
March 24th, 2015

Computação de Alto
Desempenho

(High Performance Computing)

Slides adapted from “An Introduction to Parallel Programming”,
Peter Pacheco

 March 29th, 2016 / 2 Computação de Alto Desempenho (High Performance Computing)

Review…

 March 29th, 2016 / 3 Computação de Alto Desempenho (High Performance Computing)

Foster’s methodology

1.  Partitioning
Divide the computation to be performed and the data operated on by the
computation into small tasks. The focus here should be on identifying
tasks that can be executed in parallel.

2.  Communication
Determine what communication needs to be carried out among the
tasks identified in the previous step.

3.  Agglomeration or aggregation
Combine tasks and communications identified in
the first step into larger tasks.

4.  Mapping
Assign the composite tasks identified in the previous step to processes/
threads.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 4 Computação de Alto Desempenho (High Performance Computing)

OpenMP Fork-join model

 March 29th, 2016 / 5 Computação de Alto Desempenho (High Performance Computing)

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 6 Computação de Alto Desempenho (High Performance Computing)

gcc −g −Wall −fopenmp −o omp_hello omp_hello . c

. / omp_hello 4
compiling

running with 4 threads

Hello from thread 0 of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 3 of 4 Hello from thread 1 of 4

Hello from thread 2 of 4
Hello from thread 0 of 4
Hello from thread 3 of 4

Hello from thread 3 of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 0 of 4

possible
outcomes

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 7 Computação de Alto Desempenho (High Performance Computing)

Parallel directive

 March 29th, 2016 / 8 Computação de Alto Desempenho (High Performance Computing)

Reduction clause

A reduction clause can be added to a
parallel directive.

+, *, -, &, |, ˆ, &&, ||

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 9 Computação de Alto Desempenho (High Performance Computing)

Sections in OpenMP

#include	 <stdio.h>	
#include	 <stdlib.h>	
#include	 <omp.h>	
	
void	 oneMessage(char	 c)	 {	
	 	 printf("%c	 -‐-‐	 Thread:%d	 Nºthreads:%d\n”,	 c,	 omp_get_thread_num(),	
omp_get_num_threads());}	
	
int	 main	 (int	 argc,	 char	 *argv[])	 	
{	
	 	 	 omp_set_num_threads(2);	
	 	 #pragma	 omp	 parallel	
	 	 {	

	 #pragma	 omp	 sections	
	 	 {	
	 	 #pragma	 omp	 section	
	 	 {	 oneMessage(‘A');}	
	 	 #pragma	 omp	 section	
	 	 {	 oneMessage(‘B');	 }	
	 }	

	 	 	 }	
	 return(0);	

}	 	

 March 29th, 2016 / 10 Computação de Alto Desempenho (High Performance Computing)

Parallel for and variables’ scope

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

The varibles’ default scope is
private; i is private; there are
local variables being used to
add to the reduction
variable approx

 March 29th, 2016 / 11 Computação de Alto Desempenho (High Performance Computing)

Legal forms for parallelizable for
statements

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 12 Computação de Alto Desempenho (High Performance Computing)

Loop dependency

loop dependency

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 13 Computação de Alto Desempenho (High Performance Computing)

The default clause

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 14 Computação de Alto Desempenho (High Performance Computing)

MORE ABOUT LOOPS IN OPENMP: SORTING

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 15 Computação de Alto Desempenho (High Performance Computing)

Serial bubble sort

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 16 Computação de Alto Desempenho (High Performance Computing)

Bubble sort

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

Is this algorithm parallelizable?

 March 29th, 2016 / 17 Computação de Alto Desempenho (High Performance Computing)

Bubble sort

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

There is an inherently sequential ordering of
the comparisons.
Ex:
a[i-1] = 9, a[i] = 5, and a[i+1] = 7

If different comparison orders were possible:
a) Compare 9 and 5 and swap them,
compare 9 and 7 and swap them à 5, 7, 9

b) compare the 5 and 7 first and then
compare the 9 and 5 à 5, 9, 7

The order in which the “compare-swaps”
take place is essential to the correctness of
the algorithm.

