ATTACHED_SHADERS ,  gl.ACTIVE_
ATTRIBUTES , or  gl.ACTIVE_UNIFORMS .  

  Return value    Depending on  pname , the following values can be returned:  

  gl.DELETE_STATUS    Whether the  program  has been 
deleted ( true  or  false )  

  gl.LINK_STATUS    Whether the  program  was linked 
successfully ( true  or  false )  

  gl.VALIDATE_STATUS    Whether the  program  was validated 
successfully ( true  or  false ) 1   

  gl.ATTACHED_SHADERS    The number of attached shader 
objects  

  gl.ACTIVE_ATTRIBUTES    The number of  attribute  variables in 
the vertex shader  

  gl.ACTIVE_UNIFORMS    The number of  uniform  variables  

  Errors    INVALID_ENUM    pname  is none of the above values.  

 If linking succeeded, you are returned an executable program object. Otherwise, you can 
get the information about the linking from the information log of the program object 
with  gl.getProgramInfoLog() .    

   gl.getProgramInfoLog(program)   

 Retrieve the information log from the program  object specified by  program .  

  Parameters    program   Specifies the program object from which the information log is 
retrieved.  

  Return value    The string containing the logged information  

  Errors    None  

1 A program object may fail to execute even if it was linked successfully, such as if no texture units are 

set for the sampler. This can only be detected when drawing, not when linking. Because this check 

takes time, check for these errors only when debugging and turn off otherwise.
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  Tell the WebGL System   Which Program Object to Use 

(gl.useProgram())  

 The last step is to tell the WebGL system which program object to use when drawing by 
making a call to  gl.useProgram() .    

   gl.useProgram(program)   

 Tell the WebGL system that the program object specified by  program  will be used.  

  Parameters    program   Specifies the program object to be used.  

  Return value    None  

  Errors    None  

 One powerful feature of this function is that you can use it during drawing to switch 
between multiple shaders prepared in advance. This will be discussed and used in  
Chapter   10   .  

 With this final step, the preparation for drawing with the shaders is finished. As you have 
seen,  initShaders()  hides quite a lot of detail and can be safely used without worrying 
about this detail. Essentially, once executed, the vertex and fragment shaders are set up 
and can be used with calls to  gl.drawArrays()  or  gl.drawElements() .  

 Now that you have an understanding of the steps and appropriate WebGL functions used 
in  initShaders() , let’s take a look at the program flow of  initShaders()  as defined in 
 cuon-utils.js .   

  The Program Flow of initShaders()  

  initShaders()  is composed of two main functions:  createProgram() , which creates a 
linked program object, and  loadShader() , called from  createProgram() , which creates the 
compiled shader objects. Both are defined in  cuon-utils.js . Here, you will work through 
 initShader()  in order from the top     (see  Listing   9.5   ). Note that in contrast to the normal 
code samples used in the book, the comments in this code are in the JavaDoc form, which 
is used in the convenience libraries.  

  Listing 9.5   initShaders()  

  1 // cuon-utils.js

   2 /**

   3  * Create a program object and make current

   4  * @param gl GL context

   5  * @param vshader a vertex shader program (string)

   6  * @param fshader a fragment shader program (string)

   7  * @return true, if the program object was created and successfully made current
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   8  */

   9 function initShaders(gl, vshader, fshader) {

  10   var program = createProgram(gl, vshader, fshader);

      ...

  16   gl.useProgram(program);

   17   gl.program = program; 

  18

  19   return true;

  20 }   

 First,  initShaders()  creates a linked program object with  createProgram()  at line 10 and 
tells the WebGL system to use the program object at line 16. Then it sets the program 
object to the property named  program  of the  gl  object.  

 Next, look at  createProgram()  in  Listing   9.6   .  

  Listing 9.6   createProgram()  

  22 /**

  23  * Create the linked program object

  24  * @param gl GL context

  25  * @param vshader a vertex shader program(string)

  26  * @param fshader a fragment shader program(string)

  27  * @return created program object, or null if the creation has failed.

  28  */

  29 function createProgram(gl, vshader, fshader) {

  30   // Create shader objects

  31   var vertexShader = loadShader(gl, gl.VERTEX_SHADER, vshader);

  32   var fragmentShader = loadShader(gl, gl.FRAGMENT_SHADER, fshader);

      ...

  37   // Create a program object

  38   var program = gl.createProgram();

      ...

  43   // Attach the shader objects

  44   gl.attachShader(program, vertexShader);

  45   gl.attachShader(program, fragmentShader);

  46

  47   // Link the program object

  48   gl.linkProgram(program);

  49

  50   // Check the result of linking

  51   var linked = gl.getProgramParameter(program, gl.LINK_STATUS);

      ...

  60   return  program;

  61 }   
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 The function  createProgram()  creates the shader objects for the vertex and the frag-
ment shaders, which are loaded using  loadShader()  at lines 31 and 32. The shader 
object returned from  loadShader()  contains the stored shader source code and compiled 
versions.  

 The program object, to which the shader objects created here will be attached, is created 
at line 38, and the vertex and fragment shader objects are attached at lines 44 and 45.  

 Then  createProgram()  links the program object at line 48 and checks the result at line 51. 
If the linking has succeeded, it returns the program object at line 60.  

 Finally, let’s look at  loadShader() ( Listing   9.7   ) which was invoked at lines 31 and 32 from 
within  createProgram() .  

  Listing 9.7   loadShader()  

  63 /**

  64  * Create a shader object

  65  * @param gl GL context

  66  * @param type the type of the shader object to be created

  67  * @param source a source code of a shader (string)

  68  * @return created shader object, or null if the creation has failed.

  69  */

  70 function loadShader(gl, type, source) {

  71   // Create a shader object

  72   var shader = gl.createShader(type);

      ...

  78   // Set source codes of the shader

  79   gl.shaderSource(shader, source);

  80

  81   // Compile the shader

  82   gl.compileShader(shader);

  83

  84   // Check the result of compilation

  85   var compiled = gl.getShaderParameter(shader, gl.COMPILE_STATUS);

      ...

  93   return shader;

  94 }   

 First  loadShader()  creates a shader object at line 72. It associates the source code to the 
object at line 79 and compiles it at line 82. Finally, it checks the result of compilation 
at line 85 and, if no errors have occurred, returns the shader object to  createShader() , 
which attaches it to the program object.     
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     Summary  
 This chapter is the final one to explore basic features of WebGL. It looked at how to draw 
and manipulate complex 3D objects composed of multiple segments organized in a hier-
archical structure. This technique is important for understanding how to use simple 3D 
objects like cubes or blocks to build up more complex objects like robots or game charac-
ters. In addition, you looked at one of the most complex convenience functions we have 
provided for this book,  initShaders() , which has been treated as a black box up until 
now. You saw the details of how shader objects are created and  managed by program 
objects, so you have a better sense of the internal structure of shaders and how WebGL 
manages them through program objects.  

 At this stage you have a full understanding of WebGL and are capable of writing your 
own complex 3D scenes using the expressive power of WebGL. In the next chapter, we 
will outline various advanced techniques used in 3D graphics and leverage what you have 
learned so far to show how WebGL can support these techniques.     
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  Chapter 10 

 Advanced Techniques  

    This chapter includes a “grab-bag” of interesting techniques that you should find useful 
for creating your WebGL applications. The techniques are mostly stand-alone, so you 
can select and read any section that interests you. Where there are dependencies, they 
are clearly identified. The explanations in this chapter are terse in order to include as 
many techniques as possible. However, the sample programs on the website include 
comprehensive comments, so please refer to them as well.   

     Rotate an Object with the Mouse  
 When creating WebGL applications, sometimes you want users to be able to control 3D 
objects with the mouse. In this section, you construct a sample program  RotateObject , 
which allows users to rotate a cube by dragging it with the mouse. To make the 
program simple, it uses a cube, but the    basic method is applicable to any object.  Figure 
  10.1    shows a screen shot of the cube that has a texture image mapped onto it.  

 
 Figure 10.1   A screen shot of RotateObject         
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  How to Implement Object Rotation  

 Rotating a 3D object is simply the application of a technique you’ve already studied for 
2D objects—transforming the vertex     coordinates by using the model view projection 
matrix. The process requires you to create a rotation matrix based on the mouse move-
ment, change the model view projection matrix, and then transform the coordinates by 
using the matrix.  

 You can obtain the amount of mouse movement by simply recording the position where 
the mouse is initially clicked and then subtracting that position from the new position as 
the mouse moves. Clearly, an event handler will be needed to calculate the mouse move-
ment, and then this will be converted into an angle that will rotate the object. Let’s take a 
look at the sample program.   

  Sample Program (RotateObject.js)  

  Listing   10.1    shows the sample program. As you can see, the shaders do not do anything 
special. Line 9 in the vertex shader transforms the vertex coordinates by using the model 
view projection matrix, and line 10 maps the    texture image onto the cube.  

  Listing 10.1   RotateObject.js  

   1  // RotateObject.js

    2  // Vertex shader program

    3  var VSHADER_SOURCE =

         ...

    8    'void main() {\n' +

     9    '  gl_Position = u_MvpMatrix * a_Position;\n' + 

   10    '  v_TexCoord = a_TexCoord;\n' +

   11    '}\n';

         ...

   24  function main() {

         ...

   42    var n = initVertexBuffers(gl);

         ...

   61    viewProjMatrix.setPerspective(30.0, canvas.width / canvas.height, 

                                                                      ➥1.0, 100.0);

   62    viewProjMatrix.lookAt(3.0, 3.0, 7.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

   63

   64     // Register the event handler 

   65     var currentAngle = [0.0, 0.0]; // [x-axis, y-axis] degrees 

   66     initEventHandlers(canvas, currentAngle); 

         ...

   74    var tick = function() {              // Start drawing

   75      draw(gl, n, viewProjMatrix, u_MvpMatrix, currentAngle);

   76       requestAnimationFrame(tick, canvas);

   77    };
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   78    tick();

   79  }

         ...

  138   function initEventHandlers(canvas, currentAngle) { 

  139     var dragging = false;              // Dragging or not

  140     var lastX = -1, lastY = -1;        // Last position of the mouse

  141

  142     canvas.onmousedown = function(ev) {   // Mouse is pressed

  143       var x = ev.clientX, y = ev.clientY; 

  144      // Start dragging if a mouse is in  <canvas> 

   145      var rect = ev.target.getBoundingClientRect(); 

   146      if (rect.left <= x && x < rect.right && rect.top <= y && y < rect.bottom) { 

   147        lastX = x; lastY = y; 

   148        dragging = true; 

   149      } 

   150    }; 

  151     // Mouse is released

  152     canvas.onmouseup = function(ev) { dragging = false; }; 

  153

  154     canvas.onmousemove  = function(ev) {      // Mouse is moved

  155       var x = ev.clientX, y = ev.clientY; 

  156       if (dragging) { 

  157         var factor = 100/canvas.height;  // The rotation ratio

  158         var dx = factor * (x - lastX); 

  159         var dy = factor * (y - lastY); 

  160        // Limit x-axis rotation angle to -90 to 90 degrees

   161        currentAngle[0] = Math.max(Math.min(currentAngle[0] + dy, 90.0), -90.0); 

   162        currentAngle[1] = currentAngle[1] + dx; 

   163      } 

   164      lastX = x, lastY = y; 

   165    }; 

   166  } 

  167

  168  var g_MvpMatrix = new Matrix4(); // The model view projection matrix

  169  function draw(gl, n, viewProjMatrix, u_MvpMatrix, currentAngle) {

  170    // Calculate the model view projection matrix

  171    g_MvpMatrix.set(viewProjMatrix);

   172    g_MvpMatrix.rotate(currentAngle[0], 1.0, 0.0, 0.0);  // x-axis 

   173    g_MvpMatrix.rotate(currentAngle[1], 0.0, 1.0, 0.0); // y-axis 

  174    gl.uniformMatrix4fv(u_MvpMatrix, false, g_MvpMatrix.elements);

  175

  176    gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

  177    gl.drawElements(gl.TRIANGLES, n, gl.UNSIGNED_BYTE, 0);

  178  }   
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 At lines 61 and 62 of  main()  in JavaScript, the view projection matrix is calculated in 
advance. You will have to change the model matrix on-the-fly according to the amount of 
mouse movement.  

 The code from line 65 registers the event handlers, a key part of this sample program. The 
variable  currentAngle  is initialized at line 65 and used to hold the current rotation angle. 
Here, it is an array because it needs to handle two rotation angles around the x-axis and 
y-axis. The actual registration of the event handlers is done inside  initEventHandlers() , 
called at line 66. It draws the cube using the function  tick()  that is defined from line 74.  

  initEventHandlers()  is defined at line 138. The code from line 142 handles mouse down, 
the code from line 152 handles mouse up, and the code from line 154 handles the mouse 
movement.  

 The processing when the mouse button is first pushed at line 142 is simple. Line 146 
checks whether the mouse has been pressed inside the  <canvas>  element. If it is inside the 
 <canvas> , line 147 saves that position in  lastX  and  lastY . Then the variable  dragging , 
which indicates dragging has begun, is set to  true  at line 148.  

 The processing of the mouse button release at line 152 is simple. Because this indicates 
that dragging is done, the code simply sets the variable  dragging  back to  false .  

 The processing from line 154 is the critical part and tracks the movement of the mouse. 
Line 156 checks whether dragging is taking place and, if it is, lines 158 and 159 calculate 
how long it has moved, storing the results to  dx  and  dy . These values are scaled, using 
 factor , which is a function of the canvas size. Once the distance dragged has been calcu-
lated, it can be used to determine the new angle by directly adding to the current angles 
at line 161 and 162. The code limits rotation from –90 to +90 degrees simply to show the 
technique;  you are free to remove this. Because the mouse has moved, its position is saved 
in  lastX  and  lastY .  

 Once you have successfully transformed the movement of the mouse into a rotation 
angle, you can let the rotation matrix handle the updates and draw the results using 
 tick() . These operations are done at lines 172 and 173.  

 This quick review of a technique to calculate the rotation angle is only one approach. 
Others, such as placing virtual track balls around the object, are described in detail in the 
book  3D User Interfaces .    

  Select an Object  
 When your application requires users to be able to control 3D objects interactively, you 
will need a technique to allow users to select   objects. There are many uses of this tech-
nique, such as selecting a 3D button created by a 3D model instead of the conventional 
2D GUI button, or selecting a photo among multiple photos in a 3D scene.  
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 Selecting a 3D object is generally more complex than selecting a 2D one because of the 
mathematics required to determine if the mouse is over a nonregular shape. However, 
you can use a simple trick, shown in the sample program, to avoid that complexity. In 
this sample,  PickObject , the user can click a rotating cube, which causes a message to be 
displayed (see  Figure   10.2   ). First, run the sample program and experiment with it for a 
while to get the feeling of how it works.  

 
 Figure 10.2   PickObject         

  Figure   10.2    shows with the message displayed when clicking the cube. The message says, 
“The cube was selected!” Also check what happens when you click the black part of the 
background.  

  How to Implement Object Selection  

 This program goes through the following steps to check whether the cube was clicked:  

    1.   When the mouse is pressed, draw the     cube with a single color “red” (see the middle 
of  Figure   10.3   ).   

   2.   Read the pixel value (color) of the selected point.   

   3.   Redraw the cube with its original color (right in  Figure   10.3   ).   

   4.   If the color of the pixel is red, display, “The cube was selected!”    

 When the cube is drawn with a single color (red in this case), you can quickly see which 
part of the drawing area the cube occupies. After reading the pixel value at the position 
of the mouse pointer when the mouse is clicked, you can determine that the mouse was 
above the cube if the pixel color is red.  
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Click

 Figure 10.3   The object drawn at the point of mouse pressing         

 To ensure that the viewer doesn’t see the cube flash red, you need to draw and redraw in 
the same function. Let’s take a look at the actual sample program.   

  Sample Program (PickObject.js)  

  Listing   10.2    shows the sample program. The processing in this sample mainly takes place 
in the vertex shader. To implement step 1, you must inform the vertex shader that the 
mouse has been clicked so that it     draws the cube red. The variable  u_Clicked  transmits 
this information and declared at line 7 in the vertex shader. When the mouse is pressed, 
 u_Clicked  is set to  true  in the JavaScript and tested at line 11. If  true , the color red is 
assigned to  v_Color ; if not, the color of the cube ( a_Color ) is directly assigned to  v_Color . 
This turns the cube red when the mouse  is pressed.  

  Listing 10.2   PickObject.js  

   1  // PickObject.js

    2  // Vertex shader program

    3  var VSHADER_SOURCE =

         ...

    6    'uniform mat4 u_MvpMatrix;\n' +

    7     'uniform bool u_Clicked;\n' +   // Mouse is pressed

    8    'varying vec4 v_Color;\n' +

    9    'void main() {\n' +

   10    '  gl_Position = u_MvpMatrix * a_Position;\n' +

   11     '  if (u_Clicked) {\n' +  // Draw in red if mouse is pressed              <-(1) 

   12     '    v_Color = vec4(1.0, 0.0, 0.0, 1.0);\n' + 

   13     '  } else {\n' + 

   14     '    v_Color = a_Color;\n' + 

   15     '  }\n' + 

   16    '}\n';

   17

   18  // Fragment shader program
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         ...

   25      '  gl_FragColor = v_Color;\n' +

         ...

    30  function main() {

         ...

   60    var u_Clicked = gl.getUniformLocation(gl.program, 'u_Clicked');

         ...

    71    gl.uniform1i(u_Clicked, 0); // Pass false to u_Clicked 

   72

   73    var currentAngle = 0.0; // Current rotation angle

   74    // Register the event handler

    75    canvas.onmousedown = function(ev) {   // Mouse is pressed 

   76      var x = ev.clientX, y = ev.clientY;

   77      var rect = ev.target.getBoundingClientRect();

   78      if (rect.left <= x && x < rect.right && rect.top <= y && y < rect.bottom) {

   79        // Check if it is on object

    80        var x_in_canvas = x - rect.left, y_in_canvas = rect.bottom - y; 

    81        var picked =  check(gl, n, x_in_canvas, y_in_canvas, currentAngle, 

                                          ➥u_Clicked, viewProjMatrix, u_MvpMatrix); 

    82        if (picked) alert('The cube was selected! ');                       <-(4) 

   83      }

   84     } 

         ...

   92  }

         ...

  147   function check(gl, n, x, y, currentAngle, u_Clicked, viewProjMatrix, 

                                                                    ➥u_MvpMatrix) { 

  148     var picked = false; 

  149     gl.uniform1i(u_Clicked, 1);   // Draw the cube with red

  150     draw(gl, n, currentAngle, viewProjMatrix, u_MvpMatrix); 

  151    // Read pixel at the clicked position

  152     var pixels = new Uint8Array(4);   // Array for storing the pixels

  153     gl.readPixels(x, y, 1, 1, gl.RGBA, gl.UNSIGNED_BYTE, pixels);           <-(2) 

  154

  155     if (pixels[0] == 255)   // The mouse in on cube if pixels[0] is 255

  156       picked = true; 

  157

  158     gl.uniform1i(u_Clicked, 0);  // Pass false to u_Clicked: redraw cube

  159      draw(gl, n, currentAngle, viewProjMatrix, u_MvpMatrix); //              <-(3) 

  160

  161     return picked; 

  162   }    

 Let’s take a look from line 30 of  main()  in JavaScript. Line 60 obtains the storage location 
for  u_Clicked , and line 71 assigns the initial value of  u_Clicked  to be  false .  
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 Line 75 registers the event handler to be called when the mouse has been clicked. This 
event handler function does a sanity check to see if the clicked position is inside the 
 <canvas>  element at line 78. Then it calls to  check()  at line 81 if it is. This function checks 
whether the position, specified by the third and fourth arguments, is on the cube (see next 
paragraph). If so, it returns  true  which causes a message to be displayed at line 82.  

 The function  check()  begins from line 147. This function processes steps (2) and (3) from 
the previous section together. Line 149 informs the vertex shader that the click event has 
occurred by passing 1 ( true ) to  u_Clicked . Then line 150 draws the cube with the current 
rotation angle. Because  u_Clicked  is  true , the cube is drawn in red. Then the pixel value 
of the clicked position is read from the color buffer at line 153. The following shows the 
 gl.readPixels()  function used here.    

   gl.readPixels(x, y, width, height, format, type, pixels)   

 Read a block of pixels from the color buffer  1   and store it to the array  pixels .  x ,  y ,  width , 
and  height  define the block as a rectangle.   

  Parameters    x, y                 Specify the position of the first pixel that is read from the 
buffer.  

 width, height   Specify the dimensions of the pixel rectangle.  

 format             Specifies the format of the pixel data.  gl.RGBA  must be 
specified.  

 type                Specifies the data type of the pixel data.  gl.UNSIGNED_BYTE  
must be specified.  

 pixels              Specifies the typed array ( Uint8Array ) for storing the pixel 
data.  

  Return value    None  

  Errors    INVALID_VALUE:  pixels  is  null . Either  width  or  height  is negative.  

 INVALID_OPERATION:  pixels  is not large enough to store the pixel data.  

 INVALID_ENUM:  format  or  type  is none of the above values.  

 The pixel value that was read is stored in the  pixels  array. This array is defined at line 
152, and the R, G, B, and A values are stored in  pixels[0] ,  pixels[1] ,  pixels[2] , and 
 pixels[3] , respectively. Because, in this sample program, you know that the only colors 
used are red for the cube and black for the background, you can see if the mouse is on 
the cube by checking the values for  pixels[0] . This is done at line 155, and if it is red, it 
changes  picked  to  true .  

 1    If a framebuffer object is bound to  gl.FRAMEBUFFER , this method reads the pixel values from the 

object. We explain the object in the later section “Use What You’ve Drawn as a Texture Image.” 
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 Then line 158 sets  u_Clicked  to  false  and redraws the cube at line 159. This turns the 
cube back to its original color. Line 161 returns  picked  as the return value.  

 Note, if at this point you call any function that returns control to the browser, such as 
 alert() , the content of the color buffer will be displayed on the  <canvas>  at that point. 
For example, if you execute  alert('The cube was selected!')  at line 156, the red cube 
will be displayed when you click the cube.  

 This approach, although simple, can handle more than one object by assigning differ-
ent colors to each object. For example, red, blue, and green are enough if there are three 
objects. For larger numbers of objects, you can use individual bits. Because there are 8 bits 
for each component in RGBA, you can represent 255 objects just by using the R compo-
nent. However, if the 3D objects are complex or the drawing area is large, it will take 
some time to process the selection of objects. To overcome this disadvantage, you can use 
simplified models to select objects or shrink the  drawing area. In such cases, you can use 
the framebuffer object, which will be explained in the section “Use What You’ve Drawn as 
a Texture Image” later in this chapter.   

  Select the Face of the Object  

 You can also apply the method explained in the    previous section to select a particular 
face of an object. Let’s customize  PickObject  to build  PickFace , a program that turns the 
selected face white.  Figure   10.4    shows  PickFace .  

 

Click

 Figure 10.4   PickFace         

  PickFace  is easy once you understand how  PickObject  works.  PickObject  drew the cube 
in red when the  mouse was clicked, resulting in the object’s display area in the color 
buffer being red. By reading the pixel value of the clicked point and seeing if the color 
of the pixel at the position was red, the program could determine if the object had been 
selected.  PickFace  goes one step further and inserts the information of which face has 
been selected into the color buffer. Here, you will insert the information in the alpha 
component of the RGBA value. Let’s take a look at the sample  program.   
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  Sample Program (PickFace.js)  

  PickFace.js  is shown in  Listing   10.3   . Some parts, such as the     fragment shader, are 
omitted for brevity.  

  Listing 10.3   PickFace.js  

   1  // PickFace.js

    2  // Vertex shader program

    3  var VSHADER_SOURCE =

    4    'attribute vec4 a_Position;\n' +

    5    'attribute vec4 a_Color;\n' +

    6     'attribute float a_Face;\n' +   // Surface number (Cannot use int) 

    7    'uniform mat4 u_MvpMatrix;\n' +

    8     'uniform int u_PickedFace;\n' + // Surface number of selected face 

    9    'varying vec4 v_Color;\n' +

   10    'void main() {\n' +

   11    '  gl_Position = u_MvpMatrix * a_Position;\n' +

   12     '  int face = int(a_Face);\n' +   // Convert to int

   13     '  vec3 color = (face == u_PickedFace) ? vec3(1.0):a_Color.rgb;\n'+ 

   14     '  if(u_PickedFace == 0) {\n' +  // Insert face number into alpha

   15      '    v_Color = vec4(color, a_Face/255.0);\n' + 

   16     '  } else {\n' + 

   17     '    v_Color = vec4(color, a_Color.a);\n' + 

   18     '  }\n' + 

   19    '}\n';

         ...

   33  function main() {

         ...

   50    // Set vertex information

   51    var n = initVertexBuffers(gl);

         ...

   74    // Initialize selected surface

   75     gl.uniform1i(u_PickedFace, -1); 

   76

   77    var currentAngle = 0.0; // Current rotation angle (degrees)

   78    // Register event handlers

   79    canvas.onmousedown = function(ev) {   // Mouse is pressed

   80      var x = ev.clientX, y = ev.clientY;

   81      var rect = ev.target.getBoundingClientRect();

   82      if (rect.left <= x && x < rect.right && rect.top <=  y && y < rect.bottom) {

   83        // If clicked position is inside the  <canvas> , update the face

   84        var x_in_canvas = x - rect.left, y_in_canvas = rect.bottom - y;

   85         var face = checkFace(gl, n, x_in_canvas, y_in_canvas, 

                         ➥currentAngle, u_PickedFace, viewProjMatrix, u_MvpMatrix); 

   86         gl.uniform1i(u_PickedFace, face);   // Pass the surface number

   87         draw(gl, n, currentAngle, viewProjMatrix, u_MvpMatrix); 
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   88      }

   89    }

         ...

   99  function initVertexBuffers(gl) {

         ...

  109    var vertices = new Float32Array([   // Vertex coordinates

  110       1.0, 1.0, 1.0,  -1.0, 1.0, 1.0,  -1.0,-1.0, 1.0,   1.0,-1.0, 1.0,

  111       1.0, 1.0, 1.0,   1.0,-1.0, 1.0,   1.0,-1.0,-1.0,   1.0, 1.0,-1.0,

         ...

  115       1.0,-1.0,-1.0,  -1.0,-1.0,-1.0,  -1.0, 1.0,-1.0,   1.0, 1.0,-1.0

  116    ]);

         ...

  127      var faces = new Uint8Array([   // Surface number 

  128       1, 1, 1, 1,     // v0-v1-v2-v3 Front 

  129       2, 2, 2, 2,     // v0-v3-v4-v5 Right 

         ...

  133       6, 6, 6, 6,     // v4-v7-v6-v5 Depth 

  134     ]); 

         ...

  154     if (!initArrayBuffer(gl, faces, gl.UNSIGNED_BYTE, 1, 

                                     ➥'a_Face')) return -1;  // Surface Information 

         ...

  164  }

  165

  166  function checkFace(gl, n, x, y, currentAngle, u_PickedFace, viewProjMatrix,

                                                                    ➥u_MvpMatrix) {

  167    var pixels = new Uint8Array(4); // Array for storing the pixel

  168     gl.uniform1i(u_PickedFace, 0);  // Write surface number into alpha 

  169     draw(gl, n, currentAngle, viewProjMatrix, u_MvpMatrix); 

  170    // Read the pixels at (x, y). pixels[3] is the surface number

  171     gl.readPixels(x, y, 1, 1, gl.RGBA, gl.UNSIGNED_BYTE, pixels); 

  172

  173     return pixels[3]; 

  174   }   

 Let’s take a look from the vertex shader.  a_Face  at line 6 is the attribute variable used to 
pass the surface number, which is then “coded” into the alpha value when the mouse 
is clicked. The surface numbers are set up in  initVertexBuffers()  defined at line 99 
and simply map vertices to a surface. Lines 127 onward define these mappings. So, for 
example, vertices v0-v1-v2-v3 define a surface that is numbered 1, vertices v0-v3-v4-v5 are 
numbered 2, and so on. Because each vertex needs a number to pass to the vertex shader, 
there are four 1s written at line 128 to represent  the first face.  

 If a face is already selected,  u_PickedFace  at line 8 informs the vertex shader of the 
selected face number, allowing the shader to switch the way it draws the face based on 
this information.  
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 Line 12 converts  a_Face , the surface number that is a  float  type, into an  int  type because 
an  int  type cannot be used in the attribute variables ( Chapter   6   , “The OpenGL ES Shading 
Language [GLSL ES]”). If the selected surface number is the same as the surface number 
currently being manipulated, white is assigned to  color  at line 13. Otherwise, the original 
surface color is assigned. If the mouse has been clicked (that is,  u_PickedFace  is set to 0), 
the  a_Face  value is inserted into the alpha value and the cube is drawn (line 15).  

 Now, by passing 0 into  u_PickedFace  when the mouse is clicked, the cube is drawn with 
an alpha value set to the surface number.  u_PickedFace  is initialized to –1 at line 75. 
There is no surface with the number –1 (refer to the  faces  array at line 127), so the cube is 
initially drawn without surfaces selected.  

 Let’s take a look at the essential processing of the event handler.  u_PickedFace  is passed 
as an argument to  checkFace()  at line 85, which  returns the surface number of the picked 
face,  checkFace() , at line 166. At line 168, 0 is passed to  u_PickedFace  to tell the vertex 
shader that the mouse has been clicked. When  draw()  is called in the next line, the 
surface number is inserted into the alpha value and the object is redrawn. Line 171 checks 
the pixel value of the clicked point, and line 173 retrieves the inserted surface number 
by using  pixels[3] . (It is the alpha value, so  the subscript is 3.) This surface number is 
returned to the main code and then used at lines 86 and 87 to draw the cube. The vertex 
shader handles the rest of the processing, as described earlier.    

  HUD (Head Up Display)  
 The Head Up Display, originally developed for aircraft, is a transparent display that pres-
ents data without requiring users to   look away from their usual viewpoints. A similar 
effect can be achieved in 3D graphics and used to overlay textual information on the 3D 
scene. Here, you will construct a sample program that will display a diagram and some 
information on top of the 3D graphics (HUD), as you can see in  Figure   10.5   .  

 
 Figure 10.5   HUD         
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 The goal of the program is to draw a triangle and some simple information about the 3D 
scene, including the current rotation angle of the cube (from  PickObject ) that will change 
as the cube rotates.  

  How to Implement a HUD  

 This HUD effect can be implemented   using HTML and the canvas function without 
WebGL. This is done as follows:  

    1.   In the HTML file, prepare a  <canvas>  to draw the 3D graphics using WebGL and 
another  <canvas>  to draw the HUD using the canvas function. In other words, 
prepare two  <canvas>  and place the HUD on top of the WebGL canvas.   

   2.   Draw the 3D graphics using the WebGL API on the  <canvas>  for WebGL.   

   3.   Draw the HUD using the canvas functions on the  <canvas>  for the HUD.    

 As you can see, this is extremely simple and shows the power of WebGL and its ability to 
mix 2D and 3D graphics within the browser. Let’s take a look at the sample program.   

  Sample Program (HUD.html)  

 Because we need to make    changes to the HTML file to add the extra canvas, we show  HUD.
html  in  Listing   10.4   , with the additions in bold.  

  Listing 10.4   HUD.html  

  1  <!DOCTYPE html>

   2  <html lang="ja">

         ...

   8    <body onload="main()">

   9      <canvas id="webgl" width="400" height="400"  style="position: 

                                                            ➥absolute; z-index: 0" >

  10        Please use a browser that supports  "canvas" 

  11      </canvas>

  12       <canvas id="hud" width="400" height="400" style="position: 

                                                    ➥absolute;z-index: 1"></canvas> 

           ...

  18      <script src="HUD.js"></script>

  19    </body>

  20  </html>   

 The  style  attribute, used to define how an element looks or how it is arranged, allows you 
to place the HUD canvas on top of the WebGL canvas. Style information is composed of 
the property name and the value separated with a  :  as seen at line 9:  style="position: 
absolute" . Multiple style elements are separated with  ; .  
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 In this example, you use  position , which specifies how the element is placed, and the 
 z-index , which specifies the hierarchical relationship.  

 You can specify the position of the element in the absolute coordinate if you use  absolute  
for the  position  value. Unless you specify the position, all the elements specified to this 
attribute will be place at the same position.  z-index  specifies the order in which elements 
are displayed when multiple elements are at the same position. The element with the 
larger number will be displayed over the one with a smaller number. In this case, the 
 z-index  of the  <canvas>  for the HUD at line 12 is 1.  

 The result of this code is two  <canvas>  elements, placed at the same location with 
the  <canvas>  that displays the HUD on top of the  <canvas>  that displays the WebGL. 
Conveniently, the background of the canvas element is transparent by default, so the 
WebGL canvas can be seen through the HUD canvas. Anything that is drawn on the HUD 
canvas will appear over the 3D objects and create the effect of a HUD.   

  Sample Program (HUD.js)  

 Next, let’s take a look at  HUD.js in   Listing   10.5   . There are    two changes made compared to 
 PickObject.js :  

    1.   Retrieve the rendering context to draw in the  <canvas>  for the HUD and use it to 
draw.   

   2.   Register the event handler when the mouse is clicked to the  <canvas>  for the HUD 
and not to the  <canvas>  for WebGL.    

 Step 1 simply uses the source code used in  Chapter   2   , “Your First Step with WebGL,” to 
draw a triangle onto the  <canvas> . Step 2 is required to ensure that mouse click informa-
tion is passed to the HUD canvas rather than the WebGL canvas. The vertex shader and 
fragment shader are the same as  PickObject.js .  

  Listing 10.5   HUD.js  

   1  // HUD.js

         ...

   30  function main() {

   31    // Retrieve  <canvas>  element

   32    var canvas = document.getElementById('webgl');

   33     var hud = document.getElementById('hud'); 

         ...

   40    // Get the rendering context for WebGL

   41    var gl = getWebGLContext(canvas);

   42     // Get the rendering context for 2DCG 

   43     var ctx = hud.getContext('2d'); 

         ...

   82    // Register the event handler

   83     hud.onmousedown = function(ev) {   // Mouse is pressed 



ptg11539634

HUD (Head Up Display) 371

         ...

   89        check(gl, n, x_in_canvas, y_in_canvas, currentAngle, u_Clicked, 

                                                     ➥viewProjMatrix, u_MvpMatrix);

         ...

   91    }

   92

   93    var tick = function() {   // Start drawing

   94      currentAngle = animate(currentAngle);

   95       draw2D(ctx, currentAngle); // Draw 2D 

   96      draw(gl,  n, currentAngle, viewProjMatrix, u_MvpMatrix);

   97      requestAnimationFrame(tick, canvas);

   98    };

   99    tick();

  100  }

         ...

  184   function draw2D(ctx, currentAngle) { 

  185     ctx.clearRect(0, 0, 400, 400);            // Clear <hud>

  186    // Draw triangle with white lines

  187     ctx.beginPath();                          // Start drawing

  188     ctx.moveTo(120, 10); ctx.lineTo(200, 150);  ctx.lineTo(40, 150); 

  189     ctx.closePath(); 

  190     ctx.strokeStyle = 'rgba(255, 255, 255, 1)';  // Set the line color

  191     ctx.stroke();                    // Draw triangle with white lines

  192    // Draw white letters

  193     ctx.font = '18px "Times New Roman"'; 

  194     ctx.fillStyle = 'rgba(255, 255, 255, 1)';   // Set the letter color

  195     ctx.fillText('HUD: Head Up Display', 40, 180); 

  196     ctx.fillText('Triangle is drawn by Hud API.', 40, 200); 

  197     ctx.fillText('Cube is drawn by WebGL API.', 40, 220); 

  198     ctx.fillText('Current Angle: '+  Math.floor(currentAngle), 40, 240); 

  199   }    

 Because the processing flow of the program is straightforward, let’s take a look from 
 main()  at line 30. First, line 33 obtains the  <canvas>  element for the HUD. This is used to 
get the drawing context for the 2D graphics ( Chapter   2   ) at line 43, which is used to draw 
the HUD. You register the mouse-click event handler for the HUD canvas ( hud ) instead of 
the WebGL canvas in  PickObject.js . This is because the event goes to the HUD canvas, 
which is placed on top of the WebGL canvas.  

 The code from line 93 handles the animation and uses  draw2D() , added at line 95, to draw 
the HUD information.  

  draw2D()  is defined at line 184 and takes  ctx  parameters, the context to draw on the 
canvas, and the current rotation angle,  currentAngle . Line 185 clears the HUD canvas 
using the  clearRect()  method, which takes the upper-left corner, the width, and the 
height of the rectangle to clear. Lines 187 to 191 draw the triangle which, unlike drawing 
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a rectangle as explained in  Chapter   2   , requires that you define the path (outline) of a 
triangle to draw it. Lines 187 to 191 define the path, set the color, and draw the triangle. 
Lines 193 onward specify the text color and font and then  use  fillText() , which speci-
fies the letters to draw as the first parameter and the x and y coordinates to draw as the 
second and third parameters, to actually write the text. Line 198 displays the current 
rotation angle and uses  Math.floor()  to truncate the numbers below the decimal point. 
Line 185 clears the canvas because the displayed value (rotation angle) changes at each 
drawing.   

  Display a 3D Object on a Web Page (3DoverWeb)  

 Displaying a 3D object on a web page is simple with WebGL and the inverse of the HUD 
example. In this case, the WebGL canvas is on top     of the web page, and the canvas is set 
to transparent.  Figure   10.6    shows  3DoverWeb .  

 
 Figure 10.6   3DoverWeb  2    

          3DoverWeb.js  is based on  PickObject.js  with almost no changes. The only change is that 
the alpha value of the clear color is changed from 1.0 to 0.0 at line 55.  

  55    gl.clearColor(0.0, 0.0, 0.0,  0.0 );   

 By making the alpha value 0.0, the background of the WebGL canvas becomes transpar-
ent, and you can see the web page behind the WebGL  <canvas> . You can also experiment 
with the alpha value; any value other than 1.0 changes the transparency and makes the 
web page more or less visible.    

  Fog (Atmospheric Effect)  
 In 3D graphics, the term  fog  is used to describe the   effect that makes a distant object seem 
hazy. The term describes objects in any medium, so objects underwater can also have a 

 2    The sentences on the web page on the background are from the book  The Design of Design  (by 

Frederick P. Brooks Jr, Pearson). 



ptg11539634

Fog (Atmospheric Effect) 373

fog effect applied. Here, you construct a sample program  Fog  that realizes the fog effect. 
 Figure   10.7    shows a screen shot. You can adjust the density of the fog with the up/down 
arrow keys. Try running the sample program and experiment with the effect.  

 
 Figure 10.7   Fog         

  How to Implement Fog  

 There are various ways to calculate fog, but here you will use a linear computation ( linear 
fog ) because the calculation is easy. The   linear fog method determines the density of the 
fog by setting the starting point (the distance where the object starts to become hazy) and 
the end point (where the object is completely obscured). The density of the fog between 
these points is changed linearly. Note that the end point is not where the fog ends; rather, 
it is where the fog becomes so dense that it obscures all objects. We will call how clearly 
we can see  the object the  fog factor ; it is calculated, in the case of linear fog, as follows:  

Equation 10.1

( )
( )=

−
−

fog factor
end point distance from eye point

end point starting point
 

       

   
          

 Where  

≤ ≤starting point distance from eye point end point                  

 When the fog factor is 1.0, you can see the object completely, and if it 0.0, you cannot see 
it at all (see  Figure   10.8   ). The fog factor is 1.0 when the  (distance from eye point)  
<  (starting point) , and 0.0 when  (end point)  <  (distance from eye point) .  
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 Figure 10.8   Fog factor         

 You can calculate the color of a fragment based on the fog factor, as follows in  Equation 
  10.2   .  

Equation 10.2

( )
=

× + × −

fragment color

surface color fog factor fog color fog factor

   

      1    
          

 Now, let’s take a look at the sample program.   

  Sample Program (Fog.js)  

 The sample program is shown in  Listing   10.6   . Here, you (1) calculate the distance of the 
object (vertex) from the eye point in the vertex shader, and based on that, you (2) calcu-
late the fog factor and the color of the object based on   the fog factor in the fragment 
shader. Note that this program specifies the position of the eye point with the world 
coordinate system (see  Appendix   G   , “World Coordinate System Versus Local Coordinate 
System”) so the fog calculation takes place in the world coordinate system.  

  Listing 10.6   Fog.js  

   1  // Fog.js

    2  // Vertex shader program

    3  var VSHADER_SOURCE =

         ...

    7     'uniform mat4 u_ModelMatrix;\n' + 

    8     'uniform vec4 u_Eye;\n' + // The eye point (world coordinates) 

    9    'varying vec4 v_Color;\n' +

   10     'varying float v_Dist;\n' + 

   11    'void main() {\n' +

   12    '  gl_Position = u_MvpMatrix * a_Position;\n' +

   13    '  v_Color = a_Color;\n' +

   14       // Calculate the distance to each vertex from eye point              <-(1)

   15     '  v_Dist = distance(u_ModelMatrix * a_Position, u_Eye);\n' + 

   16    '}\n';

   17
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   18  // Fragment shader program

   19  var FSHADER_SOURCE =

         ...

   23     'uniform vec3 u_FogColor;\n' + // Color of  Fog 

   24     'uniform vec2 u_FogDist;\n' +  // Fog starting point, end point) 

   25    'varying vec4 v_Color;\n' +

   26     'varying float v_Dist;\n' + 

   27    'void main() {\n' +

   28       // Calculate the fog factor                                          <-(2)

   29     '  float fogFactor = clamp((u_FogDist.y - v_Dist) / (u_FogDist.y – 

                                                     ➥u_FogDist.x), 0.0, 1.0);\n' + 

   30       // u_FogColor * (1 - fogFactor) + v_Color * fogFactor

   31     '  vec3 color = mix(u_FogColor, vec3(v_Color), fogFactor);\n' + 

   32    '  gl_FragColor = vec4(color, v_Color.a);\n' +

   33    '}\n';

   34

   35  function main() {

         ...

   53    var n = initVertexBuffers(gl);

         ...

   59    // Color of fog

   60     var fogColor = new  Float32Array([0.137, 0.231, 0.423]); 

   61    // Distance of fog [fog starts, fog completely covers object]

   62     var fogDist = new Float32Array([55, 80]); 

   63    // Position of eye point (world coordinates)

   64     var eye = new Float32Array([25, 65, 35]); 

         ...

   76    // Pass fog color, distances, and eye point to uniform variable

   77     gl.uniform3fv(u_FogColor, fogColor);  // Fog color

   78     gl.uniform2fv(u_FogDist, fogDist);    // Starting point and end point

   79     gl.uniform4fv(u_Eye, eye);            // Eye point

   80

   81    // Set clear color and enable hidden surface removal function

   82    gl.clearColor( fogColor[0], fogColor[1], fogColor[2] , 1.0);

         ...

   93    mvpMatrix.lookAt( eye[0], eye[1], eye[2] , 0, 2, 0, 0, 1, 0);

         ...

   97    document.onkeydown =  function(ev){ keydown(ev, gl, n, u_FogDist, fogDist); };

         ...     

 The calculation of the distance from the eye point to the vertex, done by the vertex 
shader, is straightforward. You simply transform the vertex coordinates to the world coor-
dinates using the model matrix and then call the built-in function  distance()  with the 
position of the eye point (world coordinates) and the vertex coordinates. The  distance()  
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function calculates the distance between two coordinates specified by the arguments. This 
calculation takes place at line 15, and the result is then written to the  v_Dist  variable and 
passed to the fragment shader.  

 The fragment shader calculates the fogged color of the object using  Equations   10.1    and 
   10.2   . The fog color, fog starting point, and fog end point, which are needed to calculate 
the fogged color, are passed in the uniform variables  u_FogColor  and  u_FogDist  at lines 23 
and 24.  u_FogDist.x  is the starting point, and  u_FogDist.y  is the end point.  

 The fog factor is calculated at line 29 using  Equation   10.1   . The  clamp()  function is a built-
in function; if the value specified by the first parameter is outside the range specified by 
the second and third parameter ([0.0 0.1] in this case), it will fix the value to one within 
the range. In other words, the value is fixed to 0.0 if the value is smaller than 0.0, and 1.0 
if the value is larger than 1.0. If the value is within the range, the value is unchanged.  

 Line 31 is the calculation of the fragment color using the fog factor. This implements 
 Equation   10.2    and uses a built-in function,  mix() , which calculates x*(1–z)+y*z, where x is 
the first parameter, y is the second, and z is the third.  

 The processing in JavaScript’s  main()  function from line 35 sets up the values necessary 
for calculating the fog in the appropriate uniform variables.  

 You should note that there are many types of fog calculations other than linear fog, for 
example exponential fog, used in OpenGL (see the book  OpenGL Programming Guide ). You 
can implement these fog calculations using the same approach, just changing the calcula-
tion method in the fragment shader.   

  Use the w Value (Fog_w.js)  

 Because the distance calculation within the shader can affect performance, an alternative 
method allows you to easily approximate    the calculation of the distance from the eye 
point to the object (vertex) by using the w value of coordinates transformed by the model 
view projection conversion. In this case, the coordinates are substituted in  gl_Position . 
The fourth component, w of  gl_Position  which you haven’t used explicitly before, is the 
z value of each vertex in the view coordinate system multiplied by –1. The eye point is the 
origin in the view coordinates, and the view direction is the negative direction of z,  so z 
is a negative value. The w value, which is the z value multiplied by –1, can be used as an 
approximation of the distance.  

 If you reimplement the calculation in the vertex shader using w, as shown in  Listing   10.7   , 
the fog effect will work as before.  

  Listing 10.7   Fog_w.js  

  1  // Fog_w.js

   2  // Vertex shader program

   3  var VSHADER_SOURCE =

         ...
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   7    'varying vec4 v_Color;\n' +

   8    'varying float v_Dist;\n' +

   9    'void main() {\n' +

  10    '  gl_Position = u_MvpMatrix * a_Position;\n' +

  11    '  v_Color = a_Color;\n' +

  12        // Use the negative z value of vertex in view coordinate system 

  13     '  v_Dist = gl_Position.w;\n' + 

  14    '}\n';     

  Make a Rounded Point  
 In  Chapter   2   , you constructed a sample program that draws a point to help you under-
stand the basics of shaders. However, to  allow you to focus on the operation of the 
shaders, the point displayed wasn’t “round” but actually “square,” which is simpler to 
draw. In this section, you construct a sample program,  RoundedPoint , which draws a 
round point (see  Figure   10.9   ).  

 
 Figure 10.9   A screen shot of RoundedPoint         

  How to Implement a Rounded Point  

 To draw a “round” point, you just have to make the “rectangle” point round. This can be 
achieved using the   rasterization process that takes place between the vertex shader and 
the fragment shader and was explained in  Chapter   5   , “Using Colors and Texture Images.” 
This rasterization process generates a rectangle consisting of multiple fragments, and each 
fragment is passed to the fragment shader. If you draw these fragments as-is, a rectangle 
will be displayed. So you just need to modify the fragment shader to draw only the frag-
ments inside the circle, as shown in  Figure   10.10   .  
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 Figure 10.10   Discarding fragments to turn a rectangle into a circle         

 To achieve this, you need to know the position of each fragment created during rasteriza-
tion. In  Chapter   5   , you saw a sample program that uses the built-in variable  gl_FragCoord  
to pass (input) the data to the fragment shader. In addition to this, there is one more 
built-in variable  gl_PointCoord , which is suitable for drawing a round point (see  Table 
  10.1   ).  

  Table 10.1   Built-In Variables of Fragment Shader (Input)  

  Type and Name of Variable     Description   

  vec4 gl_FragCoord    Window coordinates of fragment  

  vec4 gl_PointCoord    Position of fragment in the drawn point (0.0 to 1.0)  

  gl_PointCoord  gives the position of each fragment taken from the range (0.0, 0.0) to (1.0, 
1.0), as shown in  Figure   10.11   . To make the rectangle round, you simply have to discard 
the fragments outside the circle centered at (0.5, 0.5) with radius 0.5. You can use the 
 discard  statement to discard these fragments.  

 

)5.0,5.0(

5.0

)0.0,0.0(

)0.1,0.1(

 Figure 10.11   Coordinates of gl_PointCoord          

  Sample Program (RoundedPoints.js)  

 The sample program is shown in  Listing   10.8   . This is derived    from  MultiPoint.js , which 
was used in  Chapter   4   , “More Transformations and Basic Animation,” to draw multiple 
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points. The only difference is in the fragment shader. The vertex shader is also shown for 
reference.  

  Listing 10.8   RoundedPoint.js  

  1  // RoundedPoints.js

   2  // Vertex shader program

   3  var VSHADER_SOURCE =

   4    'attribute vec4 a_Position;\n' +

   5    'void main() {\n' +

   6    '  gl_Position = a_Position;\n' +

   7    '  gl_PointSize = 10.0;\n' +

   8    '}\n';

   9

  10  // Fragment shader program

  11  var FSHADER_SOURCE =

         ...

  15    'void main() {\n' +          // Center coordinate is (0.5, 0.5)

   16    '  float dist = distance(gl_PointCoord, vec2(0.5, 0.5));\n' + 

   17    '  if(dist < 0.5) {\n' +      // Radius is 0.5 

   18    '    gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);\n' + 

   19    '  } else { discard; }\n' + 

  20    '}\n';

  21

  22  function main() {

         ...

  53    gl.drawArrays(gl.POINTS, 0, n);

  54  }   

 The key difference is the calculation, starting at line 16, which determines whether a frag-
ment should be discarded.  gl_PointCoord  holds the fragment’s position (specified in the 
range 0.0 to 0.1), and the center point is (0.5, 0.5). Therefore, to make a rectangle point 
round, you have to do the following:  

    1.   Calculate the distance from the center (0.5, 0.5) to each fragment.   

   2.   Draw those fragments for which the distance is less than 0.5.    

 In  RoundedPoint.js , the distance calculation takes place at line 16. Here, you just have to 
calculate the distance between the center point (0.5, 0.5) and  gl_PointCoord . Because the 
 gl_PointCoord  is a  vec2  type, you need to pass (0.5, 0.5) to  distance()  as a  vec2 .  

 Once you have calculated the distance from the center, it is used at line 17 to check 
whether the distance is less than 0.5 (in other words, whether the fragment is in the 
circle). If the fragment is in circle, the fragment is drawn so line 18 uses  gl_FragColor  to 
set the draw color. Otherwise, at line 19, the  discard  statement causes WebGL to auto-
matically throw away the fragment.    
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  Alpha Blending  
 The alpha value controls the transparency of drawn objects. If you specify 0.5 as the alpha 
value, the object becomes semi-transparent, allowing anything drawn underneath it to be 
partially visible. As the alpha  value approaches 0, more of the background objects appear. 
If you try this yourself, you’ll actually see that as you decrease the alpha value, WebGL 
objects become white. This is because WebGL’s default behavior is to use the same alpha 
value for both objects and the  <canvas> . In the sample programs, the web page behind 
the  <canvas>  is white, so this shows through.  

 Let’s construct a sample program that shows how to use alpha blending to get the desired 
effect. The function that allows the use of the alpha value is called an  alpha blending  (or 
simply  blending )  function . This function is already built into WebGL, so you just need to 
enable it to tell WebGL to start to use the alpha values supplied.  

  How to Implement Alpha Blending  

 You’ll need the following two steps to enable and use the   alpha blending function.  

    1.   Enable the alpha blending function:  

  gl.enable(gl.BLEND);    

   2.   Specify the blending function:  

  gl.blendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA);     

 The blending function will be explained later, so let’s try using the sample program. Here, 
we will reuse  LookAtTrianglesWithKey_ViewVolume  described in  Chapter   7   , “Toward the 
3D World.” As shown in  Figure   10.12   , this program draws three triangles and allows the 
position of the eye point to be changed using the arrow key.  

 
 Figure 10.12   A screen shot of LookAtTrianglesWithKeys_ViewVolume         
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 Let’s add the code for steps 1 and 2, specify 0.4 as the alpha value of the color of the 
triangles, and call the resulting program  LookAtBlendedTriangles .  Figure   10.13    shows the 
effect when run. As you can see, all triangles became semitransparent, and you are able to 
see the triangles behind. When you move the eye point with the arrow key, you can see 
that the blending is continuously taking place.  

 
 Figure 10.13   A screen shot of LookAtBlendedTriangles         

 Let’s look at the sample program.   

  Sample Program (LookAtBlendedTriangles.js)  

  LookAtBlendedTriangles.js  is shown in  Listing   10.9   . The code that has changed is in 
lines 51 to 54, and the alpha value (0.4) is added to the definition of color information 
in  initVertexBuffer()  at    lines 81 to 91. Accordingly, the  size  and  stride  parameters have 
changed for  gl.vertexAttribPointer() .  

  Listing 10.9   LookAtBlenderTriangles.js  

   1  // LookAtBlendedTriangles.js

    2  // LookAtTrianglesWithKey_ViewVolume.js is the original

         ...

   25  function main() {

         ...

   43    var n = initVertexBuffers(gl);

         ...

    51    // Enable alpha blending 

    52    gl.enable (gl.BLEND); 

    53    // Set blending function 

    54    gl.blendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA); 

         ...
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   75    draw(gl, n, u_ViewMatrix, viewMatrix);

   76  }

   77

   78  function initVertexBuffers(gl) {

   79    var verticesColors = new Float32Array([

   80      // Vertex coordinates and color(RGBA)

   81      0.0,  0.5, -0.4,   0.4,  1.0,  0.4,   0.4 ,

   82     -0.5, -0.5, -0.4,   0.4,  1.0,  0.4,   0.4 ,

         ...

   91      0.5, -0.5,  0.0,   1.0,  0.4,  0.4,   0.4 ,

   92    ]);

   93    var n = 9;

         ...

  127    return n;

  128  }    

  Blending Function  

 Let’s explore the blending function  gl.blendFunc()  to understand how this can be used 
to achieve the blending effect. You need two    colors for blending: the color to blend 
(source color) and the color to be blended (destination color). For example, when you 
draw one triangle on top of the other, the color of the triangle already drawn is the desti-
nation color, and the color of the triangle drawn on top is the source color.      

   gl.blendFunc(src_factor, dst_factor)   

 Specify the method to blend the source color and the destination color. The blended 
color is calculated as follows:          

( ) = × + ×color RGB source color src_factor destination color dst_factor   

  Parameters    src_factor   Specifies the multiplier for the source color ( Table   10.2   ).  

 dst_factor   Specifies the multiplier for the destination color ( Table 
  10.2   ).  

  Return value    None  

  Errors    INVALID_ENUM    src_factor  and  dst_factor  are none of the values in  Table 
  10.2     

  Table 10.2   Constant Values that Can Be Specified as src_factor and dst_factor 3   

  Constant     Multiplicand for R     Multiplicand for G     Multiplicand for B   

  gl.ZERO    0.0   0.0   0.0  

  gl.ONE    1.0   1.0   1.0  
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  Constant     Multiplicand for R     Multiplicand for G     Multiplicand for B   

  gl.SRC_COLOR    Rs   Gs   Bs  

  gl.ONE_MINUS_SRC_COLOR    (1 – Rs)   (1 – Gs)   (1 – Bs)  

  gl.DST_COLOR    Rd   Gd   Bd  

  gl.ONE_MINUS_DST_COLOR    (1 – Rd)   (1 – Bd)   (1 – Gd)  

  gl.SRC_ALPHA    As   As   As  

  gl.ONE_MINUS_SRC_ALPHA    (1 – As)   (1 – As)   (1 – As)  

  gl.DST_ALPHA    Ad   Ad   Ad  

  gl.ONE_MINUS_DST_ALPHA    (1 – Ad)   (1 – Ad)   (1 – Ad)  

  gl.SRC_ALPHA_SATURATE    min(As, Ad)   min(As, Ad)   min(As, Ad)  

  3   gl.CONSTANT_COLOR, gl.ONE_MINUSCONSTANT_COLOR, gl.CONSTANT_ALPHA , and  gl.ONE_
MINUS_CONSTANT_ALPHA  are removed from OpenGL.  

 (Rs,Gs,Bs,As) is the source color and (Rd,Gd,Bd,Ad) is the destination color.  

 In the sample program, you used the following:  

   54    gl.blendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA);    

 For example, if the source color is semitransparent green (0.0, 1.0, 0.0, 0.4) and the desti-
nation color is yellow (1.0, 1.0, 0.0, 1.0),  src_factor  becomes the alpha value 0.4 and  dst_
factor  becomes (1 – 0.4)=0.6. The calculation is shown in  Figure   10.14   .  
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 Figure 10.14   Calculation of gl.blendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA)         

 You can experiment with the other possible parameter values for  src_factor ,  dst_factor , but 
one that is often used is additive blending. When used, the result will become brighter 
than the original value because it is a simple addition. It can be used for an indicator or 
the lighting effect resulting from an explosion.  

  glBlendFunc(GL_SRC_ALPHA, GL_ONE);    
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  Alpha Blend 3D Objects (BlendedCube.js)  

 Let’s now explore the effects of alpha   blending on a representative 3D object, a cube, by 
making it semitransparent. You will reuse the  ColoredCube  sample program from  Chapter 
  7    to create  BlendedCube , which adds the two steps  needed for blending (see  Listing   10.10   ).  

  Listing 10.10   BlendedCube.js  

  1    // BlendedCube.js

         ...

  47    // Set the clear color and enable the depth test

  48    gl.clearColor(0.0, 0.0, 0.0, 1.0);

  49    gl.enable(gl.DEPTH_TEST);

  50    // Enable alpha blending

   51    gl.enable (gl.BLEND); 

   52    // Set blending function 

   53    gl.blendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA);    

 Unfortunately, if you run this program as-is, you won’t see the expected result (right side 
of  Figure   10.15   ); rather, you will see something similar to the left side, which is no differ-
ent from the original  ColoredCube  used in  Chapter   7   .  

 
 Figure 10.15   BlendedCube         

 This is because of the hidden surface removal function enabled at line 49. Blending only 
takes place on the drawn surfaces. When the hidden surface removal function is enabled, 
the hidden surfaces are not drawn, so there is no other surface to be blended with. 
Therefore, you don’t see the blending effect as expected. To solve this problem, you can 
simply comment out line 49 that enables the hidden surface removal function.  
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  48    gl.clearColor(0.0, 0.0, 0.0, 1.0);

  49    //  gl.enable(gl.DEPTH_TEST); 

  50    // Enable alpha blending

  51    gl.enable (gl.BLEND);    

  How to Draw When Alpha Values Coexist  

 This is a quick solution, but it’s not very satisfactory because, as we’ve seen in  Chapter   7   , 
hidden surface removal is   often needed to correctly draw a 3D scene.  

 You can overcome this problem by drawing objects while turning the hidden surface 
removal function on and off.  

    1.   Enable the hidden surface removal function.  

  gl.enable(gl.DEPTH_TEST);    

   2.   Draw all the opaque objects (whose alpha values are 1.0).   

   3.   Make the depth buffer ( Chapter   7   ), which is used in the hidden surface removal, 
read-only.  

  gl.depthMask(false);    

   4.   Draw all the transparent objects (whose alpha values are smaller than 1.0). Note, 
they should be sorted by the depth order and drawn back to front.   

   5.   Make the depth buffer readable and writable.  

  gl.depthMask(true);     

 If you completely disable the hidden surface removal function, when there are transpar-
ent objects behind opaque objects, the transparent object will not be hidden behind the 
opaque objects. So you need to control that with  gl.depthMask() .  gl.depthMask()  has the 
following specification.    

   gl.depthMask(mask)   

 Enable or disable writing into the  depth buffer.  

  Parameters    mask   Specifies whether the depth buffer is enabled for writing. If  mask  
is  false , depth buffer writing is disabled.  

  Return value    None  

  Errors    None  
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 The depth buffer was briefly introduced in  Chapter   7   . The z values of fragments (which 
are normalized to a value between 0.0 and 1.0) are written into the buffer. For example, 
say there are two triangles on top of each other and you draw from the triangle on top. 
First, the z value of the triangle on top is written into the depth buffer. Then, when the 
triangle on bottom is drawn, the hidden surface removal function compares the z value 
of its fragment that is going to be drawn, with the z value already written in the depth 
buffer.  Then only when the z value of the fragment that is going to be drawn is smaller 
than the existing value in the buffer (that is, when it’s closer to the eye point) will the 
fragment be drawn into the color buffer. This approach ensures that hidden surface 
removal is achieved. Therefore, after drawing, the z value of the fragment of the surface 
that can be seen from the eye point is left in the depth buffer.  

 Opaque objects are drawn into the color buffer in the correct order by removing the 
hidden surfaces in the processing of steps 1 and 2, and the z value that represents the 
order is written in the depth buffer. Transparent objects are drawn into the color buffer 
using that z value in steps 3, 4, and 5, so the hidden surfaces of the transparent objects 
behind the opaque objects will be removed. This results in the correct image being shown 
where both objects coexist.    

  Switching Shaders  
 The sample programs in this book draw using a single vertex shader and a single fragment 
shader. If all objects can be drawn with the same shaders, there is no problem. However, 
if you want to change the drawing method for each object, you need to add significant 
complexity to the shaders to  achieve multiple effects. A solution is to prepare more than 
one shader and then switch between these shaders as required. Here, you construct a 
sample program,  ProgramObject , which draws a cube colored with a single color and 
another cube with a texture image.  Figure   10.16    shows a screen  shot.  

 
 Figure 10.16   A screen shot of ProgramObject         
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 This program is also an example of the shading of an object with a texture image.  

  How to Implement Switching Shaders  

 The shaders can be switched easily by creating program objects, as explained in  Chapter   8   , 
“Lighting Objects,” and switching them before   drawing. Switching is carried out using the 
function  gl.useProgram() . Because  you  are explicitly manipulating shader objects, you 
cannot use the convenience function  initShaders() . However, you can use the function 
 createProgram()  in  cuon-utils.js , which is called from  initShaders() .  

 The following is the processing flow of the sample program. It performs the same proce-
dure twice, so it looks long, but the essential code is simple:  

    1.   Prepare the shaders to draw an object shaded with a single color.   

   2.   Prepare the shaders to draw an object with a texture image.   

   3.   Create a program object that has the shaders from step 1 with  createProgram() .   

   4.   Create a program object that has the shaders from step 2 with  createProgram() .   

   5.   Specify the program object created by step 3 with  gl.useProgram() .   

   6.   Enable the buffer object after assigning it to the attribute variables.   

   7.   Draw a cube (drawn in a single color).   

   8.   Specify the program object created in step 4 using  gl.useProgram() .   

   9.   Enable the buffer object after assigning it to the attribute variables.   

   10.   Draw a cube (texture is pasted).    

 Now let’s look at the sample program.   

  Sample Program (ProgramObject.js)  

 The key program code for steps 1 to 4 is shown in  Listing   10.11   . Two types of vertex 
shader and fragment shader are    prepared:  SOLID_VSHADER_SOURCE  (line 3) and  SOLID_
FSHADER_SOURCE  (line 19) to draw an object in a single color, and  TEXTURE_VSHADER_SOURCE  
(line 29) and  TEXTURE_FSHADER_SOURCE  (line 46) to draw an object with a texture image. 
Because the focus here is on how to switch the program objects, the contents of the 
shaders are omitted.  

  Listing 10.11   ProgramObject (Process for Steps 1 to 4)  

   1  // ProgramObject.js

    2  // Vertex shader for single color drawing                                <- (1)

    3  var SOLID_VSHADER_SOURCE =

         ...

   18  // Fragment shader for single color drawing
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   19  var SOLID_FSHADER_SOURCE =

         ...

   28  // Vertex shader for texture drawing                                     <- (2)

   29  var TEXTURE_VSHADER_SOURCE =

         ...

   45  // Fragment shader for texture drawing

   46  var TEXTURE_FSHADER_SOURCE =

         ...

   58  function main() {

         ...

   69    // Initialize shaders

   70    var solidProgram =  createProgram (gl, SOLID_VSHADER_SOURCE, 

                                                   ➥SOLID_FSHADER_SOURCE);   <- (3)

   71    var texProgram =  createProgram (gl, TEXTURE_VSHADER_SOURCE, 

                                                   ➥TEXTURE_FSHADER_SOURCE); <- (4)

         ...

   77    // Get the variables in the program object for single color drawing

    78    solidProgram.a_Position  = gl.getAttribLocation(solidProgram, 'a_Position'); 

    79    solidProgram.a_Normal = gl.getAttribLocation(solidProgram, 'a_Normal'); 

         ...

   83    // Get the storage location of attribute/uniform variables

   84    texProgram.a_Position = gl.getAttribLocation(texProgram, 'a_Position');

   85    texProgram.a_Normal = gl.getAttribLocation(texProgram, 'a_Normal');

         ...

   89    texProgram.u_Sampler = gl.getUniformLocation(texProgram, 'u_Sampler');

         ...

   99    // Set vertex information

  100    var cube = initVertexBuffers(gl, solidProgram);

         ...

  106    // Set texture

  107    var texture = initTextures(gl, texProgram);

         ...

  122    // Start drawing

  123    var currentAngle = 0.0; // Current rotation angle (degrees)

  124    var tick = function() {

  125      currentAngle = animate(currentAngle);  // Update rotation angle

         ...

  128      // Draw a cube in single color

   129      drawSolidCube(gl, solidProgram, cube, -2.0, currentAngle, viewProjMatrix); 

  130      // Draw a cube with texture

   131      drawTexCube(gl,  texProgram, cube, texture, 2.0, currentAngle, 

                                                                  ➥viewProjMatrix); 

  132

  133      window.requestAnimationFrame(tick, canvas);
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  134    };

  135    tick();

  136  }

  137

  138  function initVertexBuffers(gl, program) {

         ...

  148   var vertices = new Float32Array([   // Vertex coordinates

  149     1.0, 1.0, 1.0, -1.0, 1.0, 1.0, -1.0,-1.0, 1.0,  1.0,-1.0, 1.0,

  150     1.0, 1.0, 1.0,  1.0,-1.0, 1.0,  1.0,-1.0,-1.0,  1.0, 1.0,-1.0,

         ...

  154     1.0,-1.0,-1.0, -1.0,-1.0,-1.0, -1.0, 1.0,-1.0,  1.0, 1.0,-1.0

  155    ]);

  156

  157    var normals = new Float32Array([   // Normal

         ...

  164    ]);

  165

  166    var texCoords = new Float32Array([ // Texture coordinates

         ...

  173    ]);

  174

  175    var indices = new Uint8Array([     // Indices for vertices

         ...

  182    ]);

  183

   184    var o = new Object(); // Use Object to return buffer objects 

  185

  186    // Write vertex information to buffer object

   187    o.vertexBuffer  = initArrayBufferForLaterUse(gl, vertices, 3, gl.FLOAT); 

   188    o.normalBuffer = initArrayBufferForLaterUse(gl, normals, 3, gl.FLOAT); 

   189    o.texCoordBuffer = initArrayBufferForLaterUse(gl, texCoords, 2, gl.FLOAT); 

   190    o.indexBuffer = initElementArrayBufferForLaterUse(gl, indices, 

                                                                ➥gl.UNSIGNED_BYTE); 

         ...

   193    o.numIndices = indices.length; 

         ...

   199    return o; 

  200  }   

 Starting with the  main()  function in JavaScript, you first create a program object for 
each shader with  createProgram()  at lines 70 and 71. The arguments of the  createPro-
gram()  are the same as the  initShaders() , and the return value is the program object. 
You save each program object in  solidProgram  and  texProgram . Then you retrieve the 
storage location of the attribute and uniform variables for each shader at lines 78 to 89. 
You will store them in the corresponding properties of the program object, as you did in 
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 MultiJointModel_segment.js . Again, you leverage JavaScript’s ability to freely append a 
new property of any type to an  object.  

 The vertex information is then stored in the buffer object by  initVertexBuffers()  at line 
100. You need (1) vertex coordinates, (2) the normals, and (3) indices for the shader to 
draw objects in a single color. In addition, for the shader to draw objects with a texture 
image, you need the texture coordinates. The processing in  initVertexBuffers()  handles 
this and binds the correct buffer object to the corresponding attribute variables when the 
program object is switched.  

  initVertexBuffers()  prepares the vertex coordinates from line 148, normals from line 
157, texture coordinates from line 166, and index arrays from line 175. Line 184 creates 
object ( o ) of type  Object . Then you store the buffer object to the property of the object 
(lines 187 to 190). You can maintain each buffer object as a global variable, but that intro-
duces too many variables and makes it hard to understand the program. By using proper-
ties, you can more conveniently manage all four buffer objects using one object  o.   4     

 You use  initArrayBufferForLaterUse() , explained in  MultiJointModel_segment.js , to 
create each buffer object. This function writes vertex information into the buffer object 
but does not assign it to the attribute variables. You use the buffer object name as its 
property name to make it easier to understand. Line 199 returns the object  o  as the return 
value.  