 March 29th, 2016 / 18 Computação de Alto Desempenho (High Performance Computing)

Bubble sort

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

Loop-carried dependence in the inner
loop:
-- the elements compared in iteration i
depend on on the outcome of iteration i−1

Ex: list= a= {3,1,2}
i = 1 à compare 3 and 2

But if the i = 0 and the i = 1 iterations are
happening simultaneously à it may happen:
compare 1 and 2.

 March 29th, 2016 / 19 Computação de Alto Desempenho (High Performance Computing)

Bubble sort

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

Loop-carried dependence in the outer loop: in
any iteration of the outer loop the contents of the
current list depends on the previous iterations of the
outer loop.
Ex:
a = {3, 4, 1, 2}; the second iteration should act on
{3, 1, 2} (4 should be at the last position of a).
But this may not happen if the first two iterations are
executing simultaneously (4 may still be in the list).

 March 29th, 2016 / 20 Computação de Alto Desempenho (High Performance Computing)

Odd-even transposition sort

§  A variant of bubble sort with more
opportunities for parallelism
§  key idea: to “decouple” the compare-swaps

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 21 Computação de Alto Desempenho (High Performance Computing)

Odd-even transposition sort

§  A sequence of phases.

§  Even phases, compare swaps are executed on:

§  Odd phases, compare swaps are executed on:

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 22 Computação de Alto Desempenho (High Performance Computing)

Example

Start: 5, 9, 4, 3

Even phase: compare-swap (5,9) and (4,3)
 getting the list 5, 9, 3, 4

Odd phase: compare-swap (9,3)
getting the list 5, 3, 9, 4

Even phase: compare-swap (5,3) and (9,4)
 getting the list 3, 5, 4, 9

Odd phase: compare-swap (5,4)
getting the list 3, 4, 5, 9

 Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 23 Computação de Alto Desempenho (High Performance Computing)

Theorem

§  Suppose A is a list with n keys/values, and A
is the input to the odd-even transposition sort
algorithm. Then, after n phases A will be
sorted.

 March 29th, 2016 / 24 Computação de Alto Desempenho (High Performance Computing)

Serial odd-even transposition sort

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 25 Computação de Alto Desempenho (High Performance Computing)

Serial odd-even transposition sort

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

All of the compare-
swaps in a single
phase can happen
simultaneously

 March 29th, 2016 / 26 Computação de Alto Desempenho (High Performance Computing)

Serial odd-even transposition sort

§  Tasks: Determine the value of a[i] at the end of
phase j.

§  Communications/Dependencies: The task that is
determining the value of a[i] needs to communicate
with either the task determining the value of a[i-1] or
a[i+1].
Also the value of a[i] at the end of phase j needs to
be available for determining the value of a[i] at the
end of phase j+1.

 March 29th, 2016 / 27 Computação de Alto Desempenho (High Performance Computing)

Dependencies/communications
among tasks in odd-even sort

Tasks determining/defining the value of a[i]
are labeled with a[i].

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 28 Computação de Alto Desempenho (High Performance Computing)

Serial odd-even transposition sort

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 29 Computação de Alto Desempenho (High Performance Computing)

Serial odd-even transposition sort

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

a = {9, 7, 8, 6}

 March 29th, 2016 / 30 Computação de Alto Desempenho (High Performance Computing)

Serial odd-even transposition sort

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

a = {9, 7, 8, 6}

Parallelization?

The outer loop has a loop-
carried dependence. E.g.
phase 0 and phase 1 cannot be
executed simultaneously.

The inner loops do not seem
to have any loop-carried
dependences

 March 29th, 2016 / 31 Computação de Alto Desempenho (High Performance Computing)

First OpenMP odd-even sort

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 32 Computação de Alto Desempenho (High Performance Computing)

First OpenMP odd-even sort

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

Problems?