 Once back in  main()  in JavaScript, the texture image is set up in  initTextures()  at line 
107, and then everything is ready to allow you to draw the two cube objects. First, you 
draw a single color cube using  drawSolidCube()  at line 129, and then you draw a cube 
with a texture image by using  drawTexCube()  at line 131.  Listing   10.12    shows the latter 
half of the steps, steps 5 through 10.  

  Listing 10.12   ProgramObject.js (Processes for Steps 5 through 10)  

 236  function drawSolidCube(gl, program, o, x, angle, viewProjMatrix) {

   237    gl.useProgram(program);   // Tell this program object is used            <-(5)

  238

  239    // Assign the buffer objects and enable the assignment                  <-(6)

  240     initAttributeVariable(gl, program.a_Position, o.vertexBuffer); 

  241     initAttributeVariable(gl, program.a_Normal, o.normalBuffer); 

  242     gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, o.indexBuffer); 

  243

  244     drawCube(gl, program, o, x, angle, viewProjMatrix);    // Draw           <-(7)

  245  }

  246

  247  function drawTexCube(gl, program, o, texture, x, angle, viewProjMatrix) {

 4    To keep the explanation simple, the object ( o ) was used. However, it is better programming  practice 

to create a new user-defi ned type for managing the information about a buffer object and to use it to 

manage the four buffers. 
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  248     gl.useProgram(program);   // Tell this program object is used  <-(8)

  249

  250    // Assign the buffer objects and enable the assignment        <-(9)

  251    initAttributeVariable(gl, program.a_Position, o.vertexBuffer);

  252    initAttributeVariable(gl, program.a_Normal, o.normalBuffer);

  253     initAttributeVariable(gl, program.a_TexCoord, o.texCoordBuffer); 

  254    gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, o.indexBuffer);

  255

  256    // Bind texture object to texture unit 0

  257     gl.activeTexture(gl.TEXTURE0); 

  258     gl.bindTexture(gl.TEXTURE_2D, texture); 

  259

  260    drawCube(gl, program, o, x, angle, viewProjMatrix); //  Draw  <-(10)

  261  }

  262

  263  // Assign the buffer objects and enable the assignment

  264   function initAttributeVariable(gl, a_attribute, buffer) { 

  265     gl.bindBuffer(gl.ARRAY_BUFFER, buffer); 

  266     gl.vertexAttribPointer(a_attribute, buffer.num, buffer.type, false, 0, 0); 

  267     gl.enableVertexAttribArray(a_attribute); 

  268   } 

         ...

  275  function drawCube(gl, program, o, x, angle, viewProjMatrix) {

  276    // Calculate a model matrix

         ...

  281    // Calculate transformation matrix for normal

         ...

  286    // Calculate a model view projection matrix

         ...

  291    gl.drawElements(gl.TRIANGLES, o.numIndices, o.indexBuffer.type, 0);

  292  }   

  drawSolidCube()  is defined at line 236 and uses  gl.useProgram()  at line 237 to tell 
the WebGL system that you will use the program (program object,  solidProgram ) 
specified by the argument. Then you can draw using  solidProgram . The buffer objects 
for vertex coordinates and normals are assigned to attribute variables and enabled by 
 initAttributeVariable()  at lines 240 and 241. This function is defined at line 264. Line 
242 binds the buffer object for the indices to  gl.ELEMENT_ARRAY_BUFFER . With everything 
set up, you then call  drawCube()  at line 244, which uses  gl.drawElements()  at line 291 to 
perform the draw operation.  

  drawTexCube() , defined at line 247, follows the same steps as  drawSolidCube() . Line 253 
is added to assign the buffer object for texture coordinates to the attribute variables, and 
lines 257 and 258 are added to bind the texture object to the texture unit 0. The actual 
drawing is performed in  drawCube() , just like  drawSolidCube() .  
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 Once you’ve mastered this basic technique, you can use it to switch between any number 
of shader programs. This way you can use a variety of different drawing effects in a single 
scene.    

  Use What You’ve Drawn as a Texture Image  
 One simple but powerful technique is to draw some 3D objects and then use the result-
ing image as a texture image for another 3D object. Essentially, if you can use the content 
you’ve drawn as a texture image, you are able to generate images on-the-fly. This means 
you do not need to download images from  the network, and you can apply special effects 
(such as motion blur and depth of field) before displaying the image. You can also use 
this technique for shadowing, which will be explained in the next section. Here, you will 
construct a sample program,  FramebufferObject , which  maps a rotating cube drawn with 
WebGL to a rectangle as a texture image.  Figure   10.17    shows a screen shot.  

 
 Figure 10.17   FramebufferObject         

 If you actually run the program, you can see a rotating cube with a texture image of a 
summer sky pasted to the rectangle as its texture. Significantly, the image of the cube that 
is pasted on the rectangle is not a movie prepared in advance but a rotating cube drawn 
by WebGL in real time. This is quite powerful, so let’s take a look at what WebGL must do 
to achieve this.  

  Framebuffer Object and Renderbuffer Object  

 By default, the WebGL system draws     using a color buffer and, when using the hidden 
surface removal function, a depth buffer. The final image is kept in the color buffer.  

 The  framebuffer object  is an alternative mechanism you can use instead of a color buffer 
or a depth buffer ( Figure   10.18   ). Unlike a color buffer, the content drawn in a framebuffer 
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object is not directly displayed on the  <canvas> . Therefore, you can use it if you want to 
perform different types of processing before displaying the drawn content. Or you can use 
it as a texture image. Such a technique is often referred to as  offscreen drawing .  
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 Figure 10.18   Framebuffer object         

 The framebuffer object has the structure shown in  Figure   10.19    and supports substitutes 
for the color buffer and the depth buffer. As you can see, drawing is not carried out in 
the framebuffer itself, but in the drawing areas of the objects that the framebuffer points 
to. These objects are attached to the framebuffer using its  attachment  function. A  color 
attachment  specifies the destination for drawing to be a replacement for the color buffer. 
A  depth attachment  and a  stencil attachment  specify the replacements for the depth 
buffer and stencil buffer.  
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 Figure 10.19   Framebuffer object, texture object, renderbuffer object         

 WebGL supports two types of objects that can be used to draw objects within: the texture 
object that you saw in  Chapter   5   , and the  renderbuffer object . With the texture object, 
the content drawn into the texture object can be used as a texture image. The render-
buffer object is a more general-purpose drawing area, allowing a variety of data types to 
be written.   
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  How to Implement Using a Drawn Object as a Texture  

 When you want to use the content drawn into a framebuffer object as a texture object, 
you actually need to use the content drawn into the color   buffer for the texture object. 
Because you also want to remove the hidden surfaces for drawing, you will set up the 
framebuffer object as shown in  Figure   10.20   .  
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 Figure 10.20   Configuration of framebuffer object when using drawn content as a texture         

 The following eight steps are needed for realizing this configuration. These processes are 
similar to the process for the buffer object. Step 2 was explained in  Chapter   5   , so there are 
essentially seven new processes:  

    1.   Create a framebuffer object ( gl.createFramebuffer() ).   

   2.   Create a texture object and set its size and parameters ( gl.createTexture() ,  
gl.bindTexture() ,  gl.texImage2D() ,  gl.Parameteri() ).   

   3.   Create a renderbuffer object ( gl.createRenderbuffer() ).   

   4.   Bind the renderbuffer object to the target and set its size ( gl.bindRenderbuffer() , 
 gl.renderbufferStorage() ).   

   5.   Attach the texture object to the color attachment of the framebuffer object 
( gl.bindFramebuffer() ,  gl.framebufferTexture2D() ).   

   6.   Attach the renderbuffer object to the depth attachment of the framebuffer object 
( gl.framebufferRenderbuffer() ).   

   7.   Check whether the framebuffer object is configured correctly ( gl.checkFramebuffer-
Status() ).   

   8.   Draw using the framebuffer object ( gl.bindFramebuffer() ).    

 Now let’s look at the sample program. The numbers in the sample program indicate the 
code used to implement the steps.   



ptg11539634

Use What You’ve Drawn as a Texture Image 395

  Sample Program (FramebufferObjectj.js)  

 Steps 1 to 7 of  FramebufferObject.js  are shown    in  Listing   10.13   .  

  Listing 10.13   FramebufferObject.js (Processes for Steps 1 to 7)  

   1  // FramebufferObject.js

         ...

    24  // Size of offscreen 

    25  var OFFSCREEN_WIDTH = 256; 

    26  var OFFSCREEN_HEIGHT = 256; 

   27

   28  function main() {

         ...

   55    // Set vertex information

   56    var cube = initVertexBuffersForCube(gl);

   57    var plane = initVertexBuffersForPlane(gl);

         ...

   64    var texture = initTextures(gl);

         ...

    70    // Initialize framebuffer object (FBO) 

    71    var fbo = initFramebufferObject(gl); 

         ...

   80    var viewProjMatrix = new Matrix4();/ For color buffer

   81    viewProjMatrix.setPerspective(30, canvas.width/canvas.height, 1.0, 100.0);

   82    viewProjMatrix.lookAt(0.0, 0.0, 7.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

   83

   84     var viewProjMatrixFBO = new Matrix4();   // For FBO

    85    viewProjMatrixFBO.setPerspective(30.0, OFFSCREEN_WIDTH/OFFSCREEN_HEIGHT, 

                                                                      ➥1.0, 100.0); 

    86    viewProjMatrixFBO.lookAt(0.0, 2.0,  7.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0); 

         ...

    92      draw(gl, canvas, fbo, plane, cube, currentAngle, texture, viewProjMatrix, 

                                                               ➥viewProjMatrixFBO); 

         ...

   96  }

         ...

  263  function initFramebufferObject(gl) {

  264    var framebuffer, texture, depthBuffer;

         ...

  274    // Create a framebuffer object (FBO)                                    <-(1)

   275    framebuffer = gl.createFramebuffer(); 

         ...

  281    // Create a texture object and set its size and parameters              <-(2)

  282    texture = gl.createTexture(); // Create a texture object

         ...
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  287    gl.bindTexture(gl.TEXTURE_2D, texture);

  288    gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, OFFSCREEN_WIDTH, 

                            ➥OFFSCREEN_HEIGHT, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);

  289    gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);

  290     framebuffer.texture = texture;          // Store the texture object

  291

  292    // Create a renderbuffer object and set its size and parameters

  293     depthBuffer = gl.createRenderbuffer(); // Create a renderbuffer          <-(3)

          ...

  298     gl.bindRenderbuffer(gl.RENDERBUFFER, depthBuffer);                       <-(4)

   299    gl.renderbufferStorage(gl.RENDERBUFFER, gl.DEPTH_COMPONENT16, 

                                               ➥OFFSCREEN_WIDTH, OFFSCREEN_HEIGHT); 

  300

  301    // Attach the texture and the renderbuffer object to the FBO

  302    gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);

   303    gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, 

                                              ➥gl.TEXTURE_2D, texture, 0);     <-(5)

   304    gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, 

                                           ➥gl.RENDERBUFFER, depthBuffer);     <-(6)

  305

  306    // Check whether FBO is configured correctly                            <-(7)

   307    var e = gl.checkFramebufferStatus(gl.FRAMEBUFFER); 

  308    if (e !== gl.FRAMEBUFFER_COMPLETE) {

  309      console.log('Framebuffer object is incomplete: ' + e.toString());

  310      return error();

  311    }

  312

         ...

  319    return framebuffer;

  320  }   

 The vertex shader and fragment shader are omitted because this sample program uses the 
same shaders as  TexturedQuad.js  in  Chapter   5   , which pasted a texture image on a rect-
angle. The sample program in this section draws two objects: a cube and a rectangle. Just 
as you did in  ProgramObject.js  in the previous section, you assign multiple buffer objects 
needed for drawing each object as properties of an  Object  object. Then you store the 
object to the variables  cube  and  plane . You will use them for drawing by assigning each 
buffer in the object to the attribute variable.  

 The key point of this program is the initialization of the framebuffer object by  init-
FramebufferObject()  at line 71. The initialized framebuffer object is stored in a variable 
 fbo  and passed as the third argument of  draw()  at line 92. You’ll return to the function 
 draw()  later. For now let’s examine  initFramebufferObject() , at line 263, step by step. 
This function performs steps 1 to 7. The view projection matrix for the framebuffer object 
is prepared separately at line 84 because it is different from the one used for a color buffer.   
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  Create Frame Buffer Object (gl.createFramebuffer())  

 You must create a framebuffer   object before you can use it. The sample program creates it 
at line 275:  

  275 framebuffer = gl.createFramebuffer();   

 You will use  gl.createFramebuffer()  to create the  framebuffer object.    

   gl.createFramebuffer()   

 Create a framebuffer object.  

  Parameters    None  

  Return value    non-null   The newly created framebuffer object.  

 null   Failed to create a framebuffer object.  

  Errors    None  

 You use  gl.deleteFramebuffer()  to delete the created framebuffer object.    

   gl.deleteFramebuffer(framebuffer)   

  Delete a framebuffer object.  

  Parameters    framebuffer   Specifies the framebuffer object to be deleted.  

  Return value    None  

  Errors    None  

 Once you have created the framebuffer object, you need to attach a texture object to the 
color attachment and a renderbuffer object to the depth attachment in the framebuffer 
object. Let’s start by creating the texture object for the color attachment.   

  Create Texture Object and Set Its Size and Parameters  

 You have already seen how to create a texture object and set up its parameters 
( gl.TEXTURE_MIN_FILTER ) in  Chapter   5   . You should  note that its width and height are 
 OFFSCREEN_WIDTH  and  OFFSCREEN_HEIGHT , respectively. The size is smaller than that of the 
 <canvas>  to make the drawing process faster.  

  282   texture = gl.createTexture(); // Create a texture object

         ...

  287   gl.bindTexture(gl.TEXTURE_2D, texture);
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  288   gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, OFFSCREEN_WIDTH, OFFSCREEN_HEIGHT, 0, 

                                                 ➥gl.RGBA, gl.UNSIGNED_BYTE,  null );

  289   gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);

   290   framebuffer.texture = texture; // Store the texture object    

 The  gl.texImage2D()  at line 288 allocates a  drawing area in a texture object. You can allo-
cate a drawing area by specifying  null  to the last argument, which is used to specify an 
 Image  object. You will use this texture object later, so store it in  framebuffer.texture  at 
line 290.  

 That completes the preparation for a texture object that is attached to the color attach-
ment. Next, you need to create a renderbuffer object for the depth buffer.   

  Create Renderbuffer Object (gl.createRenderbuffer())  

 Like texture buffers, you need to create a   renderbuffer object before using it. The sample 
program does this at line 293.  

  293   depthBuffer = gl.createRenderbuffer();  // Create a renderbuffer   

 You use  gl.createRenderbuffer()  to create the renderbuffer object.    

   gl.createRenderbuffer()   

  Create a renderbuffer object.  

  Parameters    None  

  Return value    Non-null   The newly created renderbuffer object.  

 Null   Failed to create a renderbuffer object.  

  Errors    None  

 You use  gl.deleteRenderbuffer()  to delete the created renderbuffer object.    

   gl.deleteRenderbuffer(renderbuffer)   

  Delete a renderbuffer object.  

  Parameters    renderbuffer   Specifies the renderbuffer object to be deleted.  

  Return value    None  

  Errors    None  
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 The created renderbuffer object is used as a depth buffer here, so you store it in a variable 
named  depthBuffer .   

  Bind Renderbuffer Object to Target and Set Size 

(gl.bindRenderbuffer(), gl.renderbufferStorage())  

 When using the created   renderbuffer object, you need to bind the renderbuffer object to a 
target and perform the operation on that target.  

   298    gl.bindRenderbuffer(gl.RENDERBUFFER, depthBuffer); 

   299    gl.renderbufferStorage(gl.RENDERBUFFER, gl.DEPTH_COMPONENT16, 

                                               ➥OFFSCREEN_WIDTH, OFFSCREEN_HEIGHT);    

 The renderbuffer object is bound to a target with  gl.bindRenderbuffer() .    

   gl.bindRenderbuffer(target, renderbuffer)   

  Bind the renderbuffer object specified by  renderbuffer  to  target . If  null  is specified as 
 renderbuffer , the  renderbuffer  is unbound from the  target .  

  Parameters    target   Must be  gl.RENDERBUFFER.   

 renderbuffer   Specifies the renderbuffer object.  

  Return value    None  

  Errors    INVALID_ENUM    target  is not  gl.RENDERBUFFER   

 When the binding is complete, you can set the format, width, and height of the render-
buffer object by using  gl.renderbufferStorage() . You must set the same width and 
height as the texture object that is used as the color attachment.    

   gl.renderbufferStorage(target, internalformat, width, height)   

  Create and initialize a renderbuffer object’s data store.  

  Parameters    target   Must be  gl.RENDERBUFFER.   

 internalformat   Specifies the format of the renderbuffer.  

                          gl.DEPTH_
COMPONENT16   

 The renderbuffer is used as a depth buffer.  

                         gl.STENCIL_
INDEX8   

 The renderbuffer is used as a stencil buffer.  
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                        gl.RGBA4    The renderbuffer is used as a color buffer.  gl.RGBA4  
(each RGBA component has 4, 4, 4, and 4 bits, respec-
tively),  gl.RGB5_A1  (each RGB component has 5 bits, 
and A has 1 bit),  gl.RGB565  (each RGB component has 
5, 6, and 5 bits, respectively)  

                        gl.RGB5_A1   

                        gl.RGB565   

 width, height   Specifies the width and height of the renderbuffer in 
pixels.  

  Return value    None  

  Errors    INVALID_ENUM   Target is not  gl.RENDERBUFFER  or  internalformat  is none 
of the preceding values.  

 INVALID_OPERATION   No renderbuffer is bound to  target .  

 The preparations of the texture object and renderbuffer object of the framebuffer object 
are now complete. At this stage, you can use the object for offscreen drawing.   

  Set Texture Object to Framebuffer Object (gl.bindFramebuffer(), 

gl.framebufferTexture2D())  

 You use a framebuffer object in   the same way you use a renderbuffer object: You need to 
bind it to a target and operate on the target, not the framebuffer object itself.  

   302    gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);  // Bind to target 

   303    gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, 

                                                                      ➥texture, 0);    

 A framebuffer object is bound to a target with  gl.bindFramebuffer() .    

   gl.bindFramebuffer(target, framebuffer)   

  Bind a framebuffer object to a target. If  framebuffer  is  null , the binding is broken.  

  Parameters    target   Must be  gl.FRAMEBUFFER.   

 framebuffer   Specify the framebuffer object.  

  Return value    None  

  Errors    INVALID_ENUM    target  is not  gl.FRAMEBUFFER   

 Once the framebuffer object is bound to  target , you can use the  target  to write a texture 
object to the framebuffer object. In this sample, you will use the texture object instead of 
a color buffer so you attach the texture object to the color attachment of the framebuffer.  
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 You can assign the texture object to the framebuffer object with  gl.
framebufferTexture2D() .    

   gl.framebufferTexture2D(target, attachment, textarget, texture, 
level)   

  Attach a texture object specified by  texture  to the framebuffer object bound by  target.   

  Parameters    target   Must be  gl.FRAMEBUFFER .  

 attachment   Specifies the attachment point of the framebuffer.  

                         gl.COLOR_ATTACHMENT0     texture  is used as a color buffer  

                         gl.DEPTH_ATTACHMENT     texture  is used as a depth buffer  

 textarget   Specifies the first argument of  gl.texImage2D()  
( gl.TEXTURE_2D  or  gl.CUBE_MAP_TEXTURE ).  

 texture   Specifies a texture object to attach to the frame-
buffer attachment point.  

 level   Specifies 0 (if you use a MIPMAP in  texture , you 
should specify its level).  

  Return value    None  

  Errors    INVALID_ENUM    target  is not  gl.FRAMEBUFFER .  attachment   
 or  textarget  is none of the preceding values.  

 INVALID_VALUE    level  is not valid.  

 INVALID_OPERATION   No framebuffer object is bound to  target.   

 The 0 in the  gl.COLOR_ATTACHMENT0  used for the  attachment  parameter is because a frame-
buffer object in OpenGL, the basis of WebGL, can hold multiple color attachments 
( gl.COLOR_ATTACHMENT0 ,  gl.COLOR_ATTACHMENT1 ,  gl.COLOR_ATTACHMENT2 ...). However, 
WebGL can use just one of them.  

 Once the color attachment has been attached to the framebuffer object, you need to 
assign a renderbuffer object as a depth attachment. This follows a similar process.   

  Set Renderbuffer Object to Framebuffer Object 

(gl.framebufferRenderbuffer())  

 You will use  gl.framebufferRenderbuffer()  to attach   a renderbuffer object to a frame-
buffer object. You need a depth buffer  because this sample program will remove hidden 
surfaces. So the depth attachment needs to be attached.    
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   304    gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, 

gl.RENDERBUFFER, depthBuffer);    

   gl.framebufferRenderbuffer(target, attachment, renderbuffertarget, 
renderbuffer)   

 Attach a renderbuffer object specified by  renderbuffer  to the framebuffer object bound by 
 target.   

  Parameters    target   Must be  gl.FRAMEBUFFER .  

 attachment   Specifies the attachment point of the framebuffer.  

                        gl.COLOR_ATTACHMENT0     renderbuffer  is used as a color buffer.  

                        gl.DEPTH_ATTACHMENT     renderbuffer  is used as a depth buffer.  

                        gl.STENCIL_ATTACHMENT     renderbuffer  is used as a stencil buffer.  

 renderbuffertarget   Must be  gl.RENDERBUFFER.   

 renderbuffer   Specifies a renderbuffer object to attach to the 
framebuffer attachment point  

  Return value    None  

  Errors    INVALID_ENUM    target  is not a  gl.FRAMEBUFFER .  attachment  is 
none of the above values.  renderbuffertarget  is 
not  gl.RENDERBUFFER .  

 Now that you’ve completed the preparation of the color attachment and depth attach-
ment to the framebuffer object, you are ready to draw. But before that, let’s check that the 
configuration of the framebuffer object is correct.   

  Check Configuration of Framebuffer Object 

(gl.checkFramebufferStatus())  

 Obviously, when you use a framebuffer that    is not correctly configured, an error occurs. As 
you have seen in the past few sections, preparing a texture object and renderbuffer object 
that are needed to configure the framebuffer object is a complex process that sometimes 
generates mistakes. You can check whether the created framebuffer object is configured 
correctly and is available with  gl.checkFramebufferStatus() .  

   307    var e = gl.checkFramebufferStatus(gl.FRAMEBUFFER);          <- (7) 

  308    if (gl.FRAMEBUFFER_COMPLETE !== e) {

  309      console.log('Frame buffer object is incomplete:' + e.toString());

  310      return error();

  311    }   
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 The following shows the specification of  gl.checkFramebufferStatus() .    

   gl.checkFramebufferStatus(target)   

 Check the completeness status of a framebuffer bound to  target.   

  Parameters    target   Must be  gl.FRAMEBUFFER.   

  Return value    0    Target  is not  gl.FRAMEBUFFER.   

 Others  

                         gl.FRAMEBUFFER_COMPLETE    The framebuffer object is configured 
correctly.  

                          gl.FRAMEBUFFER_     INCOMPLETE_
ATTACHMENT   

 One of the framebuffer attachment points 
is incomplete. (The attachment is not suffi-
cient. The texture object or the renderbuf-
fer object is invalid.)  

                          gl.FRAMEBUFFER_     INCOMPLETE_
DIMENSIONS   

 The width or height of the texture object 
or renderbuffer object of the attachment is 
different.  

                          gl.FRAMEBUFFER_     INCOMPLETE_
MISSING_     ATTACHMENT   

 The framebuffer does not have at least 
one valid attachment.  

  Errors    INVALID_ENUM    target  is not  gl.FRAMEBUFFER .  

 That completes the preparation of the framebuffer object. Let’s now take a look at the 
 draw()  function.   

  Draw Using the Framebuffer Object  

  Listing   10.14    shows  draw() . It switches   the drawing destination to  fbo  (the framebuffer) 
and draws a cube in the texture object. Then  drawTexturedPlane()  uses the texture object 
to draw a rectangle to the color buffer.  

  Listing 10.14   FramebufferObject.js (Process of (8))  

  321  function draw(gl, canvas, fbo, plane, cube, angle, texture, viewProjMatrix, 

                                                              ➥viewProjMatrixFBO) {

  322     gl.bindFramebuffer(gl.FRAMEBUFFER, fbo);                                 <-(8)

  323     gl.viewport(0, 0, OFFSCREEN_WIDTH, OFFSCREEN_HEIGHT);  // For FBO

  324

  325    gl.clearColor(0.2, 0.2, 0.4, 1.0); // Color is slightly changed

  326    gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);  // Clear FBO
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  327    // Draw the cube

  328    drawTexturedCube(gl, gl.program, cube, angle, texture, viewProjMatrixFBO);

  329    // Change the drawing destination to color buffer

  330     gl.bindFramebuffer(gl.FRAMEBUFFER, null); 

  331    // Set the size of view port back to that of  <canvas> 

  332     gl.viewport(0, 0, canvas.width, canvas.height); 

  333    gl.clearColor(0.0, 0.0, 0.0, 1.0);

  334    gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

  335    // Draw the plane

  336    drawTexturedPlane(gl, gl.program, plane, angle,  fbo.texture , viewProjMatrix);

  337  }   

 Line 322 switches the drawing destination to the framebuffer object using  gl.bindFrame-
buffer() . As a result, draw operations using  gl.drawArrays()  or  gl.drawElements()  are 
performed for the framebuffer object. Line 332 uses  gl.viewport()  to specify the draw 
area in the buffer (an offscreen area).    

   gl.viewport(x, y, width, height)   

  Set the viewport where  gl.drawArrays()  or  gl.drawElements()  draws. In WebGL, x and 
y are specified in the  <canvas>  coordinate system.  

  Parameters    x, y   Specify the lower-left corner of the viewport rectangle (in 
pixels).  

 width, height   Specify the width and height of the viewport (in pixels).  

  Return value    None  

  Errors    None  

 Line 326 clears the texture image and the depth buffer bound to the framebuffer object. 
When a cube is drawn at line 328, it is drawn in the texture image. To make it easier to 
see the result, the clear color at line 325 is changed to a purplish blue from black. The 
result of this is that the cube has been drawn into the texture buffer and is now available 
for use as a texture image. The next step is to draw a rectangle ( plane ) using this texture 
image. In this case, because you want to draw in the  color buffer, you need to set the 
drawing destination back to the color buffer. This is done at line 330 by specifying  null  
for the second argument of  gl.bindFramebuffer()  (that is, cancelling the binding). Then 
line 336 draws the  plane . You should note that  fbo.texture  is passed as the texture argu-
ment and used to map the drawn content to the rectangle. You will notice that in this 
sample program, the texture image is mapped onto the back side of the rectangle. This is 
because WebGL, by default, draws both sides of a polygon. You can eliminate the back 
face drawing by enabling the   culling function  using  gl.enable(gl.CULL_FACE) , which 
increases the drawing speed (ideally making it twice as fast).    
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  Display Shadows  
  Chapter   8    explained shading, which is one of the phenomena when light hits an object. 
We briefly mentioned shadowing, another phenomena, but didn’t explain how to imple-
ment it. Let’s take a look at that now. There are several methods to realize shadowing, 
but we will explain a method that uses a  shadow map  (depth map). This method is quite 
expressive and used in a variety of  computer graphics situations and even in special effects 
in movies.  

  How to Implement Shadows  

 The shadow map method is based on the idea that the sun cannot see the shadow of 
objects. Essentially, it works by considering the viewer’s eye point to be at the same posi-
tion as the light source and determining what   can be seen from that point. All the objects 
you can see would appear to be in the light. Anything behind those objects would be in 
shadow. With this method, you can use the distance to the objects (in fact, you will use 
the z value, which is the depth value) from the light source to judge whether the objects  
are visible. As you can see in  Figure   10.21   , where there are two points on the same line, 
P1 and P2, P2 is in the shadow because the distance from the light source to P2 is longer 
than P1.  
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 Figure 10.21   Theory of shadow map         

 You need two pairs of shaders for this process: (1) a pair of shaders that calculate the 
distance from the light source to the objects, and (2) a pair of shaders that draws the 
shadow using the calculated distance. Then you need a method to pass the distance data 
from the light source calculated in the first pair of shaders to the second pair of shaders. 
You can use a texture image for this purpose. This texture image is called the  shadow 
map , so this method is called  shadow mapping . The shadow  mapping technique consists 
of the following two processes:  

    1.   Move the eye point to the position of the light source and draw objects from there. 
Because the fragments drawn from the position are hit by the light, you write the 
distances from the light source to each fragment in the texture image (shadow map).   

   2.   Move the eye point back to the position from which you want to view the objects 
and draw them from there. Compare the distance from the light source to the frag-
ments drawn in this step and the distance recorded in the shadow map from step 
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1. If the former distance is greater, you can draw the fragment as in shadow (in the 
darker color).    

 You will use the framebuffer object in step 1 to save the distance in the texture image. 
Therefore, the configurations of the framebuffer object used here is the same as that of 
 FramebufferObject.js  in  Figure   10.20   . You also need to switch pairs of shaders between 
steps 1 and 2 using the technique you learned in the section “Switching Shaders,” earlier 
in this chapter. Now let’s take a look at the sample program  Shadow .  Figure   10.22    shows 
a screen shot where you can see a shadow of the red triangle cast onto the slanted white 
rectangle.  

 
 Figure 10.22   Shadow          

  Sample Program (Shadow.js)  

 The key aspects of shadowing take place in the    shaders, which are shown in  Listing   10.15   .  

  Listing 10.15   Shadow.js (Shader part)  

  1  // Shadow.js

   2  // Vertex shader program to generate a shadow map

   3  var SHADOW_VSHADER_SOURCE =

        ...

   6    'void main() {\n' +

   7    '  gl_Position = u_MvpMatrix * a_Position;\n' +

   8    '}\n';

   9

  10  // Fragment shader program for creating a shadow map

  11  var SHADOW_FSHADER_SOURCE =
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         ...

  15    'void main() {\n' +

   16    '  gl_FragColor = vec4(gl_FragCoord.z, 0.0, 0.0, 0.0);\n' +              <-(1) 

  17    '}\n';

  18

  19  // Vertex shader program for regular drawing

  20  var VSHADER_SOURCE =

         ...

  23    'uniform mat4 u_MvpMatrix;\n' +

  24    'uniform mat4 u_MvpMatrixFromLight;\n' +

  25    'varying vec4 v_PositionFromLight;\n' +

  26    'varying vec4 v_Color;\n' +

  27    'void main() {\n' +

  28    '  gl_Position = u_MvpMatrix * a_Position;\n' +

   29    '   v_PositionFromLight = u_MvpMatrixFromLight * a_Position;\n' + 

  30    '  v_Color = a_Color;\n' +

  31    '}\n';

  32

  33  // Fragment shader program for regular drawing

  34  var FSHADER_SOURCE =

         ...

  38    'uniform sampler2D u_ShadowMap;\n' +

  39    'varying vec4 v_PositionFromLight;\n' +

  40    'varying vec4 v_Color;\n' +

  41    'void main() {\n' +

   42    '  vec3 shadowCoord =(v_PositionFromLight.xyz/v_PositionFromLight.w) 

                                                                 ➥/ 2.0 + 0.5;\n' + 

   43    '  vec4 rgbaDepth = texture2D(u_ShadowMap, shadowCoord.xy);\n' + 

  44     '  float depth = rgbaDepth.r;\n' +   // Retrieve the z value from R

   45    '  float visibility = (shadowCoord.z > depth + 0.005) ? 0.7:1.0;\n'+     <-(2) 

   46    '  gl_FragColor = vec4(v_Color.rgb * visibility, v_Color.a);\n' + 

  47    '}\n';   

 Step 1 is performed in the shader responsible for the shadow map, defined from lines 3 to 
17. You just switch the drawing destination to the framebuffer object, pass a model view 
projection matrix in which an eye point is located at a light source to  u_MvpMatrix , and 
draw the objects. This results in the distance from the light source to the fragments being 
written into the texture map (shadow map) attached to the framebuffer object. The vertex 
shader at line 7 just multiplies the model view projection matrix by the vertex coordinates 
to calculate this distance. The fragment shader  is more complex and needs to calculate the 
distance from the light source to the drawn fragments. For this purpose, you can utilize 
the built-in variable  gl_FragCoord  of the  fragment shader used in  Chapter   5   .  

  gl_FragCoord  is a  vec4  type built-in variable that contains the coordinates of each frag-
ment.  gl_FragCoord.x  and  gl_FragCoord.y  represents the position of the fragment on the 
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screen, and  gl_FragCoord.z  contains the normalized z value in the range of [0, 1]. This is 
calculated using ( gl_Position.z / gl.Position.w)/2.0+0.5.  (See Section 2.12 of  OpenGL ES 
2.0 specification  for further details.)  gl_FragCoord.z  is specified in the range of 0.0 to 1.0, 
with 0.0 representing the fragments on the near clipping plane and 1.0 representing those 
on the far clipping plane. This value is written into the R (red) component value (any 
component could be used) in the shadow map at line 16.  

   16    '  gl_FragColor = vec4(gl_FragCoord.z, 0.0, 0.0, 0.0);\n'  +   <-(1)    

 Subsequently, the z value for each fragment drawn from the eye point placed at the light 
source is written into the shadow map. This shadow map is passed to  u_ShadowMap  at 
line 38.  

 For step 2, you need to draw the objects again after resetting the drawing destination 
to the color buffer and moving the eye point to its original position. After drawing the 
objects, you decide a fragment color by comparing the z value of the fragment with 
that stored in the shadow map. This is done in the normal shaders from lines 20 to 47. 
 u_MvpMatrix  is the model view projection matrix where the eye point is placed at the orig-
inal position and  uMvpMatrixFromLight , which was used to create the shadow map, is the 
model view projection matrix where the eye point  is moved to the light source. The main 
task of the vertex shader defined at line 20 is calculating the coordinates of each fragment 
from the light source and passing them to the fragment shader (line 29) to obtain the z 
value of each fragment from the light source.  

 The fragment shader uses the coordinates to calculate the z value (line 42). As mentioned, 
the shadow map contains the value of  (gl_Position.z/gl.Position.w)/2.0+0.5 . So 
you could simply calculate the z value to compare with the value in the shadow map 
by  (v_PositionFromLight.z/v_PositionFromLight.w)/2.0+0.5 . However, because you 
need to get the texel value from the shadow map, line 42 performs the following extra 
calculation using the same operation. To compare to the value in the shadow map, you 
need to get the texel value from the shadow map whose texture coordinates correspond 
to the coordinates ( v_PositionFromLight.x, v_PositionFromLight.y ). As you know, 
 v_PositionFromLight.x  and  v_PositionFromLight.y  are  the x and y coordinates in the 
WebGL coordinate system (see  Figure   2.18    in  Chapter   2   ), and they range from –1.0 to 1.0. 
On the other hand, the texture coordinates s and t in the shadow map range from 0.0 to 
1.0 (see  Figure   5.20    in  Chapter   5   ). So, you need to convert the x and y coordinates to the s 
and t coordinates. You can also do this with the same expression to calculate the z value. 
That is:  

 The texture coordinate  s  is  (v_PositionFromLight.x/v_PositionFromLight.w)/2.0 + 0.5 .  

 The texture coordinate  t  is  (v_PositionFromLight.y/v_PositionFromLight.w)/2.0 + 0.5 .  

 See also Section 2.12 of the  OpenGL ES 2.0 specification   5   for further details about this calcu-
lation. These are carried out using the same type of calculation and can be achieved in 
one line, as shown at line 42:  

  5    www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf   

http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf


ptg11539634

Display Shadows 409

   42    '  vec3 shadowCoord =(v_PositionFromLight.xyz/v_PositionFromLight.w) 

                                                                 ➥/ 2.0 + 0.5;\n' + 

   43    '  vec4 rgbaDepth = texture2D(u_ShadowMap, shadowCoord.xy);\n' + 

  44     '  float depth = rgbaDepth.r;\n' +   // Retrieve the z value from R   

 You retrieve the value from the shadow map at lines 43 and 44. Only the  R  value is 
retrieved using  rgbaDepth.r  at line 44 because you wrote it into the R component at line 
16. Line 45 checks whether that fragment is in the shadow. When the position of the 
fragment is determined to be greater than the depth (that is,  shadowCoord.z > depth) , a 
value of 0.7 is stored in  visibility . The  visibility  is used at line 46 to draw the shadow 
with a darker color:  

   45    '  float visibility = (shadowCoord.z > depth + 0.005) ? 0.7:1.0;\n'+ 

   46    '  gl_FragColor = vec4(v_Color.rgb * visibility, v_Color.a);\n' +    

 Line 45 adds a small offset of 0.005 to the depth value. To understand why this is needed, 
try running the sample program  without this number. You will see a  striped pattern as 
shown in  Figure   10.23   , referred to as the  Mach band .  

 
 Figure 10.23   Striped pattern         

 The value of 0.005 is added to suppress the stripe pattern. The stripe pattern occurs 
because of the precision of the numbers you can store in  the RGBA components. It’s a 
little complex, but it’s worth understanding because this problem occurs elsewhere in 3D 
graphics. The z value of the shadow map is stored in the R component of RGBA in the 
texture map, which is an 8-bit number. This means that the precision of R is lower than 
its comparison target ( shadowCoord.z ), which is of type  float . For example, let the z value 
simply be 0.1234567. If you represent  the value using 8 bits, in other words using 256 
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possibilities, you can represent the value in a precision of 1/256 (=0.0390625). So you can 
represent 0.1234567 as follows:  

  0.1234567 / (1 / 256) = 31.6049152   

 Numbers below the decimal point cannot be used in 8 bits, so only 31 can be stored 
in 8 bits. When you divide 31 by 256, you obtain 0.12109375 which, as you can see, is 
smaller than the original value (0.1234567). This means that even if the fragment is at 
the same position, its z value stored in the shadow map becomes smaller than its z value 
in  shadowCoord.z . As a result, the z value in  shadowCoord.z  becomes larger than that in 
the shadow map according to the position of the fragment resulting in the stripe patterns. 
Because this happens because  the precision of the R value is 1/256 (=0.00390625), by 
adding a small offset, such as 0.005, to the R value, you can stop the stripe pattern from 
appearing. Note that any offset greater than 1/256 will work; 0.005 was chosen because it 
is 1/256 plus a small margin.  

 Next, let’s look at the JavaScript program that passes the data to the shader (see  Listing 
  10.16   ) with a focus on the type of transformation matrices passed. To draw a shadow 
clearly, the size of a texture map for the offscreen rendering defined at line 49 is larger 
than that of the  <canvas> .  

  Listing 10.16   Shadow.js (JavaScript Part)  

   49  var OFFSCREEN_WIDTH = 1024,  OFFSCREEN_HEIGHT = 1024; 

    50  var LIGHT_X = 0, LIGHT_Y = 7, LIGHT_Z = 2; 

   51

   52  function main() {

         ...

   63    // Initialize shaders for generating a shadow map

    64      var shadowProgram = createProgram(gl, SHADOW_VSHADER_SOURCE, 

                                                           ➥SHADOW_FSHADER_SOURCE); 

         ...

   72    // Initialize shaders for regular drawing

    73      var normalProgram = createProgram(gl, VSHADER_SOURCE, FSHADER_SOURCE); 

         ...

   85    // Set vertex information

   86    var triangle = initVertexBuffersForTriangle(gl);

   87    var plane = initVertexBuffersForPlane(gl);

         ...

   93    // Initialize a framebuffer object (FBO)

   94    var fbo = initFramebufferObject(gl);

         ...

   99    gl.activeTexture(gl.TEXTURE0); // Set a texture object to the texture unit

  100   gl.bindTexture(gl.TEXTURE_2D, fbo.texture);

         ...

  106    var viewProjMatrixFromLight  = new Matrix4(); // For the shadow map
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  107    viewProjMatrixFromLight.setPerspective(70.0, 

                                    ➥OFFSCREEN_WIDTH/OFFSCREEN_HEIGHT, 1.0, 100.0);

   108    viewProjMatrixFromLight.lookAt(LIGHT_X, LIGHT_Y, LIGHT_Z, 0.0, 0.0, 0.0, 0.0, 

                                                                        ➥1.0, 0.0); 

  109

  110    var viewProjMatrix = new Matrix4(); // For regular drawing

  111    viewProjMatrix.setPerspective(45, canvas.width/canvas.height, 1.0, 100.0);

  112    viewProjMatrix.lookAt(0.0, 7.0, 9.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

  113

  114    var currentAngle = 0.0; // Current rotation angle [degrees]

  115     var mvpMatrixFromLight_t = new Matrix4();   // For triangle

  116     var mvpMatrixFromLight_p = new Matrix4();   // For plane

  117    var tick = function() {

  118      currentAngle = animate(currentAngle);

  119      // Change the drawing destination to FBO

  120      gl.bindFramebuffer(gl.FRAMEBUFFER, fbo);

         ...

  124      gl.useProgram(shadowProgram); // For generating a shadow map

  125      // Draw the triangle and the plane (for generating  a shadow map)

   126      drawTriangle(gl, shadowProgram, triangle, currentAngle, 

                                                         ➥viewProjMatrixFromLight); 

  127       mvpMatrixFromLight_t.set(g_mvpMatrix);   // Used later

   128      drawPlane(gl, shadowProgram, plane, viewProjMatrixFromLight); 

  129       mvpMatrixFromLight_p.set(g_mvpMatrix);   // Used later

  130      // Change the drawing destination to color buffer

  131      gl.bindFramebuffer(gl.FRAMEBUFFER, null);

         ...

  135      gl.useProgram(normalProgram); // For regular drawing

  136       gl.uniform1i(normalProgram.u_ShadowMap, 0);  // Pass gl.TEXTURE0

  137      // Draw the triangle and plane (for regular drawing)

   138      gl.uniformMatrix4fv(normalProgram.u_MvpMatrixFromLight, false,

                                                   ➥mvpMatrixFromLight_t.elements); 

  139      drawTriangle(gl, normalProgram, triangle, currentAngle, viewProjMatrix);

   140      gl.uniformMatrix4fv(normalProgram.u_MvpMatrixFromLight, false, 

                                                   ➥mvpMatrixFromLight_p.elements); 

  141      drawPlane(gl, normalProgram, plane, viewProjMatrix);

  142

  143      window.requestAnimationFrame(tick, canvas);

  144    };

  145    tick();

  146  }   

 Let’s look at the  main()  function from line 52 in the JavaScript program. Line 64 
initializes the shaders for generating the shadow map. Line 73 initializes the shaders 
for normal drawing. Lines 86 and 87, which set up the vertex information and 



ptg11539634

CHAPTER 10  Advanced Techniques412

 initFramebufferObject()  at line 94, are the same as the  FramebufferObject.js . Line 94 
prepares a framebuffer object, which contains the texture object for a shadow map. Lines 
99 and 100 enable texture unit 0 and bind it to the target. This texture unit is passed to 
 u_ShadowMap  in the shaders for normal drawing.  

 Lines 106 to 108 prepare a view projection matrix to generate a shadow map. The key 
point is that the first three arguments (that is, the position of an eye point) at line 108 are 
specified as the position of the light source. Lines 110 to 112 prepare the view projection 
matrix from the eye point where you want to view the scene.  

 Finally, you draw the triangle and plane using all the preceding information. First you 
generate the shadow map, so you switch the drawing destination to the framebuffer 
object at line 120. You draw the objects by using the shaders for generating a shadow map 
( shadowProgram ) at lines 126 and 128. You should note that lines 127 and 129 save the 
model view projection matrices from the light source. Then the shadow map is generated, 
and you use it to draw shadows with the code from line 135. Line 136 passes the map to 
the fragment shader. Lines 138 and 140  pass the model view projection matrices saved at 
line 127 and 129, respectively, to  u_MvpMatrixFromLight .   

  Increasing Precision  

 Although you’ve successfully calculated the shadow and drawn the scene with the shadow 
included, the example code is only able to  handle situations in which the light source is 
close to the object. To see this, let’s change the y coordinate of the light source position 
to 40:  

  50  var LIGHT_X = 0, LIGHT_Y = 40, LIGHT_Z = 2;   

 If you run the modified sample program, you can see that the shadow is not displayed—as 
in the left side of  Figure   10.24   . Obviously, you want the shadow to be displayed correctly, 
as in the figure on the right.   

 The reason the shadow is no longer displayed when the distance from the light source to 
the object is increased is that the value of  gl_FragCoord.z  could not be stored in the R 
component of the texture map because it has only an 8-bit precision. A simple solution to 
this problem is to use not just the R component but the B, G, and A components. In other 
words, you save the value separately in 4 bytes. There is a routine procedure to do this, so 
let’s see the sample program. Only the fragment shader is changed.   
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  Sample Program (Shadow_highp.js)  

  Listing   10.17    shows the    fragment shader of  Shadow_highp.js . You can see that the 
processing to handle the z value is more complex than that in  Shadow.js .  

  Listing 10.17   Shadow_highp.js  

  1  // Shadow_highp.js

         ...

  10  // Fragment shader program for creating a shadow map

  11  var SHADOW_FSHADER_SOURCE =

         ...

  15    'void main() {\n' +

   16    '  const vec4 bitShift = vec4(1.0, 256.0, 256.0 * 256.0, 256.0 * 256.0 * 

                                                                      ➥256.0);\n' + 

   17    '  const vec4 bitMask = vec4(1.0/256.0, 1.0/256.0, 1.0/256.0, 0.0);\n' + 

  18     '  vec4 rgbaDepth = fract(gl_FragCoord.z * bitShift);\n' + 

  19     '  rgbaDepth -= rgbaDepth.gbaa * bitMask;\n' + 

  20    '  gl_FragColor = rgbaDepth;\n' +

  21    '}\n';

         ...

  37  // Fragment shader program for regular drawing

  38  var FSHADER_SOURCE =

         ...

  45    // Recalculate the z value from the rgba

   46      'float unpackDepth(const in vec4 rgbaDepth) {\n' + 

   47    '  const vec4 bitShift = vec4(1.0,  1.0/256.0, 1.0/(256.0 * 256.0), 

                                                ➥1.0/(256.0 * 256.0 * 256.0));\n' + 

 Figure 10.24   The shadow is not displayed        
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  48     '  float depth = dot(rgbaDepth, bitShift);\n' + 

   49    '  return depth;\n' + 

   50    '}\n' + 

  51    'void main() {\n' +

  52    '  vec3 shadowCoord = (v_PositionFromLight.xyz / 

                                            ➥v_PositionFromLight.w)/2.0 + 0.5;\n' +

  53    '  vec4 rgbaDepth = texture2D(u_ShadowMap, shadowCoord.xy);\n' +

  54     '  float depth = unpackDepth(rgbaDepth);\n' +   // Recalculate the z

  55    '  float visibility = (shadowCoord.z > depth + 0.0015)? 0.7:1.0;\n'+

  56    '  gl_FragColor = vec4(v_Color.rgb * visibility, v_Color.a);\n' +

  57    '}\n';   

 The code that splits  gl_FragCoord.z  into 4 bytes (RGBA) is from lines 16 to 19. Because 1 
byte can represent up to 1/256, you can store the value greater than 1/256 in R, the value 
less than 1/256 and greater than 1/(256*256) in G, the value less than 1/(256*256) and 
greater than 1/(256*256*256) in B, and the rest of value in A. Line 18 calculates each value 
and stores it in the RGBA components, respectively. It can be written in one line using a 
 vec4  data type. The function  fract()  is a built-in one that discards numbers below the 
decimal point for the  value specified as its argument. Each value in  vec4 , calculated at 
line 18, has more precision than 1 byte, so line 19 discards the value that does not fit in 1 
byte. By substituting this result to  gl_FragColor  at line 20, you can save the z value using 
all four components of the RGBA type and achieve higher precision.  

  unpackDepth()  at line 54 reads out the z value from the RGBA. This function is defined at 
line 46. Line 48 performs the following calculation to convert the RGBA value to the origi-
nal z value. As you can see, the calculation is the same as the inner product, so you use 
 dot()  at line 48.  

        ( ) ( )= × + +
×

+
× ×

depth rgbDepth r
rgbaDepth g rgbaDepth b rgbaDepth a

. 1.0
.

256.0

.

256.0   256.0

.

256.0   256.0   256.0

 Now you have retrieved the distance (z value) successfully, so you just have to draw the 
shadow by comparing the distance with  shadowCoord.z  at line 55. In this case, 0.0015 
is used as the value for adjusting the error (the stripe pattern), instead of 0.005. This is 
because the precision of the z value stored in the shadow map is a  float  type of  medium  
precision (that is, its precision is 2 –10  = 0.000976563, as shown in  Table   6.15    in  Chapter   6   ). 
So you add a little margin to it and chose 0.0015 as the value. After that, the shadow can 
be drawn correctly.    

  Load and Display 3D Models  
 In the previous chapters, you drew 3D objects by   specifying their vertex coordinates 
and color information by hand and stored them in arrays of type  Float32Array  in 
the JavaScript program. However, as mentioned earlier in the book, in most cases you 
will actually read the vertex coordinates and color information from 3D model files 
constructed by a 3D modeling tool.  
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 In this section, you construct a sample program that reads a 3D model constructed using 
a 3D modeling tool. For this example, we use the Blender  6   modeling tool, which is a 
popular tool with a free version available. Blender is   able to export 3D model files using 
the well-known OBJ format, which is text based and easy to read, understand, and parse. 
OBJ is a geometry definition file format originally developed by Wavefront Technologies. 
This file format is open and has been adopted by other 3D graphics vendors. Although 
this means it is reasonably well known and used, it also means  that there are a number 
of variations in the format. To simplify the example code, we have made a number of 
assumptions, such as not using textures. However, the example gives you a good under-
standing of how to read model data into your programs and provides a basis for you to 
begin experimentation. The approach taken in the example code is designed to be reason-
ably generic and can be used for other text-based formats.   

 Start Blender and create a cube like that shown in  Figure   10.25   . The color of one face of 
this cube is orange, and the other faces are red. Then export the model to a file named 
 cube.obj . (You can find an example of it in the  resources  directory with the sample 
programs.) Let’s take a look at  cube.obj , which, because it is a text file, can be opened 
with a simple text editor.  

 
 Figure 10.25   Blender, 3D modeling tool         

 6.    www.blender.org/  

http://www.blender.org/
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  Figure   10.26    shows the contents of  cube.obj . Line numbers have been added to help with 
the explanation and would not normally be in the file.  

 

1 '' : e l i F J B O ) 0 b u s ( 0 6 . 2 v r e d n e l B # 
2 g r o . r e d n e l b . w w w # 
3 l t m . e b u c b i l l t m 
4 e b u C o 
5 0 0 0 0 0 0 . 1 - 0 0 0 0 0 0 . 1 - 0 0 0 0 0 0 . 1 v 
6 0 0 0 0 0 0 . 1 0 0 0 0 0 0 . 1 - 0 0 0 0 0 0 . 1 v 
7 0 0 0 0 0 0 . 1 0 0 0 0 0 0 . 1 - 0 0 0 0 0 0 . 1 - v 
8 0 0 0 0 0 0 . 1 - 0 0 0 0 0 0 . 1 - 0 0 0 0 0 0 . 1 - v 
9 0 0 0 0 0 0 . 1 - 0 0 0 0 0 0 . 1 0 0 0 0 0 0 . 1 v 
0 1 0 0 0 0 0 . 1 0 0 0 0 0 0 . 1 0 0 0 0 0 0 . 1 v 
1 0 0 0 0 0 0 . 1 0 0 0 0 0 0 . 1 0 0 0 0 0 0 . 1 - v 
2 0 0 0 0 0 0 . 1 - 0 0 0 0 0 0 . 1 0 0 0 0 0 0 . 1 - v 
3 l a i r e t a M l t m e s u 
4 4 3 2 1 f 
5 6 7 8 5 f 
6 3 7 6 2 f 
7 4 8 7 3 f 
8 8 4 1 5 f 
9 1 0 0 . l a i r e t a M l t m e s u 
0 2 6 5 1 f 

 Figure 10.26   cube.obj         

 Once the model file has been created by the modeling tool, your program needs to read 
the data and store it in the same type of data structures that you’ve used before. The 
following steps are required:  

    1.   Prepare the array ( vertices ) of type  Float32Array  and read the vertex coordinates of 
the model from the file into the array.   

   2.   Prepare the array ( colors ) of type  Float32Array  and read the colors of the model 
from the file into the array.   

   3.   Prepare the array ( normals ) of type  Float32Array  and read the normals of the model 
form the file into the array.   

   4.   Prepare the array ( indices ) of type  Uint16Array  (or  Uint8Array ) and read the indices 
of the vertices that specify the triangles that make up the model from the file into 
the array.   

   5.   Write the data read during steps 1 through 4 into the buffer object and then draw 
the model using  gl.drawElements() .    

 So in this case, you read the data described in  cube.obj  (shown in  Figure   10.26   ) in the 
appropriate arrays and then draw the model in step 5. Reading data from the file requires 
understanding the format of the file  cube.obj  (referred to as the OBJ file).  
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  The OBJ File Format  

 An OBJ file is made   up of several sections,  7   including vertex positions, face definitions, 
and material definitions. There may be multiple vertices, normals, and faces within their 
sections:   

    •   Lines beginning with a hash character (#) are comments. Lines 1 and 2 in  Figure 
  10.26    are comments generated by Blender describing its version number and origin. 
The remaining lines define the 3D model.   

   •   Line 3 references an external materials file. The OBJ format maintains the material 
information of the model in an external material file called an MTL file.  

  mtllib  <external mtl filename>  

 specifies that the materials file is  cube.mtl .   

   •   Line 4 specifies the named object in the following format:  

 <object name>  

 This sample program does not use this information.   

   •   Lines 5 to 12 define vertex positions in the following format using (x,y,z[,w]) coordi-
nates, where w is optional and defaults to 1.0.  

  v  x y z [w]  

 In this example, it has eight vertices because the model is a standard cube.   

   •   Lines 13 to 20 specify a material and the faces that use the material. Line 13 specifies 
the material name, as defined in the MTL file referenced at line 4, and the specific 
material using the following format:  

  usemtl  <material name>   

   •   The following lines, 14 to 18, define faces of the model and the material to be 
applied to them. Faces are defined using lists of vertex, texture, and normal indices.  

  f  v1 v2 v3 v4 ...  

 v1, v2, v3, ... are the vertex indices starting from 1 and matching the correspond-
ing vertex elements of a previously defined vertex list. This sample program handles 
vertex and normals.  Figure   10.26    does not contain normals, but if a face has a 
normal, the following format would be used:  

  f  v1 // vn1 v2 // vn2 v3 // vn3 ...  

 vn1, vn2, vn3, ... are the normal indices starting from 1.     

 7   See  http://en.wikipedia.org/wiki/Wavefront_.obj_fi le  

http://en.wikipedia.org/wiki/Wavefront_.obj_file
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  The MTL File Format  

 The MTL file may define multiple   materials.  Figure   10.27    shows  cube.mtl .  

 

' ' : e l i F L T M r e d n e l B # 1 
2 : t n u o C l a i r e t a M # 2 

l a i r e t a M l t m w e n 3 
00 0 0 0 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 . 0 a K 4 
00 0 0 0 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 . 1 d K 5 
0 0 0 0 0 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 . 0 s K 6 

1 3 4 8 7 0 . 6 9 s N 7 
0 0 0 0 0 0 . 1 i N 8 

0 0 0 0 0 0 . 1 d 9 
0 m u l l i 0 1 

1 0 0 . l a i r e t a M l t m w e n 1 1 
0 0 0 0 0 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 . 0 a K 
0 0 0 0 0 0 . 0 0 0 0 0 5 4 . 0 0 0 0 0 0 0 . 1 d K 

2 1 
3 1 

0 0 0 0 0 0 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 . 0 s K 4 1 
1 3 4 8 7 0 . 6 9 s N 5 1 

0 0 0 0 0 0 . 1 i N 6 1 
0 0 0 0 0 0 . 1 d 7 1 

0 m u l l i 8 1 

 Figure 10.27   cube.mtl         

    •   Lines 1 and 2 are comments that Blender generates.   

   •   Each new material (from line 3) starts with the  newmtl  command:  

  newmtl  <material name>  

 This is the material name that is used in the OBJ file.   

   •   Lines 4 to 6 define the ambient, diffuse, and specular color using  Ka ,  Kd , and  Ks , 
respectively. Color definitions are in RGB format, where each component is between 
0 and 1. This sample program uses only diffuse color.   

   •   Line 7 specifies the weight of the specular color using  Ns . Line 8 specifies the optical 
density for the surface using  Ni . Line 9 specifies transparency using  d . Line 10 speci-
fies illumination models using  illum . The sample program does not use this item of 
information.    

 Given this understanding of the structure of the OBJ and MTL files, you have to extract 
the vertex coordinates, colors, normals, and indices describing a face from the file, write 
them into the buffer objects, and draw with  gl.drawElements() . The OBJ file may not 
have the information on normals, but you can calculate them from the vertex coordinates 
that make up a face by using a “cross product.”  8     

 Let’s look at the sample program.   

 8    If the vertices of a triangle are v0, v1, and v2, the vector of v0 and v1 is (x1, y1, z1), and the vector 

of v1 and v2 is (x2, y2, z2), then  the cross product is defi ned as (y1*z2 – z1*y2, z1*x2 – x1*z2, x1*y2 

– y1*z2). The result will be the normal for the triangle. (See the book  3D Math Primer for Graphics and 

Game Development. ) 
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  Sample Program (OBJViewer.js)  

 The basic steps are    as follows: (1) prepare an empty buffer object, (2) read an OBJ file (an 
MTL file), (3) parse it, (4) write the results into the buffer object, and (5) draw. These steps 
are implemented as shown in  Listing   10.18   .  

  Listing 10.18   OBJViewer.js  

   1 // OBJViewer.js (

      ...

   28 function main() {

      ...

   40   if (!initShaders(gl, VSHADER_SOURCE, FSHADER_SOURCE)) {

   41     console.log('Failed to initialize shaders.');

   42     return;

   43   }

      ...

   49   // Get the storage locations of attribute and uniform variables

   50   var program = gl.program;

   51   program.a_Position = gl.getAttribLocation(program, 'a_Position');

   52   program.a_Normal = gl.getAttribLocation(program, 'a_Normal');

   53   program.a_Color = gl.getAttribLocation(program, 'a_Color');

      ...

   63   // Prepare empty buffer objects for vertex coordinates, colors, and normals

   64   var model = initVertexBuffers(gl, program);

      ...

   75   // Start reading the OBJ file

   76   readOBJFile('../resources/cube.obj', gl, model, 60, true);

      ...

   81     draw(gl, gl.program, currentAngle, viewProjMatrix, model);

      ...

   85 }

    86

   87 // Create a buffer object and perform the initial configuration

   88 function initVertexBuffers(gl, program) {

   89   var o = new Object();

   90   o.vertexBuffer = createEmptyArrayBuffer(gl, program.a_Position, 3, gl.FLOAT);

   91   o.normalBuffer = createEmptyArrayBuffer(gl, program.a_Normal, 3, gl.FLOAT);

   92   o.colorBuffer = createEmptyArrayBuffer(gl, program.a_Color, 4, gl.FLOAT);

   93   o.indexBuffer = gl.createBuffer();

      ...

   98   return o;

   99 }

  100

  101 // Create a buffer object, assign it to attribute variables, and enable the 

                                                                        ➥assignment
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  102 function createEmptyArrayBuffer(gl, a_attribute, num, type) {

  103   var buffer =  gl.createBuffer();  // Create a buffer object

      ...

  108   gl.bindBuffer(gl.ARRAY_BUFFER, buffer);

  109   gl.vertexAttribPointer(a_attribute, num, type, false, 0, 0);

  110   gl.enableVertexAttribArray(a_attribute);  // Enable the assignment

  111

  112   return buffer;

  113 }

  114

  115  // Read a file

  116 function readOBJFile(fileName, gl, model, scale, reverse) {

  117   var request = new XMLHttpRequest();

  118

  119   request.onreadystatechange = function() {

  120     if (request.readyState === 4 && request.status !== 404) {

  121       onReadOBJFile(request.responseText, fileName, gl, model, scale, reverse);

  122     }

  123   }

  124   request.open('GET', fileName, true); // Create a request to get file

  125   request.send();                      // Send the request

  126 }

  127

  128 var g_objDoc = null;      // The information of OBJ file

  129 var g_drawingInfo = null; // The information for drawing 3D model

  130

  131 // OBJ file has been read

  132 function onReadOBJFile(fileString, fileName, gl, o, scale, reverse) {

  133   var objDoc = new OBJDoc(fileName);  // Create a OBJDoc object

  134   var result  = objDoc.parse(fileString, scale, reverse);

  135   if (!result) {

  136     g_objDoc = null; g_drawingInfo = null;

  137     console.log("OBJ file parsing error.");

  138     return;

  139   }

  140   g_objDoc = objDoc;

  141 }   

 Within the JavaScript, the processing in  initVertexBuffers() , called at line 64, has been 
changed. The function simply prepares an empty buffer object for the vertex coordinates, 
colors, and normals for the 3D model to be displayed. After parsing the OBJ file, the infor-
mation corresponding to each buffer object will be written in the object.  
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 The  initVertexBuffers()  function at line 88 creates the appropriate empty buffer objects 
at lines 90 to 92 using  createEmptyArrayBuffer()  and assigns them to an attribute vari-
able. This function is defined at line 102 and, as you can see, creates a buffer object 
(line 103), assigns it to an attribute variable (line 109), and enables the assignment (line 
110), but it does not write the data. After storing these buffer objects to  model  at line 
64, the preparations of the buffer object are completed. The next step is to read the OBJ 
file contents into this buffer, which takes place at line 76 using   readOBJFile() . The first 
argument is the location of the file (URL), the second one is  gl , and the third one is the 
 Object  object ( model ) that packages the buffer objects. The tasks carried out by this func-
tion are similar to those when loading a texture image using the  Image  object and are 
shown here:  

   (2.1) Create an  XMLHttpRequest  object (line 117).   

  (2.2) Register the event handler to be called when the loading of the file is completed 
(line 119).   

  (2.3) Create a request to acquire the file using the  open()  method (line 124).   

  (2.4) Send the request to acquire the file (line 125).    

 Line 117 creates the  XMLHttpRequest  object, which sends an HTTP request to a web server. 
Line 119 is the registration of the event handler that will be called after the browser has 
loaded the file. Line 124 creates the request to acquire the file using the  open()  method. 
Because you are requesting a file, the first argument is  GET , and the second one is the URL 
for the file. The last one specifies whether or not the request is asynchronous. Finally, line 
125 uses the  send()  method to send the request to the web server to get the file.  9     

 Once the browser has loaded the file, the event handler at line 119 is called. Line 120 
checks for any errors returned by the load request. If the  readyState  property is 4, it indi-
cates that the loading process is completed. However, if the  readyState  is not 4 and the 
 status  property is 404, it indicates that the specified file does not exist. The 404 error 
is the same as “404 Not Found,” which is displayed when you try to display a web page 
that does not exist. When the file has been loaded successfully,  onReadOBJFile()  is called, 
which is defined at line 132 and  takes five arguments. The first argument,  responseText , 
contains the contents of the loaded file as one string. An  OBJDoc  object is created at line 
133, which will be used, via the  parse()  method, to extract the results in a form that 
WebGL can easily use. The details will be explained next. Line 140 assigns the  objDoc , 
which contains the parsing result in  g_objDoc  for rendering the model later.   

 9    Note: When you want to  run the sample programs that use external fi les in Chrome from your 

local disk, you should add the option  --allow-file-access-from-files  to Chrome. This is for 

security reasons. Chrome, by default, does not allow access to local fi les such as  ../resources/

cube.obj . For Firefox, the equivalent parameter, set via  account:config , is  security.fileuri.

strict_origin_policy , which should be set to  false . Remember to set it back as you open a 

security loophole if local fi le access is enabled. 
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  User-Defined Object  

 Before proceeding to the explanation of   the remaining code of  OBJViewer.js , you need to 
understand how to create your own (user-defined) objects in JavaScript.  OBJViewer.js  uses 
user-defined objects to parse an OBJ file. In JavaScript, you can create user-defined objects 
which, once created, are treated in the same way as built-in objects like  Array  and  Date .  

 The following is the  StringParser  object used in  OBJViewer.js . The key aspects are how 
to define a  constructor  to create a user-defined object and how to add methods to the 
object. The constructor is a special method that is called when creating an object with 
 new . The following is the constructor for the StringParser object:  

  595  // Constructor

  596  var StringParser = function(str) {

  597    this.str;   // Store the string specified by the argument

  598    this.index; // Position in the string to be processed

  599    this.init(str);

  600  }   

 You can define the constructor with the anonymous function (see  Chapter   2   ). Its param-
eter is the one that will be specified when creating the object with  new . Lines 597 and 
598 are the declaration of properties that can be used for this new object type, similar to 
properties like the length property of Array. You can define the property by writing the 
keyword  this  followed by  .  and the property name. Line 599 then calls  init() , an initial-
ization method that has been defined for this user-defined object.  

 Let’s take a look at  init() . You can add a method to the object by writing the method 
name after the keyword  prototype . The body of the method is also defined using an 
anonymous function:  

  601  // Initialize StringParser object

  602  StringParser.prototype.init = function(str) {

  603    this.str = str;

  604    this.index = 0;

  605  }   

 What is convenient here is that you can access the property that is defined in the 
constructor from the method. The  this.str  at line 603 refers to  this.str  defined at line 
597 in the constructor. The  this.index  at line 604 refers to  this.index  at line 598 in the 
constructor. Let’s try using this  StringParse  object:  
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  var sp = new StringParser('Tomorrow is another day.');

  alert(sp.str);        // "Tomorrow is another day." is displayed.

  sp.str = 'Quo Vadis'; // The content of str is changed to "Quo Vadis".

  alert(sp.str);        // "Quo Vadis" is displayed

  sp.init('Cinderella, tonight?');

  alert(sp.str);        // "Cinderella, tonight?" is displayed   

 Let’s look at another method,  skipDelimiters() , that skips the delimiters (tab, space, (, ), 
or ”) in a string:  

  608  StringParser.prototype.skipDelimiters = function() {

  609    for(var i = this.index, len = this.str.length; i < len; i++) {

  610      var c = this.str.charAt(i);

  611      // Skip TAB, Space, (, ), and "

  612      if (c == '\t'|| c == ' ' || c == '(' || c == ')' || c == '"') continue;

  613      break;

  614    }

  615    this.index = i;

  616  }   

 The  charAt()  method at line 610 is supported by the  String  object that manages a string 
and retrieves the character specified by the argument from the string.  

 Now let’s look at the parser code in  OBJViewer.js .   

  Sample Program (Parser Code in OBJViewer.js)  

  OBJViewer.js  parses the content     of an OBJ file line by line and converts it to the structure 
shown in  Figure   10.28   . Each box in  Figure   10.28    is a user-defined object. Although the 
parser code in  OBJViewer.js  looks quite complex, the core parsing process is simple. The 
complexity comes because it is repeated several times. Let’s take a look at the core process-
ing, which once you understand will allow you to understand the whole process.  
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 Figure 10.28   The internal structure after parsing an OBJ file         

  Listing   10.19    shows the basic code of  OBJViewer.js .  