 March 29th, 2016 / 33 Computação de Alto Desempenho (High Performance Computing)

First OpenMP odd-even sort

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

Problem1: All the threads have to
finish phase p before any thread
starts phase p+1.
Parallel for has an implicit barrier
à main thread waits for all threads
in phase p

 March 29th, 2016 / 34 Computação de Alto Desempenho (High Performance Computing)

First OpenMP odd-even sort

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

Problem 2: overhead associated
with forking and joining the
threads -- the OpenMP
implementation may fork and
join thread_count threads
on each pass

 March 29th, 2016 / 35 Computação de Alto Desempenho (High Performance Computing)

First OpenMP odd-even sort

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

Same number of threads for
each inner loop à fork the
threads once and reuse the same
team of threads for each
execution of the inner loops

 March 29th, 2016 / 36 Computação de Alto Desempenho (High Performance Computing)

Second OpenMP odd-even sort

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

Fork a team of thread count
threads before the outer loop
with a parallel directive

 March 29th, 2016 / 37 Computação de Alto Desempenho (High Performance Computing)

Second OpenMP odd-even sort

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

Fork a team of thread count
threads before the outer loop
with a parallel directive

For directive -- tells
OpenMP to parallelize the
for loop with the existing
team of threads

 March 29th, 2016 / 38 Computação de Alto Desempenho (High Performance Computing)

Second OpenMP odd-even sort

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

Fork a team of thread count
threads before the outer loop
with a parallel directive

For directive -- tells
OpenMP to parallelize the
for loop with the existing
team of threads

 March 29th, 2016 / 39 Computação de Alto Desempenho (High Performance Computing)

Odd-even sort with two parallel for directives and two for directives.
(Times are in seconds.)

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

Input list with 20,000 elements.

 March 29th, 2016 / 40 Computação de Alto Desempenho (High Performance Computing)

SCHEDULING LOOPS

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 41 Computação de Alto Desempenho (High Performance Computing)

We want to parallelize
this loop.

Assignment of work
using cyclic partitioning.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 42 Computação de Alto Desempenho (High Performance Computing)

Our definition of function f.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 43 Computação de Alto Desempenho (High Performance Computing)

Our definition of function f.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 44 Computação de Alto Desempenho (High Performance Computing)

Results

§  f(i) calls the sin function i times.

§  Assume the time to execute f(2i) requires
approximately twice as much time as the time to
execute f(i).

§  n = 10,000
§  one thread
§  run-time = 3.67 seconds.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 45 Computação de Alto Desempenho (High Performance Computing)

Results

§  n = 10,000
§  two threads
§  default assignment
§  run-time = 2.76 seconds
§  speedup = 1.33

§  n = 10,000
§  two threads
§  cyclic assignment
§  run-time = 1.84 seconds
§  speedup = 1.99

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 46 Computação de Alto Desempenho (High Performance Computing)

The schedule clause

§  Default schedule:

§  Cyclic schedule:

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 47 Computação de Alto Desempenho (High Performance Computing)

schedule (type , chunksize)

§  Type can be:
§  static: the iterations can be assigned to the threads before

the loop is executed.
§  dynamic or guided: the iterations are assigned to the

threads while the loop is executing.
§  auto: the compiler and/or the run-time system determine

the schedule.
§  runtime: the schedule is determined at run-time.

§  The chunksize is a positive integer.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 48 Computação de Alto Desempenho (High Performance Computing)

The static schedule type

twelve iterations, 0, 1, . . . , 11, and three
threads

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 49 Computação de Alto Desempenho (High Performance Computing)

The static schedule type

twelve iterations, 0, 1, . . . , 11, and three
threads

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 50 Computação de Alto Desempenho (High Performance Computing)

The static schedule type

twelve iterations, 0, 1, . . . , 11, and three
threads

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 51 Computação de Alto Desempenho (High Performance Computing)

The dynamic schedule type

§  The iterations are also broken up into chunks
of chunksize consecutive iterations.

§  Each thread executes a chunk, and when a
thread finishes a chunk, it requests another
one from the run-time system.

§  This continues until all the iterations are
completed.

§  The chunksize can be omitted. When it is
omitted, a chunksize of 1 is used.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 52 Computação de Alto Desempenho (High Performance Computing)

The guided schedule type

§  Each thread also executes a chunk, and when a
thread finishes a chunk, it requests another one.

§  However, in a guided schedule, as chunks are
completed the size of the new chunks decreases.

§  If no chunksize is specified, the size of the chunks
decreases down to 1.

§  If chunksize is specified, it decreases down to
chunksize, with the exception that the very last
chunk can be smaller than chunksize.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 53 Computação de Alto Desempenho (High Performance Computing)

Assignment of trapezoidal rule iterations 1–9999 using a guided
schedule with two threads.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 54 Computação de Alto Desempenho (High Performance Computing)

The runtime schedule type

§  The system uses the environment variable
OMP_SCHEDULE to determine at run-time how to
schedule the loop.

§  The OMP_SCHEDULE environment variable can
take on any of the values that can be used for a
static, dynamic, or guided schedule.
§  E.g.

$ export OMP_SCHEDULE="static,1”
§  By using the schedule(runtime) clause, different options can be

explored with different assignments to OMP_SCHEDULE.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 55 Computação de Alto Desempenho (High Performance Computing)

PRODUCERS AND CONSUMERS

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 56 Computação de Alto Desempenho (High Performance Computing)

Queues

§  Can be viewed as an abstraction of a line of
customers waiting to pay for their groceries in a
supermarket.

§  A natural data structure to use in many
multithreaded applications.

§  For example, suppose we have several “producer”
threads and several “consumer” threads.
§  Producer threads might “produce” requests for data (e.g.

from a server providing current stock market values).
§  Consumer threads might “consume” the request by

finding or generating the requested data (e.g. the stock
data).

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 57 Computação de Alto Desempenho (High Performance Computing)

Message-passing

§  Shared memory can be used to implement
message-passing

§  Each thread could have a shared message queue,
and when one thread wants to “send a message” to
another thread, it could enqueue the message in the
destination thread’s queue.

§  A thread could receive a message by dequeuing the
message at the head of its message queue.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 58 Computação de Alto Desempenho (High Performance Computing)

Message-passing

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

Each thread alternates between
sending and receiving messages.

When a thread does not have any
message to send, waits for all the
other threads to finish (receives the
messages from the other threads)

 March 29th, 2016 / 59 Computação de Alto Desempenho (High Performance Computing)

Sending messages -- Send_msg()
pseudo-code

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

Destination
thread (owner
of the queue)

Identifier of the
sending thread

Only the owner of a queue can dequeue a message, but
several threads can enqueue their own messages on this
Queue.

 March 29th, 2016 / 60 Computação de Alto Desempenho (High Performance Computing)

Receiving messages – Try_receive()
pseudo-code

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

queue_size = enqueue - dequeue

 March 29th, 2016 / 61 Computação de Alto Desempenho (High Performance Computing)

Termination detection

each thread increments this after
completing its for loop

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 62 Computação de Alto Desempenho (High Performance Computing)

Startup (1)

§  When the program begins execution, a single
thread, the master thread, will get command line
arguments and allocate an array of message
queues: one for each thread.

§  This array needs to be shared among the threads,
since any thread can send to any other thread, and
hence any thread can enqueue a message in any of
the queues.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 63 Computação de Alto Desempenho (High Performance Computing)

Startup (2)

§  One or more threads may finish allocating their
queues before some other threads.

§  We need an explicit barrier so that when a thread
encounters the barrier, it blocks until all the threads
in the team have reached the barrier.

§  After all the threads have reached the barrier all the
threads in the team can proceed.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 64 Computação de Alto Desempenho (High Performance Computing)

The atomic directive (1)

§  Unlike the critical directive, it can only protect critical
sections that consist of a single C assignment
statement.

§  Further, the statement must have one of the
following forms:

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 65 Computação de Alto Desempenho (High Performance Computing)

The atomic directive (2)

§  Here <op> can be one of the binary operators

§  Many processors provide a special load-modify-
store instruction.