  Listing 10.19   OBJViewer.js (Parser Part)  

 214 // OBJDoc object

  215 // Constructor

  216 var OBJDoc = function(fileName) {

  217   this.fileName = fileName;

  218   this.mtls = new Array(0);      // Initialize the property for MTL

  219   this.objects = new Array(0);   // Initialize the property for Object

  220   this.vertices = new Array(0);  // Initialize the property for Vertex

  221   this.normals = new Array(0);   // Initialize the property for Normal

  222 }

  223

  224 // Parsing the OBJ file

  225 OBJDoc.prototype.parse = function(fileString, scale, reverseNormal) {
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  226   var lines = fileString.split('\n');  // Break up into lines

  227   lines.push(null); // Append null

  228   var index = 0;    // Initialize index of line

  229

  230   var currentObject = null;

  231   var currentMaterialName = "";

  232

  233   // Parse line by  line

  234   var line;         // A string in the line to be parsed

  235   var sp = new StringParser();  // Create StringParser

  236   while ((line = lines[index++]) != null) {

  237     sp.init(line);                  // init StringParser

  238     var command = sp.getWord();     // Get command

  239     if(command == null)     continue;  // check null command

  240

  241     switch(command){

  242     case '#':

  243       continue;  // Skip comments

  244     case 'mtllib':     // Read Material chunk

  245       var path = this.parseMtllib(sp, this.fileName);

  246       var mtl = new MTLDoc();   // Create MTL instance

  247       this.mtls.push(mtl);

  248       var request = new XMLHttpRequest();

  249       request.onreadystatechange = function() {

  250         if (request.readyState == 4) {

  251           if (request.status != 404) {

  252             onReadMTLFile(request.responseText, mtl);

  253           }else{

  254             mtl.complete = true;

  255           }

  256          }

  257       }

  258       request.open('GET', path, true); // Create a request to get file

  259       request.send();                  // Send the request

  260       continue; // Go to the next line

  261     case 'o':

  262     case 'g':   // Read Object name

  263       var object = this.parseObjectName(sp);

  264       this.objects.push(object);

  265       currentObject = object;

  266       continue; // Go to the next line

  267     case 'v':   // Read vertex

  268       var vertex = this.parseVertex(sp, scale);

  269       this.vertices.push(vertex);

  270       continue; // Go to the next line
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  271     case 'vn':   // Read normal

  272       var normal = this.parseNormal(sp);

  273       this.normals.push(normal);

  274       continue; // Go to the next line

  275     case 'usemtl': // Read Material name

  276       currentMaterialName = this.parseUsemtl(sp);

  277       continue; // Go to the next line

  278     case 'f':  // Read face

  279       var face = this.parseFace(sp, currentMaterialName, this.vertices, 

                                                                         ➥reverse);

  280       currentObject.addFace(face);

  281       continue; // Go to the next line

  282     }

  283   }

  284

  285   return true;

  286 }   

 Lines 216 to 222 define the constructor for the  OBJDoc  object, which consists of five prop-
erties that will be parsed and set up. The actual parsing is done in the  parse()  method at 
line 225. The content of the OBJ file is passed as one string to the argument  fileString  of 
the  parse()  method and then split into manageable pieces using the  split()  method. 
This method splits a string into pieces delimited by the characters specified as the argu-
ment. As you can see at line 226, the argument specifies “\n” (new line), so each line is 
stored in  this.line s as an array.  null  is appended at  the end of the array at line 227 to 
make it easy to find the end of the array.  this.index  indicates how many lines have been 
parsed and is initialized to 0 at line 228.  

 You have already seen the  StringParser  object, which is created at line 235, in the previ-
ous section. This object is used for parsing the content of the line.  

 Now you are ready to start parsing the OBJ file. Each line is stored in  line  using  this.
lines[this.index++]  at line 236. Line 237 writes the line to  sp  ( StringParser ). Line 238 
gets the first word of the line using  sp.getWord()  and stores it in  command . You use the 
methods shown in  Table   10.3   , where “word” in the table indicates a string surrounded by 
a delimiter (tab, space, (, ), or ”).  

  Table 10.3   Method that StringParser  Supports  

  Method     Description   

  StringParser.init(str)    Initialize  StringParser  to be able to parse  str.   

  StringParser.getWord()    Get a word.  

  StringParser.skipToNext-
Word()   

 Skip to the beginning of the next word.  
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  Method     Description   

  StringParser.getInt()    Get a word and convert it to an integer number.  

  StringParser.getFloat()    Get a word and convert it to a floating point number.  

 The  switch  statement at line 241 checks the command to determine how to process the 
following lines in the OBJ file.  

 If the command is  #  (line 242), the line is a comment. Line 243 skips it using  continue .  

 If the command is  mtllib  (line 241), the line is a reference to an MTL file. Line 245 gener-
ates the path to the file. Line 246 creates an MTLDoc object for storing the material infor-
mation in the MTL file, and line 247 stores it in  this.mtls . Then lines 248 to 259 read the 
file in the same way that you read an OBJ file. The MTL file is parsed by  onReadMTLfile() , 
which is called when it is loaded.  

 If the command is  o  (line 261) or  g  (line 262), it indicates a named object or group. Line 
263 parses the line and returns the results in  OBJObject . This object is stored in  this.
objects  at line 264 and  currentObject .  

 If the command is  v , the line is a vertex position. Line 268 parses (x, y, z) and returns the 
result in  Vertex  object. This object is stored in  this.vertices  at line 269.  

 If the command is  f , it indicates that the line is a face definition. Line 279 parses it and 
returns the result in the  Face  object. This object is stored in the  currentObject . Let’s take 
a look at  parseVertex() , which is shown in  Listing   10.20   .  

  Listing 10.20   OBJViewer.js (parseVertex())  

  302 OBJDoc.prototype.parseVertex = function(sp, scale) { 

   303   var x = sp.getFloat() * scale; 

   304   var y = sp.getFloat() * scale; 

   305   var z = sp.getFloat() * scale; 

   306   return (new Vertex(x, y, z)); 

   307 }    

 Line 303 retrieves the x value from the line using  sp.getFloat() . A scaling factor is 
applied when the model is too small or large. After retrieving the three coordinates, line 
306 creates a  Vertex  object using x, y, and z and returns it.  

 Once the OBJ file and MTL files have been fully parsed, the arrays for the vertex coordi-
nates, colors, normals, and indices are created from the structure shown in  Figure   10.28   . 
Then  onReadComplete()  is called to write them into the buffer object (see  Listing   10.21   ).  
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  Listing 10.21   OBJViewer.js (onReadComplete())  

 176 // OBJ File has been read completely

  177 function onReadComplete(gl, model, objDoc) {

  178   // Acquire the vertex coordinates and colors from OBJ file

  179   var drawingInfo = objDoc.getDrawingInfo();

  180

  181   // Write date into the buffer object

  182   gl.bindBuffer(gl.ARRAY_BUFFER, model.vertexBuffer);

  183   gl.bufferData(gl.ARRAY_BUFFER, drawingInfo.vertices,gl.STATIC_DRAW);

  184

  185   gl.bindBuffer(gl.ARRAY_BUFFER, model.normalBuffer);

  186   gl.bufferData(gl.ARRAY_BUFFER, drawingInfo.normals, gl.STATIC_DRAW);

  187

  188   gl.bindBuffer(gl.ARRAY_BUFFER, model.colorBuffer);

  189   gl.bufferData(gl.ARRAY_BUFFER, drawingInfo.colors, gl.STATIC_DRAW);

  190

  191   // Write the indices to the buffer object

  192   gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, model.indexBuffer);

  193   gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, drawingInfo.indices, gl.STATIC_DRAW);

  194

  195   return drawingInfo;

  196 }   

 This method is straightforward and starts at Line 178, which retrieves the drawing infor-
mation from  objDoc  that contains the results from parsing the OBJ file. Lines 183, 186, 
189, and 193 write vertices, normals, colors, and indices into the respective buffer objects.  

 The function  getDrawingInfo()  at line 451 retrieves the vertices, normals, colors, and 
indices from the  objDoc  and is shown in  Listing   10.22   .  

  Listing 10.22   OBJViewer.js (Retrieving the Drawing Information)  

 450 // Retrieve the information for drawing 3D model

  451 OBJDoc.prototype.getDrawingInfo = function() {

  452   // Create an array for vertex coordinates, normals, colors, and indices

  453   var numIndices = 0;

  454   for (var i = 0; i < this.objects.length; i++){

  455     numIndices += this.objects[i].numIndices;

  456   }

  457   var numVertices = numIndices;

  458   var vertices = new Float32Array(numVertices * 3);

  459   var normals = new Float32Array(numVertices * 3);

  460   var colors = new Float32Array(numVertices * 4);

  461   var indices = new Uint16Array(numIndices);

  462

  463   // Set vertex, normal, and color
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  464   var index_indices = 0;

  465   for (var i = 0; i < this.objects.length; i++){

  466     var object = this.objects[i];

  467     for (var j = 0; j  < object.faces.length; j++){

  468        var face = object.face[j];

  469       var color = this.findColor(face.materialName);

  470       var faceNormal = face.normal;

  471       for (var k = 0; k < face.vIndices.length; k++){

   472         // Set index 

   473         indices[index_indices] = index_indices; 

   474         // Copy vertex 

   475         var vIdx = face.vIndices[k]; 

   476         var vertex = this.vertices[vIdx]; 

   477         vertices[index_indices * 3 + 0] = vertex.x; 

   478         vertices[index_indices * 3 + 1] = vertex.y; 

   479         vertices[index_indices * 3 + 2] = vertex.z; 

   480         // Copy color 

   481         colors[index_indices * 4 + 0] = color.r; 

   482         colors[index_indices * 4 + 1] = color.g; 

   483         colors[index_indices * 4 + 2] = color.b; 

   484         colors[index_indices * 4 + 3] = color.a; 

   485         // Copy normal 

   486         var nIdx = face.nIndices[k]; 

   487          if(nIdx >= 0){ 

   488           var normal =  this.normals[nIdx]; 

   489           normals[index_indices * 3 + 0] = normal.x; 

   490           normals[index_indices * 3 + 1] = normal.y; 

   491           normals[index_indices * 3 + 2] = normal.z; 

   492         }else{ 

   493           normals[index_indices * 3 + 0] = faceNormal.x; 

   494           normals[index_indices * 3 + 1] = faceNormal.y; 

   495           normals[index_indices * 3 + 2] = faceNormal.z; 

  4 96         } 

  49 7         index_indices ++; 

  498        } 

   499     } 

   500   } 

   501 

   502   return new DrawingInfo(vertices, normals, colors, indices); 

   503 };    

 Line 454 calculates the number of indices using a  for  loop. Then lines 458 to 461 create 
typed arrays for storing vertices, normals, colors, and indices that are assigned to the 
appropriate buffer objects. The size of each array is determined by the number of indices 
at line 454.  
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 The program traverses the  OBJObject  objects and its  Face  objects in the order shown in 
 Figure   10.28    and stores the information in the arrays  vertices ,  colors , and  indices .  

 The  for  statement at line 465 loops, extracting each  OBJObject  one by one from the result 
of the earlier parsing. The  for  statement at line 467 does the same for each  Face  object 
that makes up the  OBJObject  and performs the following steps for each  Face :  

    1.   Lines 469 finds the color of the  Face  using  materialName  and stores the color in 
 color . Line 468 stores the normal of the face in  faceNomal  for later use.   

   2.   The  for  statement at line 471 loops, extracting vertex indices from the face, storing 
its vertex position in  vertices  (lines 477 to 479), and storing the r, g, and b compo-
nents of the color in  colors  (lines 482 to 484). The code from line 486 handles 
normals. OBJ files may or may not contain normals, so line 487 checks for that. If 
normals are found in the OBJ file, lines 487 to 489 store them in  normals . Lines 492 
to 494 then store the normals this program generates.    

 Once you complete these steps for all  OBJObjects , you are ready to draw. Line 502 returns 
the information for drawing the model in a  DrawingInfo  object, which manages the 
vertex information that has to be written in the buffer object, as described previously.  

 Although this has been, by necessity, a rapid explanation, at this stage you should under-
stand how the contents of the OBJ file can be read in, parsed, and displayed with WebGL. 
If you want to read multiple model files in a single scene, you would repeat the preceding 
processes. There are several other models stored as OBJ files in the  resources  directory of 
the sample programs, which you can look at and experiment with to confirm your under-
standing (see  Figure   10.29   ).  

 
 Figure 10.29   Various 3D models           

  Handling Lost Context  
 WebGL uses the underlying graphics hardware, which is a shared resource managed by the 
operating system. There are several situations where this  resource can be “taken away,” 
resulting in information stored within the graphics hardware being lost. These include 
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situations when another program takes over the hardware or when the machine hiber-
nates. When this happens, information that WebGL uses to draw correctly, its “context,” 
can be lost. A good example is when you run a WebGL program on a notebook PC or 
smart phone and it enters hibernation mode. Often, an error message is displayed before 
the machine hibernates. When  the machine awakes after you press the power button, 
the system returns to the original state, but browser that is running the WebGL program 
may display nothing on the screen, as on the right side of  Figure   10.30   . Because the back-
ground color of the web page that this sample program draws is white, the web browser 
shows a completely white screen.  

 Before Hibernation After Hibernation

 Figure 10.30   WebGL program stops after returning from a hibernation mode         

 For example, if you are running  RotatingTriangle , the following message may be 
displayed on the console:  

  WebGL error CONTEXT_LOST_WEBGL in uniformMatrix4fv([object WebGLUniformLocation, 

false, [object Float32Array]]   

 This indicates that the error occurred when the program performed the  gl.uniformMa-
trix4fv()  either before the system entered the hibernation mode or on return from hiber-
nation. The error message will differ slightly depending on what the program was trying 
to do at the time of hibernation. In this section, we will explain how to deal with this 
problem.  

  How to Implement Handling Lost Context  

 As previously discussed, context can be lost for any   number of reasons. However, WebGL 
supports two events to indicate state changes within the system: a  context lost event  
( webglcontextlost ) and a  context restore event  ( webglcontextrestored ). See  Table   10.4   .  
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  Table 10.4   The Context Events  

  Event     Description   

  Webglcontextlost    Occurs when the rendering context for WebGL is lost  

  webglcontextrestored    Occurs when the browser completes a reset of the WebGL system  

 When the context lost event occurs, the rendering context acquired by  getWebGLContext()  
(that is  gl  in the sample programs) becomes invalid, and any operations carried out using 
the  gl  context are invalidated. These processes include creating buffer objects and texture 
objects, initializing shaders, setting the clear color, and more. After the browser resets the 
WebGL system, the context restore event is generated, and your program needs to redo 
these operations. The other variables in your JavaScript program are not affected and can 
be used as normal.  

 Before taking a look at the sample program, you need to use the  addEventListener()  
method of the  <canvas>  to register the event handlers for the context lost event and the 
context restore event. This is because the  <canvas>  does not support a specific property 
that you can use to register context event handlers. Remember that in previous examples 
you used the  onmousedown  property of  <canvas>  to register the event handler for the 
mouse event.    

   canvas.addEventListener(type, handler, useCapture)   

 Register the event handler specified by  handler  to the  <canvas>  element.  

  Parameters    type   Specifies the name of the event to listen for (string).  

 handler   Specifies the event handler to be called when the event 
occurs. This function is called with one argument (event 
object).  

 useCapture   Specifies whether the event needs to be captured or not 
(boolean). If  true , the event is not dispatched to other 
elements. If  false , the event is dispatched to others.  

  Return value    None  

  Sample Program (RotatingTriangle_contextLost.js)  

 In this section, you will construct    a sample program,  RotatingTriangle_contextLost , 
which modifies  RotatingTriangle  to make it possible to deal with the context lost event 
(shown in  Figure   10.30   ). The sample program is shown in  Listing   10.23   .  
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  Listing 10.23   RotatingTriangle_contextLost.js  

  1  // RotatingTriangle_contextLost.js

         ...

  16  function main() {

  17    // Retrieve <canvas> element

  18    var canvas = document.getElementById('webgl');

  19

   20    // Register event handler for context lost and restored events 

   21    canvas.addEventListener('webglcontextlost', contextLost, false); 

   22    canvas.addEventListener('webglcontextrestored', function(ev) 

                                                       ➥{ start(canvas); }, false); 

  23

  24     start(canvas);    // Perform WebGL-related processes

  25  }

         ...

   29  // Current rotation angle 

  30   var g_currentAngle = 0.0;   // Changed from local variable to global

  31   var g_requestID;        // The return value of requestAnimationFrame()

  32

   33  function start(canvas) { 

  34    // Get the rendering context for WebGL

  35    var gl = getWebGLContext(canvas);

         ...

  41    // Initialize shaders

  42    if (!initShaders(gl, VSHADER_SOURCE, FSHADER_SOURCE)) {

         ...

  45    }

  46

  47    var n = initVertexBuffers(gl);   // Set vertex coordinates

         ...

  55    // Get storage location of  u_ModelMatrix

  56    var u_ModelMatrix = gl.getUniformLocation(gl.program, 'u_ModelMatrix');

         ...

  62    var modelMatrix = new Matrix4();   // Create a model matrix

  63

  64    var tick = function() {   // Start drawing

  65       g_currentAngle  = animate(g_currentAngle); // Update rotation angle

  66      draw(gl, n, g_currentAngle, modelMatrix, u_ModelMatrix);

  67       g_requestID  = requestAnimationFrame(tick, canvas);

  68    };

  69    tick();

  70  }

  71

  72   function contextLost(ev) {   // Event handler for context lost event
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  73     cancelAnimationFrame(g_requestID);  // Stop animation

  74     ev.preventDefault();                // Prevent the default behavior

  75   }    

 The processing of the context lost event has no implications for the shaders, so let’s focus 
on the  main()  function in the JavaScript program starting at line 16. Line 21 registers the 
event handler for the context lost event, and line 22 registers the event handler for the 
context restore event. The  main()  function ends by calling the function  start()  at 
line 24.  

 The  start()  function, defined at line 33, contains the same steps as in  RotatingTriangle.
js . They are the processes you have to redo when the context lost event occurs. There are 
two changes from  RotatingTriangle.js  to handle lost context.  

 First, the current rotation angle, at line 65, is stored in a global variable  g_currentAngle  
(line 30) instead of a local variable. This allows you to draw the triangle using the angle 
held in the global variable when a context restore event occurs. Line 67 stores the return 
value of  requestAnimationFrame()  in the global variable  g_requestID  (line 31). This is 
used to cancel the registration of the function when the context lost event occurs.  

 Let’s take a look at the actual event handlers. The event handler for the context lost event, 
 contextLost() , is defined at line 72 and has only two lines. Line 73 cancels the regis-
tration of the function used to carry out the animation, ensuring no further attempt at 
drawing is made until the context is correctly restored. Then at Line 74 you prevent the 
browser’s default behavior for this event. This is because, by default, the browser doesn’t 
generate the context restore event. However, in our case, the event is needed, so you must 
prevent this default behavior.  

 The event handler for the context restore event is straightforward and makes a call to 
 start() , which rebuilds the WebGL context. This is carried out by registering the event 
handler at line 22, which calls  start()  by using an anonymous function.  

 Note that when a context lost event occurs, the following alert is always displayed on the 
console:  

  WARNING: WebGL content on the page might have caused the graphics card to reset   

 By implementing these handlers for the lost context events, your WebGL applications will 
be able to deal with situations where the WebGL context is lost.     

     Summary  
 This chapter explained a number of miscellaneous techniques that are useful to know 
when creating WebGL applications. Due to space limitations, the explanations have been 
kept brief but contain sufficient information for you to master and use the techniques 
in your own WebGL applications. Although there are many more techniques you could 
learn, we have chosen these because they will help you begin to apply the lessons in this 
book to building your own 3D applications.  
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 As you have seen, WebGL is a powerful tool for creating 3D applications and one that is 
capable of creating sophisticated and visually stunning 3D graphics. Our aim in this book 
has been to provide you with a step-by-step introduction to the basics of WebGL and give 
you a strong enough foundation on which to begin building your own WebGL applica-
tions and exploring further. There are many other resources available to help you in that 
exploration. However, our hope is that as you begin to venture out and explore WebGL 
yourself, you will return to this book and find it  valuable as a reference and guide as you 
build your knowledge.     
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  Appendix A  

No Need to Swap Buffers in WebGL  

    For those of     you with some experience in developing OpenGL applications on PCs, you may have 
noticed that none of the examples in this book seem to swap color buffers, which is something 
that most OpenGL implementations require.  

 As you know, OpenGL uses two buffers: a “front” color buffer and a “back” color buffer with the 
contents of the  front color buffer being displayed on the screen. Usually, when you draw some-
thing using OpenGL, it is drawn into the  back color buffer. When you want to actually display 
something, you need to copy the contents of the back buffer to the front buffer to cause it to be 
displayed. If you were to draw directly into the front buffer, you would see visual artifacts (such 
as flickers) because the screen was being updated before you had finalized the  data in the buffer.  

 To support this dual-buffer approach, OpenGL provides a mechanism to swap the back buffer 
and the front buffer. In some systems this is automatic; in others, explicit calls to swap buffers, 
such as  glutSwapBuffers()  or  eglSwapBuffers() , are needed after drawing into the back buffer. 
For example, a typical OpenGL application has the following user-defined “display” function:  

  void display(void) {

   // Clear color buffer and depth buffer

    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

    draw();            // Draw something

    glutSwapBuffers(); // Swap color buffers

  }   

 In contrast, WebGL relies on the browser to automatically     manage the display update, reliev-
ing you of the need to do it explicitly in your applications. Referring to  Figure   A.1    (which is the 
same as  Figure   2.10   ), when WebGL applications draw something in the color buffer, the browser 
detects the drawing and displays the content on the screen. Therefore, WebGL supports only one 
color buffer.  
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 Figure A.1   The     processing flow from executing a JavaScript program to displaying the result in 
a browser         

 This approach works, because as seen in the sample programs in this book, all WebGL 
programs are executed in the browser by executing the JavaScript in the form of a method 
invocation from the browser.  

 Because the programs are not independently executed, the browser has a chance to 
check whether the content of the color buffer was modified after the JavaScript program 
executes and exits. If the contents have been modified, the browser is responsible for 
ensuring it is displayed on the screen.  

 For example, in  HelloPoint1 , we execute the JavaScript function ( main() ) from the HTML 
file ( HelloPoint1.html ) as follows:  

  <body onload="main()">   

 This causes the browser to execute the JavaScript function  main()  after loading the  <body>  
element. Within  main() , the draw operation modifies the color buffer.  

  main(){

   ...

    // Draw a point

    gl.drawArrays(gl.POINTS, 0, 1);

  }   

 When  main()  exits, the control returns to the browser that called the function. The 
browser then checks the content of the color buffer, and if anything has been changed, 
causes it to be displayed. One useful side effect of this approach is that the browser 
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handles combining the color buffer with the rest of the web page, allowing you to 
combine 3D graphics with your web pages. Note that  HelloPoint1  shows only the 
 <canvas>  element on the page, because  HelloPoint1.html  contains no other elements 
than the  <canvas>  element.  

 This implies that if you call methods that return control to the browser, such as  alert()  
or  confirm() , the browser may then display the contents of the color buffer to the screen. 
This may not be what you expect, so take care when using these methods in your WebGL 
programs.  

 The browser behaves in the same way when JavaScript draws something in an event 
handler. This is because the event handler is also called from the browser, and then the 
control is returned to the browser after the handler exits.    
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  Appendix B  

Built-In Functions of GLSL ES 1.0  

    This appendix details all embedded functions supported by GLSL ES 1.0, including 
many that are not explained in this book but which are often used in programming 
shaders.  

 Note that, in all but texture lookup functions, the operations on vector or matrix argu-
ments are carried out component-wise. For example,  

  vec2 deg = vec2(60, 80);

  vec2 rad = radians(deg);   

 In these examples, the components of the variable  rad  are assigned values converted 
from 60 and 80 degrees, respectively.   

     Angle and Trigonometry Functions  

  Syntax     Description   

  float radians(float    degree   )   

  vec2 radians(vec2    degree   )   

  vec3 radians(vec3    degree   )   

  vec4 radians(vec4    degree   )   

 Converts  degrees to radians; that is, π *  degree /180.  

  float degrees(float    radian   )   

  vec2 degrees(vec2    radian   )   

  vec3 degrees(vec3    radian   )   

  vec4 degrees(vec4    radian   )   

 Converts  radians to degrees; that is, 180 *  radian /π.  
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  Syntax     Description   

  float sin(float    angle   )   

  vec2 sin(vec2    angle   )   

  vec3 sin(vec3    angle   )   

  vec4 sin(vec4    angle   )   

 The  standard trigonometric sine function.  angle  is in 
radians.  

 The range of the return value is [–1, 1].  

  float cos(float    angle   )   

  vec2 cos(vec2    angle   )   

  vec3 cos(vec3    angle   )   

  vec4 cos(vec4    angle   )   

 The  standard trigonometric cosine function.  angle  is in 
radians.  

 The range of the return value is [–1, 1].  

  float tan(float    angle   )   

  vec2 tan(vec2    angle   )   

  vec3 tan(vec3    angle   )   

  vec4 tan(vec4    angle   )   

 The  standard trigonometric tangent function.  angle  is in 
radians.  

  float asin(float    x   )   

  vec2 asin(vec2    x   )   

  vec3 asin(vec3    x   )   

  vec4 asin(vec4    x   )   

 Arc sine.  Returns an angle (in radians) whose sine is 
 x . The range of the return value is [–π/2, π/2]. Results 
are undefined if x > –1 or x > +1.  

  float acos(float    x   )   

  vec2 acos(vec2    x   )   

  vec3 acos(vec3    x   )   

  vec4 acos(vec4    x   )   

 Arc  cosine. Returns an angle (in radians) whose cosine 
is  x . The range of the return value is [0, π]. Results are 
undefined if x > –1 or x > +1.  

  float atan(float y, float    x   )   

  vec2 atan(vec2 y, vec2    x   )   

  vec3 atan(vec3 y, vec3    x   )   

  vec4 atan(vec4 y, vec4    x   )   

 Arc  tangent. Returns an angle (in radians) whose 
tangent is  y / x . The signs of  x  and  y  are used to deter-
mine what quadrant the angle is in. The range of the 
return value is [–π, π]. Results are undefined if  x  and  y  
are both 0.  

 Note, for vectors, this is a component-wise operation.  

  float atan(float y_over_   x   )   

  vec2 atan(vec2 y_over_   x   )   

  vec3 atan(vec3 y_over_   x   )   

  vec4 atan(vec4 y_over_   x   )   

 Arc tangent. Returns an angle whose tangent is  y_
over_x . The range of the return value is [–π/2, π/2].  

 Note, for vectors, this is a component-wise operation.  
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  Exponential Functions  

  Syntax     Description   

  float pow(float x, float    y   )   

  vec2 pow(vec2 x, vec2    y   )   

  vec3 pow(vec3 x, vec3    y   )   

  vec4 pow(vec4 x, vec4    y   )   

 Returns   x  raised to the  y  power; that is, x y .  

 Results are undefined if  x  < 0.  

 Results are undefined if  x  = 0 and  y  ≤ 0.  

 Note, for vectors, this is a component-wise operation.  

  float exp(float    x   )   

  vec2 exp(vec2    x   )   

  vec3 exp(vec3    x   )   

  vec4 exp(vec4    x   )   

 Returns  the natural exponentiation of  x ; that is, e x .  

  float log(float    x   )   

  vec2 log(vec2    x   )   

  vec3 log(vec3    x   )   

  vec4 log(vec4    x   )   

 Returns  the natural logarithm of  x ; that is, returns the value 
 y , which satisfies the equation  x  = e y . Results are undefined 
if  x  ≤ 0.  

  float exp2(float    x   )   

  vec2 exp2(vec2    x   )   

  vec3 exp2(vec3    x   )   

  vec4 exp2(vec4    x   )   

 Returns  2 raised to the  x  power; that is, 2 x .  

  float log2(float    x   )   

  vec2 log2(vec2    x   )   

  vec3 log2(vec3    x   )   

  vec4 log2(vec4    x   )   

 Returns  the base 2 logarithm of  x ; that is, returns the value 
 y , which satisfies the equation  x =2 y .  

 Results are undefined if  x  ≤ 0.  

  float sqrt(float    x   )   

  vec2 sqrt(vec2    x   )   

  vec3 sqrt(vec3    x   )   

  vec4 sqrt(vec4    x   )   

       Returns x .  

 Results  are undefined if  x  < 0.  

  float inversesqrt(float    x   )   

  vec2 inversesqrt(vec2    x   )   

  vec3 inversesqrt(vec3    x   )   

  vec4 inversesqrt(vec4    x   )   

 Returns  1/ x       .  

 Results are undefined if  x ≤ 0.  
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  Common Functions  

  Syntax     Description   

  float abs(float    x   )   

  vec2 abs(vec2    x   )   

  vec3 abs(vec3    x   )   

  vec4 abs(vec4    x   )   

 Returns  the non-negative value of  x  without 
regard to its sign; that is, x if  x  ≥ 0, otherwise it 
returns – x .  

  float sign(float    x   )   

  vec2 sign(vec2    x   )   

  vec3 sign(vec3    x   )   

  vec4 sign(vec4    x   )   

 Returns  1.0 if  x  > 0, 0.0 if  x  = 0, or –1.0 if 
 x  < 0.  

  float floor(float    x   )   

  vec2 floor(vec2    x   )   

  vec3 floor(vec3    x   )   

  vec4 floor(vec4    x   )   

 Returns  a value equal to the nearest integer that 
is less than or equal to  x.   

  float ceil(float    x   )   

  vec2 ceil(vec2    x   )   

  vec3 ceil(vec3    x   )   

  vec4 ceil(vec4    x   )   

 Returns  a value equal to the nearest integer that 
is greater than or equal to  x .  

  float fract(float    x   )   

  vec2 fract(vec2    x   )   

  vec3 fract(vec3    x   )   

  vec4 fract(vec4    x   )   

 Returns  the fractional part of  x ; that is, 
x – floor ( x ).  

  float mod(float x, float    y   )   

  vec2 mod(vec2 x, vec2    y   )   

  vec3 mod(vec3 x, vec3    y   )   

  vec4 mod(vec4 x, vec4    y   )   

  vec2 mod(vec2 x, float    y   )   

  vec3 mod(vec3 x, float    y   )   

  vec4 mod(vec4 x, float    y   )   

 Modulus  (modulo). Returns the remainder of the 
division of x by y; that is, ( x  –  y  * floor ( x / y )). 
Given two positive numbers x and y, mod(x, y) is 
the remainder of the division of x by y.  

 Note, for vectors, this is a component-wise 
operation.  



ptg11539634

Common Functions 445

  Syntax     Description   

  float min(float x, float    y   )   

  vec2 min(vec2 x, vec2    y   )   

  vec3 min(vec3 x, vec3    y   )   

  vec4 min(vec4 x, vec4    y   )   

  vec2 min(vec2 x, float    y   )   

  vec3 min(vec3 x, float    y   )   

  vec4 min(vec4 x, float    y   )   

 Returns  the smallest value; that is,  y  if  y  <  x , 
otherwise it returns  x .  

 Note, for vectors, this is a component-wise 
operation.  

  float max(float x, float    y   )   

  vec2 max(vec2 x, vec2    y   )   

  vec3 max(vec3 x, vec3    y   )   

  vec4 max(vec4 x, vec4    y   )   

  vec2 max(vec2 x, float    y   )   

  vec3 max(vec3 x, float    y   )   

  vec4 max(vec4 x, float    y   )   

 Returns  the largest value; that is,  y  if  x  <  y , 
otherwise it returns  x .  

 Note, for vectors, this is a component-wise 
operation.  

  float clamp(float x, float    minVal  ,  
                     float    maxVal   )   

  vec2 clamp(vec2 x, vec2    minVal  ,  
                    vec2    maxVal   )   

  vec3 clamp(vec3 x, vec3    minVal  ,  
                    vec3    maxVal   )   

  vec4 clamp(vec4 x, vec4    minVal  ,  
                    vec4    maxVal   )   

  vec2 clamp(vec2 x, float    minVal  ,  
                    float    maxVal   )   

  vec3 clamp(vec3 x, float    minVal  ,  
                    float    maxVal   )   

  vec4 clamp(vec4 x, float    minVal  ,  
                    float    maxVal   )   

 Constrains  x to lie between minVal and maxVal; 
that is, returns min (max ( x ,  minVal ),  maxVal ).  

 Results are undefined if  minVal  >  maxVal .  
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  Syntax     Description   

  float mix(float x, float y, float    a   )   

  vec2 mix(vec2 x, vec2 y, float    a   )   

  vec3 mix(vec3 x, vec3 y, float    a   )   

  vec4 mix(vec4 x, vec4 y, float    a   )   

  vec2 mix(vec2 x, float y, vec2    a   )   

  vec3 mix(vec3 x, float y, vec3    a   )   

  vec4 mix(vec4 x, float y, vec4    a   )   

  vec2 mix(vec2 x, vec2 y, vec2    a   )   

  vec3 mix(vec3 x, vec3 y, vec3    a   )   

  vec4 mix(vec4 x, vec4 y, vec4    a   )   

 Returns  the linear blend of  x  and  y ; that is,  x  * 
(1– a ) +  y  *  a.   

  float step(float    edge  ,  float    x   )   

  vec2 step(vec2    edge  ,  vec2    x   )   

  vec3 step(vec3    edge  ,  vec3    x   )   

  vec4 step(vec4    edge  ,  vec4    x   )   

  vec2 step(float    edge  ,  vec2    x   )   

  vec3 step(float    edge  ,  vec3    x   )   

  vec4 step(float    edge  ,  vec4    x   )   

 Generates  a step function by comparing two 
values; that is, returns 0.0 if  x  <  edge , otherwise 
it returns 1.0.  

  float smoothstep(float    edge0  ,  
                   float    edge1  ,  float    x   )   

  vec2 smoothstep(vec2    edge0  ,  
                   vec2    edge1  ,  vec2    x   )   

  vec3 smoothstep(vec3    edge0  ,  
                   vec3    edge1  ,  vec3    x   )   

  vec4 smoothstep(vec4    edge0  ,  
                   vec4    edge1  ,  vec4    x  )  

 Hermite  interpolation.  

 Returns 0.0 if  x  ≤  edge0  and 1.0 if  x  ≥  edge1  
and performs smooth Hermite interpolation 
between 0 and 1 when  edge0  <  x  <  edge1 . This 
is equivalent to:  

 // genType is float, vec2, vec3, or vec4   
 genType t;  
 t = clamp (( x  –  edge0 ) / ( edge1  –  edge0 ), 0, 1);  
 return t * t * (3 – 2 * t);  

 Results are undefined if  edge0  ≥  edge1 .  

 The following functions determine which components of their arguments will be used 
depending on the functionality of the function.   
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  Geometric Functions  

  Syntax     Description   

  float length(float    x   )   

  float length(vec2    x   )   

  float length(vec3    x   )   

  float length(vec4    x   )   

 Returns  the length of vector  x .  

  float distance(float    p0  ,  float    p1   )   

  float distance(vec2    p0  ,  vec2    p1   )   

  float distance(vec3    p0  ,  vec3    p1   )   

  float distance(vec4    p0  ,  vec4    p1   )   

 Returns  the distance between  p0  and  p1 ; that is, 
length ( p0  –  p1 ).  

  float dot(float    x  ,  float    y   )   

  float dot(vec2    x  ,  vec2    y   )   

  float dot(vec3    x  ,  vec3    y   )   

  float dot(vec4    x  ,  vec4    y   )   

 Returns  the dot product of  x  and  y , in case of 
vec3,  x [0]* y  [0]+ x  [1]* y [1]+ x [2]* y [2].  

  vec3 cross(vec3    x  ,  vec3    y   )    Returns  the cross product of  x  and  y , in case of 
vec3,  

 result[0] =  x [1]* y [2] -  y [1]* x [2]  
 result[1] =  x [2]* y [0] -  y [2]* x [0]  
 result[2] =  x [0]* y [1] -  y [0]* x [1]  

  float normalize(float    x   )   

  vec2 normalize(vec2    x   )   

  vec3 normalize(vec3    x   )   

  vec4 normalize(vec4    x   )   

 Returns  a vector in the same direction as  x  but 
with a length of 1; that is,  x /length( x ).  

  float faceforward(float    N  ,  float    I  ,    
                              float    Nref   )   

  vec2 faceforward(vec2    N  ,  vec2    I  ,  
                              vec2    Nref   )   

  vec3 faceforward(vec3    N  ,  vec3    I  ,  
                              vec3    Nref   )   

  vec4 faceforward(vec4    N  ,  vec4    I  ,  
                              vec4    Nref   )   

 Reverse  the normal. Adjust the vector  N  according to 
the incident vector  I  and the reference vector  Nref .  

 If dot( Nref ,  I ) < 0 return  N , otherwise return – N .  
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  Syntax     Description   

  float reflect(float    I  ,  float    N   )   

  vec2 reflect(vec2    I  ,  vec2    N   )   

  vec3 reflect(vec3    I  ,  vec3    N   )   

  vec4 reflect(vec4    I  ,  vec4    N   )   

 Calculate  reflection vector. For the incident vector 
 I  and surface orientation  N , returns the reflection 
direction:  I  – 2 * dot( N ,  I ) *  N   

  N  must already be normalized to achieve the 
desired result.  

  float refract(float    I  ,  float    N  , 
                        float    eta   )   

  vec2 refract(vec2    I  ,  vec2    N  ,  float  
                        eta   )   

  vec3 refract(vec3    I  ,  vec3    N  ,  float  
                       eta   )   

  vec4 refract(vec4    I  ,  vec4    N  ,  float  
                       eta   )   

 Calculate  the change in direction of light due to its 
medium by calculating the incident vector using the 
ratio of indices of refraction. For the incident vector 
 I  and surface normal  N , and the ratio of indices of 
refraction  eta , return the refraction vector using the 
following:  

 k = 1.0 –  eta  *  eta  * (1.0 – dot( N ,  I ) * dot( N ,  I ))  
 if (k < 0.0)  
       // genTyp is float, vec2, vec3, or vec4  
       return genType(0.0)  
 else  
       return  eta  *  I  - ( eta  * dot( N ,  I ) + sqrt(k)) *  N   

 The input parameters for the incident vector  I  and 
the surface normal  N  must already be normalized.  

  Matrix   Functions  

  Syntax     Description   

  mat2 matrixCompMult(mat2    x  ,  mat2    y   )   

  mat3 matrixCompMult(mat3    x  ,  mat3    y   )   

  mat4 matrixCompMult(mat4    x  ,  mat4    y   )   

 Multiply  matrix  x  by matrix  y  component-wise; that 
is, if result = matrixCompMatrix( x ,  y ) then  
 result[i][j] =  x [i][j] *  y [i][j].  
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  Vector   Functions  

  Syntax     Description   

  bvec2 lessThan(vec2 x, vec2    y   )   

  bvec3 lessThan(vec3 x, vec3    y   )   

  bvec4 lessThan(vec4 x, vec4    y   )   

  bvec2 lessThan(ivec2 x, ivec2    y   )   

  bvec3 lessThan(ivec3 x, ivec3    y   )   

  bvec4 lessThan(ivec4 x, ivec4    y   )   

 Return  the component-wise comparison of 
 x  <  y .  

  bvec2 lessThanEqual(vec2 x, vec2    y   )   

  bvec3 lessThanEqual(vec3 x, vec3    y   )   

  bvec4 lessThanEqual(vec4 x, vec4    y   )   

  bvec2 lessThanEqual(ivec2 x, ivec2    y   )   

  bvec3 lessThanEqual(ivec3 x, ivec3    y   )   

  bvec4 lessThanEqual(ivec4 x, ivec4    y   )   

 Return  the component-wise comparison of 
 x  ≤  y .  

  bvec2 greaterThan(vec2    x  ,  vec2    y   )   

  bvec3 greaterThan(vec3    x  ,  vec3    y   )   

  bvec4 greaterThan(vec4    x  ,  vec4    y   )   

  bvec2 greaterThan(ivec2    x  ,  ivec2    y   )   

  bvec3 greaterThan(ivec3    x  ,  ivec3    y   )   

  bvec4 greaterThan(ivec4    x  ,  ivec4    y   )   

 Return  the component-wise comparison of 
 x  >  y .  

  bvec2 greaterThanEqual(vec2    x  ,  vec2    y   )   

  bvec3 greaterThanEqual(vec3    x  ,  vec3    y   )   

  bvec4 greaterThanEqual(vec4    x  ,  vec4    y   )   

  bvec2 greaterThanEqual(ivec2    x  ,  ivec2    y   )   

  bvec3 greaterThanEqual(ivec3    x  ,  ivec3    y   )   

  bvec4 greaterThanEqual(ivec4    x  ,  ivec4    y   )   

 Return  the component-wise comparison of 
 x  ≥  y .  
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  Syntax     Description   

  bvec2 equal(vec2    x  ,  vec2    y   )   

  bvec3 equal(vec3    x  ,  vec3    y   )   

  bvec4 equal(vec4    x  ,  vec4    y   )   

  bvec2 equal(ivec2    x  ,  ivec2    y   )   

  bvec3 equal(ivec3    x  ,  ivec3    y   )   

  bvec4 equal(ivec4    x  ,  ivec4    y   )   

 Return  the component-wise comparison of 
 x  ==  y .  

  bvec2 notEqual(vec2   x  ,  vec2    y   )   

  bvec3 notEqual(vec3    x  ,  vec3    y   )   

  bvec4 notEqual(vec4    x  ,  vec4    y   )   

  bvec2 notEqual(ivec2    x  ,  ivec2    y   )   

  bvec3 notEqual(ivec3    x  ,  ivec3    y   )   

  bvec4 notEqual(ivec4    x  ,  ivec4    y   )   

 Return  the component-wise comparison of 
 x  !=  y .  

  bool any(bvec2    x   )   

  bool any(bvec3    x   )   

  bool any(bvec4    x   )   

 Return   true  if any component of  x  is  true .  

  bool all(bvec2    x   )   

  bool all(bvec3    x   )   

  bool all(bvec4    x   )   

 Return   true  only if all components of  x  are 
 true .  

  bvec2 not(bvec2    x   )   

  bvec3 not(bvec3    x   )   

  bvec4 not(bvec4    x   )   

 Return  the component-wise logical comple-
ment of  x .  
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  Texture Lookup   Functions  

  Syntax     Description   

  vec4 texture2D(   
       sampler2D    sampler  ,  vec2    coord   )

     vec4 texture2D(   
       sampler2D    sampler  ,  vec2    coord  ,  
       float    bias   )     

vec4 texture2DProj(   
       sampler2D    sampler  ,  vec3    coord   )     

vec4 texture2DProj(   
       sampler2D    sampler  ,  vec3    coord  ,  
       float    bias   )

     vec4 texture2DProj(   
       sampler2D    sampler  ,  vec4    coord   )     

vec4 texture2DProj(   
       sampler2D    sampler  ,  vec4    coord  ,  
       float    bias   )     

vec4 texture2DLod(   
       sampler2D    sampler  ,  vec2    coord  ,  
       float    lod   )     

vec4 texture2DProjLod(   
       sampler2D    sampler  ,  vec3    coord  ,  
       float    lod   )     

vec4 texture2DProjLod(   
       sampler2D    sampler  ,  vec4    coord  ,  
       float    lod   )   

 Use     the texture coordinate  coord  
to read out texel values in the 
2D texture currently bound to 
 sampler . For the projective (Proj) 
versions, the texture coordinate 
( coord .s,  coord .t) is divided by 
the last component of  coord . 
The third component of  coord  
is ignored for the vec4  coord  
variant. The  bias  parameter 
is only available in fragment 
shaders. It specifies the value 
to add the current  lod  when a 
MIPMAP texture is bound to 
 sampler .  

  vec4 textureCube(   
       samplerCube    sampler  ,  vec3    coord   )     

vec4 textureCube(   
       samplerCube    sampler  ,  vec3    coord  ,  
       float    bias   )     

vec4 textureCubeLod(   
       samplerCube    sampler  ,  vec3    coord  ,  
       float    lod   )   

 Use   the texture coordinate 
 coord  to read out a texel from 
the cube map texture currently 
bound to  sampler . The direction 
of  coord  is used to select the 
face from the cube map texture.  
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  Appendix C  

Projection Matrices  

     Orthogonal Projection Matrix  

 The    following matrix is created   by  Matrix4.setOrtho(left ,  right ,  bottom ,  top ,  near ,  far) .  
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  Perspective Projection Matrix  

 The following matrix is created by  Matrix4.setPerspective(fov ,  aspect ,  near ,  far) .  
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  Appendix D  

WebGL/OpenGL: Left or Right Handed?  

    In  Chapter   2   , “Your First Step with WebGL,” the coordinate system of WebGL was 
introduced as a right-handed system. However, you will probably come across tuto-
rials and other material on the web that contradict this. In this appendix, you’ll 
learn the “real” coordinate systems used by WebGL by examining what will happen 
when something is drawn using WebGL’s default settings. Because WebGL is based 
on OpenGL, what you learn is equally applicable to OpenGL. You should read this 
appendix after reading  Chapter   7   , “Toward the 3D World,” because it refers back to 
sample programs and explanations in that chapter.  

 Let’s start by referring to the “font of all knowledge”: the original specification. 
Specifically, the authorized specification of OpenGL ES 2.0, which is the base specifi-
cation of WebGL, published by the Khronos group,  1   states in  Appendix   B   :   

  7. The GL does not force left- or right-handedness on any of its coordinate systems.   

 If this      is the case, and WebGL is agnostic about handedness, then why do many books 
and tutorials, and in fact this book, describe WebGL as right handed? Essentially, it’s 
a convention. When you are developing your applications, you need to decide which 
coordinate system you are using and stick with it. That’s true for your applications, 
but it’s also true for the many libraries that have been developed to help people use 
WebGL (and OpenGL). Many of those libraries choose to adopt the right-handed 
convention, so over time it becomes the accepted convention and then becomes 
synonymous with the  GL itself, leading people to believe that the GL is right handed.  

 So why the confusion? If everybody accepts the same convention, there shouldn’t be 
a problem. That’s true, but the complication arises because WebGL (and OpenGL) at 
certain times requires the GL to choose a handedness to carry out its operations, a 
default behavior if you will, and that default isn’t always right handed!  

 1.    www.khronos.org/registry/gles/specs/2.0/es_cm_spec_2.0.24.pdf  

http://www.khronos.org/registry/gles/specs/2.0/es_cm_spec_2.0.24.pdf
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 In this appendix, we explore the default behavior of WebGL to give you a clearer under-
standing of the issue and how to factor this into your own applications.  

 To begin the exploration of WebGL’s default behavior, let’s construct a sample program 
 CoordinateSystem  as a test bed for experimentation. We’ll use this program to go back to 
first principals, starting with the simplest method of drawing triangles and then adding 
features to explore how WebGL draws multiple objects. The goal of our sample program is 
to draw a blue triangle at –0.1 on the z-axis and then a red triangle at –0.5 on the z-axis. 
 Figure   D.1    shows the triangles, their z coordinates, and colors.  
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 Figure D.1   The triangles used in this appendix and their colors         

 As this appendix will show, to achieve our relatively modest goal, we actually have to get 
a number of interacting features to work together, including the basic drawing, hidden 
surface removal, and viewing volume. Unless all three are set up correctly, you will get 
unexpected results when drawing, which can lead to confusion about left and right 
handedness.   

     Sample Program CoordinateSystem.js  
  Listing   D.1        shows  CoordinateSystem.js . The code for error processing and some 
comments have been removed to allow all lines in the program to be shown in a limited 
space, but as you can see, it is a complete program.  

  Listing D.1   CoordinateSystem  

   1 // CoordinateSystem.js

   2 // Vertex shader program

   3 var VSHADER_SOURCE =

   4   'attribute vec4 a_Position;\n' +

   5   'attribute vec4 a_Color;\n' +

   6   'varying vec4 v_Color;\n' +

   7   'void main() {\n' +

   8   '  gl_Position = a_Position;\n' +

   9   '  v_Color = a_Color;\n' +
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  10   '}\n';

  11

  12 // Fragment shader program

  13 var FSHADER_SOURCE =

  14   '#ifdef GL_ES\n' +

  15   'precision mediump float;\n' +

  16   '#endif\n' +

  17   'varying vec4 v_Color;\n' +

  18   'void main() {\n' +

  19   '  gl_FragColor = v_Color;\n' +

  20   '}\n';

  21

  22 function main() {

  23   var canvas = document.getElementById('webgl'); // Retrieve <canvas>

  24   var gl = getWebGLContext(canvas); // Get the context for WebGL

  25   initShaders(gl, VSHADER_SOURCE, FSHADER_SOURCE);// Initialize shaders

  26    var n = initVertexBuffers(gl);   // Set vertex coordinates and colors

  27

  28   gl.clearColor(0.0, 0.0, 0.0, 1.0);  // Specify the clear color

  29   gl.clear(gl.COLOR_BUFFER_BIT);      // Clear <canvas>

  30   gl.drawArrays(gl.TRIANGLES, 0, n);  // Draw the triangles

  31 }

  32

  33 function initVertexBuffers(gl) {

  34   var pc = new Float32Array([  // Vertex coordinates and color

  35      0.0,  0.5,  -0.1,  0.0,  0.0,  1.0,  // The blue triangle in front

  36     -0.5, -0.5,  -0.1,  0.0,  0.0,  1.0,

  37      0.5, -0.5,  -0.1,  1.0,  1.0,  0.0,

  38

  39      0.5,  0.4,  -0.5,  1.0,  1.0,  0.0,  // The red triangle behind

  40     -0.5,  0.4,  -0.5,  1.0,  0.0,  0.0,

  41      0.0, -0.6,  -0.5,  1.0,  0.0,  0.0,

  42   ]);

  43   var numVertex = 3; var numColor = 3;  var n = 6;

  44

  45   // Create a buffer object and write data to it

  46   var pcbuffer = gl.createBuffer();

  47   gl.bindBuffer(gl.ARRAY_BUFFER, pcbuffer);

  48   gl.bufferData(gl.ARRAY_BUFFER, pc, gl.STATIC_DRAW);

  49

  50   var FSIZE = pc.BYTES_PER_ELEMENT; // The number of byte

  51   var STRIDE = numVertex + numColor; // Calculate the stride

  52

  53   // Assign the vertex coordinates to attribute variable and enable it

  54   var a_Position = gl.getAttribLocation(gl.program, 'a_Position');
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  55   gl.vertexAttribPointer(a_Position, numVertex, gl.FLOAT, false, FSIZE * 

                                                                       ➥STRIDE, 0);

  56   gl.enableVertexAttribArray(a_Position);

  57

  58   // Assign the vertex colors to attribute variable and enable it

  59   var a_Color = gl.getAttribLocation(gl.program, 'a_Color');

  60   gl.vertexAttribPointer(a_Color, numColor, gl.FLOAT, false, FSIZE * 

                                                       ➥STRIDE, FSIZE * numVertex);

  61   gl.enableVertexAttribArray(a_Color);

  62

  63   return n;

  64 }   

 When the sample program is run, it produces the output shown in  Figure   D.2   . Although 
it’s not easy to see in black and white (remember, you can run these examples in your 
browser from the book’s website), the red triangle is in front of the blue triangle. This is 
the opposite of what you might expect because lines 32 to 42 specify the vertex coordi-
nates of the blue triangle before the red triangle.  

 
 Figure D.2   CoordinateSystem         

 However, as explained in  Chapter   7   , this is actually correct. What is happening is that 
WebGL is first drawing the blue triangle, because its vertex coordinates are specified first, 
and then it’s drawing the red triangle  over  the blue triangle. This is a little like oil paint-
ing; once you lay down a layer of paint, anything painted on top has to overwrite the 
paint below.  

 For many newcomers to WebGL, this can be counterintuitive. Because WebGL is a system 
for drawing 3D graphics, you’d expect it to “do the right thing” and draw the red triangle 
behind the blue one. However, by default WebGL draws in the order specified in the 
application code, regardless of the position on the z-axis. If you want WebGL to “do the 
right thing,” you are required to enable the Hidden Surface Removal feature discussed in 
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 Chapter   7   . As you saw in  Chapter   7   , Hidden Surface Removal tells WebGL to be smart 
about the 3D scene and to remove surfaces  that are actually hidden. In our case, this 
should deal with the red triangle problem because in the 3D scene, most of the red trian-
gle is hidden behind the blue one.   

  Hidden Surface Removal and the Clip Coordinate 
System  
 Let’s turn on     Hidden Surface Removal in our sample program and examine its effect. To 
do that, enable the function using  gl.enable(gl.DEPTH_TEST) , clear the depth buffer, and 
then draw the triangles. First, you add the following at line 27.  

   27 gl.enable(gl.DEPTH_TEST);    

 Then you modify line 29 as follows:  

   29 gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);    

 Now if you rerun the program after making these changes, you’d expect to see the 
problem resolved and the blue triangle in front of the red one. However, what you actu-
ally see is that the red triangle is still in front. Again, although it’s difficult to see in black 
and white,  Figure   D.3    shows the result.  

 
 Figure D.3   CoordinateSystem using the hidden surface removal function         

 This is unexpected and is part of the confusion surrounding WebGL’s left versus right 
handedness. We have correctly programmed our example based on the belief that WebGL 
is right handed, but it seems to be that WebGL is either telling us that –0.5 is located 
in front of –0.1 on the z-axis or that WebGL does in fact use the left-handed coordinate 
system, where the positive direction of the z-axis points into the screen ( Figure   D.4   ).  



ptg11539634

APPENDIX D  WebGL/OpenGL: Left or Right Handed?460

 

x z

y

 Figure D.4   The left-handed coordinate system          

  The Clip Coordinate System and the Viewing Volume  
 So our      application example follows the convention that WebGL is right handed, but 
our program clearly shows a left-handed system is in place. What’s the explanation? 
Essentially, hidden surface removal, when enabled, uses the  clip coordinate system  (see 
 Figure   G.5    in  Appendix   G   ), which itself uses the “left-handed” coordinate system, not the 
right-handed one.  

 In WebGL (OpenGL), hidden surface removal is performed using the value of  gl_
Position , the coordinates produced by the vertex shader. As you can see at line 8 in 
the vertex shader in  Listing   D.1   ,  a_Position  is directly assigned to  gl_Position  in 
 CoordinateSystem.js . This means that the z coordinate of the red triangle is passed as 
–0.5 and that of the blue one is passed as –0.1 to the clip coordinate system (the left-
handed coordinate system). As you know, the positive direction of the z-axis in the left-
handed coordinate system points into the screen, so the smaller value of the z coordinate 
(–0.5)  is located in front of the bigger one (–0.1). Therefore, it is the right behavior for the 
WebGL system to display the red triangle in front of the blue one in this situation.  

 This obviously contradicts the explanation in  Chapter   3    (that WebGL uses the right-
handed coordinate system). So how do we achieve our goal of having the red triangle 
displayed behind the blue triangle, and what does this tell us about WebGL’s default 
behaviors? Until now, the program hasn’t considered the viewing volume that needs to be 
set up correctly for Hidden Surface Removal to work with our coordinate system. When 
used correctly, the viewing volume requires that the near clipping plane be located in 
front of the far clipping plane (that is  near  <  far ). However, the values of  near  and  far  are 
the distance  from the eye point toward the direction of line of sight and can take any 
value. Therefore, it is possible to specify a value of  far  that is actually smaller than that of 
 near  or even use negative values. (The negative values means the distance from the eye 
point toward the opposite direction of line of sight.) Obviously, the values set for  near  and 
 far  depend on whether we are assuming a right- or left-handed coordinate system.  

 Returning to the sample program, after setting the viewing volume correctly, let’s 
carry out the hidden surface removal.  Listing   D.2    shows only the differences from 
 CoordinateSystem.js .  
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  Listing D.2     CoordinateSystem_viewVolume.js  

  1 // CoordinateSystem_viewVolume.js

   2 // Vertex shader program

   3 var VSHADER_SOURCE =

   4 'attribute vec4 a_Position;\n' +

   5 'attribute vec4 a_Color;\n' +

    6 'uniform mat4 u_MvpMatrix;\n' + 

   7 'varying vec4 v_Color;\n' +

   8 'void main() {\n' +

    9 'gl_Position = u_MvpMatrix * a_Position;\n' + 

  10 'v_Color = a_Color;\n' +

  11 '}\n';

  ...

  23 function main() {

  ...

  29   gl.enable(gl.DEPTH_TEST); // Enable hidden surface removal function

  30   gl.clearColor(0.0, 0.0, 0.0, 1.0); // Set the clear color

   31   // Get the storage location of u_MvpMatrix 

   32   var u_MvpMatrix = gl.getUniformLocation(gl.program, 'u_MvpMatrix'); 

  33

   34   var mvpMatrix = new Matrix4(); 

   35   mvpMatrix.setOrtho(-1, 1, -1, 1, 0, 1); // Set the viewing volume 

   36   // Pass  the view matrix to u_MvpMatrix 

   37   gl.uniformMatrix4fv(u_MvpMatrix, false, mvpMatrix.elements); 

  38

  39   gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

  40   gl.drawArrays(gl.TRIANGLES, 0, n); // Draw the triangle

  41 }   

 Once you run this sample program, you can see the result shown in  Figure   D.5   , in which 
the blue triangle is displayed in front of the red one.  

 
 Figure D.5   CoordinateSystem_viewVolume         
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 The critical change is that the uniform variable ( u_MvpMatrix ) for passing a view matrix 
was added to the vertex shader. It was multiplied by  a_Position , and then its result was 
assigned to  gl_Position . Although we used the  setOrtho()  method to specify the viewing 
volume,  setPerspective()  has the same result.   

  What Is Correct?  
 Let’s compare      the process of the vertex shader in  CoordinateSystem.js  with that in 
 CoordinateSystem_viewVolume.js .  

 Line 8 in  CoordinateSystem.js :  

   8 ' gl_Position = a_Position;\n' +    

 became line 9 in  CoordinateSystem_viewVolume.js :  

   9 ' gl_Position = u_MvpMatrix * a_Position;\n' +    

 As you can see, in  CoordinateSystem_viewVolume.js , which displays the order of triangles 
as was intended, the transformation matrix (in this case, a view matrix) is multiplied by 
a vertex coordinate. To understand this operation, let’s examine how to rewrite line 8 
in  CoordinateSystem.js  into the form <matrix> * <vertex coordinate> just like line 9 in 
 CoordinateSystem_viewVolume.js .  

 Line 8 assigns the vertex coordinate ( a_Position ) to  gl_Position  directly. To ensure that 
the matrix multiplication operation has no effect the <matrix> must have the following 
elements (that is, the  identity matrix):  

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

        

 Therefore, line 8 in  CoordinateSystem.js  actually has the same effect as passing the iden-
tity matrix to  u_MvpMatrix  in line 9 in  CoordinateSystem_viewVolume.js . In essence, this 
matrix is controlling the default behavior of WebGL.  

 To understand this behavior better, let’s clarify what is happening if the projection matrix 
is the identity matrix. You can understand this by using the matrix in  Appendix   C    (see 
 Figure   D.6   ) and the identify matrix to find  left ,  right ,  top ,  bottom ,  near , and  far.   
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 Figure D.6   The projection matrix generated by setOrtho()         

 In this case,  right  –  left  = 2 and  right  +  left  = 0, which resolves to  left  = –1,  right  = 1. Equally, 
 far  –  near  =–2 and  far  +  near  = 0, resolving to  near  = 1 and  far  = –1. That is:  

  left = -1, right = 1, bottom = -1, top = 1, near = 1, and far = -1   

 Using these parameters to  setOrtho()  as follows:  

  mvpMatrix.setOrtho(-1, 1, -1, 1, 1, -1);   

 results in  near  being greater than  far . This means that the far clipping plane is placed in 
front of the near clipping plane along the direction of the line of sight (see  Figure   D.7   ).  
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 Figure D.7   The viewing volume created by the identity matrix         

 If you specify the viewing volume by yourself, you will observe the same phenomenon 
when you specify  near  >  far  to  setOrtho() . That is, WebGL (OpenGL) follows the right-
handed coordinate system when you specify the viewing volume in this way.  

 Then look at the matrix representing the viewing volume in which the objects are 
displayed correctly:  

  mvpMatrix.setOrtho(-1, 1, -1, 1, -1, 1);   
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 This method generates the following projection matrix:  

        

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 You will recognize  that this matrix is a scaling matrix described in  Chapter   4   , “More 
Transformations and Basic Animation.” That is the matrix generated by  setScale(1, 1, 
-1) . You should note that the scaling factor of the z-axis is –1, meaning that the sign 
of the z coordinates will be reversed. So this matrix transforms the conventional right-
handed coordinate system used in this book (and assumed by most WebGL libraries) to 
the left-handed coordinate system used in the clip coordinate system by reversing the z 
coordinates.   

  Summary  
 In summary, we know from the specification that WebGL doesn’t enforce either right 
or left handedness. We have seen that many WebGL libraries and applications adopt 
the convention that WebGL is right handed, as do we in this book. When WebGL’s 
default behavior contradicts this (for example, when working in clip-space where it uses 
a left-handed coordinate system), we can compensate programmatically, by reversing, 
for example, the z coordinates. This allows us to continue to follow the convention that 
WebGL is right handed. However, as previously stated, it’s only a convention. It’s one 
that most people follow, but one that  will occasionally trip you up if you aren’t aware of 
WebGL’s default behaviors and how to handle them.     
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  Appendix E  

The Inverse Transpose Matrix  

    The   inverse transpose matrix,     previously introduced in  Chapter   8   , “Lighting Objects,” is 
a matrix that determines the inverse of a given matrix and then transposes it. As shown 
in  Figure   E.1   , the direction of the normal vector of an object is subject to change 
depending on the type of the coordinate transformation. However, if you use the 
inverse transpose of the model matrix, you can safely ignore this in calculations.  
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 Figure E.1   The direction of normal vector changes along with the coordinate transformation         

 In  Chapter   8   , you saw how to use the inverse transpose of the model matrix to trans-
form normals. However, there are actually some cases where you can also determine 
the normal vector direction with the model matrix. For instance, when rotating, you 
can determine the direction of the normal vector by multiplying the normal vector by 
the rotation matrix. When calculating the direction of the normal vector, whether you 
resort to the model matrix itself or its inverse transpose depends on which transforma-
tion (translation, rotation, and scaling) is already integrated inside the model matrix.  
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 If the model matrix already includes a translation and you multiply the normal by the 
model matrix, the normal is translated, resulting in a modification of its orientation. For 
example, the normal (1, 0, 0), when translated by 2.0 along the y-axis, is repositioned to 
the location (1, 2, 0). You can avoid this problem by using the 3×3 submatrix extracted 
from the top left area of the 4×4 model matrix. For example:  

  attribute vec4 a_Normal; // normal

  uniform mat4 u_ModelMatrix; // model matrix

  void main() {

    ...

    vec3 normal = normalize(mat3(u_ModelMatrix) * a_Normal.xyz);

    ...

  }   

 The values located in the rightmost column determine the scale of the displacement 
produced by the translation matrix, as illustrated in  Figure   E.2   .  
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 Figure E.2   The transformation matrix and its 3×3 submatrix         

 Because this submatrix also includes the components of the rotation and scaling matrices, 
you need to consider rotation and scaling on a case-by-case basis:  

    •    If you only want to perform a rotation:     You can use the 3×3 submatrix of the 
model matrix. If the normal is already normalized, the transformed normal does not 
have to be normalized.   

   •    If you want to perform a scaling transformation (with a uniform scale factor):     
You can use the 3×3 submatrix of the model matrix. However, the transformed 
normal has to be normalized.   

   •    If you want to perform a scaling transformation (with a nonuniform scale 
factor):     You need to use the inverse transpose matrix of the model matrix. The 
transformed normal has to be normalized.    

 The second case, where you want to perform a scaling transformation with a uniform 
scale factor, implies that you perform a scaling with an identical scaling factor along the 
x-, y-, and z-axes. For example, if you scale by a factor of 2.0 along the x-, y-, and z-axes, 
you will set the same value to each of the arguments of  Matrix4.scale() :  Matrix4.
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scale(2.0, 2.0, 2.0) . In this situation, even if the size of the object is modified, its 
shape is left unchanged. Alternatively, those cases involving a scaling transformation with 
a nonuniform scale factor require that you use a different  scaling factor for each axis. For 
instance, if you limit the scaling to the y-axis direction, you will use  Matrix4.scale(1.0, 
2.0,1.0) .  

 You have to resort to the inverse transpose matrix in case (3) because, if the scaling is 
nonuniform, the direction of the normal vector is incorrectly modified when multiplying 
it with the model matrix that incorporates the scaling transformation.  Figure   E.3    shows 
this.  

 

direction of normal
(1, 2, 0)direction of normal

(1, 1, 0)

Scale by 2 along the y-axis

 Figure E.3   Simply multiplying the normal vector with the model matrix results in a modification 
of the normal direction         

 Performing a nonuniform scaling of the object (left side of the figure), with a scaling 
factor of 2.0 limited to the y-axis, results in the shape on the right. Here, to determine 
the normal direction after the transformation, you multiply the model matrix with the 
normal (1. 1, 0) of the left side object. However, then the direction of the normal is 
changed to (1, 2, 0) and is no longer at a right angle (90 degrees) to the line.  

 The solution to this requires a little math. We will call the model matrix  M , the original 
normal  n , the transformation matrix  M ', which transforms  n  without changing the direc-
tion of  n , and the vector perpendicular to  n ,  s . In addition, we define  n ' and  s ', as shown 
in Equations E.1 and E.2:  

Equation E.1        n ' =  M  ' ×  n      

Equation E.2        s ' =  M  ×  s      

 See  Figure   E.4   .  
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   Here, you can calculate  M ' so that the two vectors  n ' and  s ' form a right angle. If the two 
vectors form a right angle, their dot product is equal to 0. Using the “·” notation for a 
dot product, you can derive the following equation:  

     n ’. s ’ = 0      

  You can now rewrite this expression using the equations E.1 and E.2 ( M T   is the transpose 
matrix of  M ):  

     ( M  ’ ×  n ) · ( M  ×  s ) = 0  

  ( M  ’ ×  n )  T   × ( M  ×  s ) = 0  A .  B  =  A   T   ×  B   

   n   T   ×  M  ’  T   ×  M  ×  s  = 0 ( A  ×  B )  T   =  B   T   ×  A   T       

 Because  n  and  s  form a right angle, their dot product is also 0 ( n  s  = 0). Therefore, as 
already stated,  A .  B  =  A   T   ×  B , so substituting  n  for  A  and  s  for  B  will result in  n .  s  =  n   T   ×  s  
= 0. Comparing this expression with the equation E.3, if the goal is for the products  M  '  T   
×  M   T   between  n T   and  s  to be equal to the identity matrix ( I ), this can be reformulated as 
follows:  

     M  ’  T   ×  M   T   =  I      

 Resolving this equation provides us with the following result ( M –1   is the inverse matrix of 
 M ):  

      M  ’ = ( M –1  )  T      

 From this equation, you can see that  M ' is the transpose matrix of the inverse matrix of 
 M  or, in other words, the inverse transpose of  M . Because  M  can include cases (1), (2), 
and (3) enumerated earlier, if you calculate the inverse transpose matrix of  M  and multi-
ply it with the normal vector, you will get the correct result. Thus, this provides the solu-
tion for transforming the normal vector.  
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 Obviously, the calculation of the inverse transpose matrix can be time consuming, but if 
you can confirm the model matrix fits criteria (1) or (2), you can simply use the 3×3 sub-
matrix for increased efficiency.      
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  Appendix F  

Load Shader Programs from Files  

    All the     sample programs in this book embed the shader programs in the JavaScript 
program, which increases the readability of the sample programs but makes it hard to 
construct and maintain the shader programs.  

 As an alternative, you can load the shader programs from files by using the same 
methods described in the section “Load and Display 3D Models” in  Chapter   10   , 
“Advanced Techniques.” To see how that’s done, let’s modify  ColoredTriangle  from 
 Chapter   5   , “Using Colors and Texture Images,” to add support for loading shaders from 
a file. The new program is called  LoadShaderFromFiles , which is shown in  Listing   F.1   .  

  Listing F.1   LoadShaderFromFiles 

   1 // LoadShaderFromFiles.js based on ColoredTriangle.js

    2 // Vertex shader program

     3 var VSHADER_SOURCE = null; 

    4 // Fragment shader program

     5 var FSHADER_SOURCE = null; 

    6

    7 function main() {

    8   // Retrieve <canvas> element

    9   var canvas = document.getElementById('webgl');

   10

   11   // Get the rendering context for WebGL

   12   var gl = getWebGLContext(canvas);

      ...

    17   // Load the shaders from files 

    18   loadShaderFile(gl, 'ColoredTriangle.vert', gl.VERTEX_SHADER); 

    19   loadShaderFile(gl, 'ColoredTriangle.frag', gl.FRAGMENT_SHADER); 

   20 }
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   21

   22 function start(gl) {

   23   // Initialize shaders

   24   if (!initShaders(gl, VSHADER_SOURCE, FSHADER_SOURCE)) {

      ...

   43   gl.drawArrays(gl.TRIANGLES, 0, n);

   44 }

      ...