§  A critical section that only does a load-modify-
store can be protected much more efficiently by
using this special instruction rather than the
constructs that are used to protect more general
critical sections.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 66 Computação de Alto Desempenho (High Performance Computing)

Critical sections

§  OpenMP provides the option of adding a name to
a critical directive:

§  When we do this, two blocks protected with
critical directives with different names can be
executed simultaneously.

§  However, the names are set during compilation,
and we want a different critical section for each
thread’s queue.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 67 Computação de Alto Desempenho (High Performance Computing)

Locks

§  A lock consists of a data structure and functions that
allow the programmer to explicitly enforce mutual
exclusion in a critical section.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 68 Computação de Alto Desempenho (High Performance Computing)

Locks

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 69 Computação de Alto Desempenho (High Performance Computing)

Using locks in the message-passing program

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 70 Computação de Alto Desempenho (High Performance Computing)

Using locks in the message-passing
program

Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 71 Computação de Alto Desempenho (High Performance Computing)

Some caveats

1.  You should not mix the different types of mutual
exclusion for a single critical section.

2.  There is no guarantee of fairness in mutual
exclusion constructs.

3.  It can be dangerous to “nest” mutual exclusion
constructs.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 72 Computação de Alto Desempenho (High Performance Computing)

Concluding Remarks (1)

§  OpenMP is a standard for programming shared-
memory systems.

§  OpenMP uses both special functions and
preprocessor directives called pragmas.

§  OpenMP programs start multiple threads rather than
multiple processes. E.g. most general

pragma omp parallel
 structured block

§  Many OpenMP directives can be modified by
clauses.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 73 Computação de Alto Desempenho (High Performance Computing)

Concluding Remarks (2)

§  A major problem in the development of shared
memory programs is the possibility of race
conditions.

§  OpenMP provides several mechanisms for insuring
mutual exclusion in critical sections.
§  Critical directives
§  Named critical directives
§  Atomic directives
§  Simple locks

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 74 Computação de Alto Desempenho (High Performance Computing)

Concluding Remarks (3)

§  Critical directives
pragma omp critical
 structured block

§  Atomic directives
x <op>= <expression>

§  Default behavior of OpenMP — all critical blocks are
treated as part of one composite critical section, i.e.
only one thread at a time -- this is valid both for
unnamed critical directives and atomic directives

pragma omp atomic # pragma omp atomic
 x++; y++;

§  This can be highly detrimental to a program’s performance

 March 29th, 2016 / 75 Computação de Alto Desempenho (High Performance Computing)

Concluding remarks (4)

§  Named critical directives -- threads entering
critical sections with different names can
execute concurrently.
pragma omp critical(name)

§  Simple locks
omp set lock(&lock);
 critical section
omp unset lock(&lock);

 March 29th, 2016 / 76 Computação de Alto Desempenho (High Performance Computing)

Concluding remarks (5)

§  You should not mix the different types of
mutual exclusion for a single critical section
pragma omp atomic # pragma omp critical
 x += f(y); x = g(x);

The critical directive does not exclude the action
executed by the atomic block.

Use critical on both cases or rewrite g(x)

 March 29th, 2016 / 77 Computação de Alto Desempenho (High Performance Computing)

Concluding remarks (6)

§  There is no guarantee of fairness in mutual
exclusion constructs

while(1) {
 . . .
 # pragma omp critical
 x = g(my rank);
 . . .
}

One thread may block forever. This does not happen
if threads are scheduled in a round-robin fashion, or
if
a for loop is used.

 March 29th, 2016 / 78 Computação de Alto Desempenho (High Performance Computing)

Concluding remarks (7)

§  It can be dangerous to “nest” mutual
exclusion constructs

pragma omp critical
y = f(x);
. . .
double f(double x) {
 # pragma omp critical
 z = g(x); /* z is shared */
 . . .
}

§  A thread will block here, as all other threads

 March 29th, 2016 / 79 Computação de Alto Desempenho (High Performance Computing)

Concluding remarks (8)

… solve the anterior problem by using named
critical sections

pragma omp critical(one)
y = f(x);
. . .
double f(double x) {
 # pragma omp critical(two)
 z = g(x); /* z is global */
 . . .
}

However this does not work in some situations à
deadlock

 March 29th, 2016 / 80 Computação de Alto Desempenho (High Performance Computing)

Deadlock…

 March 29th, 2016 / 81 Computação de Alto Desempenho (High Performance Computing)

Concluding remarks (9)

§  By default most systems use a block-partitioning of
the iterations in a parallelized for loop.