    88 function loadShaderFile(gl, fileName,  shader) { 

   89   var request = new XMLHttpRequest();

   90

   91   request.onreadystatechange = function() {

   92     if (request.readyState === 4 && request.status !== 404) {

   93       onLoadShader(gl, request.responseText, shader);

   94     }

   95   }

   96   request.open('GET', fileName, true);

   97   request.send();                      // Send the request

   98 }

   99

   100 function onLoadShader(gl, fileString, type) { 

  101   if (type == gl.VERTEX_SHADER) { // The vertex shader is loaded

  102     VSHADER_SOURCE = fileString;

  103   } else

  104   if (type == gl.FRAGMENT_SHADER) { // The fragment shader is loaded

  105     FSHADER_SOURCE = fileString;

  106   }

  107   // Start rendering, after loading both shaders

   108   if (VSHADER_SOURCE && FSHADER_SOURCE) start(gl); 

  109 }   

 Unlike  ColoredTriangle.js , this sample program initializes the  VSHADER_PROGRAM  (line 
3) and  FSHADER_PROGRAM  (line 5) to  null  to allow them to be loaded from files later. The 
function  main()  defined at line 7 loads the shader programs at lines 18 and line 19 by 
using   loadShaderFile() . This function is defined at line 88, and its second argument 
specifies the filename (URL) that contains the shader program. The third argument speci-
fies the type of the shader program.  

 The function  loadShaderFile()  creates a  request  of type  XMLHttpRequest  to get the file 
specified by  fileName  and then registers an event handler ( onLoadShader() ) at line 91 to 
handle the file when it is loaded. After that, it sends the request at line 97. Once the file is 
acquired,  onLoadShader()  is called. This function is defined at line 100.  

 The   onLoadShader()  checks the third parameter  type  and uses it to store the  fileString  
containing the shader program to  VSHADER_PROGRAM  or  FSHADER_PROGRAM . Once you load 
both shader programs, call  start(gl)  at line 108 to draw the triangle using the shaders.    
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  Appendix G  

World Coordinate System Versus Local 

Coordinate System  

    In  Chapter   7   , “Toward the 3D World,” you used and displayed your first 3D object 
(a cube), allowing the sample program to begin to feel more like a “real” 3D applica-
tion. However, to do so, you had to manually set up the vertex coordinates and the 
index information of the cube, which was quite time consuming. Although you will 
do the same manual setup throughout this book, this is not something you will gener-
ally do when creating your own WebGL applications. Usually you will use a dedicated 
  3D modeling tool to create 3D objects. This allows you to create elaborate  3D objects 
through the manipulation (combination, deformation, vertex population adjustment, 
vertex interval tuning, and so on) of elementary 3D shapes, such as cubes, cylinders, or 
spheres. The 3D modeling tool Blender ( www.blender.org/ ) is shown in  Figure   G.1   .  

http://www.blender.org/
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 Figure G.1   Creation of a 3D object with a 3D modeling tool          

     The Local Coordinate System  
 When    creating the model of a 3D object, it is necessary to decide where the origin (that 
is, (0, 0, 0)) is placed for the model. You can choose the origin of the model so that the 
model can be easily built, or alternatively so that the created model can be handled easily 
in a 3D scene. The cube introduced in the previous section was created with its center 
set at the origin (0, 0, 0). Sphere-shaped objects, like the sun or the moon, are usually 
modeled with their center at the origin.  

 On the other hand, in the case of game character models, such as the one shown in  Figure 
  G.1   , most of the models are built with the origin positioned at their feet level, and the 
y-axis running through the center of the body. By doing so, if you place the character at 
the y coordinate = 0 height (at the ground level), the character looks like it is standing 
on the ground—neither floating above the ground nor sinking down into the ground. In 
this configuration, if you translate the model along the z-axis or x-axis, the character will 
appear to  be walking or gliding along the ground. Additionally, you can turn the character 
using a simple rotation around the y-axis.  
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 In such cases, the coordinates of the vertices that constitute objects or characters config-
ured in this fashion are expressed with respect to this origin. Such a coordinate system 
is called the  local coordinate system . Using modeling tools (like Blender), the compo-
nents (vertex coordinates, colors, indices, and so on) of models designed this way can be 
exported to a file. You can then import this information into the buffer object in WebGL, 
and using  gl.drawElements() , you can draw and display the model created with the 3D 
modeling tool.   

  The World Coordinate System  
 Let’s consider    the case of a game where multiple characters would appear in a single 
space. The goal is to use the characters illustrated in  Figure   G.2    (right side) in the 3D scene 
shown on the left side. All three characters and the world have their own origin.  
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 Figure G.2   Disposition of several characters inside a single world                           

 When you want to display the characters as they are, you are faced with a problem. 
Because all the characters are built with their origin positioned at their feet level, they 
eventually are displayed on top of each other at the same location: the origin (0, 0, 0) of 
the 3D scene ( Figure   G.3   ).  1   That’s not something that generally happens in the real world 
and certainly not what you want here.   

 1   To keep the fi gure understandable, the characters are placed at slightly shifted positions. 
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 Figure G.3   All the characters are displayed at the origin.                           

 To address this problem, you need to adjust the position of each character to avoid 
them overlapping. To achieve this, you can use coordinate transformations that you 
originally looked at in  Chapter   3   , “Drawing and Transforming Triangles,” and 4, “More 
Transformations and Basic Animation.” To prevent the characters from overlapping, you 
could translate the penguin to (100, 0, 0), the monkey to (200, 10, 120), and the dog to 
(10, 0, 200).  

 The coordinate system we use to correctly place characters created within a  local coor-
dinate system  is called the  world coordinate system , or alternatively the  global 
coordinate system . The associated model transformation is referred to as   the  world 
transformation .  

 Of course, to prevent the characters of the penguin, monkey, and dog from overlapping, 
you can build them using the world coordinate system. For example, if you model the 
penguin in a tool such as Blender with its origin set to (100, 0, 0), when you insert the 
penguin into the world, it will be displayed at position (100, 0, 0), so you don’t need a 
coordinate transformation to avoid overlapping. However, this approach creates its own 
difficulties. For example, it becomes difficult to make the penguin spin like a ballerina 
because, if you perform a rotation around the y-axis,  you generate a circular motion of 
radius 100. You could, of course, first translate the penguin back to the origin, rotate it, 
and then translate it again to the original position, but that is quite a lot of work.  

 You actually already dealt with a similar case in  Chapter   7   . Using the coordinates of one 
set of triangles, the vertices of which were determined with respect to the origin set at the 
center,  PerspectiveView_mvp  draws a second set of triangles. Here is the figure we referred 
to in that program (see  Figure   G.4   ).  
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z
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y

 Figure G.4   Triangles group in PerspectiveView_mvp         

 Here, the local coordinate system expresses the vertex coordinates of the triangles shown 
with the dotted lines, whereas the world coordinate system is used to describe their trans-
lation along the x-axis.   

  Transformations and the Coordinate Systems  
 So far, we   have not considered local and world coordinate systems so that you can focus 
on the core aspects of each example. However, for reference,  Figure   G.5    shows the rela-
tionship between the transformations and the coordinate systems and is something to 
bear in mind as you deepen your knowledge of 3D graphics and experiment with model-
ing tools.  

 

local
coordinate

system

world
coordinate

system

clipping
coordinate

system

view
coordinate

system

model matrix
translate(), 
rotate(), 
scale()

view matrix
lookAt()

orthographic projection matrix
setOrtho()
perspective projection matrix
setPerspective()

 Figure G.5   Transformation and the coordinate system            
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  Appendix H  

Web Browser Settings for WebGL  

    This appendix   explains how to use advanced web browser settings to ensure that 
WebGL is displayed correctly and what to do if it isn’t.  

 If your graphics board isn’t compatible with WebGL, you may see the message shown 
in  Figure   H.1   .  

 
 Figure H.1   Loading a WebGL application results in an error message         

 If this happens, you may still be able to get WebGL to work in your browser with a 
little bit of tweaking:  

    1.   If you are using  Chrome, start the browser with the option  --ignore-gpu-black-
list . To specify this option, right-click the Chrome browser shortcut icon and 
select Properties from the menu. You’ll see a pop-up window similar to that in 
 Figure   H.2   . Then add the option string at the end of the command string in the 
Target column on the window. After that, Chrome is always started with the 
option. If this solves your problem, leave this option enabled.  
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 Figure H.2   Specifying an option in the Google Chrome Properties window          

   2.   If you are using  Firefox, enter  about:config  in the address bar. Firefox shows “This 
might void your warranty!” Click the button labeled “I’ll be careful, I promise!” Type 
 webgl  in the text field labeled by Search or Filter, and then Firefox will display the 
WebGL-related setting names (see  Figure   H.3   ). Double-click  webgl.force-enabled  in 
the list to change its value from  false  to  true . Again, if this solves your problem, 
leave this option enabled.  

 
 Figure H.3   WebGL-related settings in Firefox           

 If neither solution works, you will have to find another machine that has better support 
for WebGL. Again, look at the Khronos wiki for more information:  www.khronos.org/
webgl/wiki .    

http://www.khronos.org/webgl/wiki
http://www.khronos.org/webgl/wiki
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 A  
  alpha blending      The process of using the alpha value (“A”) in RGBA to blend the 
colors of two or more objects.    

  alpha value      The value used to indicate the transparency (0.0 is transparent and 1.0 
is opaque) of an object. Alpha blending uses this value.    

  ambient light      Indirect light. Light that illuminates an object from all directions and 
with the same intensity.    

  attach      The process of establishing a connection between two existing objects. 
Compare to  bind .    

  attribute variable      The variable used to pass data to a vertex shader.      

 B  
  bind      The process of creating a new object and then establishing a connection (the 
binding) between that object and a rendering context. Compare to  attach .    

  buffer      A block of memory allocated and dedicated to storing a specifi c kind of data, 
such as color or depth values.    

  buffer object      WebGL object used to store multiple items of vertex information.      

 C  
  canvas      The HTML5 element and features to draw graphics on a web page.    

  clipping      An operation that identifi es the area (or region) within a 3D scene that 
will be drawn. Anything not in the clipping region is not drawn.    

  color buffer      The memory area into which WebGL draws. Once drawn, the contents 
are displayed on the screen.    

  column major      A convention describing the way a matrix is stored in an array. In 
column major, the columns are listed in sequence in the array.    
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  completeness      Used in the context of a framebuffer, indicates the state whether a frame-
buffer object meets all the requirements for drawing.    

  context      JavaScript object that implements the methods used to draw onto a canvas.      

 D  
  depth (value)      The z value of a fragment when viewing the fragment from the eye point 
along the line of sight.    

  depth buffer      The memory area used for hidden surface removal. It stores the depth value 
(z value) of all fragments.    

  directional light      A light source that emits parallel light rays.      

 F  
  far clipping plane      The farther clipping plane of the planes comprising the viewing volume 
from the eye point.    

  fog      The effect seen when fading colors to a background color based on the distance from 
the observer. Fog is often used to provide depth cues to the observer.    

  fragment      The pixel generated by the rasterization process and which has color, depth 
value, texture coordinates, and more.    

  fragment shader      The shader program to process the fragment information.    

  framebuffer object      WebGL object used for offscreen drawing.      

 G  
  GLSL ES      OpenGL ES Shading Language. ES stands for Embedded System.      

 H  
  hidden surface removal      The process to determine and hide the surfaces and parts of sur-
faces that are not visible from a certain viewpoint.      

 I  
  image      A rectangular array of pixels.    

  index (vertex)      See  vertex index .      

 L  
  local coordinates      The vertex coordinates that are defi ned in the local coordinate system 
(the coordinate system that relates specifi cally to the selected object). (Also see  world coordi-
nates. )      
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 M  
  model matrix      The matrix used to translate, rotate, or scale objects. It is also known as a 
modeling matrix.    

  model view matrix      The matrix that multiplies the view matrix by the model matrix.    

  model view projection matrix      The matrix that multiplies the projection matrix by the 
model view matrix.      

 N  
  near clipping plane      The nearer clipping plane of the planes comprising the viewing vol-
ume from the eye point.    

  normal      An imaginary line that is perpendicular to the surface of a polygon and represent-
ed by a vec3 number. It is also called the normal vector.      

 O  
  orthographic projection matrix      The matrix used to defi ne a box-shaped viewing volume—
left, right, bottom, top, near, far—that defi nes the clipping planes of the box. Objects 
located closer to the far clipping plane are not scaled.      

 P  
  perspective projection matrix      The matrix used to defi ne a pyramid-shaped viewing 
volume. Objects located closer to the far clipping plane are scaled appropriately to give 
perspective.    

  pixel      Picture element. It has an RGBA or RGB value.    

  point light      Light source that emits light in all directions from one point.    

  program object      WebGL object to manage shader objects.    

  projection matrix      The generic term for the orthographic projection matrix and the per-
spective projection matrix.      

 R  
  rasterization process      The process to convert shapes, defi ned in a vector format into frag-
ments (pixels or dots) for display on a video screen.    

  renderbuffer object      WebGL object that supports a general two-dimensional drawing area.    

  RGBA      A color format: R (red), G (green), B (blue), and A (alpha).      

 S  
  sampler      A data type used to access a texture image from within a fragment shader.    

  shader      The computer program that implements the fundamental drawing function used 
in WebGL. WebGL supports vertex shaders and fragment shaders.    
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  shader object      WebGL object to manage shaders.    

  shading      The process of applying shading to each face of an object.    

  shadowing      The process to determine and draw shadows cast by objects.      

 T  
  texel      The basic element ( tex ture  el ement) that makes up a texture image. It has RGB or 
RGBA value.    

  texture coordinates      Two-dimensional coordinates to be used to access a texture image.    

  texture image      The image used in texture mapping. It is also simply called texture.    

  texture mapping      The process of applying (mapping) a texture image to the surface of an 
object.    

  texture object      WebGL object to manage a texture image.    

  texture unit      The mechanism to manage multiple texture objects.    

  transformation      The process of converting the vertex coordinates of an object to new vertex 
coordinates as a result of applying a transformation (translation, scaling, and so on).      

 U  
  uniform variable      The variable used to pass data to the vertex shader or fragment shader.      

 V  
  varying variable      The variable used to pass data from the vertex shader to the fragment 
shader.    

  vertex index      The number assigned to the vertex information elements stored in a buffer 
object. It starts from 0 and is increased by 1 for each new element stored.    

  vertex shader      The shader program that processes the vertex information.    

  view coordinate system      The coordinate system that has the eye point at its origin, the line 
of sight along the negative z-axis, and the up direction in the positive y-axis.    

  view matrix      The matrix to transform the vertex coordinates to the coordinates that are 
viewed from the eye point toward the line of sight.    

  view projection matrix      The matrix that multiplies the projection matrix by the view ma-
trix.    

  viewing volume      The subspace that is displayed on the screen. The objects outside the vol-
ume are not displayed.      

 W  
  world coordinates      The coordinates that are obtained by multiplying the model matrix by 
the local vertex coordinates of the 3D model.     
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Index

Symbols

2D graphics

coloring vertices different colors, 
151-160

geometric shape assembly and 
rasterization, 151-155

invoking fragment shader, 155

varying variables and interpolation 
process, 157-160

verifying fragment shader 
invocation, 156-157

combining multiple transformations, 
119-121

drawing

rectangles, 13-16, 89-91

triangles, 85-91

pasting images on, 160-183

activating texture units, 171-172

assigning texture images to texture 
objects, 177-179

binding texture objects to target, 
173-174

changing texture coordinates, 
182-183

flipping image y-axis, 170-171

mapping texture and vertex 
coordinates, 162-163, 166

multiple texture mapping, 183-190

passing texture coordinates from 
vertex to fragment shader, 180-181

passing texture unit to fragment 
shader, 179-180

retrieving texel color in fragment 
shader, 181-182

setting texture object parameters, 
174-177

setting up and loading images, 
166-170

texture coordinates, explained, 162

TexturedQuad.js, 163-166

restoring clipped parts, 251-253

rotating, 96-102, 107-110, 234-235

RotatingTranslatedTriangle.js, 135-136

RotatingTriangle.js, 126-129

calling drawing function, 129-130

draw() function, 130-131

requestAnimationFrame() function, 
131-133

updating rotation angle, 133-135

TranslatedTriangle.js, 92-96

translating, 92-96, 111
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3D graphics. See also WebGL

alpha blending, 384

applications

browser functionality in, 5

publishing, ease of, 4

writing in text editors, 3-4

displaying on web pages 
(3DoverWeb), 372

lighting, 291-293

light sources, 293

reflected light, 294-296

loading, 414-416

modeling tools, 415, 473-475

point light objects, 314-315

shading, 292

3D models

MTL file format, 418

OBJ file format, 417

OBJViewer.js, 419-421

parser code, 423-430

user-defined objects, 422-423

3DoverWeb, 372

[ ] (array indexing) operator, 203-204

. (dot) operator, 201-202

; (semicolon), in GLSL ES, 193

A

abs() function, 444

access to members

of arrays in GLSL ES, 209

of structures in GLSL ES, 207

of vector and matrix data types, 
201-204

acos() function, 442

activating texture units, 171-172

adding

color to each face (Hello Cube), 
284-285

shading to ambient light, 307-308

affine transformations, 91

all() function, 450

alpha blending, 380

3D objects, 384

blending function, 382-383

drawing when alpha values coexist, 
385-386

implementing, 380-381

LookAtBlendedTriangles.js, 381-382

ambient light, 294

shading, adding, 307-308

ambient reflection, 295-296

angle functions, 216, 441-442

animate() function, 129, 133-135

animation, 124-136

multiple transformations in, 135-136

RotatingTriangle.js, 126-129

calling drawing function, 129-130

draw() function, 130-131

requestAnimationFrame() function, 
131-133

updating rotation angle, 133-135

anonymous functions, 52-53

any() function, 450

applications

3D graphics applications

browser functionality in, 5

publishing, ease of, 4

writing in text editors, 3-4

WebGL application structure, 6-7
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array indexing ([ ]) operator, 203-204

arrays

in GLSL ES, 208-209

interleaving, 141-145

typed arrays, 78-79

asin() function, 442

assigning

buffer objects to attribute variables, 
79-81

texture images to texture objects, 
177-179

values

in GLSL ES structures, 207

in GLSL ES variables, 196-197

in matrix data types, 199-201

in vector data types, 199-201

asynchronous loading of texture images, 
169-170

atan() function, 442

atmospheric effects, fog, 372-373

attaching shader objects to program 
objects, 350-351

attribute variables, 217-218

assiging buffer objects to, 79-81

declaring, 43

enabling assignment, 81-82

explained, 41-42

for point size (MultiAttributeSize.js), 
139-140

setting value, 45-49

storage location, 44-45

B

back color buffer, 437

background objects, 267-269

z fighting, 273-275

binding

buffer objects to targets, 75-76

renderbuffer objects, 399-400

texture objects to targets, 173-174

BlendedCube.js, 384

Blender 3D modeling tool, 415, 473-475

blending function, alpha blending, 
382-383

<body> element, 12

bool data type, 196

Boolean values in GLSL ES, 194

boxed-shape viewing volume

defining, 243-244

OrthoView.html, 245-246

OrthoView.js, 246-247

break statement in GLSL ES, 212-213

browsers

<canvas> element support, 12

console, viewing, 14

enabling local file access, 161

functionality in 3D graphics 
applications, 5

JavaScript to WebGL processing flow, 
27, 438

WebGL settings, 479-480

buffer objects

assigning to attribute variables, 79-81

binding to targets, 75-76

creating, 74-75
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creating multiple, 140-141

defined, 69

enabling attribute variable assignment, 
81-82

explained, 72-74

writing vertex coordinates, colors, and 
indices in, 281-284

writing data to, 76-78

buffers

color buffers, 22

drawing to, 437-439

saving content from, 56

swapping, 437

depth buffer, 22

types of, 22

built-in functions in GLSL ES, 215-216

C

calculating

color per fragment, 319

diffuse reflection, 297-299

cancelAnimationFrame() function, 133

canvas.addEventListener() function, 432

<canvas> element, 9-11, 243

browser support, 12

clearing drawing area, 16-23

coordinates for center, 23

coordinate system, 16

DrawRectangle.html, 11-13

DrawRectangle.js, 13-16

HelloCanvas.html, 17-18

HelloCanvas.js, 18-23

mapping to WebGL coordinate system, 
39, 54-57

retrieving, 14, 19

canvas.getContext() function, 15

case sensitivity of GLSL ES, 193

ceil() function, 444

changing

color with varying variables, 146-151

eye point using keyboard, 238

near value, 250-251

checkFace() function, 368

Chrome

console, viewing, 14

enabling local file access, 161

WebGL browser settings, 479

clamp() function, 445

clear color, setting, 21-23

clearing

color buffer, 22

drawing area, 16-23

ClickedPoints.js, 50-52

clip coordinate system, viewing volume 
and, 460-462

clipped parts, restoring, 251-253

color

adding to each face (Hello Cube), 
284-285

changing with varying variables, 
146-151

of points, changing, 58-66

setting, 15, 21-23

texel color, retrieving in fragment 
shader, 181-182

color buffers, 22

drawing to, 437-439
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saving content from, 56

swapping, 437

ColoredCube.js, 285-289

ColoredPoints.js, 59-61

ColoredTriangle.js, 159

coloring vertices, 151-160

geometric shape assembly and 
rasterization, 151-155

invoking fragment shader, 155

varying variables and interpolation 
process, 157-160

verifying fragment shader invocation, 
156-157

color per fragment, calculating, 319

column major order, 109-110

combining multiple transformations, 
119-121

comments in GLSL ES, 193

common functions, 216, 444-446

compiling shader objects, 347-349

conditional control flow in GLSL ES, 
211-213

console, viewing, 14

constant index, 203

constants of typed arrays, 79

constructors in GLSL ES, 199-201

for structures, 207

const variables in GLSL ES, 217

context, retrieving, 15, 20-21

continue statement in GLSL ES, 212-213

coordinates

center of canvas, 23

homogeneous coordinates, 35

for mouse clicks, 54-57

WebGL coordinate system, 38-39

CoordinateSystem.js, 456-459

coordinate systems

for <canvas> element, 16

clip coordinate system and viewing 
volume, 460-462

CoordinateSystem.js, 456-459

handedness in default behavior, 
455-464

Hidden Surface Removal tool, 459-460

local coordinate system, 474-475

projection matrices for, 462-464

texture coordinates

changing, 182-183

explained, 162

flipping image y-axis, 170-171

mapping to vertex coordinates, 
162-163, 166

passing from vertex to fragment 
shader, 180-181

transformations and, 477

world coordinate system, 475-477

CoordinateSystem_viewVolume.js, 461

cos() function, 442

createProgram() function, 354

cross() function, 447

ctx.fillRect() function, 16

cubes, 301

cuboids, 301

cuon-matrix.js, 116

cuon-utils.js, 20
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D

data, passing

to fragment shaders with varying 
variable, 146-151

to vertex shaders, 137-151. See 
also drawing; rectangles; shapes; 
triangles

color changes, 146-151

creating multiple buffer objects, 
140-141

interleaving, 141-145

MultiAttributeSize.js, 139-140

data types

in GLSL ES, 34, 194-196

arrays, 208-209

operators on, 197-198

precision qualifiers, 219-221

samplers, 209-210

structures, 207-208

type conversion, 196-197

type sensitivity, 195

vector and matrix types, 198-206

typed arrays, 78-79

#define preprocessor directive, 222

degrees() function, 441

deleting

shader objects, 346

texture objects, 167

depth buffer, 22

DepthBuffer.js, 272-273

diffuse reflection, 294-295

calculating, 297-299

shading, 296-297

Direct3D, 5

directional light, 293

shading, 296-297

discard statement in GLSL ES, 212-213

displaying 3D objects on web pages 
(3DoverWeb), 372

distance() function, 447

document.getElementById() function, 
14, 19

dot() function, 447

dot (.) operator, 201-202

draw() function, 129-131

objects composed of other objects, 
332-334

processing flow of, 249

drawArrays() function, 284

drawbox() function, 339-340

drawing

to color buffers, 437-439

Hello Cube with indices and vertices 
coordinates, 277-278

multiple points/vertices, 68-85

assigning buffer objects to attribute 
variables, 79-81

binding buffer objects to targets, 
75-76

buffer object usage, 72-74

creating buffer objects, 74-75

enabling attribute variable 
assignments, 81-82

gl.drawArrays() function, 82-83

writing data to buffer objects, 76-78

objects composed of other objects, 
324-325

points

assigning uniform variable values, 
63-66

attribute variables, 41-42
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attribute variable storage location, 
44-45

attribute variable value, 45-49

changing point color, 58-66

ClickedPoints.js, 50-52

ColoredPoints.js, 59-61

fragment shaders, 35-36

gl.drawArrays() function, 36-37

handling mouse clicks, 53-57

HelloPoint1.html, 25

HelloPoint1.js, 25-26

HelloPoint2.js, 42-43

initializing shaders, 30-33

method one, 23-41

method two, 41-50

with mouse clicks, 50-58

registering event handlers, 52-53

shaders, explained, 27-28

uniform variables, 61-62

uniform variable storage location, 
62-63

vertex shaders, 33-35

WebGL coordinate system, 38-39

WebGL program structure, 28-30

rectangles, 13-16, 89-91

shapes, 85-91

animation, 124-136

multiple vertices, 68-85

rotating, 96-110

scaling, 111-113

transformation libraries, 115-124

translating, 92-96, 105-106, 111

triangles, 85-81

coloring vertices different colors, 
151-160

combining multiple 
transformations, 119-121

HelloTriangle.js, 85-86

restoring clipped parts, 251-253

rotating, 96-102, 107-110, 234-235

RotatingTranslatedTriangle.js, 
135-136

RotatingTriangle.js, 126-135

TranslatedTriangle.js, 92-96

translating, 92-96, 111

using framebuffer objects, 403-404

when alpha values coexist, 385-386

drawing area

clearing, 16-23

defining, 12

mapping to WebGL coordinate 
system, 39

drawing context. See context, retrieving

drawing function (tick()), calling 
repeatedly, 129-130

DrawRectangle.html, 11-13

DrawRectangle.js, 13-16

drawSegment() function, 340

draw segments, objects composed of other 
objects, 339-344

dynamic web pages, WebGL web pages 
versus, 7

E

#else preprocessor directive, 222

enabling

attribute variable assignment, 81-82

local file access, 161

equal() function, 450

event handlers

for mouse clicks, 53-57

registering, 52-53
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execution order in GLSL ES, 193

exp2() function, 443

exp() function, 443

exponential functions, 216, 443

eye point, 228

changing using keyboard, 238

LookAtTrianglesWithKeys.js, 238-241

visible range, 241

F

faceforward() function, 447

face of objects, selecting, 365

PickFace.js, 366-368

files, loading shader programs from, 
471-472

fill color, setting, 15

Firefox

console, viewing, 14

enabling local file access, 161

WebGL browser settings, 480

flipping image y-axis, 170-171

Float32Array object, 78

float data type, 196

floor() function, 444

flow of vertex shaders, processing, 
248-249

fog, 372-373

implementing, 373-374

w value, 376-377

Fog.js, 374-376

Fog_w.js, 376-377

foreground objects, 267-269

DepthBuffer.js, 272-273

hidden surface removal, 270-271

z fighting, 273-275

for statement in GLSL ES, 211-212

fract() function, 444

fragments, 27, 35

fragment shaders, 27

drawing points, 35-36

example of, 192

geometric shape assembly and 
rasterization, 151-155

invoking, 155

passing

data to, 61-62, 146-151

texture coordinates to, 180-181

texture units to, 179-180

program structure, 29-30

retrieving texel color in, 181-182

varying variables and interpolation 
process, 157-160

verifying invocation, 156-157

FramebufferObject.js, 395-396, 403

framebuffer objects, 392-393

checking configurations, 402-403

creating, 397

drawing with, 403-404

renderbuffer objects set to, 401-402

setting to renderbuffer objects, 400-401

front color buffer, 437

functions

abs() function, 444

acos() function, 442
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all() function, 450

angle and trigonometry functions, 
441-442

animate() function, 129, 133-135

anonymous functions, 52-53

any() function, 450

asin() function, 442

atan() function, 442

built-in functions in GLSL ES, 215-216

cancelAnimationFrame() function, 133

canvas.addEventListener() 
function, 432

canvas.getContext() function, 15

ceil() function, 444

checkFace() function, 368

clamp() function, 445

common functions, 444-446

cos() function, 442

createProgram() function, 354

cross() function, 447

ctx.fillRect() function, 16

degrees() function, 441

distance() function, 447

document.getElementById() function, 
14, 19

dot() function, 447

draw() function, 129-131

objects composed of other objects, 
332-334

processing flow of, 249

drawArrays() function, 284

drawbox() function, 339-340

drawSegment() function, 340

equal() function, 450

exp2() function, 443

exp() function, 443

exponential functions, 216, 443

faceforward() function, 447

floor() function, 444

fract() function, 444

geometric functions, 216, 447-448

getWebGLContext() function, 20

gl.activeTexture() function, 171-172

gl.attachShader() function, 350

gl.bindBuffer() function, 75-76

gl.bindFramebuffer() function, 400

gl.bindRenderbuffer() function, 399

gl.bindTexture() function, 173-174

gl.blendFunc() function, 382-383

gl.bufferData() function, 76-78

gl.checkFramebufferStatus() function, 
402-403

gl.clearColor() function, 20-21

gl.clear() function, 22, 125

gl.compileShader() function, 347-349

gl.createBuffer() function, 74-75

gl.createFramebuffer() function, 397

gl.createProgram() function, 349-350

gl.createRenderbuffer() function, 398

gl.createShader() function, 345-346

gl.createTexture() function, 167

gl.deleteBuffer() function, 75

gl.deleteFramebuffer() function, 397

gl.deleteProgram() function, 350

gl.deleteRenderbuffer() function, 398

gl.deleteShader() function, 346

gl.deleteTexture() function, 167
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gl.depthMask() function, 385

gl.detachShader() function, 351

gl.disable() function, 271

gl.disableVertexAttribArray() 
function, 82

gl.drawArrays() function, 36-37, 72, 
82-83, 87, 131

gl.drawElements() function, 278

gl.enable() function, 270

gl.enableVertexAttribArray() function, 
81-82

gl.framebufferRenderbuffer() function, 
401-402

gl.framebufferTexture2D() 
function, 401

gl.getAttribLocation() function, 44-45

gl.getProgramInfoLog() function, 352

gl.getProgramParameter() function, 352

gl.getShaderInfoLog() function, 348

gl.getShaderParameter() function, 348

gl.getUniformLocation() function, 63

gl.linkProgram() function, 351-352

gl.pixelStorei() function, 171

gl.polygonOffset() function, 274

gl.readPixels() function, 364

gl.renderbufferStorage() function, 399

gl.shaderSource() function, 346-347

gl.texImage2D() function, 177-179, 398

gl.texParameteri() function, 174-177

glTranslatef() function, 116

gl.uniform1f() function, 65-66

gl.uniform1i() function, 179-180

gl.uniform2f() function, 65-66

gl.uniform3f() function, 65-66

gl.uniform4f() function, 63-66, 95

gl.uniformMatrix4fv() function, 110

gl.useProgram() function, 353, 387

gl.vertexAttrib1f() function, 47-49

gl.vertexAttrib2f() function, 47-49

gl.vertexAttrib3f() function, 45-49

gl.vertexAttrib4f() function, 47-49

gl.vertexAttribPointer() function, 79-81, 
142-145

gl.viewport() function, 404

in GLSL ES, 213-215

built-in functions, 215-216

parameter qualifiers, 214-215

prototype declarations, 214

greaterThanEqual() function, 449

greaterThan() function, 449

initShaders() function, 31-32, 344-345, 
353-355, 387

initTextures() function, 166-170, 187

initVertexBuffers() function, 72, 140, 
152, 166, 187, 281

inversesqrt() function, 443

length() function, 447

lessThanEqual() function, 449

lessThan() function, 449

loadShader() function, 355

loadShaderFile() function, 472

loadTexture() function, 168, 170, 
187-189

log() function, 443

log2() function, 443

main() function, processing flow of, 19

mathematical common functions, 
444-446

Matrix4.setOrtho() function, 453

Matrix4.setPerspective() function, 453

matrix functions, 216, 448

max() function, 445
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maxtrixCompMult() function, 448

min() function, 445

mix() function, 446

mod() function, 444

normalize() function, 447

notEqual() function, 450

not() function, 450

onLoadShader() function, 472

OpenGL functions, naming 
conventions, 48-49

popMatrix() function, 338

pow() function, 443

pushMatrix() function, 338

radians() function, 441

reflect() function, 448

refract() function, 448

requestAnimationFrame() function, 
130-133

setInterval() function, 131

setLookAt() function, 228-229

setOrtho() function, 243

setPerspective() function, 257

setRotate() function, 117, 131

sign() function, 444

sin() function, 442

smoothstep() function, 446

sqrt() function, 443

stencil buffer, 22

step() function, 446

tan() function, 442

texture lookup functions, 451

texture2D() function, 181-182, 451

texture2DLod() function, 451

texture2DProj() function, 451

texture2DProjLod() function, 451

textureCube() function, 451

textureCubeLod() function, 451

tick() function, 129-130

trigonometry functions, 216, 441-442

type conversion, 197

vec4() function, 34-35

vector functions, 48, 216, 449

G

geometric functions, 216, 447-448

geometric shape assembly, 151-155

getWebGLContext() function, 20

gl.activeTexture() function, 171-172

gl.attachShader() function, 350

gl.bindBuffer() function, 75-76

gl.bindFramebuffer() function, 400

gl.bindRenderbuffer() function, 399

gl.bindTexture() function, 173-174

gl.blendFunc() function, 382-383

gl.bufferData() function, 76-78

gl.checkFramebufferStatus() function, 
402-403

gl.clearColor() function, 20-21

gl.clear() function, 22, 125

gl.compileShader() function, 347-349

gl.createBuffer() function, 74-75

gl.createFramebuffer() function, 397

gl.createProgram() function, 349-350

gl.createRenderbuffer() function, 398

gl.createShader() function, 345-346

gl.createTexture() function, 167

gl.deleteBuffer() function, 75

gl.deleteFramebuffer() function, 397
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gl.deleteProgram() function, 350

gl.deleteRenderbuffer() function, 398

gl.deleteShader() function, 346

gl.deleteTexture() function, 167

gl.depthMask() function, 385

gl.detachShader() function, 351

gl.disable() function, 271

gl.disableVertexAttribArray() function, 82

gl.drawArrays() function, 36-37, 72, 82-83, 
87, 131

gl.drawElements() function, 278

gl.enable() function, 270

gl.enableVertexAttribArray() function, 
81-82

gl.framebufferRenderbuffer() function, 
401-402

gl.framebufferTexture2D() function, 401

gl.getAttribLocation() function, 44-45

gl.getProgramInfoLog() function, 352

gl.getProgramParameter() function, 352

gl.getShaderInfoLog() function, 348

gl.getShaderParameter() function, 348

gl.getUniformLocation() function, 63

gl.linkProgram() function, 351-352

global coordinate system. See world 
coordinate system

global variables in GLSL ES, 216

gl.pixelStorei() function, 171

gl.polygonOffset() function, 274

gl.readPixels() function, 364

gl.renderbufferStorage() function, 399

gl.shaderSource() function, 346-347

GLSL ES (OpenGL ES shading language), 
6, 30

case sensitivity, 193

comments, 193

conditional control flow and iteration, 
211-213

data types, 34, 194

arrays, 208-209

precision qualifiers, 219-221

samplers, 209-210

structures, 207-208

vector and matrix types, 198-206

functions, 213-215

built-in functions, 215-216

parameter qualifiers, 214-215

prototype declarations, 214

order of execution, 193

overview of, 192

preprocessor directives, 221-223

semicolon (;) usage, 193

variables

assignment of values, 196-197

data types for, 196

global and local variables, 216

keywords and reserved words, 
194-195

naming conventions, 194

operator precedence, 210

operators on, 197-198

storage qualifiers, 217-219

type conversion, 196-197

type sensitivity, 195

GLSL (OpenGL shading language), 6

gl.texImage2D() function, 177-179, 398

gl.texParameteri() function, 174-177

glTranslatef() function, 116

gl.uniform1f() function, 65-66

gl.uniform1i() function, 179-180
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gl.uniform2f() function, 65-66

gl.uniform3f() function, 65-66

gl.uniform4f() function, 63-66, 95

gl.uniformMatrix4fv() function, 110

gl.useProgram() function, 353, 387

gl.vertexAttrib1f() function, 47-49

gl.vertexAttrib2f() function, 47-49

gl.vertexAttrib3f() function, 45-49

gl.vertexAttrib4f() function, 47-49

gl.vertexAttribPointer() function, 79-81, 
142-145

gl.viewport() function, 404

greaterThanEqual() function, 449

greaterThan() function, 449

H

handedness of coordinate systems, 
455-464

clip coordinate system and viewing 
volume, 460-462

CoordinateSystem.js, 456-459

Hidden Surface Removal tool, 459-460

projection matrices for, 462-464

Head Up Display (HUD), 368

HUD.html, 369-370

HUD.js, 370-372

implementing, 369

HelloCanvas.html, 17-18

HelloCanvas.js, 18-23

Hello Cube, 275-277

adding color to each face, 284-285

ColoredCube.js, 285-289

drawing with indices and vertices 
coordinates, 277-278

HelloCube.js, 278-281

writing vertex coordinates, colors, and 
indices in the buffer object, 281-284

HelloCube.js, 278-281

HelloPoint1.html, 25

HelloPoint1.js, 25-26

HelloPoint2.js, 42-43

HelloQuad.js, 89-91

HelloTriangle.js, 85-86, 151-152

hidden surface removal, 270-271, 459-460

hierarchical structure, 325-326

highp precision qualifier, 220

homogeneous coordinates, 35

HTML5

<body> element, 12

<canvas> element, 9-11

browser support, 12

clearing drawing area, 16-23

coordinates for center, 23

coordinate system, 16

DrawRectangle.html, 11-13

DrawRectangle.js, 13-16

HelloCanvas.html, 17-18

HelloCanvas.js, 18-23

mapping to WebGL coordinate 
system, 39, 54-57

retrieving, 14, 19

defined, 2

elements, modifying using JavaScript, 
247-248

<img> element, 9
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HUD (Head Up Display), 368

HUD.html, 369-370

HUD.js, 370-372

implementing, 369

HUD.html, 369-370

HUD.js, 370-372

I

identifiers, assigning, 12

identity matrix, 119

handedness of coordinate systems, 
462-463

if-else statement in GLSL ES, 211

if statement in GLSL ES, 211

images, pasting on rectangles, 160-183

activating texture units, 171-172

assigning texture images to texture 
objects, 177-179

binding texture objects to target, 
173-174

changing texture coordinates, 182-183

flipping image y-axis, 170-171

mapping texture and vertex 
coordinates, 162-163, 166

multiple texture mapping, 183-190

passing coordinates from vertex to 
fragment shader, 180-181

passing texture unit to fragment 
shader, 179-180

retrieving texel color in fragment 
shader, 181-182

setting texture object parameters, 
174-177

setting up and loading images, 166-170

texture coordinates, explained, 162

TexturedQuad.js, 163-166

<img> element, 9

implementing

alpha blending, 380-381

fog, 373-374

HUD, 369

lost context, 431-432

object rotation, 358

object selection, 361-362

rounded points, 377-378

shadows, 405-406

switching shaders, 387

texture images, 394

indices, 282

infinity in homogenous coordinates, 35

initializing shaders, 30-33

initShaders() function, 31-32, 344-345, 
353-355, 387

initTextures() function, 166-170, 187

initVertexBuffers() function, 72, 140, 152, 
166, 187, 281

int data type, 196

integral constant expression, 208

interleaving, 141-145

interpolation process, varying variables 
and, 157-160

inversesqrt() function, 443

inverse transpose matrix, 311-312, 
465-469

iteration in GLSL ES, 211-213
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J–K

JavaScript

drawing area, mapping to WebGL 
coordinate system, 39

HTML elements, modifying, 247-248

loading, 12

processing flow into WebGL, 27, 438

JointModel.js, 328-332

joints, 325

JointModel.js, 328-332

multijoint model, 334

MultiJointModel.js, 335-338

single joint model, objects composed 
of other objects, 326-327

keyboard, changing eye point, 238

keywords in GLSL ES, 194-195

Khronos Group, 6

L

left-handedness of coordinate systems in 
default behavior, 455-464

length() function, 447

lessThanEqual() function, 449

lessThan() function, 449

libraries, transformation, 115-124

combining multiple transformations, 
119-121

cuon-matrix.js, 116

RotatedTranslatedTriangle.js, 121-124

RotatedTriangle_Matrix4.js, 117-119

light direction, calculating diffuse 
reflection, 297-299

LightedCube_ambient.js, 308-309

LightedCube.js, 302-303

processing in JavaScript, 306

processing in vertex shader, 304-305

LightedTranslatedRotatedCube.js, 312-314

lighting

3D objects, 291-293

light sources, 293

reflected light, 294-296

ambient light, 294

directional light, 293

point light, 293

reflected light, 294-296

translated-rotated objects, 310-311

light sources, 293

linking program objects, 351-352

listings

array with multiple vertex information 
items, 141

BlendedCube.js, 384

ClickedPoints.js, 51-52

ColoredCube.js, 286-287

ColoredPoints.js, 59-61

ColoredTriangle.js, 159

CoordinateSystem.js, 456-458

CoordinateSystem_viewVolume.js, 461

createProgram(), 354

DepthBuffer.js, 272-273

drawing multiple points, 69

DrawRectangle.html, 11

DrawRectangle.js, 13-14

Fog.js, 374-375

Fog_w.js, 376-377

fragment shader example, 192
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FramebufferObject.js

Processes for Steps 1 to 7, 395-396

Process for Step 8, 403-404

HelloCanvas.html, 18

HelloCanvas.js, 18-19

HelloCube.js, 279-280

HelloPoint1.html, 25

HelloPoint1.js, 26

HelloPoint2.js, 42-43

HelloTriangle.js, 85-86

code snippet, 151-152

HUD.html, 369

HUD.js, 370-371

initShaders(), 353-354

JointModel.js, 328-330

LightedCube_ambient.js, 308-309

LightedCube.js, 302-303

LightedTranslatedRotatedCube.js, 
312-313

loadShader(), 355

LoadShaderFromFiles, 471-472

LookAtBlenderTriangles.js, 381-382

LookAtRotatedTriangles.js, 235-236

LookAtRotatedTriangles_mvMatrix.js, 
237

LookAtTriangles.js, 229-231

LookAtTrianglesWithKeys.js, 239-240

LookAtTrianglesWithKeys_View
Volume.js, 252-253

MultiAttributeColor.js, 147-148

MultiAttributeSize_Interleaved.js, 
142-143

MultiAttributeSize.js, 139-140

MultiJointModel.js

drawing the hierarchy structure, 
336-337

key processing, 335-336

MultiJointModel_segment.js, 340-342

MultiPoint.js, 70-72

MultiTexture.js, 185-186

OBJViewer.js, 419-420

onReadComplete(), 428

parser part, 424-426

retrieving the drawing information, 
428-429

OrthoView.html, 245-246

OrthoView.js, 246-247

PerspectiveView.js, 258-259

PerspectiveView_mvp.js, 263-265

PickFace.js, 366-367

PickObject.js, 362-363

PointLightedCube.js, 316-317

PointLightedCube_perFragment.js, 
319-320

ProgramObject.js

Processes for Steps 1 to 4, 387-389

Processes for Steps 5 through 10, 
390-391

RotatedTranslatedTriangle.js, 122

RotatedTriangle.js, 99-100

RotatedTriangle_Matrix4.html, 116

RotatedTriangle_Matrix.js, 107-108

RotateObject.js, 358-359

RotatingTriangle_contextLost.js, 
433-434

RotatingTriangle.js, 126-128

RoundedPoint.js, 379
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Shadow_highp.js, 413-414

Shadow.js

JavaScript part, 410-411

Shader part, 406-407

TexturedQuad.js, 163-165

TranslatedTriangle.js, 93-94

vertex shader example, 192

Zfighting.js, 274-275

loading

3D objects, 414-416

images for texture mapping, 166-170

JavaScript, 12

shader programs from files, 471-472

loadShader() function, 355

loadShaderFile() function, 472

loadTexture() function, 168, 170, 187-189

local coordinate system, 474-475

local file access, enabling, 161

local variables in GLSL ES, 216

log() function, 443

log2() function, 443

LookAtBlendedTriangles.js, 381-382

look-at point, 228

LookAtRotatedTriangles.js, 235-238

LookAtRotatedTriangles_mvMatrix.js, 237

LookAtTriangles.js, 229-233

LookAtTrianglesWithKeys.js, 238-241

LookAtTrianglesWithKeys_ViewVolume.js, 
251-253

lost context, 430-431

implementing, 431-432

RotatingTriangle_contextLost.js, 
432-434

lowp precision qualifier, 220

luminance, 178

M

Mach band, 409

macros, predefined names, 222

main() function, processing flow of, 19

manipulating objects composed of other 
objects, 324-325

mapping textures, 160-183

activating texture units, 171-172

assigning texture images to texture 
objects, 177-179

binding texture objects to target, 
173-174

changing texture coordinates, 182-183

flipping image y-axis, 170-171

mapping vertex and texture 
coordinates, 162-163, 166

passing coordinates from vertex to 
fragment shader, 180-181

passing texture unit to fragment 
shader, 179-180

pasting multiple textures, 183-190

retrieving texel color in fragment 
shader, 181-182

setting texture object parameters, 
174-177

setting up and loading images, 166-170

texture coordinates, explained, 162

TexturedQuad.js, 163-166

mathematical common functions, 
444-446

matrices

defined, 103

identity matrix, 119

handedness of coordinate systems, 
462-463
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inverse transpose matrix, 311-312, 
465-469

model matrix, 121

PerspectiveView, 262, 265

multiplication, 103, 121, 205-206

projection matrix

handedness of coordinate systems, 
462-464

quadrangular pryamid, 260-261

Matrix4 object, supported methods and 
properties, 118

Matrix4.setOrtho() function, 453

Matrix4.setPerspective() function, 453

matrix data types in GLSL ES, 198-206

access to components, 201-204

assignment of values, 199-201

constructors, 199-201

operators, 204-206

matrix functions, 216, 448

max() function, 445

maxtrixCompMult() function, 448

mediump precision qualifier, 220

member access in GLSL ES

arrays, 209

structures, 207

methods. See also functions

for Matrix4 object, 118

of typed arrays, 79

WebGL methods, naming conventions, 
48-49

min() function, 445

MIPMAP texture format, 176

mix() function, 446

model matrix, 121

PerspectiveView, 262, 265

model transformation, 121

mod() function, 444

modifying HTML elements using 
JavaScript, 247-248

mouse

drawing points, 50-58

ClickedPoints.js, 50-52

event handling, 53-57

registering event handlers, 52-53

rotating objects, 357

moving shapes, 92-96

MTL file format (3D models), 418

MultiAttributeColor.js, 147-150

MultiAttributeSize_Interleaved.js, 142-145

MultiAttributeSize.js, 139-140

multijoint model

MultiJointModel.js, 335-338

objects composed of other objects, 334

MultiJointModel.js, 335-338

MultiJointMode_segment.js, 340-342

multiple buffer objects, creating, 140-141

multiple points, drawing, 68-85

multiple textures, mapping to shapes, 
183-190

multiple transformations, 115-124

in animation, 135-136

combining, 119-121

cuon-matrix.js, 116

RotatedTranslatedTriangle.js, 121-124

RotatedTriangle_Matrix4.js, 117-119

multiple vertices

basic shapes, drawing, 85-91

drawing, 68-85

assigning buffer objects to attribute 
variables, 79-81

binding buffer objects to targets, 
75-76
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buffer object usage, 72-74

creating buffer objects, 74-75

enabling attribute variable 
assignments, 81-82

gl.drawArrays() function, 82-83

writing data to buffer objects, 76-78

multiplication

of matrices, 121

of vectors and matrices, 103, 205-206

MultiPoint.js, 70-72

MultiTexture.js, 184-190

N

naming conventions

GLSL ES variables, 194

variables, 43

WebGL methods, 48-49

near value, changing, 250-251

normal orientation of a surface, 299-301

normalize() function, 447

notEqual() function, 450

not() function, 450

numerical values in GLSL ES, 194

O

objects

composed of other objects

draw() function, 332-334

drawing, 324-325

draw segments, 339-344

hierarchical structure, 325-326

JointModel.js, 328-332

manipulating, 324-325

multijoint model, 334

single joint model, 326-327

rotation

implementing, 358

with mouse, 357

RotateObject.js, 358-360

selection, 360-362

face of objects, 365

implementing, 361-362

PickObject.js, 362-365

OBJ file format (3D models), 417

OBJViewer.js, 419-421

parser code, 423-430

onLoadShader() function, 472

OpenGL

color buffers, swapping, 437

functions, naming conventions, 48-49

in history of WebGL, 5

WebGL and, 5

OpenGL ES (Embedded Systems), 5-6, 30

OpenGL shading language (GLSL), 6

operator precedence in GLSL ES, 210

operators in GLSL ES

on arrays, 209

on structures, 208

on variables, 197-198

on vector and matrix data types, 
204-206

order of execution in GLSL ES, 193

orientation of a surface

calculating diffuse reflection, 297-299

normal, 299-301
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origin

in coordinate systems, 55

in local coordinate system, 474-475

in world coordinate system, 475-477

origins of WebGL, 5-6

orthographic projection matrix, 252-253, 
261, 453

OrthoView.html, 245-246

OrthoView.js, 246-247

P

parameter qualifiers in GLSL ES functions, 
214-215

parameters of texture objects, setting, 
174-177

parser code (OBJViewer.js), 423-430

passing data

to fragment shaders

texture units, 179-180

with varying variable, 146-151

to vertex shaders, 137-151. See 
also drawing; rectangles; shapes; 
triangles

color changes, 146-151

creating multiple buffer objects, 
140-141

interleaving, 141-145

MultiAttributeSize.js, 139-140

pasting images on rectangles, 160-183

activating texture units, 171-172

assigning texture images to texture 
objects, 177-179

binding texture objects to target, 
173-174

changing texture coordinates, 182-183

flipping image y-axis, 170-171

mapping texture and vertex 
coordinates, 162-163, 166

multiple texture mapping, 183-190

passing coordinates from vertex to 
fragment shader, 180-181

passing texture unit to fragment 
shader, 179-180

retrieving texel color in fragment 
shader, 181-182

setting texture object parameters, 
174-177

setting up and loading images, 166-170

texture coordinates, explained, 162

TexturedQuad.js, 163-166

perspective projection matrix, 257, 453

PerspectiveView.js, 255, 260-263

model matrix, 262, 265

PerspectiveView_mvp.js, 263-266

per-vertex operations, 93

PickFace.js, 365-368

PickObject.js, 362-365

point light, 293

point light objects, 314-315

PointLightedCube.js, 315-319

PointLightedCube_perFragment.js, 
319-321

points, drawing, 23-50

attribute variables, 41-42

setting value, 45-49

storage location, 44-45

changing point color, 58-66

ClickedPoints.js, 50-52

ColoredPoints.js, 59-61

gl.drawArrays() function, 36-37

HelloPoint1.html, 25



ptg11539634

Index 507

HelloPoint1.js, 25-26

HelloPoint2.js, 42-43

with mouse clicks, 50-58

multiple points, 68-85

registering event handlers, 52-53

shaders

explained, 27-28

fragment shaders, 35-36

initializing, 30-33

vertex shaders, 33-35

uniform variables, 61-62

assigning values, 63-66

storage location, 62-63

WebGL coordinate system 38-39

WebGL program structure, 28-30

point size, attribute variables for, 139-140

popMatrix() function, 338

positive rotation, 96

pow() function, 443

precedence of operators in GLSL ES, 210

precision qualifiers, 62, 219-221

predefined single parameters, 53

preprocessor directives in GLSL ES, 
221-223

primitive assembly process. See geometric 
shape assembly

primitives. See shapes

process flow

initializing shaders, 31

InitShaders() function, 353-355

JavaScript to WebGL, 27, 438

mouse click event handling, 53-57

multiple vertice drawing, 70

vertex shaders, 248-249

programmable shader functions, 6

ProgramObject.js, 387-391

program objects, 44, 353

attaching shader objects, 350-351

creating, 349-350

linking, 351-352

projection matrices, 453

handedness of coordinate systems, 
462-464

quadrangular pryamid, 260-261

properties

Matrix4 object, 118

typed arrays, 79

prototype declarations in GLSL ES 
functions, 214

publishing 3D graphics applications, 
ease of, 4

pushMatrix() function, 338

Q

quadrangular pyramid

PerspectiveView.js, 258-260

projection matrix, 260-261

viewing volume, 256-258

visible range, 254-256

qualifiers for parameters in GLSL ES 
functions, 214-215

R

radians() function, 441

rasterization, 137, 151-155
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rectangles. See also shapes; triangles

drawing, 13-16, 89-91

pasting images on, 160-183

activating texture units, 171-172

assigning texture images to texture 
objects, 177-179

binding texture objects to target, 
173-174

changing texture coordinates, 
182-183

flipping image y-axis, 170-171

mapping texture and vertex 
coordinates, 162-163, 166

multiple texture mapping, 183-190

passing texture coordinates from 
vertex to fragment shader, 180-181

passing texture unit to fragment 
shader, 179-180

retrieving texel color in fragment 
shader, 181-182

setting texture object parameters, 
174-177

setting up and loading images, 
166-170

texture coordinates, explained, 162

TexturedQuad.js, 163-166

reflected light, 294-296

ambient reflection, 295-296

diffuse reflection, 294-295

reflect() function, 448

refract() function, 448

registering event handlers, 52-53

renderbuffer objects, 392-393

binding, 399-400

creating, 398

setting to framebuffer objects, 401-402

rendering context. See context, retrieving

requestAnimationFrame() function, 
130-133

reserved words in GLSL ES, 194-195

resizing rotation matrix, 106-107

restoring clipped parts of triangles, 
251-253

retrieving

<canvas> element, 14, 19

context, 15

for WebGL, 20-21

storage location of uniform variables, 
62-63

texel color in fragment shader, 181-182

RGBA components, 409

RGBA format, 15

RGB format, 15

right-handedness of coordinate 
systems, 38

in default behavior, 455-464

right-hand-rule rotation, 96

RotatedTranslatedTriangle.js, 121-124

RotatedTriangle.js, 98-102

RotatedTriangle_Matrix.js, 107-110

RotatedTriangle_Matrix4.html, 116

RotatedTriangle_Matrix4.js, 117-119

LookAtTriangles.js versus, 232-233

rotated triangles from specified positions, 
234-235

RotateObject.js, 358-360

rotating

objects

implementing, 358

with mouse, 357

RotateObject.js, 358-360
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shapes, 96-102

calling drawing function, 129-130

combining multiple 
transformations, 119-121

draw() function, 130-131

multiple transformations in, 
135-136

requestAnimationFrame() function, 
131-133

RotatingTriangle.js, 126-129

transformation matrix, 102-105

updating rotation angle, 133-135

triangles, 107-110

RotatingTranslatedTriangle.js, 135-136

RotatingTriangle_contextLost.js, 432-434

RotatingTriangle.js, 126-129

calling drawing function, 129-130

draw() function, 130-131

requestAnimationFrame() function, 
131-133

updating rotation angle, 133-135

rotation angle, updating, 133-135

rotation matrix

creating, 102-105

defined, 104

inverse transpose matrix and, 465-469

resizing, 106-107

RotatedTriangle_Matrix.js, 107-110

RoundedPoint.js, 378-379

rounded points, 377

implementing, 377-378

RoundedPoint.js, 378-379

row major order, 109-110

S

sample programs

BlendedCube.js, 384

ClickedPoints.js, 50-52

ColoredCube.js, 285-289

ColoredPoints.js, 59-61

ColoredTriangle.js, 159

CoordinateSystem.js, 456-459

CoordinateSystem_viewVolume.js, 461

cuon-matrix.js, 116

cuon-utils.js, 20

DepthBuffer.js, 272-273

DrawRectangle.html, 11-13

DrawRectangle.js, 13-16

Fog.js, 374-376

Fog_w.js, 376-377

FramebufferObject.js, 395-396, 403

HelloCanvas.html, 17-18

HelloCanvas.js, 18-23

HelloCube.js, 278-281

HelloPoint1.html, 25

HelloPoint1.js, 25-26

HelloPoint2.js, 42-43

HelloQuad.js, 89-91

HelloTriangle.js, 85-86, 151-152

HUD.html, 369-370

HUD.js, 370-372

JointModel.js, 328-332

LightedCube_ambient.js, 308-309

LightedCube.js, 302-303

processing in JavaScript, 306

processing in vertex shader, 304-305

LightedTranslatedRotatedCube.js, 
312-314
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LookAtBlendedTriangles.js, 381-382

LookAtRotatedTriangles.js, 235-238

LookAtRotatedTriangles_mvMatrix.js, 
237

LookAtTriangles.js, 229-233

LookAtTrianglesWithKeys.js, 238-241

LookAtTrianglesWithKeys_View-
Volume.js, 251-253

MultiAttributeColor.js, 147-150

MultiAttributeSize_Interleaved.js, 
142-145

MultiAttributeSize.js, 139-140

MultiJointModel.js, 335-338

MultiJointMode_segment.js, 340-342

MultiPoint.js, 70-72

MultiTexture.js, 184-190

OBJViewer.js, 419-421

parser code, 423-430

OrthoView.html, 245-246

OrthoView.js, 246-247

PerspectiveView.js, 255, 260-263

model matrix, 262, 265

PerspectiveView_mvp.js, 263-266

PickFace.js, 365-368

PickObject.js, 362-365

PointLightedCube.js, 315-319

PointLightedCube_perFragment.js, 
319-321

ProgramObject.js, 387-391

RotatedTranslatedTriangle.js, 121-124

RotatedTriangle.js, 98-102

RotatedTriangle_Matrix.js, 107-110

RotatedTriangle_Matrix4.html, 116

RotatedTriangle_Matrix4.js, 117-119

LookAtTriangles.js versus, 232-233

RotateObject.js, 358-360

RotatingTranslatedTriangle.js, 135-136

RotatingTriangle_contextLost.js, 
432-434

RotatingTriangle.js, 126-129

calling drawing function, 129-130

draw() function, 130-131

requestAnimationFrame() function, 
131-133

updating rotation angle, 133-135

RoundedPoint.js, 378-379

Shadow_highp.js, 413-414

Shadow.js, 406-412

TexturedQuad.js, 163-166

TranslatedTriangle.js, 92-96

samplers in GLSL ES, 209-210

saving color buffer content, 56

scaling matrix

handedness of coordinate systems, 464

inverse transpose matrix and, 465-469

scaling shapes, 111-113

selecting

face of objects, 365-368

objects, 360-365

semicolon (;) in GLSL ES, 193

setInterval() function, 131

setLookAt() function, 228-229

setOrtho() function, 243

setPerspective() function, 257

setRotate() function, 117, 131

shader objects

attaching to program objects, 350-351

compiling, 347-349

creating

gl.createShader() function, 345-346

program objects, 349-350
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deleting, 346

InitShaders() function, 344-345

linking program objects, 351-352

storing shader source code, 346-347

shader programs, loading from files, 
471-472

shaders, 6, 25

explained, 27-28

fragment shaders, 27

drawing points, 35-36

example of, 192

geometric shape assembly and 
rasterization, 151-155

invoking, 155

passing data to, 61-62, 146-151

passing texture coordinates to, 
180-181

passing texture units to, 179-180

program structure, 29-30

retrieving texel color in, 181-182

varying variables and interpolation 
process, 157-160

verifying invocation, 156-157

GLSL ES. See GLSL ES

initializing, 30-33

InitShaders() function, 344-345

source code, storing, 346-347

vertex shaders, 27, 232

drawing points, 33-35

example of, 192

geometric shape assembly and 
rasterization, 151-155

passing data to, 41-42, 137-151. See 
also drawing; rectangles; shapes; 
triangles

passing texture coordinates to 
fragment shaders, 180-181

program structure, 29-30

WebGL program structure, 28-30

shading

3D objects, 292

adding ambient light, 307-308

calculating color per fragment, 319

directional light and diffuse reflection, 
296-297

shading languages, 6

Shadow_highp.js, 413-414

Shadow.js, 406-412

shadow maps, 405

shadows

implementing, 405-406

increasing precision, 412

Shadow_highp.js, 413-414

Shadow.js, 406-412

shapes. See also rectangles; triangles

animation, 124-136

calling drawing function, 129-130

draw() function, 130-131

multiple transformations in, 
135-136

requestAnimationFrame() function, 
131-133

RotatingTriangle.js, 126-129

updating rotation angle, 133-135

drawing, 85-91

HelloTriangle.js, 85-86

list of, 87-88

multiple vertices, drawing, 68-85
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rotating, 96-102

RotatedTriangle_Matrix.js, 107-110

transformation matrix, 102-105

scaling, 111-113

transformation libraries, 115-124

combining multiple 
transformations, 119-121

cuon-matrix.js, 116

RotatedTranslatedTriangle.js, 
121-124

RotatedTriangle_Matrix4.js, 117-119

translating, 92-96

combining with rotation, 111

transformation matrix, 105-106

sign() function, 444

sin() function, 442

single joint model, objects composed of 
other objects, 326-327

smoothstep() function, 446

sqrt() function, 443

stencil buffer, 22

step() function, 446

storage location

attribute variables, 44-45

uniform variables, 62-63

storage qualifiers, 43, 217-219

attribute variables, 218

const, 217

uniform variables, 218

varying variables, 219

storing shader source code, 346-347

StringParser object, 426

striped patterns, 409

structures in GLSL ES, 207-208

access to members, 207

assignment of values, 207

constructors, 207

operators, 208

swapping color buffers, 437

switching shaders, 386

implementing, 387

ProgramObject.js, 387-391

swizzling, 202

T

tan() function, 442

targets, binding texture objects to, 
173-174

texels, 160

data formats, 178

data types, 179

retrieving color in fragment shader, 
181-182

text editors, 3D graphics development 
with, 3-4

texture2D() function, 181-182, 451

texture2DLod() function, 451

texture2DProj() function, 451

texture2DProjLod() function, 451

texture coordinates

changing, 182-183

explained, 162

flipping image y-axis, 170-171

mapping to vertex coordinates, 
162-163, 166

passing from vertex to fragment 
shader, 180-181

textureCube() function, 451

textureCubeLod() function, 451

TexturedQuad.js, 163-166
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texture images, 392

FramebufferObject.js, 395-396

framebuffer objects, 392-393

creating, 397

implementing, 394

renderbuffer objects, 392-393

creating, 398

texture lookup functions, 216, 451

texture mapping, 160-183

activating texture units, 171-172

assigning texture images to texture 
objects, 177-179

binding texture objects to target, 
173-174

changing texture coordinates, 182-183

flipping image y-axis, 170-171

mapping texture and vertex 
coordinates, 162-163, 166

with multiple textures, 183-190

passing coordinates from vertex to 
fragment shader, 180-181

passing texture unit to fragment 
shader, 179-180

retrieving texel color in fragment 
shader, 181-182

setting texture object parameters, 
174-177

setting up and loading images, 166-170

texture coordinates, explained, 162

TexturedQuad.js, 163-166

texture objects, 170

assigning texture images to, 177-179

binding to target, 173-174

creating, 397-398

setting parameters, 174-177

setting to framebuffer objects, 400-401

texture units

activating, 171-172

passing to fragment shader, 179-180

pasting multiple, 183-190

tick() function, 129-130

transformation libraries, 115-124

combining multiple transformations, 
119-121

cuon-matrix.js, 116

RotatedTranslatedTriangle.js, 121-124

RotatedTriangle_Matrix4.js, 117-119

transformation matrix

defined, 103

inverse transpose matrix and, 465-469

rotating shapes, 102-105

scaling shapes, 111-113

translating shapes, 105-106

transformations

coordinate systems and, 477

defined, 91

multiple transformations in animation, 
135-136

world transformation, 476

translated-rotated objects

inverse transpose matrix, 311-312

lighting, 310-311

TranslatedTriangle.js, 92-96

translating

shapes, 92-96

combining multiple 
transformations, 119-121

transformation matrix, 105-106

triangles, 111

translation matrix

combining with rotation matrix, 111

creating, 105-106
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defined, 106

inverse transpose matrix and, 465-469

triangles, 225-226. See also rectangles; 
shapes

coloring vertices different colors, 
151-160

geometric shape assembly and 
rasterization, 151-155

invoking fragment shader, 155

varying variables and interpolation 
process, 157-160

verifying fragment shader 
invocation, 156-157

combining multiple transformations, 
119-121

drawing, 85-91

restoring clipped parts, 251-253

rotating, 96-102, 107-110, 234-235

RotatingTranslatedTriangle.js, 135-136

RotatingTriangle.js, 126-129

calling drawing function, 129-130

draw() function, 130-131

requestAnimationFrame() function, 
131-133

updating rotation angle, 133-135

TranslatedTriangle.js, 92-96

translating, 92-96, 111

trigonometry functions, 216, 441-442

type conversion in GLSL ES, 196-197

typed arrays, 78-79

typed programming languages, 34

type sensitivity in GLSL ES, 195

U

#undef preprocessor directive, 222

uniform variables, 61-62, 217-218

assigning values to, 63-66

retrieving storage location, 62-63

u_NormalMatrix, 314

updating rotation angle, 133-135

up direction, 228

user-defined objects (3D models), 422-423

V

values, assigning

to attribute variables, 45-49

to uniform variables, 63-66

variables

attribute variables, 218

declaring, 43

explained, 41-42

setting value, 45-49

storage location, 44-45

in fragment shaders, 36

in GLSL ES

arrays, 208-209

assignment of values, 196-197

data types for, 34, 196

global and local variables, 216

keywords and reserved words, 
194-195

naming conventions, 194
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operator precedence, 210

operators on, 197-198

precision qualifiers, 219-221

samplers, 209-210

storage qualifiers, 217-219

structures, 207-208

type conversion, 196-197

type sensitivity, 195

vector and matrix types, 198-206

naming conventions, 43

uniform variables, 61-62, 218

assigning values to, 63-66

retrieving storage location, 62-63

in vertex shaders, 33

varying variables, 217, 219

color changes with, 146-151

interpolation process and, 157-160

vec4() function, 34-35

vector data types in GLSL ES, 198-206

access to components, 201-204

assignment of values, 199-201

constructors, 199-201

operators, 204-206

vector functions, 48, 216, 449

vector multiplication, 103, 205-206

#version preprocessor directive, 223

vertex coordinates, mapping to texture 
coordinates, 162-163, 166

vertex shaders, 27, 232

drawing points, 33-35

example of, 192

geometric shape assembly and 
rasterization, 151-155

passing data to, 41-42, 137-151. See 
also drawing; rectangles; shapes; 
triangles

color changes, 146-151

creating multiple buffer objects, 
140-141

interleaving, 141-145

MultiAttributeSize.js, 139-140

passing texture coordinates to fragment 
shaders, 180-181

program structure, 29-30

vertices, 27

basic shapes

drawing, 85-91

rotating, 96-102

scaling, 111-113

translating, 92-96

coloring different colors, 151-160

geometric shape assembly and 
rasterization, 151-155

invoking fragment shader, 155

varying variables and interpolation 
process, 157-160

verifying fragment shader 
invocation, 156-157

multiple vertices, drawing, 68-85

transformation matrix

rotating shapes, 102-105

translating shapes, 105-106

view matrix, 229, 231

viewing console, 14

viewing direction, 226-227

eye point, 228

look-at point, 228
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LookAtRotatedTriangles.js, 235-236

LookAtTriangles.js, 229-232

specifying, 226-227

up direction, 228

viewing volume

clip coordinate system and, 460-462

quadrangular pyramid, 256-258

visible range, 242-243

visible range, 241-242

defining box-shaped viewing volume, 
243-244

eye point, 241

quadrangular pyramid, 254-256

viewing volume, 242-243

W

web browsers

<canvas> element support, 12

console, viewing, 14

enabling local file access, 161

functionality in 3D graphics 
applications, 5

JavaScript to WebGL processing flow, 
27, 438

WebGL settings, 479-480

WebGL

advantages of, 3-5

application structure, 6-7

browser settings, 479-480

color, setting, 21-23

color buffer, drawing to, 437-439

coordinate system, 38-39

clip coordinate system and viewing 
volume, 460-462

CoordinateSystem.js, 456-459

handedness in default behavior, 
455-464

Hidden Surface Removal tool, 
459-460

projection matrices for, 462-464

transforming <canvas> element 
coordinates to, 54-57

defined, 1-2

JavaScript processing flow, 27, 438

methods, naming conventions, 48-49

OpenGL and, 5

origins of, 5-6

processing flow for initializing 
shaders, 31

program structure for shaders, 28-30

rendering context, retrieving, 20-21

web pages (3DoverWeb), displaying 3D 
objects, 372

world coordinate system, 475-477

world transformation, 476

writing

data to buffer objects, 76-78

Hello Cube vertex coordinates, 
colors, and indices in the buffer 
object, 281-284

w value (fog), 376-377

X-Z

y-axis, flipping, 170-171

z fighting

background objects, 273-275

foreground objects, 273-275

Zfighting.js, 274-275
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