§  OpenMP offers a variety of scheduling options.
schedule(<type> [,<chunksize>])

§  In OpenMP the scope of a variable is the collection
of threads to which the variable is accessible.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 82 Computação de Alto Desempenho (High Performance Computing)

Concluding remarks (10)

§  A reduction is a computation that repeatedly applies
the same reduction operator to a sequence of
operands in order to get a single result.

§  A barrier directive will cause the threads in a team to
block until all the threads have reached the directive.
pragma omp barrier

§  The parallel, parallel for, and for directives have implicit
barriers at the end of the structured block.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 29th, 2016 / 83 Computação de Alto Desempenho (High Performance Computing)

Tutorial OpenMP

https://computing.llnl.gov/tutorials/openMP/

 March 29th, 2016 / 84 Computação de Alto Desempenho (High Performance Computing)

Common patterns…

 March 29th, 2016 / 85 Computação de Alto Desempenho (High Performance Computing)

Fork-join model

 March 29th, 2016 / 86 Computação de Alto Desempenho (High Performance Computing)

• Map replicates a
function over every
element of an index set
• The index set may be
abstract or associated
with the elements of an
array.
A = map(f)(B);

Map- serial execution

86

for(i=0; i<len; i++)
 a[i] = a[i] + 0x20

M. McCool, A. Robision, J. Reinders
86

 March 29th, 2016 / 87 Computação de Alto Desempenho (High Performance Computing)

• Map replicates a function
over every element of an
index set
•  The index set may be
abstract or associated with
the elements of an array.

• Map replaces one specific
usage of iteration in serial
programs: independent
operations.

A = map(f)(B);

Map – parallel execution

M. McCool, A. Robision, J. Reinders

 March 29th, 2016 / 88 Computação de Alto Desempenho (High Performance Computing)

• Reduce combines every
element in a collection
into one element using
an associative operator.

• For example: reduce
can be used to find the
sum or maximum of an
array.

b = reduce(f)(B);

Reduction – serial execution

88

for(i=0; i<len; i++)
 total += a[i]

88
M. McCool, A. Robision, J. Reinders

 March 29th, 2016 / 89 Computação de Alto Desempenho (High Performance Computing)

• Reduce combines every
element in a collection
into one element using
an associative operator.

• For example: reduce
can be used to find the
sum or maximum of an
array.

b = reduce(f)(B);

Examples: averaging of Monte
Carlo samples; convergence
testing; image comparison
metrics; matrix operations.

Reduction – parallel execution

89

M. McCool, A. Robision, J. Reinders

 March 29th, 2016 / 90 Computação de Alto Desempenho (High Performance Computing)

• Scan computes all
partial reductions of a
collection

• Operator must be (at
least) associative.

A = scan(f)(B);

Scan – serial execution

90

for(i=0; i<len-1; i++)
 a[i+1] = a[i] + a[i+1]

M. McCool, A. Robision, J. Reinders
90

 March 29th, 2016 / 91 Computação de Alto Desempenho (High Performance Computing)

• Scan computes all
partial reductions of a
collection

• Operator must be (at
least) associative.

A = scan(f)(B);

Scan – parallel execution

91
91

M. McCool, A. Robision, J. Reinders

 March 29th, 2016 / 92 Computação de Alto Desempenho (High Performance Computing)

•  Scan computes all partial
reductions of a collection

• Operator must be (at least)
associative.
• Diagram shows one possible
parallel implementation
using three-phase strategy

A = scan(f)(B);

Scan – parallel execution

92
92